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macroscopic fracture. Thus for the splitting of Westerly. granite under uniaxial or low 
values of confming stress as measured by Wawersik and Brace (1971), we assume that a 
single splitting crack or at most a few such fractures result. In this way, all the energy 
involved in subsidiary crack growth around the main splitting or shear fractures is taken 
into accounL Using equation (5) and the Gtot values for splitting as given is section 2, the 
Gc value for a single splitting crack becomes 0.93 x 1o4 J/m2. Comparing this value with 
the value of G for a microcrack as given in section 2 by 16.4 J/m2, we see that there is a 
difference of ~e orders of magnitude. This indicates that the formation of splitting cracks 
under compressive stresses involves the creation of a large amount of subsidiary crack 
surface area, which absorbs strain energy and causes an apparent Gc that is much larger 
than the actual Gc at the tip of the crack. The excess crack surface area is created because 
the initial axial crack growth is a stable process as reflected in the strain hardening stress 
stain curves for the splitting model, allowing cracks of different sizes to extend. This can 
be compared with the formation of fractures under direct tensile stresses. This is an 
unstable process, resulting in a macrocrack with very little subsidiary microcracking, and 
results in Gc values of 1-100 J/m2, which is in the range of the values calculated forthe 
microcrackS, as discussed in section 2. Also, it can be expected that for the formation of 
large joints on the order of tens of meters, another level of scale effects will occur that will 
cause the G values to be even larger. 

For the s~ear faulting model, we calculate a Gc value for the creation of a single shear 
fault of 1.05 J/m2. There is very little difference between this value of Gc and the Gc 
value estimated for the shear faulting model in section 2, since in both cases we only 
consider the formation of a single shear plane, without subsidiary microcracking. As 
discussed in section 2, the shear faulting model applies in the region past the peak stress 
after the shear fault has been formed, and does not include the initial growth of tensile 
cracks. Thus the shear faulting model applies to the situation where a throughgoing shear 
fault already exists. Also, it is assumed that the fault plane is planar. Work by Sibson 
( 1986) and others have shown that faults often consist of en echelon segments, and the 
shear of such an en echelon pattern of fault segments can create local regions under 
compressive, tensile, and shear stresses. Thus complex patterns of subfaulting around a 
main fault can occur, and this subfaulting can result in a large increase in the large scale 
Gc• as shown for the case of splitting cracks. 

4 CONO.USIONS 

We have used the splitting and shear fracture models of Kemeny and Cook (1987) to look 
at fracture parameters associated with different scales of fracturing. At the smallest scale, 
we consider microcracks with lengths and spacings on the order of the mineral grains, and 
on a larger scale, we consider the growth and coalescence of these microcracks into 
splitting fractures or shear faults on the order of the size of the laboratory samples. From 
these two scales we can further extrapolate to the scales of joints and faults in the field. 
The primary fracture parameter that we study is the fracture energy, G . We find that the 
Gc associated with microcracking is at least three orders of magnitude less than the Gc 
associated with the propagation of the sample size fractures. This is due to the fact that the 
propagation of large scale fractures under compressive stresses is associated with the 
creation of crack surface area not only in the large scale fracture itself but also in the 
neighborhood of the fracture. This applies both to the creation of splitting fractures and 
shear faults. Thus Gc is a very scale dependent parameter that depends strongly on the 
details of the substructure of lar~e fractures. This gives an explanation for the wide range 
of values of Gc from 1o2 to 10 J/m2 that are reponed in the literature (Wong, 1982). 
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propagate m plane, when li = lie· A closed from solution for the shear model is given by 
the two equations below: 

4 t•b cos~ ( 1- v2) 
----- In cos (1d/2b) 

1M€ 

v'(GcE1 ,. t• [2b tan (1tV2b) 1112 

(8) 

(9) 

where t* is given in equation (4). A Gc value to go into the shear model in equation (9) 
was determined using the same method as outlined for the splitting model. The shear 
faulting model takes into account the shear localization processes but does not take into 
accound the initial axial growth of cracks. Thus Gtot for the shear faulting model was 
calculated only in the region of the stress strain curve past the peak stress, at which point it 
is assumed that a throughgoing shear fault has been fotmed (Hallbauer et al., 1973, Wong, 
1982). Also, because data from triaxial tests are used in the shear faulting model, there 
will be an additional contribution to the crack energy in equation (7) due to lateral 
expansion against the applied confining pressure (Wong, 1982). However, because the 
shear faulting model as given in equations (8) and (9) gives no volume expansion, 
equation (7) can still be used, the only modification being that the uniaxial stress a 1 in 
equation (7) is replaced by the effective axial stress a1 - a2. The 1500 psi curve from 
Wawersik and Brace (1971) was used in the calculation ofG..c, giving a Gc value of 1.40 x 
1 o4 J/m2. Results of the shear faulting model are shown in rtgure 2b. As before, the 
curves in Figure 2b show initial linear behavior prior to the extension of the shear cracks. 
Now, however, extension of the shear cracks results in only strain softening behavior. 
Also, the strain softening slopes show regions of both class I and class II behavior, as 
opposed to the splitting model, where the behavior past the peak stress was predominantly 
Class II. Also, the increase in strength for the shear model with increasing confining 
pressure is much less pronounced than it was with the splitting model. This is in agreement 
with the data from Wawersik and Brace (1971). 

Even though two separate models were used, the splitting and shear models discussed 
above correctly predict the transition from splitting to shear faulting as the confining stress 
is increased. At low values of confining stress, splitting behavior is predicted, since the 
peak stresses are lower for the splitting model at these values of confining stress. 
However, as the confining stress is increased, the peak stresses for the splitting model 
increase much more rapidly than for the shear model, and thus the models predict that at 
confining stresses of around 1500 psi, the shear model has lower peak strengths and is 
thus the favored mode of failure. 

3 LARGE SCALE FRACTIJRE ENERGIES 

Even though the formation of macroscopic splitting or shear fractures is a complicated 
process involving the growth, interaction, and coalescence of microcracks, it is often of 
interest to model this phenomena on a larger scale as the growth of a single fracture. This 
would occur, for instance, in analysing the formation of joints sets under regional 
compressive stresses, the spalling of underground openings, and the occurrence of 
earthquake rupture. Thus we want to determine from laboratory triaxial tests properties 
that are relevant on a larger scale. These large scale properties must take into account the 
extent of crack smface area that is created on the microscopic level. We have shown in 
section 2 how the properties of the microcracks can be determined from laboratory tests. 
Here we show how macroscopic properties are determined from laboratory triaxial results. 
By comparing these results with the results for microcracks, we gain some qualitative 
information into scale effects. 

The method of calculating G for the macroscopic splitting and shear faults is 
essentially the same as the calc~ation of microscopic properties from laboratory test 
results, except now, the total crack energy, Gtnt• is divided by the surface area of a single 
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energy is due to crack growth. Ei is the inelastic axial strain, and is calculated at a gtven 
stress level by subtracting out the elastic axial strain, i.e., f1 = e1 - cr1/E. The integral is 
from e; = 0 to f1 = emax• where emax is the maximum value of strain. For rocks exhibiting 
class II softening, f1 may reach a maximum and then decrease to a final value, E.fin· For 
this case the single mtegral in equation (7) is replaced by two integrals, the first Integral 
from 0 to Emax• and the second integral from em to Erm· Also, we have taken out of the 
integral the energy due to friction along the iniu~ crack surfaces, since this energy does not 
contribute to the deformation of the sample. <1f is the frictional stress under a given value 
of axial stress, and assuming that all the initial cracks have an average angle e. then <1f = 
~cr 1cos2e. 

For the uniaxial test by Wawersik and Brace (1971), this method gives a Gtot of 
approximately 12.1 Joules. N(lf- 10 )T was estimated from data given in Wawersik and 
Brace (1971) and Wong (1985) to 'be approximately 0.74 m2. Thus we get a Gc value for 
axial microcrack growth from the uniaxial test ofWawersik and Brace (1971) ot 
approximately 16.4 J/m2. Assuming that all of this energy went into tensile crack 
extension, K1c is determined using the relationship K1c = v'<qcE'), which gives a Krc 
value of approximately 0.99 MPa'Vm, which is in the range of K1c values measured in 
standard K1c tests (0.5 - 2.0 MPav'm). 

Another p~eter that is needed for the splitting model is the initial crack density, 
given by NIP N. Based on data in Wong (1985), we have used an initial crack density of 
0.25. E ana v are taken to be 6 x 1010 Pa and 0.2, respectively. Also, it is assumed that 
on average the initial cracks have a coefficient of friction ~ = 0.4 and an initial angle of 45 
degrees, and thus sliding on the initial cracks and the extension of the wing cracks will 
occur on all the cracks simultaneously. 

The results of the splitting model at three values of confining stress, using the above 
parameters, are presented in Figure 1 b. The curves in Figure 1 b show initial linear 
behavior due to sliding on the initial cracks of length 10 , before the tensile wing cracks 
begin to grow. Strain hardening is exhibited as the wing cracks grow initially, and as the 
wing cracks interact with each other, class II softening is exhibited. Both the magnitudes 
of the stresses and strains, and the general shape of the stress strain curves, match very 
well with the uniaxial and low confinement data of Wawersik and Brace (1971). In 
particular the occurrence of class II softening in the splitting model, and the large increases 
in the peak stress with small increases in confinement match with the experimental data of 
Wawersik and Brace (1971). For larger increases in confining stress, shear faulting is the 
dominant mechanism, and the splitting model predicts too large increases in peak stress 
with ~ncreasing confming stress. 

a) <1 b) 10. r---r--,..---r-~~--, 
cr2 = 152 MPa 

• - 8. cr2 = 80 MPa 
2w C'C -
~ 

>< 6. 
~ 

/A}p ~ ~ 4. -c:n 
c:n 

~ 2. 
(I) 

0. .005 .01 .015 .02 .025 .03 

<1 Strain 
Figure 2. Shear faulting model 

The shear faulting model of Kemeny and Cook (1987) is shown in Figure 2a, and 
consists of a collinear row of cracks at an angle j3, and it is assumed that the cracks 
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2 MICROMECHANICS OF SPLITTING AND SHEAR FAULTING 

Here we review some of the results of the splitting and shear failure models of Kemeny 
and Cook ( 1987). The axial splitting model of Kemeny and Cook ( 1987) is shown in 
Figure 1a, and consists of a two dimensional (plane strain) body of height 2h and width 
2w containing a column of sliding cracks of initial length 10 , angle a, and separation 2b. 
Also, the surface of the initial cracks have a constant coefficient of friction J.l. For this 
model a closed form analytic solution has been derived as given by the two equations 
below: 

4sin9 10 (1 - v2) f 't•7t 2 10 • tan(mV2b) tan(7fl4(1 + 1/b) l 
I -- + 't 10 cose In - cr2 b 1 I (3) 

1tEwb L 8cos9 tan(Jtlo'2b) tan(7fl4(1 + lofb) J 

210't*COS9 
K1c. - cr2 v(2btan(1dlb)) 

-l(bsln(7tVb)) 
(4) 

where 't• = 112 [ (a1 -~) sin2&-J.1(cr1 +~ +(cr1 - cr2) cos29) 1 

Equation (3) describes the effective linear stress strain behavior due to sliding cracks 
with a given wing crack length and spacing between sliding cracks, and equation (4) gives 
the value of axial stress at which cracking stans for that geometry, based on crack growth 
criterion K1 = K1c Together, the two equations describe the nonlinear constitutive 
behavior due to progressive crack growth (two equations are the minimum in order to 
describe non-functional behavior such as class II softening). Using uniaxial data by 
Wawersik and Brace (1971) and crack statistics data from Wong (1985), we have 
estimated ~e Ktc value to go into equation (4) as follows. First of all, we assume Gc is 
constant, and usmg the defmition of G as given in section 1.0, we get the following 
relationship: 

(5) 

where Gtot represents the total energy absorbed by the creation of new crack surface 
area in a unWtia.l test, and S represents the total change in crack surface area due to the 
uniaxial test We determine~tol from complete stress strain curves from laboratory tests, 
and we determine Stot from crack statistics data. The crack statistics are usually made on 
two dimensional slices through laboratory samples, and therefore we assume the cracks are 
two dimensional and revise equation (5) as follows: 

(6) 

where 4- is the average final crack length, 10 is the average initial crack length, N is the 
number ot cracks as measured in a two dimensional section, and T is the effective 
thickness of the sample. These are parameters that can be estimated from crack statistics 
data, as determined for Westerly granite by Wawersik and Brace (1971), Hadley (1976), 
Tapponier and Brace (1976), Fredrich and Wong (1984), Wong (1985), and others. Gtot 
is determined by estimating the following integral from uniaxial laboratory data: 

= 
v 

~ 

J (al -Of) d£j 
0 

(7) 

where V is the volume of the sample. This integral represents the energy per unit 
volume due to inelastic processes, and it is assumed in this paper that all this inelastic 
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growth occurs when: 

G = Gc (1) 

G depends on the loading and crack geometries, while Gc is a material property based 
on the micromechanical breakdown processes at the crack up (Rice, 1980). Also, G is 
related to the crack tip stress intensity factors by: 

KI2 Kn2 Km2 
- + -- + -- ( 1 + v) G= (2) 
E' E' E 

where K1, Kll.!.. and Kill are the modes I, II, and III stress intensity factors, E' = E for 
plane stress and E' = E/{ I - v2) for plane strain, where E is the Young's modulus and v is 
Poisson's ratio. Under pure mode I loading, equations (1) and (2) reduce to Gc = K?IE' 
(equivalent to the relation K1 = Krc• where K1c is referred to as the fracture toughness). 
Under pure mode II loading, equauons (1) and (2) give the relation Gc = K1?1E'. 

Rice (1980) presented a method for determining Gc for shear faulting (mOde II) by 
integrating the area under the stress strain curve in labOratory triaxial tests, and 
Wong(1982) used this method to determine Gc values for Westerly granite, getting values 
of around 164 Joules/m2. Values of G.c. for earthquake faulting have also been determined 
from seismic data (Aki, 1979; Rudnicki, 1980), in the range of 103- 108 J/m2. The large 
difference between laboratory and field determined values of Gc for shear faulting indicates 
that scale effects exist. Also, measurements of G_c in standard tracture toughness tests for 
mode I cracking give values ofGc between 1- 1U J/m2. In this paper, we determine Gc 
values for both splitting and shear faulting using triaxial test data. The fracture energy 
associated with splitting is important for the behavior of rock adjacent to underground 
openings, joint formation, and borehole breakout (Ewy et al, 1987), while the fracture 
energy associated with shear faulting is important for the genesis of faults, and the process 
of earthquake rupture (Rice, 1980). Our calculations of Gc are based on the complete 
stress strain curves for Westerly granite determined by Wawersik and Brace (1971). In 
particular, for uniaxial and low values of confming stress, splitting fractures are formed, 
and the Gc values represent the energy to form splitting fractures. At higher values of 
confining stress, shear faults are formed, and the Gc values represent the energy to create 
shear faults. In addition to calculating the fracture energies associated with splitting and 
faulting, we also use the triaxial data of Wawetsik and Brace ( 1971 ), along with crack 
statistical data of Wong (1985), to determine Gc values associated with the growth of 
microcracks that interact and coalesce to form macroscopic splitting and shear faults. We 
fmd that the Gc. values associated with macroscopic splitting and faulting can be several 
orders of magnuude greater than the energies associated with the growth of microcracks, 
and this difference can explain the scale effects that have been reported (Wong, 1982). 

a) q b) 5. 

- 4. 
C"' -

>< 3. 
~ 

... <1 0.. 

6 2. 
en en 
u 
~ 1. rJ'l 

0.~--._--~--~--_.--~ 
q 0. .0016 .0032 .0048 .0064 .008 

Figure 1. Axial splitting model Strain 
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failure regime, rocks exhibit strain softening behavior. Strain softening can be unstable, 
depending on the imposed boundary conditions and the slope of the stress strain curve in 
the strain softening region (Jaeger and Cook, 1979). The potential instability of strain 
softening slopes make them difficult to measure, however it is for exactly this reason that it 
is imponant to w1derstand the mechanisms responsible for this behavior. Wawersik and 
Fairhurst (1970) and Wawersik and Brace (1971), measured complete stress strain curves 
on a variety of rocks in uniaxial and triaxial compression, and they classified complete 
stress-strain curves into two categories, based on the characteristics of the post failure 
behavior. Class I refers to rocks that exhibit 'normal' strain softening behavior past the 
peak stress, i.e., where the decrease in stress past the peak stress is accompanied by an 
increase in strain (negative slope). These strain softening slopes are unstable under stress 
controlled boundary conditions, but stable under displacement controlled boundary 
conditions. Class II refers to rocks in which the stress strain curves loop back towards the 
origin, in other words, the decrease in stress past the pe:pc stress is accompanied by a 
decrease in strain (positive slope). These strain softening slopes are unstable under all 
boundary conditions. 

In order to understand the above phenomena. micromechanical models for the failure 
of rock in compression have been developed. These include models for splitting at low 
values of confining stress, and for shear f3;ulting at higher values of confining stress. 
Many of the models for axial splitting are based on the 'sliding crack', as developed 
originally by Brace et al.(1966) and Fairhurst and Cook (1966). The sliding crack 
consists of an initial, planar microcrack under shear and normal stresses derived from the 
externally applied triaxial stresses. Once the frictional forces along this initial crack have 
been exceeded, the crack faces will slide past one another, forming tensile stresses in the 
regions near the crack tips. Under continued loading, the tensile stresses will increase until 
two tensile 'wing cracks' emerge symmetrically from both ends of the initial crack, and as 
the wing cracks propagate they orient themselves in the direction of the maximum principle 
stress. Fracture models for axial splitting based on the sliding crack include Horii and 
Nemat-Nasser (1985), Ashby and Hallam (1986), and Kemeny and Cook (1987). These 
models consider single or multiple sliding cracks in a linear elastic matrix, and nonlinear 
stress strain relationships are derived that exhibit strain hardening and strain softening due 
to the propagation and interaction of the tensile wing cracks. The sliding crack has also 
been used to explain the mechanics of borehole breakout (Detournay and Roegiers, 1986) 
and discing in compressed rock cores (Scholz et al., 1986). Models for axial splitting 
under triaxial compression that do not use the sliding crack include Costin, 1985 (tensile 
crack growth due to prescribed regions of tension), and Sammis and Ashby, 1986 (tensile 
crack growth due to stress concentrations around circular openings). 

With regards to shear faulting, micromechanical models have been developed by 
Nemat-Nasser and Horii (1985) and Kemeny and Cook (1987). Nemat-Nasser and Horii 
( 1985) model shear faulting by lining up sliding cracks at some angle to the maximum 
principle stress, and finding conditions for the sliding cracks to become unstable due to 
crack interaction. This model does not take into account some of the shear processes that 
operate during shear localization, such as microbuckling of columns of rock formed by the 
initial axial growth of microcracks, kinking within mineral grains, and rotation and 
crushing of microblocks (Wong and Evans, 1985). Kemeny and Cook (1987) consider a 
collinear row of cracks at an angle to the maximum principle stress, and allow the cracks to 
grow in the plane of the cracks assuming a shear fracture energy criterion. This model is a 
simplification of the processes in shear localization, and does not include the initial tensile 
crack growth that occurs prior to shear localization. Thus this model is expected to apply 
in the region of the stress strain curve after stabilization of the initial axial cracks has 
occurred. 

In this paper, the micromechanical models of Kemeny and Cook (1987) for splitting 
and shear faulting are used to investigate parameters associated with rock fracture under 
compressive stresses. Fracture properties exist both on the scale of microcracks, and on 
the scale of the macrofractures formed by the coalescence of microcracks. One of the most 
important parameters with regards to fracture is the critical energy release rate, Gc. G is 
defined as the amount of energy release per unit increase in crack surface area. ana crack 
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ABS'IRACf 

Micromechanical models for axial splitting and for shear faulting are used to investigate 
parameters associated with rock fracture under compressive stresses. The fracture energies 
to create splitting fractures and shear faults are calculated using laboratory triaxial data. 
These energies are compared with the fracture energies for the propagation of microcracks 
that coalesce to form the larger scale fractures. It is found that for Westerly granite, the 
energies to create splitting fractures and shear faults are about three orders of magnitude 
greater than the energy needed to drive the tensile microcracks, due to the large amount of 
subsidiary crack surface area created in forming the larger scale fractures. A similar scale 
effect can be expected when extrapolating the laboratory results to field scale pf9blems. 

1 INTRODUCTION 

Much of the research in rock mechanics has been concerned with the failure of small, 
laboratory specimens of rock under compressive stresses. It is supposed that such failure 
is analogous to large scale problems such as the failure and stability of wall rock in 
underground openings, the formation of joints, and the propagation of faults in earthquake 
rupture. Even though a large data base of information has been gathered on rock failure in 
compression for many different rock types and under a variety of conditions, the 
mechanisms responsible for this behavior are still not fully understood. Stress strain 
relations associated with the failure of brittle rocks under compressive stresses are highly 
nonlinear and path dependent, due primarily to the complex nature of the microstructure on 
the scale of mineral grains, and to anisotropic changes in the microstructure during 
compressive loading. For instance, a brittle rock such as granite contains mineral 
constituents with differing material properties, and defects such as microcracks and pores. 
Hallbauer et al. (1973), Kranz (1983), Wong (1985) and others show that before load is 
applied to a laboratory sample, the microcracks in brittle rocks have a relatively 
homogeneous distribution and often random orientations related to the genesis of the rock. 
As rock samples are loaded in compression, the crack density increases, along with an 
anisotropy in crack orientation due to crack growth in the direction of the maximum 
principle stress. With further loading, these axially growing cracks interact and coalesce to 
form macroscopic features such as splitting fractures under uniaxial compression or shear 
faults under triaxial compression (Horii and Nemat-Nasser, 1985). These macroscopic 
features are important in understanding the evolution of natural joints and faults in rock, 
and in determining parameters associated with spalling around underground openings, 
joint formation, and earthquake rupture (Wong, 1982). 

In general, rocks tested under compression exhibit linear elastic or strain hardening 
stress-strain behavior up to a peak stress. Past the peak stress, referred to as the post 
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