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The elephant in the room: how to define a rotation-aware Available Energy

Alberto Scotti1, Presenting Author and Pierre-Yves Passaggia2

Dept. of Marine Sciences, UNC-CH
1ascotti@unc.edu; 2passagia@live.unc.edu

Abstract
The issue of how to include the effects of rotation in incompressible fluids within the
Available Potential Energy framework is revisited. While it is trivial to show that the
Coriolis force does not do any work on the system, by no means it can be ignored when
considering the energetics of flows where rotation plays a O(1) role (e.g., in large scale
geophysical flows). In this short note, we sketch a framework to include such effects. The
key point is to recognize that just as conservation of volume limits the minimum potential
energy that a system can attain (because the mass cannot be all squeezed near the bot-
tom), conservation of Potential Vorticity in general prevents the system from accessing
certain states that would otherwise be accessible if volume (and hence, density) where
the only conserved quantity along trajectories. The Casimirs emerge as the functions
that encode in the local Available Energy (note we dropped the Potential qualifier) the
dynamical constraints.

1 Introduction

The concept of Available Potential Energy (APE) in one form or another has been around
since the early 1900’s. Later, Shepherd (1993) showed that dynamically equivalent Hamil-
tonians can be introduced if the system admits Casimirs which can be used to define
an APE. Without explicitly naming them Winters et al. (1995) used a specific class of
Casimirs to construct a global APE and to study mixing within a stratified turbulent
fluid. More recently,Scotti and White (2014), using the same Casimirs of Winters et al.,
introduced a local APE. Leveraging the convexity of the local APE, they showed how it
can be partitioned between a turbulent and a mean component, in the same way that the
kinetic energy can be split between a mean and turbulent component. Zemskova et al.
(2015) used this partition to calculate how KE and APE are split between mean and
turbulent (eddy) component in a global ocean simulation. They showed that the amount
of APE contained in the mean flow is 3 orders of magnitude larger than turbulent KE,
mean KE and turbulent APE combined. Most of the mean APE is associated to the
sloping isopycnals in the Southern Ocean. This suggests that, on planetary scales, APE
must include the effects of rotation.

It is well known that the Coriolis force does not do any work on the system, therefore
rotation ”disappears” almost immediately when we move down the energetics path. In
this paper, we reformulate the problem of APE using a variational approach that identifies
the Casimirs with the Lagrange multipliers that enforce a set of constraints associated to
the relevant conserved quantities. In non-rotating systems, conservation of density along
Lagrangian trajectories is, with some caveats, the relevant constraint, and, by enforcing it,
the framework recovers the local formulation of Scotti and White (2014). When rotation
(strongly) affects the dynamics, in addition to conservation of density, we have to include
conservation of Potential Vorticity (PV) among the constraints. In the latter case, the
”ground state”, i.e. the state that minimizes the total energy while preserving the initial
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distribution of density and PV, must contain more energy than in the case where the PV
constraint is not enforced, and thus the Available Energy is less.

The paper follows a propaedeutic approach: we first discuss the main ideas with a toy
model. Next, we apply them to the more interesting geophysical problem of rotating
shallow-water flows, for which, aside from the total volume, PV is the dynamically relevant
constraint; finally we formulate the problem for a rotating Bousinnesq fluid where both
PV and density are relevant.

2 An illustrative example: a classical spin system in an external magnetic field

The precession of a classical spin under the action of a steady magnetic field provides the
simplest yet non-trivial example of the type of analysis that we will pursue in the rest of the
paper. The phase space is three-dimensional. Let S = (S1, S2, S3) and B = (B1, B2, B3)
be the components of the spin and magnetic field respectively. Then

dSi

dt
= −(B× S)i. (1)

Let
H(S) = −SkBk and J ij(S) = εijk S

k, (2)

be the Hamiltonian and the Poisson tensor (a function on the phase space), where εijk is
the totally antisymmetric rank-3 tensor. Eq. (1) is equivalent to the Hamiltonian system

dSi

dt
= J ij(S)

∂H(S)

∂Sj
. (3)

J being odd-dimensional and antisymmetric, we have detJ = 0, thus J is degenerate (for
a discussion of Hamiltonian systems with singular Poisson tensors see Littlejohn, 1982,
from which this example is adapted). This property has two important consequences:
first, equilibrium points need not, and in general are not, extrema of the Hamiltonian
function; second, it implies the existence of functionals C(S) on the phase space such that

J ij ∂C(S)

∂Sj
= 0, (4)

everywhere in phase space (recall that the determinant is zero everywhere in phase space).
For this particular simple system, it is immediate to verify that the functionals that satisfy
(4) are arbitrary functions of SiS

i, and without loss of generality (if C is a Casimir, then
any f(C), with f sufficiently smooth, is a Casimir too) we can take

C(S) = a|S|2. (5)

Since they commute with any functional over the phase space, functionals that satisfy
(4) are called Casimirs, and are obviously conserved quantities. They owe their existence
and nature to the degeneracy of the Poisson tensor, and not on the specific nature of the
Hamiltonian. The existence of Casimirs means that some quantities are conserved along
the motion (the Casimirs itself). Thus, Casimirs introduce a foliation of the phase space,
that is the phase space can be partitioned in manifolds (leaves), within which orbits must
be contained. Moreover, for a given J , the dynamics does not change if we replace H in
(3) with

H(S) = H(S) + C(S). (6)
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Let us now approach the problem from a different direction: From (1) we know (by
simple inspection, no need to introduce Casimirs) that the modulus of the spin |S| does
not change along trajectories, and we ask what is the minimum energy (as given by (2))
attainable by a point that at t = 0 has a spin whose modulus is s. This is a variational
problem subject to a constrain, and we can turn into an unconstrained variational problem
if we introduced a suitable Lagrange multiplier. That is, we seek to find the extrema of

H′(S) = H(S) + λ(|S|2 − |s|2), (7)

in the enlarged space (λ,S). Without loss of generality we can set B = (0, 0, B), and the
extrema are (λe,Se) = ±(B/2S0, 0, 0, s), which corresponds to the minimum and maxi-
mum in energy. By comparing H with H′, we see immediately that the part containing
the Lagrange multiplier can be identified as the difference between a suitable Casimir
evaluated on S and the same Casimir evaluated on the extremal solution. Further, the
solution of the optimization determines not only the extrema, but also singles out the
right Casimir which is (here we choose the ones that minimizes the energy)

Ce(S) =
B

2s
|S|2. (8)

Note that the right Casimir depends on the spin of the system at t = 0, as well as
the details of the Hamiltonian (via its dependency on B). Since dynamically we cannot
distinguish between H and H, we can use the latter as a definition of energy, so that the
energy at the minimum is

H(S0) = −BiS
i
0 + Ce(S0), (9)

and the Available Energy of a point on the leaf is

EAE(S) ≡ H(S) + Ce(S)−H(S0). (10)

This is of course a very simple problem, but it highlights the main ingredients of the
recipe applicable to a rotating fluid:

1. The degeneracy of the Poisson tensor implies the existence of conserved quantities
other than the naive energy functional.

2. The same degeneracy results in equilibrium solutions that need not be extrema of
the naive energy functional.

3. Point 1 implies that the dynamics is constrained to a manifold of the phase space.
The constraints can be accounted by the Casimir. To each manifold its own Casimir.

4. For a given set of constraints, we can both determine the appropriate Casimir and
find the state of minimum energy.

5. By adding the appropriate Casimir to the naive energy, we can introduce a dynam-
ically equivalent energy functional (the Available Energy) so that the equilibrium
solutions are its extrema.

6. The Available Energy measures the amount of energy that can be extracted from
the system by a mechanism that does not change the constraints.
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3 A first fluid example: rotating shallow-water flows

Now we consider the more interesting problem of a shallow water system observed in a
rotating frame under f -plane approximation. In this case, the phase space is described
by the horizontal components of the velocity vector v and the height of the free-surface
h. Without loss of generality, we choose units in which the density is equal to one. This
system admits a Hamiltonian formulation with a degenerate Poisson tensor (a clearly
presented Hamiltonian formulation for several geophysically relevant flows, including this
one, can be found in Shepherd, 1990). The Hamiltonian is

H[h,v] =

∫ (
h
v2

2
+ g

h2

2

)
dA, (11)

where dA is the area element. Here and thereafter we use square brackets to indicate that
a quantity is a functional of the argument(s). The Casimirs are

C[h,v] =

∫
hF(p)dA, (12)

where p = (ω + f)/h, the sum of the relative and planetary vorticity, is the PV, and F
is an arbitrary function of PV. The integral is taken over the domain occupied by the
fluid. Relatively to the simple spin system considered earlier, we have now a much wider
latitude in choosing the Casimirs.

Consider the one-parameter set of functions Fs(p) = θ(p−s), where θ(x), is the Heaviside
function and a trajectory q(t) in the phase space. The collection of the values spanned
by the Casimirs associated to this family evaluated over q(t) defines a function (hq and
pq are the surface elevation and PV of q)

C(s, t) =

∫
hq(t)θ(pq(t) − s)dA, (13)

which has the straightforward interpretation of measuring the volume occupied by parcels
(in the Lagrangian sense!) of fluid whose PV is greater than s at time t. As the flow
evolves, q(t) meanders in the phase space, but dC/dt = 0. As parcels move around, the
volume occupied by parcels with PV greater than s cannot change. In particular, the
constancy of C(pmin, t) expresses the conservation of total fluid volume. C(s, t) evaluated
at an arbitrary time, which, from now on, we can take to be 0, identifies the manifold in
phase space to which the point q(t) in phase space belongs. Also, from now on we drop
the explicit dependence on time. We call C(s) the PV Volumetric Distribution Function
(VDF). Finally, let the support of C(s) be [pm, pM].

To calculate the Available Energy of a point q in phase space, we first calculate the
corresponding PV VDF via (13). Next we set up the variational problem using a suitable
Lagrange multiplier

H = H +

∫ pM

pm

ψ(s)

[∫
hθ(p− s)dV − C(s)

]
ds (14)

where ψ(s) is the Lagrange multiplier that enforces the PV VDF constraint. Let

Ψ(p) ≡
∫ p

pm

ψ(s)ds. (15)
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Interchanging the order of integration, and using the properties of the Heaviside function,
we obtain

H[h,v, ψ] =

∫ [
h
v2

2
+ g

h2

2
+ hΨ(p)

]
dA+

∫ pM

pm

ψ(s)C(s)ds, (16)

which connects the Lagrange multiplier ψ to a suitable Casimir (we use Casimir to denote
both the proper functional form, i.e., integrated over the domain or just the integrand).
Taking the Frechèt derivatives we obtain1

0 =
δH
δh

= gh+
v2

2
+ Ψ(p)− pΨ′(p), (17)

0 =
δH
δvi

= hvi − ε3ji∂jΨ′(p), (18)

0 =
δH
δψ

=

∫
hθ(p− s)dA− C(s). (19)

We have four equations (17-19) whose solutions, denoted with an asterisk, (h∗,v∗,Ψ∗)
specify the location of the extrema on the manifold identified by the given PV VDF as
well as the Casimir of the manifold. Before considering solutions to the above system,
we point out some general properties. We have already observed that conservation of
total volume is already accounted for as the s→ pm limit of (19). Moreover, the system
of equations is invariant under the map (h,v,Ψ) → (h,v,Ψ + λp), and we leave to the
reader to verify that the total vorticity in the ground state is determined by selecting
the appropriate λ (hint: λ is Lagrange multiplier associated to conservation of the total
(relative plus ambient) vorticity). From (18) we see that ψ(p1) − ψ(p2) is the flow rate
carried by the ground state between two streamlines having (constant) PV equal to p1
and p2 respectively. Equivalently, the Lagrange multiplier evaluated on the PV is the
streamfunction for the transport.

Once a solution is determined, we modify the naive Hamiltonian by the addition of the
manifold-dependent Casimir

Hc(h,v) = h
v2

2
+
gh2

2
+ hΨ∗(p). (20)

The total Available Energy for a point (h,v) on the manifold is

EAE[h,v] ≡
∫

[Hc(h,v)−Hc(h∗,v∗)]dA =

∫
[H(h,v)−H(h∗,v∗)]dA. (21)

The last equality follows from the fact that if (h,v) and (h∗,v∗) are on the same manifold,
they have the same PV VDF whence

∫
hψ∗(p)dA =

∫
h∗ψ∗(p∗)dA, a simple exercise that

we leave to the reader (hint: on the manifold, the term added to the Hamiltonian in (14)
is zero). The local Available Energy as

EAE ≡ (Hc(h,v)−Hc(h∗,v∗))h
−1, (22)

which, in general, is different from H(h,v) − H(h∗,v∗). By construction, it is locally
convex near the extrema, and thus satisfies the requirements of a ”good” energy functional.

1The cavalier attitude with the position of the indexes is due to the underlying assumption is that the
metric of the plane is diagonal, so co- and contra-variant components are identical.
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For lack of space, we are not considering specific solutions. However, we invite the reader
to verify that for manifolds whose extrema are such that ω∗/f � 1, and v2∗/gh∗ � 1,
so that p∗ ' f/h∗, to lowest order the Casimir does not depend on C(s). We call these
geostrophic manifolds, and it is possible to characterize which C(s) describe geostrophic
manifolds. What is clear is that EAE is very different from g(h−h∗)2/2, (with h∗ = V/A,
V being the total volume and A the total area), which is what we would have obtained
had we sought extrema subject only to conservation of total volume. The PV constraint
shifts the extrema in phase space, and in general adds a non-zero amount of kinetic energy
to the ground state.

4 A meatier case: continuously stratified, rotating Boussinesq equations

For these systems, the two quantities conserved along Lagrangian trajectories are
buoyancy b ≡ g(ρ0 − ρ)/ρ0 and PV p ≡ ∇ · (Ωb), where Ω is the total (ambient +
relative) vorticity. Note that the above defition of p differs from the standard one by an
inconsequential constant factor. The Hamiltonian is

H =

∫ (
1

2
v2 − bz

)
dV. (23)

The Casimirs of the system are the functionals

C[b, p] =

∫
C(b, p)dV, (24)

with C(b, p) an arbitrary function, which follows trivially from the Lagrangian invariance
of b and PV.

A manifold in phase space is identified by the (constant on the manifold) VDF of PV and
buoyancy (in this case, a two-parameter family of Casimirs)

V (q, s) =

∫
θ(p(x)− q)θ(b(x)− s)dV, (25)

which measures the volume of all fluid parcels whose buoyancy is greater than s and PV
greater than q. Following the established blueprint, we seek to minimize the Hamiltonian
subject to a given VDF of buoyancy and PV. Let

H = H +

∫ pmax

pmin

∫ bmax

bmin

ψ(q, s)

[∫
θ(p(x)− q)θ(b(x)− s)dV − V (q, s)

]
dqds =

= H +

∫
C(p, b)dV −

∫ pmax

pmin

∫ bmax

bmin

ψ(q, s)V (q, s)dqds,

C(q, b) ≡
∫ p

pmin

∫ b

bmin

ψ(q, s)dqds (26)

and by taking Frèchet derivatives w.r.t. b, v and ψ, we arrive at the following set of
equations

δH
δb

= −z + Cb −∇ · (CpΩ) = 0, (27)

δH
δvi

= vi +∇i × (Cp∇b) = 0, (28)

δH
δψ

=

∫
θ(p(x)− q)θ(b(x)− s)dV − V (q, s) = 0, (29)
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where Cb = ∂C/∂b and similarly for p.

4.1 Apedic manifolds

In our formulation, the Winters et al. (1995) APE, based on the isochoric resorted profile,
corresponds to a ground state in which v∗ = 0 and b∗ = b∗(z). This ground state can be
obtained from the system above if (29) is replaced by its q → −∞ limit, i.e. only enforcing
the conservation of buoyancy constraint. In this case, assuming a simple container of
constant area A, simple algebra shows that we can take C∗p = 0 (again, denoting with
asterisks the solution), and thus v∗ = 0. Then (27) gives

z = C∗b(b), (30)

hence b must be a function of the vertical coordinate alone. Assuming (30) can be inverted
(which will have to be established a posteriori), we can use b as a vertical coordinate.
Then, from the q → −∞ limit of (29) and (30) we have∫

θ(b− s) |C∗bb| dbdxdy = V (−∞, s). (31)

Taking the derivative w.r.t. s of the above expression we obtain

|C∗bb| = −Vb(−∞, b)/A. (32)

Choosing the sign corresponding to the minimum, we recognize ipso facto C∗b(b) as the
reference height z∗(b) based on an isochoric restratification introduced by Winters et al.
(1995), and because of (30) its inverse gives the buoyancy profile b∗(z) of the ground state.
We leave to the reader to verify that if the VDF satisfies

Vb(p, b)

Vb(−∞, b)
= H(−fzN2

∗ (b)− p), (33)

where N2
∗ (b) = ∂b∗/∂z is the Brunt-Väisälä (BV) frequency of the reference state, the

Winters et al. ground state is a solution to the original system as well. In particular, for
a non-rotating case (33) implies that over manifolds where the PV is constant and equal
to zero, the Winters et al. solution, and the localized theory of Scotti and White (2014)
which is based on the Winters ground state, is appropriate. We call manifolds whose
buoyancy distribution coincides with an isochoric restratification apedic 2 manifolds. The
velocity of the ground state of apedic manifolds need not be zero. Several interesting
cases fall are described by apedic manifolds, e.g. any non-rotating flow which is initially
two-dimensional. More generally, we have the following result: In an inertial frame, a
necessary condition for a manifold to be apedic is that the vorticity of the ground state
normal to surfaces of constant PV must be constant along streamlines. The proof, based
on exterior calculus, is too long to fit in this note.

4.2 The local Available Energy

Once the ground state and the Casimir of a manifold is found, the local Available Energy
is

EAE =
1

2
(v2 − v2∗)− (b− b∗)z + C∗(b, p)− C∗(b∗, p∗). (34)

2From the Greek ἄπεδος, meaning level, flat.
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Note that, in general,the ground state has both potential and kinetic energy. Also, and
this is a general result, if (b, p) belongs to the manifold identified by C∗, then C∗(b, p) −
C∗(b∗, p∗) does not contribute to the volume integrated Available Energy.3 This is why,
inter alia, the local formulation of Scotti and White (2014) recovers the global formulation
of Winters et al. (1995). For strongly rotating systems, we conjecture the existence of
geostrophic manifolds, akin to the ones discussed in sec. 3, characterized by large values
of the potential energy. This mechanism would show that the exceedingly large amount
of APE found in the ECCO2 analysis is due to having the ”wrong” ground state.

5 The role of diabatic processes

The role of Casimirs is to enforce the appropriate constraints on the system. Diabatic
(mixing) processes change the constraints over time, and this is why the evolution of
the (local) Casimirs along Lagrangian trajectories in the presence of mixing is key in
characterizing the irreversible effects of diabatic processes on energetics. Within the
Winters et al. APE framework, mixing always raises the energy of the ground state, and
thus it decreases the AE of the system. On systems where PV is a dynamically important
constraint, the situation is more complex. The PV constraint can keep a substantial
amount of energy ”locked up” (both as kinetic and potential) in the ground state. Mixing,
by eroding the PV constraint, may free up some of the energy. A clarification of the
relevant mechanisms would help understanding the role of mixing in strongly rotating
flows.
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