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ABSTRACT OF THE DISSERTATION

Characterizing the Spatial Density Functions of Neural Arbors

by

Corinne Michelle Teeter

Doctor of Philosophy in Neurosciences

with a specialization in Computational Neuroscience

University of California, San Diego, 2010

Professor Charles F. Stevens, Chair

Professor William B. Kristan, Co-Chair

Recently, it has been proposed that a universal function describes the way in

which all arbors (axons and dendrites) spread their branches over space. Data from

fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat,

cat, monkey and human provide evidence that all arbor density functions (adf) can be

described by a Gaussian function truncated at approximately two standard deviations.

A Gaussian density function implies that there is a minimal set of parameters needed

to describe an adf: two or three standard deviations (depending on the dimensionality

of the arbor) and an amplitude. However, the parameters needed to completely

describe an adf could be further constrained by a scaling law found between the

product of the standard deviations and the amplitude of the function.

In the following document, I examine the scaling law relationship in order to

determine the minimal set of parameters needed to describe an adf. First, I find that

the flat, two-dimensional arbors of fish retinal ganglion cells require only two out of

the three fundamental parameters to completely describe their density functions. Sec-

ond, the three-dimensional, volume filling, cortical arbors require four fundamental

parameters: three standard deviations and the total length of an arbor (which corre-

sponds to the amplitude of the function). Next, I characterize the shape of arbors in

xvii



the context of the fundamental parameters. I show that the parameter distributions

of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger

and less dense than dendrites; however, they are similarly shaped. The parameter

distributions of these two arbor types overlap and, therefore, can only be differenti-

ated from one another probabilistically based on their adfs. Despite artifacts in the

cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites,

and axons) can generally be differentiated based on their adfs. In addition, within

arbor type, there is evidence of different neuron classes (such as interneurons and

pyramidal cells). How well different types and classes of arbors can be differentiated

is quantified using the Random ForestTM supervised learning algorithm.

xviii



Chapter 1

Introduction

The brain is a extraordinarily complicated circuit containing approximately

1010 neurons with approximately 1014 connections between them (Nagarajan and

Stevens, 2008). To make things more complicated the components of this circuit are

not homogenous, but instead, there are many different classes of neurons.

How does one go about unraveling the secrets of the brain? To understand

the function of any circuit both the components and the connections must be identified

and understood. This is a rather daunting proposition when considering the number

of neurons in the brain. However, there must be underlying organizational principles

that govern brain structure and allow the network to function.

What are the structural principles of the brain? It is clear that neural

morphology plays a critical role in brain function. The morphology of neurons can

mediate the functional properties of neurons. In addition, because neurons actually

reach out and make physical contact with one another in order to communicate,

morphology will determine how these components can connect and therefore constrain

network computations. Because of the vital role structure plays in the brain, this

document will focus on the organizational principles of morphology.

1
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1.1 How are network connections specified?

So what are the structural principles that allow the brain to function? Prin-

ciples of structure must begin at the level of neural growth laws. How neurons grow

will affect neuron structure. Neural structure will both influence neuron function

and the connections between neurons thus constraining network computation. How

neurons ‘reach out’ and find each other in a labyrinth of densely packed biological

media will eventually affect network function.

How are the connections of the brain specified? It is probable that long

range connections that connect distant parts of the brain are determined genetically

as it seems unreasonable that neurons would be able to find their way without some

sort of programing. However, it is doubtful that the local connections are specified ge-

netically. The brain is constantly changing and adapting and connections are shaped

by experience. This plasticity in the brain gained attention with the famous Hebb

postulate which identified that activity can invoke changes in synapses so that the

activity of one neuron could more strongly influence the activity in another (Hebb,

2002) (originally published in 1949). Since then, at least three different types of plas-

ticity have been discovered. The seemingly simplest and fastest form of plasticity

involves the change in synaptic strength which can happen within a minute (Bliss

and Collingridge, 1993; Gustafsson et al., 1990; Madison et al., 1991; Malinow et al.,

2000). The next least drastic structural change involves the creation and destruction

of synaptic spines which happens on a time scale of minutes to hours (Dailey and

Smith, 1996; Engert and Bonhoeffer, 1999; B and Markram, 2006; Lendvai et al.,

2000; Trachtenberg et al., 2002). Finally, the remodeling of neural branches can take

place on the order of days (Yamahachi et al., 2009; Lee et al., 2005).

Even if the brain were perfectly static, it seems unlikely that the genome

could encode the location of every synapse and therefore the location of every piece

of dendrite and axon from every neuron. It seems probable that the genome specifies

general rules or strategies for connectivity and then connections form within the

context of these general rules.
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So what are the general rules that specify local connections? Because of

the intimate relationship between neural form and connectivity, many studies have

focused on deriving connectivity from morphology (Chklovskii, 2004; Hellwig, 2000;

Kalisman et al., 2003, 2005; Liley and Wright, 1994; Sholl, 1953; Stepanyants et al.,

2002, 2004; Uttley, 1955). Many investigators have provided evidence that neurons

spread themselves out randomly over space. In 1953, Sholl and Uttley wrote, “There

is reason to believe that many of the complexities of the cerebral cortex are due to

an organization that is fundamentally of a statistical nature and the parameters of

which can only be described in terms of probabilities” (Sholl and Uttley, 1953). In

1954, Uttley published a paper showing that, theoretically, a network of randomly

connected neurons could in fact learn simple classification tasks, thereby showing a

proof of principle that randomly connecting neurons could indeed perform ‘brain like’

tasks (Uttley, 1954). Then in 1955, Uttley estimated the number of connections that

would be expected based on random connectivity between neurons (Uttley, 1955).

Since then, many researchers have provided evidence that neurons largely connect

randomly. (Braitenberg and Schuz, 1998; Hellwig, 2000; Kalisman et al., 2003, 2005;

Liley and Wright, 1994). However, there is some evidence that interneuron growth

targets certain neurons while pyramidal cells do not (Kisvarday et al., 2002; Song

et al., 2005; Stepanyants et al., 2004). In this case, it is possible that the interneurons

spread out randomly over space and then use a different mechanism such as chemical

attractants to find their target when in close proximity.

1.2 The brain as an optimization problem

Optimization theory can add rationale regarding why arbors might spread

out randomly over space. Optimization principles have long been invoked to explain

organizational structure in the brain. The brain is almost certainly a complicated

optimization problem where networks of neurons have to communicate both locally

and across different regions. The network is highly constrained by space as neurons
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take up physical volume and extend out to make physical contact with one another.

In addition, neurons have metabolic requirements and are therefore constrained by

metabolic resources. Somehow the brain has developed an organizational structure

that balances its need for communication and computation while minimizing space

and metabolic requirements

As is nicely summarized in Chklovskii (2004), brain optimization theory

started with Ramon y Cajal’s laws of economy of space, time and matter (y Cajal

et al., 2002) (originally published in 1899). In these laws, Dr. Cajal hypothesizes

that network functionality is maximized while wiring cost is minimized. Since then,

optimization principles of wire minimization have been employed to explain many

phenomenon found in the brain. These include: why the brain is located in the head,

why the neocortex folds in a species specific pattern, why gray and white matter are

segregated in the cerebral cortex, why there are separate visual areas, why the number

of areas and neuron density scale with brain size, how cortical areas in mammals and

the ganglia of C. elegans are arranged with respect to one another, why topographic

maps exist, why the visual cortex has ocular dominance patterns and orientation

maps, why axonal and dendritic arbors have particular dimensions and branching

angles, and why axons and dendrites occupy a certain fraction of the gray matter.

Please see Chklovskii (2004) for an excellent list of references.

Optimization principles have also been employed to explain how a neuron

might distribute its arbors over space (Cherniak et al., 1999; Chen et al., 2006;

Chklovskii, 2000; Wen and Chklovskii, 2008; Wen et al., 2009). It is likely that a

neuron would maximize its possible connections within the circuit but minimize over-

all wire length or volume. In addition, the distance of each piece of branch to the

soma would likely be minimized as it is costly to ’pump’ resources out to the neuron

extremities. With this type of morphological strategy it is unlikely that the location

of every piece of neurite matters, but instead the neuron spreads itself out over space

in such a way as to maximize its connections and minimize metabolic needs.
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1.3 Scalable architecture

Scalable architecture is an interesting phenomena that can provide yet fur-

ther insight into the organizational principles of the brain. Scalable architecture refers

to the ability of a system to ‘scale up’ or be capable of processing more information

by increasing the number of components in the network, but maintain the same basic

architectural structure of system. Scalable architecture seems to be a general fea-

ture of mammalian brain evolution as the neocortical and subcortical structures grow

disproportionately (Finlay and Darlington, 1995). For example, if the thalamus of a

monkey and a bat were scaled to the same size, the cortex of the monkey would be

much larger than the cortex of a bat. An example, of scalable architecture observable

within an organism’s lifespan is found in the fish brain. The fish brain continues to

grow with the size of the fish throughout its life (Lee and Stevens, 2007). During

this process the neurons continue to get larger, but not at the same rate as the brain.

Instead, the existing neurons grow, while new neurons are created and integrated

into the circuit (Lee and Stevens, 2007). This is an extraordinary feat! The network

continues to grow and integrate new neurons into the circuit without interrupting

normal function.

There must be a mechanism that allows this growth and integration. Such

a phenomena implies, at the very least, some sort of scaling law for neural structure.

In fact, recently, scaling laws have been discovered for neural arbors. Neural

arbors (axons and dendrites) are the tree like processes that grow from the cell body

of a neuron in order to sample (dendrites) or disseminate (axons) information over a

region of the brain. Scaling laws are observed as a power law relationship between

two variables (Note: a power law is linear in logarithmic space). Wen et al. (2009)

found that there is a power law relationship between the total dendritic length and

the radius of an arbor. Snider et al. (2010) found that there is scaling relationship

between the the total arbor length and the area or volume covered by an arbor.
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1.4 A universal function for neural arbors

Scalable architecture has been extensively studied in physics and is associ-

ated with many interesting phenomena, one of which is universality. Perhaps unsur-

prisingly, a universal function that describes the way neural arbors spread themselves

over space has recently been uncovered. The general way in which an arbor distributes

itself over its territory can be described by an arbor density function (adf); a function

that is proportional to the probability of finding a piece of arbor at every point in

space (Figure 1A). Snider et al. (2010) showed compelling evidence that there is a

universal function that describes the spatial density function of all neural arbors. In

addition, they go on to show that the universal function is likely a Gaussian truncated

at approximately two standard deviations. This is unsurprising as a Gaussian is a

famous scale invariant function.

Figure 1.1: Arbor density function and convex hull of a retinal-ganglion cell axonal
arbor. A. Axon reconstructed with the arbor density function plotted above. Ampli-
tude of density function is proportional to the probability of finding a piece of arbor
at each point in space. B. Same arbor as in A. The area enclosed within the dashed
lines is defined as the convex hull area. Scale bar is 50 microns.
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1.5 Structure and function: neuron classification

based on morphology

It has long been recognized that there are many different classes of neu-

rons in the brain such as pyramidal cells, stellate cells, as well as many differ-

ent kinds of interneurons. The architectural principle that a structure must have

a certain form to perform a certain function (if a wheel is not round it can not

roll) has prompted over a century of research attempting to classify neurons based

on morphology. Neuron classification started soon after Camillo Golgi discovered

the revolutionary Golgi stain in 1873 and for the first time the neurons of the

brain could be visualized. In 1899, Ramon y Cajal published his famous book,

Comparative study of the sensory areas of the human cortex, where he classifies dif-

ferent types of neurons based on their morphology.

Many years later, numerous studies have shown that morphology does indeed

influence the activity of neurons (Larkman and Mason, 1990; Mason and Larkman,

1990; Mel, 1994; Mainen and Sejnowski, 1996; Jaffe and Carnevale, 1999; Vetter et al.,

2001; Gulledge et al., 2005). This is strong evidence for differing neural structure.

A universal function that describes arbor structure seems incompatible with the evi-

dence that structural variations achieve different neural activity. Can these seemingly

conflicting ideas be reconciled?

1.6 Reconciling a universal function with different

neural classes

How do different classes of neurons fit into the framework of scaling laws and

a universal arbor density function? Having different morphological classes of neurons

seems contradictory to a universal structural law for all neural arbors. However,

several topics should be considered when pondering morphological classes versus a

universal function.
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First, the universal Gaussian function describes neural arbors not neurons as

a whole. The neural arbors grow out of the soma to a region of space where they will

distribute their neurites. It is possible that all arbors are universal but are located at

different locations relative to the soma and this is what constitutes different classes

of neurons. Addressing this topic will be very important to characterizing different

classes of neurons; however, it is outside the scope of current research and could be

the topic of future research.

The differing location of arbors on different neurons does not completely

escape the conundrum of differing neural structure. Arbors have also been classified

into different types based on their structure and functional properties: apical den-

drites, non-apical dendrites, and axons. How can these different morphological types

of arbors be accounted for with a universal function?

It is possible that different branching laws from different types of arbors

could yield a Gaussian spatial density function with the appropriate scaling laws.

Although the connection between branching laws and the spatial density function

is a very intriguing line of research it is difficult to address. It is impossible to

exhaustively check all possible branching laws that could yield correct experimental

values. Perhaps this could be addressed using optimization theory, but this is outside

the scope of the current research.

What will be discussed in this document are the parameters that define the

spatial density functions of arbors. Arbors may have different parameters within the

context of a universal law and it is possible that different types of arbors could be

differentiated by these parameters. If the spatial density functions of all arbors are

Gaussian, it implies that relatively few parameters are needed to specify the adfs.

These parameters are the same parameters needed to define a Gaussian function: a

standard deviation for each dimension and an amplitude. If an arbor is two dimen-

sional (flat like a pancake) such as retinal ganglion cells, the arbors territory covers

an area. In this case, two standard deviations along with an amplitude will be re-

quired to describe the arbor. If an arbor is volume filling, such as cortical arbors,
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three standard deviations and an amplitude will be required. This means that even

if all arbors are Gaussian, different types of arbors might be distinguished by having

different parameters or different combinations of parameters.

Different combinations of standard deviations will define the geometrical

shape of an arbor. For two-dimensional arbors, the ratio of the standard deviations

will describe eccentricity: how circular or ovular an arbor is. For a three dimensional

arbor, the standard deviations will determine how spherical or ’egg-like’ an arbor

is. Interestingly, neither Wen et al. (2009) nor Snider et al. (2010) considered arbor

shape. Wen and colleagues recognized a scaling law between the total length of an

arbor and the radius of an arbor but assumed that the arbors were spherical. I.e

they assumed one radius could completely describe an arbor. Arbors are certainly

not always spherical which will be addressed in the current research. Snider et al.

(2010) went as far as to define a scaling law between the total length of an arbor

(amplitude of the Gaussian) and the product of the standard deviations that define

the Gaussian, but did not consider the standard deviations separately to define arbor

shape.

The final parameter that could vary is the amplitude of the Gaussian func-

tion. The amplitude corresponds to the total length of the arbor and will describe

how dense an arbor is. The scaling laws found by Wen et al. (2009) and Snider et al.

(2010) define the power law between parameters that describe arbor size and the total

length of an arbor. If these relationships were exact (i.e. there is no scatter in the

relationships) it would imply that the size of the arbor would perfectly define the

amplitude of the Gaussian function. However, this is not the case. Instead, there is

scatter in the relationships. Therefore it is also possible that different types of arbors

have different densities.

A universal function could explain the difficulties researchers have had when

classifying neurons based on their structure. Morphological classification has proven

to be challenging due to the apparent complexity of neuron architecture. In an

attempt to overcome this complexity, many different morphological traits have been
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used as a basis for characterization and sophisticated quantitative methods have been

applied to these detailed descriptions of arbor structure (Badea and Nathans, 2004;

Kong et al., 2005; Tsiola et al., 2003; Uylings and van Pelt, 2002). However, it is

difficult to know what morphological features are required to classify different types

of neurons. Theoretically there are an infinite number of parameters one could use in

an attempt to differentiate different types of cells (Kong et al., 2005). Overall, clas-

sification based on somewhat arbitrary characteristics, using sophisticated clustering

methods has been unsatisfying. These methods either do not adequately characterize

known types of neurons or the functional relevance of the classification parameters

of resulting classes is unknown. Interestingly, Kong et al. (2005) showed that the

parameters chosen for classification are often correlated which clouds the analysis.

They show that the best classification is obtained by using relatively few, indepen-

dent parameters. In addition, the parameters they find that optimize classification

turn out to be parameters that are similar to the fundamental parameters suggested

by the universal function. In fact, the power law relationship is visible in their data

but they do not describe it.

Perhaps morphological classification has been difficult because the arbors

of neurons are very similar and arbor types exist on a continuum with no clear cut

defining types.

1.7 In this thesis

In the following manuscript, I aim to create a more complete description

of the spatial distribution strategies of neural arbors and describe the differences

between types of arbors. I will begin by considering the simpler two-dimensional

retinal ganglion cells of fish and then discuss more complicated three-dimensional

cortical arbors. I will show the power law relationship between the product of the

standard deviations and and the total length of an arbor. I will show that the product

of the standard deviations is proportional to the area or volume covered by an arbor
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(depending on the dimensionality of the arbor), and as a result, there is a power law

between the total length of an arbor and the area or volume covered by an arbor.

Next, I will describe the scatter around the regression line. Because the

power law relationship characterizes area or volume versus length, the scatter in the

regression line will correspond to the range in average density for an arbor of a given

size. Defining the scatter around the line will have a dual purpose. First, it will

provide evidence for or against different density arbor types. Second, it will define

the minimal number of parameters needed to describe the spatial density function of

an arbor. If density does not contain any information about arbor type, the number of

parameters needed to describe an adf will be reduced from three to two. For example,

if the 2D spatial density function of a fish retinal ganglion cell is a Gaussian, three

standard deviations will be required to define it: two standard deviations and an

amplitude. However if there is no information in the scatter around the power law

relationship, only two parameters will be needed to define an adf, the third will be

specified by the power law equation. Similarly for 3D cortical arbors, if there is no

information about arbor type contained in arbor density, the number of parameters

needed to define a cortical arbor will be reduced from three to two standard deviations

and a total length.

For fish, I will find that both the axons and dendrites of fish are distributed

around the regression line as Gaussians and that the minimal set of parameters needed

to completely describe the arbors can be reduced to two parameters. I will find that

axons and dendrites are shaped similarly and can not be differentiated based on arbor

shape. Axons are generally larger than dendrites but the arbor size distributions

overlap and therefore axons and dendrites can only be differentiated probabilistically.

In addition, there is no evidence to support different classes of arbors within the arbor

types (which would be revealed as clusters in the data).

For cortical arbors I will show that the axons and the two types of den-

drites (apical and non-apical) are distributed differently around the volume versus

total length power law. In addition, different types of arbors from different classes
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of neurons have different relative densities (on average, the axons of interneurons are

more dense than the rest of the arbors). Therefore, the density of arbors is indeed

varied by some process. Thus, four parameters are needed to describe cortical adfs:

three standard deviations and a total length (which corresponds to the amplitude of

the function). I will provide a description of arbor shape and quantify the distribu-

tions of the arbor parameters. In addition, I will identify differences in density and

eccentricity between arbors of interneurons and pyramidal cells

Finally, I will show that different types of arbors are located in different

regions of the parameter space and quantify how well they can be distinguished from

one another using a supervised learning technique. Then, I will show that arbors of the

same type but from different predefined classes of neurons have some differentiability

but can not easily be distinguished.



Chapter 2

Results: Fish Retinal Ganglion

Cells

I begin my investigation by considering both the axons and dendrites of fish

retinal ganglion cells. The fish data provide the simplest possible example with which

to begin my analysis in order to deduce a complete description of arbor structure.

The arborizations of these cells are flat, pancake like, two-dimensional processes.

The dendrites reside in different layers, tiling the front of the retina. The axons

project through the optic nerve into the tectum where again they make flat two-

dimensional arborizations. Because these arbors are flat, they essentially cover an

area as opposed to a volume. Therefore, the Gaussian function that describes each

arbor density function (Figure 1.1) will have three parameters associated with it:

an amplitude which corresponds to the total length of an arbor and two orthogonal

standard deviations, σx and σy. σx and σy are calculated from the arbor reconstruction

data using principal components analysis (please see the Methods section).

2.1 Power law between arbor size and length

Snider et al., (2010) discovered that there is a power law relationship (which

is linear in logarithmic space) between the total length of an arbor and the product

13
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of the standard deviations (Figure 2.1A). The area an arbor covers is commonly

described by its convex hull (Wassle and Boycott, 1991) and is defined as the area

within a convex polygon enclosing the outermost extremities of an arbor (Figure

1.1B).

Figure 2A, of the Snider et. al., 2010, paper shows that the product of

the standard deviations is proportional to arbor convex hull area. I do not replot

their figure; however, Figure 2.1A shows that the power law relationship between

the convex hull area and the total length of an arbor, is nearly identical to the

plot of log(σxσy) versus log(L). The y intercepts of the linear regressions differ but

the slopes of both plots are the same. This implies that in linear space, area and

log(σxσy) are proportional. Figure 2.1C illustrates how area is characterized by the

two standard deviations, σx and σy. Six arbors are plotted along with their standard

deviations σx and σy, of the spatial data in two principal, orthogonal directions. The

relationship between the standard deviations and the area is demonstrated by the

ellipses characterized by the standard equation, x2/r
2
x +y2/r

2
y = 1. Here rx and ry are

the radii of the ellipse. The inner ellipses are plotted by setting rx = σx, and ry = σy.

The outer ellipses are plotted by setting rx = 2σx, and ry = 2σy.
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Figure 2.1: Relationships between three parameters that describe retinal ganglion cell
arbors. Both axons and dendrites plotted on all plots. Axons are blue. Dendrites
are red. A. A plot of the logarithm of the standard deviation product, σxσy, versus
the logarithm of the total length, the summation of all the segment lengths, of the
arbor reveals a power law relationship. The line is a linear regression fit to both the
axonal and dendritic data. Slope =0.63 ± 0.05 , Intercept=1.07, ± 0.14 , r2=0.80.
Inset: plot of arbor convex hull area versus total arbor length shows that plot is very
similar to the larger plot. Slope =0.63 ± 0.04, Intercept= 0.37 ± 0.15, r2=0.87. (all
confidence intervals at 95%). This means the convex hull is proportional to σxσy

(explicit relationship not shown here, see Snider et al. (2010), Figure 2A). Circled
data points correspond to the neurons shown in C. B. Three dimensional plot of
log10(σx), log10(σy) versus log10(Length). Plotting log10(σx) and log10(σy) separately
has the effect of expanding the linear regression line shown in A, into a plane. C.
Neurons corresponding to the data points circled in A and D. Orthogonal, principal,
standard deviations obtained by applying principal components analysis to each arbor
are plotted in green. The ellipses are characterized by the equation, x2/r2

x+y2/r2
y = 1.

Inner ellipses: rx = σx, and ry = σy. Outer ellipses: rx = 2σx, and ry = 2σy. Notice
the clear relationship between σx, and σy and the area covered by the ellipses. Scale
bar is 100 um. D. Same plot as in B but now viewed from an angle looking down on
the plane. The dashed line illustrates where σx equals σy. All the data are located
to the left of the line as σy is defined to be the larger principal standard deviation.
Notice that eccentricity is now represented in this plot. Data points that lie closer to
the dashed lines represent neurons that are more circular whereas data points that
lie farther away from the dashed line represent neurons that are more ovular. Circled
data points correspond to the neurons shown in C.
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It appears that the same power law characterizes both the axons and den-

drites of retinal ganglion cells as a single power law is fitted to both types of arbors.

This suggests that whatever process that governs the creation of the dendrites also

governs the creation of the axons.

2.2 Defining average arbor density

Next, I will define the average density of a neuron and deduce whether

density could contain information about arbor type. To do this I will define the scatter

around the log(σxσy) versus the log(L) regression line. I do this because the product

of the standard deviations is a proxy for the area covered by an arbor. Average

density is defined by the length divided by the area. Therefore, the scatter around

the regression line in Figure 2.1A corresponds to a difference in average density. Points

above the line correspond to higher density arbors as they have more length per area

than points below the line. Because the slope of the regression line is less than 1, on

average arbors get less dense as they get bigger. This relationship is plotted explicitly

in Figure 2.1.

The constant scatter around the line in log space indicates a constant relative

density of the arbors: the density relative to the mean average density is constant in

linear space. That is, the variation in the density is a constant percentage of the mean

average density at that size. Figure 2.3D shows histograms of the distance of the data

from the regression line (representing relative average density), commonly known as

the residuals of the regression line shown in Figure 2.1A. Histograms of axons and

dendrites are plotted separately in blue and red respectively. A Lillifors test for

Gaussianity reports that both the axons and dendrites are not significantly different

from a normal distribution with 95% confidence. A Kolmogrov-Smirnov test reports

that these two distributions are not significantly different from each other with 95%

confidence. Therefore, I see no evidence to suggest that the brain is intentionally

creating different density classes of fish retinal ganglion cell arbors. In addition, I
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Figure 2.1: Average density decreases with arbor area (as defined by the convex hull)
in fish retinal ganglion cells. Axons in blue, dendrites in red. Average density is the
total arbor length divided by the convex hull area. The slope of the regression line is
-0.37 ± 0.04, the intercept is 0.37 ± 0.15, r2 = 0.70.

do not see a difference in density distribution strategies for axons or dendrites; it

appears that the size length density creation mechanism is the same for both axons

and dendrites.

2.3 Only two parameters are needed to define the

spatial density function of fish retinal ganglion

cells

The lack of information content in the density implies that the spatial den-

sity function of fish retinal ganglion cells can be completely described by just two

parameters. The Snider et al. (2010) paper shows evidence that the spatial distribu-

tion function is a Gaussian. If this is true only three parameters are needed to define

the shape of the arbor: two standard deviations, σx, and σy, and an amplitude. In the

arbor case the amplitude can be represented by the total length of an arbor. Since
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the scatter around the regression line is constant, corresponding to a constant relative

average density of arbors, the amplitude of the Gaussian function can be described by

a density range for an arbor of a certain area. This means that only two parameters

are needed to describe the density function: the other will be defined by the equation

of the regression line shown in Figure 2.1, log(L) = 0.63log(σxσy) + 1.07.

2.4 Defining arbor shape

Next, I consider arbor shape. The formulation of Snider et al. (2010) pro-

vides a convenient context in which to define arbor shape. The relationship between

total length and the product of the standard deviations describes how length and area

scale together; however, it does not describe the geometry of an arbor. For example,

an arbor could be very circular or very ovular and have the same area. As shown

in Figure 2.1 the standard deviations are proportional to the radii of an oval and

therefore will describe the geometry of the arbor.

Eccentricity, defined as the ratio of σx to σy, will define how ovular or circular

an arbor is (Figure 2.1). A perfectly circular arbor will have an eccentricity value of

1 and progress toward more ovular as the number decreases to 0. The σxσy versus

length plot does not characterize arbor geometry. However, conveniently, plotting L

against σx and σy separately has the mathematical effect of expanding the regression

line in Figure 2.1A into a plane shown in B and D. The distance of a data point from

the plane will be the same as the distance of the same point from the log(L) versus

log(σxσy) regression line. That is, the data residuals will be the same for the plane

and the regression line. Now, eccentricity is also described in the plot by the way the

data are distributed across the plane. Figure 2.1D is a top view of the plane plotted

with the axonal and dendritic data. The dashed line corresponds to σx = σy on the

plane. All data lie on the left side of the dashed line due to the definition σy ≥ σx.

Circled data points correspond to the arbors plotted in C. Notice that ovular arbors

such as c,d,e and f, fall farther away from the dashed σx = σy line and more circular
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Figure 2.2: Normalized histograms of σx, σy, and length of fish retinal ganglion cells
in logarithmic space. All distributions are significantly different from one another. In
all cases the parameters of axons are generally larger. None of the distributions are
significantly different from a normal distribution. Kolmogrov-Smirnov and Lillifors
statistical tests were used. All tests performed at 95% confidence.

arbors such as a and b are closer to the dashed line.

2.5 No correlations between relative density and

eccentricity or area

Looking at Figure 2.1D, it appears that the data are distributed above and

below the plane uniformly and that the plane adequately characterizes the data.

However, this may not have been the case. For example, it could be that ovular arbors
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are less dense and circular arbors are more dense. Looking at the neurons illustrated

in Figure 2.1C, it appears that this could be the case since the ovular neurons tend

to fall below the regression line in A. Simply characterizing the distribution of the

data around the regression line would not have identified this type of relationship.

However, no relationship was found between eccentricity and the residuals (Figure

2.3) for either axons or dendrites (95% confidence). Therefore, the plane adequately

describes the retinal ganglion cell arbors.

In addition, it is possible that a relationship between area and eccentricity

could exist. This also would have gone unnoticed in the log(σxσy) versus log(L) plot.

However, it is likely that the relationship would be visible on the plane in Figure 2.1

B and D. For example, if larger arbors were more eccentric they would be farther

away from the σx = σy line. To confirm a lack of relationship, correlations between

eccentricity and area were examined in Figure 2.3B; no relationships were found.

2.6 Summary

It appears that the spatial distribution strategies for fish retinal ganglion

cell axons and dendrites are very similar. They have similar relative average density

distributions (Figure 2.3D) and eccentricity distributions (Figure 2.3C). There are

no correlations between eccentricity and the area an arbor covers or relative aver-

age density (Figure 2.3 A & B) for either axons or dendrites. Their differentiating

characteristic is size. Both the standard deviations, and the total length of an arbor

are generally bigger for the axonal arbors Figure 2.2. Therefore, the area (which

is proportional to the product of the standard deviations) covered by an axon is

also generally larger Figure 2.3E). Although the relative average densities for axons

and dendrites are not significantly different from one another, in general the average

density of axons is less than dendrites because bigger arbors are less dense (Figure

2.1).

In addition, because there is no information about arbor type contained
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Figure 2.3: Arbor area distributions are the only differentiating factor between axons
and dendrites. A & B scatter plots of eccentricity (defined as σx/σy) versus relative
average density (represented as distance from the regression line plotted in Figure
2.1), and log10 of the arbor area respectively. C, D, & E. Normalized histograms
of the data are plotted. In all plots axons are in blue, n = 79, and dendrites are
in red, n = 76. Black lines correspond to Gaussians fits of combined axonal and
dendritic data. Axis assignments correspond to all plots across rows and columns.
A. Distance from the regression line (which characterizes the density of an arbor
relative to the mean density of an arbor of a given size) and eccentricity are not
linearly correlated revealing that different shaped arbors are not scattered around
the regression line shown in Figure 2.1 in any systematic way. Axons: p=0.7160.
Dendrites: p=0.0734. B. There is no linear correlation between convex hull area and
eccentricity revealing that larger neurons are not more circular or have some other
such relationship. Axons: p= 0.4729. Dendrites: p=0.3636. Lillifors tests were used
to determine if distributions are significantly different from Gaussians. None of the
distributions in this image for axons and dendrites separately or combined were found
to be significantly different from a normal distribution except for the log10(area) in
E. The axonal and dendritic distributions of relative density (D) and eccentricity
(C) were not found to be significantly different from one another. The arbor area
distributions of axons and dendrites shown in E are significantly different. Although
the axonal distribution is not shown to be significantly different from a Gaussian,
area might differentiate two different types of axons corresponding to the two peaks
in the distribution. It is also interesting that the dendritic distribution is significantly
different from a Gaussian and fills in the space between the two axonal peaks. All
statistical tests performed at 95% confidence.
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in the relative average density, the minimum number of parameters needed to char-

acterize the adf of a fish retinal ganglion cell is two out of the three fundamental

parameters. The remaining parameter will be determined within the relative average

density range by the scaling equation log(Length)= 0.63*log(σxσy)+0.37

In conclusion, the axonal and dendritic spatial distribution strategies of fish

retinal ganglion cells are very similar. The spatial arbor density function of both

axons and dendrites can be described by two parameters and knowledge of the power

law relationship between the total length of a neuron and the area an arbor covers. In

general axons are bigger and less dense, but, although size and average density do help

determine arbor type, axon and dendrites do not independently cover the parameter

space. Therefore dendrites and axons can only be differentiated probabilistically.



Chapter 3

Results: Cortical Arbors From

Rat, Cat, Monkey & Human

Six hundred and forty-six neurons with a total of 1406 arbors from the cor-

tex of rat, cat, monkey, and human were included in this analysis. The arbors of

the neurons were categorized into three types by the original investigators: apical

dendrites, all other types of dendrites, and axons. In addition, information regarding

neuron class was provided. These arbors are a subset of the data available from the

Neuromorpho.org database. Many arbors in the data base were deemed inappropri-

ate for this study as they were subject to many experimental and tracing artifacts

discussed in the Methods. Only arbors which had minimal artifacts (relatively little

slicing artifacts and no obvious tracing errors) and whose data could be corrected by

a shrinkage factor (if needed) were used in this analysis. Despite this quality control,

errors in the data set remain due to slicing artifacts (which could not be totally elim-

inated), inaccurate shrinkage corrections, and potentially unnoticed tracing artifacts.

Assessments of how artifacts might affect the analyses below will be included as nec-

cessary. Details of the data selection along with a table of the included neurons can

be found in the Appendix.

24
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3.1 Scaling relationship between arbor size and

length

As with fish, there is a power law relationship between the product of the

standard deviations and the total length of an arbor. Because these arbors are three-

dimensional volume filling arbors, three standard deviations will describe the spa-

tial arbor density function: σx, σy, and σz. The linear relationship between the

log(σxσyσz) versus log(L) is plotted in Figure 3.1A and a single regression line is fit-

ted to all three arbor types. The product of the standard deviations is proportional

to the volume an arbor covers as defined by the convex hull (Figure 3.1). This means

that the plot of the product of the standard deviations versus the total length shown

in Figure 3.2A also represents a plot of arbor volume versus total length (Figure 3.2A,

inset). Figure 3.2A, shows these plots are almost identical.

3.2 Defining average arbor density

3.2.1 The distribution of density around the power law

I begin by considering the distribution of the data around the power law

relationship between the product of the standard deviations and the total length.

Remember that this power law is equivalent to a power law between arbor volume

and total length (Figure 3.1A). Here, the average density of an arbor will be the total

length divided by the volume. Therefore, the scatter around this line corresponds to

a variation in average density relative to an arbor of a certain volume. If the scatter

around this line is constant (corresponding to a constant relative average density) and

the different arbor types have the same distribution around the line, the minimal set

of parameters needed to describe the spatial adfs of cortical arbors can potentially be

reduced to three parameters. As with fish, because the slope of the power law is less

than one, the average density decreases with arbor size. This relationship between

size and average density is shown in Figure 3.2B.
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Figure 3.1: The product of the standard deviations is proportional to the volume
covered by an arbor. Red are non-apical dendrites, green are apical dendrites, and
blue are axons. A. Pyramidal cell with separate arbors delineated. The volume of an
arbor is defined as the volume within its convex hull (in gray). Cross bars represent the
principal standard deviations found using PCA. Center of colored crossbars denote the
center of mass of each arbor. The length of the crossbars (center of the cross bar out to
the end) is one standard deviation. The largest of the standard deviations is colored
magenta, cyan is the second, and black is the smallest. In this case the magenta
standard deviation will be defined as σz, as it is most directly pointing toward the
pial surface. The largest of the remaining two is defined as σy (cyan) and the smallest
is σx (black). B. There is a proportionality relationship between the product of the
standard deviations and the convex hull volume. The regression line has a slope of 1.08
± 0.01, an intercept of 1.17 ± 0.04, and an r2 = 0.98. On a logarithmic plot a slope
of one denotes proportionality. The proportionality constant is determined by the
intercept, int. CH = eint(σxσyσz)slope = e1.17(σxσyσz)1.08 = 3.22(σxσyσz)1.08. Where,
CH, is the convex hull volume, σxσyσz, is the product of the principal standard
deviations. The slope and intercept are obtained from the regression line.
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In contrast to the fish, it appears that information concerning arbor type

is present in the density of an arbor. All three of the relative density distributions

are significantly different from one another (Kolmogrov-Smirnov, 95% confidence)

(Figure 3.4H). In addition, the relative density distributions are not distributed as

Gaussians for any of the arbor types. The relative average density is not constant

along the entire length of the regression line (Figure 3.2). Instead it appears that

scatter ‘fattens’ as the arbors get larger. Note however, that larger arbors are axons

and the increase in relative density along the regression line appears to be the result

of an increase in the relative density of the axons (this will be pursued later in the

document). This can be seen in Figure 3.4H where the distribution of the relative

densities (represented as the distance form the regression line) of axons is wider than

the apical and non-apical dendrite distributions.

3.2.2 The effect of slicing and shrinkage artifacts

At this point, evidence suggests that there is information about different

types of arbors contained in the density. However, the differences in the density

distributions could be due to artifacts created by different laboratories or systematic

differences in the data collection of different types of arbors. For example, axons in

the cortex are much larger than other arbors and can span thousands of microns. The

neurons in this data set are stained and traced after the brains have been cut into

slices and therefore, most times, the edges of the neurons are sliced off. Because axons

are larger, systematic slicing artifacts will be more pronounced for axons as more of

their arbors will be sliced off. This artifact will certainly affect the distributions of

all the axon parameters and most likely will affect the other arbors too. It is feasible

that the scatter around the line or the differences in scatter between different types

of arbors could be due to these artifacts.

In order to assess how much slicing and shrinkage artifacts might affect the

data, completely reconstructed data provided by Eysel were manually sliced down to

200 um (a typical section thickness). After manual slicing, the arbors were shrunk
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Figure 3.2: Scaling law between length and volume corresponds to a decrease in
average density with arbor size. Apical dendrites are in green, non-apical dendrites
are in red, axons are in blue. A. There is a power law relationship between the product
of the standard deviations, σxσyσz, and the total length of the arbor. The regression
line is fit to the combined, apical dendrite, non-apical dendrite and axon data. Slope
= 0.47 ± 0.01, Intercept = 1.08 ± 0.06, r2=0.79. Because the product of the standard
deviations is proportional to the volume covered by an arbor as defined by the convex
hull (CH) (Figure 3.1), the inset plot of the power law between the convex hull and
total length looks nearly identical. Slope = 0.45 ± 0.01, Intercept = 0.454 ± 0.06,
r2=0.88. B. Because the power law relationship shown in A has an exponent less than
1 (the exponent of the power law corresponds to the slope of the linear regression),
the average density, length divided by convex hull volume, decreases as the arbor
gets larger. Slope = -0.55 ± 0.01, Intercept = 0.45 ± 0.06, r2=0.91. All intervals are
reported at 95% confidence.

by 25%. Although shrinkage corrections were applied to the data, the necessary

corrections were difficult to assess. A value of 25% was chosen because it is probably

similar to the shrinkage error that could remain in the data after corrections were

applied. Figure 3.3 shows the completely reconstructed data, the sliced data, and

the sliced and shrunken data. Slicing has the effect of shifting the data down the

regression line to the left as both the area and the length of the neuron is reduced.

This artifact affected axons more than the apical and non-apical arbors because they

are much larger and therefore highly sliced. However, the slicing did not noticeably

shift the arbors above or below the line. Shrinkage will increase the density of the
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neuron as it will compact the same amount of length into a smaller area. This should

have the effect of shifting the data to the left on the plot. In Figure 3.3, this minimal

shift can be noticed, but, it does not appear that it could account for all of the scatter

in the line (especially the cluster of dense axons). Therefore the scatter around the

regression line most likely reflects a real relative average density range for arbors of

a given size.

Figure 3.3: Effects of slicing and shrinkage on fully reconstructed cat pyramidal cell
data provided by the Eysel lab. Axons are blue, non apical dendrites are red, and
apical dendrites are green. Dots represent all the data, squares represent the data of
fully reconstructed arbors. A. Unaltered data. B. Fully reconstructed arbors manually
sliced to 200 um. This artifact shifts the data down the regression line by reducing
both the product of the standard deviations and the total length. C. Sliced neurons
then shrunk by 25%. Artifact has the effect of very slightly shifting the data left by
reducing the area containing a specified length.
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Figure 3.4: Normalized parameter histograms of apical dendrites, non-apical dendrites
and axons of arbors from rat, cat, monkey and human. Apical dendrites are in green,
non-apical dendrites are in red, axons are in blue. All significance tests are done
at 95% confidence. Lilliefors tests were used to test if each individual distribution
is significantly different from a normal, exponential, or extreme value distribution.
Kolmogrov-Smirnov tests were used to determine if the distributions are significantly
different from one another. Matrices to the right show the results of these significance
tests. A value of 1 denotes a significant difference, 0 denotes no significant difference
found. Top matrices report whether a distribution is significantly different from
a normal distribution (NORM), exponential distribution (EXP), or extreme value
distribution (EV). Lower distributions report whether apical dendrites, non-apical
dendrites, and axons are different from one another. The matrices are symmetrical
and the columns of this matrix are in the same order as the rows: axon, non-apical
dendrites, apical dendrites. A-C. Logarithmic distributions of the standard deviations
σx, σy, and σz in the principle axes coordinate system. σz is the standard deviation
along the principle axes most pointing toward the pial surface. The remaining two
standard deviations describe arbor coverage over the cortical map. σy is defined to
be larger than σx. D. Logarithmic distribution of the total length of the arbors. E.
Eccentricity distribution characterizing how ovular or circular the arbors are over
the cortical map. An eccentricity value of one corresponds to circular. Arbors get
increasingly ovular as eccentricity values progress from one toward zero. F. The
product of σx, and σy represents the coverage area of an arbor over the cortical map.
G. The product of the three standard deviations is proportional to the volume an
arbor covers (Figure 3.1). H. The relative average density of an arbor for a given size
and is represented by the distance from the regression line shown in Figure 3.2. This
measure is commonly known as the residuals. Zero is the mean density for an arbor of
a given size and corresponds to data points which lie on the regression line. Numbers
greater than 0 correspond to arbors that are more dense relative to the mean density
for an arbor of a given size. These data lie above the regression line. Numbers less
than 0 correspond to arbors that are less dense relative to the mean density for an
arbor of a given size. These data lie below the regression line.
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3.2.3 Density differences between pyramidal cells and in-

terneurons

There are differences in the relative density distributions between interneu-

rons and pyramidal cells (compare Figure 3.5H and Figure 3.6H). Results show that

the widening of the axon density distribution of the axon arbors is due to a cluster

of interneuron axons that sit above the regression line (Figure 3.7). These arbors

are in a cluster and are generally more dense than the rest of the arbors. Only the

axons of the interneurons have a relatively high density: the non-apical dendrites of

the interneurons do not appear to be different than the non-apical dendrites of the

pyramidal cells. Although the relative average density distribution of pyramidal cell

basal dendrites is technically significantly different from the interneuron dendrite dis-

tribution (Kolmogrov-Shmirnov test, 95% confidence), the arbors from both classes

of neurons appear to be located in the same general location on the plot in Figure 3.7.

Based on the current data and the knowledge that artifacts do exist, I am not con-

fident in concluding that the relative density of non-apical dendrites of interneurons

and pyramidal cells are different.

As a side note: one might have noticed that there are apical arbors in this

interneuron data set (Figure 3.7 A & C). Apical neurons are not generally associated

with interneurons. These 23 apical interneuron arbors all come from the Markram

data set and are associated with 5 Basket cells, 1 Bipolar cell, 5 Bitufted cells, 1

Chandelier cell, 8 Martinotti cells and 3 Stellate cells. These arbors usually originate

from the bottom of the neuron and travel down across layers toward layer VI (like an

apical dendrite in the opposite direction). I am not sure if these arbors are mislabeled,

if they are supposed to be a different interneuron arbor type, or if they are intention-

ally labeled as apical due to their morphological similarity to apical dendrites. I left

them in the data set ‘as is’. Looking at (Figure 3.7), I am not convinced that these

interneuron apical dendrites could be differentiated from the pyramidal apical arbors.
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Figure 3.5: Normalized parameter histograms of interneurons. Apical dendrites are in
green, non-apical dendrites are in red, axons are in blue. All significance tests are done
at 95% confidence. Lilliefors tests were used to test if each individual distribution
is significantly different from a normal, exponential, or extreme value distribution.
Kolmogrov-Smirnov tests were used to determine if the distributions are significantly
different from one another. Matrices to the right show the results of these significance
tests. A value of 1 denotes a significant difference, 0 denotes no significant difference
found. Top matrices report whether a distribution is significantly different from
a normal distribution (NORM), exponential distribution (EXP), or extreme value
distribution (EV). Lower distributions report whether apical dendrites, non-apical
dendrites, and axons are different from one another. The matrices are symmetrical
and the columns of this matrix are in the same order as the rows: axon, non-apical
dendrites, apical dendrites. A-C. Logarithmic distributions of the standard deviations
σx, σy, and σz in the principle axes coordinate system. σz is the standard deviation
along the principle axes most pointing toward the pial surface. The remaining two
standard deviations describe arbor coverage over the cortical map. σy is defined to
be larger than σx. D. Logarithmic distribution of the total length of the arbors. E.
Eccentricity distribution characterizing how ovular or circular the arbors are over
the cortical map. An eccentricity value of one corresponds to circular. Arbors get
increasingly ovular as eccentricity values progress from one toward zero. F. The
product of σx, and σy represents the coverage area of an arbor over the cortical map.
G. The product of the three standard deviations is proportional to the volume an
arbor covers (Figure 3.1). H. The relative average density of an arbor for a given size
and is represented by the distance from the regression line shown in Figure 3.2. This
measure is commonly known as the residuals. Zero is the mean density for an arbor of
a given size and corresponds to data points which lie on the regression line. Numbers
greater than 0 correspond to arbors that are more dense relative to the mean density
for an arbor of a given size. These data lie above the regression line. Numbers less
than 0 correspond to arbors that are less dense relative to the mean density for an
arbor of a given size. These data lie below the regression line.
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Figure 3.6: Normalized parameter histograms of pyramidal cells. Apical dendrites are
in green, non-apical dendrites are in red, axons are in blue. All significance tests are
done at 95% confidence. Lilliefors tests were used to test if each individual distribution
is significantly different from a normal, exponential, or extreme value distribution.
Kolmogrov-Smirnov tests were used to determine if the distributions are significantly
different from one another. Matrices to the right show the results of these significance
tests. A value of 1 denotes a significant difference, 0 denotes no significant difference
found. Top matrices report whether a distribution is significantly different from
a normal distribution (NORM), exponential distribution (EXP), or extreme value
distribution (EV). Lower distributions report whether apical dendrites, non-apical
dendrites, and axons are different from one another. The matrices are symmetrical
and the columns of this matrix are in the same order as the rows: axon, non-apical
dendrites, apical dendrites. A-C. Logarithmic distributions of the standard deviations
σx, σy, and σz in the principle axes coordinate system. σz is the standard deviation
along the principle axes most pointing toward the pial surface. The remaining two
standard deviations describe arbor coverage over the cortical map. σy is defined to
be larger than σx. D. Logarithmic distribution of the total length of the arbors. E.
Eccentricity distribution characterizing how ovular or circular the arbors are over
the cortical map. An eccentricity value of one corresponds to circular. Arbors get
increasingly ovular as eccentricity values progress from one toward zero. F. The
product of σx, and σy represents the coverage area of an arbor over the cortical map.
G. The product of the three standard deviations is proportional to the volume an
arbor covers (Figure 3.1). H. The relative average density of an arbor for a given size
and is represented by the distance from the regression line shown in Figure 3.2. This
measure is commonly known as the residuals. Zero is the mean density for an arbor of
a given size and corresponds to data points which lie on the regression line. Numbers
greater than 0 correspond to arbors that are more dense relative to the mean density
for an arbor of a given size. These data lie above the regression line. Numbers less
than 0 correspond to arbors that are less dense relative to the mean density for an
arbor of a given size. These data lie below the regression line.
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Figure 3.7: Interneurons and pyramidal cells are distributed around the regression
line differently. Axons are blue, non apical dendrites are red, and apical dendrites are
green. A. Interneurons in color are plotted over entire data set in black. B. Pyramidal
cell in color are plotted over entire data set in black. C. Interneurons plotted alone.
D. Pyramidal cells plotted alone.

3.2.4 Density summary

Unlike fish, there are density differences between different types of arbors.

The relative average density distributions of different types of arbors are significantly

different. In addition, different relative density strategies have been identified for

arbors from different classes of neurons; the axons of interneurons are relatively more

dense and clustered than other arbors. Therefore, unlike the fish, density cannot

be neglected when characterizing or differentiating arbors. The minimum set of pa-

rameters needed to characterize the spatial density distribution function cannot be

reduced from four to three parameters due to the power law.
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3.3 Arbor shape as defined by the standard devi-

ations

Now, I will explore the possibility that different types of arbors can be

differentiated based on their shape. The relationship between the standard deviations

will describe the arbor shape. The shape of cortical neurons can be described just as

it was for fish, except fish required the consideration of just two standard deviations;

cortical neurons require the consideration of three standard deviations, σx, σy, and

σz. The orientation of cortical neurons in the brain is important as information

flows in at least two directions: across layers, and across the cortical map. The

principal standard deviations were oriented to preserve this biological meaning. The

standard deviation that points most toward the pial surface and therefore represents

how information is spread across cortical layers is defined as σz. The two remaining

standard deviations will describe how a neuron spreads information across the cortical

map. No information is available to orient σx and σy with respect to one another and

so, as with fish, σy is defined as greater than σx. Please see the Methods section for

further details on orientation.

3.3.1 Most arbors are eccentric

As with fish, eccentricity is defined as the ratio of σx to σy and will de-

scribe how the arbor distributes itself across the cortical map. The different arbor

types have a similar range in eccentricities with values between perfectly circular,

σx/σy = 1, to very eccentric with a σx/σy value of approximately 0.1. The eccen-

tricity distributions of all the types of arbors are skewed toward ovular with peaks

located at approximately 0.3 (Figure 3.4). This means that many of the arbors are

approximately three times wider in one direction than in the other direction. The

apical and non-apical dendrite eccentricity distributions are not significantly differ-

ent; however, the axon distribution is significantly different from the other two arbor

types (Kolmogrov-Smirnov test, 95% confidence). Because axons are much larger
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than dendrites, and are much larger than the slice thicknesses, it is likely that the

difference in the axon eccentricity distribution from the dendrites is an artifact caused

by the axons being more sliced than the other two dendritic arbor types.

The eccentricity of interneurons and pyramidal cells could be different

It appears that the skew in the eccentricity distributions is largely due to

the pyramidal cells as the eccentricity distributions of interneurons are not as skewed.

Figure 3.6 shows that the pyramidal arbor eccentricity distributions are similar to

the previously shown skewed distributions (Figure 3.4) with peaks located at approx-

imately 0.3. In contrast to the pyramidal arbors, the interneuron arbor eccentricities

are not found to be significantly different from Gaussian distributions and have means

and standard deviations around 0.5: dendrites: 0.57 ± 0.19, apical dendrites: 0.52 ±

0.23, and axons: 0.43 ± 0.18 (Figure 3.7). All statistical tests are done at 95% confi-

dence using a Kolmogrov-Smirnov test. These arbors are still eccentric but generally

have a ratio of length to width of 2:1 as opposed the the 3:1 ratio of pyramidal cells.

Can artifacts account for the differences between pyramidal and interneu-

ron eccentricities?

Unfortunately, the eccentricity distributions will be affected by slicing and

shrinkage artifacts. Slicing could either make originally large circular arbors more ec-

centric or it could make originally eccentric arbors more circular. Differences between

the interneuron and pyramidal cell eccentricity distributions could be due to artifacts.

It is possible that the pyramidal cells and interneurons were subject to different ex-

perimental protocols resulting in different artifacts. In an attempt to assess whether

the skewed distributions of the pyramidal cells are due to some sort of systematic

artifact, I did two assays. First, I looked at the neurons of both very circular arbors

(σx/σy >0.8) and very eccentric arbors (σx/σy <0.2) of the pyramidal cells to look for

artifacts that may be causing the distribution to be overly skewed toward eccentric

arbors. For example, maybe all the highly eccentric arbors are obviously sliced and
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the skewed distribution can be attributed to slicing artifacts. Second, I looked at the

eccentricity distributions of completely reconstructed data in the Eysel and Hirsch

data sets to see if the distributions are the same as the larger data set. Both the

Hirsch and Eysel data were collected from cat cortex. The Hirsch data consists of

pyramidal and interneruons. The Eysel data consists of solely pyramidal cells.

The following observations of highly eccentric and highly circular pyramidal

cell arbors suggest that artifacts are not the cause of the skewed pyramidal distribu-

tions.

1. Often a highly eccentric arbor was part of a neuron that also had a circular arbor

providing evidence that slicing or shrinkage was not an issue in that neuron.

2. Many of the circular arbors were noticeably sliced on one side, therefore slicing is

not necessarily causing the arbors to be more eccentric: slicing may also make some

of the originally eccentric arbors more circular.

3. Many of both very eccentric and very circular arbors were reconstructed by the

same laboratories. Therefore different artifacts generated by different laboratories is

unlikely to be the cause.

The unsliced data set provides contradictory evidence against skewed pyra-

midal cell eccentricity distributions. Figure 3.8 shows the eccentricity distributions

of the unsliced arbors. Although 20 unsliced arbors is too few arbors with which

to obtain reliable eccentricity distributions, the pyramidal cell distributions do not

appear to be as skewed. In addition, there are no highly eccentric arbors present

in the unsliced data. However, since this data is solely from cat and the data set

only contains 20 neurons, it is hard to know whether this data is representative of all

arbors. The arbor data from the 9 fully reconstructed interneurons appear to match

the larger data set. However, the number of unsliced interneurons is too small to

perform any convincing statistical test to confirm.
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Figure 3.8: Normalized eccentricity distributions of completely reconstructed pyra-
midal cells and interneurons (filled in vivo, no sectioning artifacts). Eccentricity
describes the aspect ratio of the arbor coverage over the cortical map (how circular or
ovular an arbor is). Eccentricity is defined as the short axis standard deviation, σx,
divided by the long axis standard deviation, σy, in the the non-pial axes directions A.
Pyramidal cell data provided by Eysel and Hirsch. B. Interneuron data provided by
Hirsch. Axons are blue, non-apical dendrites are red and apical dendrites are green.
In the legend, n, denotes the number of arbors in the data set. Note that the dramatic
difference between the eccentricity distributions of the interneurons shown in Figure
3.5E and the pyramidal cells shown in Figure 3.6E is not present here in the fully
reconstructed data.

Eccentricity summary

Despite the artifacts in the data, I think it is safe to conclude that arbors are

often eccentric. There is evidence to suggest that the eccentricities of interneurons

and pyramidal cells are different. The distributions from pyramidal cells are highly

skewed toward eccentric with a peak corresponding to a length to width aspect ratio of

approximately 3:1. While the interneurons are still eccentric, the distributions are not

significantly different from a Gaussian with a peak corresponding to an aspect ratio

of approximately 2:1. However, a very small data set containing fully reconstructed

arbors solely from the cortex of cat provides contrary evidence. Therefore, whether
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pyramidal cells and interneurons have different eccentricity distributions can not be

resolved with the current data. If a difference does indeed exist, it is intriguing to

ponder the possible reasons and repercussions of this difference.

3.4 Correlations between volume, eccentricity and

density

Just as I did for fish, I looked for relationships between the arbor shapes,

sizes and arbor density. In the cortical data, no correlations between relative average

density (distance from the regression line) and eccentricity or area were found for

any of the arbor distributions. However, there are possible correlations between area

and eccentricity (Figure 3.9). As axons get larger they tend to be more eccentric.

The opposite trend appears to be true for all dendrites (apical and non apical): as

dendrites get larger they tend to be more circular. Here, once again, I run into the

problem of whether or not these correlations are due to artifacts such as slicing and

shrinkage which will affect the area and eccentricities. The two opposite trends might

be explained by the effect slicing or shrinkage has on arbors of different sizes. It is

probable that as the axon arbors get bigger they are more sliced causing the bigger

area = bigger eccentricity trend. However, with the dendrites, bigger arbor areas

would probably be correlated with thicker slices because they have less area sliced

off. Because the bigger arbors are less sliced they would be less eccentric.

Again, I will look to see if the same trends exist for non-sliced arbors from

the Hirsch and Eysel data sets. Figure 3.9 shows the unsliced data overlaid on the

entire data set. It appears that no trends exist in the unsliced apical and non apical

dendrite data. It is less clear for the axon data. It appears there could be two classes

of unsliced axon data: a small group and a large group. If indeed these are two

separate groups of data it appears that both of these groups follow the same trend

as the artifact prone data: larger axonal arbors are more eccentric. However it is

possible that these two apparent groups are a result of the small data set and the
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Figure 3.9: Possible correlations between cross-sectional eccentricity and area. Ec-
centricity is defined as σx/σy and area is defined as log10(σxσy), where σx and σy are
the standard deviations in the x and y directions (non-pial directions) respectively.
σy is defines to be greater than σx. Axons are blue, non apical dendrites are red, and
apical dendrites are green. Completely reconstructed data of Eysel are in squares and
Hirsch in diamonds (neurons were filled in vivo and do not have sectioning artifacts).
A. All data plotted. Correlations appear to exist; however, this data is subject to
slicing and shrinkage artifacts. B. Non-apical dendrite data are plotted. There is a
trend of larger arbors being more circular in the larger data set. However, this trend
is not apparent in the non-sliced data. C. Axon data are plotted. There is a slight
trend of larger arbors being more eccentric apparent in the data subject to artifacts.
It is unclear whether the non-sliced data follows the same trend. There may be a
larger and a smaller class of non-sliced axons following the same trend. The larger
class mostly consists of the Eysel data and the smaller class the Hirsch data. D.
Apical dendrites are plotted. There is a trend of larger arbors being more circular
in the data subject to artifacts that is not apparent in the non-sliced data. Without
more completely reconstructed data, it is hard to resolve whether these trends are
real or artifact.
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data should be considered one group. If this is the case it would appear that there is

no relationship between eccentricity and area for the completely reconstructed data.

Again, evaluating whether these area versus eccentricity correlations are real will

require a larger set of completely reconstructed arbor data.

3.5 Differentiating axons, non-apical, and apical

dendrites using the Random ForestsTM super-

vised learning method

Through out this document, I have shown many distributions of the arbors

parameters, many of which are statistically different between different arbor types

and many of which are not. However, I have not considered all of the parameters at

the same time. Figure 3.10 shows the data plotted with all the data dimensions in

one graph. As with fish, plotting the standard deviations separately has the effect of

expanding the regression line obtained from the plot of the logarithm of the product

of the standard deviations verses the logarithm of the length. Because the fish have

only two standard deviations to consider, the regression line expands into a plane and

the scatter around the plane can easily be visualized in 3D space. However, cortical

neurons have three standard deviations; therefore, the regression will expand into a

three dimensional space and I will have four dimensions to consider.

Although four dimensional data are not quite as convenient to visualize,

one can plot the standard deviations on the three Cartesian axes and represent the

distance from the 3D regression space (scatter around the regression line correspond-

ing to relative average density) as color intensity (Figure 3.10). Plotting the data in

this way organizes the data and makes it easy to identify relationships or interesting

phenomena. Distance between data points on the plot can be used to quantitatively

describe how similar or different certain arbors are from one another. Figure 3.10

illustrates that different types of arbors are generally located in different regions of
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the parameter space. However, the data are distributed continuously and the dif-

ferent regions do overlap. Thus, different types of arbors can only be differentiated

probabalistically. There are no obvious clusters within the data insinuating distinct

classes or types of arbors (Figure 3.10). Note that there are regions in the data space

where no data points exist on the planes where σx=σz and σy=σz. These data-void

planes are artifacts created by the use of principal components analysis (PCA) and

should be ignored (Please see Methods Section for more information).

I have shown the distributions of each single parameter both to quantify

their distributions and show how they differ from one another (Figure 3.4). However,

to quantify how differentiable the three arbor populations are, I need a method that

will take into account all four parameters at one time. Supervised learning techniques

from the machine learning field are ideal for this type of problem. There are many dif-

ferent types of supervised learning techniques but they all aim find a method to most

accurately differentiate predefined classes of data. They can take into account non-

linearities, correlations between parameters, and ignore artifacts which are irrelevant

to classification (such as the artifacts introduced by using PCA).

Of the many different types of supervised learning algorithms available, I

chose the Random ForestTM technique (Breiman, 2001a,b) due to its general high per-

formance in comparison to other supervised learning methods. The Random ForestTM

algorithm was so named because it works by creating a forest of classification trees.

For each data point, each tree votes for the class it thinks each data point belongs.

The many tree voting procedure minimizes errors that could be created by using only

one classification tree. Please see the methods section for more information on how

this algorithm works.

3.5.1 The receiver operator characteristic (ROC)

To evaluate how well the Random ForestTM algorithm can differentiate arbor

types, I will use the receiver operator characteristics (ROC). The ROC curve is a

plot of false positives versus true positives as the class discrimination threshold is
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Figure 3.10: Apical dendrites, non-apical dendrites and axons reside in different re-
gions of the parameter space. Four different views of the same four-dimensional arbor
data of apical dendrites (green), non-apical dendrites (red), and axons (blue) from
rat, cat, monkey and human. log10(σx), log10(σy), and log10(σz) are plotted on the
three major axes. The forth dimension is the distance from the regression line (resid-
uals) in Figure 3.2A and is represented by color shade. This value characterizes the
average density of an arbor relative to the mean average density of many arbors of
a specific size: the darker the color shade the higher the relative density. Zero is
the mean average density for an arbor of a given size and corresponds to data points
which lie on the regression line. Numbers greater than 0 correspond to arbors that
are more dense relative to the mean density for an arbor of a specific size. These data
lie above the regression line. Numbers less than 0 correspond to arbors that are less
dense relative to the mean density for an arbor of a given size. These data lie below
the regression line. The lines which cut through the data where log10(σx)=log10(σz)
and log10(σy)=log10(σz) are artifacts from the use of principal components analysis
(PCA). The artifact is caused because PCA will always find the maximum possible
variance and very rarely will the value of the next largest orthogonal variance be
exactly the same size as the first. Hence, the lines where the standard deviations are
equal are bare of data.
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varied (Figure 3.11 and Figure 3.13). ROC curves are commonly used to assess what

classification thresholds are needed to give optimal classifications. The area under the

ROC curve (AUC) evaluates the power of a classification method (Ling et al., 2003).

Although percent correct might seem like the most intuitive measure of goodness,

it is in fact threshold dependent and misleading in many cases. For example, say

there are two groups of data: group 1 has 900 data points and group 2 has 100

data points. Assume these two groups are drawn from the same distribution and

are thus indistinguishable. Any supervised learning algorithm aims to achieve the

highest number of correct classifications and therefore will classify all the data points

as group 1. The naive investigator would look at the resultant 90% percent correct

and conclude that the two groups are quite distinguishable, when in fact, they are not.

To correct this issue, when using a Random ForrestTM one can change the threshold

of votes required to vote for one class or another. In this case the threshold could

be set to require 90% of the trees to vote for group 1 instead of a simple majority

vote. The ROC curve plots the false positives versus true positives while altering

these thresholds and thus provides a summary of overall performance.

3.5.2 Area under the curve (AUC)

Using the AUC to quantify how well an algorithm performs is very con-

venient because it eliminates the issue of choosing classification threshold values as

mentioned in the previous section. The value of the AUC can range from 0.5 (con-

cluding a random chance classification) to 1 (perfect classification). Note, that a less

than chance classification (AUC < 0.5) actually means that a classification schema

has been found: reversing the classification criteria would yield a classification accu-

racy higher than chance. Conveniently, it is possible to calculate the AUC without

actually integrating the area under the ROC curve (Hand and Till, 2001). Because

the AUC can be calculated independently of the actual ROC, and our purpose is

solely to quantify how well different types of arbors can be differentiated (not to

choose classification thresholds) the actual ROC curves are irrelevant for our analy-
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sis. However, in order to provide intuition, I illustrate the ROC curves along with

the values of the AUC.

3.5.3 Axons, apical dendrites & non-apical dendrites are

mostly differentiable and continuously cover the range

in parameter space

The most straightforward way to assess arbor differentiation is to do multiple

binary classifications: each single arbor type is evaluated against every other arbor

type. Figure 3.11, illustrates the ROC curves and AUC values for each pair of arbor

types obtained from the Random ForestsTM algorithm. Indeed, the three arbor types

are quite differentiable as evident from the large AUC values (Figure 3.11). Notice in

Figure 3.10, that although the different types of arbors reside in generally different

areas of the parameter space, all the arbor types are clustered together to form a

continuous blob. There are no regions of the parameter space void of data (except

for the σx=σz and σy=σz artifacts created by the use of PCA).

3.5.4 Summary

I conclude that different apical dendrite, non-apical dendrite, and axon types

of arbors are generally restricted to different parts of the parameter space but com-

pletely cover the range of the parameter space. This means that different types of

arbors generally have different spatial distribution strategies which are described by

spatial adfs specified with different parameters. However, there is overlap between

different types of arbors, therefore, different arbor types can only be differentiated

probabilistically.
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Figure 3.11: Axons, apical dendrites, and non-apical dendrites are largely differen-
tiable. Left: Receiver operator characteristic (ROC) curves for binary classifications
between axons, non-apical dendrites and apical dendrites obtained from the Random
ForestTM supervised learning method. Colors correspond to the labeled bar graph to
the right. The closer the area under the curve (AUC) is to 1, the better the algorithm
is at differentiating the two classes. Each curve is the average of results from running
the Random ForestTM algorithm 50 times (see Methods section). The dashed, black
unity line denotes chance classification. Right: AUC values for ROC curves. AUC
values and standard deviations are as follows: Axons versus non-apical dendrites,
0.8919 ± 0.0009, axons versus apical dendrites, 0.9604 ± 0.0010, apical dendrites
versus non-apical dendrites, 0.9781 ± 0.0009.

3.6 Are the same type of arbors from different

classes of neurons differentiable?

Previously, I showed that different arbor types are somewhat differentiable

by the way they spatially distribute themselves regardless of species or neuron type.

Next, I consider how well the same type of arbors from different classes of neurons

can be differentiated. Do the same type of arbors from different classes of neurons

have different spatial distribution strategies or are they the same? It is possible that

the arbors of the same type but from different classes of neurons are undifferentiable

and thus arbor types are the same for all classes of neurons. For example, perhaps all

non-apical dendrites are the same, i.e. the basal dendrites of pyramidal cells are the
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same as the dendrites of basket cell interneurons (although this is unlikely based on

my previous discussion concerning the differing eccentricities of pyramidal cells and

interneurons). Or, it could be the case that within the general arbor type, arbors

from different classes of neurons reside in different regions of the parameter space

(just as the different arbor types generally reside in different regions of the greater

parameter space).

Ideally, it would be possible to utilize the plethora of data available on

the Neuromorpho database to analyze many different types of arbors across species.

However, different types of neurons from different species were often collected from

different laboratories using different experimental protocols. As a result, variation

between populations arise from systematic artifacts introduced by the acquisition

of data from different laboratories. It is unclear how much variation is due to the

artifacts or due to actual differences between the arbors. To circumvent this problem,

I considered data provided by one laboratory. Out of the reduced data set, Henry

Markram provided the largest number of neurons of various neuron class from rats of

the same age range (Wang et al., 2002).

Non-apical dendrites from preclassified groups of neurons with a sufficiently

large number of cells were selected for this analysis. The data consisted 30 Basket

Cells, 15 Bitufted Cells, 30 Martiniotti Cells, and 72 pyramidal cells. All but the

pyramidal cells are inhibitory interneurons and are found in layers II-VI. In the past,

these different classes have been identified by morphology, electrophysiology, and

gene expression profiles. Although morphological differences between dendritic arbors

have been mentioned, these interneurons are most often distinguished by their axons,

which target different regions of the cortex (different layers and within versus between

multiple cortical columns) and neurons (soma and proximal dendrites versus distal

dendrites) (Markram et al., 2004). Here however, I do not consider axons because

there is not enough high quality axonal data available to adequately access differences.

Instead, I will investigate the non-apical dendritic arbors so that the slicing artifacts

which heavily affect the axonal arbors will not be an issue.
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Details of the four different classes of neuron I will be considering follow:

Basket cells are interneurons which target the soma and proximal dendrites

of both pyramidal neurons and interneurons (Wang et al., 2002; Markram et al.,

2004). Wang et al. (2002) define three types of basket cells based on their axonal

and dendritic morphologies: large basket cells (LBCs), small basket cells (SBCs)

and nest basket cells (NBCs). Morphological classification of these subtypes was

mostly attributed to differences between their axons. However, the authors do report

differences between cell types in dendritic segment length, branch order, and the

average length of the dendritic tree. Because of the limited data available, I will not

investigate differences between these three subclasses of basket cells, but instead will

lump them in to one class.

The dendritic processes of bitufted and martinotti cells emerge from the top

and bottom poles of the soma. These cells are mainly differentiated by their axons.

The bitufted axons spread horizontally and can expand past the boundaries of a cor-

tical column. Martinotti axons project vertically toward layer I and can then spread

over a distance of millimeters across many cortical columns. However, Martinotti

cells are reported to have a more elaborate dendritic tree than most interneurons

(Markram et al., 2004).

Finally, pyramidal cells are excitatory neurons. These neurons are charac-

terized by their pyramidal shaped soma and the tall apical dendrite that extends up

though the layers toward the pial surface. The basal dendrites of these cells originate

from the lower side of the neuron and usually reside in a single layer.

Figure 3.12, shows the non-apical dendrites from the four different classes

of neurons in the four-dimensional parameter space. Figure 3.13 shows the ROC

curves and AUC values obtained from the Random ForrestTM algorithm. Although

the different groups are somewhat discernable, none of the groups are as differentiable

as the general axon, apical, and non-apical dendrite classifications. This suggests that

different classes of neurons may use slightly different spatial distribution strategies

for their arbors but that the same arbor types between different classes of neurons



52

0.6
1.1

1.6
1.2

1.8

1

1.5

2

 

 

n=50  

Basket cell   

0.6
1.1

1.6
1.2

1.8

1

1.5

2

 

 

lo
g

10
(σ

z) 
  

n=15  

Bitufted cell   

 log
10

(σ
x
)  log

10
(σ

y
)   

0.6
1.1

1.6
1.2

1.8

1

1.5

2

 

 

n=30  

Martinotti cell   

0.6
1.1

1.6
1.2

1.8

1

1.5

2

 

 

n=72  

Pyramidal cell   

−0.37

0  

0.35

All data

Distance From 
Regression Line

Figure 3.12: Basket, bitufted, martinotti and pyramidal non-apical dendrites from
Markram data set plotted in four-dimensional parameter space. Black dots corre-
spond to all the cell data points. The red data represent the data of the corresponding
cell non-apical dendrites. σx, σy, and σz are plotted on the three major axes. The
shade of the red circles represents the average density of an arbor relative to the mean
average density of many arbors of a specific size. The relative density is character-
ized by the distance from the regression line (residuals) shown in Figure 3.2A (the
darker the color shade, the larger the relative density). Zero is the mean density for
an arbor of a specific size and corresponds to data points which lie on the regression
line. Numbers greater than 0 correspond to arbors that are more dense relative to
the mean density for an arbor of a given size. These data lie above the regression
line. Numbers less than 0 correspond to arbors that are less dense relative to the
mean density for an arbor of a given size. These data lie below the regression line.
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are similar.

Notice that the three largest values of the AUCs are between the pyramidal

and interneuron classes. Figure 3.12 shows that the basal arbors are smaller than the

interneuron arbors: all of the standard deviations of the pyramidal basal dendrites

are smaller on average than the interneuron dendrites. This is evident as the basal

dendrites are clustered in the lower region of the plot. Therefore, it seems that

the spatial density distribution strategies between interneurons and pyramidal cells

differ more than the spatial density distribution strategies within different classes of

interneurons.

3.6.1 Cortical summary

In conclusion, I have provided evidence that the relative density of cortical

arbors contains information concerning the spatial distribution strategies of different

arbors. The distributions of the relative average density are significantly different for

the three types of arbors. In addition, different density strategies have been identified

for different classes of cells: interneuron axons have a higher relative density than the

pyramidal cells. Therefore, the minimal set of parameters needed to describe an

adf cannot be reduced to three parameters but instead requires four parameters:

the three standard deviations and the total length of the arbor. The eccentricity

distributions between pyramidal cells and interneurons may be different and there

may be correlations between area and eccentricity; however, conclusions are hard to

reach due to the slicing and shrinkage artifacts present in the data.

Apical dendrites, non-apical dendrites and axons largely have different spa-

tial distribution strategies as they cover different regions of the parameter space and

are generally differentiable based on the minimal set of parameters. However, these

distributions do overlap and therefore different arbor types can only be distinguished

probabilistically.

The same types of arbors from different classes of neurons show some dif-

ferentiability but cover highly overlapping regions of the parameter space. Therefore,
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Figure 3.13: Non-apical dendrites of pyramidal cells are more differentiable from
interneurons than different classes of interneurons from one another. Left: ROC
curves for classification of non-apical arbors of different classes of neurons (from the
Markram data set). ROC curves for every pair of arbor types from Random ForestTM

supervised learning method. Neuron classes considered were basket, bitufted, mar-
tinotti and pyramidal cells. Colors correspond to the colors in the bar graph to the
right. Pyramidal cells are excitatory neurons. Basket, bitufted, and martinotti cells
are inhibitory interneurons. The dashed black unity line denotes chance classifica-
tion. Right: AUC values for the ROC curves. AUC values and standard deviations
are as follows: basket versus bitufted, 0.5807 ± 0.0125, basket versus martiniotti,
0.6470 ± 0.0090, bitufted versus martiniotti, 0.7857 ±0.0108, bitufted versus pyra-
midal, 0.8080 ±0.0083, basket versus pyramidal, 0.8174 ±0.0050, martiniotti versus
pyramidal, 0.8411 ± 0.0040. The three smallest AUC values are between different
classes of interneurons. The largest three AUC values are between pyramidal cells
and various classes of interneurons. Note that all of these values are less than the
AUC values defining how differentiable different types of arbors are in Figure 3.11.
Therefore, non-apical dendrites of different neuron classes are less differentiable than
different arbor types.
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it is likely that within an arbor type there are somewhat different spatial distribu-

tion strategies for different neurons; however, these different classes are not nearly

as differentiable as the different arbor types. The highest differentiability occurs be-

tween the basal dendrites of pyramidal cells and the different classes of interneuron

dendrites.



Chapter 4

Conclusions

4.1 Summary of fish retinal ganglion cells

1. Both axons and dendrites can be described by the same scaling law relationship

between the product of the standard deviations and the total length of an arbor.

Because the product of the standard deviations is proportional to the area an arbor

covers, there is also a power law relationship between the area an arbor covers and

the total length of an arbor (Figure 2.1A).

2. As all arbors get larger, their average density decreases (Figure 2.1).

3. The relative average density (scatter around the regression line fit to the log(L)

versus log(σxσy) power law relationship) is constant (Figure 2.1A).

4. The relative density of both axons and dendrites are distributed as Gaussians

around the regression line (Figure 2.3D). In addition, the distributions of axons and

dendrites are not significantly different from one another. This means that the mini-

mal set of parameters needed to describe the spatial density function of these arbors

can be reduced to two of the three parameters: the two orthogonal standard devia-

tions and the total length of the arbor. The power law relationship will determine

the remaining parameter.

56
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5. The eccentricity distributions of axons and dendrites are not significantly different

from one another and are not significantly different from a Gaussian (Figure 2.3C)

6. There are no correlations between eccentricity and area or between eccentricity

and relative density (Figure 2.3).

7. There is no evidence of clusters within the data that would suggest different

subclasses of arbors.

8. Axons and dendrites can only be differentiated from one another probabilistically

based on their spatial density functions. Axons are generally bigger than dendrites.

On average, axons have larger total lengths and standard deviations (Figure 2.2),

have larger coverage areas (Figure 2.3E), and are less dense (Figure 2.1). Axons and

dendrites have the same eccentricity and relative average density distributions (Figure

2.3 C & D).

4.2 Summary of cortical data

1. There is a power law relationship between the total length of an arbor and the

product of the standard deviations that describe the spatial arbor density function

(Figure 3.2A). The product of the standard deviations is proportional to the volume

an arbor covers (Figure 3.1). Therefore, there is a corresponding scaling law between

the total length of an arbor and the volume an arbor covers (Figure 3.2A).

2. As all arbors get larger their average density decreases (Figure 3.2B).

3. The relative average density is not constant along the log(L) versus log(σxσyσy)

power law relationship. There is structure along the length of this line hinting at

different types of arbors (Figure 3.2A).

4. The distributions of the relative densities (scatter around the power law) is not the

same for apical, non-apical, and axonal arbors (Figure 3.4H). This means that the set
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of minimal parameters needed to describe all arbors can not be reduced to three from

four parameters. Information concerning arbor type is contained in arbor density. All

four parameters (three orthogonal standard deviations and a total length) are needed

to describe the spatial density function of cortical arbors.

5. The relative density distributions of each of the three different types of arbors are

non Gaussian (Figure 3.4H).

6. Axons of interneurons are relatively more dense than the rest of the arbors (both

arbors from the same class of neuron and those of the pyramidal cells) (Figure 3.7

and compare Figure 3.5H with Figure 3.6H).

7. Most arbors are eccentric (Figure 3.4E). There may be a difference between the ec-

centricity distributions of interneurons and pyramidal cells (compare Figure 3.5E with

Figure 3.6E); however, slicing and shrinkage artifacts will affect these distributions.

Artifacts in highly eccentric and highly circular arbors appear similar suggesting that

the eccentricity differences between the two cell classes may not be due to artifacts.

However, data from a few fully reconstructed cat arbors provide evidence that the

eccentricities of pyramidal cells might not be as skewed as the larger data set suggests

(Figure 3.8). More fully reconstructed data will be required to resolve this issue.

8. There are no correlations between relative average density and eccentricity or area

(not pictured).

9. There are possible correlations between area and eccentricity and these correlations

are different for different types of arbors. As axons get larger, they tend to be more

eccentric. As apical and non-apical dendrites get larger they tend to be more circular

(Figure 3.9). For the dendrites this relationship does not seem to hold true in the

fully reconstructed data of cat. The fully reconstructed axonal data is uninterpretable

as it is unclear whether there are two clusters with the same correlations or just one

cluster without correlations.
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10. The three different types of arbors (apical dendrites, non-apical dendrites, and ax-

ons) generally occupy different parts of the parameter space (Figure 3.10). However,

there are not sharp boundaries between these different types. The Random ForestTM

classification algorithm demonstrates that these arbors are mostly differentiable (Fig-

ure 3.11). Therefore, different types of arbors can be generally differentiated by their

spatial arbor density function, but because the adf parameter distributions overlap

(Figure 3.4), the arbor types can only be differentiated probabilistically.

11. The same types of arbors from different classes of neurons (the dendrites of

interneuron basket, bitufted, and martinotti cells and the basal dendrites of pyramidal

cells) are not as differentiable as the different types of arbors (Figure 3.13). Unlike

different types of arbors, different classes of arbors within an arbor type do not largely

cover different regions of the parameter space (Figure 3.12).

12. The basal dendrites of pyramidal cells are more differentiable from the dendrites

of the interneurons (Figure 3.13) than the different classes of interneuron dendrites

are from one another.



Chapter 5

Discussion

The research in this thesis involves characterizing the spatial distribution of

arbor branches in the context of a universal Gaussian density function. If the spatial

density function of an arbor is shaped as a Gaussian a minimal set of parameters will

be needed to describe an adf. These parameters will be the same parameters needed

to describe a Gaussian function: the standard deviations (two for a flat 2D arbor, and

three for a volume filling 3D arbor) and an amplitude, which, in this case, is equal to

the total length of an arbor. In the following text I will refer to these parameters as

the ‘fundamental parameters’. In addition, a scaling law between the total length of

the arbor (corresponding to the amplitude of the function) and the area or volume

covered by an arbor (corresponding to the product of the standard deviations which

define the Gaussian spatial adf) further constrains the parameters that will describe

the adfs. In this document, I have defined the fundamental parameter distributions

of different types/classes of arbors and have explored how well different types/classes

of arbors can be differentiated based on the fundamental parameters.

5.1 Retinal ganglion cells

I began by considering the retinal ganglion cells (RGCs) of zebrafish and

goldfish. These arbors are flat and tile the back of the retina. Their adfs can be
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described by two standard deviations and the total length of an arbor.

In the current work, the fundamental parameters of fish RGCs were dis-

tributed homogeneously. Both axons and dendrites can be fitted by the same scaling

law relating the arbor coverage area to the total length of an arbor (Figure 2.1A).

The scatter of the data around best fit regression line (corresponding to the average

density of an arbor relative to the mean density of an arbor of a given size) is dis-

tributed evenly along the regression line. The axonal and dendritic relative density

distributions are distributed as Gaussians around the line and are not significantly

different from one another (Figure 2.3D). In general, axons are larger and less dense

than dendrites. On average, all of the fundamental parameters are larger for axons

(Figure 2.1) as well as the cortical map coverage area (Figure 2.3E ). The average

density decreases with arbor coverage area as the result of the length/area scaling law

exponent being less than 1 (Figure 3.2). Axons and dendrites have the same distri-

butions of eccentricity with peaks corresponding to an aspect ratio of approximately

2:1 (Figure 2.3 C). There was no visual evidence of clustering to suggest different

classes of arbors within the axonal and dendritic arbor types based on their spatial

distribution strategies.

5.1.1 Classification

Because retinal ganglion cells transmit information from the retina to the

brain and perform visual computations, numerous studies have been devoted to their

characterization and classification. Previous studies have classified RGCs using pa-

rameters related to parameters used in this study including arbor coverage area,

density, and length (Akaishi et al., 1995; Amthor et al., 1983; Badea and Nathans,

2004; Bailes et al., 2006; Dacey and Petersen, 1992; Dunn-Meynell and Sharma, 1986;

Hitchcock and Easter, 1986; Huxlin and Goodchild, 1997; Kolb et al., 1981; Kong

et al., 2005; Sun et al., 2002). Specific cell types differ between species and studies

identify anywhere between 4 and 20+ different classes of RGCs. RGC size has been

linked with functional cell classes. In the macaque, the parasol and midget cells,
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so named because of their difference in dendritic arbor coverage area (Dacey and

Petersen, 1992; Squire, 2003), have different functional properties (midget cells are

sensitive to color and parasol cells detect contrast) and project to different layers of

the lateral geniculate nucleus (Squire, 2003).

In the current data, I do not see any evidence to support different cells

types on the basis of area or length (or density which is defined as length divided

by area). It is possible that I did not have enough data to resolve clusters (79

axons, and 76 dendrites). Or, it is likely that arbor length and coverage area (and

consequentially density) alone can not differentiate different types of arbors. Kong

et al. (2005) classify the RGCs of mouse based on area, density, and stratification

depth. In Figure 2B, of the Kong et al. (2005) paper, area versus density is plotted.

The data of Kong and colleagues has a power law relationship and closely matches

the data of the current research. For easy comparison, I have plotted the current area

versus density data in linear space in Figure 5.1 (the logarithmic version of this data

is plotted in Figure 2.1). It does not appear that the different clusters found by Kong

et al. (2005) can be differentiated solely based on area and length. In addition, upon

visual inspection of the different classes of arbors found in the literature, different

classifications do not appear obvious based on area or density. Viewing RGC arbors,

it appears that there is a continuum of arbor coverage area and that larger arbors are

less dense on average, just as the scaling law between area and density demonstrates

(Sun et al. (2002), Figure 1; Kong et al. (2005), Figure 16; Hitchcock and Easter

(1986), Figure 2; Akaishi et al. (1995), Figure 11; Huxlin and Goodchild (1997),

Figures 3, 7, 8, 10, & 11; Badea and Nathans (2004), Figures 13C, 14B, 15, 16G,

17E, 18D; Mangrum et al. (2003), Figures 3, 4, & 5; Dunn-Meynell and Sharma

(1986), Figures 6, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21; Amthor et al. (1983),

Figures 2, 3; Kolb et al. (1981) Figures 8, 10, 11, 12, 13, 14, 15, 16; Dacey (1993),

Figure 13).

Most studies use additional parameters in their classification schema such

as the arbor stratification depth in the inner plexiform layer (IPL). Stratification
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Figure 5.1: Power law relationship between area and density of fish retinal ganglion
cells shown in linear space. Same plot as shown in Figure 2.1 but here it is plotted
in linear space for comparison with Kong et al. (2005), Figure 2B.

depth has been shown to have function significance in the retina. For example ‘on’

and ‘off’ center surround cells are found in different regions of the IPL (Famiglietti

and Kolb, 1976; Famiglietti et al., 1977; Nelson et al., 1978). In addition, it appears

that different cell classes can be differentiated by whether or not they form a non-

overlapping mosaic tiling in the retina (Dacey, 1993; Vlgyi et al., 2009; Wassle and

Boycott, 1991).

Arbor geometrical shape, i.e. eccentricity, was one focus of the current re-

search and has not yet been mentioned. There is clearly a range in eccentricities of

RGC arbors (current document, Figure 2.3C; Lui et al., 2009); however, eccentricity

is not used as a basis for morphological classification. I found no mention of eccentric-

ity in the RGC classification literature. (Note: in the retinal literature eccentricity is

commonly used to refer to a neuron’s distance from the fovea. Here, I use eccentricity

to describe how ovular or circular the arbor coverage area is.) This is likely because

eccentricity does not help differentiate different types of retinal ganglion cells. The



64

current data support a lack of information contained in RGC eccentricity. In Fig-

ure 2.3C, I showed that the eccentricity distributions of axons and dendrites were

distributed as Gaussians and not significantly different from one another. I saw no

reason to suspect that different types of arbors could be differentiated by eccentric-

ity. In addition, it has previously been found that the geometric shape of RGCs are

irregular and that their eccentricity is the result of optimizing the RGC mosaic by

maximizing RGC retinal coverage but minimizing overlap (Wassle et al., 1981; Liu

et al., 2009). Therefore, it is unlikely that arbor eccentricity is related to different

classes of neurons.

5.2 The relationship between a universal function

and branching laws

It seems, there must be some relationship between the arbor branching

statistics and the adfs; after all, an adf describes the way in which an arbor spreads its

branches over space. However, it is hard to deduce the specifics this relationship. It is

possible that different branching rules could create the same arbor density functions.

One characteristic of a Gaussian function is that the higher order statistics

(the statistics are also referred to as moments: mean standard deviation, kurtosis,

etc.) are completely characterized by the mean and the standard deviations (the

0th and the 2nd moments). In the Snider et al. (2010) paper, the authors showed

that the higher order arbor moments (up to 20 orders) could be described by the 0th

and 2nd order moments. In fact, Snider and colleagues found that only one moment

was needed to describe the higher order moments because a power law relationship

constrained the relationship between the 0th (total arbor length) and 2nd (arbor area

or volume) order moments. Larger moments resolve higher frequency components of

the arbors and at some point approach the resolution of the individual branches.

Moments high enough to resolve the arbor branches are not considered in the Snider

et al. (2010) paper because the authors were interested in the basic shape of adfs.



65

Snider and colleagues considered up to 20 moments which corresponds to a resolution

of approximately 1/20 of the arbor diameter: too course to resolve properties of

individual arbor branches.

Theoretically, if all of the moments of a single branching arbor were known,

the entire arbor branching structure could be reconstructed perfectly. However, it

is impossible to fully reconstruct the branching structure of a single arbor from the

moments of an arbor density function which only generally describes the way in which

an ensemble of neurons spread their branches over space. The tree-like structure of

an arbor can be viewed as a single sample taken from an adf. Therefore, a potentially

infinite number of branching structures could be drawn from the exact same density

function. This is why all arbors do not look exactly the same.

Interestingly, research conducted by Kong et al. (2005) provides evidence

that the branching statistics of an arbor do not provide useful information for the

classification of retinal ganglion cells. Parameters equivalent to the 0th and 2nd order

moments provided the best classification results. Kong and colleagues attempted to

classify neurons using many different measured parameters. Many of these param-

eters were concerned with the specifics of branching such as the number of branch

points, dendritic segment lengths, branch angles, and segment tortuosity. Originally

they measured 42 parameters many of which they found to be uninformative due to

redundencies. They whittled the data set down to 26 parameters (Kong et al. (2005),

Table 1). Many of these parameters were correlated with one another and they found

that using correlated parameters diluted the clustering results.

In the end, Kong and colleagues chose just three parameters which they

thought would be maximally informative to cluster the data. They choose the arbor

density, area, and stratification depth within the inner plexiform layer (IPL). Inter-

estingly, two of three of these parameters are made up of the fundamental parameters

that would specify a Gaussian spatial adf. The final parameter, stratification depth

specifies the location of the arborization.

Other studies provide evidence for universal properties of neural branches.
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Binzegger et al. (2005), found find that the axons of cat neocortical and thalamic

neurons are topologically self-similar and that a simple random branching model

can predict the bifurcation ratio, length ratio and collateral length distribution of

the axonal arbors. Wen et al. (2009) found that smaller sections of an arbor are

statistically similar to a scaled-down version of the whole arbor (self similarity).

A minimal set of parameters supports a simple design principle for arbor

structure where the location of the arbor is specified along with the standard devia-

tions defining the arbor size and shape. The question of whether the arbor density

functions are being regulated or whether they are the result of some set of branch-

ing rules will be fundamental to understanding how the brain develops, establishes

connections and processes information. It is likely that transcription factors play a

role in arbor size and density (Parrish et al., 2007). A mechanism such as the Down

syndrome-related cell adhesion molecule (DSCAM) is also likely to be involved in the

distribution of arbors over space. DSCAM has been shown to be necessary for self

avoidance and to obtain regular RGC mosaics in the retina (Fuerst et al., 2008, 2009;

Hattori et al., 2008; Parrish et al., 2007).

5.3 Cortical arbors

Cortical neurons are not as homogenous as retinal ganglion cells. All of the

arbor types (apical dendrites, non-apical dendrites, and axons) can be fitted to a

single power law; however, there is more structure in the data suggesting different

morphological arbor types or classes (Figure 3.2). In the following text, and thoughout

the entire document (although previously, it hasn’t been explicitly mentioned), I use

the word ‘type’ to refer to the different apical dendrite, non-apical dendrite, and axon

arbor types. I use the word ‘class’ to refer to different classes of neurons. There may

be different arbor classes within an arbor type which correspond to different classes

of neurons. For example, perhaps the axons of interneuron and pyramidal cells can

be differentiated from one another. If this is the case, there would be two classes of
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axonal arbors which would correspond to the interneuron and pyramidal cell neuron

classes.

As discussed below (and in the Cortical Results chapter), although the data

can generally be described by a scaling law (which constrains the volume an arbor

covers for a given length), there is scatter in the relationship that corresponds to

the relative density of an arbor. There is information concerning both arbor type

and class contained in the relative density of an arbor. This means that unlike the

fish where the relative density was homogenous, we cannot reduce the minimal set of

parameters needed to describe a cortical arbor from four to three parameters. Instead

all three standard deviations and the total arbor length will be needed to describe

the density function of an arbor.

It should be noted that there are many artifacts in this data set that will

affect the adfs. These artifacts include slicing, shrinkage, and tracing errors. I made

efforts to reduce the impact of these artifacts on the results by eliminating arbors

with substantial errors and applying shrinkage corrections when necessary. However,

errors remain in the data and the results within this document are certainly affected

by these artifacts.

5.3.1 Arbor type

The non-apical dendrite, apical dendrite, and axonal arbor types have long

been differentiated from one another based on morphology and functional properties.

Dendrites receive information from the network. After the dendrites and soma in-

tegrate the information from many neurons, the axons distribute information to the

network in the form of a discrete action potential. Apical dendrites are a special

type of dendrite which are present on pyramidal neurons. These arbors usually grow

from the top of the pyramidal neurons and project themselves across many layers of

the cortex toward the pial surface. Pyramidal cells also have a basal dendrite which

grows from the bottom of the pyramidal neurons and generally does not project across

many layers. The basal dendrites are considered non-apical dendrites along with the
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dendrites of stellate cells and interneurons.

Unlike the retinal ganglion cells, different types of arbors are generally dis-

tributed around the power law differently (Figure 3.4H). The scatter around the best

fit power law corresponds to the relative average density of an arbor. The relative

density distributions are not the same for any of the arbor types. This implies that

average density carries information about arbor type and suggests that different types

of arbors may have a different control mechanism for relative density. The relative

average density of non-apical dendrites is distributed normally around the best fit

line, but the apical dendrite and axonal distributions are non-Gaussian. The range of

axon relative density is larger for axons than it is for dendrites. The relative density of

non-apical neurons is normally distributed. Apical dendrites are relatively less dense

than the other arbors.

In general, axonal arbors cover a larger volume than do dendritic arbors. On

average, each of the fundamental parameters are larger for axons (Figure 3.4A-D).

They have a larger volume (Figure 3.4G) and also span a larger region of the cortical

map (Figure 3.4D). There is some evidence to suggest that axons cover a slightly

more ovular region of the cortical map. However, the difference is slight and I suspect

is due to slicing artifacts that will affect the axons more than the dendrites due to

their larger volume.

It appears that in general, non-apical dendrites have a larger cortical cover-

age area than apical dendrites (Figure 3.4F). This is because both standard deviations

in the direction of the cortical map are larger for the non-apical dendrites (Figure

3.4A & B). Note that the dendrites of interneurons are lumped together with the

basal dendrites of pyramidal cells. The larger coverage area of the non-apical den-

drites is most likely due the the larger spread of the interneurons over the cortical

map (compare Figure 3.6F and Figure 3.7F). However, the standard deviation that

describes how an arbor distributes its information across layers is much larger for api-

cal arbors. Clearly this makes sense as apical arbors are known to reach up toward

the pial surface and spread their arbors across the different brain layers.
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When taking all four fundamental parameters into account, the three dif-

ferent arbor types can be differentiated from one another fairly well (Figure 3.11).

However, the data from different types of arbors do overlap (Figure 3.10) showing

that the spatial density distribution strategies are not completely independent from

one another and that arbors can only be distinguished probabilistically.

5.3.2 Arbor class

Since the invention of the Golgi stain, investigators have been attempting

to categorize neurons into different classes. Although the intricacies of how neuron

classes or subclasses are identified and defined are still not agreed upon (Bota and

Swanson, 2007), certainly different functional classes of neurons exist within the brain.

In the current data, there is evidence to support different classes of arbors

corresponding to different classes of neurons within the same arbor type. Differences

were found between two major cell classes: the interneurons and the pyramidal cells.

Pyramidal cells are excitatory neurons and usually interneurons are inhibitory. The

axons of interneurons are relatively more dense than the axons of pyramidal cells

(compare Figure 3.7H & Figure 3.6H). In addition, it appears that interneurons cover

a less ovular area of the cortical map than pyramidal cells do. It is possible that

these differences are caused by artifacts. However, the eccentricity distributions of

pyramidal cells and interneurons are substantially different (compare Figure 3.7E &

Figure 3.6E) and it is reasonable to suspect that these differences may be real.

The eccentricity distribution of pyramidal cells is skewed toward eccentric

arbors, with a peak corresponding to an aspect ratio of approximately 3:1. Why are

pyramidal cells so eccentric? Is there a functional reason for this shape? It is possible

that the high eccentricity is due to a mechanism much like in the retina where arbors

are shaped to best fill space (Liu et al., 2009). However, this conclusion would bring

up many questions. First, this would assume that there are mosaics of different classes

of pyramidal cells. In the retina, there are overlapping mosaics of different classes of

RGCs. These different classes look very similar to one another (Wassle and Boycott
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(1991), Figure 17 A, B, & C); however, functionally RGCs of a certain class only

connect with other RGCs of the same class (Vlgyi et al., 2009). This situation would

be different in the cortex; although there could be overlapping mosaics of different

classes of pyramidal cells, pyramidal cells do connect with their overlapping neighbors.

However, perhaps a similar mechanism is used to ensure homogenous pyramidal cell

coverage of the cortex.

But why would pyramidal cells be more eccentric than interneurons? In the

retina, evidence suggests that eccentricity is related to the regularity of the mosaic.

Bistratified cells have more irregular mosaics than parasol cells. Bistratified cells

also have more eccentric coverage areas and a greater variance in their eccentricities

than parasol cells. Liu et al. (2009), find that the difference in eccentricities between

these two types of RGCs is as expected to optimize retinal coverage. Perhaps a

similar mechanism is at work in the cortex which could explain the differences in

eccentricities of interneurons and pyramidal cells? If this is the case, it would suggest

that the initial grids of pyramidal neurons are more irregular than interneurons.

Finally, the Random ForestTM algorithm was used to quantify how well dif-

ferent non-basal arbors could be differentiated from one another when considering

their fundamental parameters simultaneously. These arbors were not nearly as differ-

entiable as the general arbor types. The ability to differentiate some of the interneuron

classes was not much better than chance. The best classification results were consis-

tently between the pyramidal basal dendrites and the dendrites of the interneurons.

This suggests that the different functional excitatory versus inhibitory arbors have

the most different spatial information distribution strategies and that the dendrites

between different classes of interneurons are similar in their distribution strategies.



Chapter 6

Methods

6.1 Fish: data collection and reconstruction

As described in Lee and Stevens (2007), Goldfish (Carassius auratus) were

obtained from local pet stores and zebra fish (Danio rerio) were maintained in the

Salk Institute animal facility. Fish were anesthetized with 0.1% trican methane-

sulfonate, and perfused through an intracardiac catheter constructed from a glass

micropipette. For perfusion, phosphate buffered saline (0.8M PBS), followed by 4%

paraformaldehyde was used. For DiI (Molecular Probes, Eugene, OR) staining of the

retinal ganglion cell dendritic arbors and the retinotectal axonal arbors, the brain was

removed from the fish, fixed in 4% paraformaldehyde for 2 hours, and a small crystal

of DiI was inserted into the nick in the optic nerve. The brain was maintained in fixa-

tive and scanned with a confocal microscope (LSM510: Carl Zeiss, Thornwood, NY).

Arbors in the confocal stack were reconstructed with Neurolucida (Microbrightfield,

Williston, VT).
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6.2 Cortical data

6.2.1 Data download and selection

All non-cultured cortical data available on March 12, 2009 were downloaded

from the website http://neuromorpho.org/. The data were collected from 14 different

laboratories and consisted of 6,290 neural arbors from 3,094 neurons of mouse, rat,

cat, monkey, and human species. In addition, 19 neurons with 41 arbors were provided

by Judith Hirsch (Hirsch et al., 1998, 2002).

Many arbors were excluded from this analysis due to the unrealistic nature

of the arbor traces. Often an arbor was supplied in the data base but was severely

truncated, consisting of only a few segments. Many artifacts existed in the data such

as slicing artifacts, tracing errors, and incorrectly aligned branches. Arbors containing

drastic errors were eliminated. Shrinkage was a common artifact and was corrected

for as covered in a following section. Table 6.1 provides a summary of the data used

and the applied shrinkage corrections.

6.2.2 Included neurons

Whether neurons were used in this study was based on a qualitative judge-

ment call. Details of arbor selection and inclusion are discussed in the following

sections. Briefly, neurons that were included in the study had no obvious tracing

artifacts. Many neurons in the data set appeared as though they were not stitched

together correctly or they had strange artifacts in the section direction (the direction

that focuses down through the slice if one is looking at the section through a mi-

croscope) that distorted this dimension of the reconstructions: these were not used.

Virtually all the neurons in the data set were filled in sections except for the Eysel

and Hirsch data. As a result, the edges of most of the neurons were sliced off on one

or both sides. I will refer to these artifacts as slicing or sectioning artifacts. How

much of any given neuron was sliced off depended upon the thickness of the section,

the size of the neuron and where the neuron was located in the section. Because of
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the prevalence of slicing artifacts in the data, it was impossible to exclude all sliced

arbors. However, neurons that were ‘very sliced’ were eliminated from the data set.

What constituted ‘very sliced’ was a qualitative judgement which corresponded to

the removal of more than approximately 1/4 of the spatial volume of the arbor.

6.2.3 Basic experimental data collection methodology

Although the exact experimental protocols and experimental aims vary be-

tween laboratories and research projects, a general explanation of the basic histology

methods follow:

If experiments such as electrophysiology were performed with live tissue,

before histology, the animal is sacrificed and the brain is excised and submerged

in chilled artificial cerebral-spinal fluid (ACSF). Then the brain is usually cut into

blocks. At this point the blocks may be cut into smaller sections that are between

200 and 400 µm in thickness using a vibratome. Then the electrophysiology or other

such experiments are conducted after which the cells are usually injected with a dye

such as biocytin. Finally, sections are fixed in a substance such as paraformaldehyde

and histology protocols are applied as described below.

If there are no live tissue experiments needed, often the animal has received

injections of tracers and is sacrificed by perfusion. The brain is then excised and

fixed using a substance such as paraformaldehyde or emersed in Golgi-Cox solution

if a Golgi stain is being utilized. Then, as mentioned above, the brain is usually first

cut into blocks and then sliced into sections between 200 and 400 µm in thickness.

Perhaps dyes are injected at this point. Then the tissue may be embedded with

a material such as celloiden or paraffin. At this point, the tissue may be cut into

even smaller sections of 50 µm. If the tissue is not embedded, the tissue must then

be frozen and cut on a cyrostat or a frozen microtome. Then the sections (thick

or thin) are mounted for viewing under a microscope. This can be done by whole

mounting or by coverslipping. Usually the tissue undergoes a series of rinses in water

and alcohols (referred to as dehydration) and is subjected to any materials necessary
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for the staining procedure. If the tissue is whole mounted, it is put into a liquid

solution such as alcohol and covered with a slide. If the tissue is coverslipped, it is

pressed onto a slide. The tissue may or may not be air dried using a hot plate. A

slide (coverslip) is then glued to the top of the tissue.

6.2.4 Neuron reconstruction

After the neurons are mounted on slides they are traced under a microscope

using a computer program such as Neurolucida. It is difficult to trace the neurons

though thick sections because the view becomes ‘muddy’ deep within the section.

Therefore, neurons that were traced in thick sections most likely have errors associated

with difficult viewing. This is why after dye injection some investigators resection the

tissue down to thinner sections such as 50 um. This makes tracing easier; however,

now the reconstructions have to be ‘restitched’ back together. This is most likely the

source of many of the ‘stitching’ errors present in the neuron traces.

6.2.5 Artifacts

Artifacts were prevalent in the neural reconstructions. The following is an

explanation of common artifacts found. Many neurons were eliminated based on these

artifacts. 1. Incomplete filling. In this case, the neuron was not completely filled with

dye and therefore could not be fully reconstructed. 2. Tracing past the boundaries of

the section due to over-focusing. The z-coordinate (Figure 6.10) location of each piece

of neurite is identified by scrolling through the section under a microscope. The loca-

tion where the dye is the brightest or most intense is denoted the z-coordinate of the

neurite at that position. Often it is difficult to discern where the dye is most intense.

Therefore, the z-coordinates are especially prone to errors. An over-focusing artifact

occurs when an experimenter traces the neurites past the boundries of the section as

if the neurites where extending up or down out of the slice. 3. Incomplete tracing

due to ‘muddiness’ when tracing through thick sections. 4. Mismatched stitching.

In these cases, the pieces of the arbors were not stitched back together correctly. 5.
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Slicing. The sides of the neurons were sliced off. 6. Shrinkage. Depending on the

histology process used, tissue can experience shrinkage in the slice direction (Figure

6.10) of up to 80%. 7. Truncation. Neurons were truncated because the investigators

stopped tracing the neurons after they extended past a certain distance from the

soma.

6.2.6 Shrinkage correction

Most of the data were acquired from brain sections and were subject to

shrinkage especially in the slice direction (dependent on the method used to collect

the data). Some laboratories corrected their data for shrinkage, but other laboratories

did not. When shrinkage was not corrected, I did my best to make the most realistic

possible correction to the data. This endeavor was quite difficult as there seems to

be quite a bit of confusion in the field surrounding shrinkage. Difficulty assessing

an appropriate correction factor arose due to: 1. unreported shrinkage in referenced

papers, 2. possible variation in section shrinkage within an experiment, 3. tracing

artifacts including disconnected neurons, tracing with incorrect magnification, and

tracing past the section edge by over-focasing, 4. unknown effects of tissue distortion,

and 5. mislabeling of article references or original section thickness. Often choosing

a correction came down to a judgement call and undoubtably artifacts remain.

A common example of a situation where the necessary corrections were un-

clear follows. Let’s say a group of neurons all reference a paper that reports a section

thickness of 100 µm and a shrinkage of up to 75%. Looking at the data, most of the

neurons look shrunken but some do not. Or perhaps a few look a bit thicker than

they should be. This is most likely due to incorrect magnification calibration of the

Neurolucida computer tracing system. However, now, instead of fixing all of the data

from the study in a uniform way, a judgement call must be made concerning which

neurons need to be corrected. Although choosing which neurons need to be corrected

is not usually straight forward, assume that somehow a decision is made concerning

which neurons to leave unaltered and the remaining data are corrected by a factor
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consistent with a 75% shrinkage. With this correction, many of the neurons look more

reasonable but many of the neurons are thicker than the reported 100 µm. One might

wonder if there is variable shrinkage between different sections. Some experimenters

think that there is variable shrinkage between sections, others do not. It may depend

on the histology protocol.

In order to discuss another method by which to estimate shrinkage, I need

to define the term ‘neuron thickness’. I will use the term neuron thickness to refer to

the extent of the neuron (including all arbors) in the direction perpendicular to the

section. If a neuron is sliced off on both the top and bottom sides of the section, the

neuron thickness is representative of the section thickness. Because I can calculate

the neuron thickness from the data, I then know the thickness of the section after it

has undergone shrinkage. In this case the neuron can then be expanded to reported

section thickness. However, often it is difficult to assess whether the neurons are

sliced on both sides. If they are not sliced on both sides and the neuron thickness is

used as a proxy for section thickness there will be an overestimate of the shrinkage.

For example, a section may have a thickness of 100 µm but the neuron is only sliced

off on one side and extends down 50 µm into the section. If the section shrank by 50%

the neuron is now 25 µm wide (assuming the tissue shrank uniformly). To estimate

the percent shrinkage using the width of the neuron:

% shrinkage =
(

1− shrunken tissue thickness

reported section thickness

)
∗ 100 (6.1)

In this case the percent shrinkage would be:

correct % shrinkage =
(

1− 50µm

100µm

)
∗ 100 = 50% (6.2)

.

However if the shrunken tissue thickness is replace by the neuron thickness

an overestimate of the shrinkage is calculated:

estimated % shrinkage =
(

1− 25µm

100µm

)
∗ 100 = 75% (6.3)
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.

In addition, the data are suseptable to tracing errors. Sometimes it is diffi-

cult to obtain the correct coordinates describing the depth within the section using

Neurolucida. As a result, it is likely that at times, pieces of the reconstructed neurons

extend farther than the neurons do in reality (Figure 6.8). This creates a problem

adjusting all the neurons to the reported section thickness. For example, if a branch

that was incorrectly traced far past the limits of the section is used as a boundry

of the neuron then the neuron would be smashed into a space much smaller than it

should be (for example, say a piece of neuron was traced 100 µm past this section

such as is possibly the case in Figure 6.8). In addition, it is possible that there is

some tissue distortion. Occasionally the tissue appears skewed sideways in the section

(Figure 6.9). Also, at times, the branches of the neurons are not stitched together

correctly (although these neurons will be eliminated from the data set). These issues

make it difficult to decided whether to correct the neurons to their section thickness

or to use one universal correction factor for a data set even though there may be

variation between sections.

One could consider every individual neuron and estimate what caveats are

associated with each in order to make cell specific shrinkage corrections. However, it is

difficult to gauge specific artifacts and adding experimenter bias to data is undesirable.

The general corrections made to the data are summarized in Table 6.1.

The reasoning regarding the corrections of each data set follows in the, “Laboratory

specific details of artifacts, shrinkage corrections, and data exclusion” section.

6.2.7 Data exclusion

Many arbors were eliminated from the set. Common reasons for exclusion

included severe slicing artifacts, incomplete tracings, tracing alignment artifacts, and

unrealistic two-dimensioal arbors (z-coordinants all equal to 0).

The entire data sets from some laboratories were not suitable for this study

and therefore eliminated from the data set. Table 6.1 contains a summary of which
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Table 6.1: Summary of data usage and manipulation. NA stands for not applicable.
The Hirsch neuron provided online was eliminated. The correction for the Staiger
neurons was not applied to 8 outliers. Please see the text for details.

Archive Name Shrinkage Correction Used Reason excluded
Allman none Yes
Brown 1.4815 No Platform tracing
Dendritica none Yes
Destexhe none Yes
Eysel none Yes
Gonzalez-Burgos NA No Section misalignment
Hirsch none Yes
Jacobs NA No 120 um sections (highly sliced)
Lewis NA No Truncated at 100 µm
Markram none Yes
Smith 1.4815 Yes
Staiger 4.0 Yes
Svoboda variable Yes
Wearne Hof none Yes
Yuste NA No Z-axis inconsistencies

laboratories were excluded. Briefly, the Brown laboratory data were traced in ‘plat-

forms’ (Figure 6.3). The Gonzales-Burgos neurons often showed problems ‘stitching’

the sections back together. The Jacobs laboratory data were obtained in 120 um sec-

tions and significant portions of the neurons were truncated due to slicing artifacts.

The Lewis lab was excluded because the investigators stopped tracing the neurons

after the neurites extended past 100 µm from the soma. Finally, the Yuste labora-

tory neurons were excluded due to large artifacts in the z-axis. Details concerning

the exclusions can be found below in the, “Laboratory specific details of artifacts,

shrinkage corrections, and data exclusion,” section.
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6.2.8 Laboratory specific details of artifacts, shrinkage cor-

rections, and data exclusion

Allman

The paper associated with this data set does not mention shrinkage (Watson

et al., 2006). Many of the neurons in this data set are close to, or larger than the

reported section thickness of 200 µm (Figure 6.1). Therefore, I will assume that there

is either little or no shrinkage in the data, or that it was already corrected.

Figure 6.1: Neuron thickness of unaltered Allman data. Some neurons are thicker
than the reported section thickness of 200 um. Perhaps this is due to tracing the
arbors beyond the boundaries of the section as a result of over-focasing.

Brown

These data were taken for a study done in rats of postnatal day 0 (P0) to

adulthood (P45) (Furtak et al., 2007). Therefore, many of the neurons were small

and not fully developed. One neuron was much thicker than the others (Figure 6.2).

This neuron, P42-DEV384, appeared to have a tracing artifact and was eliminated

from the data set. Eighteen of the neurons were completely flat (had a thickness of

0 µm). It is hypothesized that there was a problem with the data transfer to the
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Neuromorpho.org website (conversations with Dr. Sharon Furtak). These neurons

were eliminated from the data set.

Figure 6.2: Neuron thickness of unaltered data from the Brown archive. These data
are associated with the Furtak et al. (2007) paper. The reported section thickness is
200 um.

These data were collected using the protocol of Gibb and Kolb (1998). Dr.

Furtak is no longer at Yale where the slides are kept and therefore could not measure

the section thicknesses to assess shrinkage. However, the data submitted by the

Smith laboratory reported using the same protocol. The Brown data were therefore

corrected by the same reasoning used for estimating the Smith correction factor below.

The end result corrected the section thickness by a factor of 1.4815. Sharon Furtak

agreed that this was a reasonable correction for the data (personal communication).

However, these traces had problems with z-axis coordinates (in the reference

frame of the section). They often look platform-like when viewed from the side (see

Figure 6.3 as and example). As a result, I decided not to use these data.
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Figure 6.3: Example of ‘platform’ tracing of Brown data. Both images are 3D recon-
structions rotated to show different views. The x, y, and z axes are in the reference
frame of the section.

Dendritica

These data reference two papers: Stuart and Spruston (1998) and Vetter

et al. (2001). Four of the neurons in this data set are not currently available on

neuromorpho.org (503c, 602c,822, 913c). How I acquired these traces is unknown. It

is likely that they were available on the website previously but are no longer posted.

These neurons reference the Vetter et al. (2001) paper, appear artifact free, and do

not look shrunken, therefore, I left them in the data set.

Two neurons which reference the Vetter et al. (2001) are listed as neurons

from cat (j8 L23pc and j7 L4stellate). There is no mention of cat neurons in the

Vetter et al. (2001) paper, therefore, their origin is unknown. However, these neurons

also appear artifact-free and do not look subject to shrinkage. Therefore, I left them

in the data set.

Two neurons are listed on the neuromorpho.org website as Stuart and Sprus-

ton (1998) (p21 and p22). However, the Vetter et al. (2001) paper says that three

neurons are taken from the Stuart and Spruston (1998) paper. I believe the third
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Stuart and Spruston (1998) neuron is file ‘p18’ (due to the naming conventions of the

files). This neuron’s paper reference was probably mislabeled. These three neurons

look a bit flattened however the Stuart and Spruston (1998) paper mentions that

there is minimal shrinkage. Therefore, I will leave these neurons ‘as is’.

The three neuron files remaining (par, pds and pjs) are layer 5 rat pyramidal

neurons. The Vetter et al. (2001) paper reports that it filled two rat neocortical layer

5 pyramidal neurons, obtained three from G. Stuart and N. Spruston, and one from

D. Smetters. Perhaps two of these remaining three files are the neurons they traced

themselves and one is the neuron from D. Smetters. Although, this seems a bit

unlikely due to the consistency of the naming convention of these three neurons.

However, the ‘pds’ neuron does not look shrunken and the remaining two look either

flattened or severely sliced on one side. The histology was not reported in the Vetter

et al. (2001) paper. I will leave these two neurons ‘as is’ as the appropriate correction

is unclear and the effect of just two neurons on the results will be minimal.

Destexhe

There are two neurons in this data set which reference the paper Contreras

et al. (1997). The paper mentions that the neurons were sectioned at 80 µm. However,

these sections must have been ‘stitched’ back together as the neurons are much thicker

than 80 µm and the traces look very nice. There is no mention of shrinkage in the

paper. The neurons look realistic and I will leave them ‘as is’.

Eysel

These are beautiful traces reconstructing the entire cortical depth in cat.

The neuromorpho.org website reports that these data correspond to a paper by

Kisvarday and Eysel (1992). However, in conversations with Zoltan Kisvarday it

was determined that these data do not correspond to the listed paper which reports

a dry mounting histology method (which would consequently cause a great deal of

shrinkage). Instead these neurons were resin embedded to minimize shrinkage. In
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addition any shrinkage was corrected (unlike in the 1992 paper). Dr. Kisvarday

recommended Buzs et al. (2006) as a reference for these data.

Gonzalez-Burgos

It was difficult to assess the shrinkage in this data set due to the small

number of neurons referencing four different papers: Gonzalez-Burgos et al. (2004),

Gonzalez-Burgos et al. (2005), Zaitsev et al. (2005), and Krimer et al. (2005).

Dr. Gonzalez-Burgos mentioned that these data may not be very accurate.

Most of the data were resectioned at 50 µm and were provided to Dr. Ascolli (for

the neuromorpho.org compilation) ‘unstitched’ back together. It is unknown whether

Dr. Ascolli’s team attempted to repair these data. Many of the neurons do not

look properly stitched together (Dr. Gonzalez-Burgos, personal communication). In

addition to the obvious problems that would be caused by using incorrect traces in our

analysis, incorrect stitching adds many complications to the calculation of shrinkage.

Therefore, these data are excluded from our analysis. However, for completeness more

about the shrinkage follows.

All of the referenced papers report fixing in paraformaldehyde and incu-

bation with a avidin-biotin peroxidase staining kit. However, each paper reports

different steps in the histology protocol. These steps may or may not have led to

different shrinkage artifacts. It is probably safe to assume that the neurons with a

reported section thickness of 50 µm were sliced on both sides. There are only two of

these in the data set and their neuron thicknesses are 39 and 44 µm. This corresponds

to a maximum of 22% shrinkage. Dr. Gonzalez-Burgos remarked that he believes that

neuroanatomists report a 30% shrinkage in volume with the type of method he uses

(personal communication). This would probably correspond to approximately a 20%

shrinkage in section thickness. However, as in other data sets it is possible the section

thickness was misreported and this in not an accurate shrinkage estimate.
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Hirsch

One neuron was provided on the neuromorpho.org website. This neuron ref-

erenced Hirsch et al. (2002) which in turn references the histology in Hirsch (1995).

The Hirsch (1995) paper reports a section thickness of 200 and 350 µm for the elec-

trophysiology. The paper reports reslicing to between 70 and 100 µm for histology.

These sections must have been ‘stitched’ back together even across electrophysiol-

ogy sections as they are approximately 800 µm thick. This neuron may have been

shrunken as the histology protocol reports dry mounting which generally causes sig-

nificant shrinkage. The side view of this neuron in Figure 6.4 appears flattened in

comparison to the top view. I removed this neuron from the analysis because I could

not deduce the experimental details or caveats associated with this trace.

Nineteen additional neurons from cat cortex were provided by Dr. Hirsch.

These neurons look very nice and are included in the analysis.

Jacobs

These neurons report 120 µm section thickness cut on a vibratome. However,

many of the neuron are thicker than the reported section thickness (Figure 6.5). There

was no mention of shrinkage or shrinkage expansion in the referenced papers (Jacobs

et al., 1997, 2001; Travis et al., 2005). Dr. Jacobs believes that, “Tracings that

are close to the 120 thickness (say up to 150 or so) are probably the result of the

tracer over focusing–that is, focusing beyond the actual thickness of the section when

tracing. This is usually the result of following one branch of the cell out too far in

a particular direction, and it thus makes it seem like the section is thicker than it

is. This would increase dendritic length slightly, only for those branches traced in

this manner. And/or, it could simply be variation in the section thickness coming off

of the vibratome. Tracings that are absurdly thick (such as 10-3-2, 10-3-4, 10-5-5A)

are the result of tracer error. In looking at these more extreme cases, it appears the

tracer may have traced part way, stopped, and then started again, but the origin of

the dendrite no longer lines up with the soma (0 on the z plane) and instead began
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Figure 6.4: Cat cortical neuron (980804axden) traced by Judith Hirsch availiable on
neuromorpho.org. The neuron is much thicker than the reported section thickness
in the referenced paper. The referenced histology method (dry mounting) should
yield shrinkage; however, shrinkage is not mentioned in paper. Despite the neuron
thickness (approximately 824 µm) this neuron may be shrunken: notice in the side
view that the axon tufts are quite flattened. Both images are 3D reconstructions
rotated to show different views. The x, y, and z axes are the coordinates provided by
Neuromorpho.org.

the dendrite “out in space” as it were. This makes the section appear much thicker

than it actually is, though it probably doesn’t significantly affect the overall length of

the dendrites. This is something I did not notice when checking over the cells because

it only shows up after rotating the cell on the z axis.” (personal communication).

These data were excluded, not because of the above mentioned issues which

are fairly common in the data sets, but instead because it appears that the neurons

are severely sliced on each side of the section. These sections were only 120 µm thick

and it was obvious that the neurons were originally much thicker.
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Figure 6.5: Neuron thickness of unaltered data from the Jacobs data set.

Markram

These data look good and references Wang et al. (2002). The paper reports

that shrinkage was corrected.

Smith

All of the data in this set refers to Bergstrom et al. (2008), except one

neuron which references McDonald et al. (2005). Both papers report following the

Golgi staining protocol of Gibb and Kolb (1998). Neither paper mentions shrinkage.

Dr. Craig McDonald, who said that by no means did he do it officially, he measured

thicknesses of between 130-140 um for a few of the sections after shrinkage. He also

said that he thought section shrinkage was fairly consistent and also that he would

not assume neurons were cut on both sides of the section (personal communication).

When I performed a shrinkage correction by multiplying the appropriate axis by a

correction factor of 135/200=1.4815, the data looks suitable. I.e., some of the neurons

are close to 200 um thick but none are larger. It can be seen how this would be the

case from the histogram of the neuron thickness of the uncorrected data (Figure 6.6).

In addition, although the Gibb and Kolb (1998) reference did not report shrinkage

for their protocol, Dr. Gibb believes shrinkage is on the order of 30%, maybe up

to 40% (personal communication). This is on the order of the measured shrinkage.
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Therefore, I corrected these data by a factor of 1.4815.

Figure 6.6: Neuron thickness of unaltered Smith data.

Staiger

It appears that this data set was subject to most all the possible issues listed

at the beginning of this chapter. In summary, it is highly probable that the neuron

references are mislabeled or neurons in smaller sections may have been ‘stitched’ back

together. I think that all of these neurons (except 8 outliers) should be corrected by

a 75% shrinkage factor despite the fact that this often results in neurons which are

thicker than the section thickness reported on the website or in the referenced papers.

The reasoning follows.

Figure 6.7 shows a histogram of the neuron thickness of the data. The

histogram lists the section thickness reported by the referenced papers. The section

thicknesses reported in the papers match the neuron thickness reported on the website

except for the Schubert et al. (2003) paper which reports 300 um on the website, and

one neuron from the Staiger et al. (2004) paper which reports a different thickness

on the website than the rest of the neurons which reference the same paper. There

appears to be eight outliers that are thicker than the rest of the data (i.e. larger

than 100 um). Indeed these neurons look less ‘squished’ than the rest. It is unknown
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whether these ‘unsquished’ neurons were already shrinkage corrected, traced on an

incorrect magnification which essentially canceled out the effect of shrinkage, or there

was an error in the data transfer to neuromorpho.org.

These data referenced three papers: Schubert et al. (2003) (which reports

following the histology protocol of Angulo et al. (1999)), Staiger et al. (2004), and

Schubert et al. (2006) which reports following the Staiger et al. (2004) histology

method. Essentially two different protocols are used. The first few steps of these

protocols are the same. However, the Angulo et al. (1999) protocol describes reslicing

to 50 um on a vibratome, dehydrating the tissue using ethanol, and then flat embeds

the tissue using Durcupan AMC. The Staiger et al. (2004) paper reports that the

sections were cyroprotected and resliced to 100 um on a freezing microtome which

were then subject to cytocrome oxidase histochemistry. They were air-dried, mounted

on glass slides, immersed in xylene and coverslipped in Depex. The Schubert et al.

(2003) paper reports a slight difference from the (Staiger et al., 2004) only in that it

uses and additional silver/gold intensification following the protocol of (Bender et al.,

2003) to tinct the barrels. In all the other cases, the barrel field was either visualized

by cytochrome oxidase histochemistry or the barrel pattern of the photograph of the

native section was transferred manually into the reconstruction.

The Staiger et al. (2004) paper reports a z-axis (direction of the section

thickness) shrinkage of up 75%. I believe most of the shrinkage is the result of

the cytocrome oxidase histochemistry or the air-drying. Therefore, the Angulo et al.

(1999) protocol might not be subject to this much shrinkage (shrinkage is not reported

in this paper). Looking at the histogram of the neuron thickness of the Schubert

et al. (2003) paper, the neurons are 40 µm after shrinkage as opposed to the reported

section thickness of 50 µm. This would correspond to approximately a 20% shrinkage.

However the neurons look much more flattened than 20%. When corrected by a 75%

shrinkage they look appropriate. Therefore, it is highly possible these neurons should

reference a paper which corresponds to a 75% shrinkage. Or it is possible they shrank

approximately 75% despite the difference in protocol, and were then ’stitched’ back
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together for the reconstructions.

As for the remaining two data sets, in the histogram one can see that many

of the Staiger et al. (2004) neurons are around 60 µm thick. If these are corrected by

75% (as reported) they would be approximately 240 µm thick, which is much larger

than the reported 100 µm section thickness. My guess is that these neurons should

either reference the Schubert et al. (2006) paper which reports a 300 µm section

thickness, or, the reported 100 µm sections were ‘stitched’ back together for the

reconstructions. These neurons look appropriate when corrected by a 75% shrinkage.

The Schubert et al. (2006) referenced neurons look appropriate when corrected by

the reported 75% shrinkage (excluding the outliers mentioned above). None of these

neurons are thicker than reported section thickness of 300 µm when corrected by a

75% shrinkage correction factor.

To conclude, all but the eight outliers were corrected by a 75% correction

factor which is equivalent to multiplying the section thickness coordinates by a factor

of four. The eight outliers were left ‘as is’. Dr. Staiger agreed that my reasoning was

probably correct although he could not confirm my suspicions as he was unsure of

the collection details of each neuron (personal communication).

Svoboda

These data experienced expansion presumably due to the DMSO-based

method used for mounting these sections (personal communication with Dr. Gordon

Shepherd; section expansion is not discussed in the paper). The section expansion

was measured for each section. The shrinkage coefficients of all but four neurons (File

names: g0445 − 7 cellA, g0701P1, g0703P1, g0762 b) were provided to me by Dr.

Armen Stepanyants and are listed in Table 6.2 . Correcting the section thickness by

these values made the neuron thicknesses very close to the reported section width of

300 µm. The four correction factors that were not provided correspond to neurons

that were not used in their studies most likely due to bad dye labeling (personal com-

munication with Dr. Armen Stepanyants). I removed g0445 − 7 cellA and g0762 b
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Figure 6.7: Neuron thickness of unaltered Staiger data. Each neuron referenced one
of 3 papers: Schubert et al. (2003), Staiger et al. (2004), or Schubert et al. (2006).
One neuron did not reference any paper. Eight outliers are thicker that 100 µm
and correspond to the files named: 030213DS2, 040112DS1-lower, 040112DS1-upper,
040112DS2, 040113DS3, DS1 160501, DS2 120601 wL, IF1 300300. The neuromor-
pho.org website reports a section thickness of 300 µm for the Schubert et al. (2003)
paper. However, this paper references using the histology method of Angulo et al.
(1999) which reports reslicing to 50 µm. The Staiger et al. (2004) reference reports an
original section thickness of 500 µm and then reports reslicing down to 100 µm. On
the neuromorpho.org website all of these neurons have a reported section thickness of
100 µm except one which reports 300 µm. The Schubert et al. (2006) paper reports
an original section thickness of 300 µm but reports to follow the histology protocol
of Staiger et al. (2004). It is unclear whether or not these neurons were resliced to
100 µm. All of the data in this set (excluding the outliers) were corrected by a 75%
shrinkage factor. The outliers were left ‘as is’. Please see the text for the reasoning
behind this correction decision.

from the data set because they were not sliced on both sides and looked too expanded

when altered to be 300 µm thick. I did not see a marked difference between g0701P1

and g0703P1 and the other neurons in the data set, therefore, I did not exclude them

from the study. The axons of these neurons looked underdeveloped however many

axons of other neurons also looked underdeveloped. Therefore, the dendritic arbors

of these neurons will remain in the study while the axons of these neurons will be

removed as will incomplete axon traces from other neurons.
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Table 6.2: Shrinkage correction factors for Svoboda data files. Multiplying the z-
coordinates of the data provided on the Neuromorpho website will correct the neurons
for expansion artifacts.

File Name Correction File Name Correction
I03192A 0.66458 g0700P1 0.75994
I0319 3A 0.65595 g0701P1 0.76947
I0319 4A 0.57442 g0702P1 0.72564
I0319 5A 0.73174 g0703P1 0.85312
I0319 5B 0.74019 g0704P1 0.81248
I03464 0.70264 g0705P1 0.71705
I03471 0.69238 g0706P1 0.87283
I03472 0.68231 g0707P1 0.90818
I03474 0.67838 g0709P1 0.82271
I03481 0.755 g0715 b 0.81453
I03482 0.70517 g0716 b 0.82332
I03485 0.66742 g0717 b 0.79453
I03538 0.76705 g0718 b 0.73174
I03539 0.77071 g0719 b 0.73174
I03541 0.73174 g0720 b 0.73174
I03542 0.70284 g0721 b 0.73174
I03544 0.78296 g0722 b 0.73174
I03555 0.72228 g0724P1 0.73174
I03564 0.71721 g0746 b 0.75982
I03566 0.63585 g0758 b 0.73174
I03569 0.64412 g0759 b2 0.73174
g0435P1 0.73174 g0760 b 0.75609
g0436P1 0.8036 g0761 b 0.815
g0437P1 0.73174 g0763 b 0.82974
g0611P1 0.73174 gR001P1 0.60459
g0612P1 0.73174 gR002P1 0.67209
g0684P1 0.73174 gR003P1 0.62488
g0685P1 0.73174 gR004P1 0.73174
g0692P1 0.71109 i03535 0.72977
g0697P1 0.78623 i03537 0.73174
g0698P1 0.82122 i03557 0.78143
g0699P1 0.7425 i03558 0.75586
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Figure 6.8: Example of a Staiger neuron with a correction corresponding to 75%
shrinkage. After correction, the neuron is thicker than the reported section thickness
of 100 µm. However, it does not look like this neuron should be shrunk more. It is
highly probable that the section thickness was misreported. In addition, the solitary
process that extends off to the left, may have been ‘over traced,’ a common artifact
leading to tracings that extend beyond the section edge caused by over focusing.

Yuste

These data were not used due to problems with the z-axis coordinates (per-

sonal communication with Dr. Yuste).

Wearne Hof

These data reference Duan et al. (2002). The paper does not reference

shrinkage. Dr. Hof remarked there was little shrinkage: probably between 10 and

15%, 20% max (personal communication). Therefore, I did not perform any shrinkage

corrections on these neurons.
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Figure 6.9: Staiger neuron looks a bit diagnol in the section. This could be due to
tissue distortion artifacts.

6.3 Finding the principal standard deviations us-

ing principal components analysis (PCA)

Principal orthogonal axes along with the variance in the principal directions,

σ2
x, σ

2
y, and σ2

z were obtained using weighted principal components analysis (PCA).

PCA is a mathematical procedure that transforms a number of possibly correlated

variables into a smaller number of uncorrelated variables called principal components.

The first principal component accounts for as much of the variability in the data

as possible, and each succeeding component accounts for as much of the remaining

variability as possible. PCA was used because maximally independent axes are needed

in order to describe the adfs as Gaussians (the different dimensions of a Gaussian are

independent from one another). Otherwise, I could have used some other frame of

reference to orient the arbors such as the axis pointing directly toward the pial surface

as opposed to the principal axis pointing most toward the pial axis.
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PCA is achieved by finding the eigenvectors of the covariance matrix. In this

case the covariance matrix is weighted by the corresponding arbor segment weight.

Using matrix algebra, if X, Y, and Z are column vectors of the x, y, and z coordinates

of the segment centers, and W is a column vector of the segment weights (segment

lengths) then the covariance of x,y and z is:

Cov(x, y, z) = ([X, Y, Z]T [X, Y, Z]W )/
∑

wj (6.4)

The eigenvalues which correspond to the orthogonal variances were then found using

the Matlab function ‘eigs’.

In the case of the fish data, the principal components are calculated using

the same method except that there is no ‘Z’ component in equation 6.4.

6.3.1 Artifacts created by PCA

PCA is designed to find the the direction of the highest variance. Very rarely

are data perfectly symmetrical. Even if data are created using a Gaussian function,

usually the variance in orthogonal directions is not equal. In the case of neural arbors

this means that the standard deviations will very rarely be equal. In the case of the

fish retinal ganglion cells the smaller standard deviation is always defined as σx, and

the larger standard deviation is σy. Therefore when σx is plotted versus σy, the data

always lie on one side of the σx =σy unity line (Figure 2.1): the data never touch the

unity line. The maximum value of σx/σy=0.977.

In the case of cortical arbors the standard deviations are chosen in the

direction the matches the orientation of the neurons in the brain (see the section on

orienting the data below). σz is defined as the standard deviation pointing toward

the pial surface. Then, the remaining standard deviations are defined as σx, and

σy, where σx < σy. Because, σz is not always greater than or less than the other

values, and because PCA very rarely yields instances where the standard deviations

are exactly equal, there are planes void of data in the σx, σy, σz parameter space were

σx = σz, and σy = σz (Figure 3.10).
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6.4 Orienting the data

6.4.1 Fish retinal ganglion cell arbors

Retinal ganglion cells are flat, two-dimensional arbors that tile the front of

the retina. Therefore, they will only need two orthogonal standard deviations, σx, and

σy, to describe their adfs. There is no information by which to orient these standard

deviations, so, σy, was assigned to be the larger of the two standard deviations.

6.4.2 Cortical arbors

The cortical arbors are three dimensional arbors and therefore will have

three standard deviations to describe their adfs. So that information concerning the

orientation of the arbor within cortex is conserved, principal axes were assigned to

relevant directions within the brain. Information transfer seems to happen in two

relevant directions with in the cortex: within layer, and across layer. Finding the

principal axes and calculating the standard deviations along those axes was done

using PCA and is described in the previous section. After the principal axes were

found, the z-principal axis was assigned as the principal axis which projects through

the layers toward the pial surface. Note that in histology experiments the z-axis refers

to the axis which moves through the section if you are looking down on the section

through a microscope (Figure 6.10).

In general, sections are not mounted so that the pial surface is pointing in

a particular direction. The investigators usually cut the sections so that they view

the neurons from the side as opposed to looking down on them from the pial surface.

Therefore, usually the pial surface is somewhere in the xy-direction in the section

frame of reference. Because the exact direction of the pial surface is unknown, the

direction had to be inferred using various methods described below. When possible,

the process was automated; otherwise, it was done by eye and as such, was susceptible

to experimenter bias. At times, the assignment was difficult and there are bound to

be errors.
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For pyramidal cells where both an apical and basal dendrite were traced the

orientation process was automated. The reference axis used to assign principal arbor

axes was the line connecting the center of mass of the apical and basal arbors (For

an example see Figure 6.10). The principal axis with the smallest angle in reference

to this line was assigned to be the z-axis. That is to say, the axis which was most

parallel to the reference line was assigned to be the z-axis.

In some data sets it appeared that the the pial surface was always pointing

in a certain direction. For example, if all the pyramidal cells consistently point in one

direction then that direction can be used to orient the other cells in that data set. In

this case, when the arbor was not a pyramidal cell the standard deviation pointing

in the direction closest to parallel with the proposed axis was chosen as σz. This was

done for the Markram data. For the Markram data, in the cases where a neuron was

not a pyramidal cell with both the apical and basal dendrites present, the principal

axis most parallel to the [0,1,0] vector (in the section frame of reference) was chosen

for the z-axis.

In all other cases, I used visual guidance to determine which axis should

be assigned to the z-axis. Often, especially with neurons such as interneurons that

are largely spherical and do not provide any visual clue to their orientation, this

task was quite difficult and there are bound to be errors in the axes assignments.

However, in these instances, the variances in each direction are similar and thus largely

interchangeable. Therefore, these errors most likely will not significantly affect the

outcome of the study.

After the z-axis was assigned, the x and y principal axes were assigned to the

remaining axes and will describe the way in which an arbor samples or distributes

information over the neural map. Because no information is provided concerning

the orientation of the neurons within the cortical map (and I don’t know what a

meaningful orientation would be), just as with the fish, the x-axis was assigned as

the axis corresponding to the smaller of the two remaining standard deviations.
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Figure 6.10: Example of neuron orientation. A. Side view showing a pyramidal
cell within the section. B. View looking down on the section as you would though a
microscope. The black arrows at the bottom corners of the figure denote the cartesian
xyz-axis assignments used for histology (which differ from the axes assignments I used
in this study). The z-axis in the section frame of reference is defined to point toward
the top surface of the section and is the axis most susceptible to shrinkage. The
shapes in the center of the arbors in B are located at the center of mass of the arbor
and the extending lines represent the principal (which assumes orthogonal) standard
deviations of the spatial coordinates of the arbor segments. Magenta, cyan, and
black represents the largest, middle and smallest standard deviations respectively.
The blue line connects the center of masses of the apical and basal dendrites. In
this study the neurons were oriented to reflect their orientation within cortex. The
standard deviation which is most pointing toward the pial surface is assigned to
be the z-standard deviation, σz. Although the pial surface is usually in a direction
perpendicular to the xy-plane, the specific direction is unknown which makes orienting
the neurons difficult. In the situations where a neuron has both a apical arbor and
a basal arbor, the direction of the pial surface is taken to be in the direction of a
line connecting the center of masses of the apical and basal dendrites (blue line).
The principal axis found by PCA that is closest to parallel with this reference line
is assigned to be the z-axis in the principal axis frame of reference. There is no
information to orient the remaining tsswo principal standard deviations. Therefore,
the largest of the remaining standard deviations is assigned to be the y-standard
deviation, σy, and the smallest is the x-standard deviation, σx. In some cases there
were horizontal pyramidal cells. In these cases the standard deviations were assigned
in the appropriate directions.
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6.5 Arbor differentiation via Random ForestsTM

supervised learning

The Random ForestTM (RFTM) algorithm (Breiman, 2001a) was imple-

mented in Matlab (Jaiantilal, 2009). For a clear explanation of how RFTM work

please see Dr. Breiman and Dr. Cutler’s website (Breiman and Cutler, 2007). Briefly,

RFTM uses a sample of the data to grow many classification trees. Each tree is created

by randomly selecting N data points, with replacement, from the data set. If there

are M input variables (σx, σy, σz, and L in our case), a number m<<M is specified

so that at each branching point in the tree (called a node), m out of the M variables

are randomly chosen and the best split on these m variables is used to split the node.

The default m is the
√
M . Not all of the data will be used to create each tree. The

classification of each data point is achieved by putting each data point ‘down’ each

tree that it did not help create (and consequently there is no need for a ‘hold out’

test set). Each tree ‘votes’ for the class it thinks the data point belongs. Then de-

pending on what classification thresholds are set, each data point is assigned to a

class based on the tree voting. For example, if a majority wins threshold is set, if the

majority of the trees vote that a data point is in class 1, it will be assigned to class

1. Other thresholds may be desirable depending on a particular data set. I do not

have to choose thresholds because I use a method to calculate the AUC (a measure of

classification ability) which is independent of thresholds, as discussed in the following

section.

In order to find the best implementation of the algorithm we optimized two

parameters for each binary classification schema. The first, was how many parameters

(of the 4 fundamental parameters) we included in the algorithm. For example, if

all the information for classification was contained in just σx, then including more

superfluous variables could dilute the results. Conveniently, the algorithm will rank

the variables in order of importance for correct classification. Therefore, my strategy

for optimizing the number of parameters to include in the algorithm was to first
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rank the parameters in order of their importance for classification. This was achieved

by running the RFTM 100 times (using the default m=
√
M=2) and the variable

importance was in essence averaged over these 100 trials for each binary classification

schema.

Then in order to asses how many of the parameters should be used, I ran

the model in four cases. In the first case, only the most important parameter was

used. In the second case, the first and the second most important parameters were

used. This pattern was continued until all four parameters were included in the

algorithm. For example, in rank order of importance, the variables for differentiating

non-apical dendrites from apical dendrites are σz, L, σy, σx. For the first run of the

RFTM algorithm only σz was included, and the AUC was found to access classification

capability. During the second run both σz and L were included and again the AUC

was calculated. Then σz, L, and σy were used and then all of the parameters were

included. Because the algorithm has an element of randomness to it, the results vary

from run to run. Therefore in reality the algorithm was not run just once for each

added parameter but instead the algorithm was repeated 50 times with each added

parameter. The reported AUCs are the average of the AUCs found for each case.

The second optimization task is to assess how many variables, m, should be

used to split the nodes. It is reported that the algorithm may be sensitive to this

parameter (Breiman and Cutler, 2007). Because I do not have many parameters to

deal with, it is possible to test all potential values of m for each binary classification

schema and every included parameter case. Therefore, during each case where a pa-

rameter is added, all possible values of m were tried. If only one parameter was being

used in the algorithm it is only possible to split on one variable. If two parameters

are being used it is possible to split on one or two variables and so on and so forth.

In summary, the AUCs reported and ROCs graphed in the Results section are the

best found values for each binary classification schema from testing each parameter

case with each possible value of m, 50 times.
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6.6 Calculation of area under the receiver operator

characteristic (ROC)

Although it seems counter intuitive, the area under the ROC curve (AUC)

can be calculated independently of the ROC curve (Hand and Till, 2001). This is

very convenient as it eliminates the need for integration of the curve and the necessity

of having to pick a series of classification thresholds that will make the curve smooth.

This independent calculation utilizes all the data and therefore is the most accurate

method of calculating the AUC. Ling et al. (2003) provide an example of using this

method and also show that it is superior to using a percent correct classification

evaluation criteria. The AUC is calculated by the following equation:

AUC =
(
∑
ri)− n0(n0 + 1)/2

n0n1

(6.5)

Where n0 and n1 are the numbers of positive and negative examples respectively. ri

is the rank of the ith positive example in the ranked list.
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