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GASTROINTESTINAL CANCER—COLORECTAL AND ANAL

Next-Generation Approaches to
Immuno-Oncology in GI Cancers
J. Randolph Hecht, MD1; Jasmine Mitchell, MD, MS1; Maria Pia Morelli, MD, PhD2;

Gayathri Anandappa, MBBS, MPhil, MRCP2; and James C. Yang, MD3

overview

Immunotherapy has only had a modest impact on the treatment of advanced GI malignancies. Microsatellite-

stable colorectal cancer and pancreatic adenocarcinoma, the most common GI tumors, have not benefited

from treatment with standard immune checkpoint inhibitors. With this huge unmet need, multiple approaches

are being tried to overcome barriers to better anticancer outcomes. This article reviews a number of novel

approaches to immunotherapy for these tumors. These include the use of novel checkpoint inhibitors such as a

modified anti–cytotoxic T lymphocyte–associated antigen-4 antibody and antibodies to lymphocyte-activation

gene 3, T cell immunoreceptor with immunoglobulin and ITIM domains, T-cell immunoglobulin-3, CD47, and

combinations with signal transduction inhibitors. We will discuss other trials that aim to elicit an antitumor

T-cell response using cancer vaccines and oncolytic viruses. Finally, we review attempts to replicate in GI

cancers the frequent and durable responses seen in hematologic malignancies with immune cell therapies.

INTRODUCTION

Although immunotherapy with standard PD(L)-1 or
cytotoxic T lymphocyte–associated antigen-4 (CTLA-4)
immune checkpoint inhibitors (ICIs) has revolutionized
the treatment of melanoma1 and non–small-cell lung
cancer (NSCLC),2 the benefits in GI cancers have been
relatively limited. The most efficacy has been dem-
onstrated in patients with GI tumors with deficient DNA
mismatch repair (dMMR)3 although these are only a
small portion of patients with GI cancer particularly in
pancreatic adenocarcinoma.4 Furthermore, not all
dMMR cancers respond to therapy with standard ICIs
and some that do eventually progress. ICIs have become
standard of care in metastatic upper GI malignancies,5

hepatocellular carcinoma,6 and bile duct cancers7 al-
though the benefits are not as great as those seen in
more immunosensitive tumors. The most common GI
cancers, proficient MMR colorectal cancer (CRC), and
pancreatic adenocarcinoma remain resistant to these
agents.3 Therefore, new approaches to immunotherapy
are needed. The most mature of these are novel
checkpoint inhibitors, tumor vaccines, oncolytic viruses
(OVs), and immune cell therapies. The data for their use
in GI cancers will be reviewed.

NOVEL ICIs AND COMBINATIONS IN GI TUMORS

ICIs, notably anti–CTLA-4 and PD-1 and PD-L1 inhib-
itors, have improved treatment for solid tumors, in-
cluding GI.3,8-10 Combinations with chemotherapy5,11

and the anti–human epidermal growth factor receptor
2 antibody trastuzumab are standard of care in cancers
of the upper GI tract.12 Unfortunately, outside of patients

with dMMR, these benefits are rarely durable and are
nonexistent in colorectal and pancreatic cancers.
Therefore, researchers are looking at new versions of
standard ICIs, new combinations with other agents to
overcome immunosuppression, and finally inhibitors of
novel checkpoints (Table 1).

Botensilimab, an Fc-enhanced next-generation
anti–CTLA-4 antibody, in combination with balstilimab,
a novel anti–PD-1 antibody, showed promising results
in patients with microsatellite-stable (MSS), heavily
pretreated metastatic CRC (NTC03860272).16 Data
presented by El-Khoueiry et al17 recently showed that
the objective response rate (ORR) was 24% (95% CI,
14 to 39), the disease control rate was 76% (95% CI,
60 to 84), and median duration of response was not
reached. The 12-month overall survival (OS) rate
was 63% (95% CI, 42 to 75). The patients who did
benefit the most from treatment were those without
liver metastases. About 12% of the patients had
treatment-related adverse events resulting in treatment
discontinuation. A phase II trial is currently enrolling
(ClinicalTrials.gov identifier: NCT05608044).18

The presence of various immunosuppressive cells in GI
tumors such as tumor-associated macrophages and
regulatory T cells (Tregs) may limit the effectiveness of
ICIs. In preclinical models, small-molecule tyrosine ki-
nase inhibitors (TKIs) such as regorafenib can reduce
this immunosuppression by inhibiting colony stimulating
factor 1 receptor, vascular endothelial growth factor
receptor, and other potentially immunosuppressive
pathways.19 The relatively small Japanese REGONIVO
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trial combining regorafenib with the anti–PD-1 nivolumab
showed encouraging results with the response rate (RR) of
44% in gastric cancer and 33% in MSS CRC. Many of these
responses appeared to be durable.13 A phase II North
American trial, however, only showed a 7% RR with
regorafenib and nivolumab, all in patients without liver
metastases. In that small group, interestingly, the RR was
22%. Similar early data have been seen with newer
small-molecule TKIs such as lenvatinib and cabozantinib
that may inhibit additional immunosuppressive pathways.20,21

Large-phase trials combining ICIs with lenvatinib (LEAP-017;
ClinicalTrials.gov identifier: NCT04776148)22 and zanzalinti-
nib (XL092; STELLAR-303; ClinicalTrials.gov identifier:
NCT05425940)23 in metastatic CRC are currently underway.

There are multiple other immune checkpoints, and inhib-
itors of these alone and in combination with anti–PD(L)-1
inhibitors are the subject of active research in GI cancers.
Lymphocyte-activation gene 3 (LAG-3) (CD223) is a cell
surface molecule expressed on activated CD4 and CD8
T cells, Tregs, natural killer (NK) cells, B cells, and plas-
macytoid dendritic cells (DCs).24 In preclinical studies, the
combination of LAG-3/PD-1 blockade resulted in synergistic

activity, providing a strong rationale for a combinatorial
strategy. In the randomized, phase II/III, RELATIVITY 047
study in patients with untreated or unresectable, advanced
melanoma, the combination of relatlimab, a first-in-class,
anti–LAG-3 antibody, with the PD-1 inhibitor nivolumab
showed improvements in median progression-free survival
(mPFS) compared with nivolumab alone (10.1 v 4.6 months
[hazard ratio, 0.75; 95% CI, 0.62 to 0.92; P = .006]).25 This
combination is now approved for treatment by the Food and
Drug Administration (FDA). A phase I trial with the anti–LAG-
3 antibody favezelimab with pembrolizumab in metastatic
CRC had an 11% RR. Combination trials with other LAG-3
antibodies are ongoing in GI cancers.26

T cell immunoreceptor with immunoglobulin and ITIM
domains (TIGIT), a member of the Ig superfamily and an
immune inhibitory receptor, plays a key role in the sup-
pression of T-cell proliferation and activation.27 Among its
functions, TIGIT inhibits NK cell–mediated tumor killing,
suppresses CD8 T-cell priming and differentiation, and
prevents CD8 T-cell–mediated killing.28 Preclinical studies
showed that TIGIT is coexpressed and associated with PD-1
expression and dual blockade of TIGIT and PD-1 in the
restoration of T-cell29 and NK cell immunity, providing a
good rational for this combination.30 The CITYSCAPE trial
evaluated the efficacy and safety of tiragolumab in com-
bination with atezolizumab as first-line treatment for NSCLC.
The primary analysis from this randomized, double-blind,
phase II trial showed clinically meaningful improvement in
ORR and PFS compared with placebo plus atezolizumab in
patients with chemotherapy-naive, PD-L1–positive, recur-
rent or metastatic NSCLC.31,32 Unfortunately, these results
were not confirmed by the SKYSCRAPER trial, which failed
to confirm PFS and OS benefits in the tiragolumab arm.33

There are ongoing trials of tiragolumab in combination with
atezolizumab, chemotherapy, and targeted therapies in
upper GI and CRCs (ClinicalTrials.gov identifier:
NCT03281369, NCT04929223).34,35 In the CITRINO study
(ClinicalTrials.gov identifier: NCT03250832),36 encelimab
(TSR-033) was combined with dostarlimab and bev-
acizumab and chemotherapies in patients with CRC, but
results are still pending. Vibostolimab (MK-7684), another
anti-TIGIT antibody, was evaluated in combination with
pembrolizumab in a phase I trial, showing a safe profile and a
promising antitumor activity,37 and is being looked at in MSI-
high CRC (ClinicalTrials.gov identifier: NCT04895722).38

T-cell immunoglobulin-3 (TIM-3) is an immune checkpoint
that promotes immune tolerance.39 TIM-3 blockade results
in decreased myeloid-derived suppressor cells (MDSCs)
and increased proliferation and cytokine production by
T cells.40 Given its expression in a variety of T cells and its
synergistic effects with other anti–PD-1 agents, several
trials are ongoing to evaluate safety and activity of TIM-3
inhibitors in combination with anti–PD-1 antibody. In a

PRACTICAL APPLICATIONS

• Further studies testing antibodies against LAG-3,
TIGIT, T-cell immunoglobulin-3, and CD47
should be performed in GI malignancies as they
have shown promising results in preclinical
studies and phase I/II trials in other cancer types.

• Fc-enhanced cytotoxic T
lymphocyte–associated antigen-4 inhibitor
botensilimab in combination with an anti–PD-1
has shown remarkable activity in proficient
MMR (microsatellite-stable) metastatic colo-
rectal cancer in a phase I study, and results of
further trials could have a major impact in
standard-of-care treatments.

• Although cancer vaccines and oncolytic viruses
have shown limited responses in early phase
trials in GI cancers, there are still many un-
knowns in terms of which cancer types will
respond and which combinations of chemo-
therapy/immunotherapy will improve efficacy.

• T-Cell receptor therapy may prove to be more
advantageous than chimeric antigen receptor-T
therapy in solid malignancies, but further re-
search in this area is needed.

• Solving the problems of antigen selection and
intrinsic tumor immune evasion will allow ad-
vances in genetic engineering of T-cell fitness to
better promote durable antitumor responses.

Hecht et al
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phase Ib study, sabatolimab (MBG453), a TIM-3 antibody,
and spartalizumab, a PD-1 ICI, generated partial responses
in two patients with CRC.14

CD47 is a don’t-eat-me signal that is a truly novel checkpoint
for macrophages and DCs. It binds to signal receptor pro-
tein-α that inhibits phagocytosis.41 Studies with the anti-
CD47 antibody magrolimab have shown promising activity
in hematologic malignancies.42 The randomized phase II
ELEVATE trial is currently underway in second-line CRC in
combination with FOLFIRI and bevacizumab (ClinicalTrials.
gov identifier: NCT04827576).43

Other novel checkpoints such as V-domain immunoglobulin
suppressor of T-cell activation (VISTA), inducible T cell
costimulator (ICOS), and B7-H3 have not been closely
examined in GI cancer. VISTA is an immunoregulatory
molecule involved in maintaining T-cell and myeloid qui-
escence.44 It is expressed on resting T cells, indicating its
regulatory role in earlier stages, and is more abundant in

MDSCs in the tumor microenvironment (TME). The non-
overlapping mechanisms of VISTA and PD-L1 make their
combination an ideal treatment strategy to overcome im-
mune suppression. ICOS (CD278) is a member of the CD28
coreceptor family, which includes costimulatory CD28 and
coinhibitory receptor CTLA-4.45 Yap et al46 evaluated an
ICOS agonist, vopratelimab, alone and in combination with
nivolumab in patients with advanced solid tumors. The study
showed a safe drug profile and efficacy only in a subset of
patients, with potential biomarkers to be evaluated in pro-
spectivestudies.B7-H3(CD276) isamemberof theB7 family,
a family of transmembrane proteins that interact with CD28
receptors family and modulate wither stimulatory or inhibitory
immune signals.47 Several agents targeting B7-H3 are cur-
rently under investigation in clinical trials. The anti–B7-H3
monoclonal antibody, enoblituzumab (MGA271), was evalu-
ated in combination with pembrolizumab in a phase I/II trial in
advanced solid tumors, showing a safe profile and promising
antitumor activity in checkpoint inhibitor–naı̈ve patients.15

TABLE 1. Novel Immune Checkpoint Inhibitors and Combinations
Target Mechanism of Action Ongoing/Completed Trials in GI

Fc-enhanced anti–CTLA-4 Anti–CTLA-4 ab with enhanced FcγR-dependent
functionality
Promotes superior T-cell priming, memory
responses, and depletion of intratumoral Tregs

Phase II of botensilimab with balstilimab in CRC
(NCT05608044)

TKIs
Regorafenib
Zanzalintinib
Lenvatinib

TKIs block potentially immunosuppressive pathways REGONIVO Japanese trial combining regorafenib with
nivolumab 1113

Phase II trial regorafenib/nivolumab in North
America (NCT04126733)
Phase III zanzalintinib + atezolizumab in mCRC
(NCT05425940)
Phase III lenvatinib + pembrolizumab in mCRC
(NCT04776148)

LAG-3 A cell surface molecule expressed on activated CD4/
CD8 T cells, Tregs, NK cells, B cells, and DCs

Phase I trial with favezelimab with pembrolizumab in
mCRC (NCT05064059)

TIGIT Inhibits NK cell–mediated tumor killing
Suppresses CD8 T-cell priming/differentiation
Prevents CD8 T cell–mediated killing

Phase I trials in combination with ICI (NCT03281369,
NCT04929223, NCT03250832, NCT04895722)

TIM-3 Blockade results in decreased MDSCs and increased
proliferation and cytokine production by T cells

Phase Ib study of sabatolimab and spartalizumab 1114

CD47 Binds to SIRPα that inhibits macrophage phagocytosis ELEVATE trial in combination with FOLFIRI and
bevacizumab (NCT04827576)

ICOS (CD278) Binds to an ICOS ligand expressed by B cells,
macrophages, and DCs
Costimulatory for T-cell proliferation and cytokine
production
Inhibition decreases intratumoral Tregs and
increases T effector cells

Phase I/II trial in combination with atezolizumab in
advanced malignancies (NCT03829501)

B7-H3 (CD276) Inhibits CD4/CD8 T-cell activation, proliferation, and
cytokine production

Phase I/II trial in advanced solid tumors with
enoblituzumab 1115

Abbreviations: ab, antibody; CRC, colorectal cancer; CTLA-4, cytotoxic T lymphocyte–associated antigen-4; DCs, dendritic cells; FcγR, Fc gamma receptor;
FOLFIRI, folinic acid, fluoruoracil, and irinotecan; ICI, immune checkpoint inhibitor; ICOS, inducible T cell costimulator; LAG-3, lymphocyte-activation gene
3; mCRC, metastatic colorectal cancer; MDSC, myeloid-derived suppressor cell; NK, natural killer; SIRPα, signal receptor protein-α; TIGIT, T cell
immunoreceptor with immunoglobulin and ITIM domains; TIM-3, T-cell immunoglobulin-3; TKI, tyrosine kinase inhibitor; Treg, regulatory T cell.
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In summary, there are multiple approaches being examined
to try to overcome resistance to standard CTLA-4 and PD(L)-1
inhibitors in GI cancers. These promise to improve outcomes
in malignancies that have had little improvement over the
past two decades. Further development will require more
translational research and identification of robust biomarkers
of activity.

CANCER VACCINES IN GI MALIGNANCIES

Adaptive immunity is mediated by cytotoxic CD8+ T cells,
CD4+ helper T cells, and B cells. In cellular immunity, T cells
can recognize and eliminate diseased cells.48 Vaccines work
by inducing an immune response to the antigen(s) encoded
by the vaccine. Subsequently, immunologic memory and
adaptive immunity elicited against the immunizing antigen
can protect an individual against the pathogen from which
the antigenwas derived.49 Cancer vaccines are designedwith
the intent to elicit an immunologic therapeutic response
against tumor antigens. Tumor antigens can be divided
into tumor-specific antigens (TSAs) and tumor-associated
antigens (TAAs). TSAs are expressed only by cancer cells,
not normal cells, whereas TAAs are overexpressed in tumor
cells compared with normal cells.50

Despite numerous attempts over the past century, only
two therapeutic vaccines have been approved to date,
sipuleucel-T, a DC-based vaccine for the treatment of
castrate-resistant prostate cancer,51 and the Bacillus
Calmette-Guerin (BCG) vaccine for early bladder cancer.
Despite this track record, vaccines continue to be developed
in GI malignancies because of the huge unmet need. There
are multiple different vaccine approaches to stimulate an-
ticancer immunity such as autologous or allogenic cancer
cells, DCs, and vaccine vectors encoding tumor antigens.52

Early studies used whole cancer cells to induce an immune
response. OncoVAX combined BCG with autologous cancer
cells. In the phase III ECOG 5383 trial of patients with CRC
treated with surgery with or without vaccine, there was no
significant difference in overall or disease-free survival.53

GVAX is an allogeneic whole-cell vaccine composed of two
human pancreatic adenocarcinoma cell lines modified to
express granulocyte-macrophage colony-stimulating factor
(GM-CSF).54 Promising early data with CRS-207, a listeria
modified to express the common TAA mesothelin,55 were
not borne out in the larger ECLIPSE trial56 or in combination
with checkpoint inhibitors.57

DCs are antigen-presenting cells that can activate naı̈ve
T cells against various host insults. A MUC1 peptide–loaded
DC vaccine was tested in a phase I/II trial in resected
pancreatic cancer with some long-term survivors.58 Many
ongoing trials in CRC involve administrating DCs pulsed with
autologous tumor lysates. Immune responses to tumor
antigens found in CRC and pancreatic cancer can be

generated after DC vaccination, but these have not resulted
in improved clinical outcomes.59

Another class of vaccines use different vaccine vectors,
such as peptides, DNA plasmids, viruses, or RNA, to
encode specific tumor. Potential challenges include
identifying tumor antigens that will be immunogenic in
specific patients. In a phase II trial in advanced CRC, a
mixture of five HLA-A*24:04–restricted peptides com-
bined with oxaliplatin-based chemotherapy had no sig-
nificant effect on clinical outcomes.60 The RAS G12D/R
peptide vaccine ELI-002 is currently being examined in
patients with ctDNA-positive only pancreatic and other
cancer (ClinicalTrials.gov identifier: NCT04853017).61

Advances in sequencing and manufacturing of vaccine vec-
tors have enabled the design of personalized and off-the-shelf
vaccines that can target neoantigens (tumor antigens derived
from mutations). As an example, the mRNA-based phase II
trial, KEYNOTE-942 trial, showed encouraging activity and
possible proof of concept with this approach, reducing re-
currence or death by 44% in patients with stage II/IV mela-
noma.62 These data support the concept that treating patients
earlier in their course of disease may improve the efficacy
of vaccine approaches. A phase I study of a prime boost
strategy–personalized vaccine study using chimp adenovirus
and self-replicating RNA resulted in robust antitumor immune
response63 and is being examined in the first-line colorectal
maintenance setting in the phase II/III GRANITE trial
(ClinicalTrials.gov identifier: NCT05141721).64 New vaccine
approaches even have the exciting potential to reduce cancer
incidence in patients with high-risk premalignant conditions
such as Lynch syndrome.65

Although several cancer vaccines have shown induction of
vaccine-specific responses, these have not resulted in
clinical benefits in GI or most other cancers. The quality and
quantity of these immune responses, especially with respect
to CD8+ and CD4+ T cells, remain incompletely charac-
terized and are an important consideration in evaluating the
effectiveness of cancer vaccines. The antigens targeted by
vaccines have important implications in the quality of the
immune response as one of the primary issues with over-
expressed TAAs is that central and peripheral tolerance
mechanisms limit the generation of autoreactive B and
T cells that strongly recognize these sequences.66 Vaccines
need to overcome this immune tolerance to mount a re-
sponse without causing autoimmune reactions. There is still
much work to be performed to identify which class of tumor
antigens delivered by which vaccine vectors results in an
optimal immune response. Additional factors include how to
combine vaccines with standard-of-care chemotherapy and
other immunotherapy drugs and the treatment setting (ie,
adjuvant, early v late metastatic disease). A successful
vaccine approach aims to overcome tolerance, reverse
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immunosuppression, cause tumor death, and generate
long-lasting memory responses.

OVs IN GI MALIGNANCIES

The benefits of immune herapies seem to be greatest in
immunologically hot TMEs.67 These tumors have high mu-
tational burdens, high levels of tumor-infiltrating lymphocytes
(TILs), and increased PD-L1 expression. The lack of pre-
sentation and/or expression of TAAs; infiltration by sup-
pressive neutrophils, regulatory T cells, macrophages,
myeloid-derived suppressor cells, or NK cells; low density of
TILs; and expression of immunosuppressive factors lead to
an immunologically cold tumor.67 OVs are an exciting class of
anticancer immunotherapies that exploit viruses’ innate
ability to preferentially infect, self-amplify, and lyse tumor
cells.68 They hijack and reprogram the host’s cellular ma-
chinery, expressing both therapeutic and virus transgenes.69

OVs were initially designed to just kill tumor cells, but more
recent data have shown that at least some of the anticancer
effects are by infecting a tumor cell and induce apoptosis,
triggering an inflammatory reaction.70 This activates innate and
adaptive immune responses by the release of TAAs, pathogen-
associated molecular patterns, and danger-associated molec-
ular patterns from lysed tumor cells to act like a cancer vaccine
to achieve an abscopal effect.69 Talimogene laherparepvec
(T-VEC), a herpesvirus designed to produce GM-CSF in the
tumor to enhance antigen release, presentation, and antitumor
immune response, was the first OV approved for use in the
United States and Europe.67 In a phase III trial, intratumoral
injection of T-VEC improved durable RR and other clinical
outcomes in advanced, nonresectable melanoma, leading to
full FDA approval in 2015.71 Despite initial encouraging results
together with pembrolizumab, in a phase III trial, the combi-
nation was not superior to pembrolizumab alone.72,73

Multiple classes of OVs have been developed. The non-
enveloped double-stranded DNA (dsDNA) adenoviruses
were some of the first.69 ONYX-015 is a first-generation
E1B-55kD gene-deleted replication-selective adenovirus
that preferentially replicates in and kills malignant cells. In
a phase I/II trial of endoscopic ultrasound injection of lo-
cally advanced or metastatic pancreatic cancer in com-
bination with gemcitabine, two of 21 patients had partial
regressions of the injected tumor and eight had stable
disease.74 Although not being developed further in GI
cancers, a variant, H101, is approved in China for head
and neck cancer.75 TNFerade, an adenovirus encoding
tumor necrosis factor alpha, was examined in combination
with chemoradiation in locally advanced pancreatic cancer
with encouraging phase I/II results, but a phase III trial was
negative.76,77 Other adenoviruses being examined in GI
cancers include enadenotucirev (EnAd, ColoAd1) and
telomelysin,78 which are currently being studied in com-
bination with pembrolizumab in a phase II trial for

advanced gastroesophageal adenocarcinoma (Clin-
icalTrials.gov identifier: NCT03921021).79

Herpesviruses are characterized by an icosahedral capsid
and a dsDNA genome. Oncolytic herpes simplex viruses
(HSVs) have been extensively studied because of a large
transgene capacity, lack of insertional mutagenesis, and
ability to activate innate and adaptive immune responses
against tumors.69 A phase I study using T-VEC in combi-
nation with atezolizumab for triple-negative breast cancer
and CRC with liver metastases, however, showed limited
evidence of antitumor activity.80 Other HSV derived agents
are in development.81

Vaccinia virus has a large dsDNA genome69 and replicates
in the cytoplasm, thereby eliminating the risk of insertional
mutagenesis. The best studied vaccinia OV is pex-
astimogene devacirepvec (Pexa-Vec, JX-594), an engi-
neered thymidine kinase–mutant vaccinia virus armed to
express GM-CSF and β-galactosidase as transgenes.69,82,83

It was found to be trafficked to the tumor as evidenced by
the viral genome found in tumor biopsies,84 and there were
early hints of anticancer activity.85 Unfortunately, a ran-
domized phase IIb trial in hepatocellular cancer was
negative86 and a phase I/II trial with durvalumab and
tremelimumab in CRC showed modest benefit.87

Pelareorep (Reolysin) is an unmodified oncolytic reovirus,
delivered intravenously, that can induce a T-cell inflamed
phenotype in pancreatic ductal adenocarcinoma. In a
phase Ib study in patients who had progressed after
first-line treatment, pelareorep, pembrolizumab, and 5-
fluorouracil, irinotecan, or gemcitabine88 did not add
significant toxicity and showed encouraging efficacy.
Other phase II trials of pelareorep in pancreatic cancer
in combination with carboplatin/paclitaxel have showed
similar results of good tolerability but mixed responses in
terms of RR, PFS, and OS.89,90

This is a nonexhaustive survey of OVs in GI cancers. There
are many challenges to overcome in the development of
effective OVs. The need for intratumoral injection of some
OVs, proper spread and penetration of the therapeutic
agent, tumor cell targeting, pre-existing immunity to the
viruses, and hypoxia are all factors that can inhibit the ef-
fectiveness.82 The site of injection may also affect efficacy.
The liver is particularly immunosuppressive with multiple
mechanisms including liver metastases siphoning activated
CD8+ T cells from systemic circulation and within the liver,
leading to acquired immunotherapy resistance.91 The optimal
degree of infectivity and oncolysis is also unknown. Other
unknowns in the study of OVs are which patients and tumor
types most benefit from this therapy and in which combi-
nations of chemotherapy and immunotherapy. Potential
combinations with cytokines, BiTEs, and even chimeric
antigen receptor (CAR)-T cells may improve efficacy.92,93
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IMMUNE CELL THERAPY FOR GI TUMORS

The ability of infused cultured tumor-reactive immune cells
to induce the rejection of human cancers has been well
demonstrated. Expanding the resident T cells in melanomas
(TIL) and infusing them along with systemic interleukin-2
(after preparative lymphodepletion with chemotherapy) can
result in an ORR of over 50%, with half of those responding
patients apparently cured of metastatic disease.94 Geneti-
cally modifying peripheral blood lymphocytes (PBLs) with a
CAR targeting a B-cell antigen, CD19, can cause objective
regressions of large B-cell lymphoma in 82% of patients with
refractory disease, again with many of them achieving
durable complete remissions after a single administration.95

A third example is the introduction of a tumor-reactive T-cell
receptor (TCR; cloned from a T cell specific for the NY-ESO-
1 antigen) into the PBL of patients with synovial sarcoma or
melanoma, which resulted in a 58% ORR.96 The major goal
at this time is to expand such results to the common epi-
thelial cancers, and this has proven to be difficult. This
review will clarify the differences between these three
sources of tumor reactive T cells, review their results, and
discuss future directions.

PBLs (or in some cases, NK cells) engineered with CAR-
T cells have been quite effective in the treatment of several
hematopoietic malignancies. The CAR consists of an
antigen-binding domain coupled to the T-cell signaling
machinery, often with an interposed costimulatory domain.
The antigen-binding domain is typically an antibody single-
chain variable fragment (scFv), the T-cell signaling moiety
usually uses CD3-zeta, and the costimulator is often CD28
or CD134 although innumerable variations on this frame-
work have been devised. The current obstacle to using CAR
T cells against solid malignancies has been the identifica-
tion of safe TAAs. First, these TAAs need to be outer cell
membrane structures and then they must be invariant
because of the complexities of creating Ag-binding domains
and optimizing the CAR. Most have been normal differen-
tiation antigens on disposable tissues. Targeting cell surface
B-cell markers such as CD19 and CD22 to destroy both
benign and malignant B cells is tolerable because patients
can live without B cells. Unfortunately, the organs giving rise
to GI cancers are typically not dispensable. Very limited
efforts to target solid tumors with CAR-T cells have been
pursued. Early efforts to target carcinoembryonic antigen
(CEA) either were ineffective or generated normal bowel
toxicity.97 Targeting the GD2 ganglioside on neuroblastoma
and some pediatric gliomas has shown some positive results
in small studies, but it is not a target on common epithelial
cancers.98 One very interesting phase I trial targeted the
tight junction protein Claudin18.2 with a classic CAR
consisting of a scFv-binding domain, CD28 costimulation,
and CD3 zeta signaling.99 Cells were administered after
cyclophosphamide and fludarabine preconditioning, but no

interleukin-2 was administered. An ORR of 49% was re-
ported in patients with predominantly gastric cancer despite
administering a relatively low numbers of cells (�5 � 108

cells). All responses were partial, and many of short du-
ration; yet, this represents one of the only CAR-T-cell trials
relevant to GI cancers with significant objective responses.
Another research initiative has been to apply gating strat-
egies to CARs to allow immune attack on cancer, but block
activity when the target is encountered on normal tissues.100

Logic-gated CAR-T cells have shown activity and specificity
in preclinical models, and trials are ongoing in GI cancers
expressing CEA.101-103 Alternatively, one can target two
structures with imperfect specificity on cancer that do not
coexpress on normal tissues to generate better specific-
ity.104 These promising ideas are poised to enter early
clinical trials, and their effectiveness remains unknown. The
idea of CAR-T cells for common solid tumors remains at-
tractive because of the circumvention of the major histo-
compatibility complex (MHC) restriction of normal T cells,
expanding the applicability to more patients. There is also a
theoretical advantage to a novel synthetic receptor for
cancer. As will be described below, tumors under siege by
endogenous T cells rapidly develop diverse immune evasion
and escapemechanisms. Using a novel non-native receptor
to initiate a T-cell attack has the advantage of not en-
countering a priori escape mechanisms generated before
the adoptive transfer. Yet, the main obstacle remains not
having suitable and safe target antigens.

The alternative to using CAR-T cells is to use native T cells
and TCRs. Their major disadvantage is that TCRs recognize
small processed peptide epitopes presented on MHC
molecules. Therefore, a TCR is only pertinent to tumors with
both the antigen and the presenting MHC allele and a much
larger array of receptors is needed to address a population of
patientswith cancer. On the other hand, because the epi-
tope is proteolytically processed and exported to the cell
surface on the MHC molecule, the TAA can be any protein
made in the cytoplasm, not just outer cell membrane
proteins. Humans also have nearly 1011 premade T-cell
specificities in their repertoire, so there is no manufacturing
required. Again, the main problem is finding safe and ef-
fective TAA. Here, the critical role of tumor-specific muta-
tions comes into play. It has become clear from laboratory
work and checkpoint inhibitor therapies that these mutated
proteins are the major driver of the immune response of
humans to cancer. Their tumor-specific nature also makes
them a safe T-cell target. Unfortunately, the array of tumor-
specificmutations is highly specific to each patient and their
tumor,105 with a limited number of common, shared mu-
tations. One method of identifying T-cell reactivities to
mutated antigens (neoantigens) has been described and
extended to clinical trials.106 A cancer’s mutations are de-
fined by whole exomic sequencing, and those mutations are
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expressed in autologous DCs by either minigene electro-
poration or loading synthetic peptides to create an avatar of
that cancer’smutanome. This is then cocultured with TILs to
identify which TILs are neoantigen-reactive. Patients are
infused with subcultures selected for reactivity after un-
dergoing preparative lymphodepletion with chemotherapy,
and then systemic IL-2 is coadministered with the cells. The
first patient to undergo this had cholangiocarcinoma and
had a partial response of liver and lung metastases lasting
nearly 3 years. She then relapsed but had persisting
TIL from the infusion that expressed PD-1 and reresponded

to a short course of pembrolizumab and remains free
of disease, now 9 years after cell transfer.107 Patients
with breast cancer,108 cervical cancer,109 and colon cancer
(Fig 1) have had durable complete responses to TIL reactive
with neoantigens. Yet the RR is low despite the proven
specificity of the infused TIL. Although this may in part be
due to the exhausted phenotype of most TIL,110 a host of
tumor-related evasion mechanisms have been found as
well. The simplest is the loss of the neoepitope or the
restricting MHC allele. Although the latter was thought to
occur from loss of both alleles of β-2 microglobulin (for MHC

FIG 1. Responses to TIL reactive with neoantigens in colon cancer. Patient with colon cancer metastatic to lungs.
Treated with lymphodepletion followed by adoptive transfer of TIL reactive with mutations in DNMT3A andMUC6 and
six doses of interleukin-2. The patient had near complete response and had received no other treatment. The left
panel is baseline CT scan, and the right is 5-year follow-up showing all residual disease. CT, computed tomography;
TIL, tumor-infiltrating lymphocyte.

TABLE 2. Advantages and Disadvantages of CAR-T Versus Native TCRs
Advantage/Disadvantage CAR T Cells T Cells/TCRs

Advantages No MHC restriction All proteins can be potential targets

No previous immune resistance or evasion Can easily target tumor-specific neoantigens

Diverse repertoire naturally available

Thymic tolerance prevents autoimmunity

Disadvantages Targets essentially limited to shared (self) antigens MHC restriction requires more TCRs

Targets must be outer cell membrane structures Prior selection for resistance occurs

No thymic protection against autoimmunity

Abbreviations: CAR, chimeric antigen receptor; MHC, major histocompatibility complex; TCRs, T-cell receptors.
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class I), it has become apparent that loss of the single
presenting MHC allele (seen as loss of heterozygosity at the
MHC locus on chromosome 6) or downregulation111 is more
common and can even occur during the course of treat-
ment.112 Other evidence from checkpoint inhibitor therapy
identified interferon-gamma signaling defects as a cause
of tumor resistance to T cells.113-115 Because the tumor
and neoantigen-reactive T cells coexist for years, there is an
opportunity for escape mechanisms to evolve; immune
pressure leads to immune selection, which can lead to
immune escape. Some mechanisms are reversable (such
as T-cell inhibition by checkpoint receptors), some are ir-
reversible (tumor MHC loss), some are T-cell–associated,
and some are tumor-associated. One drawback of TIL
therapy is that there is little control over the T cells that one
recovers from a resected tumor. There can be problems with
exhausted T cells, a low frequency of reactive cells, and
inhibited TIL. One way to address issues with the quality of
TIL is to clone the TCRs from neoantigen-reactive TIL and
re-express them in fresh autologous PBL for transfer. This
can also create an opportunity to target common recurring
mutations with off-the-shelf reagents.

Mutations in KRAS, TP53, EGFR, BRAF, and PIK3CA, among
others, are seen recurrently in many human cancers. As-
sembling libraries of TCRs specific for these mutations would
allow the rapid generation of T cells for transfer by retroviral
transduction. This would also allow one to select or genetically
engineer optimized T-cell phenotypes to induce tumor
rejection. Each mutation would require TCRs with specific
MHC restrictions, greatly expanding the TCR libraries re-
quired. Yet, less than a 100 TCRs restricted by the most

common HLA alleles would apply to the majority of human
cancers. Most of the current efforts concentrate on KRAS
(G12D, G12V mutations)116,117 and TP53 (high-frequency hot
spot mutations),118 common in GI tumors. These mutations
have been shown to be immunogenic, and in some cases,
there is evidence that targeting them can be clinically
effective.112,119,120 Preclinical and clinical studies on genetic
modifications to improve efficacy have looked at introducing
cytokine secretion or orthogonal synthetic cytokine receptors
into T cells,113,121,122 and modifying function instead of just
specificity represents the future of T-cell therapy. In summary,
the adoptive transfer of tumor reactive T cells can cause
curative regressions of some cancers. These T cells can be
obtained from the natural repertoire of the patient via TIL or be
genetically constructed by introducing either a CAR or a native
TCR with tumor specificity. Each of these approaches has
their advantages and disadvantages (Table 2). Solving the
problems of antigen selection and intrinsic tumor immune
evasion will allow advances in the genetic engineering of T-cell
fitness to better promote the durable rejection of cancers.

CONCLUSION

Multiple immunotherapeutic approaches are actively being
pursued in metastatic GI cancers. Although standard ICIs
help some patients for a relatively short time, the immuno-
oncology revolution in cancer care has bypassed most of
these patients. Novel strategies including new checkpoint
inhibitors, cancer vaccines, OVs, and immune cell therapies
hold the promise of overcoming barriers to effective treat-
ments. Progress has been slow, but the large number of
ongoing studies may lead to improved outcomes.
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