
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

GreenGrader: A Carbon-Aware Distributed Autograder System

Permalink

https://escholarship.org/uc/item/2jr0v35k

Author

McSwain, Malcolm Robert

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2jr0v35k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

GreenGrader: A Carbon-Aware Distributed Autograder System

A Thesis submitted in partial satisfaction of the requirements

for the degree Master of Science

in

Computer Science

by

Malcolm Robert McSwain

Committee in charge:

Professor George Porter, Chair

Professor Amy Ousterhout

Professor Aaron Schulman

2023

Copyright

Malcolm Robert McSwain, 2023

All rights reserved.

iii

THESIS APPROVAL PAGE

The Thesis of Malcolm Robert McSwain is approved, and it is

acceptable in quality and form for publication on microfilm and

electronically.

University of California San Diego

2023

iv

DEDICATION

This thesis is dedicated to my dearest great aunt Mary Dunlap, who sadly passed away

while I was writing it. A true devotee of academia and computer enthusiast, it is because of

her that I chose to pursue research in computer science. She was and always will be an

inspiration to me.

v

TABLE OF CONTENTS

THESIS APPROVAL PAGE ... iii

DEDICATION ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vi

LIST OF TABLES .. vii

ACKNOWLEDGEMENTS ... viii

ABSTRACT OF THE THESIS .. ix

INTRODUCTION ... 1

Chapter 1 BACKGROUND .. 4

1.1 Motivation ... 4

1.2 Related Work .. 5

Chapter 2 DESIGN .. 9

2.1 Initial Considerations .. 9

2.2 Research Objectives .. 12

Chapter 3 METHODOLOGY ... 15

3.1 Implementation ... 15

3.2 National Research Platform (NRP) Integration .. 20

3.3 Carbon-Aware Scheduler (CAS) Integration .. 24

Chapter 4 RESULTS ... 28

4.1 Submission Ingestion .. 28

4.2 Real-Time Execution .. 30

4.3 Simulated Carbon Emissions .. 31

CONCLUSION ... 34

REFERENCES .. 36

vi

LIST OF FIGURES

Figure 1: Ingestion Pipeline Diagram ... 11

Figure 2: Execution Pipeline Diagram (v1) .. 12

Figure 3: Execution Pipeline Diagram (v2) .. 19

Figure 4: National Research Platform Topology .. 21

Figure 5: Carbon-Aware Scheduler diagram .. 25

Figure 6: Submissions by Date ... 28

Figure 7: Submissions by Hour .. 29

Figure 8: Carbon Emitted From Autograding over 24 hours ... 31

Figure 9: Carbon Emissions for Different Scheduling Policies ... 32

vii

LIST OF TABLES

Table 1: Summary of Execution Time Data ... 30

viii

ACKNOWLEDGEMENTS

I would like to express my profound appreciation and thanks to my research advisor,

George Porter. This project would not have been possible without his thoughtful guidance. I

would also like to extend this gratitude to the rest of my thesis committee, Pat Pannuto and

Amy Ousterhout, who also advised me throughout the duration of this project.

Furthermore, I want to acknowledge the hard work of my fellow researchers Yibo

Guo, Joshua Santillan, and Gagan Gopalaiah, who helped immensely with this endeavor.

Their contributions truly brought GreenGrader to life.

Finally, I give thanks to my family, friends, and colleagues who supported me along

this journey.

ix

ABSTRACT OF THE THESIS

GreenGrader: A Carbon-Aware Distributed Autograder System

by

Malcolm Robert McSwain

Master of Science in Computer Science

University of California San Diego, 2023

Professor George Porter, Chair

GreenGrader is a carbon-aware distributed autograder system designed to minimize

the environmental impact of computational workloads. Autograding, the automated

assessment of student assignments, is increasingly utilized in computer science education.

While valuable pedagogically, it can be resource intensive. GreenGrader aims to minimize the

carbon footprint of these workloads through energy-efficient computing and carbon-aware

scheduling. It consists of an ingestion pipeline to receive submissions and an execution

x

pipeline to evaluate them using containers across distributed infrastructure. By integrating

with a carbon-aware scheduler and the National Research Platform’s HyperCluster,

GreenGrader enables geographic workload shifting to optimize carbon emissions. The

efficacy of GreenGrader was evaluated using 134 genuine student submissions. Compared to

static geographic placement, GreenGrader reduced carbon emissions by 40.91% by shifting

workloads based on real-time carbon intensity data, demonstrating the promise of carbon-

aware scheduling. Overall, GreenGrader represents an advancement in aligning distributed

computing with ecological stewardship. As society advances towards low-carbon systems,

GreenGrader provides a model for embedding environmental responsibility within

computational workloads.

1

INTRODUCTION

The relentless growth of data centers and their insatiable appetite for energy pose

significant challenges to our global commitment to sustainability. Accounting for an estimated

70 billion kWh, or nearly 2%, of U.S. electricity consumption, datacenters are emblematic of the

larger issue of energy consumption in technology sectors [1]. Within this broad landscape, the

field of distributed computing emerges as a microcosm reflecting the broader challenges of

carbon emission reduction. Amidst these challenges, optimizing the energy usage of datacenters

is an important step toward improving their sustainability.

Autograding plays a vital role in modern education, allowing for the scalable and

efficient evaluation of student work. While valuable, the process of conducting this

computational evaluation can be surprisingly resource-intensive, prompting a need for solutions

that can minimize the environmental impact of these workloads. The challenges of harnessing

renewable energy have practical implications for distributed autograding systems. These systems

can be designed to operate more sustainably by contributing to overall grid stability through

demand-response strategies.

In the quest for carbon efficiency, the virtualization of energy systems has shown

promise. The concept of an "ecovisor," which virtualizes the energy system and exposes

software-defined control, offers a glimpse into how applications might handle clean energy's

unreliability [2]. This tailored control allows each application to manage the unpredictability of

clean energy based on its unique requirements, such as control of server power usage and battery

charging, paving the way for more carbon-efficient operations. By giving applications control

over energy consumption and aligning it with the availability of renewable energy sources, their

carbon footprint can be drastically improved.

2

Simultaneously, the idea of temporal workload shifting has begun to receive attention as

a method to reduce emissions. The principle of shifting computational workloads to times when

energy supply is less carbon-intensive offers a pathway to further align energy consumption with

environmental responsibility [3]. By identifying and analyzing the potential for temporal

workload shifting, and through the examination of time constraints, scheduling strategies, and

the accuracy of carbon intensity forecasts, this concept has shown promising results in specific

regional contexts.

As the dialogue on reducing carbon emissions continues, another promising concept

comes to the forefront: geographical workload shifting. This idea involves moving computational

tasks to regions where the energy supply is derived from more sustainable and renewable

sources, contributing to a significant reduction in carbon emissions. The development of

advanced cloud computing and data management technologies now allows for the shifting of

computational workloads across different geographical locations, a strategy that can effectively

reduce their environmental impact. By utilizing real-time data on energy sources and carbon

emissions, computational tasks can be dynamically allocated to regions where their carbon

footprint would be minimized. This concept stands as a testament to the potential of workload

management in significantly reducing carbon emissions on a global scale. Despite the logistical

challenges involved in implementing geographical workload shifting, the potential impact on

enhancing carbon efficiency and contributing to global sustainability efforts makes it a

compelling avenue for further research and exploration [4].

Drawing inspiration from these insights, this research targets the development of a

carbon-aware distributed autograding system. The questions that guide this inquiry are

multifaceted: How can a distributed autograding system be constructed to be more effective than

3

existing solutions like Gradescope? How can such a system meaningfully contribute to

reductions in carbon emissions? The objectives are clear and actionable: to build and evaluate a

carbon-aware distributed autograding system that institutions can both use and voluntarily

contribute computing resources to, and to utilize this system to perform realistic workload tests

to determine the efficacy and energy savings of carbon-aware scheduling in this context.

In synthesizing these themes, this research aims to enhance distributed autograding

technology with a strong emphasis on carbon awareness. It explores the integration of

computational efficiency and environmental impact, reflecting a wider trend towards aligning

technology with ecological responsibility. Through the lens of this disciplinary intersection, this

thesis contributes to a broader discussion about how we can make our computing systems more

sustainable, underlining our shared commitment to the planet's future.

4

Chapter 1

BACKGROUND

1.1 Motivation

The digital revolution, coupled with the inexorable advance of technological

infrastructure, has given rise to an era where data forms the bedrock of many organizational

processes, including those in the academic space. Academic institutions, with their ever-

increasing reliance on computational tools for research, simulations, and large-scale educational

platforms, have contributed to a surge in datacenter workloads [5]. Datacenters, sprawling

complexes laden with servers and network equipment, form the backbone of this digital

ecosystem. These centers are strategically located around the globe, with countries like the

United States, China, and parts of Europe hosting most of them due to their robust technological

infrastructure and market demand [6]. While many are operated by tech giants such as Google,

Amazon, and Microsoft, smaller entities, including academic institutions and regional

enterprises, also maintain their own datacenters [7]. Their energy needs, primarily for

computational processes and crucial cooling mechanisms, emphasize the significance of

understanding and optimizing datacenter workloads.

Datacenter workloads refer to the diverse range of tasks or jobs that datacenters are

designed to execute, encompassing everything from simple data storage and retrieval operations

to more complex computational tasks such as simulations or data analytics. These workloads can

vary significantly in their computational requirements, duration, and urgency, and they present a

constant challenge in terms of optimal resource allocation. Central to this challenge is the

concept of workload scheduling. At its essence, workload scheduling is the strategic assignment

5

of tasks to specific computational resources within a datacenter, ensuring that operations are

executed efficiently and without delay. The objective of this scheduling is not merely to ensure

operational efficiency but also to minimize costs, ensure fault tolerance, and maintain consistent

service quality [8].

An emerging concept in the realm of workload scheduling is geographical shifting—

essentially the relocation of workloads to different datacenter locations based on a myriad of

factors, including but not limited to energy costs, resource availability, and network congestion

[9]. One pivotal factor driving the importance of geographical shifting is carbon intensity.

Carbon intensity is a metric that quantifies the amount of carbon dioxide (CO2) emissions

produced per unit of electricity consumed, often measured in grams of CO2 per kilowatt-hour

(gCO2/kWh) [10]. The computation of carbon intensity involves analyzing both the sources of

energy (renewable versus non-renewable) and the efficiency of the energy production methods in

place. As global emphasis on sustainability intensifies, the ability to execute workloads in

regions with lower carbon intensity offers a compelling avenue not only for cost savings but also

for significant reductions in the environmental footprint of datacenter operations. This alignment

of technological advancement with ecological responsibility lays the foundational motivation for

this project.

1.2 Related Work

The GreenGrader project combines energy-efficient computing, sustainable cloud

services, and geographic workload shifting to advance discussions in these important fields. A

myriad of research and real-world applications have delved into similar areas, striving to

6

optimize energy efficiency, minimize carbon emissions, and promote sustainability in

computational environments. This section examines various notable works that resonate with the

GreenGrader project's objectives and methodologies.

Agarwal et al. (2021) offers a novel perspective on harnessing renewable energy in data

centers, aligning with the zero-carbon commitments set forth by prominent cloud service

providers. The key challenge identified is the significant variability in the power generated from

renewable sources. Traditional mitigation strategies like utilizing batteries or grid transmission

are recognized as inadequate due to their scalability issues, overhead, or lack of "green-ness."

To address this, the authors introduce the concept of a Virtual Battery (VB). Unlike conventional

approaches that attempt to align power availability with computational demand, the VB

paradigm shifts computational demand to coincide with the availability of power [11].

CarbonCast is an open-source instrument developed for multi-day carbon intensity forecasts,

offering the code and data to the scholarly community freely. This tool facilitates better

anticipation of electric grid carbon intensity over several days, which is crucial for data centers

aiming to optimize their energy consumption based on carbon emissions [12]. Carbon Explorer is

a framework proposed by researchers at Meta, addressing the high-carbon energy consumption

in datacenters by optimizing a mix of solutions for 24/7 carbon-free datacenter operation. The

optimization is contingent on the geographic location and workload, thus allowing for a more

targeted approach in reducing carbon emissions and transitioning towards renewable energy

utilization. The framework also delves into balancing the trade-offs between operational and

embodied carbon, which is crucial for achieving a more sustainable datacenter operation [13].

One of the most related research domains to GreenGrader is the exploration of

geographical workload shifting. This concept involves dynamically allocating computational

7

tasks to regions where the energy supply is predominantly derived from renewable sources,

thereby minimizing the carbon footprint of these operations. Wiesner et al. (2023) scrutinizes the

carbon intensity fluctuations in the public power grid, contingent on energy sources and demand.

It identifies the characteristics of delay-tolerant workloads and evaluates the potential of

temporal workload shifting in various regions. The authors elaborate on shifting computational

workloads towards times with lower carbon-intensive energy supply, examining its potential

impact across Germany, Great Britain, France, and California during 2020 [14].

Furthering the discourse on geographical workload distribution, Lin et al. (2023) delves

into the cost and carbon reduction potential of geographically dispersed data centers with

renewable energy integrations. The paper underscores the challenges posed by the stochastic

nature of incoming jobs and renewable energy generations, and ventures to explore solutions

through carbon-aware load balancing [15]. In the realm of carbon-aware scheduling specifically,

the work by Chen et al. (2012) is of significant relevance. The authors propose a holistic

workload scheduling algorithm aimed at minimizing the consumption of traditional energy

sources, referred to as “brown energy”, across geographically distributed data centers leveraging

renewable energy resources [16]. The GreenGrader project aims to integrate a similar scheduling

model, in collaboration with a real-world carbon-aware scheduler, implemented as part of a joint

research effort by a fellow student in our research group, Yibo Guo [17].

Another notable real-world application of carbon-aware scheduling is embodied in

Google's Carbon-Intelligent Computing System (CICS). The CICS is designed to diminish grid

carbon emissions from Google’s datacenter electricity usage and to cut operational costs by

enhancing resource and power efficiency. The system capitalizes on the temporal flexibility of a

significant fraction of Google’s internal workloads that can tolerate delays, provided they are

8

completed within a 24-hour window. The CICS employs cluster-level Virtual Capacity Curves

(VCCs) to set hourly resource usage limits for each data center, optimizing them based on

various factors including demand predictions and hourly carbon intensity forecasts. These VCCs,

updated daily, set the framework for flexible computing usage, thus reducing compute and power

usage during times of anticipated high carbon intensity by delaying certain computing tasks to

later, more carbon-efficient hours [18].

The novelty of GreenGrader lies in the application of these concepts to the context of

autograding in educational environments. While various projects and research efforts have

explored aspects related to the GreenGrader project, the unique combination of energy

efficiency, geographical workload shifting, and carbon-aware scheduling within the context of

autograding in educational environments is the primary contribution of this thesis.

9

Chapter 2

DESIGN

2.1 Initial Considerations

In the formative stages of the GreenGrader project, a major architectural design decision

was made to modularize the system for better scalability and maintainability. This entailed

strategically decoupling the operations of submission ingestion from its subsequent execution.

Consequently, this led to the establishment of two fundamental, yet distinct components within

our architecture: the "ingestion pipeline" and the "execution pipeline". The rationale behind this

dichotomy was to delineate responsibilities—while the ingestion pipeline was tailored to oversee

the seamless transfer of submissions from the Gradescope platform to a centralized database

repository, the execution pipeline was vested with the task of fetching these submissions,

orchestrating their evaluation within a computational cluster, and subsequently cataloging the

results back into the database. The design of both pipelines would prioritize scalability,

availability, and reliability as primary considerations.

Diving deeper into the intricacies of the ingestion pipeline (Figure 1), our first foray into

the project revolved around an in-depth comprehension of Gradescope's autograding framework.

This foundational understanding was critical in identifying the opportune junctures within

Gradescope's pipeline where submissions could be gracefully intercepted without compromising

the integrity of the process. Upon pinpointing these junctures, our focus then transitioned to

engineering a robust mechanism that would facilitate the submission's transit from Gradescope to

our ingestion pipeline. At this point, we recognized the need to implement a message queueing

system to transport student submissions. After researching various message queue

10

implementations, we chose the MQTT protocol. This protocol, often used in IoT applications,

stood out for its lightweight nature and straightforward machine-to-machine communication.

Also central to this mechanism was the need for a meticulously designed database schema—this

schema not only stored the submissions themselves but also ensured that associated metadata,

crucial for downstream processes, was coherently and securely retained. Among various

database implementations, Postgres stood out because of its robustness, scalability, and its track

record for reliably handling complex schema designs, making it perfectly suited for our

requirements.

Shifting our gaze to the execution pipeline, (Figure 2) a systematic approach was adopted

to ensure efficient and accurate processing. The process would be initiated by extracting a

submission record from the database, which would be subsequently enqueued into a job

management system to await processing. At this point we would harness a black box algorithm,

exogenous to this project, with the primary responsibility of allocating a submission to an

optimally poised server within our cluster for execution. Our scheduling policy and consequently

our definition of “optimal” would vary somewhat depending on the kind of experimentation we

were performing, but most of the time our target would represent the server with the lowest

carbon intensity. Post-execution, we planned to implement mechanisms to meticulously capture

granular details pertaining to the execution—most importantly, the power consumption metrics.

Moreover, other vital metadata would be extracted and processed to provide a comprehensive

overview of each execution cycle. Concluding this phase, the aggregated results, coupled with

the harvested metadata, would be systematically cataloged into a dedicated segment of our

database, thus ensuring a structured and cohesive data storage paradigm.

11

Figure 1: Ingestion Pipeline Diagram

12

Figure 2: Execution Pipeline Diagram (v1)

2.2 Research Objectives

The initial objective was to configure MQTT on two internal UC San Diego servers,

ensuring seamless transmission of a data "blob", essentially a composite of a zip file and the

requisite metadata. With this foundation in place, the subsequent aim was to integrate this setup

with Gradescope's run_autograder script. By accomplishing this, we could extract relevant files

and metadata from the autograder environment. Demonstrating that these files, along with their

associated metadata, could be securely and successfully transferred to our UC San Diego server

was crucial to maintaining the integrity and functionality of the autograding process.

13

Having established an effective data transfer mechanism, the next objective centered on

replicating Gradescope's autograding environment on UC San Diego's infrastructure. By first

locally cloning and building the autograder Docker container on a UC San Diego server, we

aimed to create a mirror environment for submissions inbound from Gradescope’s backend.

Upon successful receipt of submissions, a designated shell script would be triggered, effectively

building a Docker container with both the submission and autograder data. To ensure the

accuracy of this adaptation, we would compare the results.json output with Gradescope’s native

version. This comparative analysis would ensure that our replication remained true to the original

grading standards and metrics and no submission data was lost during the ingestion process.

The integration of these processes into an efficient ingestion pipeline was the next

objective in our design. The plan was to assign a dedicated routing server to operate the

Mosquitto broker. This server's primary function would be to direct incoming submissions to the

most optimal server option, based initially on a rudimentary decision algorithm. In more

technical terms, this involved the introduction of a "status" topic in MQTT. This topic would

empower client servers to broadcast certain parameters, initially a priority value, which would

eventually evolve to encompass power availability data.

The Postgres database would also live on the same server as the Mosquitto broker to

house submission data, ensuring organized storage and easy retrieval. To capture the

unpredictability and variance of real-world power availability, we would introduce hard-coded

adjustable parameters into the servers. These parameters were envisioned to play an important

role in testing the selection and queuing algorithm, ensuring that the system always operates

under optimal power conditions. The eventual goal was to reincorporate this power-related data

14

back into our database following the autograder's operation, facilitating comprehensive power

analytics and potential areas for further optimization.

15

Chapter 3

METHODOLOGY

3.1 Implementation

3.1.1 Ingestion Pipeline

In the early phases of the project, our approach sought to employ command-line piping to

insert records as zip files arrived via the mosquitto_sub stream. However, challenges in

reliability necessitated the creation of a custom ingestion script. A deliberation emerged: either

utilize the Mosquitto C Library with its inherent complexities or adopt a Python or Node based

generic MQTT solution, which would simplify database operations. Given the project's demands,

the latter was chosen, and a test script was promptly devised. Addressing authentication, the

primary threat being unauthorized access to the autograder code, we decided to embed the

authentication secret within the run_autograder script, making it inaccessible to students. To

further enhance security, individual password files were considered for instructors, to be

uploaded to Gradescope and securely transmitted via MQTT. As the project advanced, the focus

shifted to refining the ingestion pipeline and bolstering security mechanisms.

In our testing, we determined with certainty that the method employed to publish in the

run_autograder using mosquitto_pub would neither hang nor timeout due to any delivery

failures. Our observations highlighted that this mechanism remained largely oblivious to whether

the ingestion pipeline had successfully received the payload. This behavior appeared intentional,

stemming from its direct interfacing with the broker rather than the client. While mosquitto_pub

does offer repeated delivery policies for enhanced reliability, it always concludes operations

gracefully following message transmission. Nonetheless, to address potential concerns about

16

message receipt acknowledgment, we considered introducing another topic for confirmation or

handshake between Gradescope and the client. Though this mechanism could potentially ensure

that the ingestion pipeline consistently receives payloads, it became clear that such rigorous

confirmation wasn't a pressing concern.

Next, we established a connection to the Mosquitto broker using Python's paho-mqtt

module and demonstrated that we could successfully print incoming messages to the command

line. At the same time, we set up a database table for submissions and added our first records

manually. To ensure the security of our database interactions, we used the SQLAlchemy ORM in

Python to guard against SQL injection attacks. We then linked these two processes together in

one script to form the basis of our ingestion pipeline. The payload, a directory containing all the

relevant submission files, would be generated, compressed, and published to MQTT through the

addition of a few lines in Gradescope’s run_autograder script. The Python script would then

listen for incoming submissions and insert them upon receipt.

 Finally, we daemonized the ingestion script to ensure its continual operation in the

background, unbound from the user session. This was achieved using 'nohup,' a built-in Unix

command that is used to run another command in the background and will keep running even

after the user has logged out. In alignment with ensuring the robust health and functionality of

the ingestion pipeline, we incorporated NAGIOS, a prevalent and efficient monitoring system.

NAGIOS empowered us to actively monitor the pipeline, providing timely alerts and insights

into the system's operational status. This precautionary measure further fortified the ingestion

pipeline's reliability, protecting it against potential unforeseen discrepancies and operational

interruptions.

17

In a real-world application of the refined ingestion pipeline, it was deployed in the

Gradescope environment for CSE 124, an undergraduate course in networked applications at UC

San Diego. This deployment captured 134 genuine submissions from students, each securely and

systematically stored within the database. This endeavor not only validated the efficacy and

reliability of our ingestion pipeline, but also laid a solid foundation for the development of the

execution pipeline.

3.1.2 Execution Pipeline

Initially, our approach for identifying the server within the cluster having the lowest

carbon footprint involved emulating geographic scheduling by regulating servers situated in the

UC San Diego basement. This was first achieved by expanding the use of MQTT beyond

ingestion to transmit submissions directly to our local cluster servers. Each server in the cluster

consistently ran its own version of the execution daemon, individually listening for incoming

submissions on their unique topics. Upon the receipt of a submission, the data was stored on the

filesystem and uncompressed.

In the subsequent process, a Docker container was dynamically constructed with the

directory holding the student's submission mounted as an internal volume. This setup allowed the

autograder to operate efficiently, executing the necessary assessment of the submitted work.

Post-evaluation, the results were documented on the filesystem, following which the Docker

container promptly exited, waiting for the next submission to grade. Multiple Docker containers

could be run at the same time, allowing concurrent execution of autograding on each server

subject to resource availability. (Figure 3)

18

Integrating the execution process with our ingestion pipeline presented a dual-faceted

challenge. Before execution, submissions needed to be extracted from the database and relayed

to the scheduler. This procedure was isolated from the scheduler to accommodate our

forthcoming scheduling algorithm, anticipated to query an external API. We termed this

intermediary component the "dispatcher", providing a link between the database and the

scheduler. The dispatcher's role was to retrieve ungraded submissions from the database, marked

by a unique numerical status code, and transmit their metadata to the scheduler. Initially, for

testing, a basic round-robin scheduling algorithm was employed as a stand-in for the eventual

API-based scheduling mechanism. This scheduler took the responsibility of dispatching the

submission to the appropriate MQTT channel for the selected node within the cluster.

The post-execution phase demanded a system to efficiently capture the autograding

results alongside any relevant experimental data. Utilizing MQTT once again proved beneficial

for this process. Additional functionality was integrated into the execution daemon, enabling it to

send the resultant output file from the Docker container’s execution to a designated 'results' topic

within MQTT. Simultaneously, a new daemon, named the "receiver," was implemented on the

database machine. This daemon, actively listening on the results topic, was designed to capture

the results files and incorporate them into a separate results table within the database. This dual

action effectively updated the status of the submission record, ensuring it would not re-enter the

scheduling queue.

Finally, a system was needed to enable the database to monitor the available resources

within our GreenGrader infrastructure. In response, we established a mechanism where a worker

node could register to GreenGrader. Upon initiation, the worker would invoke a registration

script, transmitting a message via MQTT to the receiver, thereby declaring its intention to

19

allocate resources. Along with this declaration, the worker transmitted specific system

specifications, including CPU model name, clock rate, number of sockets and cores, as well as

cache and memory size. These specifications were systematically archived in a new table,

designed to keep a record of all available workers. This comprehensive assemblage of

components collectively constituted the refined second version of our execution pipeline,

marking a significant milestone in the realization of the GreenGrader project. This structure

assured an organized and streamlined process, ensuring optimal utilization and management of

resources within the system.

Figure 3: Execution Pipeline Diagram (v2)

20

3.2 National Research Platform (NRP) Integration

3.2.1 Migrating from Docker to Kubernetes

A major turning point in the project was marked by our discovery of the National

Research Platform. NRP is a collaborative endeavor that involves over 50 institutions,

spearheaded by researchers and cyberinfrastructure experts from UC San Diego. The initiative

receives partial funding and awards from the National Science Foundation. One of the primary

offerings of NRP is Nautilus, a HyperCluster specifically designed for executing Big Data

applications housed in containers. It employs Kubernetes to oversee and scale these

containerized applications, working alongside Rook to automate Ceph data services seamlessly.

Nautilus provided a new frontier for the project since it afforded us the opportunity to

realistically schedule workloads in diverse geographic regions around North America, and even

including a few scattered regions in Europe. However, a lot of additional work was going to be

required to allow our existing Docker-based execution pipeline to interface with Nautilus’

Kubernetes platform.

21

Figure 4: National Research Platform Topology

The initial vision was to extend the functionality of the existing execution pipeline to run

in both “Docker mode” and “Kubernetes mode”, however this endeavor posed substantial

challenges. While considerable effort was invested in establishing the environment and tools,

attaining seamless operation akin to Docker was a struggle primarily due to major differences in

container delivery between Docker and Kubernetes. One significant hurdle was the transition

from assignment-based container images to reusable containers that could be pulled from a

registry. The prior approach entailed building a unique container for each submission, a method

inapplicable in the Kubernetes environment, as it was deemed too slow and resource intensive.

The introduction of a bind mount for the submission directory, allowing seamless pass-through

of submission data into the container, was considered to allow the same image to be reused for

multiple submissions. However, this alternative proved incompatible with Kubernetes which

prefers Persistent Volume Claims, (PVCs) functioning as abstract storage requests.

22

Further complicating the task was the issue of container registries. A looming question

was how to efficiently transfer Docker images to Kubernetes post-construction. Kubernetes' lack

of support for loading images from local context, as previously done, exacerbated the problem.

Although a conventional option entails utilizing a container registry that Kubernetes can access,

we were hesitant due to concerns about publishing each assignment's container to a public

registry like Docker Hub. Potential solutions included employing a private hosted registry like

Google Container Registry or establishing our own local registry. While the former offered

scalability, it did incur notable expenses; the latter, despite its feasibility, introduces substantial

complexity to the project.

Tackling these challenges one by one, we first successfully established a private

container registry under the c3lab namespace, providing a secure and efficient repository for our

container images. Although pushing to this registry proved relatively straightforward, it was not

without its time costs, averaging around seven minutes for a 600MB container. The task of

pulling, while operational, unveiled its own set of complexities, demanding a meticulous

approach. The worker now necessitated a custom Kubernetes config file for a user in the c3lab

namespace, a deploy or personal access token allowing permissions to read and write to the

registry, and a shared secret. Despite these additional requirements, the centralized nature of this

solution overshadows the alternative of a locally-hosted registry, streamlining the container

management process in the larger perspective.

Next, we turned our attention back to the ingestion pipeline and implemented a novel

mechanism for automated container building and pushing. The addition of a new table in the

database allowed us to maintain a record of assignments and associated containers. As part of

this amendment, each submission was now checked to ascertain the existence and version status

23

of the corresponding assignment in the database. In scenarios where the container is nonexistent

or outdated, the system promptly builds and pushes the container to the Nautilus private registry

with the corresponding version. This enhancement not only bolstered the efficiency of the

ingestion pipeline but also ensured the continuous availability of the latest container versions,

optimizing the autograding process.

Venturing into the domain of volume mounts and PVCs in Kubernetes, the journey

continued to uncover new challenges. Despite successfully running the autograder container in a

Kubernetes pod, the mission of effectively channeling input to the container and procuring

output remained elusive. Trials with a PVC had been met with mixed results, and alternatives

involving mounting the host directory into the container, mirroring the bind mount approach in

Docker, also failed to yield success, with containers refusing to start for undisclosed reasons.

However, after weeks of struggling to find the best solution to this problem, we finally were able

to harness Nautilus’ Ceph storage service to accomplish this goal.

 In the final iteration of the updated execution pipeline, all the following operations were

combined into one master podspec file. Upon the receipt of a submission, the system utilizes

rclone to upload it to a Nautilus bucket via S3. Kubernetes then deploys an initContainer to

execute rclone sync, ensuring the submission directory is accurately mounted as a volume into

the autograder container. Following successful mounting of the directory, the necessary

assignment image is pulled from the container registry and initiates the running of the container,

marking the commencement of the autograding process. Concurrently, a sidecar container is

deployed that waits for the completion of the autograder container, after which it copies the

results into the volume mount. As the autograder container completes its task and exits, the

sidecar container waits for the appearance of the results directory in the volume mount. Once the

24

results materialize, the sidecar container executes rclone sync to upload the directory to the Ceph

cloud storage, safeguarding the information and ensuring its availability for further analysis and

reference. After the comprehensive completion of the pod operations, the results directory stands

ready for download from any machine connected to NRP.

Armed with the capability to operate on NRP, our focus pivoted towards the task of

unifying the dispersed components of our system. This entailed rigorous end-to-end testing,

spanning from the initial stages of ingestion to the simultaneous execution across multiple

locations. Despite successful individual testing in limited scenarios, the amalgamation of these

isolated components into a harmonious, seamless operational workflow still posed a challenging

venture. Furthermore, we still had one remaining hurdle: integration of our refined system with

the carbon-aware scheduler API. This final collaboration aligned with the ultimate objective: to

analyze the efficacy of carbon-aware scheduling using GreenGrader as a benchmark.

3.3 Carbon-Aware Scheduler (CAS) Integration

The scheduling platform proposed by fellow UC San Diego researcher Yibo Guo presents

a comprehensive geographically distributed cloud scheduling system that prioritizes low-carbon

power utilization. At its core, the platform deploys a two-level scheduling structure. The first

level adjusts the resource footprint across various regions in alignment with their carbon

cleanness and current utilization. It focuses on prioritizing regions abundant in low-carbon power

when the workload is substantial and minimizing the resource footprint in high-carbon areas

when the workloads are fewer. This operates at a frequency, for instance, every 15 minutes. The

second level, the job scheduler, operates in real-time. It efficiently allocates individual jobs to

optimal locations considering the available resources, carbon cleanness from crawled energy

25

data, and the migration cost based on data size and WAN bandwidth. The intent is to sidestep the

migration of high-cost jobs, preserving carbon savings.

The scheduler essentially maintains a balance between carbon savings and migration

costs, ensuring that the energy consumption overhead of moving a workload is substantially

outweighed by the carbon savings from such a movement. This balance is managed using a

defined migration cost index, calculated as the ratio of a job’s predicted compute energy usage to

its predicted data size. This metric serves as a guide for making informed and eco-efficient

migration decisions among a large set of jobs, ensuring the optimization of both energy usage

and carbon footprint reduction.

Figure 5: Carbon-Aware Scheduler diagram

The REST API of the scheduler accepts a JSON object, encompassing parameters such as

runtime, input/output size, a set of candidate regions, the chosen carbon data source, and desired

system resources. This API processes the provided information and responds with a selected

26

optimal region, alongside a score and carbon emitted values for each region. These critical

carbon emission values provided us with valuable metrics for evaluating the GreenGrader

project's effectiveness in forthcoming sections.

In harmonizing this with GreenGrader’s existing infrastructure, the process unfolds as

follows. Initially, the dispatcher formulates an HTTP request to a REST API endpoint, including

all submission workload parameters. This step is instrumental in ensuring that the scheduler has

all the necessary information to make an informed decision. Following the reception of the

optimal region data from the CAS, the construction of a Kubernetes podspec for the specific

submission is initiated. The optimal region data is added to the podspec as the workload node

"affinity," which is Kubernetes' mechanism for node or group selection within a cluster where

the pod should execute. This integration allows for the scheduling and execution of the pod,

while the results, upon completion, are downloaded back to the server and committed to the

database for further analysis and review.

Nevertheless, this integration process was also not devoid of hurdles. A significant

challenge arose with the availability of certain nodes on the NRP network. Occasionally we

found that certain selected optimal nodes were marked as “tainted” and refused to execute

submissions. These nodes, supposedly restricted in their capacity to accept autograding

workloads, posed an obstacle to the smooth operation of the system. Initially, we tried to

construct a ranked hierarchy within the node affinity, so that the workload would transition to the

next most optimal region in terms of carbon intensity should the initially chosen node be

unavailable. However, the end workload location would still deviate from our selected node in

the hierarchy. After surveying over 300 nodes in NRP, we found 53 to be completely untainted.

Once we assembled this list, we built a map of regions to untainted nodes and passed the

27

untainted node to the affinity instead. If no untainted node was found within the optimal region

returned by the API, the next optimal region with an untainted node would be selected, thus

guaranteeing that every workload would be scheduled on the most optimal untainted node

available.

The development of the GreenGrader project marks a journey from idea to execution,

punctuated by both novelty and challenge. Initial efforts were devoted to building a solid

infrastructure, aiming to utilize low-carbon power across various geographical locations. The

scope of what we were able to accomplish grew substantially with the discovery of NRP. Its

introduction to the project presented us with a whole new set of hurdles to overcome as we

rebuilt a lot of components to interface with Kubernetes, a technology that was new to us. The

integration with Yibo Guo’s carbon-aware scheduling platform reflected the final key

development in the project’s evolution. The completion of this integration set the stage for the

evaluation phase, where the effectiveness of GreenGrader in reducing carbon emissions was

assessed.

28

Chapter 4

RESULTS

4.1 Submission Ingestion

Our week-long experimental deployment of the ingestion pipeline in CSE 124 captured

134 submissions from students. The submissions were all for one assignment, titled “Project 4”,

in which students had to implement a distributed block storage service in Go. The assignment

was then evaluated in the Go environment by testing various operations with the student’s

service and ensuring loads were balanced correctly using consistent hashing. Students had the

option to upload their submission directly into Gradescope or to submit a link to a GitHub

repository hosting their code, and approximately 60% of students preferred to use GitHub as the

method of submission.

Figure 6: Submissions by Date

29

Figure 7: Submissions by Hour

We expected to see more submissions closer to the deadline as students will generally try

to use as much time as possible to complete their assignment. Surprisingly, many students chose

to submit their assignment far in advance of the November 30th deadline. This may have been

due to the fact that a lot of students will use the autograder to verify the correctness of their

solution while they are working on it. Furthermore, we saw the highest frequency of submissions

occur between the hours of 6-9pm. Overall, submission times seemed to trend towards late

morning or mid evening with some scattered submissions in the very early morning. Due to our

small sample size, it’s difficult to draw a lot of meaningful conclusions from this data as it is

only representative of one assignment in one course with a small number of students. However,

it does paint a rough picture of autograding workload scheduling with a high degree of variance

30

depending on the time of day. Generally speaking, more submissions occurred at night, which

has consequences for carbon efficiency, as we will examine in the next section.

4.2 Real-Time Execution

After running all of the ingested submissions on our GreenGrader infrastructure, we

found that the mean runtime for each autograding container was 23.352 seconds with a standard

deviation of 2.321 seconds. This was measured on NRP’s servers as the time from building the

container to the results.json file being generated. The mean turnaround time, measured on

GreenGrader’s servers as the time from querying the CAS to downloading the results.json file

from S3, was a significantly longer 73.427 seconds with a standard deviation of 36.465 seconds.

This higher runtime and variance are likely explained by the networking delays that occur when

working with the CAS, NRP nodes, and Ceph storage.

Table 1: Summary of Execution Time Data

 Mean (seconds) Standard Deviation (seconds)

Container Runtime 23.352 2.321

Turnaround Time 73.427 36.465

Sometimes the NRP nodes would immediately pick up a submission and start executing

it; other times, it would get stuck in an initialization state for upwards of 30 seconds, presumably

because of high traffic on that node. This highlights a weakness in using NRP’s infrastructure:

we have no way of knowing what other workloads are being run on a particular node and how

31

that might affect our throughput. Future iterations of the scheduling algorithm should consider

this along with carbon intensity.

4.3 Simulated Carbon Emissions

 Using the real-time data collected in 5.2, we simulated running GreenGrader in a few

different contexts. To simulate execution, we fed each submission’s start time (corresponding to

the time that the student submitted the assignment) and recorded runtime into the CAS, which

uses historical carbon data provided by Green Software Foundation's Carbon-Aware SDK [19] to

provide carbon emissions from computation in kgCO2. Note that this simulation assumes

unfettered access to all NRP nodes, which is not the case in practice; the data produced in 5.2 is

from operating on the subset of untainted nodes.

Figure 8: Carbon Emitted From Autograding over 24 hours

32

 We did some temporal analysis to observe how carbon emissions vary over a 24-hour

period. We simulated the execution of a single submission once every hour and plotted the

carbon emissions in the figure above. As seen in this graph, there is a lot of variation in

emissions based on when the submission is graded. Notably, one of the most optimal time

periods to run the workloads is from 10pm-12am, which is also a period with higher likelihood

of submissions due to deadline proximity.

Figure 9: Carbon Emissions for Different Scheduling Policies

Finally, we simulated the execution of all submissions at their respective start times using

4 different scheduling policies. For static scheduling, we simulated scheduling on ‘us-

west.seattle’ every run. We picked this region specifically as the Pacific Northwest is known to

be one of the cheapest AWS regions [20]. Furthermore, we also simulated scheduling in random

regions, as well as the region with the highest and lowest carbon emissions. (Worst and Optimal,

33

respectively) We found that GreenGrader’s optimal scheduling policy resulted in a 40.91%

reduction in carbon emissions from the static policy, a 35.76% reduction from the random

policy, and a 48.03% reduction from the worst policy.

34

CONCLUSION

This thesis presented the development and evaluation of GreenGrader, a carbon-aware

distributed autograder system. The overarching goal was to design and implement an

autograding framework that could meaningfully contribute to reductions in carbon emissions

from computational workloads. Through the integration of energy-efficient computing, carbon-

aware scheduling, and geographic workload distribution, this project sought to align

technological advancement with ecological responsibility.

The objectives outlined at the onset revolved around constructing an ingestion pipeline to

securely transfer submissions from Gradescope to GreenGrader, developing an execution

pipeline to evaluate submissions using Docker containers across a distributed cluster, integrating

GreenGrader with a carbon-aware scheduler to enable geographic workload shifting, and

analyzing the system's efficacy in reducing carbon emissions. The ingestion and execution

pipelines were implemented in phases, gradually enhancing reliability, efficiency, and

compatibility with new environments like Kubernetes. The integration with the carbon-aware

scheduler API enabled GreenGrader to shift autograding workloads to optimal locations based on

real-time carbon intensity data.

The results highlight GreenGrader's ability to meaningfully reduce carbon emissions

compared to other scheduling policies like random selection or static geographic placement.

When simulated across 134 real student submissions, GreenGrader lowered emissions by

40.91% compared to a static policy. This affirms the potential of carbon-aware scheduling in

distributed autograding systems.

35

While substantial progress was made in realizing GreenGrader's vision, ample

opportunities exist to advance and refine the system. On the data collection front, deploying

GreenGrader across multiple courses and assignments would provide more robust insights into

submission patterns and autograding workloads. Dynamic autoscaling of resources based on

submission volume could further optimize efficiency. Exploring alternative virtualization

technologies like serverless computing may unlock additional benefits.

In closing, GreenGrader represents an important step in aligning distributed computing

with environmental stewardship. Its development required navigating the intersection of

education, technology, and sustainability. As society pushes towards a low-carbon future,

systems like GreenGrader will grow increasingly vital. With diligence and collective will, the

computing community can transform these tools into beacons of ecological promise.

36

REFERENCES

[1] Shehabi, Arman, Sarah Josephine Smith, Dale A. Sartor, Richard E. Brown, Magnus

Herrlin, Jonathan G. Koomey, Eric R. Masanet, Nathaniel Horner, Inês Lima Azevedo,

and William Lintner. "United States Data Center Energy Usage Report." Lawrence

Berkeley National Laboratory, June 2016.

[2] Souza, Abel, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin,

and Prashant Shenoy. "Ecovisor: A Virtual Energy System for Carbon-Efficient

Applications." Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, vol. 2, January 2023, pp.

252-265.

[3] Hanafy, Walid A., Qianlin Liang, Noman Bashir, David Irwin, and Prashant Shenoy.

“CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-

Efficiency.” Proc. ACM Meas. Anal. Comput. Syst., vol. 7, no. 3, article 57, December

2023.

[4] Lindberg, Julia, Bernard C. Lesieutre, and Line A. Roald. "Using Geographic Load

Shifting to Reduce Carbon Emissions." 22nd Power Systems Computation Conference,

2022.

[5] Shekhawat, Virendra Singh, Avinash Gautam and Ashish Thakrar, "Datacenter Workload

Classification and Characterization: An Empirical Approach," 2018 IEEE 13th

International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India,

2018, pp. 1-7.

[6] Cisco. "Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper."

2018.

[7] Basu, Saptarshi. "A Study on Selection of Data Center Locations." International Journal

of Innovative Research in Computer and Communication Engineering, vol. 4, no. 8, pp.

14613-14616, August 2016.

[8] Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. “Energy-Efficient

Management of Data Center Resources for Cloud Computing: A Vision, Architectural

Elements, and Open Challenges.” Proceedings of the 2010 International Conference on

Parallel and Distributed Processing Techniques and Applications, July 2010.

[9] Qureshi, Asfandyar, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs.

"Cutting the Electric Bill for Internet-Scale Systems." ACM SIGCOMM Computer

Communication Review, August 2009.

37

[10] Masanet, Eric, Arman Shehabi, and Jonathan G. Koomey. "Characteristics of Low-

Carbon Data Centres." Nature Climate Change, vol. 3, no. 7, pp. 627-630, June 2013.

[11] Agarwal, Anup, Jinghan Sun, Shadi Noghabi, and Srinivasan Iyengar. “Redesigning Data

Centers for Renewable Energy.” HotNets '21: Proceedings of the Twentieth ACM

Workshop on Hot Topics in Networks, November 2021.

[12] Maji, Diptyaroop, Prashant Shenoy, and Ramesh K. Sitaraman. “CarbonCast: Multi-Day

Forecasting of Grid Carbon Intensity.” BuildSys ’22, November 2022.

[13] Acun, Bilge, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj

Chakkaravarthy, David Brooks, and Carole-Jean Wu. “Carbon Explorer: A Holistic

Framework for Designing Carbon Aware Datacenters.” ASPLOS 2023: Proceedings of

the 28th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, vol. 2, pp. 118-132, January 2023.

[14] Wiesner, Philipp, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz

Thamsen. “Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon

Emissions in the Cloud.” Middleware ‘21L Proceedings of the 22nd International

Middleware Conference, pp. 260-272, December 2021.

[15] Lin, Wei-Ting, Guo Chen, and Huaqing Li. "Carbon-Aware Load Balance Control of

Data Centers With Renewable Generations." IEEE Transactions on Cloud Computing,

vol. 11, no. 2, pp. 1111-1121, February 2022.

[16] Chen, Changbing, Bingsheng He, and Xueyan Tang. "Green-Aware Workload

Scheduling in Geographically Distributed Data Centers." 4th IEEE International

Conference on Cloud Computing Technology and Science Proceedings, December 2012.

[17] Guo, Yibo, and George Porter. “Carbon-Aware Inter-Datacenter Workload Scheduling

and Placement.” Poster Session of the 20th USENIX Symposium on Networked Systems

Design and Implementation (NSDI'23), 2023.

[18] Radovanovic, Ana, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte,

Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric

Mullen, Kendal Smith, MariEllen Cottman, and Walfredo Cirne. “Carbon-Aware

Computing for Datacenters.” arXiv preprint arXiv:2106.11750, 2021.

[19] Green Software Foundation. "Carbon Aware SDK." GitHub, v1.1.0,

https://github.com/Green-Software-Foundation/carbon-aware-sdk. Accessed October

2023.

[20] Amazon. “AWS Local Zones pricing.” https://aws.amazon.com/about-aws/global-

infrastructure/localzones/pricing/. Accessed October 2023.

https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://aws.amazon.com/about-aws/global-infrastructure/localzones/pricing/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/pricing/

