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1. Introduction 

Travel constitutes an integral part of our daily life. Only by traveling are we able to 
engage in a variety of activities at different locations. Since the extension of our 
movement is restricted by the amount of time that is available and the speed with which 
we can move, it is important that our travel be efficiently organized such that the time 
resource can be best utilized to engage in activities in an efficient manner. One approach 
to achieving this is to choose less congested and faster routes. The use of in-vehicle 
advanced traveler information systems (ATIS) for this purpose has been extensively 
discussed in the ITS literature. 

Little attention has been directed, on the other hand, to achieving the same goal by 
developing efficient travel itineraries. This becomes important when a traveler visits a 
number of places in a tour. Examples include a delivery truck driver who is supposed to 
deliver goods to multiple locations, or a tourist who wishes to visit a number of attraction 
spots. In these cases the traveler is interested in not only the best route connecting 
successive locations for visit, but also the best sequence of visiting the locations. The 
problem, however, is an extremely complex one to solve, whose solution may often be 
not obvious to the traveler. The objective of this project is to develop a tool that can assist 
the traveler in developing an efficient itinerary in which multiple locations can be visited 
with a minimal waste. 

Also in the scope of this project is the development of an information system that will aid 
the traveler in using public transit in a complex tour in which multiple locations are 
visited. Underlying this is the beliefs that the availability of information affects the 
decision to use public transit in important manners, and that people will make complex 
tours by public transit if they are shown that it is possible and convenient to do so. 

These considerations led to the conception of the “Travel Planner,” a computer software 
which assists the traveler by proposing to h i d e r  efficient itineraries for visiting multiple 
locations using alternative travel modes. Given the set of locations the traveler wishes to 
visit and the constraints associated with the visits, the Travel Planner develops alternative 
itineraries for the visits interactively with the traveler, or, the user. The planner presents 
alternative itineraries, and the user indicates the Planner which itinerary is more 
preferable. The planner in turn takes the feedback from the user and updates its objective 
function to better reflect the user’s preferences. This process is iterated until a satisfactory 
itinerary is found. 

The development of the Travel Planner consists of two stages: first it is developed as a 
public kiosk, and then as a personal unit. The inputs to and outputs from the Planner are 
identical in both stages. The critical difference is whether the Planner has a memory or 
not. As a public kiosk, the Planner serves as a transportation guide for many anonymous 
users and it does not store information about each user’s preferences. It simply refreshes 
itself every time a user uses it. As a personal unit, on the other hand, the Planner serves as 
a transportation guide for a specific user and it therefore is able to store information about 
the user’s preferences or past history of travel. The Planner would learn and tend to 
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become smarter over time. In other words, the more the user uses it, the less time the 
Planner should take to identify an itinerary that satisfies the user. 

Using a combination of public transit, private modes of travel and walking might be more 
attractive and efficient for the traveler for visiting a series locations than using any one 
mode alone. For example, the traveler might drive to a park-and-ride facility to park the 
car and take the subway into the city to avoid traffic congestion, then visit several 
locations on foot. Or the traveler might take taxi to accomplish a time-critical task (e.g., 
to catch an express delivery service) and then walk back to the office. It is thus essential 
that the Travel Planner should take multi-modal itineraries into consideration while 
developing a desirable itinerary for the user. 

This is a first-phase report of the Planner project which reports on the development of a 
prototype Planner that has been developed. The prototype represents a first step of 
development which is based on a set of assumptions. The primary assumptions are: the 
Planner is a public kiosk; the private auto is not used; and all destination locations are 
uniquely specified by the user. This report provides an overview of the algorithms that are 
in the Planner, documents in detail how the prototype was developed and how it 
functions, reports on the design and results of initial user test, and points to future 
research directions. 

This report is organized as follows. Section 2 of the report provides an outline of the 
Travel Planner. Section 3 offers a literature review on the traveling salesman problem and 
proposes an alternative algorithm to be used in the Planner. Section 4 details the actual 
development of the Planner prototype, identifies existing problems and points out 
research directions in the next-stage of Planner development. Section 5 presents the 
experimental design and its results'. Code developed for the Planner is enclosed in 
Appendix. 

1 Note that Section 5 is not included in this draft report because the experiment is expected to be completed 
in December, 1997. This section will be included in the phase-1 final report which will be delivered at the 
end of December, 1997. 
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2. Travel Itinerary Planner: Outline of the Planner 

The Travel Planner is designed to construct a suitable itinerary to engage in a series of 
activities at different locations. It is a multi-modal planning package with both highway 
and transit data bases, and accounts for users’ preferences and constraints as it 
interactively builds an itinerary. Presented in this section is the outline of the Planner. 
Section 2.1 formally presents the Planner problem. Section 2.2 offers an overall picture of 
how the Planner works as a whole. Following this is a description of each of the main 
components: inputs, outputs and the Planner Executor, in Sections 2.3 and 2.4. The 
Planner Executor collects information on the user’s preferences, updates the preference 
weights, and assists the user in discovering the best compromise route. In Section 2.4, 
issues involved in itinerary building are discussed; the concept of “interactive 
programming,” which is the principal mechanism for itinerary development, is presented. 
Detailed descriptions of the algorithms used in Planner Executor are provided in Section 
4 of this report. 

2.1. Problem Formulation 

The Travel Planner is designed to construct an itinerary which is suitable for engaging in 
a series of activities at different locations. It is a multi-modal planning package with both 
highway and transit data bases, and accounts for users’ preferences and constraints as it 
interactively builds an itinerary. 

An itinerary here comprises a set of sequenced activity locations to visit, and trips which 
connect these locations. The duration of visit at a location is called sojourn duration. 
There are two classes of locations for visit. The first class includes locations that are 
specified as an exact geographical location by the address, cross-roads, or the name 
associated with the location (e.g., a landmark). Such a location is referred to as a hard 
location. The second class includes locations that are specified just as a class of 
opportunities for activities, such as “a grocery store.” A location in this class is referred to 
as a soft location. Given the set of locations to visit, an anticipated duration and a set of 
constraints associated with each visit, the Planner determines the sequence of the visits 
and finds best ways of traveling among the locations for visit. 

The following attributes of a trip are considered by the Planner. 

Auto Trip: route 
expected travel time 
travel distance 
departure time and expected arrival time 
specific features of the route (e.g., scenic route) 

Transit Trip: route (a transit line or lines) 
expected travel time 
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Taxi Trip: 

Walk Trip: 

Bicycle Trip: 

fare 
names of transit stops for initial boarding, transfer, and alighting 
number of transfers 
scheduled departure time or arrival time at each pertinent stop 
expected waiting time 
access and egress walking distance and time 
specific features of the trip 

expected travel time 
approximate fare 

travel distance 
expected travel time 

travel distance 
expected travel time 

Although it is desirable that an optimal itinerary be identified, difficulties may arise. 
Difficulties exist most probably in the process of identifying user preferences, and in 
computational requirements associated with itinerary optimization. The Planner therefore 
aims at building a suitable, rather than optimal, itinerary that is well acceptable by the 
user, while working interactively with the user in identifying hidher preferences and 
developing an itinerary. The user interface of the Planner includes components that 
facilitate the interaction with the user. 

Mathematically, the problem can be expressed as follows: 

Maximize f (b ,  x) 
Subject to gi(X) = 0, i = 1, 2, ..., n 

where 

p = an Mxl vector, (p 1 ,  p 2,  . . . , p M), where p i (i =1, . . . , M) is the 

n = number of constraints, and 
x = an Mxl vector, (XI, x2, , . ., XM), where Xj (i = 1, . .., M) is the j-th attribute of 

coefficient of the i-th attribute of an itinerary, 

an itinerary. 

Attributes of our interest include travel time, travel cost, number of transfers, waiting 
time, and walking time. No specific functional form is indicated by Eq. (1). 

The constraints, gl(x),  . . .,gn(x), represent timing constraints, duration constraints and 
sequencing constraints associated with the problem. For example, one of the most basic 
constraints is: the latest possible arrival time at current location is greater than or equal to 
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the earliest possible arrival time at the previous location, plus the minimum duration 
there, plus the travel time from there to the current location. 

Values of the elements of x are known to the Planner, but not those of ,8 , which 
represent the user's preferences. The Planner problem is not a simple optimization 
problem where one can set the first derivative equal to zero and calculate the values of 
decision variables at which the objective function is maximized. Instead, it is a 
combinatorial problem with unknown /3 . The difficulty is two-fold: (1) there is no 
procedure by which this combinatorial problem can be analytically solved, and (2) the 
coefficients of the objective function need to be identified as part of problem solving. The 
Planner therefore extracts information from user inputs to continuously update estimates 
of /3 , in a trial-and-error process. 

2.2. System Components 

The Planner consists of three stages: User Inputs, Planner Executor, and Outputs to the 
User. User Inputs include information from the user on locations to visit and constraints 
associated with the visits. The input information is then fed to the Planner Executor, 
which analyzes the input information, evaluates all possible itineraries, and computes 
preference scores using /3 . Two alternative itineraries with highest and second-highest 
preference scores are then selected by the Planner and presented to the user. This 
constitutes the outputs to the user. The user is asked to indicate which of the two 
itineraries he/she prefers more, and whether the preferred itinerary is satisfactory or not. If 
the user is not satisfied with either of the two, the Planner then updates the weights, ,8 , 
based on user's choice between the two itineraries, and evaluates all possible itineraries 
again using updated p . The process is repeated until the Planner finds an itinerary which 
is satisfactory to the user. Sections 2.3 to 2.4 describe each component in detail. 

2.3. User Inputs and Outputs 

As outlined above, the Planner, given the user inputs, evaluates all feasible itineraries and 
presents the user with two alternative itineraries to choose from. The user in turn tells the 
Planner which itinerary he/she prefers more, and the Planner updates the preference 
weights based on the response. Itinerary building evolves in this manner through the 
interaction between the user and the Planner. 

The final output of the Planner consists of the final and accepted itinerary presented in 
enough detail and specificity such that the user will be able to execute the itinerary 
without prior knowledge about the area. The contents and presentation format of the 
output will be presented in Section 4 of this report. 
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2.3.1. User Inputs 

The input from the user defines a specific itinerary development problem. In this section, 
the input variables are first defined. An outline of user interface to obtain these input 
variables is presented in Section 4. 

The user inputs to the Planner comprise: 

the initial and final location, 
the set of locations to be visited, 
anticipated duration of stay (sojourn duration) at each location, and constraints 
associated with the duration, 
constraints on the sequence of the visits, 
constraints associated with the timing of each visit, and 
available travel modes and preferences toward alternative modes. 

As noted earlier, there are two classes of locations for visit: hard locution and soft 
location. 

Constraints on the sequence of the visits refer to such constraints as “location A must be 
visited before location B,” or “location A must be the last location to visit.” There may be 
a lower or upper bound to the sojourn duration at a location, e.g., “must spend at least 30 
minutes’’ or “cannot stay more than 1 hour” at a location. 

Constraints associated with the timing of a visit refer to the time window or time 
windows associated with the visit, and are primarily determined by the nature of the 
activity pursued during the visit. For example, the activity may have to start by a certain 
time of day, or may have to be completed by a certain time of day. In general, the starting 
time and/or the ending time of an activity may be constrained to take place either before a 
time point, after a time point, or within a period. 

Activity Locution 

As defined above, the location of a visit is considered as hard if it is the only place where 
the activity can take place; the location of a visit is considered soft if it is one of a set of 
alternative locations where the activity can be pursued. 

The location of a visit, either hard or soft, is specified by the user by giving the exact 
address or cross-roads, or, in case of prominent locations such as landmarks, by the name 
commonly referred to by the local people. In case of hard locations, their exact 
geographical locations are to be provided by the user. Soft locations can be thought of as 
a set of opportunities such as grocery stores; the set of opportunities is generated by the 
Planner. 
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The Planner prototype that has been developed considers only 25 geographically-fixed 
hard locations. This is primarily to reduce coding complexities and computational 
requirements in the early stages of Planner development. The user selects locations for 
hidher visits from among the 25 potential locations. Selection is completed by 
manipulating a scroll bar presented to the user on the screen. The selection indicated by 
the user will be shown on a map on the screen after user inputs are completed. 

Timing of the Visit 

Timing constraints refer to the time windows associated with a visit. When the user 
wishes to arrive at the i-th location no earlier than ai and leave the location no later than 
bi , the time window of the visit is expressed as (ai, bi). Complexity of the timing 
constraints increases when the user wishes to arrive and leave the i-th location during 
certain intervals. In this case, the time windows can be expressed as ((c;, d;); (ei, j )); the 
arrival at, and the departure from, the i-th location can take place only during intervals of 
(ai ,bi) and (ei ,jJ, respectively. 

Only a single time window is considered in the Planner prototype. The user is asked if 
there is earliest arrival time or latest arrival time associated with each location he/she 
would like to visit. If the user responds with an “YES”, the Planner then solicits earliest 
and/or latest arrival times from the user. 

Duration of the Visit 

The duration of a visit at the i-th location may be subject to upper or/and lower bounds: 
(dli, &). For instance, the user may want to shop for no less than 10 minutes (dli), but no 
more than 2 hours (d,;). Note that (dli , d,i) is different from (ai, bi) or ((ci, di); (ei, j ) )  
described above; (dli, du i )  refers to time length, while the latter refers to the time of day. 

The Planner prototype only considers a single window as duration constraints. In other 
words, the user is asked to enter a minimum duration and a maximum duration at each 
location he/she wishes to visit. 

Sequence of the Visits 

Constraints on the sequence of visits arise when one of the following happens: (i) visit A 
must be made before or after visit B,  (ii) visit A must be the first or the last to be made, 
and (iii) there must be a certain number of visits to be made between visits A and B. Only 
the first type of sequence constraints is considered in the Planner prototype. 
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Mode Constraints 

Mode constraints may be static or dynamic. Static constraints refer to those that do not 
change over time. For example, the user may have no access to a mode; or the user does 
not consider taking a certain mode, even though it is available. These constraints can be 
specified at the outset of itinerary development. Dynamic constraints come into effect 
depending on various conditions that arise or vanish as an itinerary evolves. For example, 
if a trip is made outside the operating hours of public transit, then public transit is not 
available for the trip. Modal constraints may also lead to constraints on visits. For 
example, if the traveler parks a private automobile at a visit location, and travels to the 
next visit location on another mode (e.g., walk), the traveler must return to the former 
location to pick up the automobile. Stationary constraints are identified by the user, while 
dynamic constraints are identified and incorporated internally by the Planner. 

The modes incorporated into the Planner prototype include transit lines, cable cars, taxi, 
and walk. The automobile is not included in the prototype at this point primarily due to 
two reasons. Firstly, one of the principal objectives of developing the Planner is to 
provide better information on public transportation and encourage more transit use. A 
higher priority is therefore placed on public transit than on the private automobile in 
initial stages of Planner development. Secondly, it is not common in reality for the 
traveler to use both an automobile and public transportation for a series of trips. A 
prototype which does not incorporate the automobile is thus considered to be able to cater 
to transit users sufficiently. 

Beginning and Ending Points 

The user indicates when and where he/she wishes to start and end the entire tour. The 
only constraints associated with beginning and ending points are concerned with the 
timing of the visit. The user is asked to enter earliest and latest departure times from the 
beginning point, and earliest and latest arrival times at the ending point. 

2.3.2. Outputs to Users 

When the Planner generates an itinerary, it is shown on a map. There is also an “attribute 
button” shown on the screen. When the attribute button is clicked, an attribute window 
appears and contains information about the itinerary, such as travel time, travel cost, 
walking time, number of transfers, etc. 

Visualization of more than one alternative itinerary on a single map is not possible when 
itineraries share many routes (e.g., transit lines) in common. This happens when relatively 
simple street and transit networks are used for the prototype as simple networks offer a 
rather limited number of alternative routes between any two points. Consequently, 
although the attributes of two itineraries may not be identical, they may not produce any 
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discernible difference when presented visually on screen. In this case, the user will have 
to compare the two itineraries by comparing their attributes in the attribute window rather 
than visually on the map. 

2.4. Planner Executor 

The Planner Executor synthesizes user inputs; enumerates all possible itineraries and 
examines their feasibility against the user-provided constraints; presents alternative 
itineraries to the user and asks the user to rank them; and updates preference weights, ,8 , 
based on the user response. During the interactive decision making process, the Planner 
“learns” and updates the preference function to best represent the preference structure the 
user has. This process continues until the Planner discovers an itinerary that is acceptable 
to the user. The section presents the rationale that underlies two features of the Planner 
design that have already been discussed: (i) formulation of the problem as a multi-criteria 
optimization problem, and (ii) adoption of an interactive programming approach. Further 
discussions on interactive programming can be found in Section 3.6 of this report. 

Formulation of Planner Problem as a Multi-Criteria Optimization Problem 

There can be many criteria that may be adopted by the user when comparing and 
evaluating alternative itineraries. For example, the total travel time or monetary cost of 
travel associated with an itinerary may serve as such a criterion. When only one criterion 
is used in selecting a desired itinerary, the problem is the often encountered as a traveling 
salesman problem (TSP) which is formally defined in Section 3. In the course of 
designing the Planner, however, it was realized that more than one criterion is often used 
by the traveler. In the case of travel mode, a traveler often chooses travel mode while 
considering the trade-off between travel time and monetary cost. For example, the 
traveler may normally commute to work by bus because it takes longer but it is cheaper, 
but when he/she is late for an urgent meeting, he/she may choose to take a cab, which is 
faster but more expensive. Likewise, there are many criteria that a driver may adopt when 
choosing from among alternative routes, including: travel time, travel distance, fractions 
of roadways by class, number of left turns, number of traffic lights, esthetic aspects of the 
roadside, etc. 

One approach to incorporating multiple criteria into the Planner problem is to develop a 
generalized cost function in which all relevant criteria are weighted and combined to form 
a uni-dimensional indicator of the desirability of an itinerary. The problem, however, is 
that there has been no such cost function developed for itineraries that involve multiple 
stops. More importantly, it is unrealistic to assume that one generalized cost function is 
applicable to every traveler, or for every situation for a given traveler. For example, it is 
well established that the value of time varies from person to person depending on income 
and other factors, many of which are probably unobserved. The above example of the 
choice between bus and taxi suggests that the value of time of a given person varies from 
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occasion to occasion, depending on situational factors, which are again often unobserved. 
In case of our problem, the nature of the problem is much more complex because 
preferences toward activity sequencing, timing, and sojourn duration at different locations 
are introduced into the problem.’ 

Furthermore, we note that an individual as a decision maker may not even be aware of the 
criteria he/she uses in the decision making process. In general, the individual is not 
capable of expressing his preferences in quantitative terms. Yet he/she is often faced with 
a set of non-dominant alternatives, none of which is superior to the others in every aspect, 
and is forced to exercise complex trading off among the criteria to find a best 
compromise solution. Given 

(a) the multitude of factors that affect the desirability an alternative solution, 
(b) our limited ability in identifying and measuring all factors that affect an 

(c) heterogeneity across individuals in their preferences and decision making 

(d) variability in preferences and the decision making procedure even for a given 

individual’s decision making, 

procedures, and 

individual, 

the single criterion approach or the generalized cost approach is not necessarily a realistic 
option for our problem. 

Interactive Programming Approach 

We therefore adopt the interactive Multiple Objective Mathematical Programming 
(MOMP) procedures. MOMP procedures 

“attempt to generate a best compromise solution by progressive articulation of 
preferences of a decision maker facing multiple criteria with complex tradeoffs. 
.. . The motivation has come from the increasing recognition of the multi- 
objective nature of decision problems and has been enhanced by the increasing 
power and accessibility of computers. . . . the goal is to create a computationally 
efficient decision aid which puts the information provided to and solicited from 
the decision maker (DM) in a form that is easy to understand and provide.” 
(Aksoy et al., 1996) 

Because these features should be possessed by the Planner, it has been determined that 
the Planner should be developed as a MOMP procedure. Adopting the MOMP approach, 
however, does not imply an abandonment of TSP algorithms. In fact, the TSP algorithms 
are used as part of the Planner’s interactive solution procedure, which is outlined below: 

’ Preferences to these attributes are not incorporated in the Planner prototype. 
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1. Given a set of location to visit, an exhaustive search for an optimum solution is 
performed by generating the best feasible itinerary for each of all possible 
sequences based on the preference function. 

2. A set of solutions is selected from among those generated in the previous step, 
including the optimum solution, and presented to the user. 

3. The user is asked to choose the most desirable itinerary from the set presented 
to hidher. 

4. If the chosen itinerary is acceptable to the user, the procedure is terminated. 
Otherwise the preference function is updated based on the choice made by the 
user, according to the procedure described in Section 4.3 of this report, and 
Steps 1 through 4 are repeated. 

The Planner presents the user with an “optimum” itinerary according to the current 
preference function along with alternative solutions (e.g., the fastest itinerary and 
cheapest itinerary).2 The user’s preferences are measured interactively based on hidher 
choice of an alternative from among the set presented. Further discussions can be found 
in Section 4 of this report. 

2 In the prototype so far developed, a second-best solution is presented. 
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3. Planner Algorithms 

In this section, the traveling salesman problem (TSP) is formally presented (Section 3. l), 
and algorithms for this class of problem are reviewed (Section 3.2). The review includes 
both exact and approximate algorithms. These algorithms, however, do not incorporate 
types of constraints that are critically important in the Itinerary Planner problem. The 
purpose of the section is to describe the differences between the Planner problem and the 
TSP and to elaborate on reasons why TSP algorithms are not adequate for the Planner 
problem. In Section 3.3, the review turns to the literature pertinent to the constraining 
dimensions of the Travel Planner. The conclusion of the review on TSP algorithms 
follows in Section 3.4; the conclusion addresses the applicability of TSP algorithms to the 
Planner problem. In Section 3.5, the multiple-objective nature of the Planner problem is 
discussed. An alternative approach to the TSP algorithms: interactive programming 
method, is presented in Section 3.6. 

3.1. Traveling Salesman Problem 

If none of the constraints described in the previous section is present, and if all visits have 
hard locations, the Travel Planner problem can be thought of as a typical Traveling 
Salesman Problem (TSP). The TSP problem is defined as follows: 

Consider a graph (V,A), where V = {VI ,v2, ..., v,J is a vertex set, containing 
n vertices, two of which are special nodes of origin and destination and 
others represent locations to visit, and A = ((vil Vi): i f j ,  Vil vj E VI is 
an arc set. Each arc, (Vi, Vi), is associated with a nonnegative cost, denoted 
by co. The TSP problem can then be stated as follows: Given (V,A) and C 
= (cg/, find an optimal route from the origin to destination, covering every 
vertex in the network, with the least total cost. 

When co = c j i ,  the problem is symmetrical; when co f cji, the problem is asymmetrical. 
The review contained in this report only considers the asymmetrical problem; there is 
simply no symmetrical transportation network in real world. 

The discussion that follows provides a brief review of recent algorithmic developments 
for the TSP. This section, however, is not intended to be a survey which performs an 
exhaustive review of all the TSP algorithms developed so far; interested readers are 
referred to Laporte (1992, 1993), Lawler (1985) and Reinelt (199 1) for comprehensive 
reviews. Instead, this review focuses on those TSP algorithms that are relevant to the 
development of the Planner algorithm. 
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3.2. TSP Algorithms 

TSP algorithms can be classified into two categories: exact algorithms and approximate 
algorithms. Exact algorithms locate the optimal solution by exhaustive search of all 
possibilities, while the approximate algorithms avoid exhaustive search and attempt to 
find a solution which is within a certain proximity of the optimal solution. 

3.2.1. Exact Algorithms 

For the exact algorithm, the problem is formulated as a mathematical programming 
problem. 

(TSP1) 

where xi, is a binary variable, taking on the value of 1 if arc (vi,vj) is used in the 
optimal solution, and 0 otherwise; and S and S’ are partitions of V. 

Constraints (1) and (2) guarantee that every vertex is entered once and left once. The 
solution to TSPl should be a single tour covering all vertices in the network. Constraints 
(1) and (2) alone do not guarantee a single tour to be formed, however; in fact, more than 
one sub-tour, each containing less than n vertices, may be formed under constraints (1) 
and (2) alone. 

Formation of more than one sub-tours is prevented with constraint (3). Suppose S and S’ 
are mutually exclusive subsets of V, each of which contains less than n vertices, and 
suppose S’ and S together form V (S u S’ = V). Without constraint (3) ,  the solution to 
TSPl could be two separate paths connecting vertices within S and S’, respectively, but 
with no links connecting S and S’. 

The TSPl problem can not be solved analytically; it is a combinatorial optimization 
problem for which it is known that no analytical solutions exist. Hoffman and Wolfe 
(1985), described the nature of the problem as: 

“...we are trying to minimize total distance, so the problem is one of the 
optimization; but we can not immediately employ the methods of 
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differential calculus by setting derivatives to zero, because we are in a 
combinatorial situation: our choice is not over a continuum but over the 
set of all tours." Hoffman and Wolfe (1985). 

Hoffman and Wolfe (1985) noted that algorithms such as cutting planes, branch and 
bound, and dynamic programming have been used to find an exact optimal solution to 
TSP 1 .  In addition, a great number of algorithms have been developed. One of the notable 
developments is by Miller and Pekny (1991). The argument that Miller and Pekny made 
was that arcs with high cd are far less likely to be considered in the optimal tour compared 
to those with low cd. Thus, without contaminating the optimal solution, the size of the 
problem can be reduced by removing those arcs with high cg. Based on this logic, arcs 
with cq greater than a threshold value h were initially removed from consideration. Miller 
and Pekny constructed a dual problem to the primal problem of TSPl above; they 
demonstrated that under certain conditions involving h, the optimal solution to the dual 
problem are equivalent to that to the primal problem where no h is involved. Thus, 
whenever these conditions are met, the optimal solution is found with a reduced-sized 
dual problem. If the conditions are not met, the value of h is increased; a new network 
with updated vertices and arcs are constructed. The conditions for obtaining the optimal 
solution to the dual problem are checked again. This process is applied repeatedly until 
the conditions for the equivalence between the dual and primal solutions are met. 

Exact algorithms which involve exhaustive search of all possibilities are limited to 
problems with a relatively small number of vertices and, usually, with few constraints. 
Exact algorithms also require longer computing time compared to approximate 
algorithms which are described below. 

3.2.2. Approximate Algorithms 

Laporte (1993) classified heuristic algorithms into two categories: tour construction 
procedures which incorporate vertices step by step into a solution, and tour improvement 
procedures which first generate a feasible but not optimal solution and then improve the 
solution by repeatedly removing and adding vertices into the solution. Laporte (1993) 
noted that the best approach would be composite procedures which basically combine the 
tour construction and improvement procedures. 

Potvin (1993) noted that the most successful composite procedures that have been 
developed included CCAO heuristics, GENIUS, and Lin-Kernighan procedures. These 
procedures have achieved heuristic solutions within about 2% of the optimality. 
Interested readers are referred to Golden et al. (1985), Gendreau et -al. (1992), and 
Johnson (1990) for these procedures. 
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3.3. TSP with Constraints 

The formulation defined in TSPl above stands as a theoretical problem in the sense that 
there is no real-world problem as simple as TSPl . Real-world applications are formulated 
as variations of TSP1, with constraints unique to the situation. For instance, in a delivery 
problem, customers may impose some temporal constraints that delivery can be done only 
during certain periods of the day. This instance involves timing constraints. Another 
example may involve order constraints. When more than one emergency call comes in, 
the dispatcher will prioritize them and send an emergency response team in a descending 
order of the degree of emergency. 

Some constraints are considered in both TSP and the Planner problem. Discussed in this 
section are those constraints pertinent to the Planner problem. Applying exact algorithms 
to problems with constraints is straightforward; therefore, the discussion of this section is 
most relevant to approximate algorithms. 

3.3.1. Temporal Constraints 

Temporal constraints here refer to the timing of a visit. As noted earlier, there are two 
types of constraints regarding the timing of a visit: the arrival time at, and the departure 
time from, a location may be constrained by an earliest (or latest) possible arrival time 
and a latest (or earliest) possible departure time; the arrival and departure times may be 
constrained by two intervals (i.e., an arrival and departure can be made only during 
specific time intervals, respectively); or combinations of these. 

The first type of constraint, the visit to a location is constrained by a single time window, 
has been studied in the TSP area and are directly applicable to the Planner problem. The 
definition of the problem is essentially the same as TSP1, except that each vertex, v;, is 
associated with a time window (ai, bJ, where ai is the earliest starting time for the visit 
and bi is latest ending time for it. In the second type of constraints, the visit to a location 
is constrained by two time windows, where both arrival and departure can only be made 
within a certain time interval. In most of the problems formulated, an arrival before an 
earliest arrival time is allowed, but one has to wait. Thus, the objective of the problem is 
the minimization of not only the total travel time, but also the waiting time. 

Both exact algorithms and approximate algorithms have been developed for the TSP with 
time windows. As Gendreau et al. (1995) noted, exact algorithms suffer from the 
relatively small size of the problems they can handle (e.g., up to 100 vertices) and 
requirements for tight time windows for good performance. As an alternative to exact 
algorithms, heuristic searches have been developed to solve TSPs with time windows. For 
a survey on the algorithms for TSPs with time windows, the reader is referred to Solomon 
& Desrosiers (1988). 
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One of the successful methods developed is called “generalized insertion heuristics” 
procedure (Gendreau, 1995). In plain words, the procedure consists of two steps: (1) 
construction of a feasible itinerary from the origin to the destination, covering all vertices 
in the network, and ( 2 )  apply the post-optimization procedure. The post-optimization 
procedure starts with removing the vertex immediately after the origin and re-inserting it 
at every possible place in the itinerary (see Gendreau, et. al, 1992, for detailed description 
of this algorithm). Whenever insertion is possible, the objective function is evaluated. If 
the objective function is improved with the insertion, the new itinerary is accepted; 
otherwise, it is discarded. Post-optimization procedure is repeated until it passes all 
vertices except origin and destination and no further improvements can be made. 

The research in TSP algorithms with time windows has so far considered only one type of 
temporal constraints: a single time window representing the earliest arrival time and the 
latest departure time from a location of visit. This type of constraint is considered in the 
Planner. As noted earlier, the Planner in addition considers situations where the arrival at, 
and the departure from, a location are constrained by two time windows. Although no 
TSP studies have, to the authors’ knowledge, directly researched this type of constraint, 
the algorithms developed for TSP with single time window can probably be modified and 
applied to this problem. 

3.3.2. Duration Constraints 

As discussed in Section 2.3.1, the user may place constraints on the duration of the visit 
to a location. The constraint on the duration of the visit can be expressed by an interval: 
(dli,&), where dli is the minimum duration and dui is the maximum duration of the visit to 
location i. When dli = dui, the duration of the visit to location i is fixed; when dli e dui, it is 
flexible. No approximate algorithms, to the authors’ knowledge, have been developed to 
solve the TSP problem with constraints on the duration of the visit. It is not difficult, 
though, to check against duration constraints in exact algorithms as long as the required 
computing time is not excessive. 

3.3.3. Order Constraints 

In some of the network and distribution problems for which TSP algorithms have been 
developed, the sequence of visits is considered as one of the constraints. For instance, in 
repair job problems, there may be certain types of repair jobs requiring higher priority 
than other types; similar issues arise in emergency vehicle dispatching. These problems 
are termed as “clustered traveling salesman problems,’’ where vertices (or, say, 
customers) are assigned to clusters (VO,VI ,..., Vm) , where Vo contains a single vertex for 
the origin. Visits to clusters must be made in the order of 0, 1, ..., rn. 

Though both the Planner problem and the clustered TSP consider sequence constraints, 
differences exist. Firstly, in the Planner problem, not every vertex (location to visit) is 
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assigned a prior order of visit. In other words, the order constraints in the Planner 
problem are not as restrictive as those in the clustered TSP. Consequently, the set for 
alternative itineraries is larger for the Planner problem than for the clustered TSP in 
which the same number of visits is considered. Secondly, clustered TSP algorithms 
require an order of visits to be specified before their execution. This may create 
difficulties for the Planner problem because the user may not always be aware of order 
requirements inherent in the set of visits. Clustered TSP algorithms would therefore 
require some revision to address order requirements for the Planner problem. 

3.4. Applicability of Existing TSP Algorithms 

All TSP algorithms, exact or approximate, are designed to achieve a sole objective: given 
a set of locations to visit in a network and a travel timekost matrix associated with the 
network, find the optimal route with a minimum travel time or cost. A unique optimal 
solution usually exists when only one objective is considered. However, this is not 
exactly the case in the Travel Planner problem, where there exist more than one criterion 
which are often conflicting with each other. 

Even if there were one single objective to be achieved in the Planner, existing TSP 
algorithms do not seem to be suitable for immediate application to the Planner problem 
for several reasons. First is the multi-dimensionality of the constraints in the Planner 
problem. Most of the TSP algorithms reviewed here consider one-dimensional 
constraints; for instance, either time windows or a priori orders of visits, but not both. 
Secondly, there are constraints (such as the duration of a visit) that are considered by the 
Planner, but that have not yet been extensively studied in TSP. To tackle the type of 
problem addressed by the Planner, alternative methodologies other than conventional TSP 
algorithms must be developed that can provide the user with a solution that is feasible and 
as close to the optimal solution. The methods adopted by the Planner is summarized in 
Section 3.6 of this report. 

3.5. Multiple-Objective Programming Problem 

Multiple-objective programming problems are the ones in which there are more than one 
criterion used to evaluate the desirability of each alternative solution. If a firm pursues 
just to maximize its profit, then it is a single-objective problem; if a firm pursues to 
maximize its profit and to provide the best possible working environment for its 
employees, then it is a multiple-objective problem. As noted earlier, the traveler may 
consider travel time, cost, number of transfers, etc. when choosing from among a set of 
itineraries. Therefore, the problem of this project, i.e., selecting the most desirable 
itinerary for visiting a set of activity opportunities under a certain set of constraints, is a 
multiple-objective problem. 
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For problems involving multiple objectives which are often conflicting with each other, a 
dominant solution’ often does not exist. Instead, a set of non-dominant solutions exists. 
The objective for the Planner, then, is to aid its user in finding the most desirable 
compromise solution. Without input from the user, however, the Planner is not able to 
distinguish the value (to the user) of one solution from that of another in the non- 
dominant solution set. The Planner must solicit preference information from the user, 
identify the preference structure the user has, and find that solution which maximizes the 
user’s preference function. One approach which facilitates this is termed “Interactive 
Programming Method.” The interactive programming method proposed for the Planner is 
described in the rest of this Section. 

3.6. Interactive Programming Method 

Three issues are discussed in this section. Firstly, what programming approach should the 
Planner adopt?; in other words, in what way should the Planner build the itinerary for the 
user? Secondly, what method is to be used by the Planner to select an optimal one from a 
set of solutions? Lastly, what method is to be used by the Planner to update the weights 
that represent the user’s preferences to respective attributes of the itinerary? 

3.6.1. Interactive Programming Approach 

The interactive programming approach adopted by the Planner takes on the following 
form: the Planner presents alternative itineraries to the user, who in turn indicates which 
itinerary is most desirable; the Planner updates the user’s preference function based on 
the indicated choice, and generates another set of alternative itineraries. Thus the 
preference function, or say the objective function, is interactively adjusted in the process 
of searching for an optimal itinerary. 

Two interactive approaches can be adopted for itinerary development: “itinerary 
construction” and “itinerary improvement.” In the itinerary construction approach, the 
Planner constructs an itinerary incrementally by specifying a trip connecting two locations 
to visit, one by one with user input. In the itinerary improvement approach, the Planner 
generates an initial feasible itinerary and improves it through interaction with the user. 
These two approaches have both advantages and disadvantages. 

The itinerary construction approach assumes that if the user is satisfied with each segment 
of the itinerary connecting two consecutive locations to visit, given the portion of the 
itinerary developed so far, then he/she is also satisfied with the entire itinerary. With this 
approach, the user takes an active role (e.g., deciding which mode to take and which 
location to visit next) and is burdened with more tasks while instructing the Planner to 
find a suitable itinerary. Probably more importantly, the final itinerary connecting all 

A “dominant solution” is a solution (in this case an itinerary) which is superior to other solutions with 
respect to every one of the objectives under consideration. 
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locations to visit could very well be optimal in its parts, but not at all optimal as a whole. 
In particular, the optimal itinerary would be precluded in this approach in the event where 
segments selected in earlier stages of itinerary development are not identical with those in 
the optimal itinerary. 

The itinerary improvement approach, on the other hand, prevents those locally but not 
globally optimal itineraries to be selected, if the algorithm performs exhaustive search of 
all relevant itineraries. Because the size of the problems anticipated for the Planner is 
relatively small in terms of the number of locations to be visited, performing an 
exhaustive search is not impractical. Yet, whether such a solution can be reached through 
interaction with the user is not certain because, for one thing, the user may not be 
consistent in revealing their preferences. If this in fact is the case, then the notion of 
“optimal” solution is meaningless: at the end of the programming process, the user will 
have an acceptable solution; whether this is optimal or not cannot be determined unless 
user preferences can be unambiguously identified. 

Another dimension which needs to be introduced into the analytical scope here is the cost 
of searching for better solutions. It is inconceivable that a user would go through 
hundreds of iterations to locate the “optimal” solution as the cost of this search process 
would not be justifiable to the user. Furthermore, the “optimal” solution may not be 
discernibly different from nearby sub-optimal solutions. The interactive programming 
procedure must be efficient in the sense that it can locate an acceptable, hopefully near- 
optimal, solution within a number of iterations that a typical user is willing to perform. 
Clearly the emphasis must be on presenting an acceptable solution, or a set of alternative 
solutions, to the user, but not locating the optimal solution. 

With the consideration above, the approach adopted by the Planner is itinerary 
improvement approach. In other words, the Planner selects the entire itinerary and 
improves it as a whole. 

3.6.2. Selecting the Best Itinerary 

In making a choice from a set of alternatives, different users may adopt different 
strategies to eliminate inferior ones, compare promising ones, and select the most 
satisfactory itinerary. Evaluation methods directly relate to how the Planner updates 
user’s preference function. Alternative approaches to selecting a solution are first 
discussed in this section, followed by a description of the approach adopted by the 
Planner. 

Preference function 

It is assumed that in evaluating alternative itineraries, the user uses an implicit preference 
function whose variables are various attributes of the itinerary, including travel time, 
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travel cost, walking time, number of transfers, etc. The itinerary the user is most satisfied 
with has the best combination of attribute values and the largest value of the preference 
function. The preference function may be expressed as: 

where 

x = {xI ,x2 ,  ... , x.}, representing arguments of the preference function, and 
,b’= {,b I , , ~ z ,  . . . ,Fn}  ’, representing the weights of the respective arguments. 

The tasks to be performed by the Planner with respect to the preference function are two- 
fold: it must first estimate values of p efficiently, then find an itinerary, or a set of 
itineraries, which offer acceptable values of y using the updated values of p . 

Concordance Analysis 

Concordance analysis is one approach to rank-ordering alternative solutions. According 
to Jankowski (1995) 

“the concordance analysis determines the ranking of alternatives by means of 
pairwise comparison of alternatives. The comparison is based on calculating the 
concordance measure which represents the degree of dominance of alternative i 
over alternative i’ for all the criteria for which i is equal or better than i’, and the 
discordance measure which represents the degree of dominance of alternative i’ 
over alternative i for all the criteria for which i’ is better than i.” 

Calculation of concordance and discordance measures are carried out on each pair of 
alternatives and a final score is then calculated for every alternative. Selection of a best 
alternative is based upon the final score. Procedure of calculating concordance and 
discordance measures can be found in Nijkamp and van Delft (1977) and Nijkamp et al. 
(1990). 

Ideal Point 

With the ideal point approach, the user is asked to locate the ideal solution in a p -  
dimensional criteria space, i.e., the user specifies the ideal value for each single criteria. 
Then the distance between the ideal solution and each alternative is evaluated. A best 
alternative is identified as the one with the shortest distance from the ideal solution. 

In the Planner problem, the ideal travel time, travel cost, etc., may be reasonably assumed 
to be 0. The user may have specific desirable values for other variables, e.g., the starting 
time of an activity, or the sequence of two activities. The ideal point approach appears to 

Y 
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be very effective for the latter variables. Whether the Planner can identify weights 
associated with the p criteria in a practical manner remains as a problem. 

Non-compensatory approach 

The non-compensatory approach assumes that when the value of a certain criterion falls 
below a trade-off range, it cannot be compensated for by superior values of other 
variables. Thus, the alternative is inferior and should be eliminated from the solution set. 
With this approach, the user is asked to specify a trade-off range and rank the importance 
of each criterion. This information is then used to select the best alternative for the user. 

The Approach Adopted in the Study 

The preference function approach is adopted in this effort to develop a Planner prototype. 
The primary reason is its practicality, not so much with the evaluation of the desirability 
of each alternative itinerary, but more with the measurement of the user’s preferences. 

3.6.3. Updating the Weights 

The use of a preference function requires the Planner to first estimate the weights and 
then select the one with the highest value. Many alternative methods exist that can be 
used by the Planner to solicit preference information from the user. In this section, 
alternative methods that may be used to solicit users’ preference information are first 
discussed. This is followed by a discussion on what is adopted by the Planner. 

One method is to ask the user for trade-off ratios directly. For example, we may ask the 
user: how much more he/she is willing to pay to decrease the travel time by 10 minutes 
(this approach is called “contingency valuation method”). This willingness-to-pay 
information can be used by the Planner to establish the rate of substitution between travel 
time and monetary cost, which can be used in the search for a better itinerary with an 
optimal balance between travel time and cost. 

Alternatively, one may adopt a formal measurement methodology, such as conjoint 
measurement. In this method, combinations of values of selected attributes (e.g., travel 
time and travel cost) are presented to the user based on an experimental design. The 
responses obtained from the user are used to construct a preference function that offers 
the combined utility of, in this case, travel time and travel cost. 

The third way to obtain preference information is the family of methodologies used in the 
analysis of discrete choice data, in particular, stated-preference data. For example, the 
Planner may generate a set of alternative itineraries and ask the user to rank-order them. 
Or it may present a set of itineraries and ask the user which itinerary hehhe prefers the 
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most. This exercise is repeated as needed to establish a preference function for each user. 
There are well established statistical methods to analyze data thus obtained and to 
establish preference functions. 

Preference weights associated with respective attributes of the itinerary are not 
observable; users themselves probably do not recognize their preferences as weights. 
Thus, it is a daunting task for the user if he/she were asked to specify trade-off ratios 
between attributes. The second and third methods described above, though doable, are not 
practical in that they both require a substantial amount of repeated exercise for the user to 
obtain a set of updated weights. 

A simple and yet efficient scheme to update users’ preferences is devised and adopted in 
this study. Using initial weights established from previous mode choice studies in the Bay 
Area, the Planner first selects two alternatives with the highest and second-highest values. 
Then, the Planner asks the user to select the one they would prefer. The Planner compares 
value of each attribute between these two alternatives. The Planner doubles the 
coefficient if its attribute value of the preferred route is less than that for the other route 
and halves the coefficient if its attribute value of the preferred route is greater than that 
for the other route. 

This procedure is repeated with a new set of itineraries selected with a new set of weights. 
This approach is adopted because (i) it does not require extensive inputs from the user to 
establish a preference function, and (ii) the preference function is refined interactively 
when the user continue to search for better itineraries; thus more refined preference 
valuations will be adopted for those users who are willing to search extensively for a 
better itinerary. Further discussions on preference updating can be found in Section 4.3. 
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4. Planner Prototype Development 

This section is devoted to the documentation of the development of the Planner prototype. 
Assumptions adopted in the development are laid out in Section 4.1. As described in 
Section 2 of this report, the Planner prototype consists of three major parts: user inputs, 
outputs to the user, and the Planner Executor which updates user’s preference function. 
User inputs and outputs are described in Section 4.2 while Planner Executor is presented 
in Section 4.3. In Section 4.4, problems are identified in the prototype development and 
research directions are pointed out in the next stage of the development. Documentation 
of the coding for both the transit network and the Planner Executor is presented in 
Sections 4.5 and 4.6. 

4.1. Assumptions 

As the effort of this project represents the initial development of the Planner prototype, a 
number of assumptions are introduced to create a working prototype for future 
development. These assumptions concern mainly with the complexity of the transit 
network in the prototype and the flexibility of use provided to the user. 

The transit network used in the prototype is a simplified version of the network in 
downtown San Francisco. The network consists of five MUNI lines, one cable-car line, 
plus streets for taxi and walking which provide access to various attraction points. A 
simple transit network has allowed us to produce a prototype in a timely manner. The 
prototype yet provides a means for us to probe into some general research questions. For 
example, suppose there exists such an itinerary planner in the market. How much will 
people be willing to pay to use it? What is the nature of the market for such a device? 
What features of the Planner do users value? Will it in fact encourage transit use? The 
prototype developed here will be refined and used to address some of these questions. 

User’s flexibility is rather restricted in the Planner prototype developed thus far. Potential 
locations for visit are restricted to a set of 25 specific locations. The restriction was 
imposed mainly due to concerns with computational time and programming requirements. 
Allowing the user to choose visit locations without restriction on a map would mean that 
the Planner will first have to identify attributes of trips (e.g., travel time and travel cost) 
made to and from each location to other visit locations. This would require extensive 
multi-modal minimum path search before conducting any optimization. With the imposed 
restriction, network data can be pre-possessed and computational requirements can be 
thus reduced. It is anticipated that that this restriction can be removed in the next stage of 
development with efficient algorithms and computer code. 

Another assumption is that all visit locations are hard locations. This assumption has been 
introduced to simplify coding and to reduce data requirements. Travel modes are 
restricted in the prototype to exclude the automobile. The modes included are: bus 
(MUNI), cable car, taxi and walk. Including the private automobile in multi-modal 
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contexts implies an additional constraint that the automobile parked must be fetched 
some time later. The choice of parking location is another dimension that needs to be 
incorporated while considering the trade-off between parking cost and walking distance. 
Due to added complexity in algorithm development and coding, it was decided not to 
include the automobile in this initial prototype. 

4.2. User-Interface 

This section consists of two parts: input variables collected from the user by the Planner, 
and output variables presented to the user by the Planner. User interface for preference 
updating will be reported separately. 

4.2.1. User Inputs 

The Planner prompts the user to input the set of variables described in Section 4 of this 
report. These variables are essential for the search of desirable itineraries. It is proposed 
that the variables are inputted with the following sequence: 

Beginning location 
Attributes of a visit (repeated as necessary) 

Location 
Timing constraints 
Duration constraints 

Sequencing constraints 
Ending location 

In the rest of this section, the input format for geographic location is first discussed. 
Following this is the discussion of each item in the above list. 

Geographical Location 

As noted earlier, a location can be specified by the user by giving: 

exact street address, 
cross-roads, or 
landmark name. 

As noted earlier, only hard locations are included in this phase of the study. The exact 
street address is most precise, but the user may not always know it. Specifying a location 
in terms of cross-roads (i.e., nearest intersection) is less precise, but in many cases would 
guarantee adequate levels of geographical proximity. It is anticipated that users can tell 
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the nearest intersection in terms of the cross-roads even when they cannot tell the precise 
street address. 

For certain locations such as landmarks, their names will uniquely specify their exact 
locations (e.g., “Coit Tower” in San Francisco). In the gray area are such expressions as 
“Safeway on Covell Street.” Whether the Planner can determine the location based on 
such expressions depends on the quality of its database. In addition, there is a potential 
problem that such an expression does not uniquely identify a location because there may 
be more than one “Safeway on Covell Street.” The Planner should be soliciting more 
information from the user when the user input does not uniquely identify a location. 

A location may be input by typing its address, cross-roads or name through the keyboard, 
or pointing the location on the map displayed on screen. The latter option is feasible only 
when the user can tell the location on the map. But if the user knows where it is, then 
clicking on the map or touching the screen to pinpoint the location may be easiest and 
fastest. In case a street name or landmark name is input through the keyboard, the user 
interface is adopted in which possible alternative names are displayed in full as the user 
types first letters of the location name. This scheme has been adopted in some in-vehicle 
navigation systems or spell checkers in word processing software packages. 

In the prototype of this study, only a limited number of potential visit locations are 
considered. In the prototype, therefore, the user is asked to select a list of locations to visit 
using a scroll bar. 

In the rest of this section, an outline of the user interface for the input variables is 
presented. 

Phase 1 Prototype Implementation: 

Beginning Location 

The Planner presents the user a window which lists all 25 potential locations to visit. 
These 25 locations scatter around downtown San Francisco and its adjoining areas. These 
25 locations are shown on the map as well. The user is instructed to select a location with 
a scroll bar. 

PLANNER> “Please select one as your origin.” 

Beginning location also concerns timing constraint. More specifically the Planner also 
asks the user to identify the earliest and latest possible departure times if any. Timing 
constraints are described as follows. 
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Timing Constraints 

PLANNER> 

PLANNER> 

PLANNER> 

PLANNER> 

PLANNER> 

PLANNER> 

PLANNER> 

PLANNER> 

"Do you need to leave this location before a certain time?" 

(if "Yes") "Select the hour before which you must leave this location" 

"Select AM or PM" 

"Select the minutes before which you must leave this location" 

"Do you need leave this location after a certain time?" 

(if "Yes") "Select the hour after which you must leave this location" 

"Select AM or PM" 

Select the minutes after which you must leave this location 

Attribute of a Visit: Location 

PLANNER> "Please select one of the following: (1) select another location to visit, (2) 
select the terminal point." 

The Planner presents the user with the window containing location names. Based on the 
answer to the above question, the user is asked to select another location to visit or a 
destination as the terminal point of the itinerary. 

Duration Constraints 

PLANNER> "At least how many minutes do you plan to spend at this location?" 

PLANNER> 'I At most how many minutes do you plan to spend at this location?" 

Sequencing Constraints 

PLANNER> "Do you have to visit this location before visiting another location?" 

PLANNER> (If "Yes") Must visit the location the user just selected before visiting: 

The window with destination locations is then presented to the user; the user shall select 
one location from the window as the one he/she must visit after visiting the current 
location. The list of the other locations for potential visit must be appropriately defined 
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based on the past user input. For example, if the user has indicated that Location B must 
be visited before Location A, then, Location A must be eliminated from the list of other 
locations, when locations that must be visited after Location B are asked. 

Ending location 

This segment is reached when the user indicate to "select the terminal point" earlier in 
response to the first prompt for location selection. 

PLANNER> "Please select one as your destination point." 

The Planner presents the user with window in which all 25 locations are identified. The 
user is asked to select one from the list as hidher destination point. 

Timing constraints may be associated with the ending location as well. The Planner 
therefore asks the user to indicate the earliest and latest arrival times at the ending 
location, using the format for timing constraints described above. 

4.2.2. Outputs to the User 

Outputs to the user are essentially two maps. As noted earlier, the Planner identifies two 
routes and displays them on the two maps. In each map, a route is identified, linking all 
locations to visit. A switch button is provided on screen such that the user can switch 
between the two maps and compare the two routes selected by the Planner. 

The two routes are highlighted in red and yellow and are labeled. If the route is made by 
transit, it is labeled with route names such as "MUNI 42"; if the route is made by taxi 
alone or walk alone, the route is highlighted on a map on which major streets are labeled. 
The Planner prototype does not supply detailed written directions for the user as the 
output; it, however, lists the sequence of visits from origin to destination on the side of 
the map. 

In the current prototype the stop name where the user can transfer from one transit line to 
another is not displayed on screen. This capability, however, is being developed and will 
surely be available in the next stage of the development. 

Figures 4.1 and Figure 4.2 show sample routes produced by the Planner. In this case, the 
user chose six locations to visit, including the origin and destination. The Planner's first 
choice is shown in Figure 4.1; the tour is made by walk and the total walk time is 203 
minutes. The second choice is shown in Figure 4.2; the tour is made by a combination of 
transit and walk. The attributes of this itinerary can be accessed by clicking the button 
with a label of "A". The attributes of this itinerary are as follows: travel cost of $5 ,  transit 
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travel time of 1 1  minutes, total wait time of 5 minutes, a total walk time of 119 minutes 
and two transfers. The order of the visits is shown at the side in legend. 

Figure 4.1: A Sample Itinerary Selected by the Planner 
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Figure 4.2: An Alternative Sample Itinerary Selected by the Planner 

4.3. Planner Executor 

Once the user inputs are completed, the Planner evaluates each possible sequence and 
identifies feasible ones. Based on the preference function, the Planner then evaluates each 
feasible sequence and selects the two with highest and second-highest values. Feasibility 
check consists of two tasks: timing and duration constraints as well as sequence 
constraints. Timing and duration constraints imply that for any two consecutive locations 
in a sequence, the latest arrival time at the current location must be greater than or equal 
to the sum of the earliest departure time at previous location and the travel time from 
previous location to the current location and the minimum duration at the previous 
location. Sequence constraints imply that a feasible sequence must satisfy the order 
specified by the user. 

Feasibility check results in a set in which every sequence is feasible. Evaluation of each 
feasible sequence against the preference function is the next step. Since three modes 
(transit combined with walk, taxi alone, and walk alone) are considered in the Planner 
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prototype, the Planner evaluates 3xn! sequences, where n is the number of locations to 
visit excluding the origin and destination. Seven variables are considered in the value 
function including travel cost, transit travel time, waiting time, walk time, number of 
transfers, cable-car travel time, and taxi travel time. For the mode of transit combined 
with walk, all seven variables may have positive values except taxi travel time; for the 
mode of taxi alone, only travel cost and taxi travel time have positive values; for the 
mode of walk alone, only walk time has a positive value. 

The Planner starts its evaluation of alternative itineraries with initial weights for the 
attributes in the preference function, and selects those two itineraries with the highest and 
second-highest values. The initial weighs are established in previous travel mode choice 
studies in the San Francisco Bay Area. If the user is not satisfied with either itinerary, the 
Planner updates the weights to better represent the user’s preferences. Obviously some 
algorithm must be devised for updating preference weights. It is considered efficient if the 
devised algorithms can converge to the true values quickly; it is considered reliable if the 
devised algorithms can converge at the same vector starting from different initial values. 

As briefly mentioned in Section 3 of this report, the basic idea of the preference updating 
procedure is as follows: increase the value of the weight when the attribute value of the 
preferred itinerary (as indicated by the user) is less than that of the other itinerary, and 
decrease the weight when the attribute value of the preferred itinerary is greater than that 
of the other. How much the weight should be increased or decreased, however, remains to 
be determined through a trial-and-error process. 

Suppose that the user is not satisfied with the itineraries presented, say, the ones shown in 
Figures 4.1 and 4.2. The user is then asked to choose a more preferable one between the 
two. Suppose the user has chosen the one in Figure 4.2. The Planner then updates the 
weights and presents another two itineraries to the user. These two updated itineraries are 
shown in Figures 4.3 and 4.4. In this example, weights are either doubled or halved 
depending on the comparison of the two itineraries. Both updated itineraries involve taxi 
as the only travel mode. Itinerary 1 (in Figure 4.3) has a cost of $26.01 and a travel time 
of 13 minutes while itinerary 2 has a cost of $3 1 and a travel time of 14 minutes. 
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Figure 4.3: An Updated Itinerary Selected by the User 
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found that different weights result in different solutions obtained by the Planner algorithm 
for updating the preference weights. 

Several approaches can be taken to remedy the problem in the next stage of Planner 
development. In terms of dominating sequences or modes, the Planner should identify a 
dominant choice if it exists, inform the user of the choice, and terminate the search 
procedure. Additionally, sensitivity analysis should also be conducted to identify lower 
and upper bounds of each preference coefficient within which the utility ranking will not 
change, given that other preference coefficients are fixed. The results can be conveyed to 
the user by the Planner to suggest that some preference coefficients should be updated 
dramatically. In terms of initial weights, some conjoint measurement may be performed 
such that an appropriate set of initial weights can be identified and used for a particular 
user. 

In addition to the remedies mentioned above, we will also propose a more complex 
network than the current one to be used in the next stage development. Users will not be 
restricted to choose locations to visit from a fixed set of 25 hard locations. Instead, users 
are free to choose any locations by either entering the address or landmarks or clicking on 
the map. 

4.5. Documentation - Map Display 

The Travel Planner considers three modes in its trip planning: taxi alone, walk alone, and 
transit combined with walk, To calculate the best compromise route for the user, the 
Planner must utilize a network on which the calculation can be based. The modes of taxi 
alone and walk alone use a street map as its network while transit uses a transit network. 
It is therefore necessary that at least three themes must be prepared to facilitate the 
operation in the Planner. These three themes include: 1) a theme of attraction points 
containing 25 locations for users to visit, 2) a theme of street map, and 3) a theme of 
transit network. The documentation as follows describes each theme in turn. 

A Theme of Attraction Points 

The very first task of coding a theme of attraction points was to select 25 locations in the 
map of downtown San Francisco. The number of locations was limited to 25 in order to 
simplify the preliminary development. In the process of selection, it is desired that these 
twenty-five locations cover the entire downtown area without being too close to each 
other to confuse the user. In addition, these 25 locations were chosen without regard to 
actual transit routes in order to make sure that there would be both locations that would 
be relatively difficult for a traveler to plan a route to and ones that would be relatively 
easy. Once the 25 locations were chosen, each of them was labeled with a fictional name 
to signify what type of location they were. These included such places as shopping malls, 



Section 4 4-12 

restaurants, and movie theaters. Along with their labels, these locations are highlighted 
on the display by a blue circle with a diameter larger than street or transit route widths. 

A Theme of Street Map 

For our base layer, we used a pre-coded map of downtown San Francisco, which came 
with the Arcview’. This map contains every street in the downtown and its adjoining 
areas. Each street segment (i.e., between every intersection) is coded with attribute data 
including the length of the segment, the name of the street, and the direction(s) traffic is 
allowed to travel on that segment, The streets are categorized as being “highway”, 
“major street”, or “minor street’’ and can be differentiated as such on the map. 

A Theme of Transit Network 

A network covering both transit lines and walk paths is then created and overlays the 
street map theme. The first task is to select appropriate transit lines to be included in the 
Planner. Various transit lines in the San Francisco area follow identical routes in the 
downtown sector, even though they may deviate once they leave the downtown area. In 
such cases, only one route was chosen to avoid redundancy. Some of the other routes 
included in the network just traverse through or loop around the downtown area and 
never leave the Planner area. There are five MUNI bus lines plus one cable car line 
included in the Planner. BART subway trains are not included since no one is likely to 
use BART and still remain in the downtown area. 

Once appropriate transit lines are selected, they need to be geo-coded into the Planner. 
The coding went beyond just laying down a series of crisscrossing transit lines. The 
difficulty lies in how to represent transfer cost in the map. When a transfer (from one bus 
to another) occurs, there is a cost in both time and perceived hassle to the traveler. To 
make sure that the user has to spend an average amount of time waiting for a bus to come, 
transfer segments are created throughout the network. 

Transit lines were laid down using a mouse cursor in ArcView on the transit “theme.” 
Transit line segments closely followed the streets on the street map theme. These transit 
line segments connected ‘bus stops’ to one another. The information attached to each 
theme’s attribute table included the name of the transit line, what its two endpoints were, 
and whether it was one-way or both ways. Travel time on the segment was determined by 
the length of the segment in miles divided by the average speed for that particular transit 
line. The average speed was calculated using the official transit schedules. 

The bus stops are stops where a traveler might transfer between transit lines or where he 
or she might get off or on to walk to or from one of the 25 locations. Adjoining segments 

’ ArcView is a GIS program developed by ESRI. 
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of the same transit line are “snapped” together with a computer tool so that computer will 
view the transit line as one continuous line with different points at which a traveler may 
leave the line. 

The point where two transit lines cross is not viewed by the computer as a bus stop since 
the transit lines are set up as an “overpass.” It is set up as “overpass” such that the 
Planner will not be able to select a route that changes transit lines at this point; this 
corresponds to the idea that the user must get off at a bus stop to transfer. Instead, very 
near to an intersection of two transit lines, two transfer lines are put in and they are 
snapped to both lines and are programmed to not create an overpass. These transfer lines 
are inserted so close to the actual intersection that a single bus stop is considered to be at 
the intersection; the computer however has to route the traveler along a transfer line in 
order to change transit lines. The transfer lines are one-way and are programmed with a 
waiting time of half the average daytime headway time of the transit route to which they 
are going. 

For instance, assume that the mean headway time of Route A is 12 minutes and that of 
Route B is 15 minutes. The transfer line of Route A to Route B (which may, scaled on 
the map, correspond to only a matter of centimeters) would have a travel time of 7.5 
minutes, which is called the waiting time. Transferring the other way would have a 
waiting time of 6 minutes. A traveler going along Route A would near the physical 
intersection of Routes A and B. When this traveler reaches the point where the transfer 
line exits Route A he or she is diverted to that transfer segment which has a waiting time 
of 7.5 minutes. The actual user of the planner would be given instructions to get off at 
this bus stop and then wait a projected 7.5 minutes for the Route B bus to arrive. If going 
the other way the computer would send the traveler along the other one-way transfer 
segment. 

Creating these transfer lines divides the original transit lines into smaller segments. With 
several lines all meeting at a certain intersection, transfer lines might mean that a single 
block of a transit line is made up of a dozen individual line segments. This poses no 
difficulty for the computer however, which treats it all as one line segment with different 
entrance/exit points. 

The walk lines are coded to connect the 25 locations with the transit lines. They are two- 
way lines and go from each of the 25 points to the nearest access point of the closest 
transit lines. The total travel time for a walk segment is determined by dividing the length 
of that segment by its speed (1.5 miles per hour in our study) and is called the walking 
time. If more than one transit line is close enough to a point for walking to be at all 
feasible, then there will be multiple walking routes to that point which will are snapped 
together at their terminuses. This allows a traveler to walk from one transit line to a 
location and then walk back to a different transit line if it improves their overall route. 
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4.6. Documentation - Planner Executor 

Written in C lwguage, the Planner Executor performs the following tasks: 

1) Conduct exhaustive search of all possible sequences given a set of 
locations to visit, 

2) Conduct feasibility check of all possible sequences constraints 
supplied by the user, and 

3) Apply initial weights for the essential arguments (e.g., travel time and 
travel cost) in the utility function and select two routes with highest 
and second-highest utility, and iv) update weights in the utility 
function and re-select optimal routes. 

The Planner Executor includes two main programs: CODl.CPP and COD2.CPP as well 
two subroutines 0PT.CPP and ALLSEQ.CPP. These programs are documented below. 
Codes of these four programs are provided in Appendix. 

Name: COD1.CPP 

Tasks: 
0 Receive the input data from ARCVIEW component, 
0 Re-organize data structure 
0 Conduct exhaustive search of all possible activity location 

0 Conduct feasibility check of possible using the constraints, 
sequences, and 

optimization. 

Input files: COST.DAT: the transportation network attribute data. Variables 
include: origin, destination, meter, miles, cost($), transit travel 
time(minutes), wait time(minutes), walk time(minutes), number of 
transfers, and cable car travel time(minutes). 
INPUT.DAT: user’s input file. Variables include: address, earliest 
arrival time(hr), latest arrival time(hr), minimum duration(min.), 
maximum duration(min.). 
SEO.DAT: user’s input file. Variables include: current location, 
the location before which current location must be visited. 
TOTAL.DAT: the total number of the activity locations without 
including the origin and the destination locations. 

Output file: OPT OUT.TEMP000: the best and the second-best routes devised 
by the Planner. Output information include: location sequence, 
cost($), transit travel time(minutes), wait time(minutes), walk 
time(minutes), number of transfers, cable car travel time(minutes). 
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F SEO.TEMP000: the temporary file including all feasible 
sequences and the total number of the feasible sequences. 

Name: COD2.CPP 

Tasks: 
Update weights for the argument in the utility function 

Select two routes with highest and second-highest utility. 
according to user’s preference and 

Input files: COST.DAT: the transportation network attribute data. Variables 
include: origin, destination, meter, miles, cost($), transit travel 
time(minutes), wait time(minutes), walk time(minutes), number of 
transfers, cable car travel time(minutes). 
F SEO.TEMP000: the temporary file obtained from COD1 .CPP 
including all feasible sequences. 
USERPREFER.TEMP000: user’s input indicating which route 
he/she prefers. This input is used by the Planner to update the 
weights of various arguments in the utility function. 
- OPT-ROUTE-1 ST-2ND.TEMP000: the temporary file including 
the previous optimal and secondary optimal routes. 

Output file: OPT OUT.TEMP000: the best and second-best routes devised by 
the Planner. Variables include: location sequence cost($), transit 
travel time(minutes), wait time(minutes), walk time(minutes), 
number of transfers, cable car travel time(minutes). 

Name: 0ET.CPP (subroutine) 

Tasks: 
Compute the two routes with highest and second-highest values 
of the value function among all feasible sequences. 

Name: ALLSEQ.CPP (subroutine) 

Tasks: 
Calculate all possible sequences 
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5. Conclusion 

The Planner prototype developed so far is one of the first itinerary planners that incorporate 
multiple destinations, multiple objectives, timing and sequencing constraints, and multiple 
modes of travel. It is also one of the first itinerary planners that bring the user into the decision 
making process and employ a user preference function. 

In the study the concept of the Itinerary Planner was developed, appropriate algorithms identified 
and implemented, and user interface developed. In particular, an interactive programming 
approach is adopted to measure the user’s preferences in the course of itinerary development such 
that the function used to evaluate each itinerary will best represent the user’s preferences. 

Despite the novel features, the developed Planner is still in its prototype stage and unavoidably 
exhibits many limitations. The ideas and algorithms that have been implemented in the Planner 
prototype need to be tested and refined. The user-interface needs to be improved such that the 
user is free to indicate any locations on the map; the transit network needs to be made more 
complex and closer to reality; and the algorithms used to update the function that represents the 
user’s preferences need to be further tested and refined. Despite the limitations that are typical of 
an information system that is based on a new concept, the project has points to the potential the 
Planner has in making travelers’ movement more efficient and encouraging transit use by 
showing travelers how public transit can be used in complex tours. 
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Code - codl.cpp 

I" Filename: cod 1 .c 

Author: Jiayu Chen 

Date Created 10-05-97 

Date Updated 1 1 - 15-97 

Purpose: 

Input: 

output: 

Variables: 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <string.h> 

#include <sys/types.h> 

#include <math.h> 

#define ROWS 41000 

#define COLS 8 

#include "allseq.cpp" 

#include "opt.cpp" 

float cost[25][25][11], u[ROWS]; 

unsigned char p[ROWSl[COLS], transit_fseq[ROWSI[COLS+2], taxi_fseq[ROWS][COLS+2], 
walk-fseq[ROWS][COLS+2]; 

int number, transit-n-seq, taxi-n-seq, walk-n-seq; 

void main() 

{ 

unsigned char s[COLS+2], input[50][5]; 

char line[255]; 

FILE "fpl, *fp2, *fp3, *fp4, *fptemp, "fptransitfseq, *fptaxifseq, "fpwaikfseq, "fpweight; 

int seq[1001[21; 

int i, j ,  k, kk, m, row, flagl, flag2; 
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int node 1, node2; 

int  j l ,  j2, j3, j4, j5, j6; 

int route-lst, route_2nd, first-route-mode, second-route-mode; 

float a[71, total-cost; 

float f l ,  M, f3, f4, f5, f6, f7, f8, f9, f10, f l l ;  

I* input operation ...* I 
printf("open files ... h"); 

fpl = fopen("input.dat", "rt"); 

fp2 = fopen("cost.dat", "rt"); 

fp3 = fopen("seq.dat", "rt"); 

fp4 = fopen("total.dat", "rt"); 

fpweight = fopen("weight.dat", "wt"); 

fptemp = fopen("opt-out.tempOOO", "wt"); 

fptransitfseq = fopen("tansitf-seq.tempOO", "wt"); 

fptaxifseq = fopen("taxif-seq.tempOOO", "wt"); 

fpwalkfseq = fopen("walkf-seq.temp000", "wt"); 

printf("Reading ... \n"); 

row = 0; 

while (fgets(line, 255, fpl) != NULL) { 

if (line[O] != W') { 

sscanf(line, "%d,%d,%d,%d,%d", &j l,&j2,&j3,&j4,&j5); 

input[row][O] = j 1; 

input[row][ 11 = j2; 

input[row][2] = j3; 

input[row][3] = j4; 

input[row][4] = j5; 

row++; 

1 
1 

while (fgets(line, 255, fp2) != NULL) { 

if (liner01 != W') ( 

sscanf(line, "%d,%d,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f', 
&i,&j,&fl,&f2,&f3,&f4,&f5,&f6,&f7,&f8,&f9,&flO,&fll); 

cost[i]~][Ol = f l ;  
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cost[i]Q][l] = f2; 

cost[i]G][2] = f3; 
cost[i]b][3] = f4; 

cost[i]G][4] = f5; 

cost[i]u][5] = f6; 

cost[i]Q][6] = f7; 

cost[i]G][7] = f8; 

cost[i]b][8] = i 9 ;  

cost[i]fi][9] = f10; 

cost[i]fi][lO] = f l l ;  

I 
1 

while (fgets(line, 255, fp4) != NULL) ( 

if (line[O] != #') sscanf(line, "%d\n", &number); 

1 

I* seq[O][O] = origin, seq[number+l][O] = destination */ 

row = 0; 

while (fgets(line, 255, fp3) != NZTLL) ( 

if (line[O] != W') ( 

sscanf(line, "%d,%d", &j I ,  &j2); 

seq[row][O] = j 1 ; 

seq[row][l] = j2; 

row++; 

I 
I 

printf("reading donebb"); 

I* generate all possible sequences of n-locations *I 

allseq(number); 

printf("seq done\n\n"); 

I* feasibility check: check sequence and time constraints *I 

m =  1; 

for ( j = 1; j < (number+l); j++) m *= j; 
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transit-n-seq = 0; 

taxi-n-seq = 0; 

walk-n-seq = 0; 

A-4 

I* feasibility check */ 

for (i = 0; i < m; i++) ( 

/* check if seq p[i] is satisfying for seq.dat -- sequence constraint*/ 

s[O] = input[O][O]; 

for (j = 1; j < (number+l); j++) sb] = input[p[i]lj-l]][O]; 

s[number+l] = input[number+l][O]; 

flagl = 1; 

for (j 1 = 0; j 1 < (number+l); j I++) { 

if (seqlj I][ 11 < 50) { 

j 5  = 0; 

j6 = 0; 

for 62 = 0; j2  (number+l); j2++) { 

if (slj21 == seqlj 1][0]) j5 = j2; 

if (sfj21 == seqfj 1][ 11) j6  = j2; 

} 

if05 > j6) { 

flagl = 0; 

break; 

1 
1 

I 

/* check the time constraint of transit-travel mode */ 

if (flagl == 1) { 

flag2 = 1; 

for (j = 0; j c (number+l); j++) { 

for (k = 0; k < number+l ; k++) { 

if (input[k][O] == SUI) ( 

f l  = input[k][ 11; 
earlest arrival time *I  

/* 

f2 = (float) (input[k][3]/60.0>;/* min. duration */ 

break; 
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f3 = cost[s~]][s~+l]][3]; I* transit travel time */ 

f4 = cost[s~]][s~+l]][7]; I* cable travel time */ 

f5 = cost[sfi]][s~+l]][4]; I* waiting time *I 

f6 = cost[s~]][s~+l]][5]; /* walking time */ 

f 7 = f l + Q + B + f 4 + f 5 + f 6 ;  

for (k = 0; k < number+l; k+-t) ( 

if (input[k][O] == sG+l]) { 

f8 = input[k][2]; I* latest arrival time *I 

break, 

1 

printf("%d,%d\n",sfi], sti+l]); 

printf("earlistT,tmin 
dur.,transitT,~abletravT,waitingT,walkingT,summmary,latestT\n"); 

printf("%f,%f,%f,%f,%f,%f,%f,%f\n",fl,f2,f3,f4,f5,f6,f7,f8); 
*/ 

if (((int) f8 != 0) && (fl > f8)) { 
flag2 = 0; 

break; 

I* 

/" 

if (flag2 == 1) ( 

for 05 = 0; j5 < (number+l); j5++) { 

transit_fseq[transit-n-seq]LjS] = sG5]; 

printf("%d,", sU51); *I 

1 
transit-fseqrtransit-n-seq][number+l] = s[number+l]; 

printf("%d\n\n\n", s[number+l]); *I 

transit-n-seq++; 

1 
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I* check the time constraint of taxi-travel mode */ 

if (flag1 == 1) ( 

flag2 = 1; 

for 6 = 0; j c (number+l); j++) ( 

for (k = 0; k e number+l; k++) ( 

if (input[k][O] == sQ]) { 

f l  = input[k][l]; 1" 
earlest arrival time *I 

f2 = (float) (input[k][3]/60.0);/* min. duration *I 

break: 

1 
1 

f3 = cost[s J-j]][sfi+l ]][9]; /* taxi travel time *I 

f 7 = f l + f 2 + f 3 ;  

for (k = 0; k c nurnber+l; k++) { 

if (input[k][O] == sG+l]) { 

f8 = input[k][2]; /* latest arrival time */ 

break; 

1 
1 

I* 

printf("%d,%db",sb], su+l I); 
printf("earlistT,tmin dur.,taxiT,summmary,latestT\n"); 

printf("%f,%f,%f,%f,%f\n",fl,f2,f3,fl,f8); 

if (((int) f8 != 0) && (f7 > f8)) { 
flag2 = 0; 

break; 

I 
I 

if (flag2 == 1) ( 
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/* 

/* 

for (is = 0; j5 < (number+l); j5++) ( 

taxi_fseq[taxi_n_seq]b5] = slj51; 

printf("%d,", stis]); */ 
1 
taxi-fseq[taxi-n-seq][number+l] = s[number+l]; 

printf("%d\n\n\n", s[number+l]); */ 

taxi-n-seq++; 

/* check the time constraint of walk-travel mode */ 

if (flag1 == 1) ( 

flag2 = 1; 

for (i = 0; j < (number+l); j++) { 

for (k = 0; k < number+l ; k++) ( 
if (input[k][O] == sfi]) ( 

f l  = input[k][l]; /* 
earlest arrival time *I 

f2 = (float) (input[k][3]/60.0);/* min. duration */ 

break; 

} 

1 

f3 = cost[s~]][s~+l]][lO]; /* walk travel time */ 

f f = f l + f 2 + f 3 ;  

for (k = 0; k < number+l ; k++) ( 

if (input[k][O] == slj+l]) ( 

f8 = input[k][2]; /* latest arrival time */ 

break; 

1 
1 

printf("%d,%d\n",sfi], slj+l]); 

printf("earlistT,trnin dur.,walkT,summmary,latestT\n"); 
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" I  

I* 

I* 

printf("%f,%f,%f,%f,%f\n",fl ,f2,f3,f7,fS); 

if (((int) fX != 0) && (f7 > fs)) ( 

flag2 = 0; 

break; 

1 
1 

if (flag2 == 1) ( 

for (is = 0; j5 < (number+l); jS++) { 

walk-fseq[walk-n-seq]fi5] = stis]; 

printf("%d,", sfi5l); */ 

1 
walk-fseq[walk-n-seq][number+l] = s[nurnber+l]; 

printf("%d\n\n\n", s[nurnber+l]); */ 

walk-n-seq++; 

1 

/* save the tarnsit feasible sequences as file transitf-seq.temp000 *I 

printf("Nurnber of transit feasiable sequences: %d\n", transit-n-seq); 

if (transit-n-seq == 0) printf("No trasit feasiable sequence."); 

for (k=O; k < transit-n-seq; k++) { 

for ( j5  = 0; j5 < (number+l); j5++) printf("%d,",transit-fseq[k]G5]); 

printf("%d\n", transit-fseq[k][number+l]); 

I 
printf("\n"); 

fprintf(fptransitfseq, "%d\n", transit-n-seq); 

for (j = 0; j < transit-n-seq; j++) ( 

for (k = 0; k < nurnber+l; k++) fprintf (fptransitfseq, "%d\n", transit-fseqlj][k]); 

fprintf(fptransitfseq, "%d\n", transit-fseqlj][number+l]); 

1 
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/* save the taxi feasible sequences as file taxif-seq.temp000 */ 

printf("Number of taxi feasiable sequences: %dW, taxi-n-seq); 

if (taxi-n-seq == 0) printf("No taxi feasiable sequence."); 

for (k=O; k < taxi-n-seq; k++) { 

for 6.5 = 0; j5  < (number-tl); jS++) printf("%d,",taxi-fseq[k]lj51); 

printf("%d\n", taxi-fseq[k][number+l]); 

1 
printf("\n"); 

fprintf(fptaxifseq, "%d\n", taxi-n-seq); 

for 6 = 0; j < taxi-n-seq; j++) { 

for (k = 0; k < number+l; k++) fprintf (fptaxifseq, "%d\n", taxi-fseqlj][k]); 

fprintf(fptaxifseq, "%d\n", taxi_fseqfi][number+l]); 

I 

/* save the walk feasible sequences as file walkf-seq.temp000 */ 

printf("Number of walk feasiable sequences: %d\n", walk-n-seq); 

if (walk-n-seq == 0) printf("No walk feasiable sequence."); 

for (k=O; k < walk-n-seq; k++) { 

for (35 = 0; j5 < (number+]); j5++) printf("%d,",waIk_fseq[k]~5]); 

printf("%d\n", walk-fseq[k][number+1]); 

1 
printf("\n"); 

fprintf(fpwalkfseq, "%d\n", walk-n-seq); 

for (j = 0; j < walk-n-seq; j++) { 

for (k = 0; k < number+l; k++) fprintf (fpwalkfseq, "%d\n", walk-fseqlj][k]); 

fprintf(fpwalkfseq, "%d\n", walk-fseqlj][number+l]); 

} 

I* set and save initial weights of the objective function: */ 

a[O] = (float) (0.36); /* cost weight 

a[ I ]  = (float) (0.0189); /* transit-travel time weight *I 

a[2] = (float) (0.0458); /* waiting time weight *I 

a[3] = (float) (0.0121); I* walking time weight *I 

a[4] = (float) (0.0093); /* transfer number weight *I 

a[5] = (float) (0.0120); I* cable-travel time weigh *I 
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a[6] = (float) (0.0463); /* taxi-travel time weight *I 

fprintf(fpweight, "#Weights of the objective function:\n"); 

for (k = 0; k < 6; k++) fprintf (fpweight, "%f,", a[k]); 

fprintf (fpweight, "%f', a[6]); 

I* initial optimization */ 

opt(&a[O], &route-lst, &routeZnd, &first-route-mode, &second-route-mode); 

I* output the optimization results to ArcView user interface */ 

/* output the total and term cost of the 1 st optimized route */ 

total-cost = (float) (0); 

f l  = (float) (0); /* cost argument 

f2 = (float) (0); I* transit-travel time argument */ 

f3 = (float) (0); /* waiting time argument */ 

f4 = (float) (0); /* walking time argument */ 

f5 = (float) (0); /* transfer number argument 

f6 = (float) (0); /* cable-travel time argument */ 

f7 = (float) (0); /* taxi-travel time argument */ 

*/ 

*/ 

if (first-route-mode == 1) { 

for (j = 0; j < number+l; j++) { 

node1 = transit-fseq[route-lstllj]; 

node2 = transit-fseq[route-lst]lj+l]; 

fl  = f l  + cost[nodel][node2][2]; 

f2 = f2 + cost[nodel][node2][3]; 

f3 = f3 + cost[nodel][node2][4]; 

f4 = f4 + cost[nodel][node2][5]; 

f5 = f5 + cost[nodel][node2][6]; 

f6 = f6 + cost[nodel][node2][7]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6; 

printf("The travel mode with the minimum cost: %d\n", first-route-mode); 

printf("The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d ", transit-fseq[route-lst][k]); 
printf("%d\n", transit-fseq[route-lst][number+l]); 
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p~~~~f~"~~~S~~~~~~~~cost($),transit~traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

printf("%f\t%At%f%f\t%fk%f\n", f l ,  f2, f3, f4, f5, f6); 

printf("The minimum total cost:\n"); 

printf("%i\n\n", total-cost); 

fprintf(fptemp,"#The travel mode with the minimum cost:\n"); 

fprintf(fptemp,"%d\", first-route-mode); 

fprintf(fptemp, "#The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fptemp, "%d ' I ,  transit-fseq[route-lst][kl); 

fprintf(fptemp,"%d\n", transit-fseq[route-lst][number+l]); 

fprintf(fptemp,"#transit-travelcost($),transit_traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

fprintf(fptemp,"%f\t%At%flt%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6); 

fprintf(fptemp, "#The minimum cost:\n"); 

fprintf(fptemp, "%f\n\n", total-cost); 

I 

if (first-route-mode == 2) { 

for (i = 0; j < number+l ; j++) { 

node 1 = taxi-fseq[route-lst]Lj]; 

node2 = taxi-fseq[route-lst]u+l]; 

f l  = f l  + cost[nodel][node2][8]; 

f7 = f7 + cost[nodel][node2][9]; 

I 
total-cost = a[O]*fl + a[6]*f7; 

printf("The travel mode with the minimum cost: %d\n", first-route-mode); 

printf("The sequence with the minimum cost:\n"); 

for (k=O; k < number+]; k++) printf ("%d ", taxi-fseq[route-lst][k]); 

printf("%d\n", taxi-fseq[route-lst][number+l]); 

printf("taxi_travelcost($),taxi-traveltime(~)\n"); 

printf("%fit%fh", f l ,  f7); 
printf("The minimum total cost:\n"); 

printf("%f\n\n", total-cost); 

fprintf(fptemp,"#The travel mode with the minimum cost:\n"); 
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fprintf(fptemp,"%d\n", first-route-mode); 

fprintf(fptemp, "#The sequence with the minimum cost:h"); 

for (k=O; k < number+l; k++) fprintf (fptemp, "%d ' I ,  taxi-fseq[route-lst][k]); 

fprintf(fptemp,"%d\n", taxi-fseq[route-lst][number+l]); 

fprintf(fptemp,"#taxi_travelcost($),taxi-traveltime(hr)\n~~); 

fprintf(fptemp,"%f%h", f l ,  f7); 

fprintf(fptemp, "#The minimum cost:\n"); 

fprintf(fptemp, "%f\n\n", total-cost); 

1 

if (first-route-mode == 3) [ 

for (j = 0; j < number+l ; j++) { 

node1 = walk-fseq[route-lst]~]; 

node2 = walk-fseq[route-lst]Lj+l]; 

f4 = f4 + cost[nodel][node2][10]; 

1 
total-cost = a[3]*f4; 

printf("The travel mode with the minimum cost: %d\n", fist-route-mode); 

printf("The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d ' I ,  walk-fseqrroute-lst][k]); 

printf("%d\n", walk-fseq[route-lst][number+l]); 

printf("wa1k-traveltime(hr)\"); 

printf("%f\n", f4); 

printf("The minimum total cost:\n"); 

printf("%An\n", total-cost); 

fprintf(fptemp,"#The travel mode with the minimum cost:\n"); 

fprintf(fptemp,"%d\", first-route-mode); 

fprintf(fptemp, "#The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fptemp, "%d 'I, walk-fseq[route-lst][k]); 

fprintf(fptemp,"%d\", walk-fseq[route-lst][number+l]); 

fprintf(fptemp,"#walk-traveltime(hr)\n"); 

fprintf(fptemp,"%fln", f4); 

fprintf(fptemp, "#The minimum cost:\"); 

fprintf(fptemp, "%f\n\n", total-cost); 
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I* output the total and term cost of the 2nd optimized route */ 

total-cost = (float) (0); 

f l  = (float) (0); I* cost argument */ 

f2 = (float) (0); I* transit-travel time argument */ 

f3 = (float) (0); /* waiting time argument "I 

f4 = (float) (0); /* walking time argument */ 

f5 = (float) (0); I* transfer number argument *I 

f6 = (float) (0); I* cable-travel time argument */ 

f7 = (float) (0); I* taxi-travel time argument *I 

if (second-route-mode == 1) { 

for 6 = 0; j < number+l; j++) { 

node1 = transit-fseq[route-2nd]fi]; 

node2 = transit_fseq[route_2nd]Q+l]; 

f l  = f l  + cost[nodel][node2][2]; 

f2 = f2 + cost[nodel][node2][3]; 

f3 = f3 + cost[nodel][node2][4]; 

f4 = f4 + cost[nodel][node2][5]; 

f5 = f5 + cost[nodel][node2][6]; 

f6 = f6 + cost[nodel][node2][7]; 

1 
total-cost = a[O]*fl + a[I]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6; 

printf("The travel mode with the second cost: %d\n", second-route-mode); 

printf("The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d 'I, transit_fseq[route_2nd][k]); 

printf("%d\n", transit-fseq[route-2nd][number+l]); 

printf("transit_travelcost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6); 

printf("The second total cost:\n"); 

printf("%h\n", total-cost); 

fprintf(fptemp,"#The travel mode with the second cost:\n"); 
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fprintf(fptemp,"%d\", second-route-mode); 

fprintf(fptemp, "#The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fptemp, "%d ", transit-fseq[route-2nd][k]); 

fprintf(fptemp,"%d\n", transit-fseq[route-2nd][number+l]); 

fprintf(fptemp,"#transit_travelcost($),transit_traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

fprintf(fptemp,"%f\t%f\t%f\t%f\t%ft%f\n", f l ,  f2, f3, f4, f5, f6); 

fprintf(fptemp, "#The second cost:\n"); 

fprintf(fptemp, "%f\n\n", total-cost); 

if (second-route-mode == 2) [ 

for (i = 0; j < number+] ; j++) ( 

node I = taxi_fseq[route_2nd] [j]; 

node2 = taxi_fseq[route_2ndj[j+l]; 

f l  = f l  + cost[nodel][node2][8]; 

f7 = f7 + cost[nodel][node2][9]; 

1 
total-cost = a[Oj*fl + a[6]*f7; 

printf("The travel mode with the second cost: %d\n", second-route-mode); 

printf("The sequence with the second cost:\n"); 

for (k=O; k e number+l; k++) printf ("%d ", taxi-fseq[route-2nd][k]); 

printf("%d\n", taxifseq[route-2nd][nurnber+l]); 

printf("taxi_travelcost($),taxi_traveltime(hr)~"); 

printf("%f\t%f\n", f l ,  f7); 

printf("The second total cost:\n"); 

printf("%h\n", total-cost); 

fprintf(fptemp,"#The travel mode with the second cost:\n"); 

fprintf(fptemp,"%d\n", second-route-mode); 

fprintf(fptemp, "#The sequence with the second cost:\n"); 

for (k=O; k < number+]; k++) fprintf (fptemp, "%d ", taxi-fseq[route-2nd][k]); 

fprintf(fptemp,"%d\", taxi-fseq[route-2ndj[number+l]); 

fprintf(fptemp,"#taxi-travelcost($),taxi-traveltime(hr)\n"); 

fprintf(fptemp,"%f\t%fb", f l ,  f7); 

fprintf(fptemp, "#The second cost:\n"); 
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fprintf(fptemp, "%f\n\n", total-cost); 

1 

if (secondroute-mode == 3) { 

for (j = 0; j < number+l ; j++) { 

nodel = walk-fseq[route3nd]~]; 

node2 = walk_fseq[route-2nd]Ij+l]; 

f4 = f4 + cost[nodel][node2][ IO]; 

} 

total-cost = a[3]*f4; 

printf("The travel mode with the second cost: %d\n", second-route-mode); 

printf("The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d ", walk-fseq[route-2nd][k]); 

printf("%d\n", walk-fseq[route-2nd][number+l]); 

printf("wa1k-traveltime(hr)\"); 

printf("%f\n", f4); 

printf("The second total cost:\n"); 

printf("%f\n\n", total-cost); 

fprintf(fptemp,"#The travel mode with the second cost:\n"); 

fprintf(fptemp,"%d\n", second-route-mode); 

fprintf(fptemp, "#The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fptemp, "%d 'I, walk-fseq[route-2nd][k]); 

fprintf(fptemp,"%d\n", walk-fseq[route-2nd][number+l]); 

fprintf(fptemp,"#walk-traveltime(hr)h"); 

fprintf(fptemp,"%f\n", f4); 

fprintf(fptemp, "#The second cost:\n"); 

fprintf(fptemp, "%t\n\n", total-cost); 

/* output the total and term cost of all feasible routes */ 

for (kk = 0; kk < transit-n-seq; kk++) { 

total-cost = (float) (0); 

f l  = (float) (0); 
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f2 = (float) (0); 

f3 = (float) (0); 

f4 = (float) (0); 

f5 = (float) (0); 

f6 = (float) (0); 

f7 = (float) (0); 

for (j = 0; j < number+l ; j++) ( 

nodel = transit-fseq[kk]fi]; 

node2 = transit-fseq[kk]G+l]; 

f l  = f l  + cost[nodel][node2][2]; 

f2 = f2 + cost[nodel][node2][3]; 

f3 = f3 + cost[nodel][node2][4]; 

f4 = f4 + cost[nodel][node2][5]; 

f5 = f5 + cost[nodel][node2][6]; 

f6 = f6 + cost[nodel][node2][7]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6 + a[6]*f7; 

printf("The transit sequence:\n"); 

for (k=O; k < number+l; k++) printf ("%d ", taxi-fseq[kk][k]); 

printf("%d\n", transit-fseq[kk][number+l]); 

printf("cost($),transit~traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr),taxi-travel time(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6, f7); 

printf("The total cost:\n"); 

printf("%f\n\n", total-cost); 

for (kk = 0; kk < taxi-n-seq; kk++) ( 
total-cost = (float) (0); 

f l  = (float) (0); 

f2 = (float) (0); 

f3 = (float) (0); 

f4 = (float) (0); 

f5 = (float) (0); 

f6 = (float) (0); 
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f7 = (float) (0); 

for (j = 0; j < number+ 1 ; j++) ( 

nodel = taxi-fseq[kk]G]; 

node2 = taxi-fseq[kk]/j+l]; 

f l  = f l  + cost[nodel][node2][8]; 

f7 = f7 + cost[nodel][node2][9]; 

1 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6 + a[6]*f7; 

A- 17 

printf("The taxi sequence:\n"); 

for (k=O; k < number+l; k++) printf ("%d 'I, taxi-fseq[kk][k]); 

printf("%d\n", taxi-fseq[kk][number+l]); 

printf("cost($),transit_traveltime(hr),waitime(hr),w~ktime(~),~ansfer- 
num,cable-traveltime(hr),taxi-travel time(hr)\n"); 

printf("%t\t%f\t%f%t\t%nt%f\t%f\n", f l ,  f2, f3, f4, f5, f6, f7); 

printf("The total cost:\n"); 

printf("%An\n", total-cost); 

for (kk = 0; kk < walk-n-seq; kk++) { 

total-cost = (float) (0); 

f l  = (float) (0); 

f2 = (float) (0); 

f3 = (float) (0); 

f4 = (float) (0); 

f5 = (float) (0); 

f6 = (float) (0); 

f7 = (float) (0); 

for (i = 0; j e number+l ; j++) [ 

nodel = walk-fseq[kk]~]; 

node2 = walk-fseq[kk]~+l]; 

f4 = f4 + cost[nodel][node2][10]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6 + a[6]*f7; 

printf("The walk sequence:\n"); 
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for (k=O; k < number+l; k++) printf ("%d ' I ,  walk-fseq[kk][k]); 

printf("%d\n", walk-fseq[kk][number+l]); 

printf("cost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr),taxi-travel time(hr)\n"); 

printf("%f\t%At%i\t%f\t%fk%f\t%f\n", f l ,  f2, f3, f4, f5, f6, f7); 
printf("The total cost:\n"); 

printf("%fln\n", total-cost); 

Code-cod2.cpp 

I" Filename: cod2.c 

Author: Jiayu Chen 

Date Created 10-05-97 

Date Updated 1 1 - 15-97 

Purpose: 

Input: 

output: 

Variables: 

*I 

#include <stdio.h> 

#include cstdlib.h> 

#include <math.h> 

#include <string.h> 

#include <sys/types.h> 

#include <math.h> 

#define ROWS 4 1000 

#define COLS 8 

#include "opt.cpp" 
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float cost[25][25][11], u[ROWS]; 

unsigned char p[ROWS][COLS], transit-fseq[ROWS][COLS+2], taxi-fseq[ROWS][COLS+2], 
walk_fseq[ROWS][COLS+2]; 

int number, transit-n-seq, taxi-n-seq, walk-n-seq; 

void main() 

{ 

*fpopt-route, *fpopt-out; 
FILE "fpcost, *fpnumber, *fpweight, "fptransitfseq, *fptaxifseq, "fpwalkfseq, *fpprefer, 

unsigned char prefer-route; 

char line[255]; 

int i, j, k, kk, kkk; 

int nodel, node2, key, keyl, key2, model, mode2; 

int route-lst, route_2nd, first-route-mode, second-route-mode; 

float preferjndex, sum, total-cost; 

float f l ,  f2, f3, f4, f5, f6, f7, f8, f9, f10, f l l ;  

float a[7]; 

float route-value[2][7]; 

I* data loading *I 

printf("open files ,..\n"); 

fpcost = fopen("cost.dat", "rt"); 

fpnumber = fopen("total.dat", "rt"); 

fpweight = fopen("weight.dat", "r+"); 

fptransitfseq = fopen("tansitf-seq.tempOOO", "rt"); 

fptaxifseq = fopen("taxif-seq.tempOOO", "rt"); 

fpwalkfseq = fopen("wa1kf-seq.tempOOO", "rt"); 

fpprefer = fopen("userprefer.tempOOO", "rt"); 

fpopt-route = fopen("opt~route~lst~2nd.tempOOO", "r+"); 

fpopt-out = fopen("opt-out.tempOOO", "wt"); 

printf("Reading ... \n"); 

I* read traveling network attributes data file cost.dat *I 

while (fgets(line, 255, fpcost) != NULL) { 

if (linelo] != W') [ 

sscanf(line, "%d,%d,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f", 
&i,&j,&fl,&f2,&f3,&f4,&f5,&f6,&fl,&f8,&f9,&flO,&fll); 
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cost[i]~][O] = f l ;  

cost[i]fi][l] = f2; 
cost[i]fi][2] = f3; 

cost[i]~][3] = f4; 

cost[i]u][4] = f5; 

cost[i]~][5] = f6; 

cost[i]b][6] = f 7 ;  

cost[i]u][7] = f 8 ;  

cost[i]b][8] = f9; 

cost[i]fi][9] = f10; 

cost[i]u][lO] = f l l ;  

/* read total number of all possible sequences */ 

while (fgets(line, 255, fpnumber) != NULL) ( 

if (line[O] != '##') sscanf(line, "%d\n", &number); 

1 

I* read feasible sequences of transit mode *I 

fgets(line, 255, fptransitfseq); 

sscanf(line, "%d", &transit-n-seq); 

for (k = 0; k < transit-n-seq; k++) { 

for (i = 0; j < number+2; j++) { 

fgets(line, 255, fptransitfseq); 

sscanf(line, "%d", &transit-fseq[k]b]); 

1 
1 

I* read feasible sequences of taxi mode *I 

fgets(line, 255, fptaxifseq); 

sscanf(line, "%d", &taxi-n-seq); 

for (k = 0; k < taxi-n-seq; k++) [ 

for (i = 0; j < number+2; j++) { 

fgets(line, 255, fptaxifseq); 

sscanf(line, "%d", &taxi-fseq[k]fi]); 

I 
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I+ read feasible sequences of walk mode */ 

fgets(line, 255, fpwalkfseq); 

sscanf(line, "%d", &walk-n-seq); 

for (k = 0; k < walk-n-seq; k++) { 

for (i = 0; j < number+2; j++) { 

fgets(line, 255, fpwalkfseq); 

sscanf(line, "%d", &walk-fseq[k]Lj]); 

1 
1 

/* read objective function weights */ 

while (fgets(line, 255, fpweight) != NULL) { 

if (line[O] != #3 sscanf(line, "%f,%f,%f,%f,%f,%f,%f', 
~ ~ ~ 0 1 , ~ ~ ~ ~ 1 , ~ ~ ~ ~ 1 , ~ ~ ~ ~ 1 , ~ ~ ~ ~ 1 , ~ ~ ~ ~ 1 , ~ ~ ~ 6 1 ~ ;  

I 
rewind(fpweight); 

/* reading for previous opt-route *I 

fgets(line, 255, fpopt-route); 

sscanf(line, "%d,%d", &key1, &model); 

fgets(line, 255, fpopt-route); 

sscanf(line, "%d,%d", &key2, &mode2); 

rewind(fpopt-route); 

/* getting prefer-index *I 

fgets(line, 255, fpprefer); 

sscanf(line, "%d", &prefer-route); 

if (prefer-route == 1 ) prefer-index = float( 1 .O); 

if (prefer-route == 2) preferjndex = -float( 1 .0); 

printf("reading donebb"); 

/* Computing the route attributes of 1st and 2nd route */ 

for (k = 0; k < 2; k++) { 

for (kkk = 0; kkk < 7; kkk++) route-value[k][kkk] = (float)(O); 
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if (k == 0) key = keyl; 

if (k == 1) key = key2; 

for (j = 0; j c number+l ; j++) [ 

if (k == 0) { 

if (model == 1) [ 

nodel = transit-fseq[key]lj]; 

node2 = transit-fseq[key]lj+l]; 

f l  = cost[nodel][node2][2]; 

f2 = cost[nodel][node2][3]; 

f3 = cost[nodel][node2][4]; 

f4 = cost[nodel][node2][5]; 

f5 = cost[nodel][node2][6]; 

f6 = cost[nodel][node2][7]; 

f7 = (float) (0.); 

I 
if (model == 2) ( 

nodel = taxi-fseq[key]lj]; 

node2 = taxi-fseq[key]lj+l]; 

f l  = cost[nodel][node2][8]; 

f2 = (float)(O.); 

f3 = (float)(O.); 

f4 = (float)(O.); 

f5 = (float)(O.); 

f6 = (float)(O.); 

f7 = cost[nodel][node2][9]; 

I 
if (model == 3) ( 

nodel = walk-fseq[key]lj]; 

node2 = walk-fseq[key]lj+l]; 

f l  = (float)(O.); 

f2 = (float)(O.); 

f3 = (float)(O.); 

f4 = cost[nodel][node2][10]; 

f5 = (float)(O.); 

f6 = (float)(O.); 

f7 = (float)(O.); 

1 
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1 
if (k == 1) [ 

if (mode2 == 1) { 

nodel = transit-fseq[key]lj]; 

node2 = transit-fseq[key]Ij+ll; 

f l  = cost[nodel][node2][2]; 

f2 = cost[nodel][node2][3]; 

f3 = cost[nodel][node2][4]; 

f4 = cost[nodel][node2][5]; 

f5 = cost[nodel][node2][6]; 

f6 = cost[nodel][node2][7]; 

fl = (float) (0.); 

1 
if (mode2 == 2) [ 

nodel = taxi-fseq[key]G]; 

node2 = taxi-fseq[key]G+l]; 

f l  = cost[nodel][node2][8]; 

f2 = (float)(O.); 

f3 = (float)(O.); 

f4 = (float)(O.); 

f5 = (float)(O.>; 

f6 = (float)(O.); 

ff = cost[nodel][node2][9]; 

1 
if (mode2 == 3) { 

nodel = walk-fseq[key]~]; 

node2 = walk-fseq[key]~+l]; 

f l  = (float)(O.); 

f2 = (float)(O.); 

f3 = (float)(O.); 

f4 = cost[nodel][node2][10]; 

f5 = (float)(O.); 

f6 = (float)(O.); 

ff = (float)(O.); 

1 
1 
route-value[k][O] = route-value[k][O] + f l ;  



Appendix A-24 

route-value[k][ 11 = route-value[k][ 11 + f2; 
route-value[k][2] = route_value[k][2] + f3; 
route_value[k][3] = route_value[k][3] + f4; 

route-value[k][4] = route-value[k][4] + f5; 

route_value[k][5] = route-value[k][5] + f6; 

route_value[k][6] = route_value[k][6] + f7; 
I 

printf("route-value:\n"); 

for (kkk = 0; kkk < 6; kkk++) printf ("%f,", route-value[k][kkk]); 

printf ("%fin", route_value[k][6]); 

I 

if(route-value[O][O] < route-value[ I][O]) a[0] = a[O]*(float)(pow(2,preferjndex)); 

if(route-value[O][O] > route-value[l][O]) a[0] = a[O]/(float)(pow(2,prefer_index)); 

if(route-value[O][ 13 < route-value[ I][ I]) a[ 11 = a[ I]*(float)(pow(2,prefer_index)); 

if(route-value[O][l] > route-value[ 1][ 11) a[ I] = a[ l]/(float)(pow(2,prefer_index)); 

if(route-value[0][2] < route_value[l][2]) a[2] = a[2]*(float)(pow(2,prefer_index)); 

if(route-value[0][2] > route_value[1][2]) a[2] = a[2]/(float)(pow(2,prefer_index)); 

if(route-value[0][3] < route-value[ 11131) a[3] = a[3]*(float)(pow(2,prefer_index)); 

if(route-value[0][3] > route-value[ 1][3]) a[3] = a[3]/(float)(pow(2,prefer_index)); 

if(route-value[0][4] < route-value[ 1][4]) a[4] = a[4]*(float)(pow(2,preferindex)); 

if(route-value[0][4] > route-value[ 1][4]) a[4] = a[4]/(float)(pow(2,prefer_index)); 

if(route-value[0][5] < route_value[l][5]) a[5] = a[5]*(float)(pow(2,preferjndex)); 

if(route-value[0][5] > route-value[ 1][5]) a[5] = a[5]/(float)(pow(2,prefer_index)); 

if(route-value[0][6] < route_value[l][6]) a[6] = a[6]*(float)(pow(2,prefer_index)); 

if(route-value[0][6] > route-value[ 1][6]) a[6] = a[6]/(float)(pow(2,preferjndex)); 

sum = a[O] + a[ 11 + a[2] + a[3] + a[4] + a[5]+ a[6]; 

a[O] = a[O]/sum; 

a[ I] = a[ l]/sum; 

a[2] = a[2]/sum; 

a[3] = a[3]/sum; 

a[4] = a[4]/sum; 

a[5] = a[5]/sum; 

a[6] = a[6]/sum; 

printf("the weights of the objective function: \n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n\n", a[O],a[l],a[2],a[3],a[4],a[5],a[6]); 
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I* update the objective function weights *I 

fprintf(fpweight, "#Weights of the objective functionh''); 

for (k = 0; k < 6; k++) fprintf (fpweight, "%f,", a[k]); 

fprintf (fpweight, "%f", a[6]); 

/* optimization *I 

opt(&a[O], &route-lst, &route-2nd, &first-route-mode, &second-route-mode); 

if(route-1st != keyl) { 

route2nd = keyl; 

secondroute-mode = mode 1; 

I 

*I 

/* output the optimization results to ArcView user interface *I 

/* output the total and term cost of the 1st optimized route *I 

total-cost = (float) (0); 

f l  = (float) (0); /* cost argument 

f2 = (float) (0); /* transit-travel time argument */ 

f3 = (float) (0); /* waiting time argument */ 

f4 = (float) (0); /* walking time argument *I 

f5 = (float) (0); I* transfer number argument */ 

f6 = (float) (0); I* cable-travel time argument */ 

f7 = (float) (0); I* taxi-travel time argument *I 

if (first-route-mode == 1) ( 

for (j = 0; j < number+l ; j++) { 

nodel = transit-fseq[route-lst]Ljl; 

node2 = transit-fseq[route-lst]b+l]; 

f l  = f l  + cost[nodel][node2][2]; 

f2 = f2 + cost[nodel][node2][3]; 

f3 = f3 + cost[nodel][node2][4]; 

f4 = f4 + cost[nodel][node2][5]; 

f5 = f5 + cost[nodel][node2][6]; 

f6 = f6 + cost[nodel][node2][7]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6; 

printf("The travel mode with the minimum cost: %d\n", first-route-mode); 
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A-26 

for (k=O; k < number+l; k++) printf ("%d '0 transit-fseqtroute-lstJ[k]); 

printf("%d\n", transit-fseq[route-lst][number+l]); 

printf("transit-travelcost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6); 

printf("The minimum total cost:\n"); 

printf("%f\n\n", total-cost); 

fprintf(fpopt-out,"#The travel mode with the minimum cost:\n"); 

fprintf(fpopt-out,"%d\n", first-route-mode); 

fprintf(fpopt-out, "#The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fpopt-out, "%d 'I, transit-fseq[route-lst][k]); 

fprintf(fpopt-out,"%d\n", transit-fseq[route-lst][number+l]); 

fprintf(fpopt-out,"#transit_travelcost($),transit-~aveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

fprintf(fpopt-out,"%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2 ,  f3, f4, f5, f6); 

fprintf(fpopt-out, "#The minimum cost:\n"); 

fprintf(fpopt-out, "%f\n\n", total-cost); 

I 

if (first-route-mode == 2) { 

for (i = 0; j < number+l; j++) { 

node1 = taxi-fseq[route-lst]G]; 

node2 = taxi-fseq[route-lst]~+l]; 

fl  = f l  + cost[nodel][node2][8]; 

fl = f7 + cost[nodel][node2][9]; 

1 
total-cost = a[O]*fl + a[6]*f7; 

printf("The travel mode with the minimum cost: %d\n", first-route-mode); 

printf("The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d ", taxi-fseq[route-lst][k]); 

printf("%d\n", taxi-fseq[route-lstJ[number+l]); 

printf("taxi_travelcost($),taxi_traveltime(hr)\n"); 

printf("%f\t%f\n", f l ,  f7); 

printf("The minimum total cost:\n"); 
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printf("%t\n\n", total-cost); 
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fprintf(fpopt-out,"#The travel mode with the minimum cost:\n"); 

fprintf(fpopt-out,"%d\n", first-route-mode); 

fprintf(fpopt-out, "#The sequence with the minimum cost:\n"); 

for (k=O; k < number+]; k++) fprintf (fpopt-out, "%d ", taxi-fseq[route-lst][k]); 

fprintf(fpopt-out,"%d\n", taxi-fseq[route-lst][number+l]); 

fprintf(fpopt_out,"#taxi_travelcost($),taxi-traveltime(hr)\n"); 

fprintf(fpopt-out,"%f\t%f\n", f l  , f7); 

fprintf(fpopt-out, "#The minimum cost:\n"); 

fprintf(fpopt-out, "%h\n",  total-cost); 

1 

if (first-route-mode == 3) { 

for 0' = 0; j < number+l; j++) { 

nodel = walk-fseq[route-lst]~]; 

node2 = walk-fseq[route-lst]~+l]; 

f4 = f4 + cost[nodel][node2][10]; 

1 
total-cost = a[3]*f4; 

printf("The travel mode with the minimum cost: %d\n", first-route-mode); 

printf("The sequence with the minimum cost:\n"); 

for (k=O; k < number+]; k++) printf ("%d 'I, walk-fseqrroute-lst][k]); 

printf("%d\n", walk-fseqrroute-lst][number+l]); 

printf("wa1k-traveltime(hr)\"); 

printf("%fln", f4); 

printf("The minimum total cost:\n"); 

printf("%fln\n", total-cost); 

fprintf(fpopt-out,"#The travel mode with the minimum cost:\n"); 

fprintf(fpopt-out,"%d\n", first-route-mode); 

fprintf(fpopt-out, "#The sequence with the minimum cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fpopt-out, "%d ", walk-fseq[route-lst][k]); 

fprintf(fpopt-out,"%d\n", walk-fseqlroute-lst][number+l]); 

fprintf(fpopt-out,"#walk-traveltime(hr)\n"); 

fprintf(fpopt-out,"%f\n", f4); 
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fprintf(fpopt-out, "#The minimum cost:\n"); 

fprintf(fpopt-out, "%f\n\n", total-cost); 

/* output the total and term cost of the 2nd optimized route */ 

total-cost = (float) (0); 

f l  = (float) (0); /* cost argument */ 

f2 = (float) (0); /* transit-travel time argument *I 

f3 = (float) (0); /* waiting time argument */ 

f4 = (float) (0); /* walking time argument *I 

f5 = (float) (0); /* transfer number argument */ 

f6 = (float) (0); /* cable-travel time argument */ 

f7 = (float) (0); /* taxi-travel time argument *I 

if (second-route-mode == 1) ( 

for (i = 0; j < number+l; j++) { 

node1 = transit-fseq[route-2nd]fi]; 

node2 = transit-fseq[route-2nd]~+l]; 

f l  = fl + cost[nodel][node2][2]; 

f2 = f2 + cost[nodel][node2][3]; 

f3 = f3 + cost[nodel][node2][4]; 

f4 = f4 + cost[nodel][node2][5]; 

f5 = f5 + cost[nodel][node2][6]; 

f6 = f6 + cost[nodel][node2][7]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6; 

printf("The travel mode with the second cost: %d\n", second-route-mode); 

printf("The sequence with the second cost:\n"); 

for (k=O; k c number+l; k++) printf ("%d ' I ,  transit-fseq[route-2nd][k]); 

printf("%d\n", transit-fseq[route-2nd][number+l]); 

printf("transit-travelcost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, D ,  f4, f5, f6); 

printf("The second total cost:\n"); 

printf("%f\n\n", total-cost); 
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fprintf(fpopt-out,"#The travel mode with the second cost:\n"); 

fprintf(fpopt-out,"%d\n", second-route-mode); 

fprintf(fpopt-out, "#The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fpopt-out, "%d 'I, transit~fseq[route~2ndl[kl); 

fprintf(fpopt-out,"%d\n", transit-fseq[route-2nd][number+l I); 

fprintf(fpopt-out,"#transit_travelcost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr)\n"); 

fprintf(fpopt-out,"%f\t%f\t%f\t%f\t%f\t%fln", f l ,  f2, f3, f4, f5, f6); 

fprintf(fpopt-out, "#The second cost:\n"); 

fprintf(fpopt-out, "%f\n\n", total-cost); 

1 

if (second-route-mode == 2) { 

for (j = 0; j < number+l ; j++) { 

node1 = taxi-fseq[route-2nd]G]; 

node2 = taxi-fseq[route-2nd]Ij+l]; 

fl = f l  + cost[nodel][node2][8]; 

f7 = fl + cost[nodel][node2][9]; 

1 
total-cost = a[O]*fl + a[6]*f7; 

printf("The travel mode with the second cost: %d\n", second-route-mode); 

printf("The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d ' I ,  taxi-fseq[route-2nd][k]); 

printf("%d\n", taxi-fseq[route-2nd][number+l]); 

printf("taxi-travelcost($),taxi-traveltime(hr)\n"); 

printf("%f\t%f\n", f l ,  f7); 

printf("The second total cost:\n"); 

printf("%f\n\n", total-cost); 

fprintf(fpopt-out,"#The travel mode with the second cost:\n"); 

fprintf(fpopt-out,"%d\n", secondroute-mode); 

fprintf(fpopt-out, "#The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fpopt-out, "%d 'I, taxi-fseq[route-2nd][k]); 

fprintf(fpopt-out,"%d\n", taxi-fseq[route-2nd][number+l]); 

fprintf(fpopt-out."#taxi_travelcost($),~xi-~aveltime(~)\n"); 
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fprintf(fpopt-out,"%f\t%f\n", f l ,  f7); 

fprintf(fpopt-out, "#The second cost:\n"); 

fprintf(fpopt-out, "%h\n" ,  total-cost); 

1 

if (second-route-mode == 3) ( 

for (i = 0; j < number+l; j++) { 

node1 = walk-fseq[route-2nd]ij]; 
node2 = walk-fseq[route-2nd]Lj+l]; 

f4 = f4 + cost[nodel][node2][10]; 

1 
total-cost = a[3]*f4; 

printf("The travel mode with the second cost: %d\n", second-route-mode); 

printf("The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) printf ("%d ", walk-fseq[route-2nd][k]); 

printf("%d\n", walk-fseq[route-2nd][number+l]); 

printf("wa1k-traveltirne(hr)\n"); 

printf("%f\n", f4); 

printf("The second total cost:\n"); 

printf(" %f\n\n", total-cost); 

fprintf(fpopt-out,"#The travel mode with the second cost:\n"); 

fprintf(fpopt-out,"%d\n", second-route-mode); 

fprintf(fpopt-out, "#The sequence with the second cost:\n"); 

for (k=O; k < number+l; k++) fprintf (fpopt-out, "%d 'I, walk-fseq[route-2nd][k]); 

fprintf(fpopt-out,"%d\n", walk-fseq[route-2nd][number+l]); 

fprintf(fpopt-out,"#walk-traveltime(hr)\n"); 

fprintf(fpopt-out,"%fh", f4); 

fprintf(fpopt-out, "#The second cost:\n"); 

fprintf(fpopt-out, "%h\n" ,  total-cost); 

/* output the total and term cost of all feasible routes */ 

for (kk = 0; kk < transit-n-seq; kk++) { 

total-cost = (float) (0); 
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f l  = (float) (0); 

f2 = (float) (0); 

f3 = (float) (0); 

f4 = (float) (0); 

f5 = (float) (0); 

f6 = (float) (0); 

f7 = (float) (0); 

for (j = 0; j < number+l; j++) { 

node1 = transit-fseq[kk]Ij]; 

node2 = transit-fseq[kk]Ij+l]; 

f l  = f l  + cost[nodel][node2][2]; 

f2 = f2 + cost[nodel][node2][3]; 

f3 = f3 + cost[nodel][node2][4]; 

f4 = f4 + cost[nodel][node2][5]; 

f5 = f5 + cost[nodel][node2][6]; 

f6 = f6 + cost[nodel][node2][7]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6 + a[6]*f7; 

printf("The transit sequenceh"); 

for (k=O; k < number+l; k++) printf ("%d ", taxi-fseq[kk][k]); 

printf("%d\n", transit-fseq[kk][number+l]); 

printf("cost($),transit_traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr),taxi-travel time(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6, f7); 

printf("The total cost:\n"); 

printf("%f\n\n", total-cost); 

for (kk = 0; kk < taxi-n-seq; kk++) ( 

total-cost = (float) (0); 

f l  = (float) (0); 

f2 = (float) (0); 

f3 = (float) (0); 

f4 = (float) (0); 

f5 = (float) (0); 
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f6 = (float) (0); 

fl = (float) (0); 

for (i = 0; j c number+l ; j++) { 

nodel = taxi-fseq[kk]fi]; 

node2 = taxi-fseq[kk]G+l]; 

f l  = f l  + cost[nodel][node2][8]; 

f7 = f7 + cost[nodel][node2][9]; 

I 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6 + a[6l*f7; 

printf("The taxi sequence:\n"); 

for (k=O; k < number+l; k++) printf ("%d 'I, taxi-fseq[kk][k]); 

printf("%d\n", taxi-fseq[kk][number+l]); 

printf("cost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr),taxi-travel time(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6, f7); 

printf("The total costh"); 

printf("%f\n\n", total-cost); 

for (kk = 0; kk < walk-n-seq; kk++) { 

total-cost = (float) (0); 

f l  = (float) (0);  

f2 = (float) (0); 

f3 = (float) (0); 

f4 = (float) (0); 

f5 = (float) (0); 

f6 = (float) (0); 

f7 = (float) (0); 

for (i = 0; j < number+l ; j++) { 

nodel = walk-fseq[kk]fi]; 

node2 = walk-fseq[kk]b+l]; 

f4 = f4 + cost[nodel][node2][10]; 

1 
total-cost = a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6 + a[6]*f7; 
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printf("The walk sequenceh"); 

for (k=O; k < number+]; k++) printf ("%d 'I, walk-fseq[kk][k]); 

printf("%d\n", walk-fseq[kk][number+l]); 

printf("cost($),transit-traveltime(hr),waitime(hr),walktime(hr),transfer- 
num,cable-traveltime(hr),taxi-travel time(hr)\n"); 

printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n", f l ,  f2, f3, f4, f5, f6, f7); 

printf("The total cost:b"); 

printf("%f\n\n", total-cost); 

I 

I 

Code-opt.cpp 

I* Filename: 0Pt.CPP 

Author: Jiayu Chen 

Date Created: 10-05-97 

Date Updated: 10-05-97 

Purpose: optimization -- choose the sequence with the minimum cost 

Input: 

output: 

Variables: 

"I 

void opt(float *a, int "route-lst, int *route_2nd, int *first-route-mode, int "second-route-mode) 

{ 

extern float cost[25][25][ 111; 

extern unsigned char transit-fseq[ROWS][COLS+2]; 

extern unsigned char taxi_fseq[ROWS][COLS+2]; 

extern unsigned char walk-fseq[ROWS][COLS+2]; 

extern int number; 

extern int transit-n-seq; 

extern int taxi-n-seq; 



Appendix A-34 

extern int walk-n-seq; 

int j ,  k, keyl, key2, model, mode2, nodel, node2; 

float u[ 100001, min-u, sec-u; 

float f l ,  f2, f3, f4, f5, f6, f7; 

FILE *fp; 

fp = fopen(”opt-route-1 st-2nd.temp000”, “r+”); 

/* calculate the objective function value and obtain the optimal route in transit-fseq */ 

for (k = 0; k < transit-n-seq; k++) ( 

u[k] = (float) (0); 

for (j = 0; j < number+l ; j++) { 

nodel = transit-fseq[k]Ij]; 

node2 = transit-fseq[k]Ij+l]; 

f l  = cost[nodel][node2][2]; 

f2 = cost[nodel][node2][3]; 

f3 = cost[nodel][node2][4]; 

f4 = cost[nodel][node2][5]; 

f5 = cost[nodel][node2][6]; 

f6 = cost[nodel][node2][7]; 

u[k] = u[k] + a[O]*fl + a[l]*f2 + a[2]*f3 + a[3]*f4 + a[4]*f5 + a[5]*f6; 

I 
I 

min-u = u[O]; 

keyl = 0; 

model = 1; 

sec-u = (float)( 1 .OE+30); 

key2 = 1; 

mode2 = 1 ; 

if(transit-n-seq > I )  { 

for (k = 1 ; k < transit-n-seq; k++) { 

if (u[k] c min-u) { 

sec-u = min-u; 

key2 = keyl ; 
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mode2 = 1 ; 

min-u = u[k]; 

keyl = k; 

model = 1 ;  

I 
else { 

if ( ~ [ k l  == min-u) printf("There are more than one sequences having 
same cost.\n"); 

if ((u[k] > min-u) && (u[kl< sec-u)) { 

sec-u = u[k]; 

key2 = k; 

mode2 = 1; 

1 

/* calculate the objective function value and obtain the optimal route in taxi-fseq */ 

for (k = 0; k < taxi-n-seq; k++) { 

u[k] = (float) (0); 

for (i = 0; j < number+l ; j++) { 

node1 = taxi-fseq[k]fi]; 

node2 = taxi-fseq[k]b+l]; 

f l  = cost[nodel][node2][8]; 

f7 = cost[nodel][node2][9]; 

u[k] = u[k] + a[O]*fl + a[6]*f7; 

1 
1 

for (k = 0; k < taxi-n-seq; k++) { 

if (u[k] < min-u) ( 

sec-u = min-u; 

key2 = keyl; 

mode2 = mode 1 ; 

min-u = u[k]; 

keyl = k; 
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model = 2; 

I 
else ( 

if (u[kl == min-u) printf("There are more than one sequences having same 
cost.\n"); 

if ((u[k] > min-u) && (u[k] < sec-u)) [ 

sec-u = u[k]; 

key2 = k; 

mode2 = 2; 

/* calculate the objective function value and obtain the optimal route in walk-fseq */ 

for (k = 0; k < walk-n-seq; k++) [ 

u[k] = (float) (0); 

for (i = 0; j < number+] ; j++) [ 

nodel = walk-fseq[k]u]; 

node2 = walk-fseq[k]~+l]; 

f4 = cost[nodel][node2][ lo]; 

u[k] = u[k] + a[3]*f4; 

1 
I 

for (k = 0; k < walk-n-seq; k++) { 

if (u[k] < min-u) [ 

sec-u = min-u; 

key2 = key 1 ; 

mode2 = model; 

min-u = u[k]; 

key1 = k; 

model = 3; 

1 
else { 

if (u[k] == min-u) printf("There are more than one sequences having same 
c0st.h"); 

if ((u[k] > min-u) && (u[k] < sec-u)) { 
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sec-u = u[k]; 

key2 = k; 

mode2 = 3; 

1 
I 

I 

printf("1st min cost: %fin", min-u); 

printf("first-route-mode: %d\n", model); 

printf("2nd min cost: %fin", sec-u); 

printf("second-route-mode: %d\n\n", mode2); 

/* output opt-routes *I 

fprintf(fp,"%d,%d\n", keyl, model); 

fprintf(fp,"%d,%d\n", key2, mode2); 

*route-1 st = key 1 ; 

*route_2nd = key2; 

"first-route-mode = model; 

"second-route-mode = mode2; 

return; 

1 

Code-allseq.cpp 

allseq(int n) 

{ 

extern unsigned char p[ROWS][COLS]; 

int j ,  row; 

int j 1 ,  j2, j3, j4, j5, j6, j7, j8; 

switch (n) { 

case 1: 
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row = 0; 

j = O ;  

p[OI[Ol= j+ l ;  

return 0; 

case 2: 

row = -1; 

for (j1 = 0; j l  < n; jl++) { 

for (j2 = 0; j2  < n; j2++) ( 

if cj2 != j l )  ( 

row++; 

p[row][O] = j l+ l ;  

p[row][l] = j2+1; 

1 
1 

1 
return 0; 

case 3: 

row = 0; 

forcjl =O;j l  <n ; j l++ ){  

for (j2 = 0; j2  < n; j2++) { 

if (j2 != j l )  { 

for (j3 = 0; j3  < n; j3++) ( 

if ((j3 != j2) && (j3 != j l ) )  { 

p[row][O] = j l+ l ;  

p[row][l] = j2+1; 

p[row][2] = j3+1; 

row++; 

1 
1 

1 
1 

1 
return 0; 

case 4: 

row = -1; 

for (jl = 0; j l  < n; jl++) ( 

for (j2 = 0; j2 < n; j2++) ( 

A-3 8 
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if (j2 != j l )  ( 

for (j3 = 0; j3 < n; j3++) { 

if ((j3 != j2)&&(j3 != j l ))  ( 

for (j4 = 0; j4 e n; j4++) { 

if (64 != j3)&&(j4 != j2)&&(j4 != j l ))  ( 

row++; 

p[row][O] = j l + l ;  

p[row][l] = j2+1; 

p[row][2] = j3+1; 

p[row][3] = j4+1; 

1 
1 

1 
1 

I 
1 

1 
return 0; 

case 5: 

row = -1; 

for (jl = 0; j l  < n; j l++) ( 

for (j2 = 0; j2 < n; j2++) ( 

if(j2 != j l )  ( 

for (j3 = 0; j3 < n; j3++) ( 

if ((j3 != j2) && 6 3  != j l ))  ( 

for (j4 = 0; j4 < n; j4++) { 

if (64 != j3) && 64 != j2) && (j4 != j l ))  ( 

for 65 = 0; j.5 < n; j5++) ( 

if (65  != j4) && ( j5 != j3) && (j5 != j2) && (j5 != j1)) { 

row++; 

p[row][O] = j l + l ;  

p[row][l] = j2+1; 

p[row][2] = j3+1; 

p[row][3] = j4+1; 

p[row][4] = j5+1; 

I 
1 
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I 
I 

I 
I 

I 
1 

I 
return 0; 

A-40 

case 6: 

row = - 1 ;  

for cjl = 0; j l  < n; jl++) ( 

for cj2 = 0; j2 < n; j2++) { 

if cj2 != j 1) { 

for cj3 = 0; j3  < n; j3++) { 

if ((j3!=j2) && cj3!=j 1)) { 

for (j4 = 0; j4 < n; j4++) { 

if (64 != j3) &&64 != j2) && cj4 != j l ) )  { 

for (j5 = 0; j5 < n; j5++) { 

if ( ( j5  != j4) && 6 5  != j3) && cj5 != j2) && cj5 != j l ) )  { 

for 66 = 0; j6< n; j6++) ( 

if (cj6 != j5) && (j6 != j4) && cj6 != j3) && (j6 != j2) &&cj6 != j 1)) { 

row++; 

p[row][O] = j l+ l ;  

p[row][l] = j2+1; 

p[row][2] = j3+1; 

p[row][3] = j4+1; 

p[row][4] = j5+1; 

p[row][5] = j6+l; 

1 
1 

1 
1 

1 
1 

I 
I 

I 
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I 
I 

return 0; 

case 7: 

row = -1; 

for (jl = 0; j l  < n; j l++) ( 

for (j2 = 0; j2 < n; j2++) ( 

if (j2 != j l )  ( 

for (j3 = 0; j 3  < n; j3++) ( 

if ((j3!=j2) && (i3!=jl)) ( 

for (i4 = 0; j4 c n; j4++) { 

if ((i4 != j3) &&(i4 != j2) && 6 4  != j l ) )  ( 

for (i5 = 0; j5  < n; j5++) ( 

if ((j5 != j4)&&(j5 != j3)&&(j5 != j2) && (i5 != j 1)) { 

for (j6 = 0; j6  < n; j6++) ( 

if (66 != j5)&&(j6 != j4)&&(j6 != j3)&&(j6 != j2) && (j6 != j 1)) { 

for 67 = 0; j7 < n; j7++) ( 

if ((i7 != j6) && (j7 != j5) && (j7 != j4) && (j7 != j3) && (j7 != j2) 
&& (j7 != j l ) )  { 

row++; 

p[row][O] = j l + l ;  

p[row][l] = j2+1; 

p[row][2] = j3+1; 

p[row][3] = j4+1; 

p[row][4] = j5+1; 

p[row][5] = j6+1; 

p[row][6] = j7+1; 

1 
1 
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return 0; 

case 8: 

row = -1; 

for (jl = 0; j l  < n; jl++) { 

for (j2 = 0; j2 < n; j2++) { 

if (j2 != j l )  { 

for (j3 = 0; j3< n; j3++) { 

if ((j3!=j2) && (j3!=jl)) { 

for (j4 = 0; j4 < n; j4++) ( 

if ((j4 != j3) && (j4 != j2) && (j4 != j 1)) { 

for ( j5  = 0; j5 < n; j5++) { 

if ( 65  != j4) && (j.5 != j3) && ( j5  != j2) && (j5 != j l ))  ( 

for (j6 = 0; j6 < n; j6++) ( 

if ((j6 != j5) && (j6 != j4) && (j6 != j3) && (j6 != j2) && (j6 != j l ) )  { 

for (j7 = 0; j7 < n; j7++) ( 

if (07 != j6) && (j7 != j.5) && (j7 != j4) && (j7 != j3) && (j7 != j2) && (j7 != j 1)) ( 

for (jS = 0; j8< n; j8++) ( 

if ((j8 != j7)&& (i8 != j6) && (jS != j5) && (j8 != j4) && (j8 != J3) && (j8 != J2) 
&& (js !=Jl)) ( 

row++; 

p[row][O] = j l+ l ;  

p[rowl[l] = j2+1; 

p[row][2] = j3+1; 

p[row][3] = j4+1; 

plrow] [4] = j5+ 1 ; 

p[row][5] = j6+1; 

p[row][6] = j7+1; 

p[row][7] = j8+1; 

1 
1 

1 
I 

I 
1 
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1 
1 

1 
1 
1 
I 
1 
1 

return 0; 

default: 

return 0; 

1 

1 
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