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velocity fields. Here, two-dimensional, two-component 
velocity fields acquired on multiple perpendicular planes 
are reconstructed into a 3D velocity field through Krig-
ing interpolation and by imposing the incompressibility 
constraint. Subsequently, the scattered experimental data 
are projected into a divergence-free vector field space 
using a fractional step approach. We validate the method 
in exemplary 3D flows, including the Hill’s spherical 
vortex and a numerically simulated flow downstream of 
a 3D orifice. During the process of validation, different 
signal-to-noise ratios are introduced to the flow field, and 
the method’s performance is assessed accordingly. The 
results show that as the signal-to-noise ratio decreases, 
the corrected velocity field significantly improves. The 
method is also applied to the experimental flow inside a 
mock model of the heart’s right ventricle. Taking advan-
tage of the periodicity of the flow, multiple 2D velocity 
fields in multiple perpendicular planes at different loca-
tions of the mock model are measured while being phase-
locked for the 3D reconstruction. The results suggest 
the metamorphosis of the original transvalvular vortex, 
which forms downstream of the inlet valve during the 
early filling phase of the right ventricular model, into a 
streamline single-leg vortex extending toward the outlet.

1 Introduction

Certain blood flow patterns have been associated with 
changes in cardiac performance. For instance, different 
types of ventricular dysfunction have unique blood flow 
characteristics, and variations in blood flow patterns may 
indicate a change in overall cardiac performance. Quan-
tifying the three-dimensional (3D) cardiac flow pattern 
has remained a challenging fluid dynamics problem, and 

Abstract Measurement of the three-dimensional flow 
field inside the cardiac chambers has proven to be a chal-
lenging task. This is mainly due to the fact that general-
ized full-volume velocimetry techniques cannot be easily 
implemented to the heart chambers. In addition, the rapid 
pace of the events in the heart does not allow for accurate 
real-time flow measurements in 3D using imaging modal-
ities such as magnetic resonance imaging, which neglects 
the transient variations of the flow due to averaging of 
the flow over multiple heartbeats. In order to overcome 
these current limitations, we introduce a multi-planar 
velocity reconstruction approach that can characterize 3D 
incompressible flows based on the reconstruction of 2D 
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modern velocimetry techniques cannot yet acquire data 
with sufficient spatial and temporal resolution to consider-
ably improve clinical diagnoses.

Currently, two-dimensional (2D) blood flow informa-
tion—obtained by echocardiography—is beginning to be 
widely used to quantify cardiac dysfunction. While very 
useful, this information does not provide sufficient accu-
racy for characterizing complex three-dimensional flows, 
such as the flow in the right ventricle or in patients with 
congenital heart defects. Alternatively, flow-sensitive 
magnetic resonance imaging (MRI), 4D Flow MR, can 
provide flow information in 3D. However, 4D Flow MR 
cannot be applied to clinical routine. A further drawback 
of this technology is its averaging of the flow over hun-
dreds of heartbeats, which neglects the transient varia-
tions in the flow. If the cycles are not perfectly periodic, 
as commonly happens in certain arrhythmias or cardiac 
conduction diseases, the image quality significantly 
degrades, and the resulting velocity fields may not be reli-
able (Asakawa et al. 2003).

Echocardiographic techniques based on particle image 
velocimetry (PIV) or color-Doppler have been recently 
employed by a number of research groups (Kim et al. 2004; 
Hong et al. 2008; Kheradvar et al. 2010; Westerdale et al. 
2011; Zhang et al. 2011; Cimino et al. 2012) and are capable 
of evaluating the instantaneous vortical blood motion in the 
cardiovascular system. The PIV-based methods, known as 
Echo-PIV, permit high-frequency acquisition during a single 
beat in 2D. Since current Echo-PIV methods are limited to 
two-dimensional visualization (the scan-plane), they provide 
an incomplete picture of three-dimensional flow structures.

Similar to 2D Echo-PIV, it was anticipated that the 
recent advances in 3D echocardiography would provide 
further opportunities for 3D mapping of cardiac flow with 
reasonable accuracy (Sengupta et al. 2012). Recently, the 
flow in a curved tube was reconstructed three-dimension-
ally using a few parallel planes of ultrasound PIV (Poelma 
et al. 2011). However, this technique is limited to flows 
whose velocity component is mainly along one direction.

The current 3D echocardiography does not provide a 
framework to implement conventional PIV techniques 
with an acceptable temporal and spatial resolution. This 
is mainly due to the limited frame rate of 3D echocardio-
graphic acquisitions, a limitation related to the computa-
tional requirements of parallel processing of large datasets 
of ultrasound RF data, in addition to the fixed speed of 
ultrasound waves. Substantial technological advancement 
will be required to overcome these limitations.

Ziskin et al. (2011) introduced a method in which 2D 
cross-correlation on multiple planes along different direc-
tions was used for obtaining 3D velocity field. They used 
multiple cameras to create perspective images in order to 
reconstruct velocity field in 3D, which is done by mapping 

functions during a pre-experiment calibration. Here, we 
introduce a different approach to reconstruct the 3D flow 
field based on multi-planar particle image velocimetry 
(MPPIV), abbreviated as MPPIV, that requires imposing the 
incompressibility constraint to the flow using a fractional 
step approach. By taking advantage of the physical constraint 
given by incompressibility that relates different velocity 
components, a consistent 3D vector field can be generated.

In the present work, we describe the overall MPPIV con-
cept and its specific mathematical implementation in Sect. 2. 
The systematic validations, performed to compare the recon-
structed flow fields with known 3D velocity fields, are pro-
vided in Sect. 3. An exemplary application for quantification 
of the flow inside a mock model of the right ventricle is pre-
sented in Sect. 4 whereby taking the advantage of the perio-
dicity of the cardiac cycle, 2D velocity fields from multiple 
perpendicular planes in different locations are obtained in 
different heartbeats (phase-locked) and reconstructed in three 
dimensions by MPPIV. The results are summarized in Sect. 7.

2  Methods

The method is composed of three sequential processes: (1) 
two-dimensional (2D) two-component (2C) velocimetry on 
predefined planes; (2) interpolation in 3D space; and (3) 
enforcing the incompressibility constraint. Each individual 
process is described here in sequence.

2.1  2D–2C velocimetry

The first step of multi-planar velocimetry is the acquisition 
of two-dimensional velocity fields on two perpendicular 
stacks using available acquisition modalities (PIV, Echo-
PIV). Each stack should be composed of parallel 2D veloc-
ity field slices with the inter-slice distance representing the 
resolved length scale. We considered the stacks parallel to 
rectangular Cartesian coordinates with each slice in a stack 
containing only two in-plane components of velocity.

In this study, different slices of the stack were images 
acquired by a single high-speed camera (Y3, IDTVision, 
Inc.), which in principal can be replaced by a matrix array 
ultrasound transducer. The velocity values associated with 
the measurement points (typically a grid) were obtained 
using PIV methods. A single camera was used for acquir-
ing different slices of the stack in sequence by taking 
advantage of the periodicity of the flow. The accuracy of 
the analysis, when using one camera, depends on the effec-
tive periodicity of the flow field in addition to the precision 
of the velocimetry itself. In the case of a multi-slice acqui-
sition source (e.g., a matrix array ultrasound transducer 
for multi-planar Echo-PIV), 2D velocity fields would be 
acquired simultaneously on each slice in the stacks.
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2.2  Interpolation

Kriging interpolation has been found to be a useful method 
for the reconstruction, interpolation, and smoothing of 2D 
and 3D experimental data (Gunes and Rist 2007, 2008). In 
addition, Kriging is ideal for sufficiently high-resolution 
experimental data (Gunes and Rist 2007). It was shown that 
both DNS-based and Kriging procedures can effectively 
eliminate the background noise and measurement errors 
in experimental data (Gunes and Rist 2007). However, in 
many cases, DNS-based interpolations are not available 
and an alternative is needed when the resolution is not suf-
ficiently high.

To assemble the slices of 2D–2C velocity fields into a 
3D vector field, we used the Kriging interpolation method 
(Cressie 1992), which can interpolate scattered data into 
a regular Cartesian staggered 3D grid. Kriging is an opti-
mal interpolation technique based on regression against 
the observed values, Z(xα), of neighboring data points xα, 
which are weighted according to the spatial covariance val-
ues. Compared to other interpolation methods, in Kriging, 
the weights are assigned according to a moderately data-
driven weighting function, rather than an arbitrary function. 
The Kriging method compensates for the clustering (prox-
imity) effect that is often seen in other interpolation tech-
niques, such as the inverse distance square estimate, which 
causes a bulls-eye effect (Cressie 1992). This can happen 
near the intersection of the slices that belong to different 
stacks. The Kriging method assigns less weight to indi-
vidual points within a cluster than to isolated data points. 
Therefore, clusters are treated more like single points.

The method offers estimation error or “Kriging vari-
ance” along with the estimate of the variable, Z(x); this 
estimation error provides a basis for stochastic simulation 
of the possible realizations of Z as

where xα and x are the location vectors for the neighbor-
ing data points (indexed by α), and the estimation point, 
respectively. n(x) is the number of data points in the local 
neighborhood used for the estimation of Z∗(x). For this 
study, we used the eight nearest points. m(x) and m(xα) are 
expected values of Z∗(x) and Z(xα), respectively. ηα(x) is 
the Kriging weight assigned to Z(xα) for estimation loca-
tion x. A neighbor receives different weights when used for 
different estimation locations. Z(x) is treated as a random 
field with a trend component, m(x), and a residual compo-
nent, R(x) = Z(x) − m(x). Kriging estimates the residual 
at x as a weighted sum of residuals at surrounding data 
points. Kriging weights, ηα, are derived from the covari-
ance function or semivariogram, which characterizes a 

(1)Z∗(x) − m(x) =
n(x)
∑

α=1

ηα[Z(xα) − m(xα)]

residual component. Distinction between trend and residual 
is somewhat arbitrary and varies with scale. We used the 
spherical semivariogram model of

where h is the distance of the estimate point from each 
neighboring point, and a0 is selected as the mean of the 
distances.

A 3D Cartesian staggered grid was generated with face-
centered normal velocity components, which facilitates 
achieving a second-order accuracy for the calculation of 
flux balance on each cell, as explained in Sect. 2.3. A typi-
cal cell in the grid is shown in Fig. 1. The grid was cre-
ated such that it covered the stacks. Kriging interpolation 
was separately implemented on the u-, v-, and w-compo-
nents of the velocity. Since slices in the two perpendicular 
stacks contain different velocity components, the neighbor-
ing points for each estimation point, x, in the interpolation 
of different velocity components can be different. In other 
words, the interpolation identified for the eight nearest 
velocity components available in the nearby slices, which 
may belong to different stacks.

2.3  Constraint of incompressibility

Interpolation methods have been widely used for the recon-
struction of 3D flows. Recently, phase-averaged velocities 
were shown to be obtainable from spatial interpolation of 
two perpendicular stacks of parallel planes whose in-plane 
velocity fields were measured by 2D PIV (Stamatopoulos 
et al. 2011). Others have shown that by using synchro-
nized PIV and infrared thermography measurements, flow 
field in three dimensions can be reconstructed (Harlander 
et al. 2012). In their work, Harlander et al. used a mesh-
free reconstruction method based on radial basis functions. 
Time-resolved PIV in two orthogonal stacks of planes and 
linear interpolation was then utilized to find the three-
dimensional phase-averaged data (Sung and Yoo 2001).

In principle, the interpolated velocity field does not nec-
essarily satisfy the incompressibility condition of the flow 
in 3D. Therefore, as a first requirement for producing a 
divergence-free velocity field, the field must be modified 
accordingly. There are different approaches in imposing 
the continuity equation. Su et al. utilized the concept of 
minimization of errors for the interpolation of 3D velocity 
data on the basis of the continuity constraint (Su and Dahm 
1996; Liburdy and Young 1992). They inserted the continu-
ity constraint into the local minimization functional of the 
interpolation procedure—a functional composed of several 
terms including the local measurements and smoothness 
requirement. In such an approach, incompressibility is one 

(2)γz(h) =

{

3
2

h
a0

− 1
2

(

h
a0

)3
if h ≤ a0.

1 if h > a0,
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of the local weighting factors that is not exactly satisfied. 
Continuity has also been used to estimate the accuracy of 
3D (dual-plane and stereo) PIV measurements (Mullin and 
Dahm 2005, 2006).

Afanasyev and Demirov (2005) employed incompress-
ibility in planar PIV measurements in a filtering procedure 
to improve the quality of data. Their concept is based on 
the fact that the 2D velocity field can be decomposed into 
a non-divergent component and a relatively small diver-
gent component. Another approach is the interpolation 
of a continuous velocity field from sparse information 
based on local kernels, including methods based on sparse 
measurements (Zhong et al. 1991; Zhong 1995; Vedula 
and Adrian 2005), as well as those based on Lagrangian 
numerical methods (Novikov 1983; Leonard 1985). In 
this case, the individual kernels are directly solenoidal and 
ensure the continuity of the resulting field. This approach 
needs some care in the interpolation process because the 
kernel size must be locally adapted to the density of the 
available information. Furthermore, this typically requires 
vector information as an input. However, this method has 
not yet been employed to reconstruct a 3D field from 2D 
information similar to our present work. Another interest-
ing approach has been recently applied for metrological 
applications in estimating the vertical component of the 
velocity (Ratto et al. 1994; Núñez et al. 2006, 2007). In 
this approach, the vertical velocity is reconstructed on the 
basis of a known horizontal velocity and a given boundary 
condition. In this method, a proper weight of the incom-
pressible correction is used and then this weight is opti-
mized for a specific application. Here, we follow a similar 
approach, in that we impose the continuity constraint on 
arbitrary velocity data, either in position or in the number 
of components. Next, optimization weights are replaced by 

the concept that continuity must be satisfied exactly, which 
is achieved by correcting the velocity field using an irrota-
tional field. In fact, we follow the approach developed for 
the fractional step method in computational fluid dynam-
ics, and the interpolated velocity field is projected into a 
divergence-free subspace (Kim and Moin 1985). This can 
be achieved by adding an irrotational velocity field whose 
divergence cancels out the divergence of the interpolated 
velocity. This creates a divergence-free velocity field that 
adjusts the interpolated flow field, satisfies the continuity of 
the flow, and eliminates any sink/source in the domain that 
may result from 2C velocimetry.

This correction provides a physical consistency to the 
velocity field and can also be particularly important when 
computing additional quantities derived by velocity gradi-
ents, which intrinsically incorporate the zero-divergence 
condition.

The projection is carried out according to

where u is the divergence-free interpolated velocity field, 
uint is the Kriging interpolated field, here referred to as the 
simply interpolated velocity field, and ucorr is the velocity 
correction expressed as the gradient of a potential function 
φ

Combining the two sets of orthogonal planes doubles the 
information available. In particular, it provides three com-
ponents of the velocity vector and allows for an improved 
estimate of the vorticity field. The correction is an irrota-
tional field that can only adjust the divergence without 
affecting the vorticity field. Moreover, when using just par-
allel slices, one velocity component has to be completely 

(3)u = uint + ucorr,

(4)ucorr = ∇φ.

Fig. 1  Indexing and locations of velocity components, and divergence of the velocity for a typical cell in the staggered grid
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reconstructed and the mean flow components cannot be 
found.

Application of the divergence-free constraint, ∇ · u = 0,  
to Eq. (3) results in the Poisson equation for the potential

where ∇ · uint is the divergence of the interpolated velocity. 
We did not consider any rigid wall at the end of the inte-
gration domain, and typically, we do not have the walls’ 
coordinates (and their velocity) in these problems. Thus, 
the Neumann condition was not considered the most appro-
priate choice. Therefore, Dirichlet boundary conditions, 
with zero values on all six boundary faces of the domain, 
were employed for φ in (5); physically, this ensures that no 
(arbitrary) net flow is introduced by the correction. Alterna-
tively, the Neumann condition can be applied to all six end 
faces, which give no net flow as well; however, this implies 
a zero velocity at the end faces, which appears to be a more 
severe constraint than the zero mean flow.

Numerically, the potential φ was defined at the cell 
center of the staggered grid, and the Poisson equation (5) 
was satisfied therein. The right-hand side and the Lapla-
cian operator were estimated based on the second-order 
accurate finite difference at the cell center and the gradient 
components in (4) at the face center of the staggered grid. 
Calculations were implemented in C++ and using Poisson 
Library from Intel� MKL 10.3.

It should be mentioned that once a scale is resolved, 
there is no difference between small and large scales 
because correction is found based on the solution of a 

(5)∇
2φ = −∇ · uint,

linear problem in which scales are solved separately. The 
presence of different resolutions can be an issue and is dis-
cussed in the limitation section.

2.3.1  Illustration of the incompressibility constraint

The importance of imposing the solenoidal condition to the 
interpolated velocity field can be highlighted by examin-
ing a cubic domain in which there is only a uniform flow 
along the x-direction in the vicinity of the cube’s cen-
troid. The interpolated velocity field in the z = 0 plane 
is shown in Fig. 2a. The original flow was laterally sur-
rounded by a shear layer with a sharp divergence at both 
ends. The 3D divergence-free interpolated velocity, which 
was constrained not to introduce any net volumetric flow, 
is shown in Fig. 2b. The divergence-free interpolated flow 
preserves the same vorticity field and imposes fluid conti-
nuity. Throughout this study, streamlines were generated 
using the Tecplot� visualization package (Amtec Engi-
neering, Bellevue, WA). Tecplot uses a two-step, second-
order Runge–Kutta method to compute the streamlines. We 
utilized both forward and backward integrations from the 
starting points to calculate the streamlines.

3  Validation of the technique in test cases

We systematically verified the behavior of the reconstruc-
tion algorithm. For this purpose, we employed two bench-
marks in which the 3D divergence-free interpolated fields 

(a) (b)

Fig. 2  Concept of imposing incompressibility is illustrated here. a 
Streamlines for an interpolated field at z = 0 plane. It can be observed 
that streamlines disappear spontaneously; b streamlines at z = 0 

plane of the same interpolated field shown at (a) once the incom-
pressibility constraint is imposed to the velocity field to make it diver-
gence-free
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were compared with known flow fields having vortex 
features: first, a Hill spherical vortex (HSV) (Hill 1894), 
and second, a 3D DNS flow field behind a slender orifice 
(Domenichini 2011). Here, we refer to these velocity fields 
as true solutions.

The 3D flow fields of these two benchmark flows were 
sampled in two perpendicular stacks, xy- and yz-stacks, 
which are referred to in this section as the 2C-velocimetry 
sampled data. On each slice, the out-of-plane component 
of velocity was disregarded. These sampled data were 
generated for four different stacks with different numbers 
of samples. In all the stacks, each slice contained 32 × 32 
samples, which were uniformly distributed. Increasing the 
slice resolution adds more information to the original data 
to which the interpolation and correction will be applied. 
In other words, if the slice has a higher resolution which 
can be achieved by using different seeding or different opti-
cal magnification, the accuracy of 2C velocimetry, in terms 
of the number of the resulted velocity vectors, is higher. 
Therefore, the uncertainty in the experimental data is 
reduced, which results in a more accurate 3D interpolated 
velocity field and, consequently, a more accurate diver-
gence-free interpolated velocity field. We increased the 
number of slices in each stack from 4, 8, 16, to 32. In each 
stack, the distance between the slices was kept the same, 
which created a uniform stack. Furthermore, to mimic the 
uncertainty associated with experimentally acquired veloc-
ity measurements, different levels of noise were introduced 
to the 2C-velocimetry sampled data starting from a field 
with no noise, then adding 15 and 30 % Gaussian noise, 
relative to the 3D field velocity scale. Therefore, for each 
benchmark flow field, a total of 12 2C-velocimetry sampled 
datasets were generated. The purpose of Gaussian noise 
was to artificially create uncertainty in the velocity field of 
each slice to test the performance of our technique. This 
uncertainly might come from different sources including 
PIV postprocessing procedures, errors related to the experi-
mental setup, or three-dimensionality in the slice (i.e., par-
ticles going into or out of the light sheet).

In all the tests cases, the 3D divergence-free interpolated 
velocity fields were obtained with a resolution of 643 and 
compared with the true solution at the same points. The root 
mean square (RMS) error, reported here as a function of the 
number of slices in the stack, statistically represents the dif-
ference between either the simply interpolated or the diver-
gence-free interpolated velocity field and the true solution

where n = 643 is the resolution of the three-dimensional 
domain, subscript T stands for true velocity field, and 

(6)

ErrRMSi =

√

1
n

∑

[

(uT − ui)
2 + (vT − vi)

2 + (wT − wi)
2
]

Velocity Scale
,

subscript i can be either the simply interpolated or diver-
gence-free interpolated velocity field. Here, we tested the 
hypothesis that the RMS error would be reduced in a diver-
gence-corrected field as compared to the simply interpo-
lated field.

3.1  Test case 1: Hill spherical vortex

The HSV is a convenient example for the purpose of vali-
dation (Hill 1894). This vortex is an extreme member of 
the Norbury family of vortex rings, (Norbury 1973) and is 
used as a model in applications such as the motion of bub-
bles and droplets at a high Reynolds number. The vorticity 
inside the HSV varies linearly with the distance from the 
axis of symmetry. In a HSV, the external flow is irrotational 
around a sphere, whereas the internal flow has an axisym-
metric vorticity distribution. The spherical symmetry of the 
HSV vector field challenges our algorithm, which is based 
on a Cartesian grid.

A HSV is specified by the Stokes (axisymmetric) 
streamfunction as

where R specifies the size of the spherical vortex, V is the 
external uniform vertical velocity taken as the velocity 
scale in Eq. (6); r =

√

x2 + y2 and ρ =
√

r2 + z2 are the 
cylindrical and spherical radial coordinates, respectively. 
The velocity field in Cartesian coordinates is computed by 
the streamfunction as

We created a HSV with unit radius and velocity scale 
in a cube of size 1.5 × 1.5 × 1.5. Figure 3 shows the RMS 
error for the simply interpolated and divergence-free 
interpolated velocity fields; in all the cases, the diver-
gence-free interpolated velocity field showed an improve-
ment with respect to the simply interpolated field. When 
no noise was introduced in the 2C-velocimetry sampled 
data, the RMS error was not significantly reduced by 
applying the incompressibility constraint, mainly because 
the sampled velocity field was already divergence-free, 
thus providing an indirect validation of the interpolation 
procedure. However, as the level of noise increased, the 
divergence correction adjusted the interpolated flow field 
more significantly toward reducing the difference in RMS 
error. In other words, the greater the level of uncertainty 
in the velocimetry data, the greater the benefit of ensur-
ing the incompressibility constraint. Figure 4 depicts the 
result obtained for the 3D divergence-free interpolated 

(7)ψ =







3
4

Vr2
�

1 + ρ2

R2

�

ρ2 ≤ R2 (internal flow)

3
4

Vr2
�

R3

ρ3 − 1
�

ρ2 ≥ R2 (external flow)

(8)u = −
x

r2

∂ψ

∂z
; v = −

y

r2

∂ψ

∂z
; w =

1

r

∂ψ

∂r
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velocity field by using 32 slices for each stack in the 
2C-velocimetry sampled data (no noise). The spherical 
symmetry can be observed in Fig. 4b where the vortex 
ring is illustrated by the isosurface of �2 (Jeong and Hus-
sain 1995).

3.2  Test case 2: 3D flow behind slender orifice

For the second benchmark, we used the 3D velocity field 
behind a slender orifice, which was previously investigated 
numerically (Domenichini 2011). In that study, the three-
dimensional vortex formation due to the impulsively started 
flow through slender openings was numerically simulated. 
The orifice was formulated as two half-circles connected by 
straight segments as shown in Fig. 5. We used the numeri-
cal data for a length-to-width ratio of 4 at t = 10, as shown 
in Fig. 5 (Domenichini 2011).

In this test case, the velocity scale in Eq. 6 was taken as 
the square root of the mean kinetic energy normalized by 
the density. In agreement with the previous findings for the 
HSV, the results demonstrate that imposing the incompress-
ibility constraint improves the accuracy of the flow field, 
and this improvement is more prominent with decreasing 
levels of signal-to-noise ratio, as evidenced in Fig. 6a.

To provide further insight into the quality of the Krig-
ing interpolation, we examined the effect of using alternat-
ing half-planes in xy- and yz-stacks instead of full planes on 
ErrRMS, as shown in Fig. 7. This made the 2C-velocimetry 
sampled data even more sparse. In this arrangement, half 
of the slices in each stack were in one side of the domain’s 
centroid and the rest were on the other side. Figure 6b illus-
trates the result of employing alternating half-planes as 
2C-velocimetry sampled data. Although there was a slight 
increase in the calculated ErrRMS of alternating half-plane 

Fig. 3  RMS error for the sim-
ply interpolated and divergence-
free interpolated velocity fields 
versus the number of slices in 
Hill’s spherical vortex. Black, 
blue, and red represent 0, 15, 
and 30 % Gaussian noise in the 
2C-velocimetry sampled data, 
respectively. The stacks for 
2C-velocimetry sampled data 
possess 4, 8, 16, and 32 xy- and 
yz-slices at 32 × 32 resolution

Fig. 4  Divergence-free interpolated velocity field for a Hill’s spherical vortex. Velocity magnitude along with streamlines is shown in a and b 
isosurface of �2 = −2.0 (Jeong and Hussain 1995)
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data, the results were consistent with the full-plane case. It 
indicated that the need for more planes to fully resolve the 
underlying three-dimensional flow is not critical when the 
MPPIV method is employed. This emphasized the robust-
ness of the approach and the expected improvement with 
increasing information.

4  Application to experimental flow in a model  
of the right ventricle

The right ventricle (RV) is the crescent-shaped chamber of 
the heart, which pumps venous blood flow for oxygenation 
to the lungs. This chamber is smaller than the left ventricle 
(LV) and is more compliant. To date, flow inside the LV has 
been extensively investigated in vitro and in vivo. However, 
very little quantitative information is available on flow pat-
terns inside the RV. The particular reasons for this lack of 
knowledge include (1) the non-symmetric, crescent shape 
of the RV, which is wrapped around the LV and limits 2D 
echocardiographic flow evaluations; and (2) highly time-
dependent RV flow that significantly reduces the accuracy 
of the studies performed by MRI. Overall, the study of 
the RV is a relatively young field. Recently, the flow of a 
patient-specific RV model reconstructed from echocardi-
ography images was numerically assessed, and evidence 
for the presence of a complex three-dimensional flow pat-
tern was observed (Mangual et al. 2012). Furthermore, the 
blood flow in the RV of healthy adults was experimentally 
measured by using 4D Flow MRI (Fredriksson et al. 2011). 
Also, the performance of the RV was compared with the 
LV, demonstrating the presence of a more direct route from 
the inlet to the outlet (Fredriksson et al. 2011).

Here, we test the method described in Sect. 2 to verify 
the feasibility of the MPPIV method in an actual experi-
mental setting. This test case provides experimental obser-
vations of the flow inside a model of the right ventricle, for 
the first time.

Fig. 5  Result of the direct numerical simulation of a three-dimen-
sional vortex formation through a slender opening (Domenichini 
2011). The geometry of the orifice and the horizontal section of the 
computational box are illustrated in the figure. The vortex is visual-
ized for the isosurface of �2 = −5 at t = 10

Fig. 6  RMS error for the sim-
ply interpolated and divergence-
free interpolated velocity fields 
versus the number of slices with 
Domenichini’s DNS velocity 
field taken as the true solution. 
Black, blue, and red represent 
0, 15, and 30 % Gaussian noise 
in the 2C-velocimetry sampled 
data, respectively. The stacks for 
2C-velocimetry sampled data 
possess 4, 8, 16, and 32 xy- and 
yz-slices at 32 × 32 resolution. 
a RMS error of using full planes 
and b result of using alternating 
half-planes

(a)

(b)
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4.1  Experimental setup

We used a heart-flow simulator consisting of a hydraulic 
pump system (Superpump system, VSI, SPS3891, Vivitro 
systems Inc., Victoria, BC, Canada) that operates based on 
a VSI Wave Generator VG2001 (Vivitro Systems Incor-
porated, Victoria, BC, Canada), as previously described 

(shown in Fig. 8) (Falahatpisheh and Kheradvar 2012). 
The system is comprised of a silicone RV sac with adult 
human dimensions suspended in a pressurized container. 
The thickness of the sac is 1.0 mm. The sac is a patient-
specific RV model reconstructed from echocardiography. 
The periodic, pulsatile flow in the circulatory system was 
generated by the response of the ventricular sac to the input 

Fig. 7  Schematic of 2C-veloci-
metry sampled data for alternat-
ing half-planes. In half-plane 
case, planes are halved and 
alternates through the stack. 
Domain is shown in blue, and 
half-planes are in black. Left 
3D view of the half-planes and 
right top view

Fig. 8  Schematic of the pulsatile heart-flow simulator. a Nd:YLF 
green pump laser; b laser light sheet for the illumination of the micro-
fluorescent particles inside the model of the right ventricle; c cylin-
drical lens for converting laser beam to laser sheet; d box filled with 
water containing the right ventricle model; e right ventricle model 

immersed in d; f resistance chambers for adjusting the systemic 
venous and right atrial pressures in the RV model; g positive displace-
ment pump for creating pulsatile flow in the RV model; h open-to-
atmosphere lung reservoir; i computer and data acquisition system; j 
high-speed camera
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waveforms provided by the pump, and the two biopros-
thetic heart valves at tricuspid (inlet) and pulmonary (out-
let) valve positions. We used 27- and 21-mm heart valves 
(St. Jude Medical, Little Canada, Minnesota) for the inlet 
and outlet valves, respectively. Physiological waveforms, 
at a frequency of 60 beats per minute, were created by a 
wave generator (VG2001). Particle-seeded water was used 
as the circulating fluid (Kheradvar and Gharib 2009). Neu-
trally buoyant, orange fluorescent particles with diameters 
in the range of 60–80 μm were used to seed the flow. A 
high-speed digital camera was used (1,000 frames per sec-
ond, 1,280 × 1,024; Y3, IDTVision, Inc., Pasadena, CA) 
whose optical axis was placed perpendicular to the illumi-
nated laser sheet to capture the image sequence of the parti-
cle fields. The pair of images was taken from the planes of 
interest, in which the fluorescent particles were illuminated 
by a Nd:YLF green pump laser (Evolution 30, Coherent, 
Inc., Santa Clara, CA) with pulse separation of 1 millisec-
ond. The laser sheet thickness was 1.5 mm. No combina-
tion of multiple cycles was made in obtaining the 2D veloc-
ity frames.

PIV was performed using PIVview2C (PIV TEC Gmbh, 
Göttingen, Germany). An interrogation window of 32 × 32 
pixels with 50 % overlapping, multi-grid interrogation 
algorithm, 3-Point Gauss Fit (Willert and Gharib 1991) for 
peak detection, normalized median filter equal to 3.0 for 
validation, and median filtering with a kernel size of 3 × 3 
were used. Data were smoothed using a Gaussian-weighted 
kernel of width 1. Standard calibration was performed by 
measuring the diameter of the inlet tube at the position of 
laser sheet. In the particle images, the number pixels on 
the diameter of the tube were counted and converted to the 
physical length based on the measured tube diameter.

4.2  MPPIV performance

We reconstructed the 3D velocity field inside the RV model 
using our MPPIV method. The geometry of the RV model 
in the pumping phase is shown in Fig. 9a. By 2C veloci-
metry, we acquired the planar velocity fields from two 
perpendicular stacks including a total of 12 slices encom-
passing the entire RV chamber at 1,000 frames per sec-
ond (fps), as shown in Fig. 9b. It should be noted that the 
heart-flow simulator allowed us to rotate the RV model 
while keeping the position of the camera intact. In other 
words, the default camera view was set to image the stack 
of yz-planes (Fig. 9b), and by rotating the RV model 90◦, 
the camera could capture the stack of xy-planes, as can be 
seen from Fig. 10. The stacks consisted of eight xy-slices 
for the larger dimension and four yz-slices for the smaller 
dimension of the RV. The planes were perpendicular within 
±5° at their intersection. The results of the 2C-PIV for 
two selected planes are shown in Fig. 10. The data were 
acquired from multiple cycles taking the advantage of 
periodicity of the flow and were phase-locked for three-
dimensional reconstruction. Care was taken to have a per-
fect similarity between experiments in multiple planes. We 
acquired the velocity field in each slice separately and in 
sequence with a single camera. Two supplementary videos 
show the 2D velocity fields, which are obtained by 2C-PIV, 
in two selected planes from the xy- and yz-stacks. Video 
1 shows a yz-plane and video 2 illustrates an xy-plane. In 
video 1, the inlet valve is located on the left and the outlet 
valve is on the right. In video 2, the visible valve is the out-
let valve and the inlet valve is behind the laser sheet. The 
resolution of the velocity field obtained by 2C-PIV in each 
slice was 79 × 63. To reconstruct the flow in 3D, a domain 

(a) (b)

Fig. 9  RV model and the stacks configuration in PIV experiment.  
a Cast of the RV used to manufacture the silicone rubber model. The 
geometry of the RV model is acquired from echocardiography data.  

b Schematic of the two perpendicular stacks used for 3D reconstruc-
tion of the RV velocity field
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including the RV, with the dimensions of 10 × 7.2 × 8 cm3 
at a velocity vector resolution of 64 × 64 × 64, was used 
for interpolation. Both of the orthogonal stacks were used 
for interpolation.

The histogram of the divergence of the simply interpo-
lated velocity is shown in Fig. 11. Out of 643 grid points, 
220,272 points inside the RV model were considered for 
analysis. According to the histogram in Fig. 11, the major-
ity of the flow field initially exhibited a non-physical diver-
gence; therefore, the incompressibility correction (numeri-
cally |∇ · u| < 10−16) represents an important step in the 
creation of a 3D velocity vector field. This can also be rec-
ognized by studying the flow streamlines that were found 
to be mostly continuous in the divergence-free interpolated 
field, whereas in the simply interpolated field they were 
shorter and disconnected. To quantitatively verify this, 
4,913 streamlines were generated inside the RV model. 
We calculated the streamline’s length and normalized it 
by the maximum streamline length in the divergence-free 
velocity field. Figure 12 shows the histogram of the length 

difference between streamlines, originating from the same 
points, in the divergence-free interpolated and the simply 
interpolated velocity fields. It is evident that the length of 
streamlines increased after imposing the incompressibility 
constraint, supporting the previous observation (Fredriks-
son et al. 2011) of a streamlined flow with a moderate cir-
culation behind the inflow region. Figure 13 shows a few 
sample streamlines to support the physical interpretation of 
the result.

4.3  Results related to RV vortex dynamics

Figure 14 illustrates the isosurfaces of �2 for vortex iden-
tification (Jeong and Hussain 1995) at t = 22, 136, and 
699 ms. During the first 650 ms of the 1,000-ms car-
diac cycle, the inlet valve (or the tricuspid valve), which 
is located on the right side of the figure, was open, and 
the RV model was in the filling phase. A vortex ring was 
formed shortly after the inlet valve opened, as shown in 
Fig. 14a. One side of the ring then interacted with the 

Fig. 10  Streamlines obtained from 2C-PIV in the RV model. Two perpendicular views are shown. a Streamline for one of the planes parallel to 
yz-plane at t = 262 ms. b One of the slices parallel to xy-plane at t = 12 ms

Fig. 11  Histogram for the absolute value of divergence of the inter-
polated velocity field normalized by the total number of the grids 
inside the RV model. The total number of grids inside the RV model 
was 220,272. Bins without any bars represent zero counts. The line 
on 10

−14 belongs to the case of the simply interpolated velocity field 

and represents all the grids whose absolute velocity divergence is 
less than 10

−14. For the divergence-free field, all of the 220,272 grids 
exhibited an absolute divergence value less than 10

−16 as shown by 
the red bar
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nearby wall and gave rise to an enhanced local dissipa-
tion that altered the vortex structure, as shown in Fig. 14b. 
At the end of the filling phase, the inlet valve closed and 

the outlet valve, i.e., the pulmonary valve, opened for the 
next 350 ms of the cycle, pumping the fluid out of the RV 
model. In this phase, the vortex structure took the shape 

Fig. 12  Difference in the nor-
malized streamline length inside 
the RV model between simply 
interpolated, L∗

uint
, and corrected 

velocity field, L∗
uint+ucorr

. 4,913 
streamlines were generated 
for each studied field. Lengths 
were normalized by the longest 
streamline in the divergence-
free field. The histogram indi-
cates that the corrected velocity 
field has longer streamlines

Fig. 13  Streamlines inside the RV model during the early diastole, t = 30 ms. a Some streamlines in the simply interpolated velocity field. b 
Streamlines originating at the same points for the divergence-free interpolated velocity field

(a) (b) (c)

Fig. 14  Selected �2 isosurfaces of the flow inside the deforming RV chamber. a �2 = −160 s
−2 at t = 22 ms; in b, �2 = −40 s

−2 at t = 136 ms; 
c �2 = −19 s

−2 at t = 699 ms
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of a streamline filament elongating toward the exit, which 
corresponds to a helical motion along the converging out-
flow tract, as illustrated by Fig. 14c. Figure 15 shows the 
streamlines, including the jet and the vortex around it, in 
the early filling phase of the RV model. The RV wall was 
roughly obtained by image processing of its boundaries 
in different planes, as shown in Fig. 15 by gray isosur-
faces. The unidirectional streamlines show the jet through 
tricuspid valve toward the apex of the RV model. It was 
observed that the trans-tricuspid jet is accompanied by a 
vortex structure that forms during the filling phase of the 
RV, which is shown by the rotational flows around the jet 
in Fig. 15.

5  Suitability of MPPIV for matrix array ultrasound 
transducers

MPPIV is developed as a general method for reconstruct-
ing a flow field in 3D based on multi-planar velocimetry. 
The advantage of this method when compared to the well-
established 3D velocimetry techniques such as stereoscopic 
(Adrian 2005), defocusing (Pereira and Gharib 2002), or 
holographic PIV (Barnhart et al. 1994) lies in its compat-
ibility to echocardiographic applications. The velocimetry 
techniques mentioned above require illumination of the 
flow by a light source(s). However, the current 3D echo-
cardiography does not provide a framework to implement 
conventional PIV techniques with an acceptable temporal 
and spatial resolution. This is mainly due to the limited 
frame rate of 3D echocardiographic acquisitions, a limita-
tion related to computational requirements of parallel pro-
cessing of large datasets of ultrasound RF data in addition 
to the fixed speed of ultrasound waves that would require 
a substantial technological advancement to be overpassed. 

A recent advancement in ultrasound probe technology, i.e., 
matrix array probes, allows simultaneous and multi-plane 
recordings. Using this technology, 2D velocity data in mul-
tiple planes can be acquired simultaneously and recom-
bined a posteriori to reconstruct a 3D velocity field. These 
echocardiographic systems employ matrix array ultrasound 
probes, and the substitution of full-volume scanning with 
multiple scan-planes (which can be done by activating 
fewer rows/columns on the same matrix probe, as shown 
in Fig. 16) would theoretically permit simultaneous multi-
plane acquisitions. Therefore, a MPPIV solution would 
advance the development of imaging technologies for in 
vivo real-time 3D velocimetry with many applications such 
as cardiac imaging.

6  Limitations

From a methodological standpoint, the presence of the 
walls, as well as the different resolutions of in-slice and 
cross-slice data, may result in calculation of the diver-
gence whose accuracy is either inhomogeneous (due 
to the presence of the wall) or non-isotropic (because 
of different resolutions along the different directions). 
These effects may influence the accuracy of the correc-
tion procedure. Refractive index matching was not used 
in 2C-PIV experiments for the RV model (nwater = 1.333,

nplexiglas = 1.490, nsiliconesac = 1.336). There was not much 
reflection at the interface of silicone model, and water as 
their refractive indices is comparable. However, the errors 
associated with optical distortion between Plexiglas and 
water still exist.

Fig. 15  3D divergence-free interpolated velocity field inside the RV 
model is shown during the early diastole, t = 30 ms. The boundary of 
the RV is shown in light gray for clarification. The streamlines, which 
are colored based on the velocity magnitude in cm/s, illustrate the jet 
and the vortex around it. The pink arrows overlaid on the streamlines 
schematically show the direction in which the fluid flows. The jet 
comes from the tricuspid valve during the filling (diastolic) phase

Fig. 16  Schematic of a 3D matrix ultrasound transducer. A matrix 
array ultrasound transducer can be used to simultaneously acquire 
images in multiple planes required by MPPIV. Using fewer ultra-
sound beams instead of the entire beams enables the transducer to 
complete scanning faster during a single heartbeat. These probes are 
currently used for performing 3D echocardiography of heart cham-
bers. In the figure, the schematic of the multiple planes is shown
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7  Conclusions

This work aimed to develop a method capable of improving 
the accuracy of flow fields obtained experimentally in 3D. 
The method employs 2C-PIV and constraints of incompress-
ibility using a fractional step approach, in order to recon-
struct a 3D flow field from multiple perpendicular 2D fields. 
This method can estimate the out-of-plane component of the 
velocity and results in a divergence-free 3D velocity field.

The method was validated using analytical, numerical, 
and experimental methods. Results revealed that by increas-
ing the number of perpendicular planes, the RMS error was 
reduced. In addition, for a divergence-free field with no 
noise, correction improvement was small. We found that as 
the noise level in the flow field becomes larger, (i.e., result-
ing in a larger deviation of the divergence of the velocity 
from zero), the correction significantly improved the sim-
ply interpolated velocity fields. This procedure ensures a 
theoretical consistency that, besides the velocity field itself, 
may dramatically improve the calculations of quantities 
derived from velocity gradients, which intrinsically incor-
porate the zero-divergence condition.
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