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ABSTRACT OF THE DISSERTATION 

 

Evaluating Modern STDP Rules and Their Role in Embedding Information in the Brain 

 

 

by 

 

Vikash Nagin Morar 

 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2023 

Professor Gabriel A. Silva, Chair 
 

Pattern recognition is a core facet of learning any concept, whether it be a literal 

pattern in an image or a predictable stimulus-response pattern as in operant conditioning. 

From the molecular mechanisms up to the behavioral consequences, patterns can be 

embedded to allow humans to learn from past experiences to better predict future outcomes. A 

key player in this embedding process is the spike-timing-dependent plasticity (STDP) of the 

connections between neurons within the brain. STDP is theorized to leverage the spiking 
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activity of neurons resulting from various stimuli according to the initial rule proposed by 

Donald Hebb: neurons that fire together wire together. However, the actual process by which 

STDP learning takes place remains disputed, especially in cases such as inhibition, where 

neurons do not actually support subsequent firing. This dissertation tackles a few of these 

issues from multiple angles: (1) An evaluation of many different proposed STDP rules and 

how they have been justified experimentally and employed computationally. (2) The creation 

of a computational model that highlights the value of the STDP-mediated embedding of a 

stimulus into the architecture of a spiking neural network in a manner that could resemble 

brain embeddings. (3) A proposed approach to teaching students by taking advantage of the 

natural tendency of the brain to identify patterns and use them to create connections in new 

contexts. Here, we employ a biologically-inspired spiking neural network model with edge 

latencies, refractory periods, and modern STDP rules to demonstrate the potential of the brain 

to embed information within its architecture via synaptic weights. These embeddings may be 

quite relevant in the brain where the astrocyte syncytium may be able to access them to 

communicate local learning information on a more global scale. 
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Chapter 1 Synaptic Plasticity: From Neuron to Neural Network to Robot 
 

1.1 Introduction 

Learning and memory are phenomena of great interest to both neuroscience and machine 

learning. On the biological side, the ongoing electrical activity within the brain culminating in 

perception and recognition leads to numerous theoretical questions and experiments. With 

computer science, the quest to design smarter, more capable algorithms leads many to assess 

which features and structures lead to efficient computation on designated hardware. These two 

fields navigate similar inquiries with different goals, but there is much overlap. One area where 

both fields can mutually benefit from each other is neural computation. By investigating how the 

brain processes information, machine learning models can attempt to match its computational 

efficiency. Similarly, by using computational models, complementary functions within the brain 

can be assessed in a way that current experimental methods are unable to isolate1,2.  

A key aspect of neural computation is the structural changes that take place to produce 

necessary computational modifications3. These changes, which occur at the synapses between 

neurons in the brain, have a storied history of being critical to learning4–6. Decades ago, synaptic 

plasticity was challenged as a method of learning based on four fundamental criteria: whether 

synaptic changes were detectable, if they could be mimicked to induce false memories, if 

preventing synaptic changes prevented memory formation, and if synaptic changes could be 

retroactively undone to remove memories7. The first criterion, detectability, has been easily 

achieved with modern imaging technologies in vivo as mentioned previously as well as in vitro8–

10. Numerous experimental studies have demonstrated the importance of structural changes 

within the brain for auditory, visual, and motor function and recognition11–14. To meet the second 
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criteria, false fear memories have been created through optogenetics in murine experiments as 

well15,16. For the third, several studies have demonstrated that by blocking the molecular 

mechanisms of synaptic plasticity, learning is inhibited as well17–19. Lastly, one study has even 

demonstrated memory loss as a direct effect of dendritic spine loss in the murine hippocampus20. 

Another has correlated the lifespan of episodic memory with the lifespan of hippocampal 

dendritic spines21. With mounting evidence that structural changes tie directly to memory 

formation and learning, there becomes greater need to investigate the mechanism at work.  

Spike-timing-dependent plasticity (STDP) was originally proposed by Dr. Donald Hebb 

through his theory often paraphrased as “neurons that fire together wire together”22. Hebbian 

STDP claims that if one neuron firing leads to the subsequent firing of another, the connection 

(synapse) between the two neurons should be strengthened, as it seems to be purposeful and 

functional. Extended further, the magnitude of the change can be quantified as a function of the 

time between the spikes23. There have been many different proposed rules for STDP, either 

justified through experimental data or computational performance24,25.  

This review serves to investigate the neuroscientific bases and highlight the 

computational utilities of these various rules. In addition, neuromorphic and robotics applications 

will also be assessed, as many have taken inspiration from biological and artificial neural 

network implementations of STDP26. 

 

1.2 Experimental Evidence for Hebbian STDP 

 For a discussion of STDP rules, the curve to begin with is the classic hyperbolic 

cotangent curve experimentally observed in murine hippocampal neurons27,28. This curve, 

sometimes referred to as “Hebbian STDP” is the simplest interpretation of Hebb’s theory. 
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According to Hebbian STDP, if a presynaptic neuron fires prior to a postsynaptic neuron, the 

synapse between them strengthens as a function of the delay between the firings (known as long-

term potentiation or LTP). In contrast to this, if the postsynaptic neuron fires first, the synapse is 

weakened as a function of the time between those firings (known as long-term depression or 

LTD). As such, each synapse is evaluated via the pairs of firings that take place between any two 

adjacent neurons. Shorter delays result in larger changes in either direction depending on which 

neuron fired first. Further experimental data for this rule has been observed in murine pyramidal 

cells by observing the increases in excitatory postsynaptic potentials (EPSPs) resulting from 

corresponding activity29.  

To dive deeper into the mechanism behind this STDP rule, studies have investigated the 

different biochemical pathways by which these structural changes can take place. One hybrid 

experimental computational study assessed the impact of noise on N-methyl-D-

aspartate(NMDA)-mediated STDP when compared to endocannabinoid-mediated STDP30. The 

study concluded that endocannabinoid-STDP appeared to be more robust to noise until the 

activity of the neurons increased past a certain threshold. This observation demonstrates that 

redundancy can be quite beneficial in the brain. With two different pathways to implement 

STDP, neurons can respond appropriately regardless of the situation.  

When trying to model STDP rules in the brain, it is quite uncommon to observe isolated 

spike pairs. To address the realism of the Hebbian STDP rule, one group monitored murine 

visual cortex slices to track the activity-induced plasticity that resulted from the spike trains31. 

While they were still assessed as pairs, as the rule requires, the spikes measured were all part of 

larger contingents. This allowed for a more realistic scenario for plasticity to occur within. The 
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observed synaptic changes followed the proposed Hebbian STDP rule, strengthening the 

evidence that this rule could be accurate, at least in the visual cortex.  

As technology has advanced, the Hebbian STDP rule has been investigated down to its 

molecular mechanisms. One group employed two-photon microscopy to investigate the 

relationship between STDP-mediating NMDA receptors and actin polymerization in murine 

pyramidal neurons32. As it has been proposed that structural changes to dendritic spines 

correspond to synaptic learning, this study aimed to identify the biological mechanism behind the 

connection. Interestingly there was variable behavior depending on how close different dendritic 

spines were to each other. Along with the different biochemical mediators of STDP, it seems that 

spine proximity and size may also play a role in how predictable neuronal plasticity may be.  

 

1.3 Computational Models Incorporating Hebbian STDP 

1.3.1 Data Modeling 

 As Hebbian STDP is based off of experimental observations, a natural implementation 

for it would be to model brain activity data. To this end, one group implemented Hodgkin-

Huxley neurons with a classic Hebbian STDP rule to model brain activity in non-rapid eye 

movement (NREM) sleep33. The study showed that sleep activity leveraged STDP to encode 

memories via a spike-timing based representation for long-term storage.  

Another group designed the NeuCube, which is a spiking neural network with an adapted 

STDP rule designed to analyze brain data, starting with electroencephalogram (EEG) data34. The 

NeuCube used leaky integrate-and-fire (LIF) neurons and modified the STDP rule slightly by 

augmenting the weight updates with rank order on top of spike delay time. Through this, the first 

spike to arrive at a postsynaptic neuron will not be rewarded with a strengthened synapse when 
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the neuron fires, but the final spike which triggers the action potential will receive a heavily 

weighted increase. This adjustment could assist with event-based simulators that do not employ 

discrete time as they may only have finite delays to update with.  

 To evaluate biological networks even further, one group used Izhikevich neurons35,36 with 

connections of random lengths to model murine hippocampal activity37. This study implemented 

Hebbian STDP with a buffer for the impact of the delays. For example, if it would take 2 ms for 

a spike to reach a postsynaptic neuron, then a presynaptic neuron that fired 1 ms before the 

postsynaptic neuron fired should not be rewarded. That presynaptic neuron’s spike would not 

have arrived by the time the postsynaptic neuron fired, so the modified rule is crucial to 

nullifying its impact and reward. Overall, this model highlighted the ability of STDP to 

synchronize chaotic activity in a hippocampal network, which may be a desirable feature in 

future spiking neural network implementations. 

 In a different direction, one group employed spike response neurons with more biological 

parameters to model the hippocampus in a different way38. Instead of using a simple Hebbian 

rule, this study added in parameters for the NMDA receptor kinetics, which would directly 

influence the capacity of STDP. This implementation allowed the network to demonstrate its 

memory storage via coincident firings resulting from a variety of input patterns. 

 

1.3.2 Classification Tasks 

 To transition to a machine learning application, one group tested multiple iterations of a 

STDP rule on LIF neurons to classify the MNIST handwritten digit dataset39,40. The first rule 

they tested employed a frequency-based synaptic trace based on incoming signals. For synapses 

with a high frequency of activity, this trace term would result in the weight increasing quickly. A 
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second rule involved a synaptic trace for outgoing signals as well, which results in the network 

focusing more on the spiking rates rather than the spike timings. The last rule this study applied 

was a triplet STDP rule, but the details of this rule will be discussed in Section 1.6. After 

experimenting with the different configurations, this study ultimately reached a classification 

accuracy of MNIST of 95.0% after training 6,400 neurons on 40,000 images.  

 In a similar vein, a different group used spike response neurons and the adjusted edge 

delay STDP rule to embed images from the Semeion dataset41. Like the data modeling neural 

network above, this study incorporated edge lengths and as such, STDP was only applied when it 

made sense. For spikes that were not causal, even if the presynaptic spike occurred first, there 

would be no potentiation. As a result of the learning due to STDP, the authors were able to show 

an embedding of the Semeion handwritten digit dataset into the activity of the network. While 

explicit classification accuracy wasn’t provided, an emphasis was placed on the efficiency of the 

embedding, especially relative to network and input size.  

 Extending NeuCube from the previous section for a machine learning task, one study 

involved treating the neural network similarly to the human visual system42. With 732 LIF 

neurons, the NeuCube uses both unsupervised STDP and supervised rank-order learning to learn 

dynamic vision input. Rather than using these methods to match empirical data, the authors 

extended NeuCube to learn and attempt machine learning tasks as well. Since NeuCube is 

designed for dynamic visual data, it was used to classify MNIST-DVS, which are videos of the 

MNIST handwritten digits. With 9,000 scale-16 training videos, NeuCube classified 86.09% of 

videos correctly. This demonstrates both that biological rules can improve the performance of 

machine learning models on harder tasks, but also that these rules may be more useful for tasks 
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that are inherently more biological. Vision in motion, like MNIST-DVS, may suit STDP better 

than static images, which less represent perception in the brain.  

 To connect Hebbian STDP to modern deep learning techniques, one group devised a 

network of non-LIF neurons to resolve multiple machine learning tasks43,44. The conventional 

Hebbian STDP rule was used to train the weights between two convolutional layers and a global 

pooling layer was used afterwards for classification. Various tasks were performed with the 

network, including the Caltech face/motorbike (99.1%), ETH-80 natural object (82.8%), and 

MNIST (98.4%) classification tasks. The study briefly discusses how STDP serves the role of an 

unsupervised learning method more effectively than others that were tested. This network serves 

as a staunch example of how valuable biological paradigms can be for machine learning models.  

 In another deep learning approach, a group employed LIF neurons with two 

convolutional layers and two pooling layers45. A standard Hebbian STDP rule was simplified for 

the network to deploy in a feedforward manner. This simplification involved binary weight 

updates instead of the updates being a function of the spike delays. To add to this simplification, 

a normalization scheme was added to prevent any edges from increasing indefinitely and 

creating unfair competition with other edges. With all of these pieces together, the network was 

able to classify 98.49% of MNIST images, 75.2% of ETH-80 objects, 71.2% of CIFAR-10 

natural images, and 60.1% of STL-10 natural images. While this method suppresses many 

biological features for the machine learning approach, it results in a network that is quite 

successful at the intended tasks.  

 Considering a normalization scheme, another group implemented a normalized STDP 

rule with LIF neurons and inhibitory interactions to create a simpler network that could classify 

datasets efficiently46. This model is unique in that it includes a refractory period for the neurons 
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to increase their resemblance to biological neurons. On top of that, the STDP rule was 

implemented such that any presynaptic spike causes LTD and subsequent postsynaptic spikes 

cause LTP. If the spikes are close enough in time, the LTP will override the LTD, but if not, the 

synapse will end up weaker than it was prior. This results in a clever way of ensuring that only 

the most synchronized spike pairs are able to strengthen their synapses. For normalization, the 

entire network is assigned a target average synaptic weight after each weight update. While the 

average weight is manually chosen, so it is not very biological, the method does provide more 

control over the network activity. With 9,000 neurons trained on 60,000 MNIST images, this 

network is able to achieve a classification accuracy of 95.07%. 

 To create a network resistant to forgetting through spontaneous activity, one group 

trained LIF neurons with Hebbian STDP in a semi-supervised fashion to classify MNIST47. With 

only two layers in the network, STDP would change synapses while a teaching signal was active 

and firing rates would probabilistically control LTP and LTD based on a threshold. While the 

learning rule was based on spike timings, the trigger for learning was based on spike rates, which 

made this versatile in design. With 20,000 MNIST training images and 15 potential output 

classes, this network was able to achieve a classification accuracy of 96.8%. Overall, this is one 

of many models that demonstrate how spike-timing methods and rate-based methods do not need 

to be distinct and in fact could complement each other well48.  

 To demonstrate the importance of the parameters chosen for these spiking neural 

networks, one group used a pair of conductance-based neurons to demonstrate the variability49. 

While not solving a particular machine learning task, this study employed a typical STDP model 

to highlight how the mean synaptic strength was largely influenced by the initial standard 

deviation of the weights. This was more influential than the initial mean of the weights, 
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demonstrating how much thought needs to go into the weight parameters for STDP models. 

Without the proper balancing, the activity and weight distribution can quickly become 

undesirable.  

 As STDP rules are assessed as machine learning tools, one group concluded that they 

were fit to create Bayesian computation in certain networks if designed appropriately50. 

Mathematically, it has been shown that Hebbian STDP can be extended to learn Bayesian 

decisions51. Building off of that, a spiking neural network was devised that could implement the 

biological rule in a way that could harness expectation maximization. With the conventional 

Hebbian STDP rewritten in a new form, the authors created a stochastic model to tackle machine 

learning problems with. With each image of MNIST converted to 708 input spike trains, the 

study was able to achieve a classification accuracy of 80.14%. This is a machine learning finding 

that may lend itself to the neuroscience as biological neurons may have probabilistic 

characteristics that are worth investigating.   

 These select computational models are not the only ones to incorporate Hebbian STDP 

and there are many other reviews that have focused in on examples that specialize in other 

validation tasks52–55. As it is the original proposed rule for STDP, there are myriad models that 

have incorporated it to fit data or to solve specific machine learning challenges. 

 

1.3.3 Neuromorphic and Robotics Implementations 

 In more recent developments, the Hebbian STDP rule has been adapted to hardware 

implementations, such as neuromorphic chips and robotics. In a similar vein to the previously 

described models, one group adapted the rule to a neuromorphic chip to use voltage to attempt 

the MNIST classification task56. In the proposed voltage-dependent synaptic plasticity rule, 
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Hebbian STDP is faithfully preserved, but a new term is added to represent the voltage of the 

presynaptic neuron for the weight updates. With 500 output neurons, this model was able to 

reach a classification accuracy of 90.56% on MNIST. As neuromorphic implementations are 

iterated upon, it may not be long before this accuracy is exceeded and more difficult datasets are 

attempted using neuromorphic hardware.  

 For an implementation of Hebbian STDP in robotics, a group took advantage of the rule 

through classical conditioning of robots to navigate through obstacles and find food57. Using 

non-LIF neurons, a simulated insect was guided through a virtual world and taught to avoid 

collisions. After sufficient tuning, the same neural network was applied to a real Lego 

Mindstorms EV3 robot with similar success for locomotion. Beyond STDP and the neuron 

model, the network architecture itself was complex with olfaction and nociception included. To 

extend the idea of robotic locomotion, a separate group put together a robot with a brain, sensory 

system, nervous system, and body and taught it how to navigate in a maze using STDP as well58. 

A third group used a Khepera IV robot with wheels, infrared sensors, LEDs, and a camera 

controlled by STDP to navigate using binary decisions59. In a more straightforward model, a 

group designed a simulated two-wheeled robot to use phototaxis for locomotion60. As STDP 

results in positive reinforcement, successful phototaxis cascades to the intended autonomy 

relatively quickly.  

 Aside from locomotion, Hebbian STDP has been used in robotics for other tasks as well. 

For example, one group designed a robot to identify the color of a Lego and sort it based on 

whether it is blue or red61. In a completely different context, another group navigated a simulated 

drone using LIF neurons with Hebbian STDP62. Beyond just navigating through the virtual 

world, the drone was tasked with calculating the appropriate trajectory to counter wind resistance 
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and to determine the shortest flight path to the destination. With many neurons serving as place 

cells, STDP was sufficient to navigate the drone effectively.  

 Towards anthropomorphic endeavors, one group designed a simulated robot that could 

identify and travel towards a target using the STDP in its neural networks63. To extend the idea 

of multiple muscles working in concert, that group continued with a simulated arm that had to 

reach out to a target by alternating relaxing and extending flexors and extensors. Also, another 

group designed a robot that could simulate nociception and respond accordingly to avoid the 

insult in the future64. To accomplish this, the study involved a robot with arms that had 

proprioception to determine when joints were at inappropriate angles. As the experiment 

advanced, the robot began to identify and exhibit avoidance behavior towards stimuli that would 

result in nociception.   

 

1.4 Experimental Evidence for Reward-Modulated STDP 

 While the classical Hebbian rule for STDP holds true for many experimental models, 

there are certain regions of the brain or observed patterns that aren’t well-modeled by it alone. 

Beyond that, many experimental observations have identified numerous chemicals that augment 

the effect of STDP even under identical conditions65,66. While this opens up numerous questions 

and experiments for neuroscientists, this also provides a unique opportunity for machine learning 

models to take advantage of the various avenues of modulation of STDP. Computational models 

can integrate various types of parameters while maintaining biological feasibility if they can map 

to at least one neuromodulator.  

 While there are many neuromodulators in the brain, dopamine is the biggest one and it 

has an extensive catalog of research around it67. One group used whole-cell recordings of murine 
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hippocampal cells to identify that dopamine increased the window for LTP along with the 

resultant increase in synaptic strength68. To ensure the results weren’t spurious, dopamine 

receptor antagonists immediately returned STDP to normal, implicating only dopamine in the 

observed results. Similarly, another group found that dopamine turned a previously depressed 

synapse into a potentiated one even retroactively69. Even spike pairs where the postsynaptic 

spike fired slightly before the presynaptic spike, which would normally trigger LTD, resulted in 

significant LTP. However, the time window within which synapses are vulnerable to dopamine 

modulation may not be longer than a couple of seconds70. Using two-photon uncaging with 

optogenetic tools, a group imaged the dendrites of murine striatal medium spiny neurons. The 

results showed that dopamine provided over two seconds after STDP glutamate release had 

minimal impact on dendritic spine growth. However, on a longer scale, it seems that dopamine 

has a large impact as well71. One experiment demonstrated that presenting a dopaminergic 

antagonist prior to encoding in a murine brain prevents recall of the encoded information after 24 

hours, but not after 30 minutes72. It seems for the short- and long-term, dopamine makes a key 

impact on plasticity, but not in the medium-term from seconds to minutes. For both neuroscience 

and machine learning, dopamine’s suppression of LTD and promotion of LTP could prove quite 

advantageous for certain purposes.  

 In addition to dopamine, acetylcholine is commonly implicated in affecting the dynamics 

of STDP within the brain73. Unlike dopamine, acetylcholine doesn’t universally increase LTP 

and reduce LTD. Acetylcholine seems to have a particular potentiating impact on behaviors that 

require immediate attention and a depressing impact on behaviors in the background. In one 

study, murine basal forebrains were stimulated using optogenetics, and imaging demonstrated 

that acetylcholine neurons actually responded faster to stimuli than dopamine neurons did, 



13 

 

perhaps to direct the rats’ attention74. As the visual cortex is heavily involved in attention 

depending on the visual cues that arise, it makes sense that murine visual cortex brain slices 

demonstrated a reliance on cholinergic reinforcement signals75. Similarly, a murine acetylcholine 

antagonist experiment in the perirhinal region of the brain demonstrated how important 

cholinergic neurotransmission is for discerning between novel and familiar stimuli76. Altogether, 

it seems like acetylcholine is heavily involved in discerning whether a stimulus is unexpected 

and, if it is, drawing attention to it quickly. In addition to affecting neurons directly, 

acetylcholine may impact astrocytes, which could increase gliotransmitter release73. This could 

result in different downstream effects and may explain the variability in acetylcholine’s impact 

on STDP.  To add another wrinkle, whole-cell recordings of murine pyramidal cells 

demonstrated that acetylcholine biased towards LTD until dopamine was applied as well77.  As 

dopamine has been shown to expand the window for LTP on its own, it makes sense that this 

may overpower acetylcholine’s slant towards LTD to promote potentiation in the end.  

 Within the midbrain, serotonin serves as a strong neuromodulator for spatial learning and 

sensory discrimination78. Specifically, whole-cell recordings of murine dorsal raphe nuclei were 

observed to identify the role that serotonin played on learning. Interestingly, as the dorsal raphe 

nuclei send reward signals out to other brain areas, reward sensations at large rely heavily on 

serotonin signaling within the midbrain. In serotonin-depleted mice, glutamate released by dorsal 

raphe nuclei neurons has limited downstream effect and the neurons themselves are less active. 

With the focus of classical conditioning, one study compared the response in monkeys of the 

dorsal raphe nucleus to the response of the substantia nigra pars compacta, source of dopamine, 

upon presentation of a reward79. The serotonin neurons scaled with the size of the reward, but the 

dopamine neurons only responded strongly if the size of the reward was unexpected. As such, 
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each neuromodulator seems to play a key role with serotonin neurons assessing the gross reward 

while dopamine neurons assess if predictions were accurate.  

 To step back and generalize, with all of the different neuromodulators acting in concert 

with one another, it is often easier to observe the resultant dynamics than to try to pick apart each 

individual actor. As such, one study took whole-cell recordings of murine cortical mice to 

observe the “eligibility traces” that designate spike pairs for LTP or LTD80. In these brain slices, 

beta 2 adrenergic receptors triggered LTP while serotonin receptors triggered LTD. Other 

neuromodulators were observed, but these were the two that made the most impact on eligibility 

trace conversion. Specifically, the synaptic tagging and capture hypothesis fits nicely into the 

theory of these eligibility traces steering the direction of plasticity. Rather than synaptic tagging 

determining the fate of a synapse a priori, modern discussions of the hypothesis propose synaptic 

tagging as a floating state that can be influenced by neuromodulation, which is the same idea laid 

out by eligibility traces81,82. With this theory added to STDP, plasticity becomes more nuanced 

than simply firing order, as the spike timings can transition the synapse into a vulnerable state 

whereupon neuromodulators in the area may determine its fate.  

 

1.5 Computational Models Incorporating Reward-Modulated STDP 

1.5.1 Data Modeling 

 When modeling reward-modulated STDP (including synaptic tagging, eligibility traces, 

etc.), the computational cost can be challenging due to the number of neuromodulators that may 

be at play in the particular brain region. However, one group attempted to simplify the model by 

incorporating Hebbian STDP with a global reward and noise to model data from the motor 

cortex of monkeys performing a virtual reality cursor trajectory experiment83. In their model, the 
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authors combined STDP with a global neuromodulation term, which created an equation that 

resembles gradient descent.  One major conclusion from the model was that the introduced noise 

was actually necessary to model the experiment data accurately, as the model wasn’t able to 

correct error optimally without it.  

 

1.5.2 Classification Tasks 

 To apply reward-modulated STDP to machine learning problems, the network needs to 

be very intentionally designed to simulate the presence of dopamine or other neuromodulators. In 

one model, a group used LIF neurons in a three-layer feedforward neural network to solve 

machine learning challenges84. Rather than using a generic Hebbian STDP rule, this model 

incorporates an updated almost symmetric dopamine-STDP rule. With this rule, there is no LTD, 

but the STDP curve is adjusted so it is not perfectly symmetric. The method begins with the 

network going through a training process within which the label information of a stimulus is 

used as a teacher signal to become embedded via one-shot learning. When tested to classify 

MNIST images, with a hidden layer of 10,000 neurons and an output layer of 10 neurons, this 

model achieved a classification accuracy of 96.73%. For the Fashion-MNIST dataset, with 6,400 

hidden neurons, the network achieved a classification accuracy of 85.31%. 

In an effort to tackle an exceptionally challenging problem, one group proposed a Brain-

inspired Sequence Production Spiking Neural Network (SP-SNN) to use reward-modulated 

STDP to learn grammar in languages via a chunking mechanism85. This model, which employs 

LIF neurons, expands on the simple Hebbian STDP rule with a synaptic eligibility trace function. 

This function manifests as a reinforcement learning paradigm that is weighted by the number of 

recent subsequent firings of the spike pair. Through this, synapses are updated via STDP as well 
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as a reinforcement learning rule based off of a longer history of the activity along the synapse. 

With this model, the authors assessed the sequence memory and production of the model using a 

chunking method similar to how people chunk information to remember and learn more 

efficiently.  

Since loss functions are incompatible with STDP, a group used LIF neurons to create a 

STDP-inspired temporal local learning rule (S-TLLR)86. This rule incorporates eligibility traces 

and the principles of backpropagation to allow for precise credit assignment without the 

computational burden backpropagation alone would incur. S-TLLR proposes that a learning 

signal, perhaps from glia, represents the error returned down from the top layer. In addition, with 

the eligibility trace arising from the STDP equation, the authors composed a weight update 

equation that resembles backpropagation with spatial locality. To validate this combination, the 

study included the model tested on CIFAR-10 DVS, which resulted in a classification accuracy 

of 73.93%.  

In a similar vein of trying to remove any teacher signal, another group took advantage of 

the dopamine state of the network as a representation of its change in performance87. In essence, 

if the current performance of the network (based on mean squared error) is worse than its recent 

performance, the dopamine signal will be activated and synaptic weight changes will be more 

drastic. The reward-modulated STDP employed here is the same as in the monkey task model83 

with the only change being the regulation of “dopamine”. With 1,000 neurons in a single 

recurrent layer, this network model was used to demonstrate periodic pattern generation, 

memory-dependent computations, and network state-dependent routing of information. While 

there were no machine learning tasks directly addressed, this network serves as a promising 
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proof of concept for using reward-modulated STDP to embed and transfer information within a 

neural network. 

To evaluate a simpler model, a group used non-LIF neurons and reward-modulated STDP 

to demonstrate reinforcement learning as a useful method to solve an XOR problem88. This 

model proposes including a multiplicative reward function with Hebbian STDP to convert it to a 

reward-modulated form. With a three-layer feedforward neural network composed of 60 input 

neurons, 60 hidden neurons, and 1 output neuron, this model was tested on a benchmark XOR 

problem. Binary inputs were presented and the firing rate of the output neuron was used to 

determine which class was selected. The network was capable of discerning one class from the 

other in 99.1% of the simulated experiments that were performed. Beyond the optimal network 

configuration, the author goes into great detail in the mathematical basis for how reward-

modulated STDP maps onto reinforcement learning and how that is a major boon for solving 

these machine learning challenges. 

 

1.5.3 Neuromorphic and Robotics Implementations 

 Just as many of the machine learning models extended their utility with reward-

modulated STDP over time, robotics models followed a similar trajectory. As an extension of the 

complex robot with multiple communicating systems58, a new reward-driven STDP was 

implemented into the robot’s brain using the synapto-dendritic kernel adapting neuron (SKAN)  

model. To challenge this more intelligent robot, the authors placed it in a maze with changing 

features to assess if it could learn information and then overwrite that when presented with a new 

context. The robot was successful, demonstrating the improvements gained by the new STDP 

rule. Similarly, another group trained a simulated robot with Izhikevich neurons to find food and 
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avoid poison in a collision-free environment89. To avoid learning windows not being optimal for 

dopamine-modulated plasticity, this model triggered dopamine release upon reward expectation, 

similar to what was observed in the murine midbrain79. In an effort to solve the challenge of 

collision avoidance, one group designed a simulated robot model with LIF neurons to navigate 

past obstacles towards a target90. Using a three-layer feedforward network with 75 input neurons, 

210 hidden neurons, and 2 output neurons, the authors compared their network model to a more 

traditional Q-learning approach. With reward-modulated STDP guiding the robot, it was able to 

perform better than when trained with Q-learning with the same number of training iterations.  

 For a more time-sensitive task, a different group designed a wheeled robot with reward-

modulated STDP to traverse along a course without leaving its lane91. With a neuromorphic 

vision sensor, a Pioneer robot was able to quickly acquire lane data and process it using the 

STDP rule to follow the road patterns. Internally, there are 32 input neurons that connect to 2 

LIF output neurons in an all to all fashion with updating synapses. As the robot proceeds through 

the training process, it will more quickly correlate specific signals with needing to turn left or 

right to improve the lane adjustment process even for unfamiliar paths. Because the STDP 

method is based on a local rule with minimal communication, training a robot to make lane 

changes promptly is easier than when compared to classical reinforcement learning algorithms 

that need to process a state evaluation step. 

 Extending navigation tasks beyond land, reward-modulated STDP was used to navigate a 

simulated sailboat to a target with realistic boating mobility, such as tacking and gybing 

strategies92. Using LIF neurons in two-layer fully connected feedforward network, around 42% 

of the 1024 experiments reached all target points within the allotted time. Ultimately, the model 
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did not travel faster than ANN-based methods, but it resulted in less deviation across trials, 

which could be a boon in certain contexts.  

 To complicate locomotion further, one group designed a flapping robot to fly between 

specific targets93. This robot incorporated LIF neurons and a reward-modulated STDP rule to 

hover, follow trajectories, and land safely without collisions or damage. With a three-layer 

feedforward neural network and various onboard sensors, the RoboBee is able to traverse along 

specific paths safely.  

 

1.6 Experimental Evidence for a Triplet STDP Rule 

 So far, we have only considered STDP through a strict interpretation of Hebb’s theory 

involving spike pairs. However, in networks with a lot of activity, such as with spike trains or 

high-frequency oscillations, it is possible that plasticity may be influenced in a more nuanced 

way. With access to information of multiple spike-timings at once, plasticity rules can leverage 

even more local information for embedding. 

 In murine visual cortical brain slices, one group was able to experimentally observe 

variations in synaptic modifications depending on the timings of preceding spikes29. Depending 

on whether the third spike was presynaptic or postsynaptic, new outcomes were observed. With a 

preceding postsynaptic spike, it was observed that the synapse weakened more than expected by 

the two spike pairs themselves. With a succeeding presynaptic spike added, the synapse 

strengthened beyond what the two spike pairs would predict. For both scenarios, a maximum 

spike window of 30 ms was observed before the triplet STDP phenomena disappeared and spike 

pair STDP took over.  
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 Similarly, in murine hippocampal neurons, another group observed potentiation via 

calmodulin-dependent protein kinase II (CaMKII) and depression via calcineurin resultant from 

spike triplets94. Matching the prior data, succeeding presynaptic spikes resulted in stronger 

potentiation of the synapse. However, in this experiment, a preceding postsynaptic spike either 

resulted in potentiation or no net change to the synapse. In addition, the maximum spike window 

for triplet STDP here was 70 ms, so it is possible that the hippocampus responds differently to 

spike trains than the visual cortex does. Finally, the influence of calcium-mediated enzymes may 

point towards calcium’s control over the plasticity of various synapses. This idea will be 

revisited in Section 1.12.  

 

1.7 Computational Models incorporating a Triplet STDP Rule 

1.7.1 Data Modeling  

 Because there is no consensus on the most accurate triplet STDP rule, groups looking to 

incorporate it into computational models must discern for themselves which makes most sense95. 

One such group implemented a triplet STDP rule to model visual cortex and hippocampus data96. 

For their model, they decided to implement the triplet rule with both preceding postsynaptic 

spikes and succeeding presynaptic spikes resulting in potentiation94. This model was capable of 

reproducing all but one of the experiments from the source papers with the equations that were 

proposed. In addition, it was even capable of modeling data for a proposed quadruplet rule, 

demonstrating that triplets may contain the maximum complexity required. Lastly, the authors 

noted that if the spike trains are thought of as Poisson processes, this triplet rule resembles the 

Bienenstock-Cooper-Munro (BCM) learning rule97. 
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 In an effort to demonstrate the impact of dendritic gating, one group put together a 

network model of pyramidal cells incorporating triplet STDP98. While the focus of the paper was 

on the compartmentalization of the dendrite and soma in a neuron, the triplet STDP rule was 

chosen to effectively replicate pyramidal cell activity. Building off of the previous model, this 

one also used the triplet STDP rule with preceding postsynaptic spikes causing potentiation94. 

 

1.7.2 Classification Tasks 

 In order to assess the value that the triplet rule could provide, one group compared it 

against two different STDP schemes to assess a network’s ability to learn a spatial pattern99. 

Using spike response model neurons, this model compared pairwise STDP, triplet STDP, and a 

global STDP in which every spike informs every neuron. Based on the heuristic search algorithm 

that was used to test the networks, the triplet STDP rule performed the best, but it had issues with 

falling into local extrema that required extra training in some cases.  

 

1.7.3 Neuromorphic and Robotics Implementations 

 Extending the BCM idea further, one group implemented a triplet STDP rule in a 

memristor to intentionally resemble BCM100. This model built off of the potentiating preceding 

postsynaptic spike triplet STDP rule94 and recapitulated the enhanced depression effect that prior 

memristor models were unable to by that point. As such, the memristor model took a major step 

towards memristors resembling biological data even closer, particularly via the BCM approach.  
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1.8 Experimental Evidence for Anti-Hebbian STDP 

 Up to this point, all of our STDP rules have built off of the classical Hebbian curve for 

plasticity. However, there is strong experimental evidence and computational value in the flipped 

version of the curve. The negative hyperbolic cotangent curve is referred to as the anti-Hebbian 

STDP rule101 and it can be difficult to reason with, as it implies neurons that fire together 

suppress the synapse between them. Rather than a learning rule intended to support the 

proliferation of signaling within a network, anti-Hebbian STDP focuses on suppressing activity 

in regions where activity is undesirable.  

 In a hybrid experimental-computational study on murine pyramidal neurons, one group 

discovered that the switch between Hebbian and anti-Hebbian plasticity is actually controlled by 

the location of the dendrite of the postsynaptic neuron102. Distal dendrites result in the 

recruitment of anti-Hebbian plasticity machinery while proximal dendrites lead to the initiation 

of Hebbian plasticity. Beyond the importance of network geometry on signaling latencies and 

connectivity, dendritic heterogeneity adds a new consideration to where synapses form between 

neurons. It opens the possibility that this heterogeneity extends beyond a binary and could 

highlight a spectrum of dendritic domains that could respond uniquely to incoming stimuli103.  

 To investigate the mechanism of the heterogeneity, another group employed patch-clamp 

recordings and two-photon imaging on murine neocortical brain slices104. With these tools, the 

authors discovered that ionic backpropagation from the action potential contributes to the 

function of anti-Hebbian STDP. However, they also observed that the ionic backpropagation was 

essential for Hebbian STDP at proximal dendrites as well, so it seems to be critical for plasticity 

at large. The role that calcium and voltage-gated sodium channels play in action potential 
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backpropagation may be significant and may determine whether neurons in other regions 

experience anti-Hebbian STDP or not.  

 To interrogate the role of calcium in anti-Hebbian STDP, a group investigated the 

response of murine somatosensory cortical brain slices to high- and low-frequency action 

potential bursts105. During these action potential bursts, it is possible to control the induction of 

LTP and LTD in both proximal and distal dendrites, but the authors show that the spiking timing 

requirements are completely different depending on location. They observed that due to the 

geometry of action potential propagation, distal dendrites are impacted more heavily by calcium 

electrogenesis resulting from downstream depolarization. To convert anti-Hebbian STDP to 

Hebbian STDP in the distal dendrites, the authors propose the addition of T- or R-type voltage-

gated calcium channels to create a voltage that unblocks NMDA receptors.  

 Moving beyond animal models, anti-Hebbian STDP has also been observed in the human 

brain in long-range synapses106. Transcranial magnetic stimulation was applied to a region 

between the posterior parietal cortex and the primary motor cortex in human subjects while 

electromyographic traces were recorded from the right first dorsal interosseous.  As the brain 

was stimulated with 100 spike pairs at 0.2 Hz, the motor-evoked potentials were measured and 

their amplitudes were compared. In response to the stimulation, the MEPs reduced in amplitude 

when a presynaptic spike preceded a postsynaptic spike and increased in amplitude when a 

postsynaptic spike preceded a presynaptic spike. As such, this long-range synapse seems to 

follow anti-Hebbian STDP. This aligns with the other evidence for dendritic heterogeneity, as 

long connections likely involve dendrites that are far removed from the soma, which would 

explain why anti-Hebbian STDP would be active.   
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1.9 Computational Models Incorporating Anti-Hebbian STDP 

1.9.1 Data Modeling 

 To observe anti-Hebbian STDP’s impact on computational models, one group create a 

LIF neuron-based model of a two-tiered neocortical area107. With a two-layer network with 100 

neurons in each layer, the authors compared the performance of Hebbian STDP to anti-Hebbian 

STDP in terms of stable weights. Anti-Hebbian STDP demonstrated superior edge weight 

stability, as the plasticity rule preserves a fixed point for the edge weights to orbit around. Since 

anti-Hebbian STDP can’t create a positive feedback loop, it may be a useful tool for 

computational models that are sensitive to hyperactivity. 

 

1.9.2 Classification Tasks 

 Combining an interest in modeling with machine learning, one group designed a network 

with Hebbian and anti-Hebbian STDP to mimic an autoencoder108. Rather than implementing 

both STDP rules, the author combines them into mirrored STDP, which is a function of hidden 

layer firing time minus visible layer firing time. As such, connections toward the hidden layer 

treat the hidden layer as the postsynaptic neuron and connections away from it treat it as the 

presynaptic neuron. With a two-layer network full of LIF neurons, reconstructions of MNIST 

images were able to achieve correlations of up to 91%. These reconstructions were deciphered 

based on the spiking activity of the network when it was stimulated by a particular image with 

plasticity turned off. The embedding within the hidden layer contains receptive fields similar to 

the ones found in the visual cortex. This serves as an effective proof of concept for other models 

that may be looking to incorporate a receptive field analogue into their approach.  
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 Rather than isolate anti-Hebbian STDP on its own, computational models can leverage 

employing it along with the previous STDP rules that have been discussed. With that thought, 

one group devised a reward-modulated STDP rule that triggered Hebbian STDP with a reward 

signal and anti-Hebbian STDP with a punishment signal109. With their four-layer feedforward 

network, they were able to achieve classification accuracies of 98.9% on the Caltech face 

motorbike dataset, 89.5% on the ETH-80 natural objects dataset, and 88.4% on the NORB 3D 

toy dataset.  

 In a similar separation model, a group aimed to recreate backpropagation through STDP 

in non-LIF neurons by adapting both Hebbian and anti-Hebbian rules with a teacher signal110. To 

explain, while the teacher signal is active, target neurons are rewarded with Hebbian potentiation 

while non-target neurons are punished with anti-Hebbian depression. As such, once the teacher 

signal is off, the rewarded neurons will be more likely to respond to similar stimuli. Since there 

is a teacher signal, this approach is supervised, but it provides an example of biological rules 

proving useful in a supervised model. Even though STDP is usually touted as a solution for an 

unsupervised local rule, there are other contexts where it may be useful. With one hidden layer 

with 500 neurons and a second with 150 neurons, this network was able to classify MNIST with 

97.2% accuracy.  

 Furthering the connection between spike-timing and rate-based methods, one group 

implemented anti-Hebbian STDP in a way that sorted neurons into assemblies111. Upon 

presentation of the input, neurons in the hidden layer with the highest firing rate were designated 

a degree of belonging in a particular assembly. When STDP is triggered to change the weights of 

a particular neuron, that neuron’s weights may be decreased via anti-Hebbian STDP if it is active 

with the wrong assembly. This creates quick separation between neurons in assemblies 
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representing particular stimuli. As before, the spike rate informs whether a synapse should be 

augmented, but spike-timing rules determine the magnitude of change. In certain models, such as 

Assembly STDP, this synergy results in efficient separation of neurons that respond to one 

stimulus from another. This also highlights a key case where both Hebbian and anti-Hebbian 

STDP can be employed to maximize divergence between subpopulations.    

 

1.9.3 Neuromorphic and Robotics Implementations 

 To create a neuromorphic implementation of the contrastive divergence algorithm, one 

group incorporated Hebbian and anti-Hebbian STDP rules with LIF neurons112. Instead of 

incorporating separate phases for contrastive divergence, the proposed rule updates the weights 

after every spiking event. The rule is able to mimic contrastive divergence since there is a global 

modulatory rule that switches between Hebbian and anti-Hebbian plasticity rules at each 

synapse. With a restricted Boltzmann machine with 500 hidden neurons and 40 output classes, 

the authors were able to reach 91.9% classification accuracy of MNIST images. 

 

1.10 Experimental Evidence for Inhibitory STDP 

 Within the brain, there exist more than just synapses that contribute to the membrane 

potential of the postsynaptic neuron. Some connections between neurons are inhibitory, which 

means a signal will actually hinder the future activation of the downstream neuron. However, 

just like synapses between excitatory neurons, these connections are plastic and they also may 

adapt to different stimuli. Learning rules of these synapses are harder to decode, as if an 

inhibitory neuron is successful, the postsynaptic neuron won’t fire and there won’t be any 

postsynaptic potential to measure.  
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 To directly tackle the challenge of inhibitory plasticity behavior, one group used two-

photon microscopy and whole-cell recordings on murine hippocampal slices113. Immediately, the 

biggest observation was how dynamic inhibitory synaptic boutons were. Throughout the imaging 

data, the boutons were constantly probing for potential new synapses to try to expand their 

network. Interestingly, neuronal activity made a major impact on the behavior of synaptic 

boutons. The number of transient, probing boutons decreased when there was a reduction in 

spiking activity. Inversely, when there was hyperactivity, the number of persistent, stable 

boutons declined. Through both cases, it is clear that inhibition is quite plastic as a result of 

network activity. 

 In an attempt to model a STDP rule, a group studied murine midbrain slices and 

attempted to induce observable plasticity changes114. GABAergic synapses, which are the 

inhibitory synapses in the brain, demonstrated conventional Hebbian LTP and LTD towards 

ventral tegmental area dopamine neurons. In somewhat counterintuitive fashion, when the 

GABAergic synapse would fire to reduce the membrane potential of the postsynaptic neuron and 

then that neuron would fire anyway, the synapse would strengthen. This may be to prevent firing 

in the future, as the strengthened synapse would release more GABA, which would cause a 

larger reduction of the membrane potential of the dopamine neuron. 

 Zooming in further, one group investigated the plasticity rules of two particular subtypes 

of inhibitory interneurons based on patch-clamp recordings of murine hippocampal brain 

slices115. Specifically, the two interneuron plasticity rules studied were the LTD in parvalbumin 

interneurons and the LTP in somatostatin interneurons. Despite the fact that both subtypes only 

take part in one particular plasticity function, they do follow Hebbian STDP for it. The fact that 

parvalbumin LTP and somatostatin LTD isn’t naturally observed opens up an interesting 
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question about interneuron subtypes and inhibitory STDP. It is possible that some of the 

heterogeneity that is observed in inhibitory STDP plasticity data is a result of the specific 

subtypes in the experiment and their unique plasticity rules and limitations116,117. Extending this 

idea, the interneuron subtypes may have been useful for special tuning of different functional 

networks in the brain. To support this idea, a study on murine hippocampal neurons 

demonstrated that certain spatial exploration tasks resulted in potentiation of parvalbumin-

expressing inhibitory interneurons while depressing cholecystokinin-expressing inhibitory 

neurons118. Even though both subtypes were inhibitory, learning in the brain led one type to 

potentiate and the other to depress. It is possible that the interneurons’ downstream targets were 

the main reason behind this, but there could also be other characteristics of each subtype that 

would lead to this prioritization.  

Inverse to these past two rules, a different group observed anti-Hebbian STDP in 

recordings of the murine auditory cortex119. When recoding parvalbumin-interneurons and their 

downstream principal neurons, the authors observed that interneurons spiking first resulted in the 

inhibitory synapse strengthening while the opposite occurred if the interneurons spiked second. 

Even more interesting is the fact that this anti-Hebbian LTD switched to LTP when the mice 

aged. It is possible that during brain development, LTD serves an important role in the auditory 

cortex, but upon maturity and exposure to more sounds, LTP is more beneficial. 

 Continuing the effort, one group used whole-cell recordings of murine entorhinal cortical 

cells to put together a different inhibitory STDP rule to consider120. Based on the data that was 

compiled, the STDP curve looked similar to a cube function placed between the conventional 

hyperbolic cotangent function. Functionally, this is similar to the previously described rule in 

that a successful spike pair would increase the inhibitory weight of the synapse even though the 
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presynaptic neuron was originally incapable of preventing the action potential. A secondary 

important observation from this study was the importance of calcium in inhibitory STDP, which 

is consistent with calcium’s role in excitatory STDP as well.  

 Using whole-cell recordings of murine auditory cortex brain slices, inhibitory synapses 

were observed to potentiate based on spike timing, but independent of the spike order121. This 

symmetric STDP rule was observed to cause the largest increase in synaptic weight when the 

two spikes were almost simultaneous with smaller increases as the gap between them grew. 

Following this, depression of the synaptic weight only occurred when the window between the 

spike pair was sufficiently large in either direction. This rule, therefore, resembles a coincidence 

detector more than a mechanism to guide the activity in a particular direction. To conclude, the 

authors discussed the importance of the excitatory/inhibitory (E/I) balance and how synaptic 

plasticity regulates it. Building off that, the same group investigated how plasticity calibrates this 

balance in murine auditory cortical pyramidal neurons122. Using whole-cell recordings and two-

photon microscopy, the authors observed how resilient synapses are to achieve a particular E/I 

balance. A separate group even observed that inhibitory synaptic spines will augment their size 

to preserve a certain volume as their total number changes or in response to the overall volume 

of excitatory synaptic spines changing123. The myriad functions and biological machinery at play 

for that demonstrate that inhibitory plasticity may serve a role beyond just embedding 

information. Inhibitory neurons are critical to maintain a healthy amount of activity within the 

network and to allow for new connections to have a chance at development124.  

 To contrast with the STDP rules stated above, one group found a form of inhibitory 

plasticity in murine medial superior olive neurons that was based on persistent activity rather 

than specific spike timings125. Using patch-clamp methods, the authors were able to identify that 
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potentiation was insensitive to the relative timings of the inhibitory postsynaptic potentials. 

However, while the timings had minimal effect, the number of pairings in general did influence 

the changes that were observed. It is possible that this region had a unique STDP rule because 

the synapses were glycinergic instead of GABAergic or because it was specially tuned for 

auditory sensing. Ultimately, the heterogeneity in the pathways that lead to inhibitory plasticity 

result in a large variability in the data that is collected in different brain regions.  

 To look at networks as a system, one group investigated the impact that inhibitory STDP 

would have on excitatory STDP in the murine visual cortex126. With whole-cell recordings, the 

authors observed how inhibitory LTP attempts to interfere with excitatory LTP via myriad 

signaling pathways. It makes sense that after increasing the ability to silence a postsynaptic 

neuron, a network may not be keen to increase the strength of outgoing signals towards it. 

However, with the prevalence of inhibitory interneurons in important brain regions, this 

complicates plasticity modeling dramatically. If inhibitory plasticity attempts to suppress 

excitatory plasticity and vice versa, then the most realistic computational models must account 

for these interactions127. Further, it solidifies the theory that these two rules share biological 

machinery or, at the very least, take advantage of the fact that their pathways can interact at 

numerous points.  

 

1.11 Computational Models Incorporating Inhibitory STDP 

1.11.1 Data Modeling 

 In a similar fashion to the triplet STDP rules, there are numerous inhibitory STDP rules 

to choose from for computational models and none of them serve as a frontrunner for realism. In 

addition, since inhibitory STDP is so heterogeneous depending on the brain region and 
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interneuron subtype, there is no one-size-fits-all solution for incorporating inhibitory STDP into 

a computational network.  

 Using LIF neurons and a custom differential inhibitory STDP rule, a hippocampal 

network was simulated to observe the stability of place fields as a mouse traversed a track128. 

This implementation of STDP was quite unique, as it allowed for inhibition to adjust to the 

synaptic input, rather than updating a specific weight due to spike pair timings. This model 

proved to be quite successful at recapitulating the robustness found in the murine hippocampus. 

Place cells naturally emerged to represent specific regions of the track in the mouse’s memory, 

but even when the initial place cells were silenced, the mouse was able to embed that 

information in new cells. 

 Rather than focusing on inhibitory STDP’s impact on spiking activity, the same group 

designed a model to demonstrate the capability of inhibitory neurons to store stimulus 

information129. With LIF neurons representing pyramidal cells, parvalbumin interneurons, 

somatostatin interneurons, and vasoactive intestinal polypeptide-expressing neurons, a network 

with stochastic connectivity was generated. With these varied cell types, the model demonstrated 

that in the absence of reward stimulus, disinhibition can lead excitatory plasticity to embed 

stimulus information. This scheme could be possible in multiple areas of the brain that contain a 

top-down reward architecture.  

 In a seminal paper regarding inhibitory STDP, one group employed a LIF neuron with 

the symmetric inhibitory STDP rule to recapitulate the self-organizing dynamics in the brain130. 

As we discussed in the previous section, the excitatory/inhibitory (E/I) balance of a network is 

extremely important for avoiding hyperactivity while also allowing for enough activity to embed 

stimulus information. In this study, the authors observed that the response to stimuli is sparse, 
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which allows for enough activity to transfer information without persistent volleys of activity. 

This behavior has been observed in the murine auditory cortex to efficiently learn information 

and capturing it could prove extremely useful for computational models. 

 To combine many of the STDP rules discussed in this review, a group devised a network 

of perceptrons with Hebbian STDP, neuromodulated STDP, and inhibitory STDP131. The 

purpose of such a complex model was to highlight the value of the E/I balance of networks with 

inhibitory plasticity while also connecting these biological learning rules to the machine learning 

credit assignment problem.  With these learning rules in place, the authors re-evaluated some of 

their previously published experimental data to discern reasonable E/I ratios and what they 

would mean for the learning rates of the networks.  

 

1.11.2 Classification Tasks 

 As it was for data modeling, credit assignment is a method of great interest for designing 

networks to solve machine learning problems. Since biologically plausible networks are unable 

to use backpropagation to capture credit assignment, complex inhibitory microcircuits can be 

employed to reach a similar outcome. In one model, high-frequency bursting was incorporated 

with a burst-dependent plasticity rule and multiple types of inhibitory interneurons to effectively 

embed information within a network132. With bursting allowing for more significant weight 

changes due to STDP, the model was able to solve the XOR task and achieve classification 

accuracies of 79.9% on CIFAR-10 and 98.9% on MNIST. While all of the neuron types and 

activity rules result in a model with high complexity, the tunable features could result in 

robustness to different tasks or difficult data that could be useful for future computational 

models.  
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 In another model, pyramidal cells are broken up into different compartments and 

connected to inhibitory interneurons in an effort to approximate backpropagation to succeed at 

recognition tasks133. While this model also doesn’t adapt any specific inhibitory STDP that was 

mentioned in the previous section, it does define unique rules for each type of neuron. To test an 

established benchmark, the network reached a classification accuracy of 98.04% of MNIST with 

two 500-neuron hidden layers and one output layer.  

 To test the boon against catastrophic forgetting that inhibitory STDP provides, a group 

put LIF neurons in a three-layer network with inhibitory interneurons to discern novel inputs 

from familiar ones134. In this model, Hebbian STDP was used for the excitatory synapses and the 

symmetric STDP rule121 was used for the inhibitory synapses. Different 2D arrays of pixels were 

presented to the network periodically and the firing rate of the readout neurons were monitored 

to determine the network’s classification of the stimulus. One promising result from this method 

was that the embedded information was stable for a long duration, which could have many 

practical applications. In addition, this network retained the ability to learn new inputs even after 

training was completed and it did so without catastrophic forgetting of prior learned inputs.  

 Shifting to a supervised approach, one group incorporated backpropagation with STDP 

rules in a network with unique edge delays to solve the XOR problem135. Using spike response 

model neurons, the network employed a normalization function on the weights after every update 

to ensure that they didn’t get too large. To test the model further, it was challenged with the Iris 

dataset and the number of iterations required to meet a convergence rate of 80% was recorded for 

comparison. 
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1.11.3 Neuromorphic and Robotics Implementations 

 To apply inhibitory STDP to a specific challenge, a different group devised a five-layer 

neural network of LIF neurons which incorporates Hebbian excitatory STDP, symmetric 

inhibitory STDP, and a reward-modulated STDP rule136. This network was designed to monitor 

personal ECG devices in real-time to make quick, effective decisions. Classification performance 

of the different states of heartbeats was competitive to other algorithms, but there was a major 

boon to the energy consumption required to complete the computations. For ECG classification 

and other wearable-related algorithms, this combination of STDP rules in different network 

layers could prove to be quite advantageous.   

 

1.12 Experimental Evidence for Gliotransmitter Plasticity 

 When discussing the dynamics of synapses in the brain, it is inaccurate to omit the impact 

that astrocytes have, either by cleaning excess neurotransmitter or secreting modulating 

gliotransmitters137. The tripartite synapse has been defined to account for the role that glia has on 

network activity and plasticity, but experiments are still being done to get a better understanding 

of the full scope of that role138.  

 To prove how important astrocytes are to synaptic plasticity, one group induced astrocyte 

dysfunction in a murine model and demonstrated the impact on the hippocampus funcction139. 

By eliminating gap junctions between astrocytes, essentially isolating each one, the authors 

removed a dimension from the network in the hippocampus. Rather than there being a network 

of neurons and the syncytium of astrocytes that could communicate separately and with each 

other, only the network of neurons remained in concert. In the mutant mice, pyramidal cells 

demonstrated less excitability, weaker potentiation, and an increase in AMPA receptor-mediated 
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miniature excitatory postsynaptic currents. On a behavioral level, these mice developed subtle 

sensorimotor deficits and deficits in spatial learning after 90 days. Even though the astrocytes are 

still physically present, losing their ability to communicate with each other and transfer that 

information to neurons absolutely hinders the mice’s learning and memory.  

 In various brain regions, the impact of astrocytes on synaptic plasticity has been well-

documented140. While the simplest method of astrocyte interference is gliotransmitter release, it 

is not the only process that astrocytes take part in. The catalog of gliotransmitters that can be 

released is impressive to begin with, but they can also coordinate between neurons in different 

regions. Since a single astrocyte is connected to thousands of individual synapses and astrocytes 

are connected to each other via gap junctions in the syncytium, each one can monitor a large 

array of activity. Through calcium transients in the syncytium, one astrocyte can signal to 

another to release glutamate at a faraway synapse to increase the network activity based on 

specific situations.  

 Because of the ubiquity and variety of astrocyte function, there are no clear, widely 

accepted plasticity rules that can be proposed for computational models. The utility of astrocyte 

function is undeniable in a computational context141, but like with inhibitory STDP rules, the 

biology needs to match the computational challenge for it to make sense.  

 

1.13 Computational Models of Gliotransmitter Plasticity 

1.13.1 Data Modeling 

 While there are few consensus theoretical rules for astrocyte function in the brain, the 

diversity in function has made astrocyte models quite appealing for a variety of purposes142,143. 

To investigate the impact of calcium dynamics within astrocytes, one group devised a model of 
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100 Hodgkin-Huxley neurons connected to two astrocytes144. The astrocytes are represented by 

their cytosolic calcium dynamics as they change over time in response to the network activity. 

When the calcium concentration crosses a threshold, gliotransmitters are released, which 

multiplies a scaling parameter to the subsequent postsynaptic currents. Lastly, this model even 

included a function for gap junctions so calcium ions can be distributed from one astrocyte to the 

other. This implementation consisted of many dynamic equations, but the complexity may prove 

useful for tackling intricate computational problems. 

 Connecting astrocytes to other plasticity rules, one group employed Tsodyks-Markram 

neurons to model the impact that gliotransmitters can have on potentiation and depression145. 

Their model was able to clearly demonstrate how gliotransmitters could flip the direction of 

synaptic plasticity depending on how the astrocyte was trying to influence it. This is similar to 

how reward-modulated STDP worked both experimentally and computationally, but astrocytes 

can serve even more functions on top of that.  

 Since working memory is an area of interest in both neuroscience and machine learning, 

a group created a model of 1000 synapses and one astrocyte to observe the impact that 

gliotransmission may have on working memory146. Using Bernoulli equations to control neuron 

and glia spiking, the authors were able to demonstrate how gliotransmission allowed for a slower 

decay of working memory. Not only does this match the experimental data of astrocyte 

dysfunction, but it also could prove very beneficial for current models that require longer-term 

memory. A separate group used Izhikevich neurons to test the working memory of a neuron-

astrocyte network as well147. One notable feature of these neuron-astrocyte networks is that the 

different cell types can operate on different time scales. Neurons can learn the stimulus urgently 

while astrocytes can embed the stimulus from them at a slower, sustained pace.  



37 

 

 To see a more general idea of the impact that astrocytes have on network activity, one 

group built a network with tripartite synapses and compared the average spiking frequency with 

and without the astrocytes 148. Rather than just grossly increasing the average network activity, 

the introduction of astrocytes created stable states for the network to settle into and transition 

between. This phenomenon of state transitions could prove very useful, especially with issues 

like binary decisions or catastrophic forgetting. 

 

1.13.2 Classification Tasks 

 To benefit from astrocytes in more tangible tasks, simple machine learning challenges 

were a good start. Extending the previously described model148, the network added a layer for an 

astrocyte to integrate and influence neural activity149,150. Using Hodgkin-Huxley neurons, this 

network was tasked to recreate the stimulus image, similar to an autoencoder. With the astrocyte 

included in the network, the mean squared error of each generated image appeared to be much 

lower. This demonstrates that astrocytes could both assist with the classification task and also 

with the direction of creating biological mimics of autoencoders.  

 Bridging the gap between modern machine learning and these astrocyte networks, one 

group designed a neuron-astrocyte liquid state machine to tackle common machine learning 

challenges151. Using LIF neurons and astrocytes, the authors created a standard three-layer liquid 

state machine, but the hidden layer has an additional astrocyte modulatory unit. This astrocyte 

both integrated activity from the input layer and controlled the STDP depression learning rate to 

regulate activity in the hidden layer. Overall, the neuron-astrocyte liquid state machine achieved 

classification accuracies of 97.61% on MNIST, 97.51% on n-MNIST, and 85.84% on Fashion-

MNIST.  
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 With a similar goal in mind, a different group showed that a neuron-astrocyte network 

can perform the same core computation as a transformer152. Beyond the excited new 

computational tool, this serves as an interesting study into how astrocytes and neurons may 

actually work together in the brain. In addition, the authors mention that their proof could serve 

as a demonstration of how transformers may function within the brain.  

 To create a particularly difficult challenge for astrocyte networks, one group created a 

network of Izhikevich neurons connected to an astrocyte layer and tested it with damage in 

multiple configurations153. Through the working memory tasks that were performed, the model 

with the astrocyte layer was capable of retaining memory up until 60% synaptic impairment, 

which is 20% higher than the network without the astrocyte layer. Through this, the robustness 

of the network resulting from the astrocyte layer is elucidated, which is a very desirable feature. 

 

1.13.3 Neuromorphic and Robotics Implementations 

 Even though the study of tripartite synapses is relatively new, neuromorphic approaches 

have already begun development. One group designed the spiking Neuronal-Astrocytic Network 

module for Intel’s Loihi neuromorphic chip154. The authors mention that astrocytes serve a major 

role in being able to synchronize the neurons at any point if necessary. In addition, networks with 

astrocytes can integrate information on a more global level than STDP alone could, which opens 

up opportunities for fine tuning of learning rules. To follow-up on this development, the authors 

implemented the network in a full robot to control its locomotion155. With a hexapod robot 

controlled by their neuron-astrocyte network, it was able to change speeds and adjust its gait as 

necessary.   
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1.14 Experimental Evidence for Adaptive Myelination 

 While glia at large was briefly touched upon in the last two sections, astrocytes were the 

main focus. However, oligodendrocytes are glia that are also remarkably important to the 

dynamic function of the brain. Oligodendrocytes are responsible for myelinating axons, which 

can dynamically change the conduction velocity with which action potentials travel. Changes in 

conduction velocity could lead to myriad changes due to STDP and other timing-based 

integrations. Though adaptive myelination by oligodendrocytes is quite a bit slower than the 

other plasticity rules mentioned in prior sections, it still can have a heavy impact156.  

 To demonstrate the ubiquity of adaptive myelination, one study performed magnetic 

resonance imaging (MRI) on both human and rat subjects while they were challenged with 

spatial learning tasks157. Diffusion tensor imaging was done on rat subjects after they had trained 

for one day in a Morris water maze and myelination in the fornix and hippocampus was observed 

to be different. The same was done and observed with humans, except with a racing video game 

to hone their muscle memory.  

 Using optogenetic tools, another group was able to increase murine premotor cortex 

activity to trigger oligodendrogenesis and myelination158. Electron microscopy was used to study 

the effect of the induced activity. To demonstrate the dependence of myelin plasticity on spiking 

behavior as well, the authors showed the increase in myelin thickness that resulted from 

consistent optogenetic stimulation. Since it has activity-dependent plasticity, adaptive 

myelination could now serve as a useful function for computational models to employ to solve 

specific challenges.  

 In another mouse model, the animals received low intensity repetitive transcranial 

stimulation non-invasively to induce adaptive myelination159. Interestingly, the transcranial 



40 

 

stimulation actually had no effect on the average length of myelin sheets. In addition, increasing 

oligodendrogenesis without actually increasing the activity of the brain had no impact on nodal 

plasticity. It seems that transcranial stimulation may not be as effective at inducing myelination 

as optogenetics was. Also, it is possible that the location that was stimulated played a role in 

myelination not changing.  

 

1.15 Computational Models of Adaptive Myelination 

1.15.1 Data Modeling 

 To implement adaptive myelination in computational models, the major hurdle is the time 

scales. Since myelination occurs over the scale of hours when most other plasticity processes 

occur in the span of seconds to minutes, some concessions must be made to create computational 

models incorporating both.  

 To model the effect that conduction velocity plasticity would have in a network, one 

group created a network with Kuramoto oscillators as neurons and a unique differential equation 

for myelination160. To simulate a large-scale network, the authors used the human connectome. 

With only myelin accumulation active, the authors noticed that the network spontaneously began 

to synchronize. This behavior was not observed if the myelination rule was turned off, 

demonstrating myelination’s clear impact on the system. This network also naturally emulated 

the metabolic drag effect, which is a phenomenon in the brain such that longer axons tend to 

have slower conduction velocities. To test the resilience of the network, damage was inflicted 

upon it in the form of lost connections. Following the damage, the network is able to adapt and 

recover if the plasticity rule is still active, as different axons are able to change their speed to 

balance the activity out.  
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 In another model that demonstrated the stability created by adaptive myelination, a 

different group put together a recurrent network of Poisson neurons to monitor the neural activity 

that resulted from myelination changes161. However, in this model, as the conduction velocities 

stabilized, they all started to increase together. It is possible that after adaptive myelination 

stabilizes the activity of the network, it may start to pull the velocities down to an optimal point. 

The authors noted an important point with adaptive myelination, which was that a lack of tight 

control on the myelination process would result in lower, uncorrelated activity. One possible 

boon to myelination being so slow in the brain is that there is immense control based on 

consistent activity rather than quick changes resulting from spurious activity.  

 

1.15.2 Classification Tasks 

 Even though adaptive myelination is not widely adopted yet, there are a couple of 

computational models that have integrated it to solve machine learning problems. In one model, 

LIF neurons were assembled in a three-layer network with an adaptive myelination learning rule 

and a synaptic weight update rule162. With both learning rules working in concert to embed 

stimulus information, the network achieved a classification accuracy of 97.36% on MNIST. In 

contrast to prior models, this weight update rule included a homeostatic regulation term, which 

may demonstrate that adaptive myelination is not dynamic enough alone to approach stability 

when other forms of plasticity are active as well. 

 In a different model, there is a two-layer network composed of LIF neurons163. The 

output neurons control the myelination of the network, as the network is based off of a winner-

take-all architecture. When challenged with the USPS image dataset, which contains handwritten 

digits from 0 to 9, the network with 340 output neurons was able to achieve an F1-measure of 
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0.66 on the test set. That is a large number of output neurons to have when deciding between 

only 10 classes, but with only one learning rule active, the model could be built upon in the 

future.   

 

1.16 Experimental Data for Synaptic Pruning as a Learning Rule 

 To round out the last of the major glia, this section will discuss synaptic pruning, which is 

the specialty of microglia137,164. Synaptic pruning is a more powerful, but dangerous version of 

other synaptic plasticity rules. When a synapse isn’t contributing to the overall activity or 

embedding of a network, pruning rules can reduce energy and computation costs by simply 

removing it. However, if the pruning rule is too loose, the network could quickly become too 

sparse to maintain activity. Unlike with potentiation and depression, a pruned synapse would 

require a significant cost to reinstate. However, if used correctly, synaptic pruning can increase 

the efficiency of networks dramatically by reducing the number of unnecessary computations.  

 During development, synaptic pruning is essential to properly stabilize the necessary 

networks as the organism is rapidly learning about the world165. Similar to inhibitory STDP, 

synaptic pruning can occur in many different contexts and through different cell types. As such, 

it is difficult to model in a biologically accurate way since there is no ground rule for it. There 

are cases where it is executed correctly, such as in the case of brain development, but also 

instances where it leads to pathology, such as in autism spectrum disorder. While pathological 

manifestations of all of the rules discussed in this review exist, synaptic pruning is so destructive 

that this must be considered before it is experimented with or implemented in any model. 

 

 



43 

 

1.17 Computational Models of Synaptic Pruning as a Learning Rule 

1.17.1 Classification Tasks 

 Because of the benefits that can be gained in efficiency, synaptic pruning is a learning 

rule that has drawn great interest in computational models. In one prime example, a network with 

both synaptic weight and synaptic connection learning rules to replicate experimental results 

based on spine dynamics166. To add to their probabilistic pruning rule, the authors included a 

version of STDP, which contributed greatly to the model matching the spine dynamics from 

experimental data. As is true for all of the rules in this review, synaptic pruning will often work 

best when implemented in concert with other rules.  

 To further test the utility of synaptic pruning, another group implemented a winner-take-

all network with LIF neurons to classify random Poisson spike time inputs167. With binary 

synapses, the learning rule remains simple, as a synapse will either exist or it won’t depending on 

what the activity has been. If this model’s pruning mechanism were applied to non-binary 

synapses, there could be issues where very strong synapses were removed because they were 

inactive for an extended period of time. However, whether that is really an issue or not is 

dependent on the task and the network design itself. In a different model by the same group, 

synaptic pruning was defined to regulate synapse formation168. Instead of focusing on pruning 

and working from there, the model added new synapses to improve classification for specific 

classes and then removed redundant synapses attached to the neurons with new ones. By 

determining a quota of how many synapses any neuron can have, the network is forced to 

constantly make pruning decisions to make room for the new synapses that are generated. This 

also avoids the problem of sparsity, as the network is only pruning synapses once it has 
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established a replacement for them. Using this method, the model achieved classification 

accuracies of 96.4% on MNIST and 88.1% for MNIST-DVS.  

 To connect realistic pruning rates to computational models, one group observed the 

pruning rate in murine somatosensory cortical slices and started from there when optimizing169. 

In an effort to determine the optimal pruning mechanism, the model iterated four times with 

constant, increasing, decreasing, and ending pruning rates. While the first three are self-

explanatory, the ending pruning rate refers to all of the pruning happening in the final time step, 

rather than gradually over the course of the simulation. Ultimately, the decreasing-rate method 

worked the best, which makes sense as the amount of pruning reduced as the network trained 

more and adjusted. However, this network did not incorporate edge weights or any STDP rules, 

so the choice of pruning rule may be different with more moving parts in a model.  

 

1.18 Conclusion 

 Across this entire review, multiple plasticity rules were discussed in great detail, 

including the neurobiological bases, computational uses, and robotics applications. While many 

different rules were covered, there are still others that weren’t discussed, such as rate-based 

methods or non-spiking biological neurons and artificial neural networks. While different 

neuromodulators and structural proteins were briefly mentioned, the impacts of enzyme kinetics 

and epigenetics were not touched upon even though they can also result in synaptic plasticity. 

Time scales and parameter choices were briefly talked about in relation to adaptive myelination, 

but to make a maximally biological network, they would need to be considered as well. To 

complement all of these rules, a deep dive into network geometry and signaling latencies could 

prove useful. With spike-timing so dependent on conduction velocities and refractory periods, 
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those considerations can’t be ignored to maximize realism. On the machine learning side, very 

few challenges were discussed, as many STDP-based methods are still being developed to 

improve general performance.  

 While it was difficult to cover all of the topics with the appropriate depth, this review can 

serve as a compilation of different neurobiological learning rules as well as an aggregation of 

different implementations of spiking neural networks. The similarities between them are 

important, but all of the learning rules and networks stand on their own as well. These machine 

learning models can inform future experiments in neuroscience and the neuroscientific data can 

inform future models in machine learning.  
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Chapter 2 A Computational Model for Storing and Embedding Data in 

Dynamically Evolving Network Synaptic Structures 
 

2.1 Abstract 

Spike-timing dependent plasticity (STDP) is widely accepted as a mechanism through 

which the brain can learn information. Basing synaptic changes on the timing between spikes 

enhances contributing edges within a network. While STDP rules control the evolution of 

networks, most research focuses on spiking rates or specific activation paths when evaluating 

learned information. While imaging studies demonstrate physical changes to synapses due to 

STDP, these changes have not been interrogated based on their embedding capacity of a 

stimulus. Here, we show that networks with biological features can embed stimulus information 

into their synaptic weights. We use a k-nearest neighbor algorithm on the synaptic weights of 

independent networks to identify their stimulus with high accuracy based on local 

neighborhoods. While spike rates and timings remain useful, structural embeddings represent a 

new way to integrate information within a biological network. Our results demonstrate that there 

may be value in observing these changes directly. Beyond computational applications, this 

analysis may also inform investigation into neuroscience. Research is underway on the potential 

of astrocytes to integrate synapses in the brain and communicate that information elsewhere. In 

addition, observations of these synaptic embeddings may lead to novel therapies for memory 

disorders, such as transient epileptic amnesia. 

2.2 Introduction 

 The current state of the art in machine learning (ML) fundamentally relies on variations 

of gradient descent algorithms that minimize appropriately constructed cost or loss functions [1, 

2]. These methods take advantage of the stochastic convergence of weights in artificial neural 
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networks in order to capture non-trivial latent statistical associations that encode inputs and 

relationships between data. A critical component of this process is the need to train ML systems 

in either supervised or unsupervised ways by exposing them to large numbers of training 

examples.  

In many real-life scenarios, training requirements pose significant challenges. There may 

be insufficient data (or not enough high-quality data) for training. Or tasks such as learning and 

classification may need to be done ‘on the fly’ in near real-time to support just-in-time inference 

or decision-making. While some existing ML can perform near real-time learning, it still requires 

expensive pre-trained models or access to continued real-time streams of sufficient high-quality 

data [3, 4]. Current large data, large compute, and large model trends in ML cannot continue to 

scale indefinitely. And at least under some conditions, there is a real need for more data, 

compute, and energy-efficient paradigms for ML. The development of new algorithms that can 

support this could emerge from models of neural computation in the biological brain. The human 

brain, in particular, has the ability to achieve real-time inference and decision-making in the face 

of very limited data that, while never perfect, is often sufficient for real-world problem-solving 

in a way that current ML still cannot match.  

In this work, we took inspiration from foundational neurophysiology and explored the 

feasibility of learning at the scale of synaptic weights in a geometric network model of 

neurobiological spatial and temporal summation. This model can efficiently encode arbitrary 

inputs in an unsupervised way without prior training or exposure to any a priori data. There is no 

readout layer to our model, but rather, inputs are encoded by the dynamics of the networks 

themselves, which are then represented in a metric phase space on which downstream statistics 

and machine learning can be applied. Furthermore, the model lends itself to neurobiological 
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simulations and numerical experiments capable of exploring the computational properties of the 

underlying neurophysiology itself — specifically, the data embedding space supported by 

adaptive weight changes.  

To achieve this, the model we have developed takes advantage of inherent signaling 

latencies produced by the spatial and structural geometry of networks when combined with finite 

signaling speeds (conduction velocities) and node (neuronal) refractory periods. We show how 

spike-timing dependent plasticity (STDP) learning rules evolve the dynamics of the network as a 

function of vectors that encode inputs. Because the dynamics can be captured in a metric space, 

distances between points in this space capture inherent relationships (i.e., similarities) between 

different inputs and data without having to train the network.  

The dependency of the model on learning by synaptic plasticity taking place on the 

weights via STDP is critical [5, 6]. The biological brain requires state changes to transfer 

information [7–12], and spike-timing dependent plasticity rules seem to be critical for 

implementing such state changes. In both excitatory and inhibitory neurons, potentiation and 

depression are essential to adapting networks based on the stimulus presented to them [13, 14]. 

However, excitatory and inhibitory neurons need different learning rules for potentiation and 

depression, as their synapses strengthen from opposite postsynaptic neuron outcomes [15], a fact 

we took advantage of in the model here.  

Specifically, we used the leaky integrate-and-fire neuron model [16] with refractory 

periods [17] and axonal delays to incorporate geometry into the network [18]. These axonal 

delays were based on measurements of murine hippocampal axon lengths and conduction 

velocities [19, 20]. We implemented inhibition within the network at a percentage measured in 
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rat hippocampus [21]. We incorporated different STDP rules for excitatory [22] versus inhibitory 

edges [14] based on murine hippocampal data.  

While potentiation is associated with memory formation and learning, recent evidence 

suggests depression may be equally important, particularly for tasks involving object recognition 

[23–28]. While depression is often used to stabilize weights after potentiation, depression is also 

used by the brain to intentionally reduce weights to encode information [29, 30]. Recent 

experiments also suggest that STDP may embed stimuli into the structure of the network itself 

[31, 32]. STDP can augment AMPA receptor expression on the post-synaptic dendrite in 

response to a stimulus [6, 33]. Potentiation and depression are appealing candidates for memory 

formation via changes at the dendrites [34–38]. 
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Figure 2.1 Overview of the network model and analysis methods. (A) We used the leaky-

integrate-and-fire model of a neuron to construct networks with a time delay (temporal latency) 

and weights for each edge. MNIST images consisting of 784 pixels were fed into the input layer 

with each input neuron corresponding to one pixel. Each input layer neuron connected to each 

recurrent layer neuron with a different delay. As the recurrent layer neurons activate, they send 

signals to each other with varying delays for signals propagating within the layer. As signals 

travel within the recurrent layer, a biologically-inspired STDP rule modulated the weights of 

each edge. (B) For our simulations, we randomly initialized many identical networks before 

stimulating them with different MNIST images to run in parallel. As the simulations progressed, 

the STDP rules resulted in similar modifications between networks stimulated by similar images. 

The weight values of each edge were concatenated into a weight vector. Weight vectors from 

similar stimuli traveled along similar trajectories. (C) During our simulation, we ran 

concatenated weight vectors through a k-nearest neighbors algorithm. This allowed us to classify 

vectors from different simulations with unknown stimuli based on their five nearest neighbors to 

a known stimuli representing a label. 

 

2.3 Methods 

2.3.1 Neuron Model 

 Figure 2.1 provides an overview of our model and approach. We used an extension of the 

leaky integrate-and-fire neuron model [16] in combination with a network model of neural 

signaling that explicitly takes into account axon geometry and path lengths that when combined 

with conduction velocities produce signaling dynamic latencies [18, 39]. Each neuron 

accumulates membrane potential from arriving signals while its overall potential decays away 

(leaks) as a function of time. The interplay between the frequency of fractionally contributing 

amplitudes from arriving signals with a decaying potential determines when and how that neuron 
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fires. Using the subscript i representing the postsynaptic neuron and subscript j representing any 

presynaptic neuron that has sent a signal, the membrane potential can be expressed as: 

    𝑉𝑖(𝑡) =  ∑ 𝛾(𝑤𝑗𝑖 , 𝑡𝑗)𝑗      (1) 

The membrane potential Vi equals the sum of the weights of each incoming signal wji 

after they run through the decay function γ based on their respective arrival times tj. Once the 

threshold potential is reached, the neuron fires along all its edges and then becomes refractory for 

a period of time before its membrane potential resets [17].  

The weights of each edge are modulated using spike-timing dependent plasticity (STDP) 

rules derived from biological neurons [40]. Because excitatory and inhibitory edges need to be 

updated differently in response to network activity, a different STDP rule was used for each 

(Figure 2.2; see [14, 22]). For excitatory edges, potentiation occurs when a postsynaptic neuron 

fires soon after a signal arrives and depression occurs when the postsynaptic neuron is refractory 

when a signal arrives. For inhibitory edges, potentiation (i.e., making the edge more inhibitory) 

occurs when a postsynaptic neuron does not fire soon after a signal arrives, and depression 

occurs when a postsynaptic neuron fires near the signal arrival.  

In addition to the arrival and departure times of signals, variables for the amplitude of the 

weight change and the time constants for scaling the temporal effect of weight changes play 

important roles. These variables provide direct control over how large each weight change can be 

and how dependent or sensitive each weight change is to the time difference between the arriving 

signal relative to the firing of the neuron.  

For excitatory edges, the STDP rule we used can be expressed as: 

𝛥𝑤 =  𝐴−𝑒
𝛥𝑡

𝜏− 𝑖𝑓 𝛥𝑡 <  0  

𝛥𝑤 =  𝐴+𝑒
𝛥𝑡

𝜏+ 𝑖𝑓 𝛥𝑡 >  0    (2) 
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Figure 2.2 Biologically-inspired STDP rules we used in our networks. If an excitatory signal 

from a presynaptic neuron arrives at a postsynaptic neuron before it fires, the weight of the edge 

between them increases. If the signal arrives at the postsynaptic neuron while it is refractory, the 

weight of that edge decreases. Inhibitory edges are modified with a different biologically-

inspired STDP rule. If the postsynaptic neuron fires close to when the presynaptic signal arrives, 

the weight of the inhibitory edge decreases. If a sufficiently long time passes after the 

presynaptic signal arrives without a postsynaptic activation, then the magnitude of the inhibitory 

edge increases.  

 

In this expression, ∆t is the time of postsynaptic neuron firing minus the time of presynaptic 

neuron firing. A+ and A− represent the amplitudes for potentiation and depression, respectively. 

τ+ and τ− are the STDP time constants as previously described. ∆w represents how much the edge 

weight will change in the context of STDP-mediated potentiation and depression. 

For inhibitory edges, weight changes are given by: 

𝛥𝑤 = 𝜂𝐴𝑒−𝛥𝑡/𝜏 − 𝜂𝛼     (3) 

Similar to equation 2, ∆t is the time of postsynaptic neuron firing minus the time of presynaptic 

neuron firing. In contrast, though, the variable A only needs to take on one value for inhibitory 

edges, as potentiation and depression are weighted equally (i.e., they have equal amplitudes). 

Similarly, there is only one τ time constant, as the STDP curve is symmetric along the y-axis. η 

is a variable unique to inhibitory edges. It controls the learning rate of the edges by scaling each 
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weight change. α is a small value that is subtracted from the weight when there is a presynaptic 

firing. This allows for ∆w to be negative when ∆t has a large magnitude in either direction. Also, 

for clarification, a negative ∆w would result in a weaker inhibitory edge.  

The learning parameters for our STDP rules were taken from data fits to physiological 

murine neuron experiments [41]. Based on our STDP rule for excitatory edges, the choice of 

parameters reflected the amplitude of depression changes being greater than the amplitude of 

potentiation changes [5, 42]. This allowed for depression to control the activity of the network to 

avoid signals propagating indefinitely. For the STDP rule for inhibitory edges, the parameters 

weighted potentiation and depression equally, as there was no reason to augment inhibitory 

edges differently based on whether they were successful at reducing network activity or not [43].  

The geometric embedding of our model is quite consequential here. Each edge having a 

specific length varied the amount of time it took for signals to reach their target neurons [44]. All 

signals traveled at the same speed (i.e., a constant conduction velocity), so the offset in their 

arrival times was based solely on the edge path lengths. The latencies (temporal delays) along the 

edges were taken from a normal distribution around 730μm [19], with a conduction velocity of 

1.68 m/s [20]. 

The initial weights were chosen from a uniform distribution, such that 80% of the edges 

were excitatory and ranged from the threshold potential down to just above 0, and 20% of the 

edges were inhibitory and ranged from the negative magnitude of the threshold up to just below 

0. This resulted in single neurons having both inhibitory and excitatory outgoing edges, rather 

than being explicitly just inhibitory or excitatory. Consistent with rat hippocampus [21], 20% of 

the edges (synapses) were inhibitory. Neurons do not normally have both excitatory and 

inhibitory outgoing edges due to Dale’s law, so we assumed inhibitory edges contained length-
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less inhibitory interneurons to simplify the model [45]. These inhibitory interneurons needed 

axon lengths of 0 to keep the average latency of inhibitory edges the same as the average latency 

of excitatory edges. Excitatory and inhibitory edges used the same ranges for their weights, as 

this equalization has been observed in murine pyramidal neurons [46]. To improve 

computational efficiency, we used an event-driven simulator instead of integrating the neurons 

over time [47]. Following this approach, computations were done every time a signal arrives at a 

neuron. This allowed for refractory periods, membrane potential summation, and membrane leak 

to be calculated only when necessary. 

2.3.2 Network Model 

 We used a graph abstraction to model the structure of the network. A directed graph G 

consists of vertices v ∈ V which may be connected by directed edges e ∈ E. The dynamics on the 

graph are analogous to that of a biological neural network, where each vertex represents a neuron 

and each edge represents an axon. We abstracted a number of salient features of the biological 

neural network, including temporal delays associated with propagating signals (action potentials) 

along edges (temporal latencies) and edge weights, and directly encode them in the structure of 

our network. Each edge is endowed with a delay dij whose subscripts i and j represent the initial 

and terminal vertices, respectively. The edge delay represents the duration of the traversal of an 

action potential along the axon of a neuron. The value of the edge delay accounts for the 

conduction velocity of the action potential and the physical distance the action potentials must 

traverse between neurons. Each edge was also included a weight wij, which represents the 

synaptic weight and was modified by the STDP rules and the neuron model. In Section 2.3.1, we 

describe in detail how values for dij and wij were selected. 
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Table 2.1 Each of the parameters chosen for the latencies in the network and the STDP rules was 

taken from murine hippocampus experimental data. The only exception is the edge weight range 

and threshold potential, which were chosen to make the computations manageable. 

Refractory Period [17] 3.9 ms 

Resting Potential 0.0 

Threshold Potential 2.0 

Upper Bound for Edge Weight 2.0 

Lower Bound for Edge Weight -2.0 

Mean of Edge Length Gaussian [19] 730 μm 

Standard Deviation of Edge Length Gaussian 219 μm 

Speed of Signals Across Edges [20] 1.68 m/s 

Membrane Potential Leak Time Constant [41] 0.0093 

Excitatory STDP Potentiation Amplitude [41] 0.00008 

Excitatory STDP Potential Time Constant [41] 7 

Excitatory STDP Depression Amplitude [41] 0.00014 

Excitatory STDP Depression Time Constant [41] 10 

Inhibitory STDP Potentiation Amplitude [22] 0.2 

Inhibitory STDP Potentiation Time Constant [22] 20 

Inhibitory STDP Depression Amplitude [22] 0.2 

Inhibitory STDP Depression Time Constant [22] 20 

 

Our network consists of two distinct layers of vertices: the input layer and the recurrent 

layer. Importantly, as discussed in detail below, in contrast to essentially all other artificial neural 

network models, including other recurrent models, our model does not have an output layer. 

Each layer is distinguished by its connectivity, number of vertices, and initial values. Vertices of 

the input layer have edges connected in a feed-forward manner, such that each input vertex is 

connected to all recurrent layer vertices. Each vertex of the recurrent layer is connected to every 

other recurrent layer vertex, which results in a complete subgraph Ghid ⊂ G. 

2.3.3 Inputs 

 To stimulate our network, we use images from the MNIST data set from the National 

Institute of Standards and Technology [48]. This data set contains images of handwritten digits 

between 0 and 9. Each image consists of 784 pixels in a 28 by 28 grid (matrix). We mapped each 

pixel to one node in the input layer of the network. The input layer is a concatenated vector equal 
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in size to the pixel matrix representing the MNIST digits. Every non-zero pixel causes the 

corresponding input node to fire when the simulation starts. Pixels with a maximal intensity of 

255 were treated the same as pixels with an intensity of 1. All appropriate input nodes fire 

instantaneously at time 0, but their signals reach connected target neurons within the recurrent 

layer at different times depending on each edge’s distance and conduction velocity, i.e., as a 

function of the latencies on the edges. The network is stimulated only once by this process. The 

resultant dynamics on the network are then allowed to run and evolve undisturbed. 

2.3.4 Simulation Observables 

 We analyzed the state-space trajectory of edge weights to determine whether images from 

the same class resulted in similar dynamics. Initializing the network with a sample MNIST 

image caused a subset of the input layer vertices to activate. When a vertex was activated, it 

generated a signal on each of its outgoing edges. These signals either caused downstream 

vertices to activate or had no effect if the receiving vertex was refractory. Edge synaptic weights 

were modified by the STDP rules described in Section 2.3.1. The changes in synaptic weight 

encoded the dynamics on the network induced by the stimulus.  

The vector of synaptic weights was written as wk
ij(t), where ij identifies the edge for the 

kth MNIST simulation. To calculate the classification accuracy, we sampled the vector of 

synaptic weights every 100 milliseconds. We did not consider the synaptic weights of the edges 

between the input layer and the recurrent layer, but only the synaptic weights of the edges within 

the recurrent layer itself. This was because we focused on synaptic changes caused by activations 

within the recurrent layer, rather than directly from the image itself. As the input is only fed in 

once, there would only be one STDP change at most per edge between the input and recurrent 
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layer. Therefore, for n recurrent layer vertices, the size of the synaptic weight vector at each 

sampling time is n(n − 1).  

For the classification task, we compared the vectors of synaptic weights at each sampling 

time. The feature vectors of K MNIST simulations were written in the following matrix notation: 

𝐴̅(𝑡) = [𝑤(𝑡)1 𝑤(𝑡)2 … 𝑤(𝑡)𝐾]    (4) 

Ā(t) tracks the evolution of the feature vector over time. 

2.3.5 Parallel Embedding of Inputs 

 Each input to the network was treated independently. When we presented the network 

with an image, each input layer neuron was activated only once when its corresponding pixel had 

a value > 0. We did not present periodic, constant, or random rate-based inputs to the network. 

Upon stimulation with an image, we recorded the dynamics over the course of 2 seconds. From 

each simulation, we analyzed the state-space trajectory of edge weights. Since each simulation 

was independent of the others, we were able to simulate many networks in parallel. As such, 

there is no sequential training that was required. Each parallel simulation began with the same 

initial conditions. The number of parallel simulations is only constrained by computational 

resources.  

Using this approach, we analyzed 10,000 MNIST images and compared vectors of 

synaptic weights between them. With only one stimulation of the relevant input neurons that 

encoded the input image, the resultant evolving dynamics within the recurrent layer were able to 

encode the input without any notion of training the network. Inputs are inherently captured by 

the very nature of the model itself. Instead of training individual networks on specific classes, we 

compared the resultant dynamics and synaptic weight vectors across different inputs to determine 

which class they are most similar to. In effect, the state space of dynamic encodings acts as a 
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metric space on which downstream statistical - or other machine learning - analyses on the 

encoded inputs can be performed. 

2.3.6 KNN for Classification Accuracy 

 In the work we did in this paper, once we obtained the vectors of the synaptic weights 

from the many simulations, we ran them through a weighted k-nearest neighbors (w- KNN) 

algorithm to determine their localities [49]. Using w-KNN provided us with a simple way to 

assess the synaptic weight vectors based on their Manhattan distances to discern if they are of the 

same class or not. Using this w-KNN, we classified each vector in the test set based on their 

distances from the 9,000 vectors in the training set. The w-KNN weighting of each neighbor 

comes from the inverse of the distance between it and the weight vector being evaluated; 

whichever MNIST digit has the highest total weight based on the 5-nearest neighbors is the one 

that is chosen for the classification. The 10,000 total vectors were sorted into the training and test 

sets randomly and used for classification over 10 iterations to avoid any sampling bias. In 

addition, because there is approximately the same amount of simulations per digit in our 

population of 10,000 vectors, imbalances should not create biases in modes when many 

neighbors are considered. Importantly, even though the neighbors are pulled from a “training 

set”, there is no actual training in this system, as all of the simulations were performed 

independently. 

2.3.7 UMAP for Visualization 

In order to visualize the clustering of these synaptic weight vectors, we used the UMAP 

dimension reduction algorithm [50]. We took edge weight vectors from 10,000 simulations and 

ran them through UMAP to see how separated each digit is from the others. UMAP employs k-

nearest neighbors concepts with a unique local metric space implementation to effectively reduce  
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Figure 2.3 Qualitative characteristics of the model. (A) Spike raster for the first 30 activations 

for each neuron in the network. The activity of the network starts slowly due to the delays from 

the input nodes, but quickly increases. In addition, even with just 200 recurrent nodes, there are 

approximately as many as 20,000 activations per second in the simulation. As such, the 

activation dynamics are constantly changing the weights of the system. (B) Computed UMAP 

projection to reduce the dimensionality of the edge weight vectors and the resultant separation of 

classes. Edge weight vectors from stimuli corresponding to the same digit generally cluster 

together in the projection and are visually separable. This implies that the resultant network 

dynamics to within class inputs are more similar to each other than to vectors from other digits. 

 

the dimensionality of large data. By using this, we obtained a two-dimensional plot of all of the 

vectors labeled by their input digit. This revealed how similar or distinct the state-spaces of 

vectors of each digit can be based on their proximity to each other. 

2.4 Results 

2.4.1 Characterization of Network Activity and Embedding Quality 

We first explored and characterized the dynamic activity of network. We recorded the 

time of the first 30 activations for each recurrent layer neuron in a 200-neuron network. The 

activity is not identical across all neurons, but most neurons had fired 30 times by 300 ms post-

stimulation (Figure 2.3A). Maximal information embedding was achieved at 300 ms post-

stimulation, which corresponded with peak classification accuracy (Figure 2.4). This implies that 

the network is not just embedding a few key activations that reflect the stimulus directly, but 
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rather aggregating thousands of activations into the dynamical structure of the network, with 

each activation producing hundreds of synaptic weight changes via the STDP rules.  

To better understand the behavior of networks stimulated by different images of the same 

class, we took edge weight vectors at different simulation times and ran them through a UMAP 

dimension reduction. The greatest separation occurred at 300 ms post-simulation (Figure 2.3B). 

Notably, even though the networks were stimulated independently, they tended to cluster 

together based on the class of the image used. To generate Figure 2.3, only the edge weight 

vectors were used, with no additional information about spiking activity or stimulus patterns. In 

other words, within the structural embedding itself, there was information about the stimulus. 

Further, we did not include edge weights between the input and recurrent layer, since these 

would not reflect the activity of the recurrent layer. Those signals would only travel along edges 

due to image pixels, so those edges would only be affected by STDP once. Since the goal was to 

study how well network dynamics can embed information through thousands of signals 

modulated by STDP, the input layer to recurrent layer edges were not included. 
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Figure 2.4 Summary of KNN classification accuracies over time. We explored how different 

parameter values impacted performance. (A) We tested various recurrent layer sizes to balance 

the classification accuracy with simulation efficiency. The peak classification accuracy improved 

as the size of the network grew, reaching a constant at 300 ms of simulation time. Observed 

increases in classification accuracy performance in networks larger than 200 nodes were not 

significant at peak classification accuracy, but rather affected decreases in accuracies post-peak 

over time. (B) We tested different ratios of excitatory to inhibitory edges. Some percentages of 

inhibitory edges, such as 70% and higher, were so negative that they silenced the network 

prematurely. When comparing the peak classification accuracies across all percentages, we 

observed that 20% resulted in the highest peak accuracy. Interestingly, some inhibitory 

percentages have peak accuracies at simulation times later than 300 ms, which is a phenomenon 

that was not observed with many other parameter configurations. 
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We then used a k-nearest neighbors algorithm to classify networks with unknown stimuli 

based on their edge weight neighbors. Because the information capacity of the edge weight 

vector is bound to its dimension, we decided to experiment with the number of neurons (and 

therefore number of edges) within the recurrent layer. As the network size grew and the number 

of edges increased, the peak classification accuracy determined using a k-nearest neighbors 

algorithm also increased, but with diminishing returns (Figure 2.4). With 200 neurons in the 

recurrent layer, the peak classification accuracy was 96.5±0.5%. With networks larger than that, 

peak classification marginally increased while substantially enlarging the edge weight vector 

space. With n recurrent layer neurons, an edge weight vector would contain n(n − 1) edges. 

Though a recurrent layer of 300 neurons has slightly higher accuracy, the computational costs 

are disproportionately larger, effectively reducing the return on investment of increased network 

size.  

For all network sizes, the peak classification accuracy was reached at 300 ms post-

stimulation, which is an interesting phenomenon independent of the number of neurons. 

Interestingly, as the network size increases, the embedding of the stimulus seems to be retained 

longer within the network. With recurrent layers as large as 300 or 400 neurons (89,700 or 

159,600 edges), a decrease in classification accuracy was not measurable within the 2-second 

time window we were using. 

Lastly, we explored the effects of changing different ratios of excitatory to inhibitory 

edges. For a network with a 200-neuron recurrent layer, the peak classification accuracy of 

96.5±0.5% was achieved with an inhibitory edge fraction of 10-30% (Figure 2.4). This ratio 

matches biological estimates of excitatory to inhibitory ratios quite accurately [21, 51–53]. 



76 

 

Interestingly, with 50% of the edges being inhibitory, the network neither becomes 

quiescent nor loses the embedding of the stimulus over time. While this fraction did not achieve 

the same peak classification accuracy as lower inhibitory fractions, this maintained embedding 

could be useful in some biological systems. 

2.4.2 Extending Simulations Beyond Experimental Plausibility  

 We then evaluated the relative independent contribution of potentiation and depression to 

the network embeddings by running simulations with each separately. Interestingly, turning off 

potentiation had a minimal effect on the peak classification accuracy (Figure 2.5). With just 

depression gradually decreasing the edge weights, the network could still embed the stimulus 

with the same classification accuracy. But when depression was removed, potentiation alone was 

incapable of maintaining the embedding quality of the stimulus. With depression and with or 

without potentiation, a classification accuracy of 96.36±0.47% was achieved with a recurrent 

layer of 200 neurons. In contrast, without depression, the classification accuracy fell to 

87.24±0.78% for the same sized network. 
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Figure 2.5 Testing the individual contributions of potentiation and depression on edge weight 

changes and classification accuracies. Depression alone was sufficient to maintain high 

classification accuracy, but potentiation by itself reduced the peak accuracy substantially. We 

then switched the parameter values for each learning rule to see if they were the cause, but we 

observed the same phenomena regardless of which parameter values were used for each learning 

rule. Edge weight depression seems to be necessary for stimulus embedding in this system. 

To disqualify the effect of our chosen parameter values themselves (which were derived 

experimentally), we switched the parameters used for depression and potentiation. The original 

parameters produced depression with higher amplitude than potentiation. But even after this was 

switched, depression still had a larger impact on classification accuracy (Figure 2.5). In any 

paradigm without depression, the accuracy would drop from 96% to 88%. On top of that, 

paradigms without potentiation maintained 96% accuracy as long as depression was active. 
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Figure 2.6 Increased and decreased refractory periods of neurons within the recurrent layer 

suggests a quantifiable reason for the scale of biological refractory periods. Regardless of how 

large or small the refractory period is, with both potentiation and depression changing weights, 

the classification accuracy remains consistent. However, with just depression affecting the 

weights, longer refractory periods result in better classification accuracy. Inversely, with just 

potentiation, shorter refractory periods lead to better classification accuracy. There seems to be 

an inflection point at around 1 ms where depression alone begins to embed information better 

than potentiation alone. 

To further investigate the balance between potentiation and depression, we next changed 

the refractory period of the neurons in the recurrent layer. As the frequency of potentiation to 

depression events depends on the length of the refractory periods, it follows that this would have 

a large impact on which process has more influence. For all the refractory periods we tested, 

from 100 ms to 10 ms, having both potentiation and depression changing edge weights 

maintained maximum classification accuracy in our system as seen in Figure 2.6. It was only 
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when we investigated potentiation or depression alone that differences became noticeable. With 

shorter refractory periods, just potentiating changes performed better than just depressive 

changes. However, once refractory periods grew longer and more depressive events took place, 

depression alone performed better than potentiation alone. Across all tested refractory periods, 

having just one or the other was sufficient to reach the maximum classification accuracy 

obtained by having them both together. The inflection point where depression becomes more 

impactful than potentiation seemed to be with a refractory period of around 1 ms. 

2.4.3 Comparing Edge Weight Vectors to Image Stimuli 

 Given the high classification accuracy of the embeddings using KNN across simulations, 

we investigated more closely the raw images themselves. We plotted the 9,000 nearest neighbors 

for one particular MNIST image based on pixel value distance (Figure 2.7). Then, over the 

course of a simulation, we plotted the 9,000 nearest neighbors of that same image based on the 

edge weight vector distance. Taking the running mean of each group of 100 edge weight vector 

distances, we observed similar patterns start to form and disappear over the course of a typical 

simulation. Notably, the edge weight vector distances seem to correlate with the pixel value 

distances between 200 and 400 ms of simulation, when peak classification accuracy occurs. 

After 400 ms, the edge weight vector distances lose correlation with the pixel value distances. 
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Figure 2.7 Distances of nearest neighbors to a single image based on their raw pixel values 

sorted to be ascending (red lines). Over the course of the simulation, we used this ordering to see 

how it compared to distances of the same image based on the network edge weights while 

preserving the order from the raw pixel values. The running mean of the following nearest 100 

image edge weight distances is used to produce the black traces. We can see that around 300 ms, 

where the embedding is at its best, the edge weight distances seem to correlate nicely with the 

red raw pixel distances. However, this correlation is transient and is not reached before 200 ms 

of simulation time nor preserved after 400 ms. 

2.4.4 Comparison Against a Standard Neural Network 

 To assess how our approach compared to a conventional neural network, we constructed 

a three-layer sequential model in TensorFlow. The first layer contained 28 by 28 nodes, 

equivalent to the 784 nodes in our model. A second hidden layer contained a varying number of 

nodes to serve as an analogue for our recurrent layer. Lastly, a third output layer contained 10 

nodes. One-shot learning was implemented on the ANN by training it until the model over-fitted 

the training data, which consisted of one randomly chosen image from each class. For the ANN, 
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we used the Adam optimizer, the Cross Entropy loss function, and a ReLu node activation 

model. 

 

Figure 2.8 (A) We compared the classification accuracy performance on an MNIST data set 

between our biologically-inspired neural network and an artificial neural network using a similar 

edge weight KNN method. We see that our network achieves better classification accuracy 

regardless of the number of neurons within the recurrent/hidden layer. (B) When looking at the 

number of parameters adjusted in networks with different recurrent/hidden layer sizes, we see 

that our network scales up with fewer parameters than an artificial neural network. While the 

number of parameters begins similarly, the artificial neural network parameters balloon as more 

hidden nodes are added. 
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After training the ANN, an embedding space of 9,000 was generated using 9,000 images 

from the test set. Each dimension of the embedding space corresponded to the activation value of 

a hidden layer node. With this embedding space, different sets of 1,000 test images were 

assessed for their classification accuracies. For each set, we used a cosine distance-based w-

KNN. For both the ANN and our biologically-inspired neural network, each KNN was run 10 

times with the training and testing sets reshuffled each time to avoid any unwanted sampling 

bias. Given these parameters, the ANN consistently performed worse on one-shot classification 

accuracy regardless of the recurrent/hidden layer size tested (Figure 2.8). In addition, it 

consistently required more parameters than our model for all tested hidden layer sizes. 

2.5 Discussion 

2.5.1 Neurobiological Relevance of Our Results 

The embeddings we observe in this work are represented as compositions of large 

combinations of weight changes. Rather than a few highly specific activations triggered by a 

stimulus, thousands of activations are integrated to produce the network state that ultimately 

encodes the input data. Without any pre-training, the base network stimulated independently with 

two images of the same class will likely end up with two similar network states 300 ms into the 

simulation. Further, images with various orientations across the same class share similar enough 

patterns to trigger similar weight changes overall. Figure 2.3B supports this interpretation, as 

states of networks of the same classes aggregate at particular times when simulated 

independently of each other. It is possible that some networks in the brain may work similarly, 

particularly in the perirhinal cortex, where object recognition is accomplished by networks that 

have strong depression, as our networks do [23]. In the brain, similar stimuli may result in 

similar structural states for object identification. 
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Broadly speaking, our results match mechanistic neurobiological expectations, and 

certain predicted implications of such mechanisms and processes. For example, other work 

suggests that neurobiological networks need to be sufficiently large in order to embed a stimulus 

[54]. And yet other another study suggested that inhibition necessarily plays an essential role in 

information embedding [14]. In our work here, we extend these results by showing the 

effectiveness of leveraging neurophysiological STDP rules to encode structural embeddings in 

networks. This is relevant to proposed ideas about structural changes being a part of the process 

of embedding memories [34]. In fact, at least within the context of our simplified model we show 

that such structural embeddings are sufficient to encode a memory-like events at a synaptic scale. 

Our simulations also allow exploring the trade-offs between stimulus embedding and 

network size. As we increase the size of our networks beyond 200 recurrent neurons, the 

classification accuracy improves only marginally while increasing the computation time 

dramatically. This could be a relevant consideration in the context of physical resources in the 

brain, such as neurotransmitters, neuromodulators and metabolic ATP considerations. It could be 

inefficient to rely on the activation of larger networks to complete a task because the embedding 

capacity may improve only marginally at a significant resource cost. 

Other studies have seemingly observed this phenomenon in working memory; training 

increases the number of neurons initially stimulated, but it does not increase the number of 

neurons recruited to the assembly in general [55]. While raising the number of neurons that are 

initially stimulated increases ATP consumption, this increase is less than that by enlarging the 

assembly itself. Therefore, there is a more efficient trade-off between increasing resource usage 

and computational capacity in these neuron assemblies. 
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The importance of appropriate ratios of excitation to inhibition was also reflected in our 

model and simulations. While a number of experimental studies have identified the percentages 

of inhibitory synapses in the brain [21, 51–53], our simulations allowed us to test the extreme 

ranges of this ratio. We measured the best classification accuracy with inhibition percentages 

between 10-30%, which matches what has been measured experimentally. These results support 

the hypothesis that the brain may have selectively evolved networks these inhibitory percentages 

in order to optimally embed information. 

However, one exception that is not easily explainable is why 50% inhibition produces a 

classification accuracy that did not decrease significantly after hundreds of milliseconds of 

simulation. One possible function for a network with this inhibitory percentage is the acquisition 

and maintenance of fear memory through inhibitory neurons in the intercalated cell masses 

(ITCs) of the amygdala [56]. These masses are densely inhibitory and connect the amygdala to 

surrounding structures. In our model, all inhibitory neurons follow the same activation and 

plasticity rules rather than considering variability. But in vivo experiments have shown that 

different populations of inhibitory interneurons work independently of each other [57, 58]. 

Perhaps the phenomena we observed with 50% inhibition resulted from an oversimplification of 

the different populations (and associated dynamics) in biological inhibition. 

2.5.2 Relative Contributions of Potentiation and Depression to Information Embedding 

Our results suggest that within the range of neurobiological refractory periods, depression 

alone embeds a stimulus better than potentiation alone. Experimentally, it has been previously 

shown in a mouse model that potentiation by itself is less effective at embedding working 

memory than when both potentiation and depression are active together [59]. Based on the 

different refractory periods we tested, we saw that potentiation and depression independently 
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each consistently embed information at different efficiencies. With shorter refractory periods, 

potentiation works better alone than depression while with longer refractory periods, depression 

works better alone than potentiation. This observation is intuitive, as fewer signals arrive at 

refractory post-synaptic neurons with a shorter refractory period and, therefore, those signals 

could contribute to future activations. 

Another consideration for an optimal refractory period is the relative strengths of 

potentiation and depression. Experimental data has shown depression to have a larger magnitude 

of change than potentiation [5, 13, 60]. However, this may just be a consequence of the 

refractory period, as our data shows that depression has stronger embedding capabilities than 

potentiation with a biological refractory period regardless of plasticity parameter values. As 

such, the magnitudes of depressive changes may seem larger experimentally because the 

embedding capability of depression is better at that refractory period. Quantitative experimental 

observations may be influenced by the efficacy of depression at embedding information with a 

biological refractory period. In addition, since our model shows the importance of depressive 

events for embedding, we speculate that the biological magnitude is larger for depression than 

potentiation to increase the fidelity and range of the depressive weight changes. This is a could 

be beneficial because it would allow for embedding through unique, subtle depressive changes to 

weights. 

An analysis of the synaptic weight space of our model and networks agrees well with 

studies that have looked at the state spaces of memory [61, 62]. It has been proposed that 

networks in the brain may alternate between persistent states to store memories. These states 

could possibly consist of synaptic weights, synaptic connections, membrane voltages, neuronal 

activation patterns, or other biochemical variables. In our model, we directly used synaptic 
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weights to define the different states that networks transition between as they are stimulated. In 

particular, we show that networks stimulated by images of the same class reach similar states 

after 300 ms of simulation. 

2.5.3 A Potential Computational Role for Astrocytes in Encoding and Storing Memories 

One natural question that arises from the synaptic weight state space is its potential 

capacity. We show that there is a useful amount of separation with ten classes, but further work 

is needed to determine if there is sufficient separation resolution with a greater number of 

classes. In addition, these synaptic weight states do not seem to persist over time, so the 

dynamics that produce such dynamic transience could also be further studied. One intriguing 

idea would be to incorporate a glial component to the network, which could stabilize states to 

persist for longer. Experimental studies have shown that glial cells play a key (though not yet 

well understood) role in hippocampal structural maintenance [63, 64]. Incorporating glial cell 

support could allow the weight changes in our network to preserve information for longer and 

delay our observed loss in accuracy. 

In addition to homeostatic support functions, glial cells, and in particular astrocytes, may 

function as downstream readers of synaptic weights in the hippocampus and other parts of the 

brain. It is possible these cells could play a role reminiscent of our KNN algorithm. In particular, 

in the hippocampus a single astrocyte can extend processes to numerous synapses that, from a 

cellular mechanistic perspective at least, can monitor and actively participate in neuronal 

synaptic signaling, thus potentially contributing to the activity and plasticity that takes place 

[65]. While the astrocytes may not keep track of the absolute synaptic strengths themselves, their 

internal calcium gradients change with potentiation and depression of the synapses [66, 67]. As 

such, their internal states integrate the overall plasticity changes over thousands of synapses to 
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monitor the population as a whole [68]. As astrocytes can communicate with each other through 

intercellular calcium waves and gap junctions, they can transfer information across the astrocyte 

syncytium to other astrocytes [69, 70]. In effect, this system has the potential to ’short circuit’ 

the neuronal network, thereby putatively affecting plasticity [71]. 

Taken all together, astrocytes, could be reading global synaptic plasticity changes in a 

network caused by a stimulus, possibly allowing them to embed the stimulus and transfer it to 

another downstream network to facilitate the flow of information. Our KNN algorithm is similar 

in the sense that it is sensitive to the edge weight changes within the networks rather than their 

absolute weights, which are largely influenced by the initial state of the network. The synaptic 

plasticity information astrocytes integrate could be the biological analogue of our edge weight 

vectors and could serve as a plausible mechanism through which information is transferred in the 

hippocampus and possibly other parts of the brain. 

Furthermore, astrocytes as readers of synaptic weights may explain the cause of transient 

epileptic amnesia [72]. When considering the paradigm of rate coding, seizures represent a 

unique firing rate for various regions of the brain. Most patients suffer amnesia during an episode 

and often during the postictal state [73]. This would imply that there is more to memory 

formation than firing rates alone, as epileptic firing rates would not be confounded by another 

event. This is where our hypothesis fits in. The chaotic network activity of seizures may cause 

STDP changes that do not properly embed any particular stimulus. As such, when the brain tries 

to recall memories from the event, it may not be able to accurately process what the synaptic 

changes represent. Morphological changes have been observed in the synapses of epileptic brain 

regions [74], so there is a precedent that seizures abnormally change synaptic plasticity. 
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In addition, there may be dysfunction at the level of astrocytes as well. As astrocytes are 

critically important for removing excess neurotransmitters from synapses as part of their 

homeostatic functions, seizures due to insufficient removal may be caused by astrocyte 

dysfunction [75]. Any condition that results in a disruption of astrocytic homeostasis at the 

synapse, could conceivably also affect how astrocytes read synapses. While there have been 

hypotheses for how amnesia can result from rate coding, such as misaligned gamma and theta 

wave synchronization [74], a consideration of the critical roles astrocytes could be playing in 

storing long term memories reflects a potential significant computational function for these cells 

of which we still know very little about. 

2.5.4 Future Neurobiological Directions and Implications 

 In the future, the introduction of noise into the system could be studied as well, as 

experimental studies have shown STDP to struggle when noise via jitter is added to the spike 

timing [76]. Inversely, adding minimal noise may be beneficial to allow subthreshold signals to 

impact network dynamics [77]. Further, our threshold potential was chosen such that an average 

of three excitatory signals would be required to reach it. Follow-up experiments could adjust the 

threshold potential to observe how increasing and decreasing the number of activations affects 

the STDP embedding of the stimulus. Lastly, another future direction could involve studying the 

effect of multiple sequential stimuli on the embedding. If the synaptic weights are capable of 

reflecting one stimulus, what happens when two are presented? Do the weights reflect a 

composition of the inputs? 

When looking at neurons within the brain, our synaptic weight spaces offer valuable 

insight. While rate coding, postsynaptic potential magnitudes, and myelin thicknesses are 

primarily considered as evidence of learning [7–9], structural changes, in particular, can be 
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meaningful as well. Our methodology demonstrates that the stimulus can be identified by 

interrogating the structural state of a network following stimulation. In addition to astrocytes 

potentially monitoring synapses, the structural state may also strongly influence the overall rate 

and magnitudes of activations within the network. As such, the structural state may correlate well 

with current observations of activation rates and postsynaptic potential magnitudes. As brain 

slice imaging techniques continue to improve, subtle structural differences associated with 

different learned patterns may also become observable experimentally. 

When designing our network, we used a single recurrent layer to avoid any brain region-

specific architecture. To generalize functions and interactions of various brain regions, we 

minimized topological variability by connecting each input neuron to every recurrent layer 

neuron. However, various regions of the hippocampus and parahippocampal cortex are recurrent 

networks, so our model could represent an apt analogue for them [78, 79]. In addition, we 

maintained the same initial conditions for simulations run in parallel (axon lengths, starting 

weights) to minimize variability. To properly evaluate our edge weight and delay distributions, 

we tested 11 randomly chosen initial conditions and observed a classification accuracy of 

96.53±0.06% with a 200-neuron recurrent layer. With these controls in place, the experimental 

data we gathered resulted from changes to the refractory periods, network sizes, inhibitory 

percentages, and STDP rules. Regarding this design philosophy, further work can be done to 

investigate how different network architectures are impacted by varied refractory periods and 

potentiation/depression isolation. Furthermore, allowing for variability in initialization or even 

sequential stimulation could lead to new insights into the homeostatic capabilities of the 

networks to recalibrate and resume learning. To add more neuroscientific features to the 

network, we could also add dynamic dendritic spine calcium concentrations, as a recent model 
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observed their effect on STDP strength [80]. In particular, in high-activity networks such as ours, 

the magnitude of STDP changes could be quite variable depending on the calcium transients. 

Experimental techniques capable of observing the graded breakdown of synaptic 

embeddings could produce diagnostic tools for neural dysfunctions and new understandings of 

computation in the brain. Research is currently being done to quantify how these synaptic 

embeddings relate to information storage [81], but it is still unclear how to best monitor them. In 

our model, embeddings are intimately tied to the timing of signals between neurons. Variability 

of a network’s geometry and signaling parameters affect timing, and volatility in either can cause 

failure in embedding robustness. Changes in a network’s geometry arise from available neural 

circuits due to disruptions to oscillatory neural patterns, and neuromodulatory signals [82–84]. 

Dysfunction affecting the conduction velocity of axons, whether due to myelination or ion 

channel irregularities, could negatively impact memory storage due to inconsistent signaling 

parameters affecting the signal timings. Further, if there is limited neurotransmitter availability, 

either due to poor astrocyte recycling or insufficient production, the resulting variability in spike 

amplitudes will affect signal timing, thus the embedding, and may lead to memory problems. 

Another potential source of issues with memory could be connectivity changes due to synaptic 

pruning or neurotrophy, which could change the paths that signals travel along in response to the 

same stimulus. Lastly, conditions constraining the sizes of neuron assemblies could result in poor 

memory due to an insufficient number of edges on which information can be embedded. 

Biological experiments focused on any of these issues could elucidate mechanisms of memory 

loss beyond just synapse destruction due to neuroinflammation. 
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2.5.5 Edge Weights As A Machine Learning Methodology 

After 300 ms of simulation time of our model in response to a specific input vector, the 

nearest neighbors to a specific vector closely resemble the nearest neighbors of the input image 

itself. This observation highlights the functional potential of our model. With STDP, neuron 

(node) refraction, inhibitory edges, and edge latencies, the network is able to encode the stimulus 

after 300 ms. These results suggest that adding neurobiological features to canonical artificial 

neural networks could enhance their function for applications that, in particular, necessitate 

encoding or embedding sparse or incomplete data that is not sufficient to train a traditional ANN. 

By allowing the networks to dynamically evolve in response to the unique stimulation pattern 

encoded in the input vector, our model is able to take advantage of the resultant structural weight 

states to classify the input in an unsupervised way with no prior training or exposure to a priori 

data. This reduces the number of parameters when compared to a deeper neural network [85]. 

More broadly, our work fits into a body of work that is exploring how neurophysiological and 

biological principles can advance machine learning from the current state of the art [86–90].  

Since each simulation is run independently of the others, there is no “training phase” in 

our system. Each individual network embeds information in parallel via one- shot learning [85]. 

The network activity of our model generates a dynamic embedding of the stimulus through the 

synaptic weight changes, which can be subsequently used for classification. Our dynamic 

embedding can be considered as a functional transformation of the stimulus. When we ran the 

KNN on the pixels of the input images we attained a classification accuracy of 94.5%, whereas, 

the KNN on our dynamic embedding resulted in a classification accuracy of 96.5%. Given that 

we empirically observed an increase in classification accuracy as a result of the dynamic 

embedding, we postulate that the resultant transformations are non-trivial. 
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Further work should explore and develop the machine learning potential of this system as 

well as other biologically-inspired systems. Although we only tested our network on the MNIST 

data set, which is no longer a hurdle for machine learning systems, we plan to test more 

challenging data sets next. While the absolute classification accuracy of 96.5±0.5% is not as high 

as state-of-the-art neural networks achieve, it was achieved with one-shot learning. Critically, the 

intent of our model is not to compete with classical machine learning, but rather, to develop a 

neurobiologically derived machine learning paradigm that is capable of operating under 

conditions that still challenge even the most advanced classical system. 
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Chapter 3 Simplifying Biology Vocabulary via Morphology 
 

3.1 Abstract 

In all fields of biology, understanding technical terminology is a challenge for students. 

In many cases, this may distract them from focusing on fundamental processes and concepts. 

Across the biology subfields, much of the vernacular shares similar etymology and morphology. 

However, students lack the exposure necessary to identify these key features, which often 

explain the meaning of terms without requiring any context at all. Therefore, instead of 

encouraging students to memorize many terms independently, it could be more beneficial to 

show them how words are constructed. Here, I propose an activity designed to help students 

recognize terms that may be connected, understand how vocabulary is often constructed to 

reflect its idea, and develop comfortability using these terms themselves in discussions. Through 

a guided group activity, students will have a chance to break down terms they have previously 

encountered and to draw connections between novel words. If students are capable of relating 

words to each other before even knowing what they mean, they may learn more effectively. 

Without being intimidated by enigmatic vocabulary, they can focus on broader concepts. In 

addition, when students understand how biological terminology is constructed, they may even 

dissect new words without needing the context surrounding them. This activity is applicable to 

courses in any specialty of biology, as various molecules, tissues, and processes follow general 

naming principles. 

3.2 Introduction 

Novice learners often struggle to discern which concepts are most important when 

presented with novel material [4]. As such, it is easy for students to get stuck on small details 

when they should be focusing on the bigger picture. In biology, there are myriad names for 
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molecules, tissues, and processes that may confuse students [16]. Without a full understanding of 

these terms, students are left with an incongruence between what a word looks like and what it 

refers to. This divide forces them to memorize the foreign word while also trying to grasp the 

biology behind why it is important [23, 6]. Introductory and advanced biology courses introduce 

as many as 1,000 technical terms [19, 7, 26]. Of those, many are heavily rooted in Greek or 

Latin. If students were primed beforehand to identify common biological morphemes, they could 

spend less time memorizing words and instead focus on the concepts themselves [7, 8, 2, 1]. 

Comparing the morphologies of words may even result in novel connections for the students[26]. 

Educational schema theory suggests that students can implement this knowledge of terminology 

to improve comprehension and retention of deeper ideas [25, 24, 12].  

For students whose first language is not English, this approach may simplify scientific 

terms for them [10]. Students with first languages based in Latin or Greek more easily access 

STEM terminology when they can connect the etymologies to their home language [21, 13, 9]. 

Specifically, English Language Learner students (ELLs) in the U.S. received higher scores on 

science units when extra attention was placed on the vocabulary itself [11, 5]. Notably, verbal 

usage of academic language was critical to making ELLs comfortable with the terminology [15]. 

Further, ELLs with reading disabilities in the U.S. significantly improved their understanding of 

biological vocabulary following instruction on different morphemes [14, 13].  

More broadly, if the countless terms in biology are thought of as a new language [19, 17, 

23], their instruction may benefit from approaches designed to teach students languages. In 

particular, the Model of Domain Learning supports the idea that memorizing a vocabulary list is 

not as effective for learning a new language as identifying context clues necessary to discern the 

meaning of an unfamiliar word [20]. 
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To this point, significant work has been done to effectively introduce students to 

biological terminology. In one study, an anatomy course in Minnesota implemented a five-day 

mini-unit focused on word roots and observed significant improvement on a vocabulary exam 

[18]. In addition to quantitative data, students provided positive feedback about how the mini-

unit helped them. Similarly, a high school class was split into groups studying Greek and Latin 

roots either via rote memorization or an active mnemonic activity [3]. After nine weeks of 

instruction, there was a significant improvement in medical terminology recall in the groups that 

participated in the mnemonic activity, demonstrating the benefit of familiarity with these roots. 

Another study involved starting a biology course with a worksheet and a test on 40 common root 

words [17]. While there was no student feedback or performance data, priming students for 

terminology could only help them prepare [25]. An instructor in Texas even tried to incorporate 

teaching biological etymology into a dissection activity to improve students’ understanding of 

what they were doing [8]. While time constraints impacted the performance of that activity, the 

idea that root words are useful persists ubiquitously. 

Beyond etymology, active discussion is an important part of my proposal as well. One 

group prompted student pairs to hold a dialogue incorporating scientific word lists [19]. 

Conversing using technical terminology proved to be more fruitful for students than having a 

simple reading assignment. In a liberal arts college in the Midwest, one instructor designed a 

card game to teach students biological vocabulary and received feedback that it “helped with 

terminology and figuring out and connecting words and ideas together [6].” Further, one 

instructor put together a card sorting assignment to make students organize chemical substances 

[22]. By learning about the substances as they sorted them, students quickly identified what 

distinguished one from the others and what details were most important. Actively engaging 
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students to deliberate and organize scientific terms demonstrably benefits their understanding of 

broader concepts.  

To teach students how to break down biological vocabulary, I propose a guided group 

discussion in which students identify key similarities between words and interrogate why said 

words are constructed as they are. I recommend this activity early in the school year for students 

between late high school and early graduate school, so they will have encountered some 

technical terms beforehand. In its current form, this activity can be applied to classes of any size 

and topic, but for large classes, instructional assistants may be necessary to aid with monitoring 

the groups. By allowing students to work together to hypothesize about connections, they will 

approach biological ideas from a new perspective. They will acquire an awareness of what goes 

into these words, which is crucial to reverse engineer what they mean.  

3.3 Activity Preparation 

To properly scaffold conversations between students, instructors must prepare a small 

introduction for the activity. This should include a general definition of morphology, noting how 

many technical words are constructed from Latin or Greek roots. One example I recommend is 

adrenaline-epinephrine. Both words refer to the same hormone and their similarities permeate to 

their etymologies. For adrenaline, the roots are “ad-” (towards), “-renal” (kidneys), and “-ine” 

(made of). Similarly, the roots of epinephrine are “epi-” (on top of), “nephro-” (kidney), and “-

ine” (made of). These words both highlight where the hormone is produced. 

However, instead of diving right into this etymological homology, I recommend 

introducing these roots individually first. For example, an instructor can guide students to break 

down “adapt” to understand the root “ad-”. Similarly, “epilogue” demonstrates the flexibility of 
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“epi-”. By starting with familiar words, it will be easier for students to grasp the idea of defining 

words via roots. 

Other than this introduction, a word bank must be compiled. This word bank may focus 

on the specific class or may generalize to various subjects in biology. Words selected should 

have straightforward morphemes and among them, there should be overlaps in root words for 

students to identify. To increase student participation, students can be tasked with finding five to 

ten technical terms themselves. To guide their search, instructors can recommend aggregating 

terms from other classes or that students may have encountered in recent news. 

Along with a bank of words, a bank of commonly used roots must be compiled [17]. 

Special care should be placed on the creation of this bank, as students may take it with them to 

future classes as well. The more comprehensive the list, the more useful it could be for them in 

other settings. 

3.4 Activity Implementation 

Overall, this group discussion should take around one hour in total regardless of class 

size. To begin, the instructor shall introduce morphemes and how common they are in biology. 

Once this brief lecture is complete, students should divide into groups of three or four. Per the 

instructor’s discretion, a different group size could be chosen, but too large would risk some 

students not having the time or space to contribute and too small may lead to discussions with 

too few observations.  

With the word bank on screen or accessible through their devices, students should note 

down as many similarities between words as they can. By connecting words superficially, they 

will create clusters to work with when trying to understand roots. Students should have 5 minutes 

to group as many words as they can. After this, students should explicitly identify possible roots 
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and hypothesize about what they might mean in the context of these words. One student per 

group should be chosen via the instructor’s preferred method to write down the groups of words 

and hypothetical roots as the discussion proceeds. If students are particularly stuck on a cluster, 

they may need to look up what certain words mean. This experimental period for students should 

last around ten minutes, but may be extended if the students are very active. When assessing how 

students are doing, a good discussion may include references to particular organs or a specific 

chemical process. References to the anatomical orientation described by roots would also 

indicate an ideal conversation. Poor discussions may involve students getting caught up on the 

location of roots within a word or spending too much time trying to define a particular root that 

they’ve identified. 

Following this discussion, groups should come back together as a class and each one 

should highlight one root of interest. This should include all the words they identified with the 

root and possible definitions for them. After a group shares, other groups should have the 

opportunity to comment if they noticed other candidate words or if they think certain words 

actually do not use that particular root. 

Once the class has finished, the instructor should provide the bank of roots to students on 

screen and on their devices. Students should return to their groups and reflect on how accurate 

their word clusters were. After assessing their previous hypotheses, students should tackle 

defining unknown words in the word bank once again, but this time using the bank of roots 

provided. In addition to the clusters they formed, this will allow them to directly dissect technical 

terms, possibly for the first time ever. Students should be given around ten minutes for this as 

well, so they can fully apply the roots together. 
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Following this discussion period, the class should come together and share one final time. 

Groups should share one word that they found interesting, either because of its etymological 

basis or because the roots appropriately contextualize what is important about it. For instance, 

the adrenaline example demonstrated an interesting etymological basis, but did not contextualize 

what its function is. Different students may find either case more appealing to them. 

Once sharing concludes, an instructor may briefly lecture to reflect on the value of 

morphology. Other interesting terms may be highlighted here at the instructor’s discretion. To 

conclude, a transition between this exercise and key terms of the next unit could serve the 

students well.  

3.5 Conclusion 

This exercise informs students about the importance of morphology in biology while 

encouraging them to have discussions about biology with each other. By introducing these word 

roots in a group setting rather than as a worksheet, students can work together to highlight 

interesting trends or troubleshoot inconsistencies. In addition, making connections with their 

peers may lead to the exercise being more memorable. However, without the proper tool set, the 

takeaways of this activity cannot be fully utilized. As such, the root bank is an important 

resource to provide so students can reference it when they encounter new fields of biology. With 

the root bank and the experience acquired through this exercise, students can tackle novel 

vocabulary without concern. In addition, when concepts are introduced, students can focus on 

them without being distracted by technical jargon that may steal their attention. While this 

exercise will highlight the utility of morphology to the students, many of who may only be 

learning this concept for the first time, repetition is always helpful for learning. This exercise in 

isolation will likely benefit the students greatly, but it may be repeated with new words or 
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incorporated into a larger morphology unit should the instructor feel there is time to emphasize 

the importance of this skill. 
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CONCLUSION 

 Across all three chapters, one unifying thread was the importance of learning in the brain 

and in networks attempting to mimic the brain. From the myriad learning rules described in 

Chapter 1 to the methodology proposed in Chapter 3, this has been an endeavor to better 

understand how learning works from the molecular scale all the way to the behavioral scale in a 

classroom. While the two may seem disparate at first glance, I think there is interesting 

perspective to gain approaching learning from both ways. Machine learning models may require 

out-of-the-box methods to best comprehend an input, just as a troubled student might in a 

classroom. Similarly, students require constant repetition to properly learn difficult concepts, just 

like neural networks in their training stages. In between both, neuroscientific learning rules are 

employing tools with various mechanisms and timescales to achieve a variety of functions in the 

brain. While the technical details are unique to each learning challenge, the fundamental 

approaches can inform solutions at every level.  
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