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ABSTRACT Despite known treatments, tuberculosis (TB) remains the world’s top 
infectious killer, highlighting the pressing need for new drug regimens. To prioritize the 
most efficacious drugs for clinical testing, we previously developed a PK-PD transla­
tional platform with bacterial dynamics that reliably predicted short-term monotherapy 
outcomes in Phase IIa trials from preclinical mouse studies. In this study, we exten­
ded our platform to include PK-PD models that account for drug-drug interactions 
in combination regimens and bacterial regrowth in our bacterial dynamics model to 
predict cure at the end of treatment and relapse 6 months post-treatment. The Phase 
III STAND trial testing a new regimen comprised of pretomanid (Pa), moxifloxacin (M), 
and pyrazinamide (Z) (PaMZ) was suspended after a separate ongoing trial (NC-005) 
suggested that adding bedaquiline (B) to the PaMZ regimen would improve efficacy. 
To forecast if the addition of B would, indeed, benefit the PaMZ regimen, we applied 
an extended translational platform to both regimens. We predicted currently available 
short- and long-term clinical data well for drug combinations related to BPaMZ. We 
predicted the addition of B to PaMZ to shorten treatment duration by 2 months and 
to have similar bacteriological success to standard HRZE treatment (considering only 
treatment success but not withdrawal from side effects and other adverse events), 
both at the end of treatment for treatment efficacy and 6 months after treatment has 
ended in relapse prevention. Using BPaMZ as a case study, we have demonstrated our 
translational platform can predict Phase II and III outcomes prior to actual trials, allowing 
us to better prioritize the regimens most likely to succeed.

KEYWORDS Mycobacterium tuberculosis, PKPD, preclinical translation, clinical trial 
prediction, mechanistic model, drug regimens

T uberculosis (TB) is a communicable disease caused by the bacillus Mycobacterium 
tuberculosis (Mtb). According to the World Health Organization (WHO), TB is a major 

cause of illness and the leading cause of infectious disease death worldwide (1). While 
therapies are available for TB treatment, the treatment is lengthy and burdensome, thus 
making it hard to eradicate (2, 3). Therefore, a huge emphasis has been placed on the 
need for more effective and shorter regimens (4, 5).

The development of novel drug combinations heavily relies on evidence from 
preclinical efficacy models. Among these, murine TB models are the most commonly 
employed (6, 7). Due to the highly evasive and resistant nature of Mtb, TB treatment is 
implemented as a cocktail of drugs rather than as monotherapy to decrease resistance 
and improve overall efficacy while dosing within safe ranges. New drugs are hence often 
evaluated in combination with a preexisting backbone of known drugs. Pretomanid (Pa) 
was tested with known TB drugs moxifloxacin (M) and pyrazinamide (Z) as a multidrug 
combination (PaMZ) in Phase III clinical trial STAND (NC-006) in 2015. However, STAND 
was halted early due to increased interest in BPaMZ, and analysis of its results showed 
4-month PaMZ regimens failed to achieve non-inferiority to the 6-month regimen based 
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on HRZE (the most common initial TB treatment regimen of isoniazid, H; rifampin, 
R; pyrazinamide, Z; and ethambutol, E) despite efficacy in preclinical combinations 
evaluated in mice (8). While the STAND trial might have been underpowered, it still 
highlights the complexity and difficulty of using early stage preclinical and clinical data 
to predict Phase III clinical endpoints, calling for a more robust translational platform to 
better inform later stage clinical outcomes.

Concurrent with the STAND trial, additional mouse efficacy studies suggested that 
adding the diarylquinoline bedaquiline (B) to PaMZ would increase efficacy (9) and the 
BPaMZ regimen achieved high rates of sputum culture conversion in participants with 
MDR-TB in the Phase IIb NC-005 trial (10). These results led to the Phase III Simpli­
ciTB trial (NCT 03338621), designed to compare the efficacy and safety of a 4-month 
BPaMZ regimen to that of the 6-month HRZE-based standard of care in drug-suscepti­
ble TB. While SimpliciTB was underway, we expanded a previously developed transla­
tional pharmacokinetic-pharmacodynamic (PK-PD) platform that can predict Phase IIa 
outcomes based on preclinical mouse efficacy (11) to predict the efficacy results of 
the trial. The existing translational model incorporated bacterial dynamics into mouse 
exposure-response relationships and human PK profiles to predict Phase IIa outcomes 
for drugs tested as monotherapy and was validated on 10 1st and 2nd line TB drugs. 
The bacterial dynamics model detailed the interaction between bacterial growth and 
the mouse immune system prior to treatment, allowing us to account for these natural 
immune defenses too and not overpredict drug efficacy. Here, we extended this 
translational platform to predict the Phase IIb and III outcomes for drug efficacy in 
combination, using BPaMZ as a case study.

While Phase IIa trials in TB tend to focus on early bactericidal activity of single drugs 
up to 2 weeks, Phase IIb trials typically study combination drug regimens over longer 
durations, measuring bactericidal activity up to 8 weeks. Phase III trials are the most 
stringent in assessing curative potential, measuring both culture status at the end of 
treatment, and the proportion of patients without relapse 12 or more months from the 
start of treatment. We, thus, added new components to extend our previous mono­
therapy translation platform: (i) pharmacodynamic drug-drug interactions included by 
measuring the effect of an established backbone regimen on the novel drug tested 
(referred to as SUPER since only a single “super” drug is tested against a backbone 
regimen) (12) and (ii) bacterial regrowth kinetics post-treatment (Fig. 1). The subsequent 
results demonstrate the utility of using preclinical mouse data to predict the sputum 
colony-forming unit (CFU) count over 8 weeks in Phase IIb, as well as the proportion of 
relapsing patients in Phase III (i.e., both short- and long-term efficacy outcomes) of a 
new drug regimen, an improvement from the original monotherapy Phase IIa prediction. 
Going forward, we expect to use this platform to prioritize the most effective drug 
combinations for evaluation in Phase IIb/III trials.

RESULTS

Comprehensive database of (B)PaMZ combinations in mice and humans

To build the translational model for the prediction of Phase IIb and III outcomes, 
preclinical BALB/c mouse PK (Table 1) and mouse PD data (Table 2) and clinical PK 
models (Table 3) were collected for model training and clinical observations, namely, 
sputum CFU count and first culture negative status for Phase IIb and relapse status 12 
months from the start of treatment for Phase III trials were collected for model validation 
(Table 4). Monotherapy was first described using previously developed mouse PK-PD 
models describing the PK of Pa and B, as well as their efficacies as monotherapy. Drug 
combination efficacy describing PD in mice was collated from experiments performed 
at Johns Hopkins University (JHU) for drug regimens PaMZ, BPaZ, and BPaMZ (Fig. 2a). 
Additional mouse data on PaM and PaZ combinations were also collated and analyzed to 
understand the contribution of M and Z to Pa (Fig. S1). To better understand bacte­
rial regrowth post-treatment, data from a relapsing BALB/c mouse model experiment 
performed at JHU were collected for treatment durations ranging from 1 to 4 months 
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FIG 1 A three-step model to predict Phase IIb and III clinical outcomes using mouse PK-PD models. (a) Collect mouse PK data for the new drug of interest and 

mouse PD data of CFU over time for the drug as monotherapy, as well as both CFU and relapse data for drugs in combination with a known backbone regimen. 

(b) Build combination mouse PK-PD models using empiric method SUPER which assumes response is driven by the SUPER drug’s exposure, while backbone 

combination influences the response parameters of Emax, EC50, and γ. (c and d) Simulate clinical outcomes using clinical PK models as well as translated 

exposure response relationship from mouse to human. Mouse EC50 is corrected using the ratio of drug fraction unbound in humans to that in mice.
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(9). Mouse CFU/lung was measured 3 months after treatment ended to measure the 
presence and extent of relapse for regimens Pa50MZ, Pa100MZ, BPa50Z, and BPa50MZ (Fig. 
2b). Dosing information of other drugs is available in Table 2. BPaM analysis was excluded 
due to a lack of data for reliable estimates of bacterial regrowth post-treatment (Knet) 
(Fig. S2). In total, we had 959 observations in mice for decline in CFU/lung and 125 
observations for mouse relapse, including at the end of either 3 or 4 months of treat­
ment, and 90 days after, allowing for robust testing of the translational framework. 
Mouse and clinical PK simulations were performed for the estimation of the exposure-
response of the add-on SUPER drug to the backbone regimen (Fig. 2c and d).

To validate the translational model predicted clinical outcomes, Phase IIb human 
sputum data over 8 weeks of treatment was collated from studies NC-002 (PaMZ) 
and NC-005 (BPaZ and BPaMZ) (Fig. 2d) (8, 10). Clinical data were collected from the 
STAND trial (NC-006) reporting adjusted proportions of favorable outcomes 12 months 
from treatment initiation as 74.5% and 85.2% on 4 months of Pa100MZ and Pa200MZ, 
respectively (8), and 97.9% for B[200/100]PaMZ in the SimpliciTB trial (16).

A single-drug potency was sufficient to describe most mouse CFU profiles

In comparison to monotherapy, understanding the contribution of each individual drug 
to a regimen’s overall efficacy makes combination therapy a more complex problem 
to tackle. In preclinical settings, in vitro checkerboard analysis is commonly used to 
systematically evaluate drug efficacy of combinations (17, 18). Carrying out such a large 
range of doses in animals, however, is impractical due to the scale and number of 
combinations required. In animal studies, the new drug added to a regimen is often 
tested as a dose range, while the other drugs in regimen (e.g., MZ) are fixed, rather than 
testing all possible dose ranges for a four-drug combination. Therefore, we employed 
an empirical approach (SUPER) to quantify pharmacodynamic drug-drug interactions 
with only the exposure-response of a novel drug (either Pa or B) against a fixed dose 
backbone regimen (e.g., MZ or PaMZ) (12). Initially, we tested a more mechanistic model 
to account for the slower kill of persister bacteria by estimating both fast (initial 28 
days of treatment) and slow-replicating (after 28 days of treatment) bacteria kill (19) as 

TABLE 1 Mouse PK simulations

Regimen Doses (mg/kg) Data type Data source

B 12.5, 25 single dose PK simulation Ernest et al. (11)
Pa 6, 9, 12, 18, 28.8, 50, 54, 162, 486 single dose; 

100 daily for 4 or 8 weeks
PK simulation Ernest et al. (11)

TABLE 2 Mouse PD datab

Regimen Observations SUPER drug SUPER drug doses (mg/kg) Data type Data source Treatment 
duration (days)

Initial
  Paa 235 Pa 6.25, 10, 12.5, 25, 30, 50, 100, 200, 300, and 600 Mouse CFU/lung JHU 14–63
  PaM 84 Pa 50, 100 Mouse CFU/lung JHU (9) 56
  PaZ 92 Pa 50, 100 Mouse CFU/lung JHU (9) 112
  PaMZ 202 Pa 25, 50, 100 Mouse CFU/lung JHU (9) 56
  Ba 75 B 12.5, 25,50 Mouse CFU/lung JHU 79
  BPaM 93 B 25 Mouse CFU/lung JHU (13) 84
  BPaZ 101 B 25 Mouse CFU/lung JHU (13) 28
  BPaMZ 77 B 25 Mouse CFU/lung JHU (13) 28
Relapse
  PaMZ 100 Pa 50, 100 Mouse CFU/lung JHU (9) 3, 4
  BPaZ 15 B 25 Mouse CFU/lung JHU (9) 3, 4
  BPaMZ 10 B 25 Mouse CFU/lung JHU (9) 3, 4
aData and PK-PD model have previously been described in Ernest et al. (11).
bDoses of M and Z are 100 and 150 mg/kg, respectively.
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EC50fast and EC50slow. We additionally tested a simpler model that assumed a homoge­
neous bacterial population as EC50. For B-containing regimens, no monotherapy data 
beyond 28 days was available, and a single EC50 value was estimated. With the PaMZ 
regimen, a single EC50 described the mouse CFU profile much better than when EC50fast 
and EC50slow were estimated, suggesting that MZ has good sterilizing potential against 
persisters (20–22). Similarly, a single EC50 described both PaZ and PaM regimens well 
(Fig. S1). These findings justified the use of a simpler model that assumes a homogenous 
bacterial population despite the extended treatment times beyond 28 days in our data 
set.

SUPER model predictions overlapped well with observed sputum data over 
the course of treatment

Using the exposure-response relationships derived from the preclinical mouse models 
and correcting for the fraction unbound between mouse and human for EC50 estimates, 
we were able to accurately predict the clinical 8 week sputum CFU count in NC-002 
for Pa100MZ and Pa200MZ regimens using the SUPER approach. Our translated model 
prediction intervals fit well with observed clinical data, with our median prediction 
closely aligning with the observed median CFU drop over treatment duration (Fig. 3a). 
This prediction was accurate despite not quantifying the individual contributions of 
the backbone drugs, indicating that the SUPER method was sufficient to characterize 
a combined drug regimen’s exposure-response relationship for further translation. For 

TABLE 3 Clinical PK models used for simulations

Drugs PK structure model Study Simulated doses References

B 3-cmt model with transit absorption

NC-005 Bloading 400 mg once daily for days 1–14, 200 mg 
three times per week for days 15–56

Svensson et al. (14)NC-005 Bdaily 200 mg once daily for 56 days
NC-008 B[200/100] 200 mg once daily for 56 days, then 100 mg 

once daily for 63 days

Pa
1-cmt model with transit absorption and dose-

dependent absorption, bioavailability, and volume
NC-002, NC-006 100 or 200 mg daily for 56 days or 119 days

Salinger et al. (15)

TABLE 4 Clinical PD observations from trials NC-002, NC-005, NC-006, and NC-008 used to validate the modela

Trial Arm Dosing Time Participants Primary outcome Ref.

NC-002 Arm 1: PaMZ
in DS-TB

Arm 1: Pa 100 mg, M 400 mg, Z 
1,500 mg daily

8 weeks 14 Sputum count CFU/
mL from days 0 to 56

NCT01691534

Arm 2: PaMZ
in DS-TB

Arm 2: Pa 100 mg, M 400 mg, Z 
1,500 mg daily

NC-005 Arm 1: BPaZ
in DS-TB

Arm 1: B 400 mg daily for 14 days 
followed by 200 mg three times a 
week. Pa 200 mg and Z 1,500 mg 
daily

8 weeks 148 Sputum count CFU/
mL from days 0 to 56

NCT01498419

Arm 2: BPaZ
in DS-TB

Arm 2: B 200 mg daily. Pa 200 mg 
and Z 1,500 mg are dosed daily

Arm 3: BPaMZ
in MDR-TB

Arm 3: B 200 mg, Pa 200 mg, M 
400 mg, and Z 1,500 mg daily

NC-006 (STAND-TB) Arm 1: PaMZ
in DS-TB

Arm 1: Pa 100 mg, M 400 mg, Z 
1,500 mg daily

17 weeks 179 Culture negative status 
at 4 months and 
relapse at month 12

NCT02193776

Arm 2: PaMZ
in DS-TB

Arm 2: Pa 200 mg, M 400 mg, Z 
1,500 mg daily

NC-008 (SimpliciTB) Arm 1: BPaMZ
in DS-TB

B 200 mg (first 8 weeks) followed
by 100 mg (9–17 weeks). Pa 200
mg, M 400 mg, Z 1,500 mg daily

Arm 1: 17 weeks; 
Arm 3: 26 weeks

203 Relapse at month 12 NCT02342886

aDS-TB, drug sensitive TB; MDR-TB, multidrug-resistant TB.
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NC-005 regimens BPaZ and BPaMZ, our models showed overprediction after approxi­
mately 21 days of treatment (Fig. 3a).

FIG 2 Observed data and model simulations used to train and validate the models. (a) Observed high-dose aerosol-infected mice inoculated with the 

drug-sensitive Mtb H37Rv strain prior to treatment with either PaMZ or BPaMZ. The only exception was PaMZ, where Pa 100 mg/kg treated mice were inoculated 

with low-dose aerosol infection instead. Pa doses ranged from 0 to 100 mg/kg, while other drugs were used at fixed doses: B 25 mg/kg, M 100 mg/kg, and 

Z 150 mg/kg. (b) Observed mouse relapse data 3 months after treatment ended. Treatment durations ranged from 3 to 4 months in mice. PaMZ, BPaZ, and 

BPaMZ relapse data were used for modeling regrowth. BPaM did not have sufficient relapse data for modeling regrowth and was hence not included in further 

clinical predictions. (c) Mouse and clinical PK simulations required for estimation of the exposure-response of the add-on SUPER drug to the backbone regimen. 

(d) Phase IIb observed clinical sputum count on treatment over a span of 8 weeks. The dashed line represents the mean CFU decline across all patients over time. 

Studies were NC-002 for Pa100MZ and Pa200MZ, and NC-005 for BdailyPa200Z, BloadPa200Z, and B200Pa200MZ. B was always given at 200 mg, except for the loading 

dose, which was administered as 400 mg for 14 days, followed by 200 mg thrice weekly until the end of treatment.
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Upon extending the clinical simulation to 4 months, B-containing regimens were 
predicted to have more patients with culture-negative status at all treatment durations 
compared to PaMZ regimens. Adding M to the BPaZ regimen further improved this 
proportion of culture negative patients (Fig. 3b). BdailyPaMZ, a daily dose of B 200 mg, 
and B[200/100]PaMZ, 8 weeks of B 200 mg followed by 8 weeks of B 100 mg, predictions 
were highly similar and overlapped. Similarly, Pa100MZ and Pa200MZ regimens had no 
significant differences in the proportion of culture-negative patients (Fig. 3b). At the 
end of 4 months, all regimens were predicted to achieve culture-negative status in their 
patient populations.

Phase III clinical relapse outcomes can be predicted from bacterial regrowth 
in relapsing mouse models

As bacterial regrowth data after 3 months of treatment was sparse, we were not able 
to train a full bacterial dynamics model with confidence for regrowth. We, thus, used 

FIG 3 Phase IIb predictions at 8 weeks and 4 months of treatment. (a) Predicted bactericidal activity of the different drug regimens against clinical sputum CFU 

count over time. Bdaily refers to B 200 mg given daily. B[200/100] refers to B 200 mg daily for 8 weeks, followed by 100 mg daily. Bloading refers to a loading dose of 

B 400 mg daily for 2 weeks, followed by B 200 mg three times a week. Solid line represents median of model prediction, and dashed line represents mean sputum 

count of clinical data. (b) Kaplan Meier plot of the proportion of patients achieving first culture negative status across treatment duration. Further predictions to 

4 months of treatment suggest that all regimens will convert have success bringing all patients to culture negative status at the end of treatment.
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Knet as a composite measure of both bacterial growth and death instead to describe 
the net bacteria regrowth. In comparison to non-B-containing regimens, Knet was much 
slower with B onboard (Table 5). This could be a result of the sterilizing activity (9) and 
long half-life (23) of B. Moreover, in B-containing regimens, with Z onboard, Knet was 
even smaller, indicating B in combination with Z had even better sterilizing activity. In 
estimating relapse, we found that the spread in Knet quantified using between subject 
variance in mice was also an important factor in predicting the proportion relapsing. A 
larger spread of Knet values indicated a higher probability of relapse, even when median 
Knet was very close to 0. At the end of 4 months of treatment in mice, PaMZ regimens 
had a variance of 0.543, which was similar in both Pa50MZ and Pa100MZ regimens, while 
BPaZ and BPaMZ both had variance close to 0 as no mouse relapsed with 3–4 months of 
treatment (Fig. 2b).

The primary efficacy outcome of many Phase III TB trials is the proportion of patients 
with an unfavorable outcome 12 months after treatment initiation, where unfavorable 
status may be due to failure to achieve culture negativity on treatment, or recurrent 
positivity, i.e., relapse, after achieving negativity, or other causes (8, 16). The focus 
here was on bacteriologically relevant events. Knet from relapsing mouse models (Fig. 
S2) was, thus, used to simulate bacterial regrowth post-treatment for an additional 8 
months following 4 months of treatment. Relapse was defined as CFU ≥ 1, the lower 
limit of bacteria detectable via culture. Each study was simulated according to its own 
baseline demographic information. The proportion of patients with undetectable CFU 
(no relapse) was predicted well in PaMZ regimens (Fig. 4) with the actual clinical trial 
adjusted proportions of unfavorable outcomes (74.5% Pa100MZ observed proportion, 
85.2% Pa200MZ observed proportion) being close to our model predictions [73% (63%–
80.5%, 95% confidence interval (CI)] Pa100MZ, 76% [(67%–82.5%, 95% CI) Pa200MZ]. 
Similarly, the efficacy of BPaMZ was also captured with 99% relapse-free survival in 
our relapse model, which was close to the 96.8% bacteriological success observed in 

TABLE 5 Mouse PK/PD models parameter in fast replicating, slow replicating bacteria, and relapse phase using monotherapy and combinationsa

Drug regimen SUPER drug Parameter Value Relative standard error Unit SUPER drug fraction unbound 
ratio of human vs mouse

B B Emax 0.515 0.007 day−1 1.0 (24)
EC50 0.228 0.0027 mg/L

BPaZ B EC50 0.151 0.008 mg/L
Emax 0.515 FIX day−1

Knet 0.0044 1.43 day−1

BPaM B EC50 0.7928 0.00005 mg/L
Emax 0.515 FIX day−1

Knet 0.0126 1.52 day−1

BPaMZ B EC50 0.00000226 0.0324 mg/L
Emax 0.690 0.0208 day−1

Knet 0.0052 0.930 day−1

Pa Pa EC50 3.46 0.00306 mg/L 0.71 (25, 26)
Emax 0.429 0.00122 day−1

γ 0.374 0.0121
PaZ Pa EC50 0.0765 0.0033 mg/L

Emax 0.604 0.00666 day−1

PaM Pa EC50 0.526 0.000108 mg/L
Emax 0.429 FIX day−1

γ 2.309 0.00007
PaMZ Pa Emax 0.406 0.000411 day−1

EC50 0.0724 0.000820 mg/L
Knet 0.0492 0.366 day−1

aEmax, maximum rate of bacterial kill per day; EC50, the concentration of drug required to reach 50% of the maximum rate of bacterial kill per day; Knet, the net growth rate 
of bacterial after treatment has ended; γ, the Hill coefficient determining the steepness of the exposure response curve.
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SimpliciTB, thus predicting BPaMZ to be equivalent to standard of care in terms of 
relapse despite the shortened treatment duration by 2 months. However, BPaMZ was 
not noninferior to standard to care in terms of overall rate of unfavorable outcome. 
Notably, as B has a very long half-life, we observed that B was still at efficacious levels 6 
months post-treatment in humans, potentially explaining the low rate of relapse (Fig. S5). 
These results demonstrate the model’s value for the prediction of Phase IIb and Phase III 
outcomes that enable us to rank and prioritize regimens before they go into clinical trial.

The SUPER method was sufficient to detail drug combination efficacy in mice 
and humans

We validated our models with the SUPER method to be robust and stable by using 
visual predictive checks (VPCs) of our model fits over multiple different PaMZ and BPaMZ 
regimens using Pa at different doses (Fig. S1). The models were all able to describe the 
mouse data adequately using the SUPER method, with all the models converging well 
and model confidence intervals overlapping well with the data.

To further understand the success of BPaMZ over PaMZ, we explored our model-
derived clinical exposure-response of the SUPER drugs with various combinations of 
their drug backbone (Fig. S3). Adding Z to Pa had an overall additive effect, improving 
upon Pa potency as evidenced by a 45.2-fold decrease in EC50, and increasing Emax by 
1.41-fold. The combination of Pa with M was less beneficial than the combination with 
Z, with PaM EC50 decreasing by 6.58-fold compared to Pa monotherapy. The PaM model 
fit did not benefit from re-estimating Emax. Interestingly, the PaMZ regimen had a similar 
Emax to Pa monotherapy, but was of a similar potency to PaZ, with a 47.8-fold decrease 
in EC50 compared to Pa monotherapy (Table 5). The full exposure response curves are 
plotted in Fig. S3.

Interestingly, we observed antagonism when M was combined with B in BPaM, where 
B EC50 increased by 3.5-fold compared to monotherapy B EC50. BPaZ was also additive 

FIG 4 Regimen rank-ordering based on the proportion of patients without relapse 12 months since the start of treatment. Box plots represent the 95% CI, 

the circles observed proportion from STAND TB, and the dashed line the percent noninferiority to HRZE. Our simulations suggest that 4 months of either PaMZ 

regimen is inferior to B-containing regimens. Among the B-containing regimens, however, all regimens do similarly well, regardless of the dosing schedule. 

BdailyPa200Z did not have an observed clinical outcome.
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in nature, but its effect was not as pronounced as with PaZ, with B EC50 improving 
in potency with a 1.51-fold decrease. Interestingly, the greatest synergism between 
all four drugs occurred with the BPaMZ regimen, which had a notably higher Emax 
(1.34-fold increase) and lower B EC50 (>1,000-fold decrease) compared to all other 
B-containing regimens. While only PaMZ was able to reach Emax at clinically observed 
steady-state concentrations of Pa 200 mg daily, all B-containing regimens reached Emax 
at clinically observed steady-state concentrations with 200 mg B daily, with BPaMZ 
having an almost immediate exposure at Emax. This highlights BPaMZ’s superiority over 
the other regimens. This exposure-response analysis, thus, highlights the utility of the 
SUPER method in understanding drug regimen efficacy in vivo despite not accounting for 
the individual contributions of each drug.

DISCUSSION

We extended our previous translational platform for predicting short-term monother­
apy clinical outcomes to include long-term combination treatment outcomes: bacte­
rial burden and proportion of bacteriologically relevant unfavorable outcomes. Using 
preclinical mouse data of drug regimens, we trained PK-PD models to capture the 
overall combination efficacy of the regimen and predict clinical outcomes for Pa100MZ, 
Pa200MZ, and BPaMZ. This expanded platform was able to predict Phase IIb sputum 
CFU counts over 8 weeks, as well as long-term outcomes (proportion of patients with 
undetectable CFU at the end of 4 months of treatment and bacteriologically relevant 
unfavorable outcomes 8 months post-treatment) to help prioritize the most efficacious 
drug regimens for clinical testing.

To understand the efficacy of combination drug regimens, PD drug-drug interac­
tions need to be accounted for to determine the overall drug combination’s efficacy. 
Translational methods such as the generalized pharmacodynamic interactions (GPDI) 
method have been developed to address this problem but require a rich data set of dose 
ranges for every single drug in 2-to-4-way combinations. This is achievable using in vitro 
dosing studies, where high-throughput screens can be carried out. We have previously 
found mouse studies to be the preferable model for preclinical to clinical translation, 
however, because the mouse immune system also contributes to treatment efficacy (19). 
As mouse models are more costly, it is not as practical to test a wide range of drug 
doses and combinations. Thus, we employed the SUPER method which only requires 
dose ranging information for the new drug, against an established backbone regimen 
where clinically efficacious doses have been previously determined (12).

Despite not knowing the individual contributions of each drug to the overall regimen 
efficacy, we found that we could still understand the overall regimen efficacy and impact 
of different backbones on the SUPER drug (Fig. S3). We were also able to predict clinical 
outcomes for both PaMZ and BPaMZ drug regimens using the SUPER method, showing 
that drug regimen predictions could be made using only a dose range for the novel drug 
while keeping fixed doses for the rest of the regimen. This saves both time and money 
spent on preclinical experiments to evaluate the overall efficacy of a drug regimen.

Our model predictions were validated mainly using visual predictive checks (VPC), a 
gold standard in the pharmacometrics field, done by overlaying our prediction with the 
observed clinical data (27). As we did not refit our model to observed clinical data and, 
thus, do not have model diagnostics, the VPC instead provides an unbiased visual display 
of the actual model’s fit. The VPC, thus, ensures our predictions are reliable.

After validating our methods, we assessed whether this translational framework could 
be used to rank and prioritize drug regimens. While regimens showed differences in 
the proportion of culture negative patients during treatment, all regimens had close to 
culture negative status at the end of 4 months of treatment. This suggests that time 
to first culture negativity might not be the most discriminative measure in evaluating 
regimen efficacy. The 12-month follow-up from start of treatment is, thus, highly critical 
in prioritizing regimens. With Phase III relapse outcomes, we observed and were able to 
accurately predict, PaMZ to be less efficacious, and BPaMZ to be more efficacious, than 
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the standard of care. This suggests that the relapsing mouse model is useful for regimen 
development, as knowing Knet to model relapse is key in understanding a drug regimen’s 
potential for clinical success compared to other regimens.

Deriving the exposure-response relationship further helps us evaluate the appropri­
ate dosing for the novel drug being tested (28). In the case of Pa, it is likely that TB 
patients may benefit from a dose higher than 200 mg where safety allows in order to 
increase efficacy and have higher drug exposure close to Emax. B, on the other hand, 
is at optimal dosing due to its high accumulation with repeated dosing (Fig. S3). This, 
thus ,highlights how PK-PD modeling can help further evaluate a dose.

In our model, we assumed that all bacteria over the course of 4 months of treatment 
belonged to the fast-growing population. This is a reasonable assumption to make, 
as bacterial persisters, which are known to be among the slow-growing population of 
bacteria, tend to make up less than 1% of the overall bacterial population (29). We, 
thus, can logically attribute most of the drop in sputum CFU clinically to a fast-growing 
population of bacteria. The only exception, however, was B, which was predicted to have 
high early bactericidal activity in our Phase IIa predictions but did not show the same 
result clinically (11, 30). Overprediction of the clinical bactericidal activity of B-containing 
regimens over 56 days was also observed in the current study. The reasons for such 
overprediction are likely multifactorial but are presumed to include the slower attain­
ment of steady-state exposures inside caseous TB lesions that are not well represented 
in BALB/c mice and the contribution of the active B metabolite (M2) in mice that is not 
currently accounted for in the translational platform. (11)

As the SUPER method was able to capture the overall efficacy of the drug regimen, we 
suggest performing a dose range for only the novel drug, alongside a fixed backbone of 
doses of the other drugs, for at least three or four doses for a reliable EC50 estimate. This 
proposed experimental design can save a huge number of animals and costs, while still 
being able to derive a translatable exposure-response relationship.

In our simulations, we have found that the rate of kill does not vary much between 
most presented baselines prior to treatment of 6–8 log10CFU commonly reported in 
clinical trials. This was important to test as patient baselines are often variable and hard 
to predict as we often do not know the timeframe between a patient’s TB infection 
and presentation at a clinic (11). For validation, we, thus, simulated from reported 
patient baseline CFUs to for easier visualization. Without knowing anything about a prior 
population, we recommend a reference baseline of 7 log10CFU instead.

When analyzing mouse relapse data, we realized that in experimental groups with 
high proportions of mouse relapse, the relapse growth rate was highly variable between 
the mice. On the other hand, in groups where there was little to no relapse, this 
variability was much lower. We, thus, hypothesized that we could use a similar distribu­
tion of the growth rates to predict relapse clinically and validated this with observed 
clinical data.

In summary, our translational platform is a robust tool that can effectively distinguish 
combination regimens based on clinically relevant outcomes. Using PK-PD models built 
from preclinical data to predict both sputum data in Phase IIb and relapse data in 
Phase III, we have demonstrated a workable framework that helps us prioritize the most 
promising regimens for actual trials. This can help us save costs with much less trial and 
error involved when testing novel regimens to eradicate TB for good.

Limitations

While our model was able to predict Phase IIb outcomes with good precision for PaMZ, 
we overpredicted the sputum CFU decline for BPaZ and BPaMZ regimens. This was 
likely due to an interesting phenomenon where B has been observed to be more active 
in mice compared to clinical models, resulting in the translated model overpredicting 
the CFU drop despite correcting for the free fraction of drug unbound differences 
between mouse and human (11). We had similarly reported this when predicting Phase 
IIa outcomes using B as monotherapy (11). Future work will involve validating similar 
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models in C3HeB/FeJ mice which form necrotic lesions in the lung, making the model 
more similar to human TB pathophysiology and have lower sensitivity to B despite using 
the same strain of bacteria (31).

Our model was not able to capture the clinical observation of Pa200MZ as effectively 
as we hoped, as the Knet values between Pa200MZ and Pa100MZ were rather similar. This 
could be due to insufficient doses to properly elucidate a proper exposure response 
relationship for relapse. However, we do note too that STAND-TB was underpowered as 
it was halted early, and thus, while the observed data are still useful for gauging model 
performance, we cannot reliably state the observed points as reflective of a larger trial 
population should STAND-TB have been fully completed.

Another limitation is that although our model could predict bacteriologically relevant 
clinical outcomes well, there are other contributing causes of unfavorable outcome. 
Favorable response does not only consist of the presence or absence of relapse. Safety 
aspects of the regimen, such as withdrawal due to adverse effects, also need to be 
considered. The failure of BPaMZ to demonstrate non-inferiority vs HRZE in SimpliciTB 
was largely due to withdrawals during treatment for adverse events (16).

In this study, we also relied only on the traditional marker for efficacy, bacterial 
CFU. Other promising biomarkers are being developed, such as RS ratio, which could 
potentially be used as an early biomarker analysis for activity, instead of relying on 
CFU, which has a minimum doubling time of 14.7 h (32), much longer than most other 
culturable bacteria. Further work on validating these biomarkers is ongoing.

Conclusion

Here, we extended our translational platform (11) to include drug combinations and 
predict longer treatment duration outcomes in both Phase IIb and III. Using the SUPER 
method, we were able to account for pharmacodynamic drug interactions in a combina­
tion regimen in a cost-effective manner by performing dose ranging only for a single 
drug. Furthermore, we showed for the first time the utility of the relapsing mouse model 
for informing predictions of Phase III outcomes using our platform, highlighting that 
culture-negative status alone was insufficient to predict Phase III outcomes well. Despite 
having an overprediction of Phase IIb outcomes with BPaZ and BPaMZ, our relapse 
model was still able to accurately predict bacteriologically relevant outcomes in the 
BPaMZ trial. This demonstrates the usefulness of PK-PD models in helping to translate 
preclinical results to clinical outcomes, and prioritizing which regimens should be used 
for further testing.

MATERIALS AND METHODS

Database compilation

All data used in the translational platform development were summarized in Tables 1 
and 2. Preclinical plasma concentrations were collected from B, Pa, M, and Z monother­
apy. Mice lung CFU counts after treatment were collected from both monotherapy and 
various combinations (PaZ, PaM, BPaM, BPaZ, PaMZ, BPaMZ) as efficacy data. Clinical PK 
data of Pa and B were simulated using a published human population PK model. Sputum 
CFU counts for PaMZ, BPaZ, BPaMZ in Phase IIb trials were collected from published 
clinical studies, with individual CFU data from NC-002 and NC-005 obtained from TB 
Alliance via personal communication. Phase III outcomes for PaMZ and BPaMZ were 
collected from published sources (8, 16).

Model development

All model development and simulation were performed using NONMEM (version 7.4) 
and Perl speaks NONMEM (PsN) using first-order conditional estimation with interac­
tion (FOCE-I) as the estimation method. Model diagnostics, model validation, and data 
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visualization were performed in R and R studio (version 4.1.3) using Xpose 4 and ggplot 
R packages. Mouse PK and PK-PD models were developed and optimized based on 
statistical (significant change in objective function value), graphical (goodness of fit 
plots), and simulation-based diagnostics (visual predictive checks).

Mouse PK-PD model development

Mouse PK-PD models were developed based on our prior integrated mouse PK-PD 
model that describes bacteria growth, death, and adaptive immune effect without drug 
treatment (19) for the prediction of clinical Phase IIa outcomes for drugs as monotherapy. 
To account for PD drug-drug interactions in the model, an empirical approach (SUPER), 
measuring the total efficacy of the regimen using only the shifted exposure-response of 
the novel drug with the backbone regimen added. This was done by modeling only the 
exposure-response parameters described using an Emax model (Emax, EC50, and γ) of the 
novel drug (either Pa or B) in combination with a fixed drug backbone with reference 
to the novel (SUPER) drug’s PK as the main driver of the drug combination’s response. 
This would allow us to determine the effect of the backbone on the SUPER drug by 
estimating the shift in EC50 when comparing EC50 estimated from both monotherapy 
and combination. Full method details are listed in the supplementary material.

Relapsing mouse model

To account for relapse, a simplified baseline model measuring only the net growth rate 
constant (Knet) of bacteria was used to describe mice relapse. Knet was chosen as only the 
bacterial growth in mouse lung, rather than real-time bacterial growth dynamics, could 
be quantified, making it difficult to quantify both a growth and death rate separately. Net 
growth of bacteria after treatment stopped was calculated. Treatment duration and Pa 
dose were also added as covariates to account for differences in experiments.

Translational model for Phase IIb 8-week sputum count and Phase III 4-month 
treatment outcomes

To validate our model against existing trial results, the same reported end points of the 
trials, namely, sputum count and culture negative status were simulated. To simulate the 
Phase IIb sputum count, clinical PK simulations of either Pa or B were combined with 
a translated exposure-response model derived from the mouse PK-PD models with the 
SUPER method to predict sputum CFU/mL. Translation from mouse to clinical was done 
by correcting the EC50 using the ratio of the fraction unbound drug in human vs mouse. 
Clinical model simulations of sputum count were carried out over a full period of 8 weeks 
using matching baseline demographics to patient populations from NC-002 (Pa100MZ, 
Pa200MZ) and NC-005 (BdailyPaZ, BloadPaZ, BdailyPaMZ). In B-containing regimens, Pa 
200 mg was used. Actual trial demographics were used to simulate variability in the 
patient PK profile and baseline CFU. To evaluate model predictions, the 95% prediction 
interval and the median line were overlapped with observed clinical data. Doses of M 
and Z were fixed at 400 mg and 1500 mg once daily, respectively.

Similarly, to predict culture status at the end of treatment, the clinical simulations of 
sputum count were extended to 4 months. One thousand simulations were conducted 
for each regimen. A culture-negative individual was defined as having a predicted CFU < 
1, with a CFU count of 1 being the minimum amount of bacteria required for a positive 
culture result. The total predicted proportion of patients with negative sputum counts 
was then compared against the observed proportion of patients with negative sputum 
counts from NC-006 to validate the model predictions.

Translational predictions of Phase III relapse outcomes

Clinical relapse outcomes were predicted by simulating the whole course of the trial, 
from 4 months of treatment to 8 months of bacterial regrowth after treatment had 
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ended, giving a total duration of 12 months since treatment start. Clinical bacterial 
regrowth was simulated using the Knet and standard deviation derived from relapsing 
mouse models. Patients with no relapse were defined as having a predicted CFU 
< 1, with a CFU of 1 being the minimum amount of bacteria required to detect 
relapse. One thousand simulations were conducted for each regimen (Pa100MZ, Pa200MZ, 
BdailyPa200Z, BdailyPa200MZ). The proportion of predicted non-relapsed patients was then 
compared against the adjusted proportion of non-relapsed patients from NC-006 and 
SimpliciTB trials with favorable outcomes, defined as those with favorable outcomes out 
of an adjusted assessable total that removed nonviolent or accidental deaths, withdraw­
als due to adverse events, withdrawals due to investigator or participant decisions, 
non-adherence to study protocol, and loss to follow-up from the total assessable per the 
studies’ definitions of Modified Intent to Treat (8, 16).
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