Title
A novel association of an uncommon pigmentation pattern: coexistence of cutis tricolor with intracranial teratoma and holoprosencephaly

Permalink
https://escholarship.org/uc/item/2jq3s5x6

Journal
Dermatology Online Journal, 20(10)

Authors
Tekin, Burak
Yucelten, Ayse Deniz
Bayri, Yasar

Publication Date
2014

DOI
10.5070/D32010024234

Copyright Information
Copyright 2014 by the author(s). This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed
Case Report

A novel association of an uncommon pigmentation pattern: coexistence of cutis tricolor with intracranial teratoma and holoprosencephaly

Burak Tekin, MD1, Ayse Deniz Yucelten MD1, Yasar Bayri MD2

Dermatology Online Journal 20 (10): 3

1Department of Dermatology, 2Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey

Correspondence:

Burak Tekin
Güllübağlar Mahallesi Ankara Caddesi Durupark Sitesi A Blok Kat: 1, Daire: 10, Pendik, Istanbul, Turkey
Telephone: +905334223542
Fax: +902165970052
Email: burak.tekin@marmara.edu.tr

Abstract

Cutis tricolor was first described in a 17-year-old male patient by Happle et al. as a rare coexistence of circumscribed hyperpigmentation and hypopigmentation close to each other on a background of normally pigmented skin. Cutis tricolor has been reported as an isolated cutaneous finding or in various associations. To the best of our knowledge, cutis tricolor in association with teratoma and holoprosencephaly has not been reported in the literature. Herein, we report a male patient who presented with a teratoma and a combination of whorl-like hypopigmentation together with hyperpigmented patches adjacent to each other on intermediately pigmented skin. This case report supports the view that cutis tricolor may be a marker of an underlying neurological abnormality.

Keywords: cutis tricolor, holoprosencephaly, Ruggieri-Happle syndrome, teratoma

Introduction

Since the first description of cutis tricolor [1] there have been many isolated case reports about this peculiar combination of pigmentation, which is now believed to be a result of the "twin-spotting phenomenon" [1-5]. Nicita et al. emphasized in their article [5] that cutis tricolor is not a single entity. It has been reported in association with various abnormalities or as an isolated cutaneous finding (Table 1 [1-18]). Its coexistence with facial dysmorphism, neurological and behavioral abnormalities and skeletal dysplasia has been defined as Ruggieri–Happle syndrome [2-5]. We report a novel case of cutis tricolor without the dysmorphic features or skeletal abnormalities suggestive of this syndrome. The unique presentation of our case with teratoma and holoprosencephaly highlights the hypothesis that neurological abnormalities can accompany cutis tricolor even when the characteristic syndromic findings are absent.

Case synopsis

Our patient, now 6 years old, was born from non-consanguineous healthy parents after an uneventful pregnancy and a spontaneous delivery. Birth weight was 2400 g (< 3rd percentile) and birth length was 42 cm (< 3rd percentile). He had one healthy 7-year-old sister. At the age of 6 months, he presented with inability to sit with support and hold his head up. Cranial magnetic resonance imaging (MRI) revealed holoprosencephaly and a large mass in the frontal lobe. At the age of 1 year, the mass was surgically resected and the histopathology was consistent with teratoma. 6 months later, residual lesions were noted on cranial MRI. At the age of 2 years, the tumor was completely resected via a subfrontal approach (Figure 1). He had to be
hospitalized several times for severe hyponatremia related to diabetes insipidus, requiring treatment with vasopressin analogues. In addition, he was treated with phenobarbital and carbamazepine for epileptic seizures. During follow-up he was not able to catch up in developmental milestones. Psychomotor and language development were markedly delayed.

At the age of 3 years, he was consulted for peculiar skin pigmentation. On physical examination, hypopigmented macules occupying a large area on the abdomen were noted. On the anterior side, hypopigmented macules reached the subcostal region superiorly. On the right side, they extended from the abdomen to the back, following the lines of Blaschko. Hypopigmented lesions showed sharp midline demarcation on the posterior trunk. Surrounded by this area of hypopigmentation, there were three circumscribed block-like light brown patches on the right lower abdomen. Interspersed within these areas of hypo- and hyperpigmentation, areas of normally pigmented skin were also noted (Figure 2, 3). In addition, a 2x2 cm brown patch and two smaller hypochromic patches were present in a background of normally pigmented skin on the anterior thigh. These pigmentary features were present since birth and grew proportionately to the patient's size. No additional findings that might be suggestive of tuberous sclerosis or neurofibromatosis were found on physical examination.
The diagnosis of cutis tricolor was considered. The parents and sister did not have any similar pigmented abnormalities. No change was observed in the size and shape of the dermatological findings during the 3 year follow-up period, except for slight enlargement proportionate to the body size.

Discussion

Cutis tricolor is described as the coexistence of circumscribed hyperpigmentation and hypopigmentation in close proximity to each other on a background of normally pigmented skin [1-3]. The hypothesized genetic explanation is post-zygotic crossing-over ("twin-spotting phenomenon"), which gives rise to two different homozygous clones from a doubly heterozygous embryo during embryogenesis [5, 6, 12]. Cutis tricolor can appear in different phenotypes, which are explained by the timing of crossing-over and different types of didymosis.

Various neurological manifestations have been described in patients with cutis tricolor. In the largest case series (comprising 14 of the 30 published cases of cutis tricolor) [10] the frequency of neurological manifestations was found to be 71.4 %. In the same series neurological manifestations were found to accompany all cases (100 %) of syndromic cutis tricolor (i.e., Ruggieri-Happle syndrome), whereas no neurological abnormalities were found in cases with isolated skin manifestations. The most common neurological manifestations were found to be mild-to-severe mental retardation, language delay, epilepsy, behavioral disturbances and EEG abnormalities. No intracranial tumor was reported in this series [10].

Aside from this large series, other neurological findings were also reported (Table 1). The first case defined as cutis tricolor parvimaculata [13] presented with a large oligodendroglioma involving the left frontal lobe. In the two cases of cutis tricolor affected by the ring chromosome 15 syndrome, microcephaly was attributed to the underlying genetic disorder [14]. Similarly, neurological manifestations could be explained by ataxia-telangiectasia in the case report by Khumalo et al [17]. In a more recent case report [15] enlarging subcortical and periventricular mass lesions were found on cranial MRI of a 3-year-old girl with a disseminated presentation of cutis tricolor. The authors used further imaging techniques and concluded that these lesions suggested tumoral growth, but couldn't prove their diagnosis because they weren't able to biopsy the lesions owing to their location.

Our case did not have the dysmorphic features or skeletal abnormalities suggestive of Ruggieri-Happle syndrome. We could not say with certainty whether the neurodevelopmental anomaly (holoprosencephaly), seizures, psychomotor retardation, and delayed language development of our patient were related to an incomplete form of this syndrome or because of the teratoma and its complications. Because our case did not display the other manifestations of Ruggieri-Happle syndrome, we preferred not to categorize it under the syndromic cases (Table 1). Our patient is also different from the purely cutaneous cases, so a proper classification seems difficult. Like the authors, who reported the only proven association of cutis tricolor with an
intracranial tumor before our case [13], we also think that a causal relationship between the cutaneous presentation and the cerebral tumor is likely. This report further supports the view by Lionetti et al. [10] that cutis tricolor may be a marker of underlying neurological involvement. Patients with cutis tricolor should be closely followed-up for neurological abnormality and referred accordingly if there should be any sign or symptom suggesting neurological involvement.

Table 1. Characteristics of the published cases of cutis tricolor with reference numbers and years (based on the classification proposed in the references [5], [10] and [11]).

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Reference year</th>
<th>Age, gender</th>
<th>Associated anomalies</th>
<th>Distinguishing feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1997</td>
<td>17, m</td>
<td>Neurological findings: developmental delay, mental retardation, language delay, behavioral disturbances, seizures, muscular weakness, poor coordination, hypotonia, nystagmus, walking imbalance, EEG abnormalities, hearing defect [5, 10]</td>
<td>First published case</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>6, m</td>
<td>Neurological findings: developmental delay, mental retardation, language delay, behavioral disturbances, seizures, muscular weakness, poor coordination, hypotonia, nystagmus, walking imbalance, EEG abnormalities, hearing defect [5, 10]</td>
<td>Largest case series published to date</td>
</tr>
<tr>
<td>3</td>
<td>2003</td>
<td>11, f</td>
<td>Neurological findings: developmental delay, mental retardation, language delay, behavioral disturbances, seizures, muscular weakness, poor coordination, hypotonia, nystagmus, walking imbalance, EEG abnormalities, hearing defect [5, 10]</td>
<td>Largest case series published to date</td>
</tr>
<tr>
<td>10, 11</td>
<td>2010</td>
<td>10, f</td>
<td>Neurological findings: developmental delay, mental retardation, language delay, behavioral disturbances, seizures, muscular weakness, poor coordination, hypotonia, nystagmus, walking imbalance, EEG abnormalities, hearing defect [5, 10]</td>
<td>Largest case series published to date</td>
</tr>
<tr>
<td>11</td>
<td>2010</td>
<td>22, f</td>
<td>Neurological findings: developmental delay, mental retardation, language delay, behavioral disturbances, seizures, muscular weakness, poor coordination, hypotonia, nystagmus, walking imbalance, EEG abnormalities, hearing defect [5, 10]</td>
<td>Largest case series published to date</td>
</tr>
<tr>
<td>12</td>
<td>2013</td>
<td>13, f</td>
<td>Neurological findings: developmental delay, mental retardation, language delay, behavioral disturbances, seizures, muscular weakness, poor coordination, hypotonia, nystagmus, walking imbalance, EEG abnormalities, hearing defect [5, 10]</td>
<td>Largest case series published to date</td>
</tr>
<tr>
<td>14</td>
<td>2011</td>
<td>3, f 7 months</td>
<td>Neurological findings: developmental delay, dysembry formation, changes in cranial MRI (tumors?)</td>
<td>Both patients affected by ring chromosome 15 syndrome</td>
</tr>
<tr>
<td>15</td>
<td>2012</td>
<td>3, f</td>
<td>Neurological findings: developmental delay, dysembry formation, changes in cranial MRI (tumors?)</td>
<td>Both patients affected by ring chromosome 15 syndrome</td>
</tr>
<tr>
<td>16</td>
<td>1997</td>
<td>8, f</td>
<td>Neurological findings: developmental delay, dysembry formation, changes in cranial MRI (tumors?)</td>
<td>Both patients affected by ring chromosome 15 syndrome</td>
</tr>
<tr>
<td>17</td>
<td>2001</td>
<td>6, f</td>
<td>Neurological findings: developmental delay, dysembry formation, changes in cranial MRI (tumors?)</td>
<td>Both patients affected by ring chromosome 15 syndrome</td>
</tr>
<tr>
<td>18</td>
<td>2008</td>
<td>8, m</td>
<td>Neurological findings: developmental delay, dysembry formation, changes in cranial MRI (tumors?)</td>
<td>Both patients affected by ring chromosome 15 syndrome</td>
</tr>
</tbody>
</table>
1A complete list of extracutaneous features of Ruggieri-Happle syndrome is not intended. For a complete list please consult the references [5], [10], [11] and [12].

References

