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1 Left: Visible moiré pattern at θ = 5◦. Right: Single moiré hexagon,
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ABSTRACT OF THE DISSERTATION

Rigorous results on unexpected conductance of certain low-dimensional materials

By

Xiaowen Zhu

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Svetlana Jitomirskaya, Chair

In this thesis, we will study the conductance of several models originating from con-

densed matter physics, including the Anderson model for random systems and the

Bistritzer-MacDonald (BM) model for twisted bilayer graphene (TBG). In fact, in

their time, both models exhibited unexpected conductance properties which bewil-

dered mathematicians and physicists. The Anderson model, developed in 1958 by

physicist P.W. Anderson, exhibited unexpected localization/insulating phenomena in

the 1D and 2D cases, while TBG was discovered experimentally in 2018 [20] to have

unconventional superconductance at certain “magic angles” with relatively flat bands.

This thesis has two primary parts. In the first part, we prove different types of local-

ization results in the Anderson model and other related models. In the second part,

we study the BM model in various magnetic fields from spectral, semi-classical and

physical perspectives; in particular, we focus on the existence and persistence of flat

bands which, though mysterious, is believed to be related to the superconductance of

TBG [62].

More specifically, for the first part, we initially provide a short non-perturbative proof

of Anderson localization and dynamical localization for the 1D Anderson model with

xi



arbitrary disorder (e.g. including Bernoulli potential). After that, we derive the dy-

namical localization in expectation in a related random CMV model with arbitrary

disorder. Finally, we work with 2D Anderson model with Bernoulli potential and

prove strong dynamical localization in expectation in this setting.

We start the second part by first discussing the influence of different magnetic and

electric potentials on the existence/persistence of flat bands for TBG. After the general

discussion, we divert our attention the strong constant magnetic fields and provide the

explicit asymptotic expansion of the density of states (DOS). In particular, we point

out the intrinsically different roles that chiral and anti-chiral potentials play in the

magnetic response of TBG. Finally, from the expansion of the DOS, we are able to

study the physical phenomena, including magnetic oscillations and quantum Hall effect

of the TBG. We find that the chiral potential enhances these phenomena, while the

anti-chiral potential diminishes them.

xii



Chapter 0

Introduction

This thesis addresses work in both the localization of disordered systems and the rela-

tively flat bands of twisted bi-layer graphene (TBG) in magnetic fields, both motivated

by unexpected conductance of certain low-dimensional materials in condensed matter

physics. In this thesis, we report on some recent mathematical progress on these topics.

0.1 Localization in random systems

This section contains the introduction for Part I, including Chapter 1, 2, 3.

0.1.1 Physical Motivation

Inspired by Fuller and Feher’s experiment on the influence of donor impurities (such as

phosphorus [P] and arsenic [As]) in pure silica [Si], in 1958, physicist P.W. Anderson

published the seminal paper “Absence of Diffusion in Certain Random Lattices”. In
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this paper, he argued that weak disorder allows diffusion; while strong disorder leads

to localization of electrons. Thus there is a metal-insulator transition of 3D disordered

systems. Later it was also realized that 1D and 2D1 systems exhibit localization even

for arbitrarily weak disorder.

Such phenomenon is called “Anderson localization” and has been widely accepted

nowadays as one of the fundamental theories in condensed matter physics. Anderson,

together with his advisor Vleck and his collaborator Mott, was also awarded the Nobel

prize in 1977 in part for this pioneering work. However, it took almost 20 years for

the physics community to accept his idea and for mathematicians to get invloved in

the theoretical part. To quote Anderson from his Nobel banquet speech,

“Localization was a different matter: very few believed it at the time, and

even fewer saw its importance; among those who failed to fully understand

it at first was certainly its author. It has yet to receive adequate math-

ematical treatment, and one has to resort to the indignity of numerical

simulations to settle even the simplest questions about it.”

As Anderson has expected, over the next several decades, various mathematical tools

have been implemented in this problem and fruitful results have been obtained. To

state them more explicitly, we first introduce the model.

1Localization for arbitrary disorder in 2D remains partly open mathematically, but is widely
accepted by physicists.
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0.1.2 Anderson model and Anderson localization

Let Hω : `2(Zd)→ `2(Zd) be

(Hωφ)(n) :=
∑

|m−n|=1

(φ(m)− φ(n)) + λVω(n)φ(n).

where {Vω(n)}n∈Zd are independent and identically distributed (i.i.d.) random vari-

ables with a common probability distribution µ, λ > 0 is the coupling constant repre-

senting the strength of randomness.

We say thatHω exhibits Anderson localization if for a.e. ω, Hω has pure point spectrum

and the eigenfunctions decay exponentially.

0.1.3 Mathematical Development

Overall results and various methods developed to prove localization in different regimes

can be categorized by three main factors: the dimension d, the regularity2 of the

common distribution µ, and the strength of randomness (also called coupling constant)

λ. Some methods are only one dimensional; Most methods only work for regular

enough µ; in 1D and 2D when localization is expected to hold for all λ, larger λ is

more accessible.

Known results and open problems.

� When d = 1, for any λ, any nontrivial3 µ, Hω exhibits Anderson localization.

2Absolutely continuous, or at least Hölder continuous
3supported on more than one point
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� When d = 2, Hω is widely expected to be localized by physicists for all λ and µ.

But Anderson localization is only proved for large enough λ and arbitrary µ.

� When d ≥ 3, Hω is expected to be localized when λ is large and delocalized when

λ is small and a sharp phase transition is expected. For regular µ, localization

for large enough λ is proved but delocalization for small λ and the existence of

phase transition are not proved. As for singular µ, localization is only proved in

d = 3 with large enough λ.

Methods summarized.

The first rigorous proof of Anderson localization in 1D continnum model with regular

µ and arbitrary λ was given by Goldshield, Molchanov and Pastur in 1977. In 1980,

the same results is obtained using another method by Kunz and Soulliard [59]. Since

then, several methods are developed in order to resolve the problem in other regimes

of d, µ, λ.

Proofs that work for arbitrary dimension d include multi-scale analysis (MSA), devel-

oped in 1983 by Frohlich and Spencer [37], largely improved in 1989 by von Dreifus and

Klein [82]; and fractional moment methods (FFM), developed in 1994 by Aizenman

and Molchanov [1]. However, both methods required regular µ and large enough λ.

Since this thesis focuses on the low-dimensional cases, we refer to [2] for more details

in higher dimension.

In the 1D case with possibly singular potential µ, the first proof was given in 1987

by Carmona, Klein and Martinelli [21] in d = 1. Their proof has made use of the

positivity and regularity of Lyapunov exponent for the 1D model together with the

MSA developed in [37], which is iterative and therefore relatively complicated. Re-

4



cently, several new methods were developed for proving localization in this regime.

In 2019, inspired by the non-perturbative proof of localization for the quasi-periodic

almost Mathieu operator [53], we provide a new proof of localization for 1D Anderson

model with arbitrary µ and λ. As in [53], the idea is to make full use of positivity and

subharmonicity of Lyapunov exponent to replace the iterative argument of MSA. (This

method will be introduced in Chapter 1.) We mention further that [18] also provided

another deterministically inspired proof in 2020; in the mean time, [44] developed a

parametric version of Furstenberg theorem which allowed them to provide a purely

dynamical proof under the same regime.

When d = 2, 3, Anderson localization for singular µ with large λ was proved in 2020

[32] and 2021 [63] respectively.

0.1.4 Outline of results

� In Chapter 1, we provide the new, short, non-perturbative proof of Anderson

and dynamical localization in 1D for arbitrary µ with bounded support. We

also provide a relatively independent uniform version of Craig-Simon results in

Section 1.5. We mention that over the past three years, the method was taken

in conjunction with [41], [69], [68], [65], [88], [27], and is expected to apply to

models introduced in [34], [36], illustrates the flexibility of this general scheme

for proving localization in random one-dimensional frameworks. Indeed, these

techniques provide the most direct route to localization in addition to providing

proofs of the strongest known localization results for such models.

� Notice that in fact, the original physical concept, localization, can be defined in

many different ways: exponential localization of time-independent wave function

5



as Anderson localization above, or absence of transport of the time-dependent

solutions for a.e.ω (dynamical localization), or the absence of transport of the

time-dependent solution in expectation (dynamical localization in expectation).

In particular, in Chapter 3, we improved the results in [32] and [63] from Ander-

son localization to the strongest dynamical localization in expectation.

� In Chapter 2, we apply our new method developed in Chapter 1 to a related ran-

dom CMV model to derive for the first time Anderson localization for arbitrary

µ. We also correct the errors in the formulas found in [58], [18], [74] and [73] in

Appendix B.

0.2 Magnetic response of twisted bilayer graphene

This section contains the introduction for Part II, Chapter 4

0.2.1 Physical Motivation

It is arguably one of the most exciting recent discoveries in condensed matter physics

that by twisting two sheets of graphene at certain “magic angles”, the electronic struc-

ture undergoes a transition from a Mott-insulating to a superconducting phase [20].

Such experiments are built on earlier theoretical work [33, 12] which introduced the

continuum model for the study of TBG. From this model they predicted the first magic

angle by observing the appearance of a relatively flat spectral band at some small an-

gle. To discuss our study of TBG in magnetic fields, we first briefly introduce the BM

model (see §4.2.1, [12]):

6



0.2.2 BM model

The BM model is an effective 4 × 4 matrix-valued Hamiltonian

 Hθ
D T θ(x)

(T θ(x))∗ H̃−θD

,

x ∈ R2, composed of two twisted-Dirac-operators Hθ
D, H

−θ
D representing two isolated

graphene sheets [84] respectively, and a tunneling potential term

T θ(x) =

 α0V (x/λθ) α1U(−x/λθ)

α1U(−x/λθ) α0V (x/λθ)


where the diagonal and off-diagonal terms represent two different types of interlayer

tunneling potentials. In fact, when two layers of graphene are twisted at an angle θ, a

macroscopic honeycomb structure of scale λθ, called the moiré pattern, is formed (by

a purely geometrical superposition of two sheets of graphene; see Fig.4.1). Then the

two different types of interlayer tunnelings (see Fig.4.1) are respectively:

1. the chiral tunnelings U(x/λθ) and U(−x/λθ) localized near the vertices of each

moiré hexagon, with tunneling strength α1 and a stacking similar to AB′ and

BA′-stacking;

2. the anti-chiral tunneling V (x/λθ), localized near the centers of moiré hexagon,

with a tunneling strength α0 and a stacking similar to AA′/BB′-stacking.

Here A and B label the equivalence classes of vertices on the honeycomb lattice and

atoms on the lower lattice are indicated by a prime, cf. Figure 4.1. We refer to the

BM model as the chiral or anti-chiral model in the limit of purely chiral (α0 = 0) or

anti-chiral (α1 = 0) tunneling interaction, respectively.

While in the full BM model, the bands close to zero appear only approximately flat,

7



AA'/BB'BA'

BA'

BA'AB'

AB'

AB'

Figure 1: Left: Visible moiré pattern at θ = 5◦. Right: Single moiré hexagon, with
(A=red, B=blue) and (A’=green, B’=black) denote vertices of two sheets of graphene
respectively.

it has been shown in [79, 6, 7] that the chiral model exhibits a perfectly flat band

at the magic angle [79, 6] while the anti-chiral model does not [7]. In our study of

the magnetic response, we find that chiral and anti-chiral tunnelings play intrinsically

different roles not only in spectral properties (see §4.3), but also in the asymptotic

expansion of DOS in strong magnetic field (see §4.5), which results in very different

physical behaviours (see §4.6).

More specifically, in §4.3, we dicuss the influence of different magnetic potentials on the

flat bands in the chiral and anti-chiral model. In §4.5, we derive the explicit asymptotic

expansion of the DOS in strong magnetic fields for both chiral and anti-chiral model.

We find that the magnetic anti-chiral model has a similar behavior as the magnetic

Schrödinger operator, where Landau levels split under perturbations of anti-chiral

electric potential, while the magnetic chiral model has stable Landau levels especially

at energy zero. Thus, chiral tunneling enhances the peaks of the DOS at Landau levels

which leads to an enhancement of physical phenomena including magnetic oscillations

8



and the quantum hall effect, which we discuss in §4.6, while anti-chiral tunneling

weakens them.

We also mention that our study of asymptotic behavior in the strong magnetic fields

originates naturally, in the physics perspective, from the interest in small twisting

angles. In fact, as the twisting angle θ decreases to zero, the scale of the moiré hexagon

λθ ∼ (sin θ)−1 increases dramatically. Thus, in the spirit of keeping a fixed magnetic

flux through each moiré hexagon, the study of a fixed magnetic field with small twisting

angle can be rescaled to a fixed twisting angle with a strong magnetic field. We denote

them as adiabatic (see §4.2.3) and semiclassical (see §4.2.4) scalings respectively).

In particular, this means we provide the theoretical background for the study of the

dependence of Landau levels on small twisting angle that have been studied for a

simplified model in [24] and numerically in [67] for a tight-binding model. Furthermore,

combining with the study of chiral and anti-chiral tunnelings, we put the substantially

pronounced peaks of the DOS for small twisting angles at the Landau levels in [67, Fig.

2,3] on a rigorous footing. Furthermore, our results apply to strong pseudo-magnetic

fields generated by physical strain.

0.2.3 Outline of results

We summarize all our main results with an outline of the paper below:

� In Section 4.2, we introduce the BM model with external magnetic field for TBG.

� In Section 4.3, we proved that

– periodic magnetic fields do not affect the presence of flat bands in Theorem

9



4.1.

– flat bands are persisted under rational magnetic flux in Theorem 4.2, 4.3.

– lots of quasimodes are located close to, and squeezing towards the zero

energy level in Theorem 4.4.

� In Section 4.4, we discuss general properties of the DOS including

� In Section 4.5, we derive asymptotic formulae for the DOS:

– of the chiral model: Theorem 4.5;

– of the anti-chiral model: Theorem4.6;

– is termwise-deferentiable w.r.t. B: Prop 4.5.9).

� In Section 4.6, we discuss physical applications of our semiclassical formulae.

� The article also contains two technical appendices to which some of the compu-

tations and auxiliary results for the derivation of the DOS are outsourced.

0.2.4 Comment on methods

Finally, we would like to comment on related results and techniques. In this paper,

we first perform a spectral and symmetry analysis of our model for various magnetic

perturbations. This includes the existence and absence of perfectly flat bands at magic

angles for different interlayer potentials and magnetic fields, see also [11] for related

results. We then discuss the existence and absence of the phenomenon of exponential

squeezing of bands which generalizes results obtained in the non-magnetic setting [6, 7].

In this row of mathematically rigorous results, we also want to mention the computer-

assisted proof of the existence of a real magic angle by Luskin and Watson [87].
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Our approach to studying these physical phenomena is a thorough asymptotic analysis

of the DOS. Here, our approach is inspired by ideas of Helffer and Sjöstrand [47] who

studied the perturbation theory of periodic Schrödinger operators in strong magnetic

fields and Wang [86], who studied fine spectral asymptotics for random Schrödinger op-

erators in strong magnetic fields. While Helffer and Sjöstrand stopped at studying the

spectral perturbation for strong magnetic fields, we obtain a full asymptotic expansion

of the DOS. This has also been obtained by Helffer and Sjöstrand for weak magnetic

fields [48] where the analysis relied on the semiclassical eigenvalue distribution close

to a potential well. In our case, there is no natural well-structure and the asymptotic

expansion relies on an asymptotic expansion of the parametrix with a splitting argu-

ment to overcome non-elliptic regions close to the real axis. Unlike in previous works

by Helffer and Sjöstrand [48] and an article on single-layer graphene by the first author

and Zworski [9], we resolve the issue of differentiability of the asymptotic expansion

with respect to the semiclassical parameter by relating the asymptotic expansion with

the one of the differentiated symbol, here. This expansion is needed for the rigorous

analysis of the DOS when differentiated with respect to the magnetic field which is

relevant for both the de-Haas van Alphen as well as the quantum Hall effect.
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Part I

Localization in random systems
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Chapter 1

Anderson localization for 1D

Anderson model

1.1 Introduction

Anderson localization for the Anderson model can be proved in several different ways

if the common distribution of the i.i.d.r.v’s is absolutely continuous. Without that

condition (or at least some Hölder regularity) it remains an open question for d ≥ 2,

and the number of approaches that work for d = 1 also drops dramatically. Such is

the situation, for example, for the Bernoulli-Anderson model. Anderson localization

for arbitrary 1D disorder was first proved in [21]. The approach was based on certain

regularity of the Lyapunov exponents coming from the (analysis around) the Fursten-

berg theorem to obtain an analogue of Wegner’s lemma (automatic in the absolutely

continuous case). After that the proof was reduced to multi-scale analysis, with initial

scale coming again from the positive Lyapunov exponent. Another argument was later
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presented in [72], where an approach to positivity and regularity of the Lyapunov ex-

ponent using replica trick was given, again reducing the proof to multi-scale analysis.

Multi-scale analysis is a method that allows to achieve Green’s function decay and

ultimately localization from high probability of decay at the initial scale. It works in

a variety of settings. Originally developed by Frohlich and Spencer [37], it was signif-

icantly simplified in [82] but remains somewhat involved. It should be noted that in

the multidimensional case no shortcuts such as Furstenberg theorem or replica trick

are available, and the multi-scale analysis is used to reach conclusions analogous to the

positivity of the Lyapunov exponent simultaneously with the proof of localization. Yet

in the one-dimensional case positivity of the Lyapunov exponent essentially provides

the averaged decay statement, thus a large portion of the conclusion of the multi-scale

analysis, making its machinery seem redundant.

A method to effectively exploit positive Lyapunov exponent for a localization proof

based on the analysis of the large deviation set for the Lyapunov exponent was first

developed in [50] for the almost Mathieu operator, initiating what was later called

a non-perturbative approach, in contrast with earlier proofs based on some form of

multi-scale analysis [38, 76]. A robust method based on subharmonic function theory

and the theory of semianalytic sets was then developed in [16] and other papers sum-

marized in [15], to conclude localization from positive Lyapunov exponents for analytic

quasiperiodic and some other deterministic potentials. The fact that those ideas can

be applicable also to the Anderson model was mentioned in some talks by one of the

authors circa 2000, but the details were never developed. One goal of this chapter is

to obtain a proof of Anderson localization for the 1D Anderson model in the spirit of

[50] but with appropriate simplifications due to randomness.

Another proof, also based on large deviations and also avoiding multi-scale analysis
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was recently developed in [18]. The proof of [18] is based on deterministic ideas close to

the ones in [17], which we believe may be somewhat more complicated than needed for

the random case. We mention that yet another, purely dynamical, proof of localization

for the 1D Anderson model in [44].

One ingredient in our simple argument for spectral localization, Theorem 1.4, is Craig-

Simon’s upper bound based on subharmonicity of the Lyapunov exponent [25], a state-

ment that holds for any ergodic potential. In order to prove dynamical localization

we need a uniform in energy and quantitative version of this statement, that we prove

for general ergodic potentials satisfying certain large deviation bounds, a result that

could be of independent interest. We note that our proof does not explicitly use sub-

harmonicity.

The rest of this chapter is organized as follows. Section 1.2 contains the preliminaries,

the statement of the spectral localization result, Theorem 1.1, and its quick reduc-

tion to Theorem 1.2. We then prove the preparatory Lemmas 1.3.1, 1.3.2, 1.3.4, and

Corollary 1.3.3 in Section 1.3. Then we complete the proof of Theorem 1.2 in Section

1.4. Our proof effectively establishes a more precise result, Theorem 1.5, which in

turn immediately implies the Lyapunov behavior at all eigenvalues, Theorem 1.6. We

formulate and prove the general uniform Craig-Simon-type statement in Section 1.5,

and use it in Section 1.6 to prove dynamical localization.
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1.2 Preliminaries

The one dimensional Anderson model is given by a discrete Schrödinger operators Hω

(HωΨ)(n) = Ψ(n+ 1) + Ψ(n− 1) + ωnΨ(n),

where ωn ∈ R are independent identically distributed random variables with common

Borel probability distribution µ. We will assume that S ⊂ R, the topological support

of µ, is compact , and contains at least two points. We will denote the probability

space Ω = SZ, with elements {ωn}n∈Z ∈ Ω. Denote µZ as P. Let P[a,b] be µ[a,b]∩Z on

S[a,b]∩Z. Also let T be the shift Tωi = ωi−1. Finally, we denote Lebesgue measure on

R by m. We say that Hω has spectral localization in I if for a.e. ω, Hω has only pure

point spectrum in I and its eigenfunctions Ψ(n) decay exponentially in n.

Definition 1.1. We call E a generalized eigenvalue (g.e.), if there exists a nonzero

polynomially bounded function Ψ(n) such that HωΨ = EΨ. We call Ψ(n) a generalized

eigenfunction.

Since the set of g.e. supports the spectral measure of Hω (e.g. [26]), we only need to

show:

Theorem 1.1. For a.e. ω, for every g.e. E, the corresponding generalized eigenfunc-

tion Ψω,E(n) decays exponentially in n.

For [a, b] an interval, a, b ∈ Z, define H[a,b],ω to be operator Hω resticted to [a, b] with

zero boundary conditions outside [a, b]. Note that it can be expressed as a ”b−a+ 1”-

dimensional matrix. The Green’s function for Hω restricted to [a, b] with energy E /∈

σ[a,b],ω is

G[a,b],E,ω = (H[a,b],ω − E)−1.
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Note that this can also be expressed as a ”b− a + 1”-dimensional matrix. Denote its

(x, y) entry as G[a,b],E,ω(x, y).

It is well known that

Ψ(x) = −G[a,b],E,ω(x, a)Ψ(a− 1)−G[a,b],E,ω(x, b)Ψ(b+ 1), x ∈ [a, b] (1.1)

and we have

σ := σ(Hω) = [−2, 2] + S a.e.ω. (1.2)

Definition 1.2. For c > 0, n ∈ Z, we say x ∈ Z is (c, n, E, ω)-regular, if

G[x−n,x+n],E,ω(x, x− n) ≤ e−cn

G[x−n,x+n],E,ω(x, x+ n) ≤ e−cn

Otherwise, we call it (c, n, E, ω)-singular.

By (1.1) and definition 2, Theorem 1.1 follows from

Theorem 1.2. There exists Ω0 with P(Ω0) = 1, such that for every ω̃ ∈ Ω0, for any

g.e. Ẽ of Hω̃, there exist N = N(Ẽ, ω̃), C = C(Ẽ), such that for every n > N ,

2n, 2n+ 1 are (C, n, Ẽ, ω̃)-regular.

Some other standard basic settings are below. Denote

P[a,b],E,ω = det(H[a,b],E,ω − E), a ≤ b
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If a > b, let P[a,b],E,ω = 1. Then

∣∣G[a,b],E,ω(x, y)
∣∣ =

∣∣P[a,x−1],E,ωP[y+1,b],E,ω

∣∣∣∣P[a,b],E,ω

∣∣ , x ≤ y (1.3)

If we denote the transfer matrix T[a,b],E,ω as the matrix such that

 Ψ(b)

Ψ(b− 1)

 = T[a,b],E,ω

 Ψ(a)

Ψ(a− 1)


where Ψ solves HωΨ = EΨ, then

T[a,b],E,ω =

 P[a,b],E,ω −P[a+1,b],E,ω

P[a,b−1],E,ω −P[a+1,b−1],E,ω


The Lyapunov exponent exists by Kingman’s subadditive ergodic theorem and is given

by

γ(E) = lim
n→∞

1

n

∫ 1

0

log ‖T[0,n],E,ω‖dP(ω) = lim
n→∞

1

n
log ‖T[0,n],E,ω‖, a.e.ω.

Let ν = inf
E∈σ

γ(E). By the Furstenberg’s theorem ν > 0. It follows from (1.3) that

the desired exponential decay of the Green’s function can be achieved if all the P[a,b]

in (1.3) behave as e(b−a)γ(E), thus leading to the study of deviations of lnP[a,b] from

its mean. In fact, the key estimates underlying the analysis of [21] are precisely large

deviation bounds for the Lyapunov exponent due to Le Page [61]. Here we will use a

corresponding statement for the matrix elements [81]

Lemma 1.2.1 ( ”uniform-LDT”). For any ε > 0, there exists η = η(ε) > 0 such that,
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there exists N0 = N0(ε), such that for every b− a > N0, and any E in a compact set,

P
{
ω :

∣∣∣∣ 1

b− a+ 1
log ‖P[a,b],E,ω‖ − γ(E)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1)

It will also be convenient to use the general subharmonicity upper bound due to Craig-

Simon [25]

Theorem 1.3 (Craig-Simon [25]). For a.e. ω for all E, we have

lim
n→∞

log ‖T[0,n],E,ω‖
n+ 1

≤ γ(E)

1.3 Main lemmas

Denote

B+
[a,b],ε =

{
(E,ω) : |P[a,b],E,ω| ≥ e(γ(E)+ε)(b−a+1)

}
(1.4)

B−[a,b],ε =
{

(E,ω) : |P[a,b],E,ω| ≤ e(γ(E)−ε)(b−a+1)
}

(1.5)

and denote B±[a,b],ε,E = {ω : (E,ω) ∈ B±[a,b],ε}, B
±
[a,b],ε,ω = {E : (E,ω) ∈ B±[a,b],ε},

B[a,b],∗ = B+
[a,b],∗ ∪B

−
[a,b],∗.

Let Ej,(ωa,··· ,ωb) be eigenvalues of H[a,b],ω with ω|[a,b] = (ωa, · · · , ωb).

Large deviation theorem gives us the estimate that for all E, a, b, ε

P(B±[a,b],ε,E) ≤ e−η(b−a+1) (1.6)

Assume ε = ε0 <
1
8
ν is fixed for now, so we omit it from the notations until Lemma
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1.3.4. Let η0 = η(ε0) be the corresponding parameter from Lemma 1.2.1

Lemma 1.3.1. For n ≥ 2, if x is (γ(E)− 8ε0, n, E, ω)-singular, then

(E,ω) ∈ B−[x−n,x+n] ∪B
+
[x−n,x−1] ∪B

+
[x+1,x+n]

Remark 1.1. Note that from (1.6), for all E, x, n ≥ 2,

P(B−[x−n,x+n],E ∪B
+
[x−n,x−1],E ∪B

+
[x+1,x+n],E) ≤ 3e−η0(n+1)

Proof. Follows imediately from the definition of singularity and (1.3).

Now we will use the following three lemmas to find the proper Ω0 for Theorem 1.2.

Lemma 1.3.2. Let 0 < δ0 < η0. For a.e. ω (we denote this set as Ω1), there exists

N1 = N1(ω), such that for every n > N1,

max{m(B−[n+1,3n+1],ω),m(B−[−n,n],ω)} ≤ e−(η0−δ0)(2n+1)

Proof. By (1.6),

m× P(B−[n+1,3n+1]) ≤ m(σ)e−η0(2n+1)

m× P(B−[−n,n]) ≤ m(σ)e−η0(2n+1)

If we denote

Ωδ0,n,+ =
{
ω : m(B−[n+1,3n+1],ω) ≤ e−(η0−δ0)(2n+1)

}
Ωδ0,n,− =

{
ω : m(B−[−n,n],ω) ≤ e−(η0−δ0)(2n+1)

}
,
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We have by Tchebyshev,

P(Ωc
δ0,n,±) ≤ m(σ)e−δ0(2n+1). (1.7)

By Borel-Cantelli lemma, we get for a.e. ω,

max{m(B−[n+1,3n+1],ω),m(B−[−n,n],ω)} ≤ e−(η0−δ0)(2n+1),

for n > N1(ω).

Remark 1.2. Note that we can actually shift the operator and use center point l instead

of 0. Then we will get Ω1(l) instead of Ω1, N1(l, ω) instead of N1(ω). And if we

pick N1(l, ω) in the theorem as the smallest integer satisfying the conclusion, we can

estimate when we will have N1(l, ω) ≤ ln2 |l|, which is very useful in the proof for

dynamical localization in section 6.

The next results follows from :

Theorem 1.4. For a.e. ω(we denote this set as Ω2), for all E, we have

max

{
lim
n→∞

log ‖T[−n,0],E,ω‖
n+ 1

, lim
n→∞

log ‖T[0,n],E,ω‖
n+ 1

}
≤ γ(E) (1.8)

max

{
lim
n→∞

log ‖T[n+1,2n+1],E,ω‖
n+ 1

, lim
n→∞

log ‖T[2n+1,3n+1],E,ω‖
n+ 1

}
≤ γ(E) (1.9)

Remark 1.3. (1.8) is a direct reformulation of the result of [25], Theorem 1.3, while

(1.9) follows by exactly the same proof.

Corollary 1.3.3. For every ω ∈ Ω2, for every E, there exists N2 = N2(ω,E), such
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that for every n > N2,

max{‖T[−n,0],E,ω‖, ‖T[0,n],E,ω‖} < e(γ(E)+ε)(n+1)

max{‖T[n+1,2n+1],E,ω‖, ‖T[2n+1,3n+1],E,ω‖} < e(γ(E)+ε)(n+1)

Lemma 1.3.4. Let ε > 0, K > 1, For a.e. ω(we denote this set as Ω3 = Ω3(ε,K)),

there exists N3 = N3(ω), so that for every n > N3, for every Ej,(ωn+1,··· ,ω3n+1), for

every y1, y2 satisfying −n ≤ y1 ≤ y2 ≤ n, |−n − y1| ≥ n
K

, and |n − y2| ≥ n
K

, we have

Ej,(ωn+1,··· ,ω3n+1) /∈ B[−n,y1],ε,ω ∪B[y2,n],ε,ω ∪B[−n,n],ε,ω.

Remark 1.4. Note that ε and K are not fixed yet, we’re going to determine them later

in section 1.4.

Proof. Let P̄ be the probability that there are some y1, y2, j with

Ej,(ωn+1,··· ,ω3n+1) ∈ B[−n,y1],ε,ω ∪B[y2,n],ε,ω ∪B[−n,n],ε,ω.

Note that for any fixed ωc, · · · , ωd, with [c, d] ∩ [a, b] = ∅, by independence,

P[c,d]c(B[a,b],ε,Ej,(ωc,··· ,ωd)
) = P[a,b](B[a,b],ε,Ej,(ωc,··· ,ωd)

) ≤ e−η0(b−a+1)

Applying to [a, b] = [−n, y1] or [y2, n], [c, d] = [n + 1, 3n + 1] and integrating over

ω−n, · · · , ωy1 or ωy2 , · · · , ωn, we get

P(B[−n,y1],ε,Ej,(ωn+1,··· ,ω3n+1)
∪B[y2,n],ε,Ej,(ωn+1,··· ,ω3n+1)

) ≤ 2e−η0( n
K

+1),

and

P(B[−n,n],ε,ω) ≤ e−η0(2n+1)
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so

P̄ ≤ (2n+ 1)32e−η0( n
K

+2)

Thus by Borel-Cantelli, we get the result.

Remark 1.5. Similar to remark 1.2, we can get Ω3(l), N3(l, ω) for an operator shifted

by ` instead, and get the result that for a.e.ω (we denote this set as ΩN3), there exists

L3(ω), such that for any |l| > L3, N3(l, ω) ≤ ln2 |l|. This will be of use in section 6 for

proving dynamical localization.

1.4 Proof of Theorem 2.2

We will only provide a proof that 2n + 1 is (c, n, E, ω)-regular, the argument for 2n

being similar.

Proof. Let ε be small enough such that

ε < min{(η0 − δ0)/3, ν}. (1.10)

Now let

L := e(η0−δ0−ε) > 1,

and note that since S is bounded, by (1.2) we have there exists M > 0, such that

|P[a,b],E,ω| < M (b−a+1), ∀E ∈ σ, ω

Pick K big enough such that

M
1
K < L
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Let τ > 0 be such that

M
1
K ≤ L− τ < L (1.11)

Let Ω0 = Ω1 ∩ Ω2 ∩ Ω3(ε,K). Pick ω̃ ∈ Ω0, and take Ẽ a g.e. for Hω̃, with Ψ the

corresponding generalized eigenfunction. Without loss of generality assume Ψ(0) 6= 0.

Then there exists N4, such that for every n > N4, 0 is (γ(Ẽ)− 8ε0, n, Ẽ, ω̃)-singular.

For n > N0 = max{N1(ω̃), N2(ω̃, Ẽ), N3(ω̃), N4(ω̃, Ẽ)}, assume 2n + 1 is (γ(Ẽ) −

8ε0, n, Ẽ, ω̃)-singular. Then both 0 and 2n+ 1 is (γ(Ẽ)− 8ε0, n, Ẽ, ω̃)-singular. So by

Lemma 1.3.1, Ẽ ∈ B−[n+1,3n+1],ε0,ω̃
∪ B+

[n+1,2n],ε0,ω̃
∪ B+

[2n+2,3n+1],ε0,ω̃
. By Corollary 1.3.3

and (1.4), Ẽ /∈ B+
[n+1,2n],ε0,ω̃

∪B+
[2n+2,3n+1],ε0,ω̃

, so it can only lie in B−[n+1,3n+1],ε0,ω̃
.

Note that in (1.5), P[n+1,3n+1],E,ω̃ is a polynomial in E that has 2n + 1 real zeros

(eigenvalues of H[n+1,3n+1],ω̃), which are all in B = B−[n+1,3n+1],ε,ω̃. Thus B consists of

less than or equal to 2n + 1 intervals around the eigenvalues. Ẽ should lie in one of

them. By Lemma 1.3.2, m(B) ≤ Ce−(η0−δ0)(2n+1). So there is some e.v. Ej,[n+1,3n+1],ω̃

of H[n+1,3n+1],ω such that

|Ẽ − Ej,[n+1,3n+1],ω̃| ≤ e−(η0−δ0)(2n+1)

By the same argument, there exists Ei,[−n,n],ω̃, such that

|Ẽ − Ei,[−n,n],ω̃| ≤ e−(η0−δ0)(2n+1)

Thus |Ei,[−n,n],ω̃−Ej,[n+1,3n+1],ω̃| ≤ 2e−(η0−δ0)(2n+1). However, by Theorem 1.3.4, one has

Ej,[n+1,3n+1],ω̃ /∈ B[−n,n],ε,ω̃, while Ei,[−n,n],ω̃ ∈ B[−n,n],ε,ω̃ This will give us a contradiction

below.
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Since |Ei,[−n,n],ω̃−Ej,[n+1,3n+1],ω̃| ≤ 2e−(η0−δ0)(2n+1) and Ei,[−n,n],ω̃ is the e.v. of H[−n,n],ω̃,

∥∥∥G[−n,n],Ej,[n+1,3n+1],ω̃ ,ω̃

∥∥∥ ≥ 1

2
e(η0−δ0)(2n+1)

Thus there exist y1, y2 ∈ [−n, n] and such that

∣∣∣G[−n,n],Ej,[n+1,3n+1],ω̃ ,ω̃(y1, y2)
∣∣∣ ≥ 1

2n
e(η0−δ0)(2n+1)

Let Ej = Ej,[n+1,3n+1],ω̃. We have Ej /∈ B[−n,n],ε,ω̃, thus

|P[−n,n],ε,Ej ,ω̃| ≥ e(γ(Ej)−ε)(2n+1)

so by (1.3),

∥∥P[−n,y1],ε,Ej ,ω̃P[y2,n],ε,Ej ,ω̃

∥∥ ≥ 1

2n
e(η0−δ0)(2n+1)e(γ(Ej)−ε)(2n+1) (1.12)

Then for the left hand side of (1.12), there are three cases:

1. both | − n− y1| > n
K

and |n− y2| > n
K

2. one of them is large, say | − n− y1| > n
K

while |n− y2| ≤ n
K

3. both small.

For (1),

1

2n
e(η0−δ0+γ(Ej)−ε)(2n+1) ≤ e2n(γ(Ej)+ε)

Since by our choice (1.10), η0− δ0 + γ(Ej)− ε > γ(Ej) + ε, for n large enough, we get

a contradiction.
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For (2),

1

2n
e(η0−δ0+γ(Ej)−ε)(2n+1) ≤ e(γ(Ej)+ε)(2n+1)(M)

n
K

is in contradiction with (1.10) and (1.11)

For (3), with (1.10) and (1.11)

1

2n
e(η0−δ0+γ(Ej)−ε)(2n+1) ≤M

2n
K ≤ (L− τ)2n ≤ (e(η0−δ0+γ(Ej)−ε) − τ)2n,

also a contradiction.

Thus our assumption that 2n+ 1 is not (γ(Ẽ)− 8ε0, n, Ẽ, ω̃)-regular is false. Theorem

1.2 follows.

Note that we have established the following more precise version of Theorem 1.2

Theorem 1.5. There exists Ω0 with P(Ω0) = 1, such that for every ω̃ ∈ Ω0, for any

g.e. Ẽ of Hω̃, and ε > 0, there exists N = N(Ẽ, ω̃, ε), such that for every n > N ,

2n, 2n+ 1 are (γ(E)− ε, n, Ẽ, ω̃)-regular.

It is a standard patching argument (e.g. proof of Theorem 3 in [50]) that this implies

|ΨE(n)| ≤ CE,εe
−(γ(E)−ε)n for any ε > 0. Combined with Theorem 1.3, this immediately

implies that we have Lyapunov behavior at every generalized eigenvalue.

Theorem 1.6. For a.e. ω for all generalized eigenvalues E, we have

lim
n→∞

log ‖T[0,n],E,ω‖
n+ 1

= γ(E)
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1.5 Uniform and Quantitative Craig-Simon

Craig-Simon theorem 1.3 implies that for a.e. ω and every E ∈ σ there exists N(ω,E)

such that for n > N, ‖T[0,n],E,ω‖ ≤ e(n+1)(γ(E)+ε). For the proof of dynamical localization

one however needs a statement of this type with N uniform in E. Such a statement

is the goal of this section. We will show that it holds for any ergodic dynamical

system satisfying the uniform LDT (Large Deviation Type) condition: Lemma 1.2.1.

Thus this result has more general nature than the rest of the chapter and may be of

independent interest. In particular, it is applicable to quasiperiodic dynamics with

Diophantine frequencies and analytic sampling functions. We note that uniform LDT

condition can also be replaced by a combination of a pointwise LDT condition and

continuity of the Lyapunov exponent.

We have:

Theorem 1.7. Let the ergodic family Hω satisfy Lemma 1.2.1. Fix ε0 > 0. For a.e. ω

(we denote this set as Ω2 = Ω2(ε0)), there exists N2(ω), such that for any n > N2(ω),

E ∈ σ,

|P[0,n],E,ω| ≤ e(γ(E)+ε0)(n+1)

An immediate corollary is

Corollary 1.5.1. Let Hω, ε0 be as above. Then there exists Ω2 with P(Ω2) = 1, such

that for ω ∈ Ω2, there exists N2(ω) such that

max
{
|P[0,n],E,ω|, |P[−n,0],E,ω|, |P[n+1,2n+1],E,ω|, |P[2n+1,3n+1],E,ω|

}
≤ e(γ(E)+3ε0)(n+1).

Thus we can replace Corollary 1.3.3 with this uniform version.
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Proof. We start with the following

Lemma 1.5.2. Let Q(x) be a polynomial of degree n−1. Let xi = cos 2π(i+θ)
n

, 0 < θ <

1/2, i = 1, 2, · · · , n. If Q(xi) ≤ an, for all i, then Q(x) ≤ Cnan, for all x ∈ [−1, 1],

where C = C(θ) is a constant.

Proof. By Lagrange interpolation, we have

Q(x) =
n∑
i=1

Q(xi)
∏
j 6=i

x− xj
xi − xj

Note that

∑
j 6=i

ln |xi − xj| =
∑
j 6=i

{
ln

∣∣∣∣sin π(i+ j + 2θ)

n

∣∣∣∣+ ln

∣∣∣∣sin π(i− j)
n

∣∣∣∣+ ln 2

}
=: A+B + (n− 1) ln 2.

We will use the following lemma without giving a proof.

Lemma 1.5.3 (Lemma 9.6 in [5]). Let p and q be relatively prime. Let 1 ≤ k0 ≤ q be

such that

| sin 2π(x+ k0p/(2q))| = min
1≤k≤q

| sin 2π(x+ kp/(2q))|.

Then

ln q + ln(2/π) <

q∑
k=1
k 6=k0

ln | sin 2π(x+ kp/(2q))|+ (q − 1) ln 2 ≤ ln q.

For B, we take p = 1, q = n, x = −i/(2n), k = j. Then k0 = i, and we get

B ≥ lnn+ ln(2/π)− (n− 1) ln 2.

For A, we estimate by Lemma 1.5.3 with p = 1, q = n, x = (i + 2θ)/2n, k = j. If
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k0 = j0 is the minimum term of ln | sin π(i+j+2θ)
n
|, then

A ≥ lnn+ ln(2/π)− (n− 1) ln 2− ln

∣∣∣∣sin π(2i+ 2θ)

n

∣∣∣∣+ ln

∣∣∣∣sin π(i+ j0 + 2θ)

n

∣∣∣∣
For 0 < θ < 1/4, we have

| sin π(2i+2θ)
n
|

| sin π(i+j0+2θ)
n

|
=
| sin π(2i+2θ)

n
|

| sin π·2θ
n
|
≤ 1

| sin π·2θ
n
|

= O(n)

Thus ∑
j 6=i

ln |xi − xj| ≥ −(n− 1) ln 2 + lnn+ C

Writing x = cos 2πa
n

, by Lemma 1.5.3, we get

∑
j 6=i

ln |x− xj| ≤ −(n− 1) ln 2 + 2 lnn+ C

Thus ∏
j 6=i

x− xj
xi − xj

≤ Cn

and we have

Q(x) ≤ Cnan

Now we can finish the proof of Theorem 1.7.

We know that σ is compact, so contained in some bounded closed interval. Assume

we are dealing with [a, a + A]. Unifrom LDT implies that γ is a continuous function
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of E [35]. Since γ(E) is uniformly continuous, for any ε0, there exists δ0 such that

|γ(Ex)− γ(Ey)| ≤ ε0, if |Ex − Ey| ≤ δ0. (1.13)

Divide the interval [a, a + A] into length-δ0 sub-intervals. There are K = [A/δ0] + 1

of them (the last one may be shorter). Denote them as Ik, for k = 1, · · · , K. For

Ik = [Ek,n, Ek+1,n], let Ek1,n, · · · , Ekn,n be distributed as in Lemma 5.3. Namely, set

Eki,n = Ek,n + (xi + 1)δ0/2, where xi are as in Lemma 5.3, 0 < θ < 1/2. Note that for

any Ex, Ey ∈ [Ek1,n, Ekn,n], |γ(Ex)−γ(Ey)| ≤ ε0. Since by the uniform-LDT condition

P
({
ω : ∃i = 1, · · · , n, s.t. |P[0,n],Eki,n,ω| ≥ e(γ(Eki,n)+ε0)(n+1)

})
≤ ne−η0(n+1),

by Borel-Cantelli, for a.e. ω, (we denote this set as Ω(k)), there exists N(k, ω), such

that for all n > N(k, ω),

|P[0,n],Eki,n,ω| ≤ e(γ(Eki,n)+ε0)(n+1), ∀i = 1, · · · , n.

If we denote γk,n = infE∈[Ek1,n,Ekn,n] γ(E), then by (1.13)

|P[0,n],Eki,n,ω| ≤ e(γ(Eki,n)+ε0)(n+1) ≤ e(γk,n+2ε0)(n+1), ∀i = 1, · · · , n.

Let M be big enough such that, for any n > M , C(n+ 2)eγ(E)+2ε0 ≤ eε0(n+1). Thus by

Lemma 1.5.2, applied to Q(x) = P[0,n],E,ω|E=Ek,n+
(x+1)δ0

2

, a polynomial of degree n+ 1,

we have that, if n > max{N(k, ω),M}, for E ∈ [Ek,n, Ek+1,n]

|P[0,n],E,ω| ≤ C(n+ 2)e(γk,n+2ε0)(n+2) ≤ C(n+ 2)e(γ(E)+2ε0)(n+2) ≤ e(γ(E)+3ε0)(n+1)
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Let Ω2 =
⋂
k

Ω(k), Ñ(ω) = maxk{N(k, ω),M}. Then for any n > Ñ(ω),

|P[0,n],E,ω| ≤ e(γ(E)+3ε0)(n+1), ∀E ∈ [a, a+ A]

This allows us to also obtain a quantitative version of Theorem 1.7. Assume the

N2(ω) in Theorem 1.7 is chosen to be the smallest satisfying the condition. Let l ∈ Z,

N2(l, ω) = N2(T lω). Let Ω̄2 =
⋂
l∈Z T

lΩ2.

Lemma 1.5.4. For a.e. ω (we denote this set as Ω̃2), there exists L2 = L2(ω), such

that for all |l| > L2, N2(l, ω) ≤ ln2 |l|. In particular, if n > ln2 |l|, then

|P[l,l+n],E,ω| ≤ e(γ(E)+ε0)(n+1), for all E ∈ σ

Proof. Let ω ∈ Ω̄2, l ∈ Z, k ∈ N. By Theorem 1.7, Ω̄ has full measure. We have

P{ω : N2(l, ω) ≥ k} ≤
∞∑
n=k

P{ω : N2(l, ω) = n} ≤
∞∑
n=k

P(B+
[l,l+n−1],E)

≤
∞∑
n=k

Ce−(γ(E)+ε0)n ≤ Ce−(γ(E)+ε0)k

Thus

P{ω : N2(l, ω) ≥ ln2 |l|} ≤ Ce−(γ(E)+ε0)(ln2 |l|)

By Borel-Cantelli lemma, we get the result and the corresponding Ω̃2.
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1.6 Dynamical Localization

Now we have established the spectral localization for 1-d Anderson model. With some

more effort, we can get the dynamical localization. We say that Hω exhibits dynamical

localization if for a.e. ω, for any ε > 0, there exists α = α(ω) > 0, C = C(ε, ω), such

that for all x, y ∈ Z:

sup
t
|〈δx, e−itHωδy〉| ≤ Cεe

ε|y|e−α|x−y|

According to [28], we only need to prove that for a.e. ω, Hω has SULE (Semi-Uniformly

Localized Eigenfunction). We say H has SULE if H has a complete set {ϕE} of

orthonormal eigenfunctions, such that there is α > 0, and for each ε > 0, a Cε such

that for any eigenvalue E, there exists l = lE ∈ Z, such that

|ϕE(x)| ≤ Cεe
ε|lE |e−α|x−lE |, x ∈ Z

In fact, we will prove that |ϕE(x)| ≤ Cεe
C ln2(1+|lE |)e−α|x−lE |, see (1.16), (1.18). In order

to do this, we need to modify Lemma 1.3.2, Lemma 1.3.4 using the same method as

in Lemma 1.5.4. Assume the Ni(ω), i = 1, 3 in Lemmas 1.3.2, 1.3.4 are chosen to be

the smallest parameters satisfying the condition. Let l ∈ Z, Ni(l, ω) = Ni(T
lω). Let

Ω̄i =
⋂
l∈Z T

lΩi, i = 1, 3.

Lemma 1.6.1. For a.e. ω (we denote this set as Ω̃1,3), there are L1(ω), L3(ω) such

that for any |l| > max{L1, L3},

max{N1(l, ω), N3(l, ω)} ≤ ln2 |l|
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Proof. Let ω ∈ Ω̄1, l ∈ Z, k ∈ N, then by (1.7)

P{ω : N1(l, ω) > k} ≤
∞∑
n=k

P(Ωδ,n,±) ≤
∞∑
n=k

2m(σ)e−δ0(2n+1) ≤ Ce−δ0(2k+1)

Thus

P{ω : N1(l, ω) > ln2 |l|} ≤ Ce−δ0(2 ln2 |l|+2)

By Borel-Cantelli lemma, we can get the result. The same argument works for N3.

Then we rebuild the criteria for regularity around a singular point l.

Lemma 1.6.2. For a.e. ω (we denote this set as Ω̃), for any l, there exists N(l, ω),

such that for any n > N(l, ω) and for all E ∈ σ either l or l + 2n+ 1, and either l or

l − 2n− 1 are (γ(E)− 8ε0, n, E, ω)-regular.

Proof. In section 4, we proved that either 0 or 2n+ 1 is (γ(E)− 8ε0, n, E, ω)-singular

for all n > N(ω), with and modify Ω̃ accordingly.

Now, take Ω̃ = Ω̃2 ∪ Ω̃1,3 and fix ω ∈ Ω̃. We omit ω from notations from now on.

By Lemma 1.6.1 and Lemma 1.5.4, there exist L1, L2, L3 such that for all |l| >

max{L1, L2, L3},

Ni(l) ≤ ln2 |l|, ∀i = 1, 2, 3

for all E ∈ σ.

Let lE be a position of the maximum point of ϕE. Take L4 with ln2 L4 ≥ [ ln 2
γ(E)−8ε0

]+1.

For any n ≥ ln2 L4, and any e.v. E, lE is naturally (µ− 8ε0, n, E)-singular by (1.1).

Let L = max{L1, L2, L3, L4}, N(l) := max{N1(l), N2(l), N3(l), ln 2
γ(E)−8ε0

}. Then for any
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|l| > L,

N(l) ≤ ln2 |l| (1.14)

If |lE| > L, then for any n ≥ N(lE), lE is (γ(E)−8ε0, n, E)-singular, so x = lE±(2n+1)

is (γ(E)− 8ε0, n, E)-regular. By (1.1), for any |x− lE| ≥ N(lE)

|ϕE(x)| ≤ 2e−(γ(E)−8ε0)|x−lE | (1.15)

Since ϕE is normalized, in fact for all x,

|ϕE(x)| ≤ 2e(γ(E)−8ε0)N(lE)e−(γ(E)−8ε0)|x−lE |

By (1.14), for any ε,

|ϕE(x)| ≤ 2e(γ(E)−8ε0) ln2(1+|lE |)e−(γ(E)−8ε0)|x−lE | (1.16)

If |lE| ≤ L, for any ε, for n ≥ N(lE), we use the same argument as (1.15) and get

|ϕE(x)| ≤ 2e−(γ(E)−8ε0)|x−lE | ≤ 2eε ln2(1+|lE |)e−(γ(E)−8ε0)|x−lE | (1.17)

While for n ≤ NlE , set M2ε = mink∈[−L,L], |x−k|<N(k){eε ln2(1+|k|)e−(γ(E)−8ε0)|x−k|} and

C2ε = M−1
2ε . Then for all |x− lE| < N(lE),

|ϕE(x)| ≤ 1 ≤ C2εe
ε ln2(1+|lE |)e−(γ(E)−8ε0)|x−lE | (1.18)

Thus for Cε = max{2, C2ε}, (1.16) (1.17) and (1.18) provide SULE.
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Chapter 2

Anderson localization in random

CMV matrix

2.1 Introduction

The aim of this chapter is to establish Anderson localization and dynamical localization

in expectation (see Definition 2.1 and 2.2) for random CMV matrices with arbitrary

distribution.

CMV matrices were introduced by Cantero, L. Moral, L. Vel ([19]) in 2003 and play

an important role in the study of orthogonal polynomials on the unit circle (OPUC).

See [73], [75], [43] for a concise and elegant report of the main results and [74] for a

detailed monograph on this subject.

The study of random CMV matrices was motivated by random Anderson models for

Schrödinger operators. When the distribution is absolutely continuous, Anderson lo-
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calization for CMV matrices has been proved in [80], [42], [74, Sec. 12.6] using the

spectral averaging method, but these techniques cannot be applied in the singular case.

For one-dimensional Anderson model, the first proof that can handle arbitrary random-

ness was given in [21], based on the multi-scale analysis. In 2019, [52] provided a short

proof of Anderson localization and dynamical localization (for the one-dimensional An-

derson model with arbitrary distribution) using positive Lyapunov exponents together

with uniform large deviation type (LDT) estimates and uniform Craig-Simon results.

In 2020, strong dynamical localization was proved in [41] following this method. In this

chapter, we exploit the techniques in [52] and [41] to prove Anderson localization and

strong dynamical localization for random CMV matrices with arbitrary distribution.

In particular, our results apply in the singular case. The main novelties of the proof

are the large-deviation estimates of determinants with modified boundary conditions

(Lemma 4.2) and a streamlined approach to the localization proof in comparison with

[52] and [41], so that EDL follows directly from our key statement (Theorem 2.4).

It is important to mention that the singular potential random CMV model was also

studied in [18] in 2019 as a close relative of the Anderson model, for which a new proof

of localization was also given in [18]. The CMV proof in [18] relies on certain results in

[58]. However those contain a significant number of misprints and minor errors (some

of those stemming from small misprints in [74] and [73]). Article [18] inherits those

errors, certain steps of the proof in [18] no longer work as claimed when the relevant

expressions are corrected. In particular, a crucial part of the argument of [18] on the

elimination of double resonances does not work as intended although we believe may

be corrected. We discuss this in Appendix B.

Finally, this chapter when taken in conjunction with [52], [41], [69], [68], and [65],

illustrates the flexibility of this general scheme for proving localization in random one-
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dimensional frameworks. Indeed, these techniques provide the most direct route to

localization in addition to providing proofs of the strongest known localization results

for such models (EDL).

The remainder of the paper is organized as follows:

� In Section 2.2, we present the model and the main results (AL and EDL).

� In Section 2.3, we present a key theorem on regularity of Green functions from

which AL and EDL are derived.

� In Section 2.4, we present uniform large deviation theorem (Lemma 2.4.2) and

uniform Craig-Simon estimates (Lemma 2.4.4).

� In Section 2.5, we first provide an outline of the proof and prove our key Theorem

2.3.

� Finally, Appendix A provides technical details needed for subsection 2.3.3 and

Appendix B corrects the errors in the formulas found in [58], [18], [74] and [73]. It

is our hope that these corrections provide clarification for other readers working

on CMV matrices.
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2.2 Model and main results

2.2.1 OPUC

Let η be a probability measure which is supported on an infinite subset of ∂D where

D is the unit disk in C. Let Φn(z) be the monic polynomial of degree n s.t.

〈Φm(z),Φn(z)〉 =

∫
∂D

Φm(z)Φn(z)dη(z) = δmn, ∀m,n ∈ N.

The Φn(z)’s are called the orthogonal polynomials on the unit circle (OPUC) w.r.t. η.

Let φn(z) = Φn(z)
‖Φn(z)‖ where ‖ · ‖ is the L2(∂D; dη) norm.

It is clear that given η, we can compute Φn(z) and φn(z) inductively from Φ0(z) =

φ0(z) = 1. Moreover, there is a recurrence relation for Φn(z) which we state here

without proof (see [74, Theorem 1.5.2]):

Proposition 2.2.1 (Szegő’s Recurrence). Given η, there is a sequence of αn ∈ D s.t.

Φn+1(z) = zΦn(z)− αnΦ∗n(z)

Φ∗n+1(z) = Φ∗n(z)− αnzΦn(z),

where Q(z)∗ := znQ(1/z̄) for polynomials Q(z) of degree n. The terms {αn}∞n=0 are

called Verblunsky coefficients. Furthermore, let ρn = (1− |αn|2)1/2. We have

‖Φn‖2 = ‖Φ∗n‖2 = ρ2
n‖Φn−1‖2 =

n−1∏
k=0

ρ2
k.
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Thus, for the normalized φn, we have

φn+1

φ∗n+1

 =
1

ρn

 z −αn

−αnz 1


φn
φ∗n

 .

By Szegő’s recurrence, each η corresponds to a sequence of {αn}∞n=0 ∈ DN. It turns

out that this correspondence is bijective (e.g. [74, Theorem 1.7.11]).

Proposition 2.2.2 (Verblunsky’s Theorem). There is a bijection between nontrivial

(supported on an infinite set) probability measures η on ∂D and {αn}∞n=0 ∈ DN.

2.2.2 CMV matrices

A CMV matrix is a matrix representation of the multiplication-by-z operator on

L2(∂D; dη) w.r.t a basis which is obtained from orthonormalizing the set

{1, z, z−1, z2, z−2, · · · }.

It is important to understand the relation between η and αn, especially under perturba-

tions. On the one hand, the definition implies that η is a spectral measure of the CMV

matrix. On the other hand, the CMV matrices can be expressed by the Verblunsky

coefficients αn and ρn = (1− |αn|2)
1
2 > 0 (See [74, Sec 4.3] for more details):

39



C =



α0 α1ρ0 ρ1ρ0

ρ0 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2

ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

α4ρ3 −α4α3 α5ρ4 ρ5ρ4

ρ4ρ3 −ρ4α3 −α5α4 −ρ5α4

. . . . . . . . .



(2.1)

We will study a two-sided version of the above matrix. The two-sided version depicted

below is called an extended CMV matrix.

E =



. . . . . . . . .

α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0

ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2

ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

α4ρ3 −α4α3 α5ρ4 ρ5ρ4

ρ4ρ3 −ρ4α3 −α5α4 −ρ5α4

. . . . . . . . .



(2.2)

The relationship between C and E is explained in Remark 2.3.
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2.2.3 Random CMV matrices

As with the Anderson model, we are interested in the random extended CMV matrix

Eω where αn = ωn ∈ D are i.i.d. random variables with common Borel probability

distribution µ supported on a compact subset S of D. We assume µ is non-trivial in

the sense that it contains at least two points and as we introduced in the introduction,

there are no regularity requirements on µ. Let the probability space be Ω = SZ, with

elements ω = {ωn}n∈Z ∈ Ω. Denote µZ by P. Let P[m,n] be µ[m,n]∩Z on Ω[m,n] := S[m,n]∩Z.

Hence whenever we write [m,n] in this paper, we mean [m,n] ∩ Z. Also let T be the

shift on Ω, i.e. (Tω)i = ωi−1. Finally, we denote Lebesgue measure on the unit circle

by m.

By the classical ergodicity argument for random operators (e.g. [26, Chapter 9]), we

see that the spectrum of Eω is almost surely deterministic, i.e. there is Σ ⊂ ∂D s.t.

for a.e. ω, σ(Eω) = Σ. Furthermore, the pure point spectrum, a.c. spectrum and s.c.

spectrum are all a.s. deterministic, i.e. σ∗(Eω) = Σ∗, ∗ ∈ {p.p., a.c., s.c.}.

2.2.4 Main results

We can now introduce our main results.

Definition 2.1 (AL). We say Eω exhibits Anderson localization (AL, also called spec-

tral localization) on I if for a.e. ω, Eω has only pure point spectrum in I and its

eigenfunctions Ψω(n) decay exponentially in n.

Definition 2.2 (EDL). We say Eω exhibits dynamical localization in expectation (EDL,
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also known as strong dynamical localization) on I if there is C, η > 0 s.t.

sup
t∈R

E
(
|〈δp, e−itEωχI(Eω)δq〉|

)
≤ Ce−η|p−q|

where χI is the characteristic function of I.

We will prove in this paper that

Theorem 2.1 (AL). There is a set D ⊂ ∂D which contains at most three points such

that, Eω exhibits AL on any compact interval I ⊂ ∂D \ D.

Remark 2.1. The existence of this exceptional set is due to the failure of Fürstenberg’s

Theorem (see Subsection 2.4.3).

Theorem 2.2 (EDL). There is a set D ⊂ ∂D which contains at most three points s.t.

Eω exibihits EDL on any compact interval I ⊂ ∂D \ D.

2.3 Theorem 2.3 implies AL and EDL

Below, we will formulate the key theorem, Theorem 2.3. We then prove AL (Theorem

2.1) and EDL (Theorem 2.2) from it. To do so, we make some preparations in Sub-

section 2.3.1-2.3.3, state Theorem 2.3 in Subsection 2.3.4 and prove Theorem 2.1 and

2.2 in Subsection 2.3.5.

2.3.1 Decomposition of CMV matrices

We start with a decomposition of a CMV matrix which helps us to deal with its more

complicated five-diagonal nature. Let αn ∈ D, ρn = (1 − |αn|2)
1
2 . Define the unitary
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matrix acting on `2({n, n+ 1}) by

Θn =

αn ρn

ρn −αn

 .

Define

L =
⊕
n even

Θn, M =
⊕
n odd

Θn.

Then one can check directly by computation that the extended CMV matrix satisfies

E = LM.

By definition of Θn, αn and ρn, it is easy to see that L and M are unitary on `2(Z).

Thus E is also unitary. (More details can be found in [74, Theorem 4.2.5].)

Let P[a,b] : `2(Z) → `2([a, b]) be the natural projection. Let X[a,b] = P[a,b]X(P[a,b])
∗ for

X ∈ {E ,L,M}. Then it is easily verified that

E[a,b] = L[a,b]M[a,b]. (2.3)

2.3.2 Modification of the Boundary Conditions

Notice that E[a,b], L[a,b] are not always unitary due to the fact that the “boundary

terms” αa−1 and αb satisfy |αa−1| < 1 and |αb| < 1. Thus we can instead manually

create unitary operators by modifying these boundary conditions. Let β, γ ∈ ∂D.
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Define

α̃n =


αn, n 6= a− 1, b

β, n = a− 1

γ, n = b

.

Denote the extended CMV matrix with Verblunsky coefficients α̃n by Ẽ . Then define

Eβ,γ[a,b] = P[a,b]ẼP[a,b].

Lβ,γ[a,b] andMβ,γ
[a,b] are defined correspondingly. Now Eβ,γ[a,b], L

β,γ
[a,b] andMβ,γ

[a,b] are all unitary.

Remark 2.2. Notice that this modification is only a formal modification of the boundary

value |αa−1| < 1 to |β| = 1 and |αb| < 1 to |γ| = 1. So, all the formulas for E[a,b] with

αa−1 and αb still hold for Eβ,γ[a,b] with β and γ. For example, Eβ,γ[a,b] = Lβ,γ[a,b]M
β,γ
[a,b] follows

from (2.3).

Remark 2.3. We will use Eβ,·[a,b], E
β,·
[a,b] to denote single-sided boundary condition modi-

fication. By comparing (2.1) and (2.2), it is easy to see that C = E−1,·
[0,+∞].

2.3.3 Green’s functions, Generalized eigenfunctions, Poisson

formula

Now we can define the Green’s function. Usually it is defined to be G[a,b],z = (E[a,b],ω −

z)−1. However, since Eω is five-diagonal, it is more complicated than a Jacobi matrix,

and the restriction to [a, b] is not unitary. Thus we can modify the boundary and

rewrite the characteristic function (Eβ,γ[a,b]− z)Ψ = 0 as (z(Lβ,γ[a,b])
∗−Mβ,γ

[a,b])Ψ = 0. Then

Aβ,γ[a,b],z := (z(Lβ,γ[a,b])
∗−Mβ,γ

[a,b]) is tri-diagonal (see Lemma A.0.1 in the appendix B) and
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it is natural to define the Green’s function to be

Gβ,γ
[a,b],z = (Aβ,γ[a,b],z)

−1 =
(
z
(
Lβ,γ[a,b]

)∗
−Mβ,γ

[a,b]

)−1

for |β| = |γ| = 1, z /∈ σ(Eβ,γ[a,b]).

Exponential decay of the off-diagonal entries of the Green’s function turns out to

be essential in the study of localization phenomenons. It is closely related to the

exponential decay of (generalized) eigenfunctions through Poisson formula.

Definition 2.3 (Generalized eigenvalues and generalized eigenfunctions). Fix ω. We

call zω a generalized eigenvalue (g.e.) of Eω, if there exists a nonzero, polynomially

bounded function Ψω(n) such that EωΨω = zωΨω. We call Ψω(n) a generalized eigen-

function (g.e.f.).

Lemma 2.3.1 (Poisson formula). Let Ψ be a g.e.f. of E w.r.t. a g.e. z, i.e. EΨ = zΨ.

Let |β| = |γ| = 1. Then for a < x < b,

Ψ(x) =−Gβ,γ
[a,b],z(x, a)


Ψ(a)(zβ̄ − zᾱa−1) + Ψ(a− 1)zρa−1, a odd,

Ψ(a)(αa−1 − β)−Ψ(a− 1)ρa−1, a even,

−Gβ,γ
[a,b],z(x, b)


Ψ(b)(−ᾱb + γ̄)−Ψ(b+ 1)ρb, b odd,

Ψ(b)(zαb − zγ) + Ψ(b+ 1)zρb, b even.

We give a proof in Lemma A.0.2 in the appendix.
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2.3.4 Schnol’s theorem, Regularity, Key statement

Recall that Schnol’s theorem (see [56, Theorem 7.1], or [26, Sec. 2.4]) says that the

spectral measures are supported on the set of g.e.’s. Thus, to show Anderson local-

ization it is enough to show that for a.e. ω, for any g.e. zω of Eω, the corresponding

g.e.f. Ψω decays exponentially, because this would imply that each g.e. is indeed an

eigenvalue, so Eω has only pure point spectrum.

Thus for a g.e.f. Ψω which is polynomially bounded, if we can show the Green’s function

|Gβ,γ
[n+1,3n+1],ω,z(2n+1, n+1)| and |Gβ,γ

[n+1,3n+1],ω,z(2n+1, 3n+1)| are exponentially small,

then |Ψω(2n+1)| will decay exponentially due to the Poisson formula. This idea inspires

us to define regularity as follows:

Definition 2.4 (Regularity). Let β, γ ∈ ∂D. For fixed ω, z /∈ σ(Eβ,γ[a,b],ω), c > 0, n ∈ Z,

we say x ∈ Z is (c, n, ω, z)-regular, if

|Gβ,γ
[x−n,x+n],ω,z(x, x− n)| ≤ e−cn,

|Gβ,γ
[x−n,x+n],ω,z(x, x+ n)| ≤ e−cn.

Otherwise, we call it (c, n, ω, z)-singular.

2.3.5 Proof of AL and EDL

We can now formulate our key statement:

Theorem 2.3. There is a set D ⊂ ∂D which contains at most three points such that,

for any compact interval I ⊂ ∂D \ D, if we let ν := inf
z∈I

γ(z) > 0, then for any

0 < ε < ν/2, there is N = N(ε), η = η(ε) > 0 s.t. ∀n > N , ∀x ∈ Z, there is a subset

Ωx,n ⊂ Ω[x−n,x+n] s.t.
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1. P(Ωx,n) ≥ 1− e−η(2n+1).

2. ∀ω ∈ Ωx,n, either x or x+ 2n+ 1 is (γ(z)− 2ε, n, ω, z)-regular for any z ∈ I.

This Theorem will be proved in the next two sections. We first show Theorem 2.3

implies Theorem 2.1 and Theorem 2.2 before proving Theorem 2.3.

Proof of Theorem 2.1 (AL). Find D, I, ν from Theorem 2.3. For any 0 < ε < ν/2,

findN(ε), η(ε), Ωx,n from Theorem 2.3. For any x ∈ Z, since
∑
n

P ((Ωx,n)c) <∞, by the

Borel-Cantelli Lemma, for a.e. ω, eventually either x or x+2n+1 is (γ(z)−2ε, n, ω, z)-

regular.

On the other hand, for a.e. ω, take any g.e. z ∈ I. Let Ψω(m) be the corresponding

g.e.f.. WLOG assume Ψω(x) 6= 0. Thus by Lemma A.0.2, we claim that for such x, ω, z

and Ψω, x is eventually (γ(z)−2ε, n, ω, z)-singular. For if x is (γ(z)−2ε, n, ω, z)-regular

infinitely often, then Ψω(x) = 0.

Since x is eventually (γ(z)−2ε, n, ω, z)-singular, x+2n+1 is (γ(z)−2ε, n, ω, z)-regular.

Thus Ψω(x + 2n + 1) decays exponentially as n → ∞. A similar argument applies to

Ψω(x+ 2n+ 2). Therefore, for a.e. ω, all of the g.e.f.’s Ψω(n) decay exponentially.

Proof of Theorem 2.2 (EDL). By Theorem 2.1, for a.e. ω, there is an orthonormal

basis {Ψk,ω} of eigenfunctions of Eω. Denote the corresponding eigenvalues by zk,ω.

Define the localization center as the left-most ck,ω ∈ Z s.t.

|Ψk,ω(ck,ω)| = max
n∈Z
|Ψk,ω(n)|.

We will employ the following lemma from [51] which provides a sufficient condition for

EDL:
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Lemma 2.3.2 ([51]). If there are C̃ > 0, γ̃ > 0, s.t. for any x, y ∈ Z

E(
∑

k:ck,ω=y

|Ψk,ω(x)|2) ≤ C̃e−γ̃|x−y|, (2.4)

Then there are C > 0, γ > 0, s.t.

sup
t∈R

E(|〈δp, eitEωχI(Eω)〉|) ≤ C(|x− y|+ 1)e−γ|x−y|.

Thus, we only need to show (2.4). To do so, observe that for any ω, ck,ω as a localization

center is always (γ(z)−2ε, n, ω, z)-singular for those n s.t. e−(γ−2ε)n < 1
2
. By Theorem

2.3, if ω ∈ Ωy,n, where we take n = max{N, log(2)
γ(z)−2ε

}+ 1, then |x− ck,ω| = n > N and

thus x is (γ(z)− 2ε, n, ω, z)-regular. Then we have

|Ψk,ω(x)| ≤ 2|Ψk,ω(y)|e−(γ(z)−2ε)(|x−y|), ∀|x− y| > n, ω ∈ Ωy,n.

Since Ψk,ω is an orthonormal basis, by Bessel’s Inequality, we have

∑
k:ck,ω=y

|Ψk,ω(x)|2 ≤ 4
∑

k:ck,ω=y

|Ψk,ω(y)|2e−(ν−2ε)|x−y| ≤ 4e−(ν−2ε)|x−y|.

Thus if |x− y| > n, we have

E(
∑

k:ck,ω=y

|Ψk,ω(x)|2) ≤
∫

ΩΛ2N (y)

∑
k:ck,ω=y

|Ψk,ω(x)|2dP(ω)

+

∫
(ΩΛ2N (y))

c

∑
k:ck,ω=y

|Ψk,ω(x)|2dP(ω)

≤1 ∗ 4e−(ν−2ε)|x−y| + e−η|x−y| ∗ 1

≤5e−γ̃|x−y|

(2.5)
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with γ̃ = min{ν − 2ε, η}. If |x− y| ≤ n, since Ψk,ω is orthonormal basis, we have

∑
k:ck,ω=y

|Ψk,ω(x)|2 ≤ 1, thus E(
∑

k:ck,ω=y

|Ψk,ω(x)|2) ≤ 1. (2.6)

Since there are finitely many x’s in the case when |x − y| ≤ n, combining (2.5) and

(2.6), we see that there is C̃, s.t. for any x

∑
k:ck,ω=y

|Ψk,ω(x)|2 ≤ C̃e−γ̃|x−y|

Having shown (2.4), EDL follows by Lemma 2.3.2.

2.4 Uniform LDT Estimates and Uniform Craig-

Simon Results

In this section, we introduce the uniform large-deviation-type estimates (uniform LDT)

and uniform Craig-Simon results which are preliminary results needed for the proof

of Theorem 2.3. We begin by connecting the Green’s function with determinants of

box-restrictions, transfer matrices and Lyapunov exponents.

2.4.1 Determinants with boundary conditions

Let

Pβ,γ[a,b],ω,z := det(z − Eβ,γ[a,b],ω) = det(Aβ,γ[a,b]),

P β,γ
[a,b],ω,z := (ρa−1 · · · ρb)−1Pβ,γ[a,b],ω,z.

(2.7)
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If a > b, let P β,γ
[a,b],ω,z = 1. Note that although we have modified the boundary conditions

in Pβ,γ[a,b],ω,z, we keep ρa−1 and ρb unchanged in the second formula above. Moreiver,

P β,·
[a,b],ω,z and P ·,γ[a,b],ω,z are defined similarly.

By Cramer’s rule, we have

∣∣∣Gβ,γ
[a,b],ω,z(x, y)

∣∣∣ =
|Pβ,·[a,x−1],ω,zP

·,γ
[y+1,b],ω,z|

Pβ,γ[a,b],ω,z

y−1∏
k=x

ρk

=

∣∣∣P β,·
[a,x−1],ω,zP

·,γ
[y+1,b],ω,z

∣∣∣∣∣∣P β,γ
[a,b],ω,z

∣∣∣ , a ≤ x ≤ y ≤ b

(2.8)

2.4.2 Transfer Matrix and Lyapunov Exponents

Recall by Theorem 2.2.1,

φn+1(z)

φ∗n+1(z)

 =
1

ρn

 z −αn

−αnz 1


 φn(z)

φn(z)∗


Denote

Sz(α) =
1

ρα

 z −α

−αz 1

 ,

Let T[a,b] = Sz(αb) · · ·Sz(αa) be the transfer matrix, then

φb+1(z)

φ∗b+1(z)

 = T[a,b]

φa(z)

φ∗a(z)

 .
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By [85, Theorem 1] together with Remark 2.3, we have:

T[a,b] =
1

ρa · · · ρb

 zP[a+1,b],z P−1,·
[a,b],z − zP[a+1,b],z

z(P−1,·
[a,b],z − zP[a+1,b],z)

∗ (P[a+1,b],z)
∗


or

T[a,b] =

 zP[a+1,b],z ρa−1P
−1,·
[a,b],z − zP[a+1,b],z

z(ρa−1P
−1,·
[a,b],z − zP[a+1,b],z)

∗ (P[a+1,b],z)
∗

 (2.9)

where Q(z)∗ = znQ(1/z̄) if Q(z) is a polynomial of degree n.

Note that 1√
z
Sz(α) ∈ SU(1, 1), where

SU(1, 1) =


u v

v̄ ū

 : u, v ∈ C, |u|2 − |v|2 = 1

 ,

and for
√
z, we take the principal branch. Note also that SU(1, 1) = Q−1 ·SL(2,R) ·Q,

where Q = −1
2

i 1

1 i

. Thus, the definitions of Lyapunov exponents for SL(2,R)-

cocycles and the corresponding properties (positivity and continuity, large deviation

and subharmonicity results) generalize to SU(1, 1)-cocycles. Moreover, ‖Sz(α)‖ =

‖ 1√
z
Sz(α)‖ when |z| = 1. Thus, when the αn’s are i.i.d., by Kingman’s subadditive

theorem ([55]), the Lyapunov exponent γ(z) is well-defined:

γ(z) = lim
n→∞

1

n

∫ 1

0

log ‖T[0,n],ω,z‖dP(ω) = lim
n→∞

1

n
log ‖T[0,n],ω,z‖, a.e. ω.
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2.4.3 Positivity and Continuity of Lyapunov Exponent

By Fürstenberg Theorem, random Schödinger operators have positive Lyapunov expo-

nent: γ(z) > 0 for any z ∈ R. At the same time, random CMV matrices may have an

exceptional set D ⊂ ∂D which contains at most three points s.t. γ(E) > 0 on ∂D \ D.

In fact, depending on the support of µ, either D = ∅ or D = {1,−1} or D = {1, θ0, θ0},

for some θ0 ∈ ∂D. The reason is, roughly speaking, the positivity get destroyed when

Sz(αi) and Sz(αj) have a common invariant measure. This would happen only if αi,

αj and z satisfy certain algebraic conditions which characterize the exceptional set.

See [74, Theorem 12.6.3. and 10.4.18] for more details.

Continuity of Lyapunov exponents on I ⊂ ∂D \ D can be proved using the general

method (e.g. [22, Sec.V.4.2], [14]) originally developed by Fürstenberg and Kifer [40,

Theorem B] for self-adjoint random matrices, which by conjugation, extend to SU(1, 1)

random matrices naturally. We also refer to [18, Sec.2], [46, Sec. 7] for a review of the

proof of continuity of Lyapunov exponents.

We fix an interval I ⊂ ∂D \ D from now on and denote ν := inf
z∈I

γ(z) > 0.

2.4.4 Uniform Large-deviation-type estimates

We can now introduce the uniform large-deviation-type estimates, a crutial component

of the proof of Theorem 2.3. These LDT type estimates for ‖T[a,b],ω,z‖ were proved

in [61]. Here we use a matrix-entry version from [81, Theorem 5]. The result was

proved for SL(2,R)-cocycle. Here by conjugation, we rewrite it for our SU(1, 1)-cocycle

T[a,b],ω,z. So under the same assumption for positivity and continuity of Lyapunov

exponent, which, in particular, holds for any compact interval I ⊂ ∂D, we have the
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following lemma:

Lemma 2.4.1 ( “uniform-LDT”). Given a compact interval I ⊂ ∂D \ D. For any

ε > 0, there exists η = η(ε, I), N = N(ε, I) > 0, such that

P
{
ω :

∣∣∣∣ 1

b− a+ 1
log |〈T[a,b],ω,zu, v〉| − γ(z)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1)

for any b− a > N , for any unit vector u, v and any z ∈ I.

Thus for our model, we have

Lemma 2.4.2. Given a compact interval I ⊂ ∂D \ D. For any ε > 0, there is an

η̃ = η̃(ε, I), Ñ1 = Ñ1(ε, I) > 0 s.t.

P
{
ω :

∣∣∣∣ 1

b− a+ 1
log |P−1,·

[a,b],ω,z| − γ(z)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1) (2.10)

P
{
ω :

∣∣∣∣ 1

b− a+ 1
log |P ·,1[a,b],ω,z| − γ(z)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1) (2.11)

P
{
ω :

∣∣∣∣ 1

b− a+ 1
log |P−1,1

[a,b],ω,z| − γ(z)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1) (2.12)

for every b− a > Ñ0, and any z ∈ I.

Proof. First recall that αk is supported on a compact subset of D, ρk =
√

1− |αk|2.

Thus there is δ > 0 s.t. 
|αk| ≤ 1− δ < 1,

0 < δ ≤ |ρk| ≤ 1− δ < 1.

(2.13)

(2.10), (2.11) and (2.12) above each require seperate consideraions.

To prove (2.10), let u = (1, 0)T , v = (1, 1)T in Lemma 2.4.1. By (2.9), the zP[a+1,b],z
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term cancels and we get

P
{
ω :

∣∣∣∣ 1

b− a+ 1
log |ρa−1P

−1,·
[a,b],ω,z| − γ(z)

∣∣∣∣ ≥ ε

}
≤ e−η(b−a+1).

By (2.13), ρa−1 can be absorbed by large enough b− a+ 1 and a modified ε.

As for (2.11), the inequality follows from (2.10) by setting α̃j = −αa+b−1−j for a− 1 ≤

j ≤ b and observing that P ·,1[a,b],z(α̃j) = P−1,·
[a,b],z(αj).

Lastly, to prove (2.12), notice that by (2.7) and Lemma A.0.1, we have

∣∣∣P−1,1
[a,b],z

∣∣∣ =

∣∣∣det(A−1,1
[a,b],z)

∣∣∣
ρa−1 · · · ρb

=

∣∣∣Aαb=1
b,b P

−1,·
[a,b−1] − Ab,b−1

∏b−1
n=aAn,n+1

∣∣∣
ρa−1 · · · ρb

.

And by Lemma A.0.1 and (2.13), we have δ < |Aαb=1
b,b | < 2. Thus by Lemma A.0.1,

the first and second terms are bounded respectively by

δ
∣∣∣P−1,·

[a,b−1]

∣∣∣
δ

≤

∣∣∣Aαb=1
b,b P

−1,·
[a,b−1]

∣∣∣
ρa−1 · · · ρb

=

∣∣∣Aαb=1
b,b P−1,·

[a,b−1]

∣∣∣
ρb

≤
2
∣∣∣P−1,·

[a,b−1]

∣∣∣
δ

δ ≤

∣∣∣Ab,b−1

∏b−1
n=aAn,n+1

∣∣∣
ρa−1 · · · ρb

=
ρb−1

∏b−1
n=a ρn

ρa−1 · · · ρb
=

ρb−1

ρa−1ρb
≤ 1

δ2
.

Hence, ∣∣∣P−1,·
[a,b−1]

∣∣∣− 1

δ2
≤
∣∣∣P−1,1

[a,b−1]

∣∣∣ ≤ 2

δ

∣∣∣P−1,·
[a,b−1]

∣∣∣+ δ.

and the third inequality follows.
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2.4.5 “Bad sets” and Singularity

To simplify the notation, we introduce “bad sets” and use them to characterize “sin-

gularity” in Defintion 2.4. Denote

Bβ,γ,+
[a,b],ε =

{
(ω, z) ∈ I × Ω : |P β,γ

[a,b],ω,z| ≥ e(γ(z)+ε)(b−a+1)
}

Bβ,γ,−
[a,b],ε, =

{
(ω, z) ∈ I × Ω : |P β,γ

[a,b],ω,z| ≤ e(γ(z)−ε)(b−a+1)
}

Let Bβ,γ,±
[a,b],ε,z and Bβ,γ,±

[a,b],ε,ω be the z and ω sections of Bβ,γ,±
[a,b],ε. Let Bβ,γ

[a,b],ε,∗ = Bβ,γ,+
[a,b],ε,∗ ∪

Bβ,γ,−
[a,b],ε,∗. All of these sets have corresponding definitions for the single-sided boundary

case. Thus, (2.10), (2.11), (2.12) can be rewritten as

P(B∗[a,b],ε,z) ≤ e−η(b−a+1)

where ∗ can be any of the three kinds of boundary conditions β, γ or β, ·, or ·, γ.

We can characterize singular points using the bad sets:

Lemma 2.4.3. For any ε < ν/2, for n ≥ 2, if x is (γ(z)− 2ε, n, ω, z)-singular, then

(ω, z) ∈ Bβ,γ,−
[x−n,x+n],ε ∪B

β,·,+
[x−n,x−1],ε ∪B

·,γ,+
[x+1,x+n],ε

Proof. The result follows imediately from the definition of singularity and (2.8).

2.4.6 Uniform Craig-Simon results

We will also use a uniform version of Craig-Simon’s results. The Craig-Simon estimates

[25] are a general subharmonicity upper bound estimate. It is extended in [52, Theorem
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5.1] to the uniform version. See [52, Section 5] for more details.

Lemma 2.4.4 (Uniform Craig-Simon). Let Eω satisfy the uniform-LDT condition in

Lemma 2.4.1. Then for any ε, there is η̃ = η̃(ε), Ñ2 = Ñ2(ε) s.t. for any x ∈ Z,

n > N1, there is Ω̃x,n s.t.

1. P(Ω̃x,n) ≥ 1− ne−η(n+1),

2. for any ω ∈ Ω̃x,n, we have for every z ∈ I.

max{|P β,·
[x+1,x+n],z|, |P

·,γ
[x−n,x−1],z|} ≤ e(γ(z)+ε)(n+1), i.e.

(ω, z) /∈ Bβ,·,+
[x+1,x+n],ε ∪B

·,γ,+
[x−n,x−1],ε.

Proof. The deterministic result is a direct reformulation of [52, Theorem 5.1], while

the probabilistic results can be extracted from the last line on Page 9 in [52].

Remark 2.4. We mention in particular that η̃ in Lemma 2.4.2 and Lemma 2.4.4 for the

same ε are the same. In fact, the η̃ in Lemma 2.4.4 comes from applying 2.4.2. (See

[52]).

2.5 Proof of Theorem 2.3

We will prove Theorem 2.3 in this section. Heuristically, Theorem 2.3 says, with high

probability, one of two points will be regular if they are far enough from each other.

The idea is that with high probability, if x is a (γ(z)− 2ε, n, ω, z)-singular point, then

z will be exponentially close to σ(E[x−n,x+n],ω). We will denote this set by Ω
(1)
x,n. So,

if we have two far away singular points x, y, then σ(E[x−n,x+n],ω) and σ(E[x−n,x+n],ω)
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are also exponentially close to the same z. However, we can also show that with high

probability σ(E[x−n,x+n],ω) and σ(E[x−n,x+n],ω) cannot be exponentially close. We will

denote this set by Ω
(2)
x,n. Then Ω

(1)
x,n ∩Ω

(2)
x,n will be the set of high probability where one

of these two points must be regular.

For convenience, we will omit ω, z from the subscript of T[a,b],ω,z, P
∗
[a,b],ω,z, G

∗
[a,b],ω,z and

A[a,b],ω,z in this section unless it is necessary.

2.5.1 The first set Ω
(1)
x,n

As we mentioned above, we choose Ω
(1)
x,n s.t. singularity implies exponential closeness

to the spectrum:

Lemma 2.5.1. For any 0 < ε < ν, there are η1 = η1(ε) , N1 = N1(ε1) s.t. for any

n > N1, x ∈ Z, 0 < δ < η1, there is Ω
(1)
x,n = Ω

(1)
x,n(δ), s.t.

1. P(Ω
(1)
x,n) ≥ 1−m(I)e−(η1−δ)(2n+1) − ne−η1(2n+1),

2. For ω ∈ Ω
(1)
x,n, if x is (γ(z)− 2ε, n, ω, z)-singular, then

dist(z, σ(E[x−n,x+n],ω)) ≤ e−δ(2n+1).

Proof. Fix any 0 < ε < ν/2. Let η̃(ε), Ñ1(ε) be as in Lemma 2.4.2. Let Ñ2(ε), Ω̃x,n

be as in Lemma 2.4.4. Then let η := η̃, N := max{N1, N2}, and

Ω(1)
x,n :=

{
ω : m(Bβ,γ,−

[x−n,x+n],ω) ≤ e−δ1(2n+1)
}
∩ Ω̃x,n. (2.14)
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By Chebyshev’s Inequality and Fubini’s Theorem, we obtain part (1):

P
(
(Ω(1)

x,n)c
)
≤ m× P

{
(ω, z) : (ω, z) ∈ Bβ,γ,−

[x−n,x+n], z ∈ I)
}

+ P(Ω̃x,n)

≤ m(I)e−(η1−δ)(2n+1) + ne−η1(2n+1).

Now for part (2), take any ω ∈ Ω
(1)
x,n, and any (γ(z)− 2ε, n, ω, z)-singular point x. By

Lemma 2.4.3,

(ω, z) ∈ Bβ,γ,−
[x−n,x+n],ε ∪B

β,·,+
[x−n,x−1],ε ∪B

·,γ,+
[x+1,x+n],ε,

However, since ω ∈ Ω̃x,n, by Lemma 2.4.4,

(ω, z) /∈ Bβ,·,+
[x−n,x−1],ε ∪B

·,γ,+
[x+1,x+n],ε.

We see that (ω, z) ∈ Bβ,γ,−
[x−n,x+n],ε. Thus

z ∈ Bβ,γ,−
[x−n,x+n],ε,ω with m(Bβ,γ,−

[x−n,x+n],ε,ω) ≤ e−δ(2n+1),

where the latter is due to (2.14). Notice further that

Bβ,γ,−
[x−n,x+n],ε,ω = {z : |P β,γ

[x−n,x+n],ω,z| ≤ e(γ(z)−ε)(2n+1))}

where for each ω, |P β,γ
[x−n,x+n],ω,z| is a polynomial in z with roots σ(Eβ,γ[x−n,x+n],ω). Thus

Bβ,γ,−
[x−n,x+n],ε,ω is a finite union of intervals, each centered around points of σ(Eβ,γ[x−n,x+n],ω),

of overall length less than e−δ(2n+1). Thus,

dist(z, σ(Eβ,γ[x−n,x+n],ω)) ≤ e−δ(2n+1).
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2.5.2 The second set Ω
(2)
x,n

As mentioned above, the aim of choosing Ω
(2)
x,n is to make sure σ(Eβ,γ[x−n,x+n],ω) and

σ(Eβ,γ[x+n+1,x+3n+1],ω) are not exponentially close for ω ∈ Ω
(2)
x,n.

Lemma 2.5.2. For any δ > 0, there is η2(δ), N2(δ) s.t. for any n > N2, x ∈ Z, there

is Ω
(2)
x,n, s.t.

1. P(Ω
(2)
x,n) ≥ 1− 2(2n+ 2)3e−η2(2n+1),

2. If ω ∈ Ω
(2)
x,n, then

dist
(
σ(Eβ,γ[x−n,x+n],ω), σ(Eβ,γ[x+n+1,x+3n+1],ω)

)
≥ 2e−δ(2n+1)

Proof. Since each entry in E is bounded, there is M s.t.

|P[a,b],z| ≤M b−a+1, ∀a ≤ b ∈ Z,∀z ∈ I.

Choose ε′ < δ/2. Apply Lemma 2.4.2 to get η̃(ε′), Ñ1(ε′). Choose K ≥ 2 logM
δ−2ε′

. Let

η2 := η̃
2K

, Ñ2 := KÑ1 and

(Ω(2)
x,n)c :=

⋃
zi∈Z(ω)

⋃
(y1,y2)∈Y

(
Bβ,·

[x−n,x+y1−1],ε′,zi
∪B·,γ[x+y2+1,x+n],ε′,zi

)
∪Bβ,γ

[x−n,x+n],ε′,zi

where

Y = {(y1, y2) : x− n ≤ y1 ≤ y2 ≤ x+ n, |y1 − (−n)|, |n− y2| ≥
n

K
},

Z = Z(ω) = Z(ω[x+n+1,x+3n+1]) = σ(E[x+n+1,x+3n+1],ω).

We remark here that while zi(ω) and Z(ω) depend on ω, they actually only de-
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pend on Ω[x+n+1,x+3n+1] which is independent from Ω[x−n,x+n]. Thus zi = zi(ω) =

zi(ω[x+n+1,x+3n+1]) in Bβ,γ
[x−n,x+n],zi

operates like any other fixed z that does not depend

on ω. A rigorous argument is as follows:

For any fixed ωc, · · · , ωd, with [c, d]∩ [a, b] = ∅, assume d− c, b− a ≥ Ñ1. By indepen-

dence,

P[c,d]c(B
∗
[a,b],ε′,zi,(ωc,··· ,ωd)

) = P[a,b](B
∗
[a,b],ε′,zi,(ωc,··· ,ωd)

) ≤ e−η2(b−a+1)

where ∗ represents corresponding boundary conditions, zi,(ωc,··· ,ωd) ∈ σ(E[c,d]). Applying

to [a, b] = [x−n, x+y1−1] or [x+y2+1, x+n] or [x−n, x+n], [c, d] = [x+n+1, x+3n+1]

and integrating over ωa, · · · , ωb, we obtain for n ≥ Ñ2,

P(Bβ,·
[x−n,x+y1−1],ε′,zi

∪B·,γ[x+y2+1,x+n],ε′,zi
) ≤ 2e−η2( n

K
+1),

P(Bβ,γ
[x−n,x+n],ε′,zi

) ≤ e−η2(2n+1).

Thus we obtain part (1):

P(Ω(2)
x,n) ≥ 1− (2n+ 1)((2n+ 1)2 + 1)2e−η2

n
K ≥ 1− 2(2n+ 2)3e−η2

n
K

We prove part (2) by contradiction. Let ω ∈ Ω
(2)
x,n, we assume that there are zi ∈

σ(E[x+n+1,x+3n+1]), zj ∈ σ(E[x−n,x+n]) s.t.

|zi − zj| ≤ 2e−δ(2n+1).

Then

‖Gβ,γ
[x−n,x+n],ω,zi

‖ ≥ 1

2
eδ(2n+1).
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Thus there are x− n ≤ y1 ≤ y2 ≤ x+ n s.t.

|P[x−n,x+y1−1],ω,ziP[x+y2+1,x+n],ω,zi |
|P[x−n,x+n],ω,zi |

= |Gβ,γ
[x−n,x+n],ω,zi

(y1, y2)| ≥ 1

2n
eδ(2n+1).

There are three cases, and we claim that each leads to a contradiction.

1. If |y1 − (−n)| ≥ n
K

, |n− y2| ≥ n
K

, since

ω /∈ Bβ,·
[x−n,x+y1−1],ε′,zi

∪B·,γ[x+y2+1,x+n],ε′,zi
∪Bβ,γ

[x−n,x+n],ε′,zi
,

if K > 1, we have

1

2n
eδ(2n+1) ≤ e(γ(zi)+ε

′) 2n
K
−(γ(zi)−ε′)(2n+1) ≤ e(2n+1)(2ε′).

But δ > 2ε′. Thus when n is large enough, say, n > Ñ3, there will be a contra-

diction.

2. If one of |y1 − (−n)| and |n− y2| ≥ n
K

, then if K > 1, we have

1

2n
eδ(2n+1) ≤M

n
K en

(γ(zi)+ε
′)

K
−(γ(zi)−ε′)(2n+1) ≤ e(2n+1)( logM

2K
+2ε′)

By our choice of K ≥ 2 logM
δ−2ε′

, we have δ > logM
2K

+ 2ε′. Thus again, when n is

large enough, say, n > Ñ4, we arrive at a contradiction.

3. If both |y1 − (−n)| ≤ n
K

, |n− y2| ≤ n
K

, then

1

2n
eδ(2n+1) ≤M

2n
K e−(γ(zi)−ε′)(2n+1) ≤ e(2n+1)( logM

2K
+ε′)

By our choice of K, we have δ > logM
2K

+ ε′. Thus when n is large enough, say,
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n > Ñ5, again we arrive at a contradiction.

Take N2 = max{Ñ1, Ñ2, Ñ3, Ñ4, Ñ5}. Then for any n > N2, we have a contradiction

for all three cases, and hence

dist
(
σ(Eβ,γ[x−n,x+n],ω), σ(Eβ,γ[x+n+1,x+3n+1],ω)

)
≥ 2e−δ(2n+1)

We now prove Theorem 2.3:

Proof of Theorem 2.3. By Lemma 2.5.1, for any ε > 0, we can find η1(ε), N1(ε) and

δ = η1/2, s.t. (1) and (2) of Lemma 2.5.1 hold. For such δ, apply Lemma 2.5.2 to

find η2, N2 and Ω
(2)
x,n for any x ∈ Z, n > N2. Now let η := min{η1, η2/2}, N :=

max{N1, N2}. Set

Ωx,n := Ω(1)
x,n ∩ Ω

(1)
x+2n+1,n ∩ Ω(2)

x,n.

Then we obtain part (1):

P(Ωx,n) ≥ 1− 2m(I)e−η1(2n+1)/2 − 2ne−η1(2n+1) − 2(2n+ 2)3e−η2(2n+1)

≥ 1− Ce−η(2n+1).

As for part (2), let ω ∈ Ωx,n. Assume both x and x + 2n + 1 are (γ(zi) − 2ε, n, ω, z)-

singular. Then by Lemma 2.5.1, we have

dist(z, σ(E[x−n,x+n],ω)) ≤ e−δ(2n+1),

dist(z, σ(E[x+n+1,x+3x+1],ω)) ≤ e−δ(2n+1).
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Thus

dist
(
σ(Eβ,γ[x−n,x+n],ω), σ(Eβ,γ[x+n+1,x+3n+1],ω)

)
≤ 2e−δ(2n+1).

However, Lemma 2.5.2 guarantees that if ω ∈ Ωx,n, then

dist
(
σ(Eβ,γ[x−n,x+n],ω), σ(Eβ,γ[x+n+1,x+3n+1],ω)

)
> 2e−δ(2n+1).

which is a contradiction. Thus at least one of the two points x or x+ 2n+ 1 must be

regular.
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Chapter 3

Dynamical Localization for the

Singular Anderson Model in Zd

3.1 Introduction

We consider the d-dimensional Anderson model, a random Schrödinger operator on

`2(Zd) given by:

(Hωφ)(n) :=
∑

|m−n|=1

(φ(m)− φ(n)) + Vω(n)φ(n).

Here, the Vω(n) are independent and identically distributed (i.i.d.) real-valued random

variables with common distribution µ, ∀n ∈ Zd. We will assume that S ⊂ R, the

topological support of µ, is compact and contains at least two points. The underlying

probability space here is Ω = SZd , with elements {ωn}n∈Zd ∈ Ω. The probability

measure µZ will be denoted by P and its restriction to subsets ΩΛ = SΛ∩Zd (where
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Λ ⊂ Zd) by PΛ.

This paper will provide a comprehensive, self-contained proof from the end of an

appropriate multi-scale analysis (MSA) result to Anderson and (strong) dynamical

localization.

In order to properly contextualize this paper and detail exactly what it provides, it is

necessary to briefly describe some chronology and background related to the results

alluded to above. Soon after the MSA had taken a firm foothold in the literature and

community, Germinet and Klein provided an axiomatic treatment of conditions needed

in an MSA to obtain dynamical results. Previous work by the same authors showed

that these axioms held in the so-called regular potential regime and thus provided a

proof of dynamical localization in such situations. Bourgain and Koenig then used the

multiscale framework to prove localization (again at the bottom of the spectrum) in

the continuum Bernoulli case. It is worth noting that this paper represented a signif-

icant leap in technique and process demonstrated by their use of unique continuation

principles as well as the Peierls argument. One unfortunate consequence of the MSA

in the singular potential regime is the weaker than usual probability estimates that

result. In the presence of regularity, it is possible to use the same probability estimates

for spectral localization coupled with a short Borel-Cantelli argument to quickly obtain

dynamical results. While the above argument does not apply in the singular regime,

Klein and Germinet nevertheless proved that dynamical localization continues to hold.

Recently, inspired by a unique continuation principle developed for the Z2 lattice (Ma-

linkova et. Al), Smart and Ding obtained the ingredients for a multiscale analysis and

the corresponding spectral results. This work was then extended to the Z3 lattice by

Li and Zhang. These results represent the analog of Bourgain and Koenig’s work in
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the continuum. It is thus expected that dynamical localization and the various other

consequences obtained by Germinet and Klein should hold here. Again, the issue is

that Bernoulli (and more generally singular) potentials imply very weak probability

estimates and additional considerations are needed to obtain dynamical localization.

This paper provides these additional steps.

While the techniques presented here closely follow the work of Germinet and Klein,

there are some features worth mentioning. Firstly, the treatment by Germinet and

Klein is carried out in the continuum; thus, there are technical issues that can be

avoided as well as estimates that can be simplified and improved in the discrete set-

ting. In this regard, we are able to improve certain probability estimates by using the

fact that points on the lattice are at least a unit distance from each other. While these

improved estimates eventually get eroded by other requirements of the MSA, it is our

hope that such considerations prove useful in other contexts, especially when trans-

lating results from the continuum to discrete setting. Secondly, unique continuation

in the discrete setting is even weaker than in the continuum and this is reflected in

the even weaker probability estimates that are used as a starting point for the MSA.

As such, we provide the necessary modifications needed to obtain dynamical localiza-

tion under these very weak conditions in a general (Zd) lattice setting. This not only

provides a proof of dynamical localization (at the bottom of the spectrum) in Z2 and

Z3, but also hopefully provides a simple reference in the event corresponding initial

estimates (e.g. MSA inputs) are obtained in dimension d > 3.

The remainder of this paper is organized as follows:

� Section 3.2 contains the preliminary definitions and notations needed to state

the main results,
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� Section 3.3 summarizes properties of the generalized eigenfunction expansion and

the main concepts, (3.2), “normalized generalized eigenfunction” used to prove

localization.

� Section 3.4 provides two main Lemmas needed to pass from the MSA to the

precursor for localization.

� Section 3.5 provides the two spectral reductions needed for the proof of the key

Theorem 3.3.

� Section 3.6 contains the proof of dynamical localization in expectation.

3.2 Preliminaries and Main results

3.2.1 Preliminaries

We first provide the necessary notations and definitions needed to state the main

theorem.

For x ∈ Zd, let |x| =
d

max
i=1
|xi|. Let 〈x〉 = (1 + |x|2)1/2. Fix ν > d for the rest of the

paper and denote Tx0φ(x) = 〈x − x0〉νφ(x), where x0 ∈ Zd. When x0 = 0, we will

simply write Tν . Let ||φ|| =
√ ∑

n∈Zd
φ(n)2 denote the `2 norm of φ.

For an operator A : `2 → `2, let ‖A‖ denote the operator norm. Let ‖A‖p = Tr(|A|p)1/p

denote the Schattern norm. In particular, ‖A‖1 and ‖A‖2 denote the trace norm and

Hilbert-Schmidt norm respectively.

For x ∈ Zd, let ΛL(x) = {y ∈ Zd : |y − x| < L/2}. Let ΛL2,L1(x) = ΛL2(x) \ ΛL1(x).

67



We omit x when it is clear. Let PΛ : `2(Zd) → `2(Zd) be a projection to `2(Λ). Let

Hω,Λ = PΛHωPΛ and Gω,Λ,E = (Hω,Λ−E)−1. Let χI denote the characteristic function

on R.

We start with the concept of a “good” box or scale.

Definition 3.1 (Good boxes and scales). We say that:

1. Λ = ΛL(x0) is (ω,E,m)-regular if ∀x, y ∈ Λ with |y − x| ≥ L
100

, we have

|Gω,Λ,E(x, y)| ≤ e−m|y−x|;

2. Λ = ΛL(x0) is (ω,E,m, η)-good if Λ is (ω,m,E)-regular and

||Gω,Λ,E|| ≤ eL
1−η
.

3. The scale L ∈ Z is (E,m, η, p)-good if for any x ∈ Zd, we have

P{ω : ΛL(x) is (ω,E,m, η)-good} ≥ 1− L−pd.

Remark 3.1. We fix 0 ≤ η < 1 and omit it in the statement of most theorems.

We are interested in the following types of localization:

Definition 3.2. We say Hω exhibits

1. Anderson localization (AL) in an interval I ⊂ R if for a.e. ω, Hω has pure point

spectrum and the eigenfunctions decay exponentially.
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2. Dynamical localization (DL) of order p in I if for a.e. ω,

sup
t>0
||〈X〉pe−itHωχI(Hω)δ0|| <∞

3. Strong dynamical localization in expectation of order (p, s) in I if

E
{

sup
t≥0
||〈X〉pe−itHωχI(Hω)δ0||s

}
<∞

We define the generalized eigenfunction (g.e.f.) and the generalized eigenvalue (g.e.v.)

as follows:

Definition 3.3. Fix ν. If Hφ = Eφ and φ(x) ≤ C〈x〉ν for some C > 0, then we call φ

a g.e.f. of H w.r.t. the g.e.v. E. Let Θν
ω(E) = {φ : Zd → R : Hωφ = Eφ, ||T−1

ν φ|| <

∞} denote the set of g.e.f.’s with fixed ω, ν and E.

Fix ν > d for the rest of the paper and omit it.

Let Tx0φ(x) = 〈x− x0〉νφ(x), where x0 ∈ Zd. We denote Tx0 by T when x0 = 0. One

can check that 〈y〉 ≤
√

2〈x〉〈x− y〉. Thus ‖T−1
x Ty|| ≤ 2

ν
2 〈x− y〉ν , which means

‖T−1
x φ‖ <∞ ⇔ ‖T−1

y φ‖ <∞.

Then we can introduce our key definition:

Definition 3.4. Given ω ∈ Ω, n ∈ Zd and E ∈ R, define the quantity

Wω(x;E) := sup
φ∈Θω(E)

|φ(x)|
||T−1

x φ||
, if Θω(E) 6= ∅

Wω(x;E) := sup
φ∈Θω(E)

||PΛ2L,L(x)φ||
||T−1

x φ||
, if Θω(E) 6= ∅
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Remark 3.2. Roughly speaking, Wω(x;E) (or Wω,L(x;E)) quantifies the highest extent

of localization at x (or the band Λ2L,L(x)) among all g.e.f.’s w.r.t. the same E. This

quantity will be very useful in the proof of dynamical localization because it provides

a “uniform-in-g.e.f.” upper bound.

3.2.2 Main results

Theorem 3.3 provide the estimates of the decay of Wω(x;E) from ”the end of MSA”,

while Theorem 3.4 extract the localization results from this estimates.

By ”The end of MSA”, we mean that there is m > 0, s > 0, p > 0, I ⊂ R and

L0 > 0 s.t. any scale L ≥ L0 is (E,m, s, p)-good-scale for any E ∈ I.

In particular, as we mentioned, when d = 2, 3, by rewriting [31, Theorem 1.4],[63,

Theorem 2.4], we derived the following ”the end of MSA” results (by taking η0 =

m0 = ε
2
, E0 = ε and L0 = L0(η0,m0) > α large enough).

Theorem 3.1. Let d = 2, 3, for any 0 < p0 < 1/2, there are m0, η0, E0 > 0 and

L0 = L0(m0, η0) s.t. if E ∈ (0, E0) and L ≥ L0, then L is (E,m0, η0, p0)-good scale.

Our first results, which works for all d is:

Theorem 3.2. Assume I ⊂ R is an open bounded interval. Assume further that there

is L0 s.t. ∀L > L0, scale L is (E,m, η, p)-good for some m, p > 0, 0 ≤ η < 1 and for

all E ∈ I. Then there is 0 < p̃ < p,

Theorem 3.3. Let I ⊂ R be a bounded open interval, m > 0, p > 0, s ∈ (0, 1), and

assume there is a scale L, s.t. any L ≥ L is (E,m, s, p)-good for all energies E ∈ I.

Let M = m/30n̂+2, where n̂ = n̂(p) := {n ∈ N : 21/n − 1 < p}. Fix p̃ ∈ (0, p), let
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µ = β/2, with β = ρn1 where ρ > 0 and n1 ∈ N s.t.

(1 + p)−1 < ρ < 1 and (n1 + 1)β < p− p̃.

Let

IL := {E ∈ I : dist (E,R \ I) > e−MLµ}.

Then given a sufficiently large L, for any x0 ∈ Zd, there exists an event UL,x0 s.t.

1. UL,x0 ∈ FΛL(x0) and P{UL,x0} ≥ 1− L−p̃d.

2. If ω ∈ UL,x0, E ∈ IL, we have

Wω,x0(E) > e−MLµ ⇒ Wω,x0,L(E) ≤ e−ML

and thus

Wω,x0(E)Wω,x0,L(E) < e−
s
2
MLµ , for large enough L.

This theorem is proved in Section 6. Based on this, we derived the following localization

results:

Theorem 3.4. Let I ⊂ R be a bounded open interval. Assume that there is a scale L

s.t. any L ≥ L are (E,m, s, p)-good scale. Then for all x0 ∈ Zd and I ⊂ Ī ⊂ I, we

have:

1. for any x ∈ Zd, L ≥ 1, and s ∈
(
0, p̃d

ν

)
, there is C s.t.

E
{
||Wω(x;E)Wω(x;E)||sL∞(I,dµω(E))

}
≤ CL−(p̃d−sν).

2. Hω has Anderson localization in I a.e. ω.
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3. Given b > 0, for all s ∈ (0, p̃d
bd+ν

) we have strong dynamical localization of order

(bd, s), i.e.

E
{

sup
t≥0

(∥∥〈X − x0〉bde−itHωPω(I)δx0

∥∥
1

)s} ≤ C <∞.

3.3 Genralized eigenfunction expansion

In this section, we provide a brief introduction to generalized eigenfunction expan-

sions. This is necessary for several reasons: first, not every self-adjoint operator has

eigenfunctions (i.e. those with continuous spectrum) and second, these eigenfunctions

are needed to define the Wω(x;E) below and the Wω(x;E) play a crucial role in the

estimates from section 6 and hence in the proofs of the localization results from section

7.

In what follows, we will enlarge the domain (using rigged Hilbert spaces) and employ

the Bochner integral to ensure we have access to the appropriate decompositions. We

note that this presentation, while self-contained, is brief and further details can be

found in sections 15.1 and 15.2 of [10].

Let H+,H− be the rigged-Hilbert spaces:

H+ = `2(Zd, 〈x〉2νdx), H = `2(Zd, dx), H− = `2(Zd, 〈x〉−2νdx).

We have ‖T−1f‖H+
= ||f ||H = ||Tf ||H− .

Define two natural embeddings i+ : H+ → H, and i− : H → H−. View T Let

T+ = Ti+, T− = i−T . Then T+, T− are isomorphisms between H+ and H, and H and

72



H+.

For any self-adjoint operator A : H → H, we could form a chain and derive corre-

spondingly C := T−AT+ : H+ → H− as follows:

H+
i+−→ H T−→ H A−→ H T−→ H i−−→ H−

Then A→ C is a Banach Isomorphism between B(H+,H−) and B(H,H). Consider the

Schatten norm ||A||p = (Tr(|A|p))1/p in B(H,H). We could then define the Schatten

norm || · ||p,± in B(H+,H−) induced from B(H,H) by the isomorphism:

‖C‖p,± :=
∥∥T−1
− CT−1

+

∥∥
p

The Bochner Theorem below will help us obtain the desired generalized eigenfunction

decomposition later. We provide it without proof here:

Theorem 3.5 ( [10, Theorem 15.1.1] footnote here). Let θ : B(R) → B(H+,H−) be

an operator-valued measure with finite trace, i.e.

1. θ(B) is non-negative for any Borel B ⊂ R,

2. Tr±(θ(R)) <∞,

3. θ(
⊔
j

Bj) =
∑
j

θ(Bj), converging in the weak sense.

Then θ can be differentiated w.r.t. trace measure ρ(B) = Tr±(θ(B)). This implies that

∃Q(E) : H+ → H−, s.t.

θ(B) =

∫
B

Q(E)dρ(E)
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where 
0 ≤ Q(E) = Tr±(Q(E)) = 1, ρ-a.e. E,

Q(E) is weakly measurable w.r.t. B(R),

The integral holds in the Hilbert-Schmidt norm.

In particular, for the projection-valued spectral measure Pω(B) := χB(Hω) : H → H,

we apply the theorem above to θω(B) := i−Pω(B)i+ : H+ → H−, which satisfy the

conditions:

Tr±(i−Pω(R)i+) = Tr(T−1Pω(R)T−1) ≤
∑
n∈Zd
||T−1δn||2 ≤

∑
n∈Zd

1

(1 + n2)ν
<∞.

Thus there are Qω(E) : H+ → H−, and µω(B) := Tr(T−1Pω(B)T−1) = ||T−1Pω(B)||22,

s.t.

i−Pω(B)i+ =

∫
B

Qω(E)dµω(E)

with Tr±(Q(E)) = 1, for µω-a.e. E.

Furthermore, for u ∈ H+, for f ∈ B1,b(R) be a bounded Borel function. We have:

Pω(B)u =

(∫
B

Qω(E)dµω(E)

)
u,

f(Hω)Pω(B)u =

(∫
B

f(E)Qω(E)dµω(E)

)
u,

(3.1)

and

Range(Qω(E)) ⊂ Θ̃ω(E), for µω-a.e.E.

The proof can be found in [10, Theorem 15.2.1]. Thus if Range(Qω(E)) ⊂ H, µω-a.e.E,

then Hω has p.p. spectrum.
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Define Wω(x;E),Wω(x;E),Wω(x;E),Wω,L(x;E) to estimates the extent of localiza-

tion for the g.e.f.s

Wω(x;E) =


sup

φ∈Θω(E)

|φ(x)|
||T−1
x φ|| , Θω(E) 6= ∅

0, otherwise.

Wω(x;E) =


sup

φ∈Θω(E)

||χx,Lφ||
||T−1
x φ|| , Θω(E) 6= ∅

0, otherwise.

Wω(x;E) =


sup

Qω(E)φ 6=0

|Qω(E)φ(x)|
||T−1
x Qω(E)φ|| , Qω(E) 6= 0

0, otherwise,

Wω,L(x;E) =


sup

Qω(E)φ 6=0

||χx,LQω(E)φ||
||T−1
x Qω(E)φ|| , Qω(E) 6= 0

0, otherwise.

(3.2)

The estimates provided in the following lemma are the key to estimating the kernel

present in the dynamical localization statements. The Wω above allow us to avoid the

analysis of one generalized eigenfunction at a time which necessarily entails passing

to centers of localization to obtain global estimates. Thus, the price one pays for the

notational burden is significantly outweighed by the uniform control they afford.

Lemma 3.3.1. We have

||χx,Lf(Hω)Pω(I)δx||1 ≤
∫
I

f(E)||χx,LQω(E)δx||1dµω(E),

||χx,LQω(E)δx||1 ≤ ||χx,LQω(E)||2||δxQω(E)||2

≤Wω(x;E)Wω,L(x;E)||T−1
x Qω(E)||2||T−1

x Qω(E)||2.

Definition 3.5 (Gerneralized eigenfunction). A non-zero vector φ ∈ H−, φ 6= 0 is
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called a generalized eigenfunction (g.e.f.) of Hω : H → H if there is E ∈ C, called

generalized eigenvalue (g.e.v.) s.t. ∀u ∈ D+(Hω) = {ψ ∈ D(Hω) ∩H+|Hωψ ∈ H+},

(φ,Hωu)± = E(φ, u)±,

where (·, ·)± : H− ×H+ → C is the continuous extension of original inner product on

H×H, by density of H in H−. Let’s denote the set of g.e.f. w.r.t. g.e.v. E for Hω by

Θω(E). Let Θ̃ω(E) = Θω(E) ∪ {0}.

If g.e.f. φ ∈ H, then by density of H ∈ H−, φ is an eigenfunction.

3.4 Preliminary Lemmas

Below are the preliminary lemmas needed for the proof of the main theorem. The first

lemma is deterministic and describes the stability of good boxes.

Lemma 3.4.1. Assume ω,E0, L0, x are fixed and ∀L ≥ L0, ΛL(x) is (ω,E0,m0, s)-

good. Then ∀m < m0, ∃Lm, s.t. ∀L ≥ Lm, ∀E satisfying |E − E0| ≤ e−m0L, we have

ΛL(x) is (ω,E,m, s)-good.

Proof. Recall the resolvent identity:

Gω,E,ΛL(x) −Gω,E0,ΛL(x) = (E0 − E)Gω,E,ΛL(x)Gω,E0,ΛL(x).

Thus,

||Gω,E,ΛL(x)|| ≤ ||Gω,E0,ΛL(x)||+ |E0 − E|||Gω,E,ΛL(x)||||Gω,E0,ΛL(x)||

≤ CeL
1−s

+ Ce−m0L+L1−s||Gω,E,ΛL(x)||,
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and so,

||Gω,E,ΛL(x)|| ≤
CeL

1−s

1− Ce−mL+L1−s ≤ 2CeL
1−s
.

Also, if m < m0,

|Gω,E,ΛL(x)(a, b)| ≤ |Gω,E0,ΛL(x)(a, b)|+ |E − E0||Gω,E,ΛL(x)(a, b)||Gω,E0,ΛL(x)(a, b)|

≤ e−m0|a−b| + e−m0LeL
1−s+L1−s

≤ e−m|a−b|

when L is large enough. Denote the threshold by Lm.

The following lemma provides the connection between good loops and the quantity W.

In particular, we obtain a connection between the definition of a good box and W.

Lemma 3.4.2. Let l > 12. For fixed ω, if there is a (l, E0,m0, s)-good loop A in

ΛL2,L1(x0), then ∃Cd =
√
d

4
, s.t. ∀|E − E0| ≤ e−m0l, E ∈ I, ∀m < m0, we have

dist(E, σ(HΛL2
))Wω,x(E) ≤ CLd+ν

2 4de−
m`
3 .

Proof. Let M = ||V ||`∞ + sup
E∈I
|E|. Let l > 12 so that l

2
− 2 > l

3
. Note that

dist(E, σ(HΛ2)) = ||(HΛL2
− E)−1||−1 = inf

ψ∈`2

||(HΛL2
− E)ψ||
||ψ||

.

Recall A is a closed loop in G. So it“circles” a region A ⊂ Rd. Let χA : Zd → {0, 1}

be the characteristic function of A on Zd.

Let φ0 be a g.e.f. of Hω w.r.t. E0, i.e. (Hω − E0)φ0 = 0. Take ψ = χAφ0, we found
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that (HΛL2
− E0)ψ(x) will be 0 at most points x ∈ ΛL2 except for those near A.

dist(E, σ(HΛ2)) ≤
||(HΛL2

− E0 + E0 − E)χAφ0||
||χAφ0||

≤

∑
dist(x,A)≤1,x∈Zd

(2d + 1)2d+1M max
|y−x|≤2,y∈Zd

|φ(y)|

|φ(x0)|

≤
C(Ld2 − Ld1)4dMe−

m0l
3 ld−1 max

y∈ΛL2,L1

|φ(y)|

|φ(x0)|

≤
CM4dLd2e

−ml
3 max
y∈ΛL2,L1

|φ(y)|

|φ(x0)|

.

Notice max
y∈ΛL2,L1

|φ(y)| = max
y∈ΛL2,L1

〈y−x0〉ν |φ(y)|
〈y−x0〉ν ≤ 〈L2〉ν ||T−1

ν φ||. Thus, by the definition

of Wω,x(E), we get

dist(E, σ(HΛL2
))Wω,x(E) ≤ CLd+ν

2 4de−
m`
3 .

Let Lc be the coarse lattice Nc = 3l
5
Zd with sides S = {(x, y) ∈ N ×N : |x−y|1 = 3l

5
}.

Let Lf be the fine lattice Nf = Zd with sides Sf = {(x, y) ∈ N ×N : |x− y|1 = 1}. In

the following context, we will always choose l ∈ 3Zd so that Lc is a sub-lattice of Lf .

Definition 3.6 (Good node and loop). Fix ω, for each x ∈ N , we say

1. x ∈ N is a (ω,E,m, s)-good (-bad) node if Λl(x) is a (ω,E,m, s)-good (-bad)

box.

2. A ⊂ S is a (l, E,m, s)-good loop (shell) if it is a closed loop (shell) in S where

each node x ∈ A is a good node.
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3. P ⊂ S is a bad path if it is a non-self-intersecting path of graph S and each node

is a bad node.

Remark 3.3.

We say a (l, E,m, s)-good shell A is totally inside a subset S ⊂ Rd if
⋃
x∈A Λl+2(x) ⊂ S.

Let Y(E)
x0,l,L1,L2

denote the event

{ω : an (ω, l, E,m, s)-good loop exists totally inside ΛL2,L1(x0)}.

Since the probability of each node being good is quite large by Theorem 3.1. We expect

relatively large probability for having good loops as well. The next lemma quantifies

the probability estimates of this event.

Lemma 3.4.3. Assume E is fixed, and the scale l is (E,m, s, p)-good. We have

P
{
Y(E)
x0,l,L1,L2

}
≥ 1− 2d(

L1 + 3l

l
)d−1(2d)

L2−L1−l
l l

−pdL2−L1−l
(3d−1)l .

In particular, if l =
√
L, L1 = L

2
, L2 = L, when L is large enough, then

P
{
Y(E)

x0,l,
L
2
,L

}
≥ 1− L−cd,p

√
L.

Remark 3.4.

Notice that Y(E)
x0,l,L1,L2

only depends on ΩΛL2,L1
(x0).
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Proof. Fix E ∈ I. First notice that

(Y(E)
x0,l,L1,L2

)c = {ω : there is no good loop totally inside ΛL2,L1}

= {ω : there is a bad path escaping from ∂Λ+
L1+l+2 to ∂Λ−L2−l−2}

Notice that each such bad path must contain at least N := L2−L1−2l−4
6l/5

+ 1 many

bad nodes starting from ∂Λ+
L1+l+2, which means it should contain N

(3d−1)l
-many in-

dependent bad nodes. And the number of all possible paths like this is less than

2d(L1+l+2
3l/5

)d−1(2d)N . So we get

P{(YE
x0,l,

L
2
,L

2
)c} ≤ 2d(

L1 + l + 2

3l/5
+ 1)d−1(2d)N l−pdN

= 2d(
L1 + l + 2

3l/5
+ 1)d−1(2d)

L2−L1−2l−4
6l/5

+1l
−pd(

L2−L1−2l−4

(3d−1)l
+1)

The second inequality follows from the first one by plugging in and let L be large

enough.

3.5 Multiscale to Localization

In order to prove Theorem 3.3, we need two intermediary results: Theorem 3.6 and

Theorem 3.7.

3.5.1 The first spectral reduction

Theorem 3.6. Given b ≥ 1, there exists a constant Kd,p,b ≥ 1 s.t. for any K ≥ Kd,p,b,

for large enough L, for any x0 ∈ Zd, there is an event QL,x0, with
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1. Qx0,L ∈ FΛL(x0) and P{QL,x0} ≥ 1− ( L
K

)−5d

2. for any ω ∈ Qx0,L, given E ∈ I s.t. if there exists a g.e.f. φ with φ(x0) 6= 0, then

for L large enough

dist
(
E, σ(I)(Hω,ΛL(x0))

)
≤ e−m̂

L
K .

Proof. The strategy here is two-fold:

1. Construct Qx0,L by layers.

2. Estimate the probability of the event Qx0,L occurring.

Given L0, we define l0 =
√
L0, and lk = l1+η

k−1, for k = 1, 2, · · · , n̂, where (1 + η)n̂ = 2,

so ln̂ = l20 = L0. Let Lk = Lk−1 + 2Jlk where J is a large constant to be determined

later. Then we have

Ln̂ = L0 + 2J
n̂∑
k=1

lk ≤ (1 + 2Jn̂)L0.

Now we use an inductive construction to form the set Qx,L.

1. Given m0 > 0. For the initial layer ΛL0 , we pick YE0,i

l0,
√
L0,L0

where E0,i are energies

s.t. the union of [E0,i − e−m0l0 , E0,i + e−m0l0 ] covers I. We need to choose

|I|
2e−m0l0

= O(e
√
L0) many of them. Let Y0 =

⋂
i Y

E0,i

l0,
√
L0,L0

, then we have

P{Y0} ≥ 1− Ce
√
L0L

−cd,p
√
L0

0 ≥ 1− Ce−
√
L0 .

Recall that Y(E)
l,L1,L2

only depends on ΩΛL2,L1
. In particular, YE0,i

l0,
√
L0,L0

only depends

on ΩΛL0
.
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2. For the remaining events, we use an inductive scheme. If ωΛLk−1
∈ ΩΛLk−1

is

given, we can consider all eigenvalues Ek,j = Ek,j(ωΛLk−1
) of HΛLk−1

,ωΛLk−1
. For

each such Ek,j, we can then consider YEk,jLk−1,lk,Lk
. Notice the dependence here is

only on ω ∈ ΩΛLk,Lk−1
so there is no conflict with the previous ωΛLk−1

and the

induction is well-defined.

Let Yk(ωΛLk−1
) =

⋂
j Y

Ek,j
Lk−1,lk,Lk

(ωΛLk−1
), where we pick J ≥ Jp,d (note that J

depends on cd,p). In this situation, we have

P{Yk} ≥ 1− Ld+d−1
k−1 3Jdl

−cd,p2J

k ≥ 1− L−6d
0 .

Having obtained the box ΛLn̂ and we choose the event depending on ΩΛLn̂
to be

Qx0,Ln̂ =
n̂⋂
k=0

Yk(ωk−1)

and we have

P{Qx0,Ln̂} ≥ 1− L−5d
0 .

Thus, to obtain Qx0,L, we choose an L0 s.t. L = Ln̂ ≤ (1 + 2Jd,pn̂)L0. Then for any

K ≥ Kd,p = 1 + 2Jd,pn̂, we have

Qx0,L ≥ 1− L−5d
0 ≥ 1− (

L

K
)−5d.

We now need to verify that for ω ∈ Qx0,L, E ∈ I with some g.e.f. φ(x0) 6= 0, we have

dist
(
E, σ(I)(Hω,ΛL(x0))

)
≤ e−m̂

L
K .

Notice, by lemma 3.2 applied to YE0,i√
L0,l0,L0

, E ∈ I implies there exists an E0,i s.t.
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|E − E0,i| ≤ e−m0l0 . So, we have,

dist
(
E, σ(I)(Hω,ΛL0

(x0))
)
≤ e−m1l0 ,

where we choose m1 < m0. Thus, there exists an E1,j ∈ σ(Hω,ΛL0
(x0)) s.t. |E −E1,j| ≤

e−m1l0 ≤ e−m1l1 . We now apply lemma 3.2 to YE1,j

L0,l1,L1
and repeat this process n̂ times

to obtain:

dist
(
E, σ(I)(Hω,ΛL(x0))

)
≤ e−m̂

L
K .

3.5.2 Second spectral reduction

Definition 3.7 (reduced spectrum). The reduced spectrum of Hω in ΛL(x0), in the

energy interval I is given by

σ(I,red)(Hω,ΛL(x0)) :={
E ∈ σ(I)(Hω,ΛL(x0)) : dist

(
E, σ(I)(Hω,ΛLn (x0)

)
≤ 2e−

m̂
K
Ln , n = 1, · · · , n1

}

where Ln = Lρ
n

for n = 0, 1, 2, 3, · · · , N , and ρN = β.

Theorem 3.7 (second spectral reduction). Let b ≥ 1, Given large enough L, for each

x ∈ Zd there exists an event χL,x0, with

χL,x0 ∈ FΛL(x0) and P{χL,x0} ≥ 1− L−bβd,

s.t. ∀ω ∈ χL,x0
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1. If E ∈ I satisfies

Wω,x0(E) > e−m̂
√
Lβ

K and dist (E,R \ I) > 2−m̂
√
Lβ

K (3.3)

then

dist(E, σ(I,red)(Hω,ΛL(x0))) ≤ e−m̂/K (3.4)

2. and we have

#σ(I,red)(Hω,ΛL(x0)) ≤ CL(n1+1)βd (3.5)

To obtain (3.4) from (3.3), one needs Q̃x0,L =
⋂N
n=0Qx0,Ln . In this case, by Theorem

3.6 and the definition of the reduced spectrum, the desired results follow.

Proving (3.5) requires sufficiently more work.

First notice that, compared with the typical estimates on the number of eigenvalues of

Hω,ΛL(x0), i.e. #σ(Hω,ΛL(x0)) ≤ CLd, we want much tighter bound. Because (n1+1)β >

0 could be very, very small. The reduced spectrum nomenclature stems from the fact

that the number of elements in it is largely reduced (but there are still enough to obtain

the required deterministic estimate). To achieve these goals, we introduce the notion

of a ”notsobad set” which helps control the number of close eigenvalues for ΛL(x0) and

Λ′L(x0).

Let L′ < L, x0 ∈ R, and consider ΛL,L′ the annulus centered at x0(we omit x0 from

the notation for the time being). Let Ln = Lρ
n
, for n = 0, 1, 2, · · · , n1. Let Rn =

{ΛLn(r)}r∈Rn be the standard Ln-covering of ΛL,L′ . Given K2 ∈ N (where K2 will be

chosen later), we say

Definition 3.8. The annulus ΛL,L′ is (ω,E,K2)-notsobad if there are at most K2

points in Rn1, denoted by ri, 1 ≤ i ≤ K2, s.t. ∀x ∈ ΛL,L′ \Θ, where Θ =
⋃
ri

Λ3Ln1
(ri),
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there exists a (ω,E,m, s)-good box ΛLnx (r) ∈ Rnx s.t. x ∈ ΛLnx (r) for some nx ∈

{1, 2, . . . , n1}. And an event N is (ΛL,L′ , E,K2)-notsobad if N ∈ FΛL,L′
, and ΛL,L′ is

(ω,E,K2)-notsobad for all ω ∈ N .

Remark 3.5. Θ is called the singular set and the above definition captures the fact that

outside of the singular set, each point is good in at least one level Ln, n ∈ {1, 2, . . . , n1}.

The following lemma gives a probability estimates on such a set.

Lemma 3.5.1 (Probability estimates). If K2 ≥ K̂2 = K̂2(d, p, b) and L ≥ L̂ =

L̂(d, p, b,K2), then for all E ∈ I, there exists a (ΛL,L′, E,K2)-notsobad event N (E)
ΛL,L′

with

P{N
Λ

(E)

L,L′
} > 1− L−5bd

We can now define the set we need to satisfy (3.5) by:

NΛL,L′
=

⋂
E∈σ(Hω,ΛL′

)

N (E)
ΛL,L′

∈ FΛL

NL,x0 =

n1⋂
n=1

NΛLn−1,Ln(x0)

Thus, P{NL,x0} > 1− Cn1L
−4bd
n1−1 ≥ 1− Cn1L

−4bβd/ρ by Lemma 3.5.1.

We also have:

Lemma 3.5.2 (Deterministic nice property). If ω ∈ NL,x0, then

#σ(I, red)(Hω,ΛL) ≤ CL(n1+1)βd

.
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Proof. First notice by definition that

#σ(I, red)(Hω,ΛL) ≤ #{{En}n1
n=0 : En ∈ σ(Hω,ΛLn

) & |Ei − Ej| ≤ 2e−
m̂
K
Lmax i,j}

:= #Dn1
0

We can count the RHS by layers inductively. We start with the layer Ln1 and omit x0

and ω for convenience so,

#Dn1
n1

= #σ(Hω,ΛLn1
) ≤ C(Ln1)d.

Given {En}n1
k ∈ Dn1

k , we compute #{E : if Ek−1 = E, then {En}n1
k−1 ∈ Dn1

k−1}.

Denote the previous set by Bk−1. Since ω ∈ NΛLn−1,Ln
for any n, ΛLn−1,Ln is an

(ω, Ln−1, Ln, En)-notsobad set. Let Θn be the corresponding singular set and set

Θn1
k =

⋃n1

n=k Θn ∪ ΛLn1
. Then we have:

|Θn1
k | ≤ Ldn1

+

n1∑
n=k

K2(3(Lk−1)n1)d = Lβd + (n1 − k + 1)K23dLρ
k−1βd ≤ CLβd

If E ∈ Bk−1, then ∀x, x ∈ λLk−1
\ Θn1

k . So there is nx ∈ {k, k + 1, . . . , n1}, s.t.

x ∈ ΛLnx−1,Lnx \Θnx . and there exists a (ω,Enx ,m, s)-good box Λ(Lnx−1)j containing x

for some j ∈ 1, 2, . . . , n1, where (Lnx−1)j = Lρ
nx+j−1

. Since

|E − Enx| ≤ e−
m̂
K
Lnx ≤ e−

m̂
K
Lρ
nx

≤ e−
m̂
K

(Lnx )j

, Λ(Lnx−1)j is also (ω,E,m, s)-good by Lemma 3.4.1.

Let φE be the normalized eigenfunction of E on Hω,ΛLk−1
, Then

|φE(x)| ≤ e−m
′Lρ

nx+j−1

≤ e−m
′Lρ

2n1−1
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So we have

∑
x∈Θ

n1
k

|φE(x)|2 = 1−
∑

x∈ΛLk−1
\Θn1

k

|φE(x)|2 ≥ 1− CLβde−m′Lρ
2n1−1

≥ 1/2

when L is large enough.

#Bk−1

∑
x∈Θ

n1
k

|φE(x)|2 ≤ tr{PΘ
n1
k
PI(Hω,ΛLk−1

)} ≤ C|Θn1
k ≤ CLβd

Thus #Bk−1 ≤ 2CLβd and using the inductive estimate from layer Ln1 to layer L1, we

have

#Dn1
0 ≤ CLn1(Lβd)n1 ≤ CL(n1+1)βd

proof of Theorem 3.7. χL,x0 = Q̃L,x0 ∪NL,x0 provides the desired event.

proof of Theorem 3.3. For fixed E, let M(E)
L,x0

= {E : Wω,x0,L(E) ≤ e−ML}, then

P(M(E)
L,x0

) ≥ 1 − Cp,dL
−pd. The goal here is to extend the estimate uniformly for

E ∈ I while maintaining the probability estimates. We achieve this by a judicious

choice of En and then estimating the remaining terms by through En. We set

ML,x0 =
⋂

E∈σI,red(Hω,ΛL(x0)

M(E)
L,x0

and we have P(ML,x0) ≥ 1− CL−(p−(n1+1)β)d.

Also by our assumptions, Wω,x0 ≥ e−MLβ/2 ≥ e−m̂
√
Lβ

K , whenever K ≥ 900, so we

are free to choose K = 900 for Theorem 3.6. Having done this, if we take b =

1 + 1
β
(p− (n1 + 1)β), and take UL,x0 = χL,x0 ∪ML,x0 , then P{UL,x0} ≥ 1− L−p̃d.
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Now if ω ∈ UL,x0 , by Theorem 3.7, we have

dist(E, σ(I,red)(Hω,ΛL(x0))) ≤ e−
m̂
K
L

i.e. there exists E0 ∈ σ(I,red)(Hω,ΛL(x0)) s.t. |E−E0| ≤ e−
m̂
K
L. Since craigWω,x0,L(E0) ≤

e−
m̂
K
L, by the stability of Wω,x0,L, we have Wω,x0,L(E) ≤ e−

m̂
K
L.

3.6 Dynamical Localization in Expectation

In this section, we extract localization results from Theorem 3.3.

proof of Theorem 3.4. By (3.1), we have

‖χx,Lf(Hω)Pω(I)δx‖1 ≤
∫
I

|f(E)|‖χx,LQω(E)δx‖1dµω(E)

≤
∫
I

|f(E)|‖χx,LQω(E)‖2‖δxQω(E)‖2dµω(E)

≤
∫
I

|f(E)||Wω(x;E)Wω(x;E)|µω,x({E})dµω(E)

≤ µω(I)||f ||L∞(I,dµω) sup
E∈I
|Wω(x;E)Wω(x;E)|

where by Theorem 3.3, we have

E
{
‖Wω,x0(E)Wω,x0,L(E)‖sL∞(I,dµω(E))

}
≤ Ce−

s
2
LµP{U cx0,L

}+ C2sνLsνP{Ux0,L}

≤ Ce−
s
2
Lµ + C2sνLsνLp̃d

≤ CL(sν−p̃d)
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Thus

E
{
‖χx,Lf(Hω)Pω(I)δx‖s1

}
≤ C||f ||L∞(I,dµω)L

−(p̃d−sν)

By taking L = 2k above and summing it up, we get

E
{

sup
t

∥∥〈X − x〉bde−itHωPω(I)δx
∥∥s} ≤ C

∑
k

2
sbd
2

+(k+1)sbd−k(p̃d−sν)

≤ C
∑
k

(
2sbd−p̃d+sν

)k
<∞.

where s < p̃d
bd+ν

.
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Part II

Relatively flat bands of TBG

90



Chapter 4

Magnetic response of Twisted

bilayer graphene

4.1 Introduction

The introduction is already given in Section 0.2, we only recall the BM model and

outline below for the reader’s convenience:

The BM model is an effective 4×4 matrix-valued Hamiltonian

 Hθ
D T θ(x)

(T θ(x))∗ H̃−θD

,

x ∈ R2, composed of two twisted-Dirac-operators Hθ
D, H

−θ
D representing two isolated

graphene sheets [84] respectively, and a tunneling potential term

T θ(x) =

 α0V (x/λθ) α1U(−x/λθ)

α1U(−x/λθ) α0V (x/λθ)


where the diagonal and off-diagonal terms represent two different types of interlayer
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AA'/BB'BA'

BA'

BA'AB'

AB'

AB'

Figure 4.1: Left: Visible moiré pattern at θ = 5◦. Right: Single moiré hexagon, with
(A=red, B=blue) and (A’=green, B’=black) denote vertices of two sheets of graphene
respectively.

tunneling potentials. In fact, when two layers of graphene are twisted at an angle θ, a

macroscopic honeycomb structure of scale λθ, called the moiré pattern, is formed (by

a purely geometrical superposition of two sheets of graphene; see Fig.4.1). Then the

two different types of interlayer tunnelings (see Fig.4.1) are respectively:

1. the chiral tunnelings U(x/λθ) and U(−x/λθ) localized near the vertices of each

moiré hexagon, with tunneling strength α1 and a stacking similar to AB′ and

BA′-stacking;

2. the anti-chiral tunneling V (x/λθ), localized near the centers of moiré hexagon,

with a tunneling strength α0 and a stacking similar to AA′/BB′-stacking.

Here A and B label the equivalence classes of vertices on the honeycomb lattice and

atoms on the lower lattice are indicated by a prime, cf. Figure 4.1. We refer to the

BM model as the chiral or anti-chiral model in the limit of purely chiral (α0 = 0) or

anti-chiral (α1 = 0) tunneling interaction, respectively.
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Outline and all results. We summarize all our main results with an outline of the

paper below:

� In Section 4.2, we introduce the BM model with external magnetic field for TBG.

� In Section 4.3, we proved that

– periodic magnetic fields do not affect the presence of flat bands in Theorem

4.1.

– flat bands are persisted under rational magnetic flux in Theorem 4.2, 4.3.

– lots of quasimodes are located close to, and squeezing towards the zero

energy level in Theorem 4.4.

� In Section 4.4, we discuss general properties of the DOS including

� In Section 4.5, we derive asymptotic formulae for the DOS:

– of the chiral model: Theorem 4.5;

– of the anti-chiral model: Theorem4.6;

– is termwise-deferentiable w.r.t. B: Prop 4.5.9).

� In Section 4.6, we discuss physical applications of our semiclassical formulae.

� The article also contains two technical appendices to which some of the compu-

tations and auxiliary results for the derivation of the DOS are outsourced.

4.2 Introduction of magnetic BM model

We start by introducing relevant notation.
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Notation. Throughout this article we identify R2 ' C by x = (x1, x2) ' z = x1 + ix2.

We denote by L the Lebesgue measure on R2 ∼ C. For functions of complex variables

f(z, z̄) we often just write f(z). We write f = Oα(g)H if there is a constant Cα such

that ‖f‖H ≤ Cαg. In particular, f = O(h∞)H means that for any N there exists

CN such that ‖f‖H ≤ CNh
N . We also use the short notations 〈x〉 :=

√
1 + |x|2,

Br(x) = {y : |y − x| ≤ r}.

We introduce the symbol class S(R2n; H ) :=
{
p ∈ C∞(R2n × R>0) : ∃h0, for all γ ∈

N2,∃cγ > 0 s.t. for all (x, ξ) ∈ R2n for all h ∈ (0, h0) : |Dγ
(x,ξ)p(x, ξ, h)| ≤ cγ

}
. In

addition, let Skδ (R2
x,ξ) denote the class of symbols a ∈ C∞(R2n × R>0) such that

|∂αx∂
β
ξ a(x, ξ;h)| ≤ Cα,βh

−k−δ(α+β), for all α, β > 0.

We denote standard partial derivatives by ∂xi and accordingly Dxi := −i∂xi . The prin-

cipal symbol of a semiclassical operator a(x, hDx) is denoted by σ0(a(x, hDx)). We say

a symbol a has an asymptotic expansion in Skδ , a ∼
∑∞

j=0 aj, if a ∈ Skδ and there is a

sequence of aj ∈ S
kj
δ s.t. kj → −∞ as j → ∞ and a −

∑N
j=0 aj ∈ S

kN+1

δ . When k or

δ = 0, we omit the respective sub and superscript. The spectrum of a linear operator

T is denoted by Spec(T ). We also introduce rotated Pauli matrices σθk = e−i
θ
4
σ3σke

i θ
4
σ3 ,

for k = 1, 2.

4.2.1 Moiré lattices and TBG

We recall from the introducting that by twisting two honeycomb lattices against each

other, the emerging moiré honeycomb pattern exhibits different scales λθ at different

twisting angles θ.1 Thus it is easier to characterize such macroscopic honeycomb

1In fact, λθ =
C
√
3

2 sin(|θ|/2) when |θ| < π/6 by [70, 33].
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structures using a “unit-size honeycomb lattice” of side length 4π√
3
:

Let ω = exp(2πi
3

), ζ1 = 4πiω, ζ2 = 4πiω2. The “unit-size honeycomb lattice” is

invariant under translations along a triangular lattice Γ = ζ1Z ⊕ ζ2Z. We denote

its unit cell, dual lattice, and the Brillouin zone of the dual lattice by E = C/Γ,

Γ∗ = η1Z ⊕ η2Z, and E∗ = C/Γ∗, where η1 = ω2
√

3
and η2 = − ω√

3
. We also define the

corresponding terms for a scaled honeycomb lattice of scale λ by Γλ = λζ1Z ⊕ λζ2Z,

Eλ = C/Γλ, Γ∗λ = λ−1η1Z ⊕ λ−1η2Z and E∗λ = C/Γ∗λ. Let T1, T2 ∈ L(L2(C)) be the

standard translation operators (Tiu)(x) := u(x− ζi).

4.2.2 Chiral and anti-chiral tunnelings

The chiral and anti-chiral tunneling potentials, V and U , are smooth “unit-size” pe-

riodic functions (cf. [12]) satisfying for aj = 4
3
πiωj with j = 0, 1, 2 the following

symmetries

V (z + aj) = ω̄V (z), V (ωz) = V (z), V (z) = V (−z), V (z̄) = V (−z),

U(z + aj) = ω̄U(z), U(ωz) = ωU(z), U(z̄) = U(z).

In particular, since ζ1 = 3a1, ζ2 = 3a2, we have V (z+ζj) = V (z) and U(z+ζj) = U(z)

for j = 1, 2. Thus V (z), U(z), U−(z) := U(−z) are periodic on Γ. The tunneling

potentials on the physical moiré scale are then V (z/λθ), U(z/λθ), U−(z/λθ).

4.2.3 Magnetic BM model with Adiabatic scaling

To introduce the BM model with magnetic field we start with the physical or adiabatic

scaling. Since we will immediately change to a semiclassical scaling, we denote all
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(a) tunneling potential |V |2
for AA′/BB′-coupling.

(b) tunneling potential |U |2
for AB′-coupling.

(c) tunneling potential |U−|2
for BA′-coupling.

Figure 4.2: The tunneling potentials for different coupling types on unit-size honey-
comb lattice.

objects with a ”∼” in this paragraph. Let Ã(z̃) = (Ã1(z̃), Ã2(z̃), 0) ∈ C∞(C;R3)

be the magnetic vector potential of a magnetic field perpendicular to the TBG. The

tunneling potentials, U and V , defined on the “unit-size honeycomb lattice” are then

rescaled to the physical moiré-size by rescaling coordinates by λθ. Thus the magnetic

BM model is H̃ θ : D(H̃ θ) ⊂ L2(C;C4)→ L2(C;C4)

H̃ θ := H̃ θ
0 + Ṽ :=

H̃θ
D 0

0 H̃−θD

+

 0 T̃ θ

(T̃ θ)∗ 0



with H̃θ
D =

2∑
i=1

σθi (Dx̃i − Ãi(z̃)) and T̃ θ(z̃) =

α̃0V (z̃/λθ) α̃1U−(z̃/λθ)

α̃1U(z̃/λθ) α̃0V (z̃/λθ)

, where λθ, U

and V are given above and α̃i represent the tunneling strength, i = 1, 2.

4.2.4 Magnetic BM model with Semiclassical Scaling

We shall now rescale the Hamiltonian in the previous paragraph to “unit-size” and

multiply the Hamiltonian by λθ to work in another more convenient scaling called the
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semiclassical scaling : Let z = z̃/λθ, αi = λθα̃i, Ai(z) = λθÃi(λθz) (overall represented

by a unitary operator U), we consider

H θ(z) := λθ(UH̃ θU−1)(z) =

Hθ
D 0

0 H−θD

+

 0 T (z)

T (z)∗ 0

 =: H θ
0 + V (z), (4.1)

where Hθ
D =

∑2
i=1 σ

θ
i (Dxi − Ai(z)), or equivalently, Hθ

D = e−i
θ
4
σ3HDe

i θ
4
σ3 where

HD =

 0 a

a∗ 0

 with


a = 2Dz − A(z)

a∗ = 2Dz − A(z)

, T (x) =

α0V (z) α1U−(z)

α1U(z) α0V (z)

 . (4.2)

We denote the chiral model by H θ
c = H θ|α0=0 and the anti-chiral model by H θ

ac =

H θ|α1=0.

Remark 4.1 (Strong magnetic field). Here αi = αi(θ) depends on θ, but we shall not

emphasize this dependence further. Instead, we observe that small twisting angles

naturally correspond, for constant magnetic fields, to the limiting regimes α & 1 and

B � 1. This provides the basis of our study of large magnetic fields which we coin the

semiclassical scaling.

Remark 4.2 (Periodic magnetic potentials). When considering periodic magnetic po-

tentials A ∈ C∞(C/Γ′), where Γ′ is commensurable with respect to the moiré lattice

Γ, it suffices to consider a larger lattice Γ′′ with respect to which both the magnetic

potentials and tunnelling potentials are periodic, i.e. Γ′′ ⊂ n1Γ∩n2Γ′ for some n ∈ N2.

Therefore, we shall restrict us, when discussing periodic magnetic potentials, to po-

tentials that are just periodic with respect to Γ.

Bloch-Floquet theory for magnetic BM. We now recall the standard Bloch-

Floquet theory when the magnetic potential is composed of a linear part Acon(z) =
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−B
2
zi and a periodic part Aper ∈ C∞(E;C), which corresponds to a constant magnetic

field B and a zero-flux magnetic field respectively, and the electric potential is periodic

V ∈ C∞(E;C).

Lemma 4.2.1. Let λ ∈ Z \ {0}, B = µ
8πλ2 Im(ω)

for some µ ∈ Z. Let Γλ = γ1Z × γ2Z

with γ1 = 4πωiλ, γ2 = 4πω2iλ. Define the magnetic translations for all m ∈ Z2 and

γ ∈ Γλ by

Tm1γ1+m2γ2 := eim1m2µπTm1γ1+m2γ2 , where Tγu(z) = exp

(
iB

2
Im(γ̄z)

)
u(z + γ).

(4.3)

There is a unitary map UB : L2(C;Cn)→ HB defined by

UBu(k, z) =
∑
γ∈Γλ

e−iRe((γ+z)k̄)Tγu(z), for all z,k ∈ C, where (4.4)

HB =
{
v ∈ L2(C2;Cn) : Tγvk = vk, vk+k′ = e−iRe(•k′)vk, for all γ ∈ Γλ,k

′ ∈ Γ∗λ

}
,

such that

UBH θ(z,Dz)U−1
B =

∫ ⊕
E∗λ

H θ
k (z,Dz)dk where H θ

k (z,Dz) = H θ(z,Dz + k
2
). (4.5)

where each H θ
k is defined on L2

B(Eλ) := {f ∈ L2
loc(C) : Tγf = f, for all γ ∈ Γλ}.

Proof. Recall by (4.1), a = 2Dz − Ācon(z)− Āper(z). By direct computation, we get


[Tγ, 2Dz − Ācon] = [Tγ, 2Dz̄ + Acon] = [Tγ, Aper] = [Tγ,V ] = 0, for all γ ∈ Γλ,

TαTβ = exp
(
iB
2

Im(β̄α)
)
Tα+β = exp

(
iB Im(β̄α)

)
TβTα, for all α, β ∈ Γλ.

In particular, for B, λ as specified in the Lemma, we have iB
2

Im(γ̄2γ1) = −ik2π. Then
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Tγ1Tγ2 = (−1)k2Tγ1+γ2 . Thus, with Tγ defined as in (4.3), we have


TαTβ = Tα+β = TβTα, for all α, β ∈ ΓB,

[Tγ, a] = [Tγ, a∗] = [Tγ,V ] = [Tγ,H θ] = 0, for all γ ∈ ΓB.

(4.6)

Thus {Tγ}γ∈ΓB forms an abelian group of transformations commuting with H θ. Fur-

thermore, one can check by (4.4) and (4.6) that


TγUBu(k, z) = UBu(k, z), for all γ ∈ ΓB,

UBu(k + k′, z) = e−iRe(k′z̄)UBu(k, z), for all k′ ∈ Γ∗B, z ∈ C.
.

Finally, from [Tγ, a] = 0, e−iRe((γ+z)k̄)aeiRe((γ+z)k̄) = a + k and UBV U−1
B = V , we

conclude (4.5).

Remark 4.3 (Floquet transformed operators). In this article, we shall use the con-

vention that for operators S that commute with translations {Tγ}γ∈Γλ , as defined

in Lemma 4.2.1 we introduce the family of operators
∫ ⊕
E∗λ
Sk dk := UBSU∗B, where

Sk(z,Dz) = S(z,Dz + k̄
2
).

Proof. Assume ψ0,k(z) = e−Sfk(z̄)e−
z̄2B

4 e−iRe(zk̄) for S(z) = |z|2B
4

and some analytic

function fk(z). By direct computation, one observes that akψ0,k = 0. Thus we only

need to find an fk such that ψ0,k ∈ L2
B(Eλ), i.e. Tγjψ0,k = ψ0,k, j = 1, 2. Let

γ0 = −γ1−γ2. By linearity, it is enough to show Tγjψ0,k = ψ0,k for j = 0, 2. It is more

convenient to work with these two base vectors. Now applying eS to both sides and
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noticing that T̃γj := eSTγje−S = exp
(
−B

4
γj(2z̄ + γ̄j) + γj∂z + γ̄j∂z̄

)
, we get

T̃γj
(
fk(z̄)e−

z̄2B
4 e−iRe(zk̄)

)
= fk(z̄)e−

z̄2B
4 e−iRe(zk̄),

⇒ fk(z̄ + γ̄i)

fk(z̄)
= exp

(
B

4
(γj + γ̄j)(2z̄ + γ̄j) +

i

2
(γjk̄ + γ̄jk)

)
.

In particular, let w = z̄, for γ0 = 4πλi and γ2 = 4πω2λi, we have

fk(w − 4πλi)

fk(w)
= e4πλ Im(k)i,

fk(w − 4πλωi)

fk(w)
= exp

[
2πλB Imω(2w − 4πλωi) + 2πλ(ωk− ω̄k̄)

]
.

(4.7)

General functions that satisfy such boundary conditions are fk(z) = eθzϑ 1
2
, 1
2
( z
−4πλi

−

zk|ω) where θ and zk are to be determined to satisfy (4.7) and ϑ 1
2
, 1
2
(z|τ) is a Jacobi

theta function. Using the properties of Jacobi theta functions below

ϑa,b(z|τ) :=
∑
n∈Z

exp(πi(a+ n)2τ + 2πi(n+ a)(z + b)), Im τ > 0,

ϑa,b(z + 1|τ) = e2πiaϑa,b(z|τ), ϑa,b(z + τ |τ) = e−2πi(z+b)−πiτϑa,b(z|τ),

we see

fk(z − 4πλi)

fk(z)
= exp(πi(1− 4θλ)),

fk(z − 4πλωi)

fk(z)
= exp(−4πλωθi+

z

2λ
+ 2πzki− πi− πωi)

(4.8)

Comparing (4.7) with (4.8), and use 8πλ2B Im(ω2) = k2 = 1, we find θ = Im k + 1
4λ

and zk = 2λωk− iλωk− iλω̄k̄ + 1
2

+ ω
2
.

Then since [ak, a
∗
k] = 2B, we can inductively define a sequence of ψn,k such that

a∗kψn,k =
√

2B(n+ 1)ψn+1,k and akψn,k =
√

2Bnψn−1,k.
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Figure 4.3: Constant magnetic field: On the left, flat bands for chiral model (α1 = 1);
in the middle (θ = 0) and on the right (θ = π) non-flat bands for anti-chiral model,
(α0 = 1).

By (4.2), one can check for n ≥ 0 we have HD

ψn−1,k

±ψn,k

 = ±
√

2nB

ψn−1,k

±ψn,k

 .

4.3 Spectral properties

In this section, we provide a basic spectral analysis of the magnetic BM model. We

start by reducing the chiral and anti-chiral Hamiltonians to an off-diagonal form.

4.3.1 Spectral properties of chiral and anti-chiral model

The chiral model is described by the Hamiltonian (4.1) for α0 = 0, which after conju-

gation by U = diag(eiθ/4, e−iθσ3/4, eiθ/4), Hc = U H θU , reads

Hc =

 0 (Dc)∗

Dc 0

 with Dc =

2Dz̄ − A1(z)− iA2(z) α1U(z)

α1U−(z) 2Dz̄ − A1(z)− iA2(z)

 .(4.9)

Instead, when setting α1 = 0 and conjugating by a unitary V , with λ = ei
π
4 , we obtain
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the anti-chiral model which is described by the Hamiltonian

H θ
ac := VH θV =

 0 (Dθac)
∗

Dθac 0

 with

V =

V1 V2

V2 V1

 for V1 =

iλ 0

0 0

 ,V2 =

0 0

0 −λ̄

 ,

Dθac =

 α0V (z) eiθ/2(2Dz̄ − (A1(z) + iA2(z)))

eiθ/2(2Dz − (A1(z)− iA2(z))) α0V (z)

 .

(4.10)

The off-diagonal structore implies that for both the chiral and anti-chiral model with

magnetic field, the spectrum is symmetric with respect to zero. In particular, let

U := (σ3 ⊗ idC2) then it follows that UHcU = −Hc and UH θ
acU = −H θ

ac.

We start by studying the existence of flat bands in magnetic fields that are periodic with

respect to the moiré lattice. Consider the Hamiltonian H θ introduced in (4.1). We

shall use the Floquet operators H θ
k as introduced in Lemma 4.2.1 for quasi-momenta

k ∈ C acting on the fundamental cell C/Γ with periodic boundary conditions. We then

introduce the parameter set, of flat bands at energy zero, for the chiral Hamiltonian

Ac :=

{
α1 ∈ C; 0 ∈

⋂
k∈C

SpecL2(C/Γ)

(
H θ

c,k(α1)
)}

and denote the analogous set of α0 for the anti-chiral model by Aac. Our first theorem

shows that in the chiral Hamiltonian, periodic magnetic fields do not affect the presence

of flat bands as characterized in [79, 6] and shown to exist in [6, 87].

Theorem 4.1 (Magic angles–Periodic magnetic fields). Consider the BM model with

Γ-periodic magnetic potentials A ∈ C∞(E;R2):

For chiral Hamiltonian: The magic angles are independent of the magnetic potential,
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Figure 4.4: Spectrum of Tk for k /∈ Γ∗ with periodic magnetic field. The TKV19 α1

do not depend on the magnetic field strength.

i.e. α ∈ Ac for A = 0 if and only if α ∈ Ac for non-zero A ∈ C∞(E;R2). In particular,

we have the upper bound |Ac ∩BR(0)| = O(R2).

For anti-chiral Hamiltonian: The anti-chiral Hamiltonian, with magnetic potentials as

above, does not possess any flat bands at zero, i.e. Aac = ∅.

We split the proof of Theorem 4.1 on the existence/absence of flat bands into two parts,

separating the statement about the chiral Hamiltonian from the statement about the

anti-chiral Hamiltonian. We start with a discussion of the chiral Hamiltonian.

Proof of Theo. 4.1, Chiral part. For the chiral Hamiltonian (4.9), α0 = 0, it suffices

to analyze the nullspaces of the off-diagonal operators. Without loss of generality, we

can study the nullspace of Dk,c(α1) where 0 ∈ Spec(Dk,c)(α1)⇔ α−1
1 ∈ Spec(Tk) with

Birman-Schwinger operator Tk = (2Dz̄ − (A1(z) + iA2(z)) + k)−1

 0 U(z)

U−(z) 0

 for

k /∈ Γ∗. For any zero mode χk ∈ L2(E) to Dk,c(α1, B = 0) it follows that ψk = χk ·ψ0 ∈

L2(E), with ψ0 as in (E.3) solves

Dk,c(α1)ψk = ψ0Dk,c(α1, B = 0)χk︸ ︷︷ ︸
=0

+χk (2Dz̄ − (A1(z) + iA2(z)))ψ0(z)︸ ︷︷ ︸
=0

= 0.
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This shows that Hc(B = 0) possesses a flat band if and only if Hc(B) possesses one

for B a Γ-periodic magnetic field. That magic angles α1 of the chiral Hamiltonian can

then be characterized by reciprocals of eigenvalues of Tk with A = 0 follows then from

[6, Theo. 2]. We now utilize the compactness of Tk, with A = 0, to give an upper

bound on the number of magic angles.

Indeed, let z = x1 + ix2 = 2iω(y1 + iωy2), we shall here consider Dz̄ and V in new co-

ordinates (y1, y2). Thus, decomposing for AN := ΠNTk, with ΠN : L2(R2/2πZ2;C2)→

`2(Z2
2N+1;C2) such that ΠN

(∑
n∈Z2 ane

i〈y,n〉) = {a(n1,n2)}|nj |≤N , an ∈ C2 and BN :=

Tk − AN we can estimate specializing to k = 1/2

‖AN‖1 ≤ ‖ΠN(Dz̄ − k)−1‖1‖V‖

≤
√

3‖U‖∞
∑
|m|∞≤N

1∣∣∣(m1+
1
2

)2
+
(
m1+

1
2

)(
m2+

1
2

)
+
(
m2+

1
2

)2
∣∣∣1/2

=
√

3‖U‖∞

( ∑
|m|∞≤2

∣∣∣ (m1 + 1
2

)2
+
(
m1 + 1

2

) (
m2 + 1

2

)
+
(
m2 + 1

2

)2
∣∣∣−1/2

+
∑

2<|m|∞≤N

∣∣∣ (m1 + 1
2

)2
+
(
m1 + 1

2

) (
m2 + 1

2

)
+
(
m2 + 1

2

)2
∣∣∣−1/2

)

≤
√

3‖U‖∞

(
17 +

∫ √2N

1/2

∫ 2π

0

1√
1+ 1

2
sin(2ϕ)

dϕ

)

=
√

3‖U‖∞
(

17 + (
√

2N − 1
2
)7
)
≤ C2N.

Similarly, we have that

‖BN‖ ≤ sup
|m|∞>N

∣∣∣ (m1 + 1
2

)2
+
(
m1 + 1

2

) (
m2 + 1

2

)
+
(
m2 + 1

2

)2
∣∣∣−1/2

‖U‖∞

≤ ‖U‖∞
(N − 1

2
)
≤ C1

N
.

Thus, for |α1| ≤ R we take N , large enough, such that ‖α1BN‖ ≤ RC1

N
< 1/2. Thus,
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we may pick N = dRC1/2e. Hence, we can write 1 − α1Tk = (1 − α1BN)(1 − (1 −

α1BN)−1α1AN) and the magic α1’s are the zeros of f(z) = det(1−(1−α1BN)−1α1AN).

Using the standard bound for Fredholm determinants, we have |f(z)| ≤ e2R‖A1‖1 ≤

e2RC2N ≤ eR
2C1C2 . Hence, as f(0) = 1, Jensen’s formula implies that the number n of

zeros of f for α ∈ B0(R) is bounded by n(R) ≤ log(2)−1
(

4R2C1C2

)
.

We now continue by showing that the anti-chiral Hamiltonian does not possess flat

bands at energy zero.

Proof of Theo.4.1, Anti-Chiral part. By (4.10), we have to study the invertibility of

Kk(α0) :=

 λ Qk(α0)

Qk(α0)∗ λ

 where Qk(α0) :=

α0e
−iθ/2V (z) Dz(k, A)

Dz̄(k, A) α0e
−iθ/2V (z)


and we introduced

Dz(k̄, A) = 2Dz + k̄− (A1(z)− iA2(z)) and Dz̄(k, A) = 2Dz̄ + k− (A1(z) + iA2(z)).

We shall omit the α0 dependence and set θ = 0 to simplify notation. The formal inverse

of Kk is given by K−1
k =

 λ(λ2 −QkQ
∗
k)−1 −Qk(λ2 −Q∗kQk)−1

−(λ2 −Q∗kQk)−1Q∗k λ(λ2 −Q∗kQk)−1

 . The operator

R 3 k1 7→ Kk for k2 fixed, and λ ∈ R is a self-adjoint holomorphic family with compact

resolvent on L2(C/Γ). A flat band would imply that Kk(α0) is not invertible for any

k ∈ C. To simplify the analysis, we write

Qk =
2∑
j=1

(Dj + kj − Aj(x))σj︸ ︷︷ ︸
=:HD,k

+V and Q∗k =
2∑
j=1

(Dj + kj − Aj(x))σj︸ ︷︷ ︸
=:HD,k

+V ,
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where V = diag(V, V ). Recall also the Pauli operator HP,k given as

HP,k = (HD,k)2 =
(
(D1 + k1 − A1(x))2 + (D2 + k2 − A2(x))2

)
− (∂1A2 − ∂2A1)(x)σ3.

In this setting, we have that both k1,k2 are real. Thus, we have for S(λ) = HP,k − λ2

Q∗kQk − λ2 = (1 + ([Q∗k,V ] + VQ∗k + V∗Qk + VV∗)S(λ)−1︸ ︷︷ ︸
=:W1(λ)

)S(λ)

QkQ
∗
k − λ2 = (1 + ([Qk,V∗] + V∗Qk + VQ∗k + VV∗)S(λ)−1︸ ︷︷ ︸

=:W2(λ)

)S(λ).

We now complexify the real part of k, which is k1, and choose k = k1 + ik2 with

k1 := (µ + iy), where µ, y,k2 ∈ R. Since σ0(Qk) is the Dirac operator and the Pauli

operator its square, we find by self-adjointness that

‖S(λ)−1‖, ‖QkS(λ)−1‖, ‖Q∗kS(λ)−1‖ = O(|y|−1).

Assuming that there exists a flat band to Kk, it follows that

−1 ∈ Spec(W1(λ)), Spec(W2(λ))

in a complex neighbourhood of k1 ∈ R by Rellich’s theorem. Then [54, Thm 1.9]

implies that for all k1 ∈ C we have −1 ∈ Spec(W1(λ)), Spec(W2(λ)). But this is

impossible, by the estimates on ‖S(λ)−1‖ for |y| large enough.

After discussing periodic magnetic potentials in such detail, we shall now study the

effect of constant magnetic fields.
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Figure 4.5: Periodic magnetic field A1(z) = 2
√

3 cos(Im(z)): On the left, the lowest
bands of the anti-chiral Hamiltonian, α0 = 1, where 0 is not protected, under periodic
magnetic perturbations, on the right the lowest bands of the chiral Hamiltonian, α1 =
1, where 0 is protected.

The zero energy level of the relativistic Dirac operator with zero potential and non-

zero constant magnetic field is a flat band with respect to any lattice for which the

magnetic flux Φ :=
∫
E
B(z) dz > 0 through the fundamental domain satisfies Φ ∈ 2πQ.

We will argue next that the flat band persists for the chiral Hamiltonian where the

fundamental domain is determined by the moiré lattice. For general magnetic fields,

the concept of bands does not apply. Instead, since a flat band for a Floquet operator,

corresponds to an eigenvalue of infinite multiplicity of the original operator, one should

study the presence of eigenvalues of infinite multiplicity. Then, we have the following

result that we split up into one statement on flat bands and one on eigenvalues of

infinite multiplicity

Theorem 4.2 (Bands). Let A be a magnetic potential associated with a constant field

B > 0 such that the magnetic flux Φ through any moiré cell C/Γ satisfies Φ ∈ 2πQ,

then the chiral Hamiltonian possesses a flat band at zero energy. This flat band persists

when adding a periodic magnetic potential Aper ∈ C∞(E).

Theorem 4.3 (Eigenvalues). Let α1 ∈ C be such that the chiral non-magnetic Hamilto-

nian Hc(B = 0) possesses a flat band, i.e. a magic angle. When adding to Hc(B = 0)
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any magnetic field B ∈ L∞comp with flux bΦ/2πc ≥ 12 or any periodic magnetic po-

tential Aper ∈ C∞(E), the operator Hc has an eigenvalue of infinite multiplicity. If

α1 is not magic, and B ∈ L∞comp as above, then Hc possesses an eigenvalue of multi-

plicity bΦ/2πc at zero. In particular, for non-zero constant magnetic fields the chiral

Hamiltonian possesses an eigenvalue of infinite multiplicity at zero for any α1 ∈ R.

Proof. To see that 0 is in the spectrum of the Hamiltonian of the chiral Hamiltonian,

we use that we can multiply any ψ = (ψ1, ψ2) ∈ C4 such that Hc(B = 0)ψ = 0 and

define the new function χ = (ϕ1ψ1, ϕ1ψ2) which then satisfies Hc(B)χ = 0.

By the Aharonov-Casher effect [26, Sec.6.4], there are precisely bΦ/(2π)c linearly inde-

pendent square-integrable zero modes. Multiplying this with the Floquet-periodic zero

modes of the chiral model, which exist for all α1 ∈ C gives the claim for the magnetic

fields of compact support. When α1 is magic, the

Turning to constant magnetic fields with flux Φ ∈ 2πQ, through a fundamental domain

E for some n, then by adding potentials Aper ∈ C∞(E), there is by Proposition E.0.2

a ϕk such that (ak+Aper)ϕk = 0 and the existence of a flat band at zero follows. If the

fields are not commensurable, the same argument shows the existence of an eigenvalue

of infinite multiplicity.

The stability under perturbations by periodic magnetic potentials, follows directly

from the existence of periodic ψ0 6= 0 such that, (2Dz̄ + Aper)ψ0 = 0.

2We let byc be the largest integer strictly less than y.
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4.3.2 Hörmander condition and exponential localization of

bands

In this section, we study the exponential squeezing of bands for periodic magnetic

fields and small angles. In particular, we shall see that in the chiral model, there will

be at least ∼ 1/θ many bands in an exponentially (in θ) small neighbourhood around

zero. We conclude this property by studying the existence of localized quasi-modes in

phase space. Phrased differently, for small twisting angles any angle wants to be magic.

We shall prove this for the chiral model and then show that in the anti-chiral model

such quasi-modes do not exist. In the case of the non-magnetic BM Hamiltonian, this

has been established in [6, 7].

4.3.3 Exponential squeezing in chiral model

The chiral model possess in general a lot quasi-modes located close to the zero en-

ergy level. Indeed, since h = 1/B is our semiclassical parameter, the principal sym-

bol of hDθc , with Dθc as in (4.9), is just in semiclassical Weyl quantization p(z, ζ) :=

σ0(hDθ
c)(z, ζ) = 2ζ̄ − A(z). The existence of localized modes will depend on the

vanishing/non-vanishing of the bracket

{p, p̄}(z) = 2(∂z̄A(z)− ∂zA(z)) = 4iB(z). (4.11)

We observe that with our quantization, the principal symbol and consequently the

Poisson bracket are independent of the potentials. To see the effect of the potentials,
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one may look at the non-equivalent tight-binding limit

Dθc,TB =

2θDz̄ − (A1(z) + iA2(z)) U(z)

U−(z) 2θDz̄ − (A1(z) + iA2(z))

 . (4.12)

The semiclassical principal symbol of Dθc,TB is given by

σ0(Dθc,TB)(z, ζ) =

2ζ̄ − (A1(z) + iA2(z)) U(z)

U−(z) 2ζ̄ − (A1(z) + iA2(z))

 .

The determinant of the principal symbol of Dθc,TB and its conjugate symbol is given

for W (z) := U(z)U−(z) by q(z, ζ) :=
(
2ζ̄ − (A1(z) + iA2(z))

)2 −W (z).

We then have the following existence of quasimodes result, which for the semiclassical

scaling in Dθc follows from the Poisson-bracket (4.11) along the lines as presented for

Dθc,TB below.

Proposition 4.3.1. There exists an open set Ω ⊂ C and a constant c such that for

any k ∈ C and z0 ∈ Ω, there exists a family θ 7→ uθ ∈ C∞(C/Γ;C2) such that for

0 < θ < θ0,

|(Dθc,TB − θk)uθ(z)| ≤ e−c/θ, ‖uθ‖L2 = 1, |uθ(z)| ≤ e−c|z−z0|
2/θ. (4.13)

Proof. Since the Poisson-bracket in complex coordinates reads

{q1, q2} = ∂ζq1∂zq2 + ∂ζ̄q1∂z̄q2 − ∂zq1∂ζq2 − ∂z̄q1∂ζ̄q2,
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we find that under the constraint that q = q̄ = 0 at some point (z, ζ)

{q, q̄}(z, ζ) = (∂ζ̄q∂z̄ q̄ − ∂zq∂ζ q̄)(z, ζ) = 8i|W (z)|B(z)− 8i Im(∂zW (z)W (z)
1/2

).

We then have that using that U(z) = 0

W (z) = −z2(∂zU(0))2(1 +O(|z|)) and ∂zW (z) = −2z(∂zU(0))2(1 +O(|z|)),

which shows that

W (z)
1/2
∂zW (z) = 2i|z|2|∂zU(0)|2∂zU(0)(1 +O(|z|)).

This implies the following expansion of the Poisson bracket at zero

{q, q̄} = 8i|z|2|∂zU(0)|2(B(z)− 2 Re(∂zU(0)) +O(|z|)).

The result then follows from a real-analytic version [29, Theorem 1.2] of Hörmander’s

local solvability condition: For a differential operator Q =
∑
|α|≤m aα(x, θ)(θD)α with

real-analytic maps x 7→ aα(x, θ) near some x0, we let q(x, ξ) be the semiclassical

principal symbol of Q. If for phase space coordinates (x0, ξ0) we have q(x0, ξ0) =

0, {q, q̄}(x0, ξ0) 6= 0, then there exists a family vθ ∈ C∞c (Ω), Ω a neighbourhood of

x0, such that for some c > 0

|(θD)αxQvθ(x)| ≤ Cαe
−c/θ, ‖vθ‖L2 = 1, |(θ∂x)αvθ(x)| ≤ Cαe

−c|x−x0|2/θ.
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We then have the following result exhibiting the exponential squeezing of bands:

Theorem 4.4 (Exponential squeezing of bands). Consider the semiclassical scaling

of the chiral Hamiltonian with magnetic potential A ∈ C∞(E) inducing a non-zero

magnetic field or consider the chiral Hamiltonian with tight-binding scaling (4.12) and

arbitrary magnetic potential A ∈ C∞(E). For the Floquet-transformed operator, the

spectrum is a union of bands

SpecL2(E)(H
θ
k ) = {Ej(k, θ)}j∈Z, Ej(k, θ) ≤ Ej+1(k, θ),k ∈ C,

where E0(k, θ) = minj |Ej(k, θ)|. Then there exist constants c0, c1, c2 > 0 and θ0 > 0

such that for all k ∈ C and θ ∈ (0, θ0),

|Ej(k, θ)| ≤ c0e
−c1/θ, |j| ≤ c2θ

−1.

Proof. By using the above proposition and [6, Prop. 4.2], we can use the proof of [6,

Theo. 5] to deduce the result.

4.3.4 Anti-chiral model

To see that the conclusion of Theorem 4.4 does not hold for the anti-chiral Hamiltonian,

we proceed as follows, and shall again restrict us to the slightly more technical tight-

binding scaling. Consider in (4.10) for small θ > 0 the operator, with bk := 2θDz −

(A1 − iA2)− θk,

Dθac,TB =

V bk

b∗k V

 .
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Then, the existence of a zero mode is equivalent, for z ∈ Ω := {w ∈ C;V (w, w̄) 6= 0},

to a zero mode of the operator

P (θ)vθ(z) =
(
V (z)b∗k(V (z)−1bk − |V (z)|2

)
vθ(z).

We then find

Proposition 4.3.2. If u(θ) is smooth on a bounded domain with

WFh(u(θ)) = {(z0, ζ0)} ∈ T ∗Ω,

then it follows that ‖u(θ)‖ ≤ C
θ
‖P (θ)u(θ)‖, θ ↓ 0. Thus, there do not exist any quasi-

modes P (θ)u(θ) = O(θ∞).

Proof. Since σ0(p) is real-valued, the condition ∂p 6= 0 on {p = 0} precisely means

that p is of real principal type which implies the result by [89, Theo. 12.4].

The principal symbol of P (θ) is given by σ0(P (θ))(z, z̄, ζ, ζ̄) = |2ζ − (A1 − iA2)|2 −

α2
0|V (z, z̄)|2. This is of real principal type since real valued and σ0(P (θ)) = 0 implies

∂ζσ0(P (θ)) = 4(2ζ̄ − (A1 + iA2)) 6= 0 assuming V (z, z̄) 6= 0 for all z ∈ C. By the

proposition above, ‖P (θ)u(θ)‖ is bounded below by function of order θ. In particular,

(4.13) does not hold.

4.4 Density of states

In this section we study general properties of the density of states and study the

possible values the density of states takes for the Hamiltonian of TBG.
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4.4.1 General properties

In this subsection, we assume that the magnetic potential of the Hamiltonian is of

the form A = Aper + Acon where Aper ∈ C∞(E) and Acon is the vector potential of a

constant magnetic field of strength B. Let f ∈ Cc(R) then we define the regularized

trace

T̃r(f(H θ)) = lim
r→∞

Tr(1lBR f(H θ) 1lBR)

|BR|

where 1lBR is the indication function of the square centered at 0 of side length 2R. By

Riesz’s theorem, there exists the so-called density of states (DOS) measure ρ satisfying

T̃r(f(H θ)) =

∫
R
f(t) dρ(t). (4.14)

We start by showing the existence and smoothness of the DOS.

Lemma 4.4.1. For f ∈ C∞c (R) the regularized trace of f(H θ) exists, satisfies

T̃r(f(H θ)) =
1

|E|
TrL2(E)(f(H θ)) =

1

|E|

∫
E

f(H θ)(x, x) dx,

and depends smoothly on B ∈ R and θ ∈ R \ {0}, with Schwartz kernel f(H θ)(x, y)

of f(H θ).

Proof. Let Nr, NR ⊂ Γ be Nr := {ζ ∈ Γ : ζ + E ⊂ BR} and NR := {ζ ∈ Γ : ζ + E ⊂

BR 6= ∅}. Then

Sr :=
⋃
ζ∈Nr

E + ζ ⊂ BR ⊂
⋃
ζ∈NR

E + ζ =: SR.

Thus for nonnegative f ,

1

|SR|
Tr(1lSr f(H θ)) ≤ 1

|BR|
Tr(1lBR f(H θ)) ≤ 1

|Sr|
Tr(1lSR f(H θ)). (4.15)
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Furthermore, by definition, we see that for some C,C ′ > 0, for all R,

#(NR \Nr) ≤ CR, and |SR \ Sr| ≤ C ′R. (4.16)

Recall that Tζ , defined in Lemma 4.2.1, satisfy [Tζ ,H θ] = 0, therefore [Tζ , f(H θ)] =

0. Furthermore, since Tζ 1lE+ζ T−ζ = 1lE, thus Tr(1lE+ζ f(H θ)) = Tr(1lE f(H θ)).

Hence,

Tr(1lSr f(H θ)) =
∑
ζ∈Nr

Tr(1lE+ζ f(H θ)) = (#Nr) Tr(1lE f(H θ))

and similarly Tr(1lSR f(H θ)) = (#NR) Tr(1lE f(H θ)). Inserting this into (4.15), tak-

ing R→∞ we get by using (4.16) that

T̃r(f(H θ)) =
1

|E|
TrL2(E)(f(H θ)).

To conclude the smooth dependence on θ and B, it suffices to adapt the arguments

starting at [13, p.251].

In the next Proposition, we show that the integrated density of states of the twisted

bilayer graphene Hamiltonian is stable under small perturbations of the magnetic field

that do not close any spectral gaps.

Proposition 4.4.2. Let the magnetic vector potential A = Acon + Aper be the sum of

a linear potential associated with a constant field B0 and Aper ∈ C∞(E). Assuming

t0, t1 /∈ Spec(H θ), there exists a neighbourhood B ⊂ R, open, connected, with B0 ∈ B

as well as m = (m1,m2) ∈ Z2 such that for any perturbation of the constant magnetic
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field B ∈ B, t0, t1 /∈ Spec(H θ) the DOS satisfies

ρ((t0, t1)) =
1

|E|

(
m1

B|E|
2π

+m2

)
.

Proof. By density, we may assume that B0|E| = 2π p
q
∈ 2πQ. This implies by choosing

λ = q that B0|Eλ| ∈ 2πZ. Let λn,k be the n-th Bloch band of H θ
k for n ∈ Z on

k ∈ E∗λ. The spectrum of H θ has band structure and is given by Spec(H θ) = ∪nJn

where Jn =
⋃

k∈E∗λ
λn,k. Let t0, t1 6∈ Spec(H θ). We call I the set of bands fully contained

in (t0, t1). In terms of k 7→ un,k given by the eigenvectors associated with λn,k spectral

projection of H θ
k is given by

1l(t0,t1)(H
θ
k )vk(x) =

∫
Eλ

1l(t0,t1)(H
θ
k )(x, y)vk(y)dy with

1l(t0,t1)(H
θ
k )(x, y) :=

∑
j∈I

uj,k(x)uj,k(y).

So the spectral projection 1l(t0,t1)(H
θ) = U−1

B0

∫ ⊕
E∗λ

1l(t0,t1)(H
θ
k ) dk
|E∗λ|
UB0 of H θ is

1l(t0,t1)(H
θ)u(x) =

∫
R

1l(t0,t1)(H
θ)(x, y)u(y)dy with

1l(t0,t1)(H
θ)(x, y) =

∫
E∗λ

1l(t0,t1)(H
θ
k )(x, y)

dk

|E∗λ|
.

Since t0, t1 /∈ Spec(H θ) and let N := |I|, then by Lemma 4.4.1

ρ((t0, t1)) :=

∫
Eλ

1l(t0,t1)(H
θ)(x, x)

dx

|Eλ|
=

∫
E∗λ

∑
j∈I

1
dk

4π2
=

N

|Eλ|
,

thus T̃r(1l(t0,t1)(H
θ)) = N

|Eλ|
. If f ∈ C∞c (R), such that f(x) = 1 for x ∈ conv

⋃
n Jn

3

3conv is the convex hull
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and f(x) = 0 for x ∈ Spec(H θ) \ conv
⋃
n Jn, then

ρ((t0, t1)) =

∫
R
f(t)ρ(dt) =

N

|Eλ|
.

Recall that B0|E| = B0|Eλ|
q

= 2π p
q
∈ 2πQ. We then introduce a new lattice Γ̃ ⊂ Γ

generated by ζ̃1 = ζ1 and ζ̃2 = qζ2. Then B0|C/Γ̃| ∈ 2πZ and |Γ/Γ̃| = q. As before, if

t0, t1 /∈ Spec(H θ), then

φ(B0) := |E|T̃r(1l(t0,t1)(H
θ)) = |E|ρ((t0, t1)) = |E|

∫
R
f(t)dρ(t) ∈ 1

q
Z ⊂ B0|E|

2π
Z + Z

where the last inclusion follows since p, q are coprime i.e. there exist c, d ∈ Z such

that cp + dq = 1. Note that if z0 ∈ R \ Spec(H θ), then there exists ε > 0 such that

z /∈ Spec(H θ) for all |z−z0| and small perturbations of the constant field |B−B0| < ε

and φ(B) is locally a smooth function of the constant field B by Lemma 4.4.1, so there

exists B0 ∈ B ⊂ R open, connected and m ∈ Z2 such that for B ∈ B,

ρ((t0, t1)) =

∫
R
f(t)dρ(t) =

1

|E|

(
m1

B|E|
2π

+m2

)
.

4.5 Semiclassical expansion of Density of states

In this section, we provide explicit asymptotic expansions of the regularized trace in

the semiclassical limit B � 1 for constant magnetic field in the spirit of Remark 4.1 for

the chiral and anti-chiral model respectively. We also comment on the differentiability

of the DOS at the end of this section in preparation for applications in the next section.
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We consider (4.1) with fixed θ and constant magnetic field B:

H θ = H θ
0 + V (x) =

Hθ
D 0

0 H−θD

+

 0 T (x)

T ∗(x) 0

 . (4.17)

Notice that the spectrum of H θ
0 is composed of Landau levels λn,B := sgn(n)

√
2|n|B

(see Lemma 4.5.2) which will be perturbed by the tunnelling potential V (see Remark

4.5). To simplify the notation, we therefore introduce the Landau bands Λn,B,V :=

(λn−1,B +‖V ‖∞, λn+1,B−‖V ‖∞) for n ∈ Z, in which the spectrum of H θ is contained

around the n-th Landau level λn,B, cf. Remark 4.6.

Now we state the main result of this section which is the asymptotic expansion of the

DOS. We start with the chiral model:

Theorem 4.5 (Chiral model). Let λn,B = sgn(n)
√

2|n|B. For a fixed n ∈ Z, for ε > 0

small enough, for all f ∈ CK
c (Λn,B,V ) with K ≥ 6

ε
− 2, we have

T̃r(f(Hc)) =

[
B

π
f(λn,B) +

|n|
2π

Ave(U)f ′′(λn,B)

]
+On,K,f,V (B−

1
2

+ε) (4.18)

with

U(η) =
α2

1

8

[
α2

1(|U−(η)|2 − |U(η)|2)2 + 4|∂η̄U−(η)− ∂ηU(η)|2
]
,

Ave(g) =
1

|E|

∫
E

g(η)L(dη),

η = x2 + iξ2, and On,K,f,V = On(‖V ‖∞‖f‖CK )

Furthermore, fix N ∈ N+ and consider 2N + 1 Landau bands with n ∈ {−N, .., N},

then for all ε > 0 small enough, for any f ∈ CK
c ([λ−(N+1),B + ‖V ‖∞, λN+1,B −‖V ‖∞])
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with K ≥ 6
ε
− 2, we have

T̃r(f(Hc)) =
N∑

n=−N

[
B

π
f(λn,B) +

|n|
2π

Ave(U)f ′′(λn,B)

]
+O(N),K,f,V (B−

1
2

+ε)

where O(N),K,f,V :=
N∑

n=−N
On,K,f,V .

Our proof also shows that all higher order terms, which in general have complicated

expressions, in the expansion of T̃r(f(Hc)) are of the form f (k)(λn,B) (see (4.49)),

which is different from the anti-chiral case studied below.

Next, we consider the anti-chiral model, where the sub-leading correction in the regu-

larized trace is already of order
√
B. Since the dominant sub-leading correction in the

anti-chiral case is one order higher than in the chiral case, we only state the correction

up to order
√
B.

Theorem 4.6 (Anti-chiral model). Under the same assumption as in Theorem 4.5,

we have for all ε > 0 small enough, f ∈ CK
c (Λn,B,V ) with K ≥ 3

ε
− 1

T̃r(f(H θ
ac)) =

B

2π
tn,0(f)−

√
B

2π
tn,1(f) +On,K,f,V (Bε), (4.19)

where On,K,f,V = On(‖V ‖∞‖f‖CK ), Ave(g) = 1
|E|

∫
E
g(η)dL(η),

tn,0(f) = Ave (f(λn,B + cn) + f(λn,B − cn)) ,

tn,1(f) = Ave
(
s2
nf
′(λn,B + cn) + s2

nf
′(λn,B − cn)

)
,

sn(η; θ) =


α0 sin( θ

2
)|V (η)|,

α0|V (η)|,
cn(η; θ) =


α0 cos( θ

2
)|V (η)|, n 6= 0,

α0|V (η)|, n = 0.

.
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Furthermore, fix N ∈ N+ and consider 2N + 1 Landau bands with n ∈ {−N, .., N}.

For any ε > 0, f ∈ CK
c ([λ−N−1,B + ‖V ‖∞, λN+1 − ‖V ‖∞]) with K ≥ 3

ε
− 1, we have

T̃r(f(H θ
ac)) =

N∑
n=−N

[
B

2π
tn,0(f) +

√
B

2π
tn,1(f)

]
+O(N),f,K,V (Bε)

where O(N),K,f,V :=
N∑

n=−N
On,K,f,V .

For the rest of this section, we shall temporarily stop using the identification x =

(x1, x2) ' z = x1 + ix2 and start with some preparations to prove the two results,

before. Let Σθ
i = diag(σθi , σ

−θ
i ). We can rewrite (4.17) as H θ

0 = Σθ
1Dx1+Σθ

2(Dx2+Bx1).

We will only use x = (x1, x2) to denote the position, while z is used as another unrelated

arbitrary complex number in the resolvent (H θ − z)−1.

Quantizations. Let x = (x1, x2), ξ = (ξ1, ξ2) ∈ R2. For a symbol a(x, ξ) ∈ S(R4
x,ξ),

we define the (h1, h2)-Weyl quantization aW (x, h1Dx1 , h2Dx2) : L2(R2
x)→ L2(R2

x) as

(aW (x, h1Dx1 , h2Dx2)u)(x) =
1

2π

∫
e
i
h1

(x1−y1)ξ1+ i
h2

(x2−y2)ξ2a

(
x+ y

2
, ξ

)
u(y)dydξ.

(4.20)

In this section, we shall employ two different quantizations: in Subsection 4.5.1 to

4.5.2, we use the (h1, h2) = (1, 1)-Weyl quantization. Starting from Subsection 4.5.3,

we use the (x2, hDx2)-Weyl quantization of the operator-valued symbol which is related

to the (h1, h2) = (1, h)-Weyl quantization (see Subsection 4.5.3 for more details).

Occasionally, we denote aW (x, h1Dx1 , h2Dx2) by aW for convenience when there is no

ambiguity of (h1, h2).
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4.5.1 First Reduction: Symplectic reduction

In this subsection, we first apply a symplectic reduction to H θ, then provide a spectral

description of H θ
0 and H θ. In the end, we introduce the Helffer-Sjöstrand formula

for our study of the regularized trace T̃r(f(H θ)).

Symplectic Reduction. Let (h1, h2) = (1, 1) for this subsection. Then the operator

H θ
0 and V , when viewed as a (1, 1)-Weyl quantization, have symbols H θ

0 (x, ξ) =

Σθ
1ξ1+BΣθ

2(ξ2+x1) and V (x) respectively. The following lemma provide the symplectic

reduction of H θ:

Lemma 4.5.1. Let h = 1/B. Then there is a unitary operator U , symbols G θ
0 (x, ξ) =

Σθ
1ξ1 + Σθ

2x1 and W (x, ξ) = V (x2 + h1/2x1, hξ2 − h1/2ξ1), s.t.

U H θ
0 (x,Dx)U

−1 =
√
BG θ

0 (x,Dx), (4.21)

U V (x)U −1 = W W (x,Dx). (4.22)

Remark 4.4. Notice that G θ
0 (x, ξ) does not depend on (x2, ξ2), thus the (1, 1)-Weyl-

quantization is G θ
0 (x,Dx) = (Σθ

1Dx1 + Σθ
2x1) ⊗ 1lL2(Rx2 ), where 1lL2(Rx2 ) is the identity

map on L2(Rx2).

Remark 4.5. It follows that U H θU −1 =
√
B(G θ

0 +
√
hW W ). When B →∞, we can

interpret G θ := G θ
0 +
√
hW W as a small perturbation of G θ

0 .

Proof. Recall that a symplectic transformation (y, η) = κ(x, ξ) applying to a symbol

a(x, ξ) = a ◦ κ−1(y, η) ∈ S(R4), implies the existence of a unitary operator Uκ :

L2(R2
x)→ L2(R2

y) s.t.

Uκa
W (x,Dx)U

−1
κ = (a ◦ κ−1)W (y,Dy). (4.23)
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By applying the following three symplectic transformations to H θ(x, ξ):

κ1(x, ξ) = (x1, ξ2, ξ1,−x2), κ2(x, ξ) =
(
x1 + x2

B
, x2, ξ1, ξ2 − x1

B

)
,

κ3(x, ξ) =
(√

Bx1,−x2

B
, ξ1√

B
,−Bξ2

)
,

we find 
H θ

0 ◦ κ−1
1 ◦ κ−1

2 ◦ κ−1
3 (x, ξ) =

√
B(Σθ

1ξ1 + Σθ
2x1),

V ◦ κ−1
1 ◦ κ−1

2 ◦ κ−1
3 (x, ξ) = V (x2 + h

1
2x1, hξ2 + h

1
2 ξ1).

(4.24)

By (4.23) and (4.24), the unitary operator Uκ := Uκ3 ◦ Uκ2 ◦ Uκ1 has then the desired

properties.

Spectral Properties. As mentioned in Remark 4.5, we study the spectral properties

of G θ and H θ by viewing them as perturbations of G θ
0 and H θ

0 . Therefore, we start

with G θ
0 and H θ

0 :

Lemma 4.5.2. The spectral decompositions of G θ
0 and H θ

0 are given by

Spec(G θ
0 ) = {λn := sgn(n)

√
2|n| : n ∈ Z} with eigenspace N θ

n,

Spec(H θ
0 ) = {λn,B := sgn(n)

√
2|n|B : n ∈ Z} with eigenspace U N θ

n,

where

N θ
n = span


x 7→ uθn(x1)s1(x2)

0

 ,

 0

x 7→ u−θn (x1)s2(x2)

 : ∀s1, s2 ∈ L2(Rx2)

 .

Here uθn = e−
iθ
4
σ3une

iθ
4
σ3, un = Cn

sgn(n)r|n|−1

ir|n|

, Cn =


1√
2
, n ∈ Z \ {0}

1, n = 0

, as well

as r−1 = 0, rm = C ′m(Dx1 + ix1)me−
x2
1
2 where C ′m is constant s.t. ‖rm‖L2(Rx1 ) = 1 for

122



m ∈ N.

Proof. The main observation here is for GD := σ1Dx1 + σ2x1 =

 0 a

a∗ 0

 where

a = Dx1−ix1, we have [a, a∗] = 2. Thus a and a∗ form a pair of annihilator and creator.

By the standard argument for the ladder operators, there is a sequence of normalized

rm(x1) = C ′m · (a∗)me−
x2
1
2 = C ′m(Dx1 + ix1)me−

x2
1
2 , for m ≥ 0 s.t. arm =

√
2mrm−1

and a∗rm =
√

2(m+ 1)rm+1. Then one can check by computation and (4.21) that uθn,

N θ
n and U N θ

n defined above are eigenvectors and eigenspace of G θ
0 , G θ

0 and H θ
0 w.r.t.

eigenvalue λn, λn and λn,B, for all n ∈ Z.

Remark 4.6. Since H θ = H θ
0 + V , thus

Spec(H θ) ⊂ B‖V ‖∞
(
Spec(H θ

0 )
)

=
⋃
n

B‖V ‖∞(λn,B).

Fix n, since V is bounded, when B is large enough,
{
B‖V ‖∞(λj,B)

}
|j−n|≤1

are disjoint.

Since the DOS measure ρ is supported on the spectrum, by (4.14), the regularized

trace T̃r(f(H θ)) is not affected by modifying f within the spectral gap (λk−1,B +

‖V ‖∞, λk,B − ‖V ‖∞), i.e. T̃r((χΛk,B,V f)(H θ)) = T̃r((χB‖V ‖∞ (λk,B)f)(H θ)), for any

k ∈ Z. Thus we will start with f supported on a fixed Λn,B,V to avoid the influence of

bands nearby and then consider the general case of f supported on a fixed number of

bands (see Theorem 4.5, 4.6 and their proofs in Subsection 4.5.5).

Remark 4.7. Both λn,B and λn are called Landau levels of H θ
0 and G θ

0 respectively. To

study the corresponding operators near the Landau levels, we denote H θ
n := H θ−λn,B,

H θ
0,n := H θ

0 − λn,B, G θ
n := G θ − λn and G θ

0,n := G θ
0 − λn.

Helffer-Sjöstrand formula and regularized traces. We proceed by recalling the

Helffer-Sjöstrand formula. Let K ∈ N. Given f ∈ CK+1
c (R), we can always find f̃ ,
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a order-K quasi-analytic extension of f , by which we mean a function f̃ ∈ CK+1
c (C),

such that

f̃ |R = f, and |∂z̄f | ≤ C‖f‖CK+1| Im z|K , for some C > 0. (4.25)

The concrete construction can be found in [4, Sec. 4.1] or [30, Theorem 8.1], where we

can also choose f̃ s.t. supp(f̃) ⊃ supp(f) is arbitrarily close to supp(f). We omit the

proof which can be found in the quoted references.

Lemma 4.5.3 (Helffer-Sjöstrand formula). Let H be a self-adjoint operator on a

Hilbert space. Let f ∈ CK+1
c (R) and f̃ be its order-K quasi-analytic extension, then

f(H) =
1

2πi

∫
C
∂z̄f̃(z)(z −H)−1dz ∧ dz̄. (4.26)

In particular, for f ∈ CK+1
c (Λn,B,V ), define f0(x) = f(x + λn,B) a function localized

around zero. By Remark 4.7, (4.21) and (4.26), we have

U f(H θ)U −1 = U f0(H θ
n )U = − i

2π

∫
C
∂z̄f̃0(z)(z −U H θ

n U )−1 dz ∧ dz̄

=
i
√
h

2π

∫
C
∂z̄f̃0(z)(G θ

n −
√
hz)−1 dz ∧ dz̄.

(4.27)

Thus to study f(H θ), it is enough to study the resolvent (G θ
n −
√
hz)−1.

4.5.2 Second reduction: Grushin problem

In this subsection, we apply the Schur complement formula twice for operators G θ
0,n

and G θ
n to characterize (G θ

n −
√
hz)−1 using the effective Hamiltonian. In our context,

the Schur complement formula is also called a Grushin problem and we shall use that

terminology in the sequel. See [77] for more information on Grushin problem.
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Unperturbed Grushin problem. To set up our Grushin problem, we introduce the

space Bk
x1

:= Bk(Rx1 ;C4) := (1 +D2
x1

+ x2
1)−k/2L2(Rx1 ;C4). Then

G θ
0,n,G

θ
n : Bk+1

x1
⊗ L2(Rx2 ;C)→ Bk

x1
⊗ L2(Rx2 ;C) ⊂ L2(R2

x;C4)

are bounded. Define R+
n = R+

n (θ) : Bk
x1
⊗L2(Rx2 ;C)→ L2(Rx2 ;C2) and R−n = R−n (θ) :

L2(Rx2 ;C2)→ Bk
x1
⊗ L2(Rx2 ;C) by

(R+
n t)(x2) =

∫
R
Kθ
n(x1)∗t(x1, x2) dx1 and R−n (s)(x) = Kθ

n(x1)s(x2) (4.28)

with

Kθ
n(x1) =

uθn(x1) 0

0 u−θn (x1)


4×2

. (4.29)

Then (R+
n )∗ = R−n .

First, we consider the Grushin problem for the unperturbed operator G θ
0,n −

√
hz:

Lemma 4.5.4 (Unperturbed Grushin). Fix n ∈ Z. Let R+
n and R−n be defined as

(4.28). Let

P0,n = P0,n(z;h, θ) :=

G θ
0,n −

√
hz R−n

R+
n 0

 .

Then P0,n is invertible iff
√
hz /∈ {λm − λn : m 6= n}, and the inverse is

E0,n := (P0,n)−1 =:

 E0,n E0,n,+

E0,n,− E0,n,±

 (4.30)
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where E0,n,+ = R−n , E0,n,− = R+
n , E0,n,±(z;h) =

√
hz 1lC2×2 and

Eθ
0,n(z;h) =

∑
m 6=n

Kθ
m(Kθ

m)∗

λm − λn −
√
hz

=
∑
m6=n

uθm(uθm)∗ 0

0 u−θm (u−θm )∗


λm − λn −

√
hz

=:

eθ0,n 0

0 e−θ0,n


(4.31)

with λn = sgn(n)
√

2|n|, n ∈ Z. Furthermore, we have

E0,n,−(G θ
0,n −

√
hz)E0,n,+ = −E0,n,± and

(G θ
0,n −

√
hz)−1 = E0,n − E0,n,+(E0,n,±)−1E0,n,−.

Remark 4.8. One can verify that Eθ
0,n maps N θ

n to 0 and N θ
m to Nθ

m

λm−λn−
√
hz

if m 6= n.

Perturbed Grushin problem. Next, we consider the perturbed Grushin problem

for G θ
n −
√
hz.

Lemma 4.5.5 (Perturbed Grushin). Let R±n , W W be defined as (4.28), (4.22). Let

Pn = Pn(z;h, θ) :=

G θ
n −
√
hz R−n

R+
n 0

 = P0,n +
√
hW

where W := diag(W W
4×4, 02×2). Fix n ∈ Z, there exist h0 = min

{
1

2‖W ‖∞ ,
λ|n|+1−λ|n|

4‖W ‖∞

}
, s.t.

for all h ∈ [0, h0), Pn is invertible with inverse

En := (Pn)−1 =:

 En En,+

En,− En,±

 (4.32)

which is analytic in |z| ≤ 2‖W ‖∞. En,±(z) : L2(Rx2 ;C2) → L2(Rx2 ;C2) is called the
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effective Hamiltonian and satisfy

En,±(z) =
√
h
(
z −R+

nW W (1l +
√
hE0,nW

W )−1R−n

)
=:
√
h(z − ZW ). (4.33)

In addition, we have

En,−(G θ
n −
√
hz)En,+ = −En,± ⇒

√
hEn,−En,+ = ∂zEn,±, (4.34)

(G θ
n −
√
hz)−1 = En − En,+E−1

n,±En,−. (4.35)

Proof. Let h0 be defined as above. When h ∈ [0, h0), |z| < 2‖W ‖∞, we have



√
hz /∈ {λm − λn : m 6= n} ⇒ P0,n is invertible with ‖P0,n‖ ≥ 1.

√
h‖W‖∞ ≤ 1

2
⇒ Pn = P0,n +

√
hW is invertible with inverse En.

|
√
hz| ≤ λ|n|+1−λ|n|

2
⇒ E0,n(z), E0,n(z) are analytic by (4.31), (4.30).

Furthermore,

En := P−1
n = (I +

√
hP−1

0,nW)−1P−1
0,n =

∞∑
j=0

(−1)jhj/2 (E0,nW)j E0,n.

In particular, we get from the (2, 2)-block of P−1
n that

En,±(z) = E0,n,±(z) +
∞∑
j=1

(−1)jhj/2E0,n,−W
W (E0,nW

W )j−1E0,n,+

=
√
hz −

√
hR+

nW W (1l +
√
hE0,nW

W )−1R−n .

In fact, by direct computation, one get that E0,n, En,+ and En,− can all be represented

by entries of E0,n which we proved are analytic, thus En(z) is also analytic.

In the end, (4.34) and (4.35) follows from EnPnEn = Pn and the diagonalization on
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Pn.

4.5.3 Properties of effective Hamiltonian

In this subsection, we proceed with our study of En,±(z), E−1
n,±(z) and ∂zEn,± ◦ E−1

n,±,

with their symbols denoted by En,±(x2, ξ2; z, h), E−1
n,±(x2, ξ2; z, h) and rn(x2, ξ2; z, h) :=

∂zEn,±#E−1
n,±(x2, ξ2; z, h). Apart from analyzing boundedness and asymptotic expan-

sions of symbols, we are especially interested in understanding the z-dependence and

z vs. h competition of the symbols.

Before starting to analyze these properties, we introduce a key concept of this section:

the operator-valued symbol and its quantization.

Operator-valued symbol. Let bw(x2, ξ2;x1, Dx1) ∈ S
(
R2
x2,ξ2

;L(Bk+1
x1

;Bk
x1

)
)
, which

we shall call an operator(-in-(x1, Dx1))-valued symbol (in (x2, ξ2)), then its (x2, hDx2)-

Weyl quantization is defined as bW (x2, hDx2 ;x1, Dx1) : L2(Rx2 ;Bk+1
x1

) → L2(Rx2 ;Bk
x1

)

such that

(
bW (x2, hDx2 ;x1, Dx1)u

)
(x2)

=

∫
e
i(x2−y2)ξ2

h

(
bw
(
x2 + y2

2
, ξ2;x1, Dx1

)
u

)
(x1; ξ1)

dy2dξ2

2πh
.

In particular, if we have a symbol a ∈ S(R4
x,ξ), and we view (x2, ξ2) as parame-

ters and consider the (x1, Dx1)-Weyl quantization of it, we get aw(x,Dx1 , ξ2) which

is an operator-valued symbol in (x2, ξ2) (the superscript w represent the (x1, Dx1)-

Weyl quantization). If we do a further (x2, hDx2)-Weyl quantization of aw(x,Dx1 , ξ2),

then we get the (1, h)-Weyl quantization defined in (4.20).

Remark 4.9. For the rest of this section, given an operator, e.g. G θ
0 , En,± and W W in
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(4.21), (4.32) and (4.22), instead of viewing them as the (1, h)-Weyl quantization of the

scalar-valued symbol in S(R4
x,ξ), we will view them as the (x2, hDx2)-Weyl quantization

of the operator-valued symbol in S
(
R2
x2,ξ2

;L(Bk1
x1

;Bk2
x1

)
)
, for appropriate k1, k2 ∈ Z.

In particular, since G θ
0 only depends on (x1, Dx1), En,± only depeneds on (x2, hDx2),

W W (x,Dx) is the (1, h)-Weyl quantization of the symbol V (x2 +
√
hx1, hξ2 −

√
hξ1),

we see that the operator-valued symbol of G θ
0 , En,± and W W are respectively

Σθ
1x1 + Σθ

2Dx1 , En,±(x2, ξ2; z, h), and Ṽ w(x,Dx1 , ξ2) := V w(x2 +
√
hx1, ξ2 −

√
hDx1)

where f̃(x, ξ) = f(x2 +
√
hx1, ξ2 −

√
hξ1). And since now

U V (x)U −1 = W W (x,Dx) = Ṽ W (x,Dx1 , hDx2), (4.36)

we will use Ṽ W to replace W W in Lemma 4.5.1 and 4.5.5. Finally, we mention that

the proof of Lemma 4.5.1 implies in general

U f(x)U −1 = f̃W (x,Dx1 , hDx2). (4.37)

Boundedness with z dependence. We now study the boundedness of the operator-

valued symbol En,±, E−1
n,± and rn as well as the z dependence of them.

Notice that since En,± only depends on (x2, hDx2), when viewed as a (x2, hDx2)-Weyl

quantization, its operator-in-(x1, Dx1)-valued symbol coincides with its C2×2-valued

symbol. For convenience, we write Skδ (R2
x2,ξ2

;C2×2) as Skδ and omit the “0” in δ and k.

Lemma 4.5.6 (Boundedness). Let h0, En,± be as in Lemma 4.5.5. Then for all

h ∈ [0, h0), we have the symbol of En,±, En,±(x2, ξ2; z, h), belongs to S−
1
2 uniformly in
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|z| ≤ 2‖V ‖∞, i.e. for any α, β > 0, there is Cα,β,n = Cα,β,n(‖V ‖∞), s.t.

sup
(x2,ξ2)∈R2

‖∂αx2
∂βξ2En,±(x2, ξ2; z, h)‖C2×2 ≤ Cα,β,n

√
h, for all |z| ≤ 2‖V ‖∞.

Furthermore, if | Im z| 6= 0, then we also have that for all h ∈ [0, h0), |z| ≤ 2‖V ‖∞,

α, β > 0,

‖∂αx2
∂βξ2E

−1
n,±(x2, ξ2; z, h)‖C2×2 ≤ Cα,β,n max

(
1,

h3/2

| Im z|3

)
h−

1
2 | Im z|−(|α|+|β|)−1,(4.38)

‖∂αx2
∂βξ2rn(x2, ξ2; z, h)‖C2×2 ≤ Cα,β,n max

(
1,

h3/2

| Im z|3

)
| Im z|−(|α|+|β|)−1. (4.39)

In particular, if 0 < δ < 1
2

and | Im z| ≥ hδ, then E−1
n,± ∈ S

1
2

+δ

δ and rn ∈ Sδδ .

Proof. When h ∈ [0, h0), |z| ≤ 2‖V ‖∞, En,± is a ΨDO because Pn is. In fact, we can

check term by term that the operator-valued symbol

Pn(x,Dx1 , ξ2) ∈ S(R2
x2,ξ2

;L(Bk+1
x1
× C2;Bk

x1
× C2)).

By invertibility and Beal’s lemma,

En(x2, ξ2; z, h) ∈ S(R2
x2,ξ2

;L(Bk+1
x1
× C2;Bk

x1
× C2)).

In particular, we have


R+
n ∈ S(R2

x2,ξ2
;L(Bk

x1
;C2)), R−n ∈ S(R2

x2,ξ2
;L(C2;Bk+1

x1
)),

E0,n ∈ S(R2
x2,ξ2

;L(Bk
x1

;Bk+1
x1

)), Ṽ w ∈ S(R2
x2,ξ2

;L(Bk+1
x1

;Bk
x1

)).

(4.40)

Furthermore, by (4.31), when |
√
hz| ≤ λ|n|+1−λ|n|

2
, E0,n is uniformly bounded. Thus
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En,±, ∂zEn,± ∈ S−
1
2 uniformly.

Then we consider E−1
n,± and rn. Let l1, l2, · · · be linear forms on R2

x2,ξ2
. Let Lj =

lj(x2, hDx2). Since En,± ◦ E−1
n,± = I, we get

adLj E
−1
n,± = −E−1

n,± ◦ adLj En,± ◦ E−1
n,±,

where adLj A = [Lj, A]. Since adLj(A ◦B) = (adLj A) ◦B + A ◦ adLj B, thus

adLj(∂zEn,± ◦ E−1
n,±) = −∂zEn,± ◦ E−1

n,± ◦ adLj En,± ◦ E−1
n,± + adLj ∂zEn,± ◦ E−1

n,±.

By (4.35), ‖
√
hE−1

n,±‖C2×2 = O(| Im z|−1). Recall that En,±, ∂zEn,± ∈ S−
1
2 , thus

‖ adLj(
√
hE−1

n,±)‖C2×2 = O
(

h

| Im z|2

)
and ‖ adLj(∂zEn,± ◦ E−1

n,±)‖C2×2 = O
(

h

| Im z|2

)

By induction,

‖ adL1 ◦ · · · ◦ adLN (
√
hE−1

n,±)‖C2×2 = O
(

hN

| Im z|N+1

)
‖ adL1 ◦ · · · ◦ adLN (∂zEn,± ◦ E−1

n,±)‖C2×2 = O
(

hN

| Im z|N+1

)
.

By a parametrized version of Beal’s lemma, [30, Prop. 8.4], we get (4.38) and (4.39).

Asymptotic Expansion with z dependence. We proceed by discussing the asymp-

totic expansion of En,±, E−1
n,± and rn. Again, we are concerned with z-dependence of

each term in the asymptotic expansions. In order to focus on the main points, we

outsource further details concerning the asymptotic expansion of En,± and E−1
n,±, c.f.

Prop. C.0.1, and its proof in the Appendix C, and present a shorter version here that
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only summarizes the results that we eventually need in the sequel.

Lemma 4.5.7 (Asymptotic expansion). Let h0, En,± be as in Lemma 4.5.5, 0 < δ <

1/2. If h ∈ [0, h0), |z| ≤ 2‖V ‖∞, | Im z| ≥ hδ, then rn(x2, ξ2; z, h) = ∂zEn,±#E−1
n,± has

an asymptotic expansion in Sδδ :

rn(x2, ξ2; z, h) ∼
∞∑
j=0

h
j
2 rn,j(x2, ξ2; z), with h

j
2 rn,j ∈ S

(j+1)δ− j
2

δ . (4.41)

More specifically, there are dn,j,k,l(x2, ξ2; z), en,j,k,α(x2, ξ2) ∈ S s.t.

rn,j =

j∑
k=0

(z − zn,0)−1

k∏
l=0

[
dn,j,k,l(x2, ξ2; z)(z − zn,0)−1

]
, (4.42)

with
k∏
l=0

dn,j,k,l(x2, ξ2; z) =
j+k−2∑
α=0

zαen,j,k,α(x2, ξ2) and zn,0 given in Prop. C.0.2. Let

Rn,J := rn−
J−1∑
j=0

h
j
2 rn,j, then Rn,J ∈ S

(J+1)δ−J
2

δ , i.e. for all α, β > 0, there is C ′α,β,n s.t.

sup
(x2,ξ2)∈R2

|∂αx2
∂βξ2Rn,J | ≤ C ′α,β,nh

J
2
−(J+1)δ−δ(|α|+|β|). (4.43)

Furthermore, for the expansion of TrC2(rn), we have for η = x2 + iξ2,

Chiral Hc,n(J = 3) : TrC2(rc,n,0 + h
1
2 rc,n,1 + hrc,n,2) =

2

z
+ 0 +

λ2
n

z3
U(η)h,

Anti-Chiral H θ
ac,n(J = 2) : TrC2(rac,n,0 + h

1
2 rac,n,1) =

2z

z2 − c2
n

+
2s2

n(z2 + c2
n)

(z2 − c2
n)2

√
h,

(4.44)

where U(η) =
α2

1

8

[
α2

1(|U−(η)|2 − |U(η)|2)2 + 4|∂η̄U−(η)− ∂ηU(η)|2
]
, ∂η = 1

2
(∂x2− i∂ξ2),

sn(η) =


α0 sin( θ

2
)|V (η)| n 6= 0

α0|V (η)| n = 0,

and cn(η) =


α0 cos( θ

2
)|V (η)| n 6= 0

α0|V (η)| n = 0.
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Remark 4.10. Notice by Prop. C.0.2, zn,0 = 0 for the chiral model. Thus we have

rc,n,j =
2(j−1)∑
k=0

zk−j−1fn,j,k(x2, ξ2) for appropriate fn,j,k ∈ S when j ≥ 1.

4.5.4 Trace formula

Now we are ready to characterize T̃rf(H θ)) using En,± and still use the operator-

valued symbol and (x2, hDx2)-quantization in this subsection.

Lemma 4.5.8. Let En,± be as in Lemma 4.5.5. Let f ∈ CK+1
c (Λn,B,V ) and f0(x) =

f(x+ λn,B) be as in (4.27). Then the regularized trace T̃r(f(H θ)) satisfies

T̃r(f(H θ)) = − i

4π2h|E|

∫
C

∫
E

∂z̄f̃0 TrC2(rn(x2, ξ2; z, h)) dx2 dξ2 dz ∧ dz̄, (4.45)

Lemmas needed for the following proof are outsourced to Appendix D.

Proof. By (4.27), (4.35), and the analyticity of En(z) when h ∈ [0, h0), |z| ≤ 2‖V ‖∞,

U f(H θ)U −1 = −i
√
h

2π

∫
C
∂z̄f̃0(En,+E

−1
n,±En,−)(z) dz ∧ dz̄.
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Thus we have

T̃rf(H θ) = lim
R→∞

1

4R2
Tr1

(
1lR f(H θ) 1lR

)
= lim

R→∞

1

4R2
Tr1(1̃l

W

R U f(H θ)U −11̃l
W

R )

= lim
R→∞

− i
√
h

8πR2
Tr1

(∫
C
∂z̄f̃0(1̃l

W

R En,+E
−1
n,±En,−1̃l

W

R ) dz ∧ dz̄
)

= lim
R→∞

− i
√
h

8πR2

∫
C
∂z̄f̃0 Tr1

(
1̃l
W

R En,+E
−1
n,±En,−1̃l

W

R

)
dz ∧ dz̄

= lim
R→∞

− i
√
h

8πR2

∫
C
∂z̄f̃0 Tr2

(
1̄l
W
R En,−En,+E

−1
n,±1̄l

W
R

)
dz ∧ dz̄

= lim
R→∞

− i

8πR2

∫
C
∂z̄f̃0 Tr2

(
1̄l
W
R ∂zEn,±E

−1
n,±1̄l

W
R

)
dz ∧ dz̄

= lim
R→∞

− i

16π2hR2

∫
C
∂z̄f̃0

∫
R2

TrC2

(
1̄lR#∂zEn,±#E−1

n,±#1̄lR
)
dx2 dξ2 dz ∧ dz̄

= − i

4π2h|E|

∫
C

∫
E

∂z̄f̃0 TrC2

(
∂zEn,±#E−1

n,±
)
dx2 dξ2 dz ∧ dz̄

where U 1lR U −1 =: 1̃l
W

R follows from (4.37). And 1̄l
W
R = 1̄l

W
R (x2, hDx2) where 1̄lR(x2, ξ2)

coincides with 1lR(x1, x2) but is viewed as a function of phase space variables (x2, ξ2)

rather than x. In addition, Tr1 = TrL2(R2
x;C4), Tr2 = TrL2(Rx2 ;C2).

The second line follows from the Helffer-Sjöstrand formula in Lemma 4.5.3. The third

line follows from Lemma D.0.3, where we proved 1lWR En,+E
−1
n,±En,− 1lWR is trace class.

The fourth line follows directly from Lemma D.0.4. The fifth line follows from (4.35).

The sixth line follows from

TrL(L2(Rx2 ;H1);L2(Rx2 ;H2))(a
W (x2, hDx2)) =

1

2πh

∫
R2
x2,ξ2

TrL(H1,H2)(a(x2, ξ2))dx2dξ2.

The seventh line follows from periodicity of V and thus periodicity of ∂zEn,±#E−1
n,±,

which follows immediately by looking at the asymptotic expansions.
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4.5.5 Proof of main results

Now we can prove our main Theorems 4.5 and 4.6:

Proof of Theo. 4.5, 4.6. Let 0 < δ < 1/2. Assume f ∈ CN+1
c (Λn,B,V ). Let f0(x) :=

f(x + λn,B) which is supported on a nbhd of 0. Recall by Lemma 4.5.8, we need to

compute

T̃r(f(H θ
n )) = − i

4π2h|E|

∫
E

∫
C
∂z̄f̃0 TrC2(rn(x2, ξ2; z, h)) dz ∧ dz̄ dx2 dξ2. (4.46)

We can rewrite the integral

[∫
C
∂z̄f̃0 TrC2(rn)dz ∧ dz̄

]
(x2, ξ2;h) =

∫
C
∂z̄f̃0

J−1∑
j=0

h
j
2 TrC2(rn,j)dz ∧ dz̄

+

∫
| Im z|≥hδ

∂z̄f̃0 TrC2(Rn,J)dz ∧ dz̄

+

∫
| Im z|≤hδ

∂z̄f̃0 TrC2(Rn,J)dz ∧ dz̄

:=A1 + A2 + A3.

Notice that by Remark 4.6, we only need to consider f0 supported at |z| ≤ ‖V ‖, for

which we can pick f̃0 s.t. f̃0 is supported inside |z| ≤ 2‖V ‖∞ for the integral. As in

Lemma 4.5.7, we take J = 3 in the chiral case and J = 2 in the anti-chiral case.

First of all, we compute A1 by (4.44) and the general version of Cauchy’s integral

formula, see [49, (3.1.11)]: Let X be an open subset of C. Let g ∈ C1
c (X), then

2πig(n)(ζ) =

∫
X

∂z̄g(z)
n!

(z − ζ)n+1
dz ∧ dz̄. (4.47)

In particular, take X to be an small open neighborhood of supp(f̃0). By , (4.47) and
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the definition of f0, we have

A1,c =

∫
C
∂z̄f̃0

[
2

z
+
λ2
n

z3
U(η)h

]
dz ∧ dz̄ = 2πi

[
2f(λn,B) +

λ2
n

2
U(η)f ′′(λn,B)h

]
,

A1,ac =

∫
C
∂z̄f̃0 TrC2

[
1

z − cn
+

1

z + cn
+

s2
n

√
h

(z − cn)2
+

s2
n

√
h

(z + cn)2

]
dz ∧ dz̄

= 2πi
[
f(λn,B + cn) + f(λn,B − cn) + f ′(λn,B + cn)s2

n

√
h+ f ′(λn,B − cn)s2

n

√
h
]
.

For A2, by (4.43) and |z| ≤ 2‖V ‖∞, when | Im z| ≥ hδ, there are Cn, C
′
n s.t.

|A2| ≤
∫
| Im z|≥hδ

|∂z̄f̃0|Cnh
J
2
−(J+1)δ2L(dz) ≤ C ′n‖f‖CK+1‖V ‖∞h

J
2
−(J+1)δ.

Finally, by (4.25), (4.39), (4.42), 0 < δ < 1/2 and |z| ≤ 2‖V ‖∞, we have for some

Cn,j, C
′′
n

|A3| ≤
∫
| Im z|≤hδ

|∂z̄f̃0|

[
|TrC2(rn)|+

J−1∑
j=0

∣∣∣TrC2(h
j
2 rn,j)

∣∣∣] dz ∧ dz̄
≤
∫
| Im z|≤hδ

‖f‖CK+1| Im z|K
[

max

(
1

| Im z|
,

h
3
2

| Im z|4

)
+

J−1∑
j=0

Cn,jh
j
2

| Im z|j+1

]
dz ∧ dz̄

≤ 2C ′′n‖f‖CK+1‖V ‖∞

[
max

(
h(K−1)δ, h(K−4)δ+ 3

2

)
+

J−1∑
j=0

h
j
2

+(K−j−1)δ

]
dz ∧ dz̄

≤ C ′′n‖f‖CK+1‖V ‖∞h(K−1)δ,

Define Cn,K,f,V = max(Cn, C
′
n, C

′′
n)‖V ‖∞‖f‖CK+1 . We see

|A2,c| ≤ Cn,K,f,V h
3
2
−4δ, |A2,ac| ≤ Cn,K,f,V h

1−3δ, |A3| ≤ Cn,K,f,V h
(K−1)δ.
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Combine the estimates of A1, A2, A3, and plug them into (4.46), we have

T̃rf(Hc) =
1

πh
f(λn,B) +

|n|
2π
f ′′(λn,B)U(η) +On,K,f,V (h

1
2
−4δ + h(K−1)δ−1),

T̃rf(H θ
ac) =

1

2πh
tn,0(f) +

1

2π
√
h
tn,1(f) +O(h−3δ + h(K−1)δ−1)

(4.48)

where tn,0(f) = Ave[f(λn,B − cn) + f(λn,B + cn)], tn,1(f) = Ave[s2
nf(λn,B − cn) +

s2
nf(λn,B + cn)], and Ave(g) = 1

|E|

∫
E
g(η)dη. Thus we proved (4.18) and (4.19).

In general, fix N ∈ N+ and we consider 2N + 1 Landau levels centered at 0. Let B be

large enough s.t.
{
B‖V ‖∞(λn,B)

}N
n=−N

do not intersect. For any f ∈ CK+1
c (λ−(N+1),B+

‖V ‖∞, λN+1,B − ‖V ‖∞), by Remark 4.6, values of f on the gap do not contribute to

T̃r(f(H θ)), thus we can apply the partition of unity of f on {Λn,B,V }Nn=−N , i.e. find

fn s.t. f =
N∑

n=−N
fn and supp fn ⊂ Λn,B,V . Then we can apply (4.18) and (4.19) to

each fn and take the sum. That gives us the rest of the Theorem 4.5 and 4.6.

Furthermore, as mentioned in Remark 4.10, zn,0 = 0 in the chiral case, thus each term

in the expansion of rn,c is of the form rn,j,c =
k−j−1∑
k=0

zk−j−1fn,j,k(x2, ξ2). Now assume f

is smooth enough, then for any J ∈ N, by (4.47), we can see that

A1,c =
J−1∑
j=0

hj/2
k−j−1∑
k=0

Fn,j,k(η)f (j−k)(λn,B), for some Fn,j,k(η) ∈ S. (4.49)

Thus for the chiral case, every term in the asymptotic expansion of T̃r(f(H θ)) only

depends on derivatives f (k) at λn,B.
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4.5.6 Differentiability

Finally, we comment on the differentiability of the regularized trace with respect to

the magnetic field. That h 7→ T̃r(f(H θ)) is a differentiable function follows already

from Lemma 4.4.1. However, what does not follow from Lemma 4.4.1 is that the

asymptotic expansion itself in Theorems 4.5 and 4.6 is differentiable. The following

Proposition, which uses the same notation as Theorems 4.5 and 4.6 shows that term-

wise differentiation yields the right asymptotic expansion:

Proposition 4.5.9 (Differentiability). Under the same assumption of λn,B, ε, as

in Theorem 4.5, we have that B 7→ T̃r(f(H θ)) is differentiable. For all ε, f ∈

CK(Λn,B,V ), that K > 6
ε
− 2, then for On,K,f,V = On(‖V ‖∞‖f‖CK ), we have: For

the chiral model H θ = Hc,

∂BT̃r(f(Hc)) =

√
2|n|B
2π

f ′(λn,B) +
f(λn,B)

π
+

(2|n|) 3
2

8π
√
B

Ave(U)f ′′′(λn,B) +On,K,f,V (B−1+ε)

(4.50)

For the anti-chiral model H θ = H θ
ac,

∂BT̃r(f(H θ
ac)) =

√
2|n|B
4π

tn,0(f ′) +
1

4π

(
2tn,0(f) +

√
2|n|tn,1(f ′)

)
+On,K,f,V (B−

1
2

+3δ)

(4.51)

In particular, when n = 0, we get a better estimate for the chiral and anti-chiral case

respectively:

∂BT̃r(f(Hc)) =
1

π
f(0) +O0,K,f,V (B−

3
2

+4δ)

∂BT̃r(f(H θ
ac)) =

1

2π
t0,0(f) +

3

4π
√
B
t0,1(f) +O0,K,f,V (B−1+3δ)

(4.52)
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where tn,0(f), tn,1(f), U, sn and cn are the same as in Theorem 4.5, 4.6.

To prove this proposition, we will need to prove two auxiliary Lemmas 4.5.10 and

4.5.11 discussing properties of ∂hEn,±, ∂hE
−1
n,± and ∂hrn, which are similar to the two

properties needed for En,±, E−1
n,± and rn previously in 4.5.6 and 4.5.7. The rest of the

proof is similar to Sec. 4.5.5. We start with some preparations: To discuss the differ-

entiability of asymptotic expansions, we define #M
h for a(x, ξ;h), b(x, ξ;h) ∈ S(R2

x,ξ)

by

a#M
h b =

[
e
ih
2
σ(Dx,Dξ;Dy ,Dη)

(
i

2
σ(Dx, Dξ;Dy, Dη)

)M]
(a(x, ξ, h)b(y, η, h)) |x=y

ξ=η

=
∑

|α|=|β|=M

Cα,β(∂αx,ξa)#(∂βy,ηb),

(4.53)

where σ(x, ξ; y, η) = 〈ξ, y〉 − 〈x, η〉. Then we see that,

∂Mh (a#b) = a#M
h b +

∑
i+j+k=M
j 6=M

Ci,j,k (∂iha) #j
h (∂khb). (4.54)

The following result is derived for general M ∈ N but we will, for simplicity, only

consider the M = 1 case later:

Lemma 4.5.10 (Boundedness). Let h0, En,± be as in Lemma 4.5.5. The symbol

En,±(x2, ξ2; z, h) is smooth in h when h < h0 and for any M ∈ N, ∂Mh En,± ∈ SM−
1
2 uni-

formly in |z| ≤ 2‖V ‖∞, i.e. for any multi-index α, β, there is Cα,β,n = Cα,β,n(‖V ‖∞)

s.t.

‖∂αx2
∂βξ2∂

M
h En,±(x2, ξ2; z, h)‖C2×2 ≤ Cα,β,n

√
h, for all |z| ≤ 2‖V ‖∞.
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If | Im z| 6= 0, M > 0, then ∂Mh E
−1
n,± and ∂Mh rn satisfy

‖∂αx2
∂βξ2∂

M
h E

−1
n,±(x2, ξ2; z, h)‖C2×2 ≤ Cα,β,n max

(
1,

h
3
2

| Im z|3

)
h−

1+2M
2 | Im z|−2M−|α|−|β|,(4.55)

‖∂αx2
∂βξ2∂

M
h rn(x2, ξ2; z, h)‖C2×2 ≤ Cα,β,n max

(
1,

h
3
2

| Im z|3

)
h−M | Im z|−2M−|α|−|β|. (4.56)

In particular, when 0 < δ < 1/2 and | Im z| ≥ hδ, we have ∂Mh E
−1
n,± ∈ S

M(2δ+1)+ 1
2

δ and

∂Mh rn ∈ S
M(2δ+1)
δ .

Proof. Let Pn be as in Lemma 4.5.5, by 4.40, G θ−
√
hz, R±n ∈ S(R2

x2,ξ2
). Furthermore,

since G θ = G θ
0 +
√
hṼ w, by direct computation, we see ∂Mh (G θ −

√
hz) ∈ SM− 1

2 while

∂Mh R
±
n = 0, for M > 0.

Then consider En = P−1
n . First of all, by the proof of Lemma 4.5.6, we have

En(x,Dx1 , ξ2) ∈ S(R2
x2,ξ2

;L(Bk
x1
× C2;Bk+1

x1
× C2)).

By differentiating En = En#Pn#En w.r.t. h and using (4.53) and (4.54), we have

∂hEn = −En#∂hPn#En +
∑

|α|=|β|=1

Cα,β

(
∂αx2,ξ2

En#∂βx2,ξ2
Pn#En

)
. (4.57)

Since ∂hPn ∈ S
1
2 , thus ∂hEn ∈ S

1
2 above. By differentiating (4.57) w.r.t. h and

using (4.53) and (4.54), we see that ∂2
hEn ∈ S

3
2 . An iterative argument shows that

∂Mh En ∈ SM−
1
2 . In particular, ∂Mh En,± ∈ SM−

1
2 . Furthermore, by differentiating

E−1
n,± = E−1

n,±#En,±#E−1
n,± w.r.t. h and using (4.54) and (4.53), we have

∂hE
−1
n,± = −E−1

n,±#∂hEn,±#E−1
n,± −

∑
|α|=|β|=1

Cα,β∂
α
x2,ξ2

E−1
n,±#∂βx2,ξ2

En,±#E−1
n,±.(4.58)

140



When | Im z| ≥ hδ, by (4.39) and [89, Theorem 4.23(ii)], we see that

‖∂hE−1
n,±‖ = O(h−

3
2 | Im z|−2) +O(h−

1
2 | Im z|−3) = O(h−

3
2 | Im z|−2).

Furthermore, since [Dxj , A
W ] = (DxjA)W and −[xj, A

W ] = (hDξjA)W , we see that

‖ adLj1 ◦ · · · adLjN (∂hE
−1
n,±)W‖ = O

(
h−

3
2

| Im z|2
hN

| Im z|N

)
.

By [30, Prop. 8.4], we get

‖∂αx2
∂βξ2∂hE

−1
n,±(x2, ξ2; z, h)‖C2×2 ≤ Cα,β max

(
1,

h
3
2

| Im z|3

)
h−

3
2 | Im z|−2−|α|−|β|. (4.59)

Iterating this process by taking ∂h of (4.58), expanding it and using (4.53), (4.54) and

(4.59), we see that every time we differentiate, we derive an extra order of 1/(h| Im z|2).

Thus we obtain (4.55) for M > 0. Then

∂hrn = ∂h∂zEn,±#E−1
n,± + ∂zEn,±#∂hE

−1
n,± +

∑
|α|=|β|=1

Cα,β(∂αx2,ξ2
∂zEn,±)#(∂βx2,ξ2

E−1
n,±).

By (4.39), (4.55) and [89, Theorem 4.23(ii)], we see that ‖∂hrWn ‖ = O(h−1| Im z|−2).

By the same argument as for E−1
n,±, we get (4.56).

We shall now focus on M = 1, for simplicity, and study the asymptotic expansion of

∂hrn.

Lemma 4.5.11 (Asymptotic expansion). Let 0 < δ < 1/2 and | Im z| ≥ hδ, then ∂hrn

has an asymptotic expansion in S1+2δ
δ :

∂hrn ∼
∞∑
j=1

j

2
h
j
2
−1rn,j =:

∞∑
j=1

h
j
2
−1qn,j, where rn,j are given in Lemma 4.5.7.
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Then h
j
2
−1qn,j ∈ S

(j+1)δ+1− j
2

δ . Let Qn,J := ∂hrn −
J−1∑
j=1

h
j
2
−1qn,j ∈ S

(J+1)δ+1−J
2

δ , i.e.,

for all α, β > 0, there is C ′′α,β,n s.t.

sup
(x2,ξ2)∈R2

|∂αx2,
∂βξ2Qn,J | ≤ C ′′α,β,nh

J
2
−1−(J+1)δ−δ(|α|+|β|). (4.60)

Furthermore, for the expansion of TrC2(∂hrn), we have for η = x2 + iξ2,

Chiral Hc,n(J = 3) : TrC2(h−
1
2 qn,1 + qn,2) =

λ2
n

z3
U(η),

Anti-Chiral H θ
ac,n(J = 2) : TrC2(h−

1
2 qn,1) =

s2
n(z2 + c2

n)

(z2 − c2
n)2
√
h
.

(4.61)

We will prove that the termwise differentiation of the asymptotic expansion of rn in

(4.41) is indeed an asymptotic expansion of ∂hrn in S2δ+1
δ .

Proof. Let g =
√
h and consider rn ∼

∞∑
j=0

gjrn,j. By Borel’s theorem (c.f. [89, Theorem

4.15]) (c.f. [49, Theorem 1.2.6]), we see that for such rn,j ∈ C∞(R2
x2,ξ2

), there is

r̃n ∈ C∞(R+
g × Rx2,ξ2) s.t. r̃n =

∞∑
j=0

gjrn,j. Thus

∂gr̃n =
∞∑
j=1

jgj−1rn,j. (4.62)

On the other hand, by uniqueness in Borel’s theorem, we see that r̃n − rn = O(h∞).

Thus ∂gr̃n − ∂grn = O(g∞). Thus (4.62) is also an asymptotic expansion of ∂grn.

Furthermore, since ∂hrn = 1
2
√
h
∂grn, thus we proved ∂hrn has the following asymptotic

expansion in S1+2δ
δ :

∂hrn ∼
1

2
√
h

∞∑
j=1

jh
j−1

2 rn,j =
∞∑
j=1

j

2
h
j
2
−1rn,j.
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The rest of the Lemma follows from Lemma 4.5.7.

Proof of Prop. 4.5.9 . Recall that f0(z) = f(z +
√

2|n|/h) also depends on h. By

differentiating (4.45) w.r.t. h, we get

∂hT̃r(f(H θ
c,n)) =

i

4π2h2|E|

∫
C

∫
E

∂z̄f̃0(z) TrC2(rn) dx2 dξ2 dz ∧ dz̄

+
i
√

2|n|/h
8π2h2|E|

∫
C

∫
E

∂z̄f̃ ′0(z +
√

2n/h) TrC2(rn) dx2 dξ2 dz ∧ dz̄

− i

4π2h|E|

∫
C

∫
E

∂z̄f̃0(z) TrC2(∂hrn) dx2 dξ2 dz ∧ dz̄ := −B1 −B2 −B3.

where the asymptotic expansion of B1 = 1
h
T̃r(f(H θ)) and B2 =

√
|n|
2h3 T̃r(f ′(H θ)) are

known by (4.48). While B3 can be computed by splitting the integral as in Subsection

4.5.5:

[∫
C
∂z̄f̃0 TrC2(∂hrn)dz ∧ dz̄

]
(x2, ξ2;h) =

∫
C
∂z̄f̃0

J−1∑
j=1

h
j
2
−1 TrC2(qn,j)dz ∧ dz̄

+

∫
| Im z|≥hδ

∂z̄f̃0 TrC2(Qn,J)dz ∧ dz̄

+

∫
| Im z|≤hδ

∂z̄f̃0 TrC2(Qn,J)dz ∧ dz̄

:=A′1 + A′2 + A′3,

and we imitate the estimates of A1, A2, A3 in the Subsection 4.5.5 with ∂hrn instead

of rn, and we use Lemma 4.5.10 and 4.5.11 instead of Lemma 4.5.6 and 4.5.7. In short,

we need (4.47) and (4.61) for A′1, (4.60) for A′2, (4.56) and Lemma 4.5.11 for A′3 and

we derive that
A′1,c = πif ′′(λn,B)λ2

nU(η), A′1,ac = πi√
h

(s2
nf
′(λn,B − cn) + s2

nf
′(λn,B + cn)) ,

|A′2| ≤ Cn,K,f,V h
J
2
−1−(J+1)δ, |A′3| ≤ Cn,K,f,V h

(K−2)δ−1,
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from which we can find B3. And we summarize B1, B2, B3 below:

For the chiral model where J = 3, we have

B1,c =
1

πh2
f(λn,B) +

|n|
2πh

Ave(U)f ′′(λn,B) +On,K,f,V (h−
1
2
−4δ + h(K−1)δ−2),

B2,c =

√
2|n|

2πh
5
2

f ′(λn,B) +
(2|n|) 3

2

8πh
3
2

Ave(U)f ′′′(λn,B) +On,K,f,V (h−1−4δ + h(K−1)δ− 5
2 )

B3,c =
|n|
2πh

f ′′(λn,B) Ave(U) +On,K,f,V (h−
1
2
−4δ + h(K−2)δ−2).

When n 6= 0 and K > 3
2δ
− 3, we have

∂hT̃r(f(Hc,n)) = −
√

2|n|
2πh

5
2

f ′(λn,B)− 1

πh2
f(λn,B)− (2|n|) 3

2

8πh
3
2

Ave(U)f ′′′(λn,B)

+On,K,f,V h−1−4δ.

When n = 0 and K > 3
2δ
− 3, since B2 = 0, we get a better estimate:

∂hT̃r(f(Hc,0)) = − 1

πh2
f(0)−O0,K,f,V h

− 1
2
−4δ.

For the anti-chiral model where J = 2, we have

B1,ac =
1

2πh2
tn,0(f) +

1

2πh
3
2

tn,1(f) +On,K,f,V (h−1−3δ + h(K−1)δ−2),

B2,ac =

√
2|n|

4πh
5
2

tn,0(f ′) +

√
2|n|

4πh2
tn,1(f ′) +On,K,f,V (h−

3
2
−3δ + h(K−1)δ− 5

2 ),

B3,ac =
1

4πh
3
2

tn,1(f) +On,K,f,V (h−1−3δ + h(K−2)δ−2).

Thus when n 6= 0 and K > 1
δ
− 2, we have

∂hT̃r(f(H θ
ac)) = −

√
2|n|

4πh
5
2

tn,0(f ′)− 1

4πh2

(
2tn,0(f) +

√
2|n|tn,1(f ′)

)
−On,K,f,V h−

3
2
−3δ.
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Figure 4.6: SdH oscillations: Smoothed out DOS ρ(fµ) with fµ(x) = e−
(x−µ)2

2σ2 /
√

2πσ
illustrating the oscillatory features. On the left, B = 30 and on the right B = 50 for
σ = 1.

If n = 0 and K > 1
δ
− 2, since B2 = 0, we get a better estimate:

∂hT̃r(f(H θ
ac)) = − 1

2πh2
t0,0(f)− 3

4πh
3
2

t0,1(f) +O0,K,f,V h
−1−3δ.

Recall h = 1
B

. By ∂B = − 1
B2∂h, we get the results (4.50), (4.51) and (4.52).

4.6 Magnetic response quantities

This section discusses applications of the regularized trace expansions derived in the

previous section, cf. Theorems 4.5 and 4.6 as well as Proposition 4.5.9. They form the

rigorous foundation of our analysis in this section and we shall focus on qualitative

features rather here, instead.

Our main contribution on magnetic response properties of TBG is a careful analysis of

the oscillatory behaviour of the DOS. While this effect can be easily explained using

the Poisson summation formula, we shall illustrate this phenomenon, by considering a
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Figure 4.7: Magnetization and susceptibility for β = 4, αi = 3/5, and chemical poten-
tials µ = 5 (left) and µ = 10 (right).

Gaussian density fµ(x) = e−
(x−µ)2

2σ2 /
√

2πσ and analyze the Shubnikov–de Haas (SdH)

oscillations in a smoothed-out version of the DOS µ 7→ ρ(fµ) in Figure 4.6 for σ = 1

using the asymptotic formulae of Theorems 4.5 and 4.6. As a general rule from our

study, we find that the AB/BA interaction leads to an enhancement of this oscillatory

behaviour compared to the non-interacting case, while the AA′/BB′ interaction damps

oscillations. The smoothing effect of the AA′/BB′ interaction is due to a splitting and

broadening of the highly degenerate Landau levels. This splitting has also consequences

for the Quantum Hall effect, see Fig. 4.12. We also study the de Haas–van Alphen

(dHvA) effect in TBG, see Fig. 4.7 and 4.10 for which we find a similar phenomenon.

We study magnetic response quantities by thoroughly analyzing the following cases:

� The free or non-interacting case, corresponds to two non-interacting sheets of

graphene modeled by the direct sum of two magnetic Dirac operators, see also

[9, 8] for similar results in a quantum graph model and [71] for a thorough analysis

of the magnetic Dirac operator, directly.

� The chiral case, which corresponds to pure AB/BA interaction.
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� The anti-chiral case, which corresponds to pure AA′/BB′ interaction.

For our analysis of the de Haas-van Alphen effect, we shall employ a cut-off function

ηN ∈ C∞c (R) that is one on the interval [0,
√

2BN ] and smoothly decays to zero outside

of that interval, enclosing precisely N + 1 Landau levels and ηsym
N which is equal to

one on [−
√

2BN,
√

2BN ]. The choice of cut-off function mainly plays the role of a

reference frame. In particular, for the study of magnetic oscillations it seems more

natural to consider ηN instead of ηsym
N as the former cut-off function singles out the

effect of individual Landau levels moving past a fixed chemical potential µ. We shall

employ the leading order terms for the regularized trace in this section, as specified

in Theorems 4.5 and 4.6 and Proposition 4.5.9. For this reason, we write functionals

ρ(f), where f ∈ C∞(R), as ρ(f) ∼ g, to indicate that g are the first terms in the

asymptotic expansion of ρ(f) and analogously for derivatives of ρ(f) with respect to

the magnetic field.
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Figure 4.8: Smoothed out longitudinal conductivity σxx ∝ −ρ(λn′β(λ − µ)) with nβ,
the Fermi-Dirac distribution, showing Shubnikov-de Haas oscillations. On the left,
B = 30 and on the right B = 50 for β = 1.5. with αi = 3

5
.
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4.6.1 Shubnikov-de Haas oscillations

We shall start by discussing Shubnikov - de Haas (SdH) oscillations in the density of

states. A common method of measuring SdH oscillations is by measuring longitudinal

conductivity and resistivity, see also [83, 78]. In the following, let σ ∈ R2×2 be the

conductivity matrix, such that the current density j = σE, where E is an external

electric field, then the resistivity matrix is just ρ = σ−1. Hence, we shall focus on

conductivities in the sequel.

The SdH oscillations are most strongly pronounced at low temperatures in the regime

of strong magnetic fields and describe oscillations in the longitudinal conductivity σxx

of the material.

The expression for the longitudinal conductivity goes back to Ando et al [3] who derived

the following relation, see also [39],

σxx(β, µ,B) = −
∫ ∞

0

n′β(λ− µ)ληsym
N (λ) dρ(λ),

where nβ(x) = 1
eβx+1

is the Fermi-Dirac statistics. In the free case, i.e. without

any tunnelling potential, the oscillations happen precisely at the relativistic Landau

levels. For the chiral model, oscillations caused by higher Landau levels are enhanced

compared to the free case, whereas oscillations in the anti-chiral case are much more

smoothed out.

The oscillatory behaviour of the longitudinal conductivity is visible both as a function

of chemical potential, for a fixed magnetic field strength, as shown in Fig. 4.8 as well

as function of inverse magnetic field in Fig. 4.9 for fixed chemical potential.
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Figure 4.9: Smoothed out longitudinal conductivity σxx ∝ −ρ(λn′β(λ − µ)) with nβ,
the Fermi-Dirac distribution, showing Shubnikov-de Haas oscillations. On the left,
B = 30 and on the right B = 50, both for β = 2.5. with αi = 0.35.

4.6.2 De Haas-van Alphen oscillations

In 1930, de Haas and van Alphen who discovered that both the magnetization and

the magnetic susceptibility of metals show an oscillatory profile as a function of B−1.

This effect is called the de Haas-van Alphen (dHvA) effect. Even in the simpler case

of graphene, both the experimental as well as theoretical foundations of that effect are

not yet well-understood [64, 57, 71]. One problem in understanding the dHvA effect

[71], lies in the dependence of the chemical potential on the external magnetic field. To

simplify mathematical analysis, it is more convenient to work in the grand-canonical

ensemble, which is also discussed in [23, 71, 60]. The comparison with the canonical

ensemble is made in this subsection as well.

The grand thermodynamic potential for a DOS measure ρ, at inverse temperature β,

and field-independent chemical potential µ is defined as

Ωβ(µ,B) := (fβ ∗ (ηNρ))(µ),
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Figure 4.10: Magnetization and susceptibility for β = 4, αi = 3/5, and chemical
potential µ = 5.

where fβ(x) := −β−1 log(eβx + 1). The magnetization M and susceptibility χ are then

in the grand-canonical ensemble defined as

M(β, µ,B) = −∂Ωβ(µ,B)

∂B
and χ(β, µ,B) =

∂Mβ(µ,B)

∂B
.

The susceptibility describes the response of a material to an external magnetic field.

When χ > 0 the material is paramagnetic, when χ < 0 diamagnetic, and strongly

enhanced χ� 1 for ferromagnets.

While the approximation of computing the magnetization in the grand canonical en-

semble is common, one should strictly speaking compute it in the canonical ensemble,

instead.

In this case, the charge density % given by the Fermi-Dirac statistics, with nβ(x) :=

1
eβx+1

, according to

% = −Ωβ(µ,B)

∂µ
= ρ(nβ(· − µ))

is fixed and the chemical potential becomes a function of ρ and B.
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To see that this uniquely defines µ as a function of % and B large enough, it is sufficient

to observe that

µ 7→
∑
n∈Z

(ηNnµ)(λn
√
B)

is a monotonically increasing function. The Helmholtz free energy is then given as
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Figure 4.11: Charge density with respect to chemical potential. Magnetic field B = 30
for β = 1/2 and β = 2. We consider 100 Landau levels around zero and an anti-chiral
model with θ = 0.

Fβ(%,B) = Ωβ(µ(%,B), B) + µ(ρ,B)%

with the magnetization given as the derivative M(β, %, B) = −∂Fβ(%,B)

∂B
. Hence, the

magnetization in the canonical ensemble is also given by

M(β, %, B) = −∂Ωβ(µ,B)

∂B

∣∣∣
µ=µ(%,B)

,

where the difference to the grand-canonical ensemble lies in the B-dependent chemical

potential. The dHvA oscillations are shown in Figures 4.7 and 4.10, with the AB′/BA′

interaction leading to enhanced oscillations and the AA′/BB′ interaction damping the

oscillations, compared to the non-interacting case.
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Figure 4.12: Full quantum Hall conductivity (4.56) on the left with β = 2, B = 40
and on the right the high temperature conductivity (4.57) with β = 5,B = 50.

4.6.3 Quantum Hall effect

The (transversal) quantum Hall conductivity σxy is, by the Streda formula [66, (16)],

for a Fermi energy µ given by

σxy(β, µ,B) =
N∑

n=−N

∂ρ(ηNnβ(• − µ))

∂B
.

In case of the chiral Hamiltonian, the Gibbs factor γβ,n(µ) = eβ(λn
√
B−µ) allows us to

write

σxy,c(β, µ,B) =

(1 + o(1))

(
N∑

n=−N

nβ(λn
√
B − µ)

π

(
1− βλn

√
B

2
γβ,n(µ)nβ(λn

√
B − µ)

)

+
N∑

n=−N

−λn|λn|
2β3 Ave(U)

4π
√
B

n4
β(λn
√
B − µ)

(
γβ,n(µ)− 4γβ,n(µ)2 + γβ,n(µ)3

))

At very low temperatures, and µ well between two Landau levels, the contribution of
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the derivative of the Landau levels with respect to B can be discarded.

We then obtain the high-temperature limiting expression

σ̂xy,c(β, µ,B) :=
N∑

n=−N

ηβ(λn,B − µ)

π
−−−→
β→∞

|{n; |λn,B| ≤ µ}|

as nβ(λn,B − µ)→ 1−H(λn
√
B − µ) for β ↑ ∞, where H is the Heaviside function.

This expression reveals the well-known staircase profile of the Hall conductivity which

can already be concluded in this model in the β →∞ limit from Proposition 4.4.2.

For the AA′/BB′ interaction, the situation is rather different. Due to the broadening

and splitting of the Landau levels, the staircase profile is less pronounced at non-

zero temperature. Setting σ̂xy,ac(β, µ,B) := tn,0(nβ(• − µ)) − tn,1(nβ(•−µ))

2
√
B

, where in

the limit β → ∞, the second term vanishes, for µ away from the spectrum as n′β

is a δ0 approximating sequence such that also in case of the AA′/BB′ interaction

limβ→∞ σ̂xy(β, µ,B) = |{n; |λn,B| ≤ µ}|.
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Appendix A

Tridiagonality

This appendix set up Lemma A.0.1 needed in Chapter 2.

Lemma A.0.1. The matrix Sz = (z(L)∗ −M) is tridiagonal. We omit z and denote

the (i, j)-entry by Ai,j for convenience, when a ≤ i, j ≤ b. Then we have

Aj,j =


zαj + αj−1, j even,

−zαj−1 − αj, j odd,

, Aj+1,j = Aj,j+1 =


zρj, j even,

−ρj, j odd.

Remark A.1. If we modify the extended CMV matrix at a− 1 and b by β and γ, then

the corresponding matrix Aβ,γ[a,b],z is the restriction of Sz on [a, b] but with αa−1 = β and

αb = γ. Fix an interval [a, b]. We denote Sβ,γz by the infinite matrix Sz with αa−1 = β

and αb = γ.
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Lemma A.0.2. Let Ψ solve EΨ = zΨ, then for a < n < b,

Ψ(n) =−Gβ,γ
[a,b],z(n, a)


Ψ(a)(zβ̄ − zᾱa−1) + Ψ(a− 1)zρa−1, a odd

Ψ(a)(αa−1 − β)−Ψ(a− 1)ρa−1, a even

−Gβ,γ
[a,b],z(n, b)


Ψ(b)(−ᾱb + γ̄)−Ψ(b+ 1)ρb, b odd,

Ψ(b)(zαb − zγ) + Ψ(b+ 1)zρb, b even

Proof.

P[a,b]SzΨ = 0

⇒P[a,b]S
β,γ
z Ψ + P[a,b](A− Aβ,γ)Ψ = 0

⇒P[a,b]S
β,γ
z (P[a,b]Ψ + P[a,b]cΨ) + P[a,b](Sz − Sβ,γz )Ψ = 0

⇒Aβ,γ[a,b],zΨ = −P[a,b](Sz − Sβ,γz )Ψ− P[a,b]S
β,γ
z P[a,b]cΨ

There are two terms on the right hand side. One is always 0:

P[a,b]S
β,γ
z P[a,b]cΨ =

. . . . . .

Aβ,γa,a−1 Aβ,γa,a Aβ,γa,a+1 0 · · ·

. . . . . . . . .

· · · 0 Aβ,γb,b−1 Aβ,γb,b Aβ,γb,b+1

. . . . . .





Ψ(a− 1)

0

...

0

Ψ(b+ 1)



=



0

0

...

0

0



row a− 1

row a

...

row b

row b+ 1

,

where we use Remark A.1 and Lemma A.0.1 to get Aβ,γa,a−1 = Aβ,γb,b+1 = 0.
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The other has two non-zero terms:

P[a,b](Sz − Sβ,γz )Ψ =

. . . . . .

A−a,a−1 A−a,a A−a,a+1 0 · · ·

. . . . . . . . .

· · · 0 A−b,b−1 A−b,b A−b,b+1

. . . . . .





Ψ(a− 1)

Ψ(a)

...

Ψ(b)

Ψ(b+ 1)



=



...

Ψ(a− 1)A−a,a−1 + Ψ(a)A−a,a

· · ·

Ψ(b)A−b,b + Ψ(b+ 1)A−b,b+1

...


where A−x,y = Ax,y − Aβ,γx,y .

Now

Ψ(n) =−Gβ,γ
[a,b],z(n, b)

(
Ψ(b)A−b,b + Ψ(b+ 1)A−b,b+1

)
−Gβ,γ

[a,b],z

(
Ψ(a− 1)A−a,a−1 + Ψ(a)A−a,a

)
where A−x,y is derived from Lemma A.0.1 and Remark A.1

A−a,a−1 =


zρa−1, a odd,

−ρa−1, a even.

A−a,a =


−zᾱa−1 + zβ̄, a odd,

αa−1 − β, a even.

A−b,b+1 =


−ρb, b odd,

zρb, b even.

A−b,b =


−ᾱb + γ̄, b odd,

zαb − zγ, b even.

.

That proves the result.
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Appendix B

Corrections

In this appendix, we provide corrections for some of the issues from [58], [74], [18], [73]

as mentioned in Chapter 2. We first provide the correct results in their notations and

then, for the reader’s convenience, we rewrite them in our notation when there is a

correspondence. Finally, we give either a short proof or a reference for those citations

in [58] which are invalid now.

B.1 Corrections for [64]

1. Formula (3.6) in Lemma 3.3 should be C = E [0,∞)
−1,· . Or in our notation, C = E−1,·

[0,+∞].

It follows from the definition, see Remark 2.3.

2. Formula (3.14) in Lemma 3.6 should be Φn(z) = Φ
[0,n−1]
−1,· (z). Or in our notation,

Φn(z) = P−1,·
[0,n−1](z). See [73, Theorem 5.3] for a proof.
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3. Formula (3.16) and (3.17) in Lemma 3.7 should be

Φβ
n(z) = Φ

[0,n−1]

−β̄,· (z) and Φβ
n(z; γ) = Φ

[0,n−1]

−β̄,γ (z) (B.1)

where Φβ
n(z; γ) means first replacing αn−1 by γ, then multiplying every αk, 0 ≤

k < n− 1 and γ by β (instead of the reversed order). In our notation there is no

direct correspondence, but if we denote Xβ,γ
[a,b](ζ) to be Xβ,γ

[a,b] with all coefficients

αa, · · · , αb−1, γ being multiplied by ζ, where X can be C, E ,P , · · · , then

P−1,·
[0,n−1](β) = P−β̄,·[0,n−1] and P−1,γ

[0,n−1](β) = P−β̄,γ[0,n−1].

See [74, Theorem 4.2.9] for a proof. See also [73, Theorem 5.6] for a clear restate-

ment but with a typo: If D is a diagonal matrix with elements 1, λ−1, 1, λ−1, · · · ,

and Mλ differs from M by having λ in the (0, 0)-position instead of 1, then

DC(λα)D−1 = L({αn})Mλ̄({αn}).

4. Formula (3.18) in Prop. 3.8 should be

|G[a,b]
β,γ (z; k, l)| = 1

ρl

∣∣∣∣∣φ
[a,k−1]
β,· (z)φ

[l+1,b]
·,γ (z)

φ
[a,b]
β,γ (z)

∣∣∣∣∣ .
In our notation, the equality is given in (2.8). Notice that we have no extra

parameters 1
ρl

because our definition of P β,γ
[a,b],ω,z is different from the corresponding

definition of φ
[a,b]
β,γ (z). This result follows by direct computation using Cramer’s

rule.
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5. Formula (3.22) in Lemma 3.10 should be

T[a,b](z) =
1

2

 φ
[a,b]
−1,·(z) + φ

[a,b]
1,· (z) φ

[a,b]
−1,·(z)− φ[a,b]

1,· (z)

(φ
[a,b]
−1,·)

∗(z)− (φ
[a,b]
1,· )∗(z) (φ

[a,b]
−1,·)

∗(z) + (φ
[a,b]
1,· )∗(z)

 .

where we used a different formula for T[a,b], i.e. (2.9). For a proof of the correct

form, see [74, (3.2.17), (3.2.27)].

6. Formula (3.23), (3.24) in Cor. 3.11 should be

 φ
[a,b]
β,· (z)

−β(φ
[a,b]
β,· )∗(z)

 = T [a,b](z)

 1

−β


and

φ
[a,b]
β,γ (z) =

1

ρb

〈 z

βγ̄

 , T[a,b−1]

 1

−β

〉 .
Note in the proof of Cor. 3.11, they used (3.2.26) in [74], which has a typo and

the correct form should be φλn+1

λ̄(φλn+1)∗

 = Tn(z)

1

λ̄

 . (B.2)

Proof. The first equality follows from (B.1) and (B.2). The second equality

follows from the first equality and

ψ
[a,b]
β,γ = Φ−β̄n (z; γ) =

1

ρb
(Φ

[a,b−1]
β,· z + βγ̄(φ

[a,b−1]
β,· )∗).
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B.2 Corrections for [19]

1. Equation (7.4) should be

φβ,γω,[a,b](z) =
1

ρb

〈 z

βγ̄

 , Szb−a(T
aω)

 1

−β

〉 .
We believe this can be used then to derive (2.12) by [81, Theorem 5]. Then one

could complete the proof of double elimination in [18].

2. The second to the last equation of Page 39 should be

|Gτ1,τ2
ω,Λ (j, k; z)| =

∣∣∣∣∣φ
τ1,·
ω,[a,j−1](z)φ·,τ2ω,[k+1,b](z)

ρτ1,τ2ω,[a,b](z)

∣∣∣∣∣
k−1∏
i=j

ρi.
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Appendix C

Asymptotic expansion

In this appendix, we shall prove Prop. C.0.1 which, in particular, includes the proof

of Lemma 4.5.7. The quantization is as in Subsection 4.5.3.

Proposition C.0.1. Let h0, En,± be as in Lemma 4.5.5. For h ∈ [0, h0), |z| ≤

2‖W ‖∞, we have

1. The symbol 1√
h
En,± has an asymptotic expansion in S: There are an,j,k ∈ S s.t.

1√
h
En,±(x2, ξ2; z, h) ∼

∞∑
j=0

h
j
2En,j(x2, ξ2; z) with En,j =

j−1∑
k=0

an,j,k(x2, ξ2)zk, j ≥ 1.

(C.1)

In particular, En,0 = z − zn,0, En,1 = −zn,1, En,2 = −zn,2, where zn,j are

given explicitly in Lemma C.0.2.

2. Let 0 < δ < 1/2, if | Im z| ≥ hδ, then
√
hE−1

n,± has an asymptotic expansions in Sδδ :

There are bn,j,k,l, cn,j,k,α ∈ S s.t. if
k∏
l=0

bn,j,k,l(x2, ξ2; z) =
j+k−2∑
α=0

zαcn,j,k,α(x2, ξ2), we
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have

√
hE−1

n,± ∼
∞∑
j=0

h
j
2Fn,j(x2, ξ2; z), with

Fn,j =

j∑
k=0

(z − zn,0)−1

k∏
l=0

(
bn,j,k,l(x2, ξ2; z)(z − zn,0)−1

)
.

(C.2)

Thus h
j
2Fn,j ∈ Sj(δ−

1
2

)+δ. In particular, we have

Fn,0 = (z − zn,0)−1, Fn,1 = Fn,0zn,1Fn,0,

Fn,2 = Fn,0

(
zn,1Fn,1 + zn,2Fn,0 −

{Fn,0, z − zn,0}
2i

)
,

(C.3)

where {·, ·} is the Poisson bracket.

3. Let 0 < δ < 1/2, if | Im z| ≥ hδ, then rn has an asymptotic expansions in

Sδδ : There are dn,j,k,l(x2, ξ2; z), en,j,k,α(x2, ξ2) ∈ S, s.t. if
k∏
l=0

dn,j,k,l(x2, ξ2; z) =

j+k−2∑
α=0

zαen,j,k,α(x2, ξ2), we have

rn(x2, ξ2; z, h) ∼
∞∑
j=0

h
j
2 rn,j(x2, ξ2; z, h),with

rn,j =

j∑
k=0

(z − zn,0)−1

k∏
l=0

(
dn,j,k,l(x2, ξ2; z)(z − zn,0)−1

)
.

Thus h
j
2 rn,j ∈ S

(J+1)δ−J
2

0 . In particular,

rn,0 = Fn,0, rn,1 = Fn,1, rn,2 = Fn,2 − (∂zzn,2)Fn,0.
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4. In particular, denote η = x2 + iξ2, then the leading terms of TrC2(rn) are:

Chiral Hc,n : TrC2(rc,n,0 + h
1
2 rc,n,1 + hrc,n,2) =

2

z
+ 0 +

λ2
n

z3
U(η)h,

Anti-Chiral H θ
ac,n : TrC2(rac,n,0 + h

1
2 rac,n,1) =

2z

z2 − c2
n

+
2s2

n(z2 + c2
n)

(z2 − c2
n)2

√
h,

where U(η) =
α2

1

8

[
α2

1(|U−(η)|2 − |U(η)|2)2 + 4|∂η̄U−(η)− ∂ηU(η)|2
]
, ∂η = 1

2
(∂x2−

i∂ξ2), sn(η) =


α0 sin( θ

2
)|V (η)| n 6= 0

α0|V (η)| n = 0,

and cn(η) =


α0 cos( θ

2
)|V (η)| n 6= 0

α0|V (η)| n = 0.

We will prove Proposition C.0.1 in the rest of this appendix in two steps: First, we

compute explicitly the leading terms (three terms for the chiral model, two for anti-

chiral model) in the expansion of Zn(x2, ξ2; z, h), the symbol of ZW
n , where En,± =

√
h(z − ZW

n ) by (4.33). Then, we derive in general the z dependence for each term in

the expansion of En,±, from which we build up both the legitimacy of the existence

of asymptotic expansions of E−1
n,± and rn, and the z dependence for each terms in the

expansions.

Explicit leading terms. Recall that by (4.33) and (4.36), En,± =
√
h(z −ZW

n ) with

ZW
n (x2, hDx2 ;h) = R+

n Ṽ W (I +
√
hEθ

0,nṼ
W )−1R−n

=
∞∑
k=0

h
k
2 (−1)kR+

n Ṽ W (Eθ
0,nṼ

W )kR−n =:
∞∑
k=0

h
k
2QW

n,k(x2, hDx2 ;h),
(C.4)

where R±n , Eθ
0,n, Ṽ W are given in (4.28), (4.31) and (4.36). Then we can express the

asymptotic expansion of Zn(x2, ξ2) in terms of Qn,k(x2, ξ2):

Proposition C.0.2. Let QW
n,k(x2, hDx2 ;h) = (−1)kR+

n Ṽ W (Eθ
0,nṼ

W )kR−n . Then sym-
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bols Qn,0, Qn,1, Qn,2 have the following asymptotic expansions

Qn,0(x2, ξ2;h) = Q
(0)
n,0(x2, ξ2) +

√
hQ

(1)
n,0(x2, ξ2) + hQ

(2)
n,0(x2, ξ2) +OS(h

3
2 ),

Qn,1(x2, ξ2;h) = Q
(0)
n,1(x2, ξ2) +

√
hQ

(1)
n,1(x2, ξ2) +OS(h),

Qn,2(x2, ξ2;h) = Q
(0)
n,2(x2, ξ2) +OS(

√
h).

In the chiral model, for η = x2 + iξ2, Dη = 1
2
(Dx2 − iDξ2),

Q
(0)
c,n,0 = Q

(2)
c,n,0 = Q

(0)
c,n,2 = 0, Q

(0)
c,n,1 = −α

2
1λn
4

[
|U |2 − |U−|2

]
σ3,

Q
(1)
c,n,0 =

λnα1

2

 0 DηU −Dη̄U−

DηU− −Dη̄U 0

 ,

Q
(1)
c,n,1 =


−α2

1z

4
[2|n|(|U |2 + |U−|2) 1l2×2 +(|U |2 − |U−|2)σ3] n 6= 0,

−α2
1z

2

|U |2 0

0 |U−|2

 n = 0.

While in the anti-chiral model, when H θ = Hac, we have, when n = 0,

Q
(1)
ac,0,0 = Q

(0)
ac,0,1 = Q

(1)
ac,0,1 = Q

(0)
ac,0,2 = 0,

Q
(0)
ac,0,0 = α0

 0 e−
θ
2
iV

e
θ
2V ∗ 0

 , Q
(2)
ac,0,0 =

α0

4

 0 e−
θ
2
i∆x2,ξ2V

e
θ
2
i∆x2,ξ2V̄

 ,
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when n 6= 0,

Q
(1)
ac,n,0 = 0, Q

(0)
ac,n,1 =

α2
0|V |2 sin2( θ

2
)

2λn
1l2×2, Q

(1)
ac,n,1 = −

zα2
0|V |2 sin2( θ

2
)

4λ2
n

1l2×2,

Q
(0)
ac,n,0 = α0 cos( θ

2
)

 0 V ∗

V 0

 , Q
(0)
ac,n,2 = −

α3
0|V |2 sin2( θ

2
) cos( θ

2
)

4λ2
n

 0 V

V ∗ 0

 ,

Q
(2)
ac,n,0 =

α0

4

(
2|n| cos( θ

2
)− iσ3 sin( θ

2
)
) 0 ∆x2,ξ2V

∆x2,ξ2V̄ 0

 .

In particular, Zn has an asymptotic expansion Zn ∼
∞∑
k=0

h
k
2 zn,k in S with

zn,0 = Q
(0)
n,0, zn,1 = Q

(0)
n,1 +Q

(1)
n,0, zn,2 = Q

(0)
n,2 +Q

(1)
n,1 +Q

(2)
n,0.

Proof. Notice that Qn,k(x2, ξ2) = (−1)k
∫
Rx1

(Kθ
n(x1))∗Ṽ w#(Eθ

0,nṼ
w)#kKθ

n(x1)dx1. Re-

call that by (4.29), (4.1), and (4.31), we have

Kθ
n =

uθn 0

0 u−θn

 , V =

 0 T

T ∗ 0

 , T =

α0V α1U−

α1U α0V

 , Eθ
0,n =

eθ0,n 0

0 e−θ0,n

 .

Thus, inserting the above expressions into the definition of Qn,k, we find for its symbol

Qn,k =

∫
uθn∗ 0

0 u−θn
∗


 0 T̃w

(T̃w)∗ 0



eθ0,n 0

0 e−θ0,n


 0 T̃w

(T̃w)∗ 0



kuθn∗ 0

0 u−θn

 dx1

(−1)k
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where T̃w = Tw(x2 + h
1
2x1, ξ2 − h

1
2Dx1). In particular,

Qn,0 =

 0
∫

(uθn)∗T̃wu−θn dx1∫
(u−θn )∗(T̃w)∗uθndx1

 ,

Qn,1 =

− ∫ (uθn)∗T̃we−θ0,n(T̃w)∗uθndx1 0

0 −
∫

(u−θn )∗(T̃w)∗eθ0,nT̃
wu−θn dx1

 , and

Qn,2 =

 0
∫

(uθn)∗T̃we−θ0,n(T̃w)∗eθ0,nT̃
wu−θn dx1∫

(u−θn )∗(T̃w)∗eθ0,nT̃
we−θ0,n(T̃w)∗uθndx1 0

 .

(C.5)

Notice that since both T̃w and eθ0,n depend on h, we need to further expand them in

order to obtain asymptotic expansions of Qn,k. Thus the proof of Proposition C.0.2

rests now on the following two lemmas.

Lemma C.0.3 (Expansion of T̃w and eθ0,n).

1. Let T ∈ C∞b (R2
x). Recall that T̃ (x, ξ) := T (x2 +h

1
2x1, ξ2−h

1
2 ξ1) ∈ S(R4

x,ξ). Then

T̃w(x,Dx1 ,ξ2) = T (x2, ξ2) +
√
h〈∇x2,ξ2T (x2, ξ2), (x1,−Dx1)〉

+
h

2
〈(x1,−Dx1),HessT (x2, ξ2)(x1,−Dx1)T 〉+OS(R2

x2,ξ2
;L(B3

x1
;B0
x1

))(h
3
2 )

2. Let eθ0,n be as in (4.31). Then eθ0,n(x,Dx1 , ξ2) has asymptotic expansion eθ0,n ∼
∞∑
k=0

h
k
2σk(e

θ
0,n) where σk(e

θ
0,n) =

∑
m6=n

zkuθm(uθm)∗

(λm−λn)k+1 .

Lemma C.0.4 (Projections). Let Sθn = span{uθn, uθ−n} with Sn := S0
n. The following

properties hold:
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1. We have Sθn = S−θn , in particular uθn = cos
(
θ
2

)
u−θn + i sin

(
θ
2

)
u−θ−n.

2. Let M =

0 α

β 0

 ∈ C2×2 then Mun ∈ Sn−1 ∪ Sn+1, for any n ≥ 0. More

specifically for θ = 0

Mu±n =
αi

2
(un+1 − u−(n+1))∓

βi

2
(un−1 + u−(n−1)), for n ≥ 2

Mu±1 =
αi

2
(u2 − u−2)± β√

2
u0, and Mu0 =

α√
2

(u1 − u−1).

3. We have x1u
θ
n ∈ Sθn−1 ∪ Sθn+1, Dx1u

θ
n ∈ Sθn−1 ∪ Sθn+1. More specifically

x1u
θ
±n =

√
2

4
[uθn−1(

√
n±+

√
n− 1) + uθ−(n−1)(

√
n∓
√
n− 1)

+ uθn+1(
√
n+ 1 +

√
n)± uθ−(n+1)(

√
n+ 1∓

√
n)], for |n| ≥ 2

x1u
θ
±1 =

i

2
uθ0 +

√
2

4
[uθ2(
√

2±
√

1) + uθ−2(
√

2∓
√

1)] and x1u
θ
0 =

√
2i

4
(uθ1 + uθ−1).

Proof. We omit the proof of this Lemma here as it follows from straightforward but

lengthy basis expansions and the simple observation that 〈u−θm , uθn〉 = cos
(
θ
2

)
δm,n +

i sin
(
θ
2

)
δm,−n.

From the preceding Lemmas C.0.3 and C.0.4, we can compute the asymptotic expan-

sion of each term of Qn,k in (C.5) and therefore prove Prop.C.0.2.

For the (1, 2)-entry of Qn,0, by Lemma C.0.3, we have

∫
(uθn)∗T̃wu−θn dx1 =

∫
(uθn)∗Tu−θn dx1 +

√
h

∫
(uθn)∗〈∇x2,ξ2T, (x1,−Dx1)〉u−θn dx1

+
h

2

∫
(uθn)∗〈(x1,−Dx1),HessT (x2, ξ2)(x1,−Dx1)T 〉u−θn dx1

=:t
(0)
n,0 +

√
ht

(1)
n,0 + ht

(2)
n,0 +OS(R2

x2,ξ2
;C2×2)(h

3
2 ).
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Specializing now to the chiral case, in which case θ = 0, we choose

T (x2, ξ2) =

 0 α1U(x2, ξ2)

α1U−(x2, ξ2) 0


where in the chiral case, by Lemmas C.0.3 and C.0.4, we see that

t
(0)
c,n,0 = 0, t

(1)
c,n,0 =

λnα1i

2
(∂w̄U− − ∂wU), and t

(2)
c,n,0 = 0,

while in the anti-chiral case, choosing T (x2, ξ2) = α0V (x2, ξ2) idC2×2

t
(0)
ac,n,0 =


α0 cos( θ

2
)V n 6= 0,

α0e
− θ

2
iV n = 0,

, t
(1)
ac,n,0 = 0, and

t
(2)
ac,n,0 =


α0

4
(2|n| cos( θ

2
)− iσ3 sin( θ

2
))∆x2,ξ2V, n 6= 0

α0

4
e−i

θ
2 ∆x2,ξ2V n = 0.

Due to the conjugacy relation
∫

(uθn)∗(T̃w)∗u−θn dx1 = (
∫

(u−θn )∗T̃wuθndx1)∗, the expan-

sion of Qθ
n,0 follows by (C.5).

Similarly for the (1, 1)-entry Qθ
n,1, denote

−
∫

(uθn)∗T̃we−θ0,n(T̃w)∗uθndx1 =: t
(0)
n,1 + t

(1)
n,1

√
h+OS(R2

x2,ξ2
;C2×2)(h)
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where, using Lemma 1, in the chiral case,

t
(0)
c,n,1 = −α

2
1λn
4

(|U |2 − |U−|2) and

t
(1)
c,n,1 =


−α2

1z

4
[2|n|(|U |2 + |U−|2) + (|U |2 − |U−|2)], n 6= 0

−α2
1z

2
|U |2, n = 0

and in the anti-chiral case

t
(0)
ac,n,1 =


α2

0|V |2 sin2( θ
2

)

2λn
, n 6= 0

0, n = 0

and t
(1)
ac,n,1 =


−α2

0|V |2 sin2( θ
2

)z

4λ2
n

, n 6= 0

0, n = 0.

In a similar fashion, the (2, 2)-entry of Qn,1, defined in (C.5), can be obtained by

precisely the same computations after only replacing θ by −θ and T ∗ by T , i.e. U

switching with U− and using V ∗ instead of V . Thus the asymptotic expansion of Qθ
n,1

follows.

Similarly for Qθ
n,2 we restrict us to the (1, 2) entry in (C.5). Then, we denote

∫
(uθn)∗T̃we−θ0,n(T̃w)∗eθ0,nT̃

wu−θn dx1 =: t
(0)
n,2 +OS(R2

x2,ξ2
;C2×2)(

√
h).

It follows then by Lemma 1, that in the chiral model, t
(0)
c,n,2 = 0 while in the anti-chiral

model, t
(0)
n,2 = −α3

0|V |2 sin2( θ
2

) cos( θ
2

)

4λ2
n

V. By the conjugacy relation

∫
(u−θn )∗(T̃w)∗eθ0,nT̃

we−θ0,n(T̃w)∗uθndx1 = [

∫
(uθn)∗T̃we−θ0,n(T̃w)∗eθ0,nT̃

wu−θn dx1]∗,

this also yields directly the expansion of Qθ
ac,n,2.
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Existence, derivation and z-dependence. Now we prove the rest of Prop. C.0.1,

which includes the existence and derivation of asymptotic expansion of E−1
n,± and rn

and the z dependence of each terms in the expansions of En,±, E−1
n,± and rn.

Proof of Prop. C.0.1. By (C.4) and Prop. C.0.2, En,± =
√
h(z − Zn), and Zn has

an asymptotic expansion in S. Thus, 1√
h
En,± also has an asymptotic expansion in S:

1√
h
En,± ∼

∑
j

h
j
2En,j with En,j ∈ S. To exhibit the z-dependence, we notice that only

E0,n depends on z in (C.4). Thus, by (4.40), we have

ZW
n = R+

n Ṽ W (1l +
√
hE0,nṼ

W )−1R−n = R+
n Ṽ WR−n +

∞∑
α=1

R+
n Ṽ W (

√
hE0,nṼ

W )αR−n

= R+
n Ṽ WR−n +

∞∑
α=1

h
α
2R+

n Ṽ W

∑
m6=n

Kθ
m(Kθ

m)∗

λm − λn

∞∑
β=0

( √
hz

λm − λn

)β
αR−n

= R+
n Ṽ WR−n +

∞∑
α=1

∞∑
γ=0

h
α+γ

2 zγAWn,α,γ(x2, hDx2)

= R+
n Ṽ WR−n −

∞∑
j=1

h
j
2

(
j−1∑
k=0

zkaWn,j,k(x2, hDx2)

)

for some appropriate An,α,γ(x2, ξ2) ∈ S and an,j,k(x2, ξ2) ∈ S. Thus we proved part

(1).

For
√
hE−1

n,±, first of all, by a parametrix construction using the formal expansion of

the sharp product

a#̃b ∼
∑
k

1

k!

((
ih

2
σ(Dx2 , Dξ2 ;Dy, Dη)

)k
(a(x2, ξ2)b(y, η))

)∣∣∣∣∣
x2=y, ξ2=η

, (C.6)

we can formally derive (C.2) and (C.3). More specifically, there is a formal expansion of
√
hE−1

n,±, which is denoted by
√
hFn ∼

∑
j

h
j
2Fn,j, s.t. 1√

h
En,±#̃

√
hFn = 1l2×2. Denote
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σ(Dx2 , Dξ2 ;Dy, Dη) in (C.6) by σ, we can solve for Fn,j by considering

1l2×2 = En,±#̃F−1
n ∼

∞∑
α=0

∞∑
β=0

h
α+β

2 En,α#̃Fn,β

=
∞∑
α=0

∞∑
β=0

h
α+β

2

∞∑
γ=0

hγ
((

iσ

2

)γ
(En,α(x2, ξ2)Fn,β(y, η))

)∣∣∣∣
x2=y,ξ2=η

=
∞∑
j=0

j∑
β=0

j−β∑
α=0

h
j
2

((
iσ

2

) j−α−β
2

(En,α(x2, ξ2)Fn,β(y, η))

)∣∣∣∣∣
x2=y,ξ2=η

.

Then we compare the parameter of the term of h
j
2 on both sides and get

−En,0Fn,j =

j−1∑
β=0

j−β∑
α=0

((
iσ

2

) j−α−β
2

(En,α(x2, ξ2)Fn,β(y, η))

)∣∣∣∣∣
x2=y,ξ2=η

,

from which we can solve for Fn,j. Furthermore, by (C.1) and En,0 = z − zn,0, we can

check inductively that for j ≥ 0, there are bn,j,k,l, cn,j,k s.t.

Fn,j =

j∑
k=0

(z − zn,0)−1

k∏
l=0

(
bn,j,k,l(x2, ξ2; z)(z − zn,0)−1

)
,

with
k∏
l=0

bn,j,k,l(x2, ξ2; z) =

j+k−2∑
α=0

zαcn,j,k(x2, ξ2), for appropriate cn,j,k ∈ S.

Notice that #̃ differs from the actual sharp product #:

a#b = e
ih
2
σ(Dx2 ,Dξ2 ;Dy ,Dη) (a(x2, ξ2)b(y, η)) |x2=y, ξ2=η. (C.7)

Now we claim that this formal expansion for
√
hFn is legitimate as an asymptotic

expansion in Sδδ and in fact, it is exactly the asymptotic expansion of
√
hEn,± when

|z| ≤ 2‖V ‖∞ and | Im z| ≥ hδ. In fact,
√
h(E−1

n,± − Fn) ∈ S−∞.
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In fact, since |z| is bounded and | Im z| ≥ hδ and Fn,j is a rational function in z, thus

h
j
2Fn,j ∈ S

j(δ− 1
2

)+δ

δ . Since j(δ − 1
2
) + δ → −∞, (C.2) is not only a formal expansion

but is indeed an asymptotic expansion of Fn in the symbol class Sδδ .

Furthermore, comparing (C.6) with (C.7), we see that Fn#En,± = 1 − Rn with Rn ∈

S−∞. By Beal’s lemma, there is R̃n ∈ S−∞ s.t. (1 − RW
n )−1 = 1 − R̃W

n . Thus
√
hE−1

n,± = F#(1− R̃W
n ) ∈ Sδδ and have exactly the same asymptotic expansion as Fn

in (C.2) since R̃n ∈ S−∞δ . Thus part (2) is proved.

It follows that rn := ∂zEn,±#E−1
n,± is also well-defined with an asymptotic expansion

in Sδδ . Since

rn ∼
∞∑
α=0

h
α
2 ∂zEn,α#

∞∑
β=0

h
β
2Fn,j

=
∞∑
α=0

∞∑
β=0

h
α+β

2

∞∑
γ=0

hγ
((

iσ

2

)γ
(En,α(x2, ξ2; z)Fn,β(y, η; z))

)∣∣∣∣
x2=y,ξ2=η

=
∞∑
j=0

j∑
α=0

j−α∑
β=0

h
j
2 rn,j,α,β

((
iσ

2

) j−α−β
2

(En,α(x2, ξ2; z)Fn,β(y, η; z))

)∣∣∣∣∣
x2=y,ξ2=η

.

Combining it with part (1) and (2) and the fact that σ is linear in Dx2 , Dξ2 , we get

part (3). Part (4) follows directly from part (1), (2), (3) with Prop. C.0.2.
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Appendix D

For the proof of Lemma 4.5.8

In this appendix, we provide several lemmas that together complete the proof of Lemma

4.5.8. We start with a proposition that expresses the Hilbert-Schmidt norm of the

quantization in terms of its operator-valued symbol.

Proposition D.0.1. Let H1, H2 be two Hilbert spaces. Let P : R2 → L(H1; H2)

be an operator-valued symbol in the symbol class S(R2
y,η;L(H1; H2)). Furthermore, let

‖·‖HS denote the Hilbert-Schmidt norm of maps H1 to H2 or L2(Ry; H1) to L2(Ry; H2).

Then

‖PW (y, hDy)‖2
HS =

1

2πh

∫
R2

‖P (y, η)‖2
HS dy dη.

In particular, if H1 = H2 = R, for the scalar-valued symbol P , we have

‖PW (y, hDy)‖2
HS =

‖P (y, η)‖2
L2(R2;R)

2πh
. (D.1)

The next Lemma allows us to interchange the order of trace and integration.

Lemma D.0.2. Let En,−, En,+ be as in (4.32). Let 1̃l
W

R , 1̄l
W
R be as in the proof of
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Lemma 4.5.7. Then, there exists a constant C > 0 such that

‖1̄lWR En,−‖HS(L2(R2
x),L2(Rx2 )) ≤ Ch−1/2R and ‖En,−1̃l

W

R ‖HS(L2(R2
x),L2(Rx2 )) ≤ Ch−1/2R.

Proof. The first equation follows from (D.1). For the second equation, we first recall

that

Claim D.1. If a ∈ S(R2n;L(X, Y );m1), b ∈ S(R2n; HS(Y, Z);m2) and m1m2(x, ξ) ∈

L2(R2n
x,ξ), where m1,m2 are order functions, then

b#a ∈ S(R2n; HS(X,Z);m1m2) and (b#a)W = bWaW ∈ HS(L2(Rn
x;X);L2(Rn

x;Y )).

Similar to Lemma 1 in [86], we can show that

Claim D.2. For any k′ s.t. 1 < k′, we have

1. En,−(x2, ξ2) ∈ S(R2
x2,ξ2

;L(B−k
′

x1
;C2)),

2. 1̃l
w

R(x,Dx1 , ξ2) ∈ S(R2
x2,ξ2

; HS(L2
x1

;B−k
′

x1
);m), where m(x2, ξ2) = (1 + (|(x2, ξ2)| −

R)+)−k
′

is the order function.

Then it follows that, by Claim D.1, we have En,−#1̃l
w

R ∈ S(R2
x2,ξ2

; HS(L2
x1

);m), i.e.

‖En,−#1̃l
w

R(x2, ξ2)‖HS(L2
x1

) ≤ m(x2, ξ2) = (1 + (|(x2, ξ2)| −R)+)−k
′
.

Thus by Prop. D.0.1, since for all k > 0,

∫
R2

[1 + (|(x2, ξ2)| −R)+]−2kdxdξ = πR2 +O(Rmax(1,−2k+2)) = O(R2),
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we get ‖En,−1̃l
W

R ‖HS(L2(Rx2 ;L2(Rx1 ;C4));L2(Rx2 ;C2)) ≤ Ch−1/2R and the Lemma is proved.

Lemma D.0.3. Let En,−, En,+, En,± be as in (4.32). For Im z 6= 0, both operators

1̃l
W

R En,+E
−1
n,±En,−1̃l

W

R and 1̄l
W
R En,−En,+E

−1
n,±1̄l

W
R

are trace class as bounded linear operators L(L2(Rx2 ;L2(Rx1 ;C4))) and L(L2(Rx2 ;C2)),

respectively.

Proof. By Lemma D.0.2, the fact that 1̃l
W

R En,+ is the adjoint of En,−1̃l
W

R and bounded-

ness of En,± from (4.35), we have

Tr1(1̃l
W

R En,+E
−1
n,±En,−1̃l

W

R ) ≤ CR2

h
3
2 | Im z|

and Tr2(1̄l
W
R En,−En,+E

−1
n,±1̄l

W
R ) ≤ CR2

h
3
2 | Im z|

.

The second proposition allows us to change the position of En,− in the averaging and

limiting process in the proof of Lemma 4.5.8.

Lemma D.0.4. Let En,−, En,+, En,± be as in (4.32), then

TrL2(R2
x;C4)(1l

W
R En,+E

−1
n,±En,− 1lWR )− TrL2(Rx2 ;C2)(1̄l

W
R En,−En,+E

−1
n,±1̄l

W
R ) ≤ CR

3
2

h| Im z|
.
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Proof. Since Tr(AB) = Tr(BA) when AB and BA are both of trace class.

Tr1(1̃l
W

R En,+E
−1
n,±En,−1̃l

W

R )− Tr2(1̄l
W
R En,−En,+E

−1
n,±1̄l

W
R )

= Tr2(En,−(1̃l
W

R )2En,+E
−1
n,±)− Tr2((1̄l

W
R )2En,−En,+E

−1
n,±)

= Tr2

[
(En,−1̃l

W

R − 1̄l
W
R En,−)1̃l

W

R En,+E
−1
n,±

]
+ Tr2

[
1̄l
W
R (En,−1̃l

W

R − 1̄l
W
R En,−)En,+E

−1
n,±

]
:= Tr2

[
[En,−, 1lR]w1̃l

W

R En,+E
−1
n,±

]
+ Tr2

[
1̄l
W
R [En,−, 1lR]wEn,+E

−1
n,±

]
:= Tr2(A1) + Tr2(A2)

where [En,−, 1lR]W := En,−1̃l
W

R −1̄l
W
R En,−. Then the following claim completes the proof.

Claim D.3. For Im z 6= 0, A1, A2 are trace class operators and there is a C > 0 such

that

Tr2(A1),Tr2(A2) ≤ Ch−1| Im z|−3/2R3/2.

Proof of Claim D.3. From Lemma D.0.2, we already know

‖[En,−, 1lR]W‖HSW ≤ Ch−1/2R,

where HSW = HS(L2(Rx2 ;L2(Rx1 ;C4));L2(Rx2 ;C2)). We will improve the upper

bound from Ch−1/2R to Ch−1/2R1/2.

Let χ̄cR = 1− χ̄R, 1̃l
c

R = 1− 1̃lR. First notice that from the proof of Lemma D.0.2, and

replacing χ̄R by χ̄cR, we have

‖[En,−, 1lR]w(x2, ξ2)‖HS ≤ Ck
[1+(R−|(x2,ξ2)|)+]k

, ‖[En,−, 1lcR]w(x2, ξ2)‖HS ≤ Ck
[1+(|(x2,ξ2)|−R)+]k
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where [En,−, 1lR]w(x2, ξ2) = En,−#1̃l
w

R− 1̄lR#En,− is the symbol in (x2, ξ2) of [En,−, 1lR]W

and HS = HS(L2(Rx1 ;C4);C2). Since [En,−, 1lR]w = −[En,−, 1l
c
R]w, we have

‖[En,−, 1lR]w(x2, ξ2)‖HS ≤ Ck[1 + ||(x2, ξ2)| −R|]−k.

Thus by Prop. D.0.1 and a strightfoward computation of the following integral

∫
R2
x2,ξ2

[1 + ||(x2, ξ2)| −R|]−2kdx2dξ2 =
1

(2k − 2)(2k − 1)
+

R

2k − 1
= O(R),

we find that ‖[En,−, 1lR]W‖HSW ≤ Ch−1/2R1/2. Since 1̃l
W

R En,+ is the adjoint of En,−1̃l
W

R ,

this yields that

Tr(A1) ≤ Ch−3/2R3/2, Tr(A2) ≤ Ch−3/2R3/2.

In next Lemma, we summarize the averaging property of the periodic symbols to reduce

the regularized trace to a fundamental cell.

Lemma D.0.5. Let En,−, En,+, En,±, 1̄lR be as in (4.32). Then

lim
R→∞

1

4R2

∫
R2

TrC2(1̄lR#∂zEn,±#E−1
n,±#1̄lR) dx2 dξ2

=
1

|E|

∫
E

∂z̄f̃ TrC2(∂zEn,±#E−1
n,±) dx2 dξ2.

The proof of this Lemma can be found in [86, Prop.3].
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Appendix E

Magnetic Bloch function on torus

In this appendix, we construct Bloch functions associated to the magnetic Dirac op-

erator HD defined in (4.1) following [45], for a constant magnetic field B under the

symmetric gauge A(z) = −B
2
iz.

We now consider the Bloch-Floquet transformed magnetic Dirac operator HD with

ak := a+ k = 2Dz − A(z), HD,k :=

 0 ak

a∗k 0

.

Proposition E.0.1. For any k ∈ E∗λ, there is a sequence of Bloch function ψn,k ∈

L2
B(Eλ), such that

akψ0,k = 0, akψn,k =
√
nψn−1,k, a∗kψn,k =

√
n+ 1ψn+1,k.

The zero mode function ψ0,k(z) is given by

ψ0,k(z) = C0e
−S(z)fk(z̄)e

Bz̄2

4 e−iRe(zk̄) with fk(z) = e(Imk+
1

4λ
)zϑ 1

2
, 1
2

(
zi

4πλ
− zk

∣∣∣ω) ,
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Figure E.1: Periodic wavefunction at zeroth order Landau level.

where S(z) = |z|2B
4

, ϑ is a Jacobi theta function and zk = 2λωk− iλωk− iλω̄k̄+ 1
2

+ ω
2

.

Let ψ−1,k := 0. In particular, HD,k has eigenfunction un,k with eigenvalues λn,k for

un,k = C ′n

sgn(n)ψ|n|−1,k

ψ|n|,k

 , C ′n =


1√
2

n 6= 0

1 n = 0

, λn,k = sgn(n)
√

2|n|B, ∀n ∈ N.

Any Γ-periodic function f is, for some suitable coefficients (fn), of the form f(z) =∑
n∈Z2 fne

2πin·x where n · x = n1x1 + n2x2 with

x1 =
i(ωz − ω̄z̄)√

3λ
and x2 =

i(ωz̄ − ω̄z)√
3λ

. (E.1)

We now aim to construct Bloch functions in the presence of a constant magnetic field

in addition to a periodic magnetic potential, for which the vector potential is also

periodic, with Fourier expansion following (E.1)

Aper(x1(λω) + x2(λω2)) =
∑

n∈Z2\{0}

Ane
2πin·x ∈ L2(C/Γ). (E.2)

Proposition E.0.2. Let Γ = λ(Z × ωZ) where λ =
√

2π
B Im(ω)

. The zero mode Bloch
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function (ψ0,A,k, 0) to a Floquet transformed magnetic Dirac operator

HD,per =

 0 (a∗k + A∗per)

(ak + Aper) 0

 ,

with both a constant magnetic field B0 and a periodic magnetic field with vector poten-

tial (E.2), where Aper ∈ L2(C/Γ), is characterised by (ak + Aper)ψ0,A,k = 0. For each

k ∈ C, there exists a unique solution

ψ0,A,k(z) = ψ0,k(z) exp

[
−
√

3λi

4π

∑
n∈Z2\{0}

Ane
2πin·x

n1ω2 − n2ω

]
(E.3)

for z = λω(x1 + ωx2) where we use (E.1). Similarly, (−2i∂z + Aper(z))ψ̃0(z) = 0 has

a periodic solution ψ̃0(z) = exp

[
−
√

3λi
4π

∑
n∈Z2\{0}

Ane2πin·x

n2ω2−n1ω

]
.

Proof. Notice that for arbitrary φ, we have e−φake
φ = ak − 2i∂z̄φ(z). If we can find φ

s.t. −2i∂z̄φ(z) = Aper, then ψ0,A,k = e−φψ0,k satisfies (ak +Aper)ψ0,A,k = 0. From (E.1)

we find

∂z̄e
2πin·x =

2π√
3λ

(n1ω
2 − n2ω)e2πin·x and ∂z̄e

2πin·x =
2π√
3λ

(n2ω
2 − n1ω)e2πin·x

we see that φ(z) =
√

3λi
4π

∑
n∈Z2\{0}

An
n1ω2−n2ω

e2πin·x is a solution.
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