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ABSTRACT OF THE DISSERTATION

Investigating the role of transport processes in intracellular organization and dynamics

by

Saurabh Sanjay Mogre

Doctor of Philosophy in Physics

University of California San Diego, 2021

Professor Elena Koslover, Chair

Transport of intracellular material is a fundamental process observed within the cells of
organisms across all realms of life. While the biology may be vastly different across species,
the physical mechanisms underlying motion remain largely consistent. Tubular cells such as
neuronal axons and fungal hyphae are excellent systems to study transport owing to their simple
geometry, robust transport machinery, and experimental tractability. We combine mathematical
and computational approaches to explore how transport processes contribute to intracellular
organization and affect biological function. Imaging data from neuronal and fungal cells are

leveraged to develop functional models and verify their predictions.
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In chapter 2, we set up a theoretical model of intracellular transport via a combination
of diffusion and motor-protein-driven ballistic movement. We employ analytical techniques and
numerical simulations to study the efficiency of different transport modes in achieving various
cellular objectives. Our model describes length and time scales over which each transport mode
dominates organelle motion, various metrics to quantify the exploration of intracellular space,
and the role of regulatory mechanisms such as tethering.

Chapter 3 explores initiation of the hitchhiking transport process wherein a cargo colo-
calizes with a motor-driven carrier to engage in directed motion. A computational model is
developed using data from imaging live cells of the fungus Aspergillus nidulans. The model
predicts the dependence of hitchhiking initiation rates on the distribution of cytoskeletal tracks
and carrier organelles, as well as the number, length and flexibility of the linker proteins that
mediate contact between the carrier and the hitchhiking cargo.

The role of microtubule length and spatial organization in the capture of transported cargo
is studied in chapter 4. General properties of optimal microtubule arrangements are derived
using mathematical and computational modeling. Model predictions are supported by images of
microtubules in Aspergillus nidulans hyphae.

Chapter 5 highlights the role of transport in interactions between autophagosomes and
lysosomes in neuronal axons during autophagy. Leveraging data from hippocampal neurons, we
identify parameter regimes that can result in fusion-independent switching of autophagosome
motility.

This dissertation identifies common features underlying intracellular transport in tubular

cells via modeling approaches rooted in physical principles.
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Chapter 1

Introduction

The interior of a cell is a highly dynamic and crowded environment filled with a large
variety of microscopic components. Many important biological functions rely on the physical
movement of these components through the complex intracellular space. Nanometer-sized mRNA
particles synthesized in the nucleus of a neuron are transported over hundreds of microns in
an axon in order to be translated into proteins. In growing or injured cells, sub-micron scale
raw materials need to be delivered accurately and in a timely fashion to specific locations.
Management of waste within a cell requires engulfment of byproducts in an organelle followed
by transport to the requisite machinery for recycling. Key functions such as metabolism and
antioxidant activity require establishing physical contact between multiple transported entities.
All of these processes require co-ordinated and efficient movement of the transported components
through the intracellular milieu which can be achieved through a well managed cellular trafficking
system. Eukaryotic cells in particular utilize a specialized machinery comprising cargo-carrying
molecular motors that walk on cytoskeletal filaments such as microtubules.

Due to the significant involvement of intracellular transport in crucial cellular functions,
defects in this process are implicated in many human pathologies (reviewed in [1] and [2]).

Human neurons, in particular, are susceptible to transport anomalies owing to their extended



structure. Neurodegenerative disorders such as Multiple Sclerosis, Amyotrophic Lateral Sclerosis
(ALS), Parkinson’s disease, and Alzheimer’s, among others, are attributed to disruption of axonal
transport by mutations or other abnormalities [3—6]. Building a quantitative understanding of
transport in neuron-like cells is therefore essential towards unraveling the mechanisms underlying
these serious diseases.

Tubular cell projections such as neuronal axons and fungal hyphae, while being bi-
ologically important, are also particularly suitable model systems for intracellular transport.
Microtubules in these cells are typically aligned with the tubular axis, and are often uniformly
polarized towards the distal tip [7, 8]. These projections are also much longer than they are wide,
with their width ranging between 1-2um, while the length can extend from a few microns up
to a meter [9—12]. Since cargo needs to be transported back and forth between the cell body
and the distal tip, movement along the cell axis is more consequential than radial motion. As
a result, transport in these cells can be modeled as a one-dimensional process along the axial
direction, making it highly amenable to theoretical modeling approaches. In addition to their
simplified geometry, the genetic tractability of these cells enables the use of various biological
assays to explore the dynamics of intracellular transport. This dissertation is divided into four
chapters focusing on various aspects of transport in tubular cell projections and their role in
cellular organization and dynamics.

In chapter 2, we focus on two physical mechanisms utilized by Eukaryotic cells to achieve
a wide variety of cellular objectives. Stochastic diffusive motion is typically observed over
shorter (nanometer) length scales and plays a role in local mixing and interactions. For longer
(um-mm) distances, motor proteins carry the cargo along microtubules, resulting in processive
motion. Each of these mechanisms has unique features and drawbacks, with interplay between
the two modes being particularly important for cellular scale motion. We develop a theoretical
"halting creeper" model to identify how each transport mode contributes to various cellular

objectives. For organelles that search for a specific target, we obtain the average capture time



for given transport parameters and show that both diffusion and motor-driven motion contribute
to target capture in the biologically relevant regime. Because many organelles have been found
to tether to microtubules when not engaged in active motion, we study the competition between
immobilization due to tethering and increased probability of active transport. We derive parameter-
dependent conditions under which tethering enhances long range transport and improves the
target capture time.

In addition to diffusion or direct engagement with motor-proteins, some cellular compo-
nents are transported via hitchhiking by attaching to other motor-driven organelles. In chapter
3, we describe a quantitative model of intracellular cargo transport via hitchhiking. We focus
specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles
in fungal hyphae. Geometric parameters for the model are obtained from fluorescence imaging in
live cells of the fungus Aspergillus nidulans. Brownian dynamics simulations are combined with
analytical modeling to simulate interactions between carrier and hitchhiker organelles. The model
predicts the dependence of hitchhiking initiation on features of the cellular transport machinery,
including the number and distribution of microtubules and carrier organelles, as well as the
number, length and flexibility of the linker proteins that mediate contact between the carrier and
the hitchhiking cargo. We also explore the effect of tethering organelles to microtubules, and
show that it can result in substantial enhancement of hitchhiking initiation. This enhancement
is related to organelle dispersion using the "halting creeper" model, which predicts improved
dispersal efficiency and an increase in the overall transport rate. The predictions of the model are
then compared with data obtained from tracking peroxisome motion in A. nidulans.

Various types or cargo are either continually synthesized throughout tubular cells, or
are incorporated near the distal tip of cellular projections. These cargos need to engage rapidly
with microtubules in order to be delivered to the cell body for processing. While some cargos
can bind anywhere on a microtubule, preferential binding of cargo can occur near microtubule

tips due to pools of motor-proteins. The arrangement of these capture regions along the cell



axis can significantly impact the time required by a cargo to find a microtubule. In chapter 4,
we study the role of microtubule length and spatial organization in the cargo capture process
using mathematical and computational modeling. We derive general features of microtubule
arrangements that result in optimal cargo capture times for a variety of capture modalities. Using
fluorescence microscopy, we obtain microtubule lengths in A. nidulans, and show that they satisfy
optimality requirements set by the model.

Finally, we focus on interactions between transported organelles and its effect on biological
function. Degradation of waste material in neurons is carried out via the autophagy pathway
which involves engulfment of cytoplasmic components by autophagosomes followed by fusion
with lysosomes, resulting in lowered pH and activation of degradative enzymes. Chapter 5
highlights the role of transport in interactions between autophagosomes and lysosomes in neuronal
axons during autophagy. Many studies have shown that autophagosomes in neurons undergo
bidirectional motion or remain stationary upon formation, and eventually switch to a robust
retrograde motility[13, 14]. It is canonically believed that this motility switch results from
fusion with lysosomes[15], and data from hippocampal and dorsal root ganglion (DRG) neurons
do indeed show that most retrograde autophagosomes display markers of fusion. Using a
minimal model, we hypothesize that the observed data may arise from fusion-independent motility
switching for a range of feasible parameters. We reiterate these predictions using explicit agent-
based simulations of organelle interactions. These results help distinguish between competing
ideas within the field regarding whether fusion with lysosomes is necessary for autophagosomes
to switch their motility.

The overall focus of this dissertation is to build a comprehensive picture of various
physical aspects of transport to understand organization and dynamics within cells. Using cross-
disciplinary techniques spanning between physics and cell biology, we have explored key features
of intracellular transport. Our findings highlight tools to connect cellular dynamics with biological

function, providing a stepping stone towards understanding human health and disease.



Chapter 2

Multimodal Transport and Dispersion of

Organelles in Narrow Tubular Cells

2.1 Abstract

Intracellular components explore the cytoplasm via active motor-driven transport in
conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells
using analytical techniques and numerical simulations to study the efficiency of different transport
modes in achieving various cellular objectives. Our model describes length and time scales
over which each transport mode dominates organelle motion, along with various metrics to
quantify exploration of intracellular space. For organelles that search for a specific target, we
obtain the average capture time for given transport parameters and show that diffusion and active
motion contribute to target capture in the biologically relevant regime. Because many organelles
have been found to tether to microtubules when not engaged in active motion, we study the
interplay between immobilization due to tethering and increased probability of active transport.
We derive parameter-dependent conditions under which tethering enhances long range transport

and improves the target capture time. These results shed light on the optimization of intracellular



transport machinery and provide experimentally testable predictions for the effects of transport

regulation mechanisms such as tethering.

2.2 Introduction

Transport of cargo within the intracellular environment is a highly essential and tightly
regulated process. Most eukaryotic cells have an active transport machinery consisting of
molecular motors moving on a network of cytoskeletal polymers such as microtubules or actin
filaments. Organelles can couple directly to motor proteins via specialized adaptors [16], or
hitch-hike on other motile organelles [17]. This mode of transport results in motion that is
processive over variable length scales up to many microns. Many organelles execute bidirectional
motion, switching direction between processive runs by either engaging alternate motor types or
transferring to a cytoskeletal track with different orientation [18-22].

In addition to this motor-driven processive transport, effectively diffusive motion of
organelles can arise due to thermal noise, active fluctuations of cytoskeletal networks [23], or
hydrodynamic entrainment in flow set up by moving motors and cargo [24]. Evidence has shown
that the short time-scale movement of organelles appears effectively diffusive even when the
underlying cytoplasmic medium is primarily elastic [23, 25, 26]. For brevity, we will refer to this
stochastic motion of organelles as passive diffusion, while acknowledging that the fluctuations
underlying the motion can have a number of actively driven origins.

The interplay between active and passive transport modes gives rise to length-scale
dependent effects. While processive transport is efficient at delivering cargo over long cellular
distances, diffusion can more effectively spread organelles over smaller lengths. The balance
between these transport modes has been quantified in previous work using the Péclet number,
defined as Pe = vL/D where v is the processive velocity, L is the length-scale of interest, and

D is the diffusivity in the passive state[27]. High Péclet numbers correspond to lengths where



active transport becomes dominant, assuming infinite processivity. In the case of finite processive
run-lengths, effectively diffusive behavior arises at long times as the particle executes many runs
in randomly chosen directions[28, 29].

While much previous work has relied on the mean squared displacement (MSD) as a
measure of particle spreading[28-30], this metric cannot be directly translated into quantities
of biological relevance such as the rate of arrival to intracellular targets or particle interaction
rates. Theoretical studies of first passage times by particles engaged in multi-modal transport
have demonstrated the existence of an optimum run-length both in the absence of diffusion[31,
32] and in the case where the particles can only interact with their target in the diffusive state[27,
33, 34]. These results suggest that the transport machinery in the cell may be optimized to allow
substantial contributions from both processive and diffusive transport. In this work, we focus
on the relative importance of both passive and active transport modes to biologically relevant
transport objectives, assuming organelles are functional in both states of motion. Endosomes,
peroxisomes, lipid droplets, and mitochondria are some example organelles known to employ
multi-modal transport to move around within the cell while maintaining their function [35-38].

A variety of cellular processes rely on efficient transport to achieve distinct objectives nec-
essary for biological function. One such objective is the establishment of a uniform distribution of
particles throughout the cell, as is observed for peroxisomes, mitochondria and lipid droplets [11,
39, 40]. Establishing this distribution, starting from the point of genesis of particular organelles,
requires rapid transport and broad dispersion across long cellular length-scales. Another objective
is the delivery of organelles to specific subcellular regions. Examples include the motion of
synaptic vesicles from the cell body to the pre-synaptic terminal of neuronal axons [41], and the
transport of vesicles containing newly synthesized membrane-bound proteins from the Golgi
apparatus to the cell boundary [42]. The role of different transport modes in this process depends
on the length scale of separation between the site of organelle synthesis and their eventual target.

A third cellular objective is the rapid encounter between an intracellular target and any one of



a uniformly distributed population of organelles. For instance, peroxisomes serve to neutralize
oxidative metabolic byproducts, and the health of a cell is dependent on rapid removal of these
toxic species as soon as they appear [43]. Similarly, early endosomes rely on contact with any of
a population of lysosomes that aid in releasing the endosomal contents into the cytoplasm [44].
The efficiency of such target encounter depends both on the nature of transport processes for the
organelles and on their density within the cell.

The organization of the cytoskeletal network has a potentially important role to play in the
distribution of intracellular particles. While a number of past models for intracellular transport
employed a continuum approximation for cytoskeletal density [27, 45, 46], it is becoming clear
that the specific arrangement of distinct cytoskeletal tracks has a substantial impact on cargo
transport [47]. Obstructions due to intersecting microtubules may cause particles to pause
or switch tracks and change the direction of movement [21]. Localized traps arising from
heterogeneous filament polarity have been found to hinder transport in cell-scale computational
models [47]. In tubular cell projections such as neuronal axons and fungal hyphae tips, the
arrangement of cytoskeletal filaments is highly simplified, with microtubules aligned along the
tubular axis and in many cases uniformly polarized towards the distal tip [7, 8]. These projections
range in length from tens to many hundreds of microns, and require cargo to be efficiently
transported from the cell body to the distal tips and back again. In addition to being particularly
amenable to theoretical models of transport phenomena, these cell types are of fundamental
biological importance. Defects in axonal transport in neurons have been implicated in a number
of human pathologies, ranging from multiple sclerosis to Alzheimer’s to prion diseases [3] .
Due to their simplified morphology and long length, these tubular cells form an ideal system for
investigating the length-scale dependent effects of multimodal transport.

The discrete nature of cytoskeletal tracks within tubular cell projections limits active
transport to narrow axially oriented bundles of microtubules [8]. It has been proposed in several

cellular systems that transport efficiency is increased by directly tethering organelles to the



microtubules in order to prevent them from losing access to the tracks [22, 48, 49]. Tethering can
occur by specialized adaptor proteins binding the organelle to cytoskeletal tracks, as in the case for
axonal mitochondria that become preferentially anchored in cellular regions with high metabolic
needs [50-52]. Alternately, the binding of multiple motor proteins to individual vesicles results in
a tethering effect that is believed to contribute to observed motor cooperativity [22, 53]. Because
tethering is expected to hinder short-range dispersion while enhancing the ability of organelles to
engage in long-range processive walks, it can potentially serve as a regulatory mechanism for
length-dependent transport.

In this chapter, we present a simplified model for transport in a tube through a combination
of processive walks and diffusion. We analyze the relative contributions of the two transport
modes, as well as the possibility of tethering to cytoskeletal tracks, in achieving the different
transport objectives of the cell. Sec. 2.3 establishes our halting creeper model and its behavior in
terms of the rate with which particles explore a one-dimensional environment. In Sec. 2.4, we
use the developed model to study the effects of bidirectional transport on distributing particles
uniformly within a domain. In Sec. 2.5, we explore the contribution of different transport modes
to the delivery of individual particles, as well as target clearance by a dispersed particle population.
Sec. 2.6 introduces an expanded model that accounts for particle tethering, delineating the effects

of this mechanism on organelle dispersion and target capture times.

2.3 Halting creeper model

We define a simplified stochastic model for intracellular particles undergoing multi-modal
transport, focusing on motion along a single dimension. Each “halting creeper" particle exists
in either a passive diffusive state characterized by diffusion coefficient D or an actively moving
state with constant speed v in either the positive or negative direction (Fig. 2.1). Switching

between the states is a Markovian process with constant starting rate y for transitioning from the



passive to the active state and constant stopping rate A for transitioning from active to passive.
Selection of the direction of motion is random at each initiation of an active run, and we assume
complete symmetry between forward and backward motion. We note that this model is a more
general form of previously defined creeping particle models [31], which have been analyzed in
the limit ¥ — oo, D — 0. Furthermore, a three-dimensional version of our halting creeper model
has previously been explored in the context of mean squared displacement and local concentration
fluctuations [27]. By contrast, in this work we focus explicitly on the efficiency with which
such two-state transport distributes organelles throughout a cell and delivers them to intracellular
targets.

Two important quantities which describe the behavior of a halting creeper particle are the
active run-length (¢ = v/A) and the equilibrium fraction of particles in the active state (f = ﬁ,).
For much of the subsequent discussion, we non-dimensionalize all length units by the run-length
¢ and all time units by the run-time 1/A. We denote the remaining dimensionless parameters as
D=2, 7= %, and dimensionless time as f = Az.

The Markovian nature of the transitions between active and passive states allows the
calculation of a spatio-temporal propagator function G(x,t) for the halting creeper, which gives
the distribution of positions at time ¢ given the particle started at the origin at time 0. This
propagator is obtained by convolution in the space and time domain of the individual propagators

for passive and active transport. After a Fourier transform in space (X — k, G — 5) and a
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Figure 2.1: Schematic for the transition between particle states. ‘D’ denotes diffusive particles,

‘+’ denotes particles moving in the rightward direction, whereas ‘-’ denotes particles moving in
the leftward direction. The arrows are labeled with transition rates between states.
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Table 2.1: Estimated values of transport parameters for some biological systems. Run length
can be obtained as ¢ = v/A. Parameters can be converted to dimensionless units according to:

D=DA/2, 7=7/A, p = pv/A.

Rate of Rate of . Approx.
ol oo Velocity . .
switching  switching . .ee . .. Density of  size of
. . of active  Diffusivity .
to active  to passive population  cellular
transport

Transport System  transport  transport region

vy  AGTY)  v(um/s) D(um?/s) p (um~') L (um)

Peroxisomes in .
fungal 0.015¢ 0.29 1.9 0.014 1.5 50

hyphae [11]
Lysosomes in

kidney cells [21, 0.17 0.15 0.52 0.071 - 20
54]

Mouse neuron .
transport vesicles 0.33' 2.7 0.8 0.03 0.14 -

in vitro [55]

Mitochondria in

Drosophila 0.17 0.15 0.35 - 1.3 1000

axons [56]

Dense core

vesicles in 0.22i 2.2 0.361  0.002i 1.7 100
Aplysia

neurons [57, 58]

PrPC vesicles in
mouse axons [55, 0.36 0.15 0.85 — 04 100
59]

! Estimated from equilibrium fraction in active state.
ii Estimated from single particle trajectory.

iii Estimated from MSD plot

Laplace transform in time (f — s, G — G), the multi-modal propagator for particles initially in an
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equilibrium distribution between passive and active states is given by

ék = A+ (y+2A)(y+A+5)+ (DY(A+s)+Vv?A) k2
(k,s) = (’Y‘*’A«)[S()L—I—S)(’}’—l—ﬂ,—i—s)—{—(D()L_}_S)2+v2(,},_|_S)> k2+V2Dk4]7

2.1

as derived in Appendix A.l1. This propagator serves as the basis for our subsequent

calculations on the efficiency of particle spreading and target site search.

2.3.1 Particle spreading: mean squared displacement

The mean squared displacement (MSD) is a commonly used measure of spreading speed
for diffusing particles. For the halting creeper model, it can be calculated directly from the

propagator as

9%
ok?
k=0

=2(1— f)Di+2f {H(e‘f— 1)} :

(#(07) =2~
(2.2)

where the Laplace inversion . ~! is carried out analytically via the residue theorem.

This expression for the MSD is composed of a linear superposition of fraction 1 — f
of diffusing particles and fraction f of particles undergoing active walks that are persistent
over a dimensionless time-scale of 1. The latter component corresponds to an MSD that scales
ballistically as f7> for 7 < 1 and diffusively as 2ff for 7 > 1. In the case of small diffusivity,
there is an additional transition time when the ballistic motion begins to dominate over the passive
diffusion. This occurs at * = 27D When i* < 1, the MSD transitions from diffusive to ballistic
and back to diffusive scaling (Fig. 2.2a), as has previously been demonstrated with lattice models

of mixed diffusive and processive transport[28]. The long-time behavior of the particle is defined
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by an effective diffusion coefficient

Dett = (1— f)D+ f, (2.3)

which in the limit of 7 < 1 is dominated by the term corresponding to bidirectional active walks
(Dett — f).

The relative importance of processive versus diffusive transport over a length-scale x can
be characterized by the Péclet number [27]: Pe(x) = vx/D, which is a dimensionless quantity
often used to compare the contributions from advection and diffusion for particles in a flowing
fluid [60]. A large Péclet number Pe >> 1 corresponds to transport that is dominated by the
processive motion. In the case where active motion remains processive only up to distances
comparable to the run length £, the relevant Péclet number for long-range transport is Pe(¢) = 1/D.
Our dimensionless diffusion constant thus describes the relative contribution of diffusion above
processive motion over a length scale comparable to the average run-length. For the remainder
of the discussion, we focus on the case where the transition time * = 2—5) < 1, so that a distinct
regime of processive motion appears between the regimes dominated by passive diffusion and
effectively diffusive bidirectional walks. This is the case for the organelle transport examples
listed in Table 2.1. We note in passing that the presence of a discernible processive motion is key
to identifying active runs in experimental particle-tracking data[11, 57, 61], so that systems not in

this regime are unlikely to be selected for studies of active transport.

2.3.2 Particle spreading: range

An alternate metric for the efficiency of particle spreading is the overall range — the
average size of the domain that has been explored by a halting creeper particle after an interval of
time. For a one-dimensional model, the range of each particle is given by its maximum position

minus its minimum position over the course of its trajectory. As will be discussed further in

13



2D/4 :
(a) — - (b) () 10
§=002 | =002 | [ | |4V Dert || [ (= 1pm D = 0.01m?2"!
oLD =107" | s --= (= 10pm v =0.01s"!
10 ! w 2Dent — (= 100pum v= lpms™! -
~ | "‘ —~ 1 R
c::& ! 1 i 10
~ 4 1 | =
~ 10 ! | S
1) ; | &
= | 1071
= | ! =
10 2 1
2(1— f)Di |
L 2 10—3

1072 100 10%

1074 10-2 . 10° 1072 .
time (s)

time ¢

Figure 2.2: Contribution of passive and active motion to spreading of particles at different
length and time scales. (a) Mean squared displacement for halting creepers. Black dash-dotted
lines show scaling regimes. Vertical dashed lines indicate transition times between the regimes.
Horizontal dashed lines indicate transition length scales. (b) Dimensionless range versus time
for a halting creeper particle, with scaling regimes, transition times, and transition length scales
indicated. Dotted curve shows the root mean squared displacement for comparison. (c) Range
versus time for typical parameter values for intracellular organelles, showing the increase in
long-range transport with increasing run length, above a length scale indicated by the horizontal
dashed line.

Section 2.5, the range is directly related to rate at which a dispersed population of particles first

encounters a target.

Our model permits calculation of the range over time for a halting creeper using the
renewal equation method [31, 62]. Namely, we define the distribution of first passage times to
a target at position x > 0 (for a particle starting in a diffusive state at the origin) as Fp(t;x) =
Fp(t;x) + Fpp(t;x), where Fp gives the distribution of first passage times for the fraction
of particles that arrive at the target while walking in the positive direction and Fpp gives the
distribution of times for particles arriving in the passive diffusive state. Similarly, we consider
the components of the propagator function defined in Appendix A.1, where Gpw (x;¢) gives the
spatial distribution at time ¢ of particles that began in a diffusive state at the origin at time 0,
and are found in the actively walking state at time ¢. The other components Gpp, Gwp, Gww

are defined analogously, with additional expressions for G4 p, G4y giving the propagator for

particles that are initially walking in the positive direction, and end up in either the diffusive or
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the actively walking state. One of the renewal equations for this system is then given by,

GDD(X;I) :/() dt’ [FDD(II;X)GDD(O;I —t/)
2.4)

+ Fp4(t';x)Gp (05 — )],

A similar expression for purely processive bidirectional motion appears in [31]. In Eq. 2.4,
the distribution of particles which start in the diffusive state and remain in the diffusive state
(Gpp(x;t)) comprises two terms — the first of which is a convolution between the probability that
the particle first hits the target x at time 7 in the diffusive state (Fpp(#';x)) and the probability of it
returning to position x within the remaining time 7 —¢’, also in the diffusive state (Gpp(0;¢ —1')).
The second term includes a convolution between the probabilty that the particle first hits the target
while walking forward (Fp.(¢';x)) and the probability that it returns to position x in the diffusive
state (G4+p(0;¢ —1')). Analogous renewal equations are derived for Gpw, Gwp, Gww .

After a Laplace transform in time, this convolution structure can be expressed as a product,
which yields a system of equations,

Gpp(0)  Gip(0 I G
pp(0)  G1p(0) bp | _ pD(X) | 2.5)

Gpw(0) Gyw(0T) Fps Gpw (x)

where F and G denote the respective Laplace-transformed functions. Here, G (0751 —1') =

;ig}) . Giw(e;t —1') corresponds to the probability density for a particle that starts at time ¢ just
before the origin walking in the positive direction, to be at the origin and in a walking state at
time ¢.

This system can be solved to calculate the first passage time Fp=Fpp+ fD+ for particles

that began in the diffusive state. Corresponding renewal equations for Gyp(x;¢) and Gww (x;7)
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yield the first passage time for particles that began in the active state:

Gpp(0)  Gip(0 Iz G
pp(0)  Gip(0) wp | wD(X) | 2.6)

Gpw (0) Gyw(0T) Fivs Gww (x)
The range of the halting creeper particles over time (Z(¢)) can be related to the Laplace

transform of the overall first passage time F (s;x) according to [31],
e
Z(t)=% —/ F(s;x)dx|, (2.7)

where F is a linear combination of Fp and Fyy, weighted by the equilibrium probability that the
particle starts in an active or a passive state. To calculate the range function, we analytically per-
form the Fourier inversion of the propagators @DD(O), §+D(0), (A?DW(O), §+W(0+) by integrating
over k. The spatial integral over x results in the right hand side of the renewal equations being
expressed as EDD (k =0), etc. While short-time and long-time limits of the range can be obtained
directly from the large s and small s limits of the renewal equations, the relevant time-scales for
biological processes can span across many orders of magnitude, thus making it desireable to
calculate the particle spreading efficiency over all time scales. To this end, we invert the Laplace
transform numerically using Talbot’s algorithm [63].

As shown in Fig. 2.2, the range exhibits similar transitions in scaling as the MSD. However
the transitions between the different regimes are shifted to longer times. At short times, the
average range of particles with an equilibrium initial distribution between active and passive
states can be calculated by solving the renewal equations in the limit s — oo and performing the
Fourier and Laplace inversions analytically for the lowest order terms in 1/s. The expression for

the short time average range is given (in dimensionless units) by
; D 2.8)
Z(7) = 4(1—f) E\/Z+ft. Q.
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Thus, the ballistic motion dominates over the diffusive motion above a critical transition time

A

16D
t» J—

range — 77,'_}72 (2.9)

In the case where particles spend very little time in active motion (¥ < 1), this time-scale is
substantially longer than the transition time 7* for the MSD. The corresponding length scale for

the transition from primarily diffusive to primarily ballistic motion is

16D
Conee = —— - 2.10
)Crange 717’}7(1 _|_?) ( )

At longer times, there is a subsequent transition from the ballistic scaling of the range to

the effectively diffusive long-time scaling,

A

A Dett rz o &
Z(f) — 4 ;ff\/f, N (2.11)
which occurs at a secondary transition time 77, and corresponding length scale x7;,.. given by,
o 16Desr
range — T 2
f R (2.12)
s 16 D
Arange = T 1+ ? .

In the case of a small fraction of time spent walking, this transition time is again shifted substan-
tially above what would be expected from the MSD behavior, where the corresponding transition
occurs at #** = 2. In the limit D/§ < 1, the transition time for the range can also be expressed

asfrx =16

range = 7 (1+1/%), comparable to the cycle time required for a single particle to transition
between an active and a passive state and back again.
This result highlights the fundamental insufficiency of the MSD in describing the efficiency

with which the particles explore their domain. Specifically, for a very small equilibrium walking
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fraction f, the time required for the active walks to contribute substantially to the average range
can be well above the time-scale 1/7 for an individual particle to start walking. Similarly, in this
regime the range will only exhibit diffusive scaling at time-scales long enough for individual
particles to execute multiple starting and stopping transitions. Examples of particle motion
where the pause time substantially exceeds the processive run time include organelles (such as
peroxisomes) whose active transport is mediated by hitch-hiking on other organelles [17], and
particles whose motion is driven by hydrodynamic entrainment due to cytoplasmic flow associated
with nearby passing particles [24]. In such cases, the MSD does not accurately represent the rate
at which these particles explore their domain.

We note that in the case where D < 1, which corresponds to most biologically relevant

examples, increasing the run length (e.g.: by decreasing the stopping rate A) raises the particle

16D

range for all length scales above x > 27

(Fig. 2.2), corresponding to the length at which the
Peclet number Pe(x) becomes substantial. The implication is that longer processive runs improve
the ability of particles to explore their domain at all length scales where active walks move faster

than diffusion.

2.4 Particle dispersion through bidirectional transport

Having established the speed of particle spreading via multi-modal bidirectional transport,
we now turn to consider explicitly the efficiency with which such transport can achieve a particular
cellular goal. Certain metabolic and regulatory needs of the cell require a well-dispersed distribu-
tion of organelles throughout the cell interior. For instance, mitochondria are found throughout
neuronal axons, providing a locally available energy source through glucose metabolism [51]. In
fungal hyphae, peroxisome organelles are maintained at near uniform distribution[11], allowing
for rapid neutralization of toxic metabolic byproducts [43].

Establishing a well-mixed distribution relies not only on the ability of particles to move
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Figure 2.3: Dispersion of particles towards a uniform distribution via bidirectional transport.

All length units are non-dimensionalized by domain length L and all time units by L/v. (a)

Particle distribution density for different run lengths, at dimensionless time 0.3. (b) Entropy vs

time for different run lengths. The horizontal dash-dot line denotes the threshold entropy for the

system to be considered well-mixed. The vertical (green) dash-dot line is at dimensionless time

0.3 (¢) Time to reach a well-mixed state as a function of run length (¢) and rate of transition to an

active state (). Points A and B are drawn at corresponding transport parameters for lysosomes

in monkey kidney cells and PrP€ vesicles in mouse axons, respectively (Table 2.1).
rapidly through the cell, but also on the ability of a transport mechanism to disperse and flatten
regions of highly concentrated particles. We focus specifically on the rate with which a bolus of
particles is spread over a cellular region. Such a process becomes necessary, for instance, in the
case of rapid organelle production in response to an external signal, where the organelles must
then be spread through long cellular projections such as axons or hyphae.

We use the halting creeper model to explore how different transport parameters affect
the efficiency of such dispersion. Because we are interested in the initial establishment of
an equilibrium spatial distribution, we consider particles that originate at x = O in the passive
state, whose distribution is given by Gp(x,t) = Gpp(x,?) + Gpw(x,7). This function can be
evaluated by numerical Fourier-Laplace inversion of the transformed distribution, as described
in Appendix A.1. The time evolution of the distribution is plotted in Fig. 2.3a. Note that long
walk lengths result in little dispersion of particles, with the distribution splitting into two narrow,

processively moving peaks. Short walk lengths lead to an effectively diffusive motion, with the

particle distribution assuming the form of a slowly spreading Gaussian. An intermediate walk
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length combines both the rapid spreading of the distribution with the flattening of localized peaks
to enable more efficient dispersion. The limits for large and small walk lengths suggest that there
exists an optimal run length ¢ for which the particles are most efficiently mixed.

A number of different metrics have been developed for quantifying the rate of mixing
driven by stochastic processes [64—66], including several that track the approach of a bolus of
particles towards uniform spread [67, 68]. A commonality of these measures is their dependence
on a particular length scale of interest [66] over which particles are to be mixed. For our one-
dimensional system, we introduce a length L corresponding to the size of the domain on which
uniform distribution is desired. This length represents the approximate extent of the tubular cell
region across which particles are being dispersed. It can range over many orders of magnitude,
with mammalian axons reaching up to a meter in length. Example values for some cellular
systems are listed in Table 2.1. We calculate the spatial distribution of halting creeper particles
originating in the center of a domain of length L with reflecting boundary conditions, implemented
using the standard image method [69]. The mixing of the particles is quantified via the Shannon

entropy of the distribution [68, 70], defined as

N
pilog(pi)
§=-Yy = 2.13
,-; log(N) 1)

where the domain is broken up into N bins, and p; is the probability of a particle being located
in bin i. Optimal mixing is achieved when the organelles are uniformly distributed, in which
case p; = zlv and S = 1. Conversely, a distribution with all particles in a single section is the least
mixed state, with § = 0. The entropy has an inherent dependence on the number of bins used for
discretizing the probability distribution, and we employ N = 5000 throughout our calculations.
The time evolution of the entropy is dependent on the dimensionless run-length ¢/L
(Fig. 2.3b), with long runs corresponding to an initially slow rise in entropy as the bolus of
particles evolves into two coherent spatial peaks until sufficient reversals are achieved to disperse

the particles throughout the domain. Short run lengths limit the rate of entropy increase over
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Figure 2.4: Target capture times for a single particle. (a) Cumulative encounter probability for
different initial distances to the target (£). The dotted and dashed lines denote the encounter
probability for diffusive particles with a diffusion coefficient D and D respectively. The
dash-dot line denotes the average time required for a particle in the active state to cover a
distance of £ = 1. All length units are non-dimensionalized by ¢ and all time units by ¢/v. (b)
Time to reach 90% capture probability for different run lengths, assuming rapid starting rate
y = 1s~! and distances appropriate for intracellular organelle transport. The dotted and dashed
lines denote t9(q, for diffusive particles with diffusion coefficient D and D, respectively.

long times, because the particle distribution spreads slowly as an effectively Gaussian peak. We
consider the system to be well-mixed when the entropy crosses a threshold value S; = 0.9 and
define the time taken to reach this state as the mixing time #,jx. This mixing time depends in
a non-monotonic fashion on both the starting rate () and run length (¢) of processive walks
(Fig. 2.3c). High values of 7, corresponding to particles that spend most of their time in the active
state, give rise to an optimum run length to achieve the most rapid mixing. This effect arises
from the need to reverse the direction of active walks in order to efficiently disperse particles
within the domain. However, each such reversal necessitates a waiting time of 1,/y during which
the particles are in a passive state and spreading very slowly. Consequently, at low values of y
mixing is most efficiently achieved by particles that carry out very long walks. The results shown
in Fig. 2.3 assume a small value of passive diffusivity (LQV = 0.01). Increasing this diffusivity

would lead to a monotonic rise in the entropy, as diffusion enhances the particle mixing.
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2.5 Target Search by Multimodal Transport

2.5.1 Search by a single particle

In addition to achieving uniform dispersion of particles, another goal of intracellular
transport is to deliver organelles to specific cellular regions. This transport objective arises, for
instance, when synaptic vesicles must reach the presynaptic bouton of a neuron [41]. Using our
one-dimensional halting creeper model, we consider the first passage time of a single particle
towards a stationary target located at distance x. For simplicity, we consider the case where x is
much smaller than the overall extent of the domain, so that the distance to the target x and the
processive run length ¢ are the only relevant length scales in the problem. As in the case of our
dispersion calculations (Sec. 2.4), we consider particles that are initially in the passive state, as
applicable to the distribution of newly synthesized organelles.

The distribution of first passage times can be obtained from the renewal equation Eq. 2.5,
by carrying out analytic Fourier inversion followed by numerical Laplace inversion of the
propagators (see Appendix A.1). The cumulative distribution of encounter times to the target is
plotted in Fig. 2.4a, showing the transition from a passively diffusive process at small distances
X< x;‘ange) to an effectively diffusive process (with diffusivity Des) at distances much longer
than the run length (£ > 1). For comparison, the cumulative distribution for a purely diffusive

process is given by

A

Hgig(£,7;D) = 1 —erf { - } (2.14)
4Di

By contrast, intermediate distances show a sharp increase in the cumulative probability of target
encounter at time 7 = £, corresponding to the arrival of the first processively walking particles.
Because the average first passage time of a random walk in a semi-infinite domain

diverges [69], we focus on the time required for particles to hit the target with sufficiently high
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probability. Analogous to our calculations of particle dispersion in Section 2.4, we define the
hitting time #9p9, as the time by which there is a 90% chance that the particle has hit the target.
We note that #9¢¢, is well-defined even on a semi-infinite domain due to the recurrent nature of
random walks in one dimension, ensuring a finite hitting time for all particles [69]. For short
distances, the time for probable encounter of the particle scales as expected for purely diffusive

motion with diffusivity D (Fig. 2.4b),

xAZ

diff 1 ». A
fog (D) = —
4D [erf(0.1))°

(2.15)

where erf is the error function. At long times, a similar scaling is observed with effective
diffusivity Deg.

As is the case when the transport objective is to achieve a uniform distribution of particles,
increasing the length of processive runs does not necessarily result in more efficient transport.
This is true despite the fact that, unlike previous models of multimodal transport [27, 33, 34], we
consider our particles capable of accessing their target in both the passive and active states. A run
length that is much longer than the distance to the target can hinder particle delivery, because
particles have a 50% chance of initiating their motion in the wrong direction. They then require a
long time to stop, turn, and return towards the target. At the same time, very short processive
runs decrease the overall rate of spread for the particle distribution and thus slow down the target
encounter. These two effects give rise to an optimum in the efficiency of target delivery, with
minimal values of target hit time #9p¢, occuring at intermediate run lengths ¢ (Fig. 2.4b). This
effect is a direct analogue to the optimum walk-length for achieving uniform distribution. The
existence of this optimum walk length has also previously been noted for creeper models without
any paused or passive state [31, 32].

We additionally provide a calculation of first passage times in the alternate case where the

particle is capable of accessing its target in the passive state only (see Appendix A.5). In such a
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Figure 2.5: Average time for target capture by a population of uniformly distributed particles,
with two different densities (left: p = 8 and right: p = 0.3). All units are non-dimensionalized
by run length ¢ and run time ¢/v. Marked points show estimated parameters for two cellular
systems (A: peroxisome transport in fungal hyphae [17], and B: vesicle transport in Aplysia
axons [57]; see Table 2.1). Black lines mark the transition between diffusion-dominated and
transport-dominated motion on the length scale of inter-particle distance (Eq. 2.19).

system, the optimal walk length decreases substantially compared to the model where both states
are functional, as the rapid processive transport must be counterbalanced by sufficient time spent
in the passive regime in order to capture the target. This effect is distinct from the disadvantage

of long walks which can lead the particle away from its target, underlying the non-monotonic

dependence on / in Fig. 2.4.

2.5.2 Search by a population of particles

A closely related objective of intracellular transport is the capture of a target by any one
of many moving particles. In this case we assume particles that are initially uniformly distributed
with some density p, and consider the mean first passage time (MFPT) for the first of them to hit
the target. Some biological examples include the clearance of toxic cytoplasmic metabolites by
any one of a uniformly scattered field of peroxisome organelles [43], the influx of peroxisomes

to plug septal holes in damaged fungal hyphae [71], or the arrival of lysosomes to fuse with a
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phagosome and digest its engulfed contents [44]. For simplicity, we assume the target is itself
immobile and must wait for the particles to come to it via some combination of active and passive
transport. In this situation, the relevant length scale is defined by the typical initial spacing
between the particles (1/p). In the limit of a uniform distribution over a very long domain, the
MFPT can be related directly to the range of the moving particles [31]. Specifically, the mean

first passage time is given by
MFPT = / e P2 dy (2.16)
0

where Z(t) is the average range of particles over time ¢. The behavior of the MFPT is dictated
by the dimensionless length scale for the separation between particles [1/p = 1/(p¢)]. When
this length scale is short enough that active walks remain processive (1/p < £f;p0e), We can
approximate the particle range as a linear combination of a diffusive and a ballistic process. The

MFPT can then be calculated analytically by plugging Eq. 2.8 into Eq. 2.16 and integrating the

resulting exponential.

1 4D Krangel KrangeP
MFPT ~ — — { [ ——~—exp { rangel 1 erfc [L‘ép] , (2.17)
PN ref 4 4

where erfc is the complementary error function. The limits for high and low particle concentration

are given by

n(1+9)? 1 A
2

MFPT » = <«p<—of
8DP Xrange Arange (2.18)
1 1 '
MFPT = —, p< ——,
fp Arange

where the high density limit corresponds to diffusive scaling of MFPT with the distance between
particles while the low density limit corresponds to ballistic scaling. Setting these two limits

equal to each other indicates that a transition in the encounter times occurs at a critical length
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1 frange (2.19)
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which can be equivalently expressed as
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This transition corresponds to a particle density where processive walks begin to dominate the
ability to rapidly encounter targets, which occurs when the Péclet number for the distance between
particles, multiplied by the fraction of time spent walking, is of order unity.

A calculation of the mean first passage time accurate at all length scales can be carried
out by numerical inversion of the Laplace-transformed range function (Sec. 2.3.2), and the results
are plotted in Fig. 2.5 for two values of particle density. The black line indicates the transition
between behavior dominated by diffusive versus by processive particle motion (Eq. 2.19). Below
this line, active transport dominates the motion of the particles and the time to reach the target is
insensitive to the passive diffusivity. Above this line, passive diffusion dominates and the target
search is insensitive to the fraction of time that the particles spend in processive motion. The
parameters relevant to two example biological systems (peroxisome transport in fungal hyphae
and vesicle transport in Aplysia neurons) are marked with dots.

The parameters for peroxisome transport fall near the transition region, where both
passive diffusion and active processive walks contribute to the ability of these organelles to reach
any target position within the cell. While previous modeling studies have indicated that both
transport mechanisms are important to the maintenance of a uniform distribution of peroxisomes
in hyphae [11], we demonstrate here that the particle density falls in an intermediate regime such

that diffusion and active walks both contribute to efficient target search by the population of
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peroxisomes. In the case of vesicle transport in Aplysia neurons, the lower density of organelles
suggests a greater contribution from the active mode as seen in Fig. 2.5.

We note that for our model with capture occuring in both the active and passive state,
the range over the relevant length scale increases monotonically with the fraction of time spent
walking. Hence, the rate of capture is always increased by raising the frequency of starting an
active walk (). This is not the case for particles that can only capture their target in the passive
state (see Appendix A.5), which could include encapsulated proteins that must first exit a vesicle
to carry out their function. For such particles, frequent runs decrease the fraction of time spent
in a functional state and thus hinder target capture (Fig. A.3), an effect that has previously been

noted in studies of multi-modal search processes[27, 34].

2.6 Transport in a Tube and the Benefits of Tethering
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Figure 2.6: Effects of tethering on transport. a) Schematic for the tethering model. The smaller
cylinder denotes the region within which particles can tether to the microtubule or initiate active
transport. The transition rates between states are indicated with the arrows. b) Range vs time
for weak (Keq = 0.1) and strong (K.q = 500) tethering. Dashed black lines show analytical
approximations in the limits of no tethering and infinitely strong tethering, accurate for short to
intermediate times (Eq. 2.24). Horizontal dash-dotted line indicates the transition length-scale
Leric where tethering becomes advantageous. ¢) Average time for target capture by a population
as a function of the starting rate ¥ and binding strength K.q. The solid line indicates the transition
from diffusive to active transport as the dominant transport mode at different values of tethering
strength. The dashed line shows the transition where strong tethering becomes advantageous for
target encounter.
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Active transport in a cell occurs via motor proteins attached to microtubule tracks. Even
very narrow cellular projections are typically substantially wider than the diameter of a single
microtubule. Consequently, organelles must navigate transversely through the cytoplasmic
environment in order to encounter a microtubule and engage in active processive motion. A
mechanism to keep organelles located close to the microtubule can improve transport efficiency
by reducing this search time. In many cases, organelles are believed to be tethered to the
microtubule tracks, preventing them from dissociating and diffusing even when they pause after
a processive walk. This tethering can be accomplished by additional inactive motors attached
to the organelle [48, 72] or by specific molecular adaptors linking the organelle directly to the
microtubule [50, 73].

It has been speculated that tethering can enhance transport by forcing the organelle to
remain in proximity to the microtubule tracks, thereby effectively increasing the rate at which
processive walks are initiated [22]. At the same time, tethering can severely limit the intracellular
space that can be explored by an organelle in the passive state, either by reducing the axial
diffusivity in the case where inactive motors slide diffusively along microtubules [48, 49], or by
halting it entirely in the case of organelle docking [50]. The benefits of tethering thus depend
on the relative balance between active and passive transport, as well as the radial size of the
domain around the microtubule, which determines the delay associated with encountering the
track. The former aspect is dependent on the length scale over which transport must be achieved,
as discussed in the previous sections.

We extend our halting creeper model to a three-dimensional cylindrical domain of radius
R, wherein active runs can be initiated only within a radius of size a < R, corresponding to a small
region surrounding a central track. While cellular projections such as hyphae and axons generally
have multiple microtubule bundles [11, 74], this model serves as an approximation where the
size of the cylindrical domain sets the cross-sectional density of the microtubule bundles. In a

typical fungal hypha, there are on average two microtubule bundles along the axis [11, 75, 76].
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Assuming the microtubule bundles to be points distributed uniformly on the transverse section of
the cylinder, the average distance between two bundles can be calculated as 1287 /45w, where r is
the radius of the cross section [77]. The domain radius in our model can be considered to be half
of this distance, which gives an estimate of R ~ 0.45um for a typical hyphal diameter of 2um.
This is substantially larger than the peroxisome radius (=~ 100nm) [11], so that organelles can
only interact with the microtubules over a small fraction of the available cross-sectional area.

In addition to bidirectional walking and passive diffusion states, the particles in this
extended model can also enter a tethered state with rate k;, while within the encounter radius a.
For simplicity, we assume particles in the tethered state are entirely immobilized. The model
could be extended in a straight-forward manner to limited but non-zero diffusivity while in the
tethered state. Exit from the tethered state occurs at rate k,, with the particle unbinding to a
uniform radial distribution within the capture radius a. A dimensionless binding strength for
tethering is defined by Keq = kp, /K.

We note that this model assumes that tethering does not in any way hinder the initiation
of an active run, so that particles transition to the active state with the same rate regardless of
whether they are bound or freely diffusing within the capture radius. While it is possible for
tethering to either speed up or slow down the association of an organelle with a motor or a carrier
particle, depending on the length, flexibility, and configuration of the tether, we neglect this effect
here. Our model for tranport in a cylindrical tube around a microtubule track is summarized
schematically in Fig. 2.6a.

In the limit of rapid transverse diffusivity or small domain size (D/R? > 7, k), diffusive
particles remain equilibrated throughout the cross section of the domain, and the effective rates
of starting a walk or binding become &?y and o/?ky, respectively, where o = a/R. In this limit,
the delays associated with transverse diffusive transport are eliminated, and the equilibrium

fraction of particles in each state can be easily calculated (Appendix A.2). For particles starting
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at equilibrium, the long-time diffusivity is then given by

Dett = D it + fwalk,
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faifr =

where fwaik and fgigr are the fraction of particles in the active and diffusive state, respectively. We
again non-dimensionalize all length units by the run-length ¢ and all time units by the run-time
¢/v, for consistency with previous calculations.

In the more general case where the delay due to transverse diffusion is included, it can be
shown (see Appendix A.3) that for a particle which begins uniformly distributed in the diffusive
state within radius a, the mean waiting time to enter a walking state is identical to the fast-diffusion

limit and is given by,

() = (2.22)

1| 02Keq+ 1+ 7/ks
7| 02(Keq+ 1+ f//l%u)] '
This average time ranges from 1/(?7) in the limit of low binding strength to 1/7 in the limit
of strong binding, and is independent of the diffusivity D. In the case of very slow diffusion,
those particles that escape the binding radius a take a long time to return, but such escape before
initiating a walk becomes concomitantly less likely, with these two effects canceling each other
out in the calculation of the average time to start walking. Because particles are assumed to
distribute uniformly across radius a when leaving the tethered state, this equivalence of the
average time to initiate a subsequent walk means that the long-time behavior of particles matches

the fast-diffusivity limit, regardless of the actual value of D.

By contrast, we note that the standard deviation in the time required to start a walk, for a

30



particle that starts diffusive and uniformly distributed within a, is dependent on the diffusivity (see
Appendix A.3). Slow diffusion and strong binding can greatly increase the variance in the time
required for a particle to start a walk, leading to large variability in the amount of time individual
particles remain in a passive or tethered state over a particular time interval of observation. This
extreme case may contribute to the identification of apparently immobile populations of particles
observed in some in vivo organelle tracking studies [39].

The effectiveness of tethering in improving transport over a long time can be inferred from
the derivative of the effective diffusivity D with respect to the binding strength Keq. A positive
derivative signifies that long-range transport is accelerated by tethering, whereas a negative value
indicates that tethering hinders transport. Tethering is advantageous in the long-time limit when

the following criterion is satisfied:

(1—a?) (3731)1%(6) > 1. (2.23)
This expression summarizes the idea that tethering is helpful for long-range transport in situations
where the domain is wide (> < 1), where the rate of walking is substantial compared to the
pausing rate (7> 1), and where active runs move the particles faster than diffusion over the
longest processive length scale (Pe(¢) > 1).

Below the long-time diffusive limit, the extent to which tethering aids transport depends
on the length scale of interest. In particular, at times much shorter than the cycle time to initiate

and stop an active walk, the dimensionless particle range can be approximated by

A A

Dt

Z(F) ~ 4faite\ | — + foand (2.24)

in a manner analogous to Eq. 2.8. This expression can be inverted to calculate the time at which a

particular range is reached. Comparing the low K.q and high K. limits indicates that the ability
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of particles to tether to the track allows them to explore more rapidly over length scales above

SN2

crit — Xrangem . (225)

For large domains (o < 1) and low propensity for active walking (7 < 1), tethering is helpful
over all length scales where processive active motion is the dominant form of transport, as defined

by the critical length (Eq. 2.10).

Fiange

We use kinetic Monte Carlo methods to simulate the spreading of particles within our
cylindrical model. The simulations are accelerated with the use of analytically calculated Green’s
functions to propagate the particles within homogeneous cylindrical domains (see Appendix A.4),
allowing for efficient sampling of particle behavior over a broad set of parameters.

The average axial range for a population of particles can be obtained as a function of
time from the simulations. Fig. 2.6b shows the time evolution of the range for weak and strong
tethering. The transport parameters used are relevant for peroxisomes in fungal hyphae (Table 2.1),
with the domain width assumed to be R = 1um and a central region of width a = 0.1um. For
consistency with previous calculations, results are reported in dimensionless units, using the run
length (¢ ~ 7um) and processive walking time (1 /A ~ 3 s) as the length and time units. The
critical length scale for this system is L ~ 0.12, below which the average range for strongly
tethered particles is lower than the weakly tethered ones. For length scales above L, strongly
tethered particles explore over a greater range. The full extent of a hyphal growth tip (L = 8) is
several times longer than this critical length scale, highlighting the potential benefit of tethering
for distributing peroxisome particles over the entire growth tip.

Having established the length scales over which tethering is advantageous, we now
calculate explicitly the effect of tethering on the average search time by a population of particles
with dimensionless density p. The capture time is defined as the first passage time to an arbitrary

cross-section of the cylinder, by a population of particles equilibrated between states and uniformly
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distributed along the axis of the cylinder. We note that in the case of a target that is located off
the central axis where active motion and tethering take place, this target could only be reached
if the particle passes through the appropriate axial location in the passively diffusing state. The
capture time should then be calculated using the distribution of first passive passage times, as
discussed in Appendix A.5. In the limit of very rapid transverse diffusivity, capture times for an
off-axis target could be derived directly from the first passive passage to a cross-section. For slow
transverse diffusivity, multiple passages through the cross-section in the passive state would be
required to hit a target that is much smaller than the cross-sectional area. Because the relationship
between particle range and first passage times (Eq. 2.16) breaks down in the case where only
passive passage is considered, extracting target capture times in our full three-dimensional model
would require direct simulation of first passage by individual particles. While this case would
make a promising extension for future work, for the sake of simplicity we focus here on targets
localized at the central axis.

A surface plot of the average capture times versus binding strength K.y and walking rate
¥ is shown in Fig. 2.6¢c. The effect of tethering on the average time to target capture varies
depending on J. For particles with a very small probability of engaging in active runs, tethering
hinders target search by limiting mobility in the passive state. For particles with a high propensity
for active motion, tethering can aid their ability to encounter targets by increasing the amount of
time spent in the region where active runs can be initiated. We approximate the parameter regime
where this transition occurs by analytically calculating the integral for the MFPT (Eq. 2.16), using
the short time approximation of the particle range (Eq. 2.24). Comparing the low Keq and high

Keq limits yields a transition at a critical particle density

2
2 1+ oy

A — (- ) (2.26)
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For small values of «, 7, this transition is equivalent in form to the critical length scale where
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processive walks first begin to play an important role, as calculated in Eq. 2.19. For parameters
relevant to the motion of peroxisomes in fungal hyphae, we compare the critical particle density
(Prether &~ 17) with the observed density of peroxisomes (p ~ 10). Because the observed density
is comparable to the critical density, we expect that tethering would not substantially hinder the
ability of the peroxisomes to patrol the cytoplasm and encounter targets within the cell.

For a given finite binding strength K4, the MFPT to the target will be dominated by either
diffusive or processive motion, depending on the fraction of particles in each state. The transition
to the regime where encounter times are sensitive to the initiation of active walks occurs when the
spacing between particles hits a critical length scale where such walks between to dominate. This

*

length can be obtained analogously to the expression for £7,,. (Eq. 2.10) by replacing the starting
rate ¥ with an effective starting rate based on the average time to initiate a walk: J¢r = 1/ (f,,,). In

the case of rapid binding/unbinding (k, > ), this rate is approximated as

2

. [ o7 (Keg + 1)]

ff ~ — (227)
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The critical particle density is then given by
Aoy 2 T
Perit” = oyl) 8P (2.28)
Xrange

)

where )Efa(ﬁ}g/e is the length scale for transition between diffusive and processive motion in the
model of a halting creeper within a cylindrical domain. This transition is shown with a solid black

line in Fig. 2.6c.

2.7 Summary

We have employed a simplified “halting creeper” model, consisting of stochastic inter-

change between passive diffusion and active processive walks, to investigate the efficiency of
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transport within an extended cylindrical domain. Specifically, this model is applicable to the
transport of organelles within long narrow cellular processes such as neural axons and fungal
hyphae. We explore the space of relevant parameters, including the rates of transition between
passive and active states and the relative speed of diffusion versus active transport, as character-
ized by the Péclet number over different length scales. Our results highlight the importance of the
relevant length scale in determining the contributions of the different transport modes and we
identify simple expressions for the time [f7;,,. = %] and length [x;ne. = %] at which
processive motion dominates particle spreading. We emphasize the use of the average range as a
metric for the ability of particles to explore their domain via multimodal transport, demonstrating
passive diffusion can play an important role over longer length scales than expected based on the
classic analysis of the mean squared displacement.

We focus specifically on the contributions of active and passive transport to several key
objectives relevant to the cell. First, we consider the establishment of a uniform distribution
from a bolus of particles, demonstrating that efficient dispersion is achieved at intermediate
run-lengths that can be substantially smaller than the domain size. This result indicates the
importance of bidirectional active transport with frequent reversals in the movement of particles
that must be spread broadly throughout a large domain, as is the case with metabolic organelles
such as peroxisomes and mitochondria. Second, we quantify the rate at which a single particle
first encounters a stationary target, showing again an advantage to intermediate run lengths that
minimize the time wasted pursuing a long processive walk in the wrong direction. Third, we
consider the rate of encounter to a target by the first of a population of halting creeper particles,
identifying the parameter regime where active transport or diffusion dominate the motion, and
showing that examples of biological interest fall in the intermediate regime where both modes of
transport contribute substantially to target encounter.

Finally, we investigate an extension of the one-dimensional model to a cylindrical domain,

where active transport can only occur in a narrow region along the axis and where particles can
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enter a halted tethered state that both enhances the effective rate of initiating an active run and
limits their ability to explore the domain while in the passive state. The advantages of tethering
to microtubule tracks have been a topic of much speculation in the literature on intracellular
transport [22, 48, 49]. We delineate the parameter regime in which tethering is expected to aid
the long-time dispersion of particles (Eq. 2.23) and identify a critical length scale L. (Eq. 2.25)
below which tethering hinders the ability of the particles to explore their domain. For several
example intracellular transport systems (Table 2.1), this critical length is on the order of a few
hundred nanometers, confirming the advantages of tethering for transport over micron length
scales.

The results derived in this work highlight the complementary role of diffusion and proces-
sive transport in fulfilling cellular goals for delivering and distributing cytoplasmic organelles.
The derived expressions can be employed for analyzing data on measured transport parameters to
determine the length scales and transport objectives where active motor-driven motion is expected
to dominate, where bidirectional transport with limited processivity is advantageous, and where

tethering to cytoskeletal tracks can aid overall organelle dispersion.
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Chapter 3

Mechanics of Transport Initiation through

Linker-Mediated Hitchhiking

3.1 Abstract

In contrast to the canonical picture of transport by direct attachment to motor proteins,
recent evidence shows that a number of intracellular ‘cargos’ navigate the cytoplasm by hitch-
hiking on motor-driven ‘carrier’ organelles. We describe a quantitative model of intracellular
cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of
geometric and mechanical parameters. We focus specifically on the parameter regime relevant to
the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the depen-
dence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles,
as well as the number, length and flexibility of the linker proteins that mediate contact between
the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to
microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular
geometries such as those found in fungal hyphae. This enhancement is expected to increase

the overall transport rate of hitchhiking organelles, and lead to greater efficiency in organelle
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dispersion. Our results leverage a quantitative physical model to highlight the importance of

organelle encounter dynamics in non-canonical intracellular transport.

3.2 Introduction

Regulated movement of proteins, vesicles, and organelles plays an important role in the
growth, metabolism and maintenance of cellular health. These particles move within a crowded
and dynamic intracellular environment, aided by a dedicated transport machinery that typically
comprises molecular motor proteins walking upon a network of cytoskeletal filaments. Precise
control of transport ranging over length scales from a few microns to tens of centimeters is
achieved by regulating the interactions between moving and stationary cargo, motors, and other
cytoskeletal structures. Defects in the regulation of organelle movement can lead to pathologies,
particularly in long cells such as neurons, where axonal transport deficiencies have been implicated
in neurodegenerative disorders including Alzheimer’s, amyotrophic lateral sclerosis (ALS), and
multiple sclerosis [3-5].

The traditional picture of intracellular transport involves the direct attachment of cargo
to adaptor proteins that recruit cytoskeletal motors, which carry the cargo processively along
microtubule tracks [16, 78, 79]. However, recent experimental evidence suggests that a variety
of cargos such as peroxisomes, lipid droplets, messenger ribonucleoprotein (mRNP) complexes,
RNA granules and the endoplasmic reticulum can attach to other motile organelles, and navigate
the cytoplasm through a mode of transport known as “hitchhiking" [6, 11, 17, 80-85]. Hitchhiking
is characterized by the presence of a motor-driven “carrier” organelle which is required for
processive transport of a cargo (the hitchhiker). Specifically, organelle hitchhiking has been
defined as conforming to three criteria: 1) long-range co-migration of cargo and carrier organelles,
2) lack of membrane fusion between distinct cargo and carrier particles, and 3) cargo transport

is dependent on carrier movement, while carriers can move independently of cargo [86]. The

38



ubiquity of hitchhiking cargos across systems suggests that this is a broadly applicable transport
mechanism, whose efficiency may dictate the distribution and delivery of particles that are critical
for optimal cellular function.

Previous theoretical models of canonical microtubule-based transport have focused on the
distribution of cytoskeletal tracks [47], interplay between diffusive and processive transport [27,
87], characteristics of motor processivity and turning [53], and cargo behavior at microtubule
intersections [19, 88]. The non-canonical hitchhiking mechanism, however, is governed by
fundamentally different interactions at the molecular and organelle level, as compared to classic
motor-driven transport. The physical principles that underlie hitchhiking efficiency have not yet
been quantitatively explored.

Although the molecular components of hitchhiking have yet to be fully identified for
many cargos, linker proteins which link the hitchhiking cargo to the carrier organelle have been
identified in some cases [6, 86]. For example, in the filamentous fungus Ustilago maydis, mRNAs
and their associated polysomes attach to early endosomes via an interaction between RNA-binding
protein Rrm4 and early endosome-associated protein Upal [80-83]. In both Ustilago maydis and
Aspergillus nidulans, another filamentous fungus, peroxisomes hitchhike on early endosomes [17,
85]. In Aspergillus, the protein PxdA is required for peroxisome hitchhiking [17], and is a putative
linker between early endosomes and peroxisomes. In rat neurons, RNA granules hitchhike on
motile lysosomes using the ALS-associated protein Annexin A1l as a linker [6]. While such
linker proteins have been shown to be required for hitchhiking in these circumstances, it remains
unknown how their mechanical and structural properties modulate hitchhiking efficiency.

In some cell types, organelles such as peroxisomes and mitochondria have been observed
to attach to microtubules when not being actively transported [50, 89, 90]. Such tethering allows
for regulated placement of organelles within the cell [50, 51, 91, 92]. Tethering may also enhance
the ability of cargo to interact with the transport machinery, increasing the rate of initiating active

runs while restricting short-range diffusion [87]. Peroxisomes in particular have been found to
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exhibit both diffusive motion and microtubule tethering depending on cell type and context [11,
89], indicating that both modes of motion may play a role in organelle motility. Here, we explore
how tethering to microtubule tracks can enhance the rate of transport initiation for hitchhiking
cargos, by placing them within easy reach of passing carrier organelles.

Given the complexity of intracellular transport processes, many studies of transport have
focused on the simplified geometries found in long cylindrical cellular projections [11, 17]. Such
projections feature polarized arrays of parallel microtubules, with few intersections and essentially
one-dimensional movement of cargo. Neuronal axons and the hyphae of filamentous fungi exhibit
a similar cylindrical geometry. Filamentous fungi such as Aspergillus nidulans are particularly
amenable to genetic manipulation and imaging, providing convenient experimental systems for
studies of intracellular transport [8].

Linearly extended cellular systems such as axons and hyphae generally require efficient
transport machinery to maintain a well-dispersed distribution of organelles. This distribution
is determined both by the site of organelle biogenesis and by the transport machinery available
to spread organelles away from these sites. In the filamentous fungus Penicillium chrysogenum
peroxisome generation occurs preferentially at the hyphal tip [93]. In Ustilago maydis, an actin-
dependent slow polar drift has been demonstrated to result in an accumulation of peroxisomes
at the hyphal tip in the absence of hitchhiking transport [11]. In both cases, the hyphae are
sufficiently long (on the order of 40um from the last nucleus to the hyphal tip) that organelles
with a typical diffusivity (D ~ 0.02um? /s [11]) would require many hours to spread through the
hypha by diffusion alone. Processive transport mechanisms such as hitchhiking are thus crucial
to maintaining these organelles broadly distributed throughout the cell.

In this chapter we investigate the effects of cellular and cytoskeletal geometry, as well as
mechanical properties of the transport machinery, on the initiation of hitchhiking runs by a cargo
that encounters and attaches to a carrier organelle. We develop an analytical and computational

model of hitchhiking transport initiation within tubular geometries, quantifying the rate of cargo-
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Figure 3.1: Schematic of the model for hitch-hiking initiation. A simulation snapshot is
shown with all model components labeled. Specific components for peroxisome hitchhiking in
Aspergillus nidulans are indicated in parentheses. Scale bar: 0.5um.

carrier contact for a wide range of biologically feasible parameters. In particular, we focus
on peroxisome hitchhiking in fungal hyphae, leveraging experimental observations to identify
the relevant parameter regime. We analyze the role of linker proteins in mediating the contact
between carrier and cargo organelle, and establish optimum mechanical and structural parameters
for linkers that can maximize the hitchhiking initiation rate. For organelles that can tether to

microtubule tracks, we quantify the potential enhancement of the hitchhiking rate due to tethering,

and identify its effect on overall organelle dispersion in the cell.

3.3 Methods

Overdamped Brownian dynamics simulations are employed to explore the dynamics of
carrier and cargo organelles as they first encounter each other for hitchhiking initiation. Our focus
is on the parameter regime where the following conditions are applicable: 1) a cylindrical domain
with parallel microtubule tracks, 2) carrier and cargo organelles that are substantially smaller
than the domain width, 3) cargo organelles that are sufficiently sparse to preclude cargo-cargo
interactions, 4) linker proteins of length smaller than the domain width. In particular, these

conditions are relevant to the dynamics of hitchhiking peroxisomes, carried by early endosomes
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in fungal hyphae.

The carriers (e.g.: endosomes) are modeled as spheres of radius r, = 100nm, moving
in a domain of length L = 1um and radius R = 1um with periodic boundaries in the axial
direction. The radius of the domain is set to match the typical radius of fungal hyphae (see
Appendix B) for measurements in A. nidulans) [11]. The domain represents a section of cell
around a single cargo capable of hitchhiking. In A. nidulans hyphae, peroxisomes are observed at
an average linear density of approximately 1 organelle within a 1um long region of the hypha
(see Appendix B), which sets the length of our simulated domain. This length allows us to assume
only one peroxisome within the domain of interest, neglecting second-order effects. It should be
noted that the fraction of peroxisomes actually engaged in hitchhiking at any given time is quite
small (approximately 5% in U. maydis hyphae [11]). Given a density of linker-bearing endosomes
of approximately 3 per um (see Appendix B), we would expect less than 2% of carrier organelles
to be already encumbered by a hitchhiker. We therefore assume all carriers that enter the domain
are not carrying a hitchhiker. For simplicity, our model also ignores any carrier organelles not
capable of initiating hitchhiking (eg: due to lack of linkers) and any other organelles in the cell
that do not serve as carriers. These additional components could provide buffeting effects through
sterics or hydrodynamic entrainment [24] which are not included in our model.

Microtubules are modeled as N straight lines distributed uniformly within the domain
cross section. Microtubule dynamics are not included in the current model, although they provide
an interesting avenue for future study. We ignore transverse fluctuations of microtubules, given
that their persistence length in vivo (I, ~ 30um [94]) is much longer than the domain length.
The linear density of carrier organelles (p) gives the number of carriers per unit length of hypha.
Our simulation includes pL carriers within the simulated domain. Each carrier is attached to a
microtubule track by a single zero-length stiff spring representing a molecular motor complex.
The attachment point of the spring to the microtubule moves processively in either direction at a

constant velocity of 2um/s, comparable to the measured velocities of fungal peroxisomes and
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early endosomes [17]. Upon leaving the domain, the carrier organelle reappears at the other side,
on a newly selected microtubule, thereby maintaining a constant carrier density while representing
organelles whose typical run-length is much longer than the domain length L.

Cargo organelles (e.g.: peroxisomes) are represented by spheres of radius r, = 100nm,
which either diffuse freely through the domain, or have a point on their surface attached to a fixed
microtubule at the axial center of the domain. Both carriers and cargo experience Brownian forces
and torques corresponding to translational diffusivity D; = k;,T /(671 r) and rotational diffusivity
D, = kT /(8wnr?), where 1) is the viscosity of the domain. The viscosity is chosen such that
D; = 0.014um? /s for the cargo organelle, in keeping with measured diffusivities of peroxisomes
in Ustilago maydis hyphae [11]. Steric interactions between organelles and with the cylindrical
boundary of the domain are implemented using a stiff harmonic potential.

The simulations are evolved forward using a fourth-order Runge-Kutta algorithm [95]
with time-steps of 10~*s. Each simulation trial is run for a total of s, allowing each carrier to
pass 10 times through the domain. 2500 trials are carried out for each combination of carrier
density p and microtubule number N.

Linker proteins that mediate contact between carrier and cargo are modeled as continuous
semiflexible worm-like chain (WLC) polymers [96] with varying length. Positions of the base
of the linker protein are chosen uniformly on the carrier surface, and the initial linker tangent
is assumed perpendicular to the surface. Using analytically calculated distributions for the end
point of a WLC [97], we tabulate the spatial distribution of the probability that a cargo organelle
overlaps with the tip of a linker for a given configuration of the carrier and cargo (see Appendix B).
Using this tabulated probability, at each time step we check whether linker-mediated contact
between the carrier and cargo has occurred. This approach avoids resolving the dynamics of the
linker protein configurations, working instead in the fast-equilibration limit where the position of
each linker tip is sampled from its equilibrium distribution at each timestep.

For each simulation trial, we record the time until the single cargo organelle first contacts
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either the carrier surface or the tip of a linker protein. We note that these encounter times provide
a lower limit on the waiting time until hitchhiking initiation. Namely, in Fig. 2-5 we assume
that each encounter successfully and immediately results in a hitchhiking event. The role of
unsuccessful encounters is explored in a subsequent section (Fig. 7) by introducing a finite
reaction rate kx for initiating a successful hitchhiking interaction while the linker and cargo are
in contact.

The empirical cumulative distribution function for contact events is used to extract an
effective rate of contact. Over the simulation timescale, the cumulative distribution functions
observed fit well to a double exponential form Q(r) = 1 — fie /T — fre~!/2 (see Appendix B).
This functional form is chosen ad hoc to enable smooth interpolation of the data within the
simulation time-frame, and extrapolation to longer times, in order to calculate the average waiting
time until contact. No specific physical meaning is assigned to the resulting two time scales.
The average rate of hitchhiking initiation is defined by ki = (f171 + f> 172)*1. Variation in this
initiation rate is approximated by bootstrapping [98] over all simulation trials for a given set of
parameters. All error bars shown give the standard error in kpj over 100 bootstrapping runs.

Brownian dynamics simulation code (in Fortran90) and scripts for implementing linker
distributions and obtaining encounter rates from simulation results are provided in a GitHub

repository: https://github.com/lenafabr/hitchhiking_initiation.

3.4 Results and Discussion

3.4.1 Rate of encounter with carrier organelles

The efficiency of hitchhiking transport initiation is governed in part by geometric pa-
rameters, such as the density of microtubules and carrier organelles, as well as the length and
distribution of linkers on the carrier surface. In order to be picked up for a hitchhiking run, the

cargo must be sufficiently close to a passing carrier to be able to engage with a linker protein.
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Figure 3.2: Dynamics of cargo encounter with carrier organelles. (a) Schematic model for
carrier encounter, illustrating the two-step process of first entering a M T-proximal zone, then
waiting for a carrier passage event. (b) Average fraction of domain cross-sectional area within
distance 2r, + r), from a microtubule (left) and rate kv to encounter a microtubule if starting
outside the proximal zone (right). (c) Cumulative distribution of carrier encounter times, plotted
for simulations with three different carrier densities. Dashed lines give fit to a double-exponential
function used to extract an effective encounter rate. (d) Average carrier encounter rate, for
different numbers of microtubules and carrier density. Symbols indicate simulation results;
dashed black lines show predictions from approximate kinetic model (Eq. 3.2).

We begin first by considering the rate of encounters between a diffusing cargo organelle and a
processively moving carrier. This rate corresponds to hitchhiking initiation in the limit of very
short, densely packed linkers, where the entire carrier surface is capable of binding the cargo.

A Brownian dynamics simulation framework is employed to explore how the density of
microtubules and carriers modulates organelle encounter in a tubular region of radius R = 1um
with parameters relevant to peroxisome transport in hyphae (Fig. 3.1). The radius of the tubular
region corresponds to the average radius of A. nidulans hyphae, as obtained from experimental
measurements (see Appendix B). A variable number (N) of parallel microtubules are uniformly
scattered throughout the tubular region. A single cargo of radius r, = 100nm and translational
diffusivity D; = 0.014um? /s represents the peroxisome and a variable linear density p of carrier
organelles of radius r, = 100nm move with processive velocity v = 2um/s along the microtubule
tracks. Brownian forces on the carrier organelles drive fluctuations around their attachment point

to the microtubules. Periodic axial boundary conditions allow for maintenance of a constant
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density of processively moving carriers in the local vicinity of the cargo.

In order to come in contact with a carrier, the cargo must first approach sufficiently close
to a microtubule track (within a distance of rj, +2r, = 0.3um), and then be hit by a passing
carrier before moving away from the track again (Fig. 3.2a). For a single, centrally located
microtubule, the region of proximity covers a fraction f = (r, +2r,)?/(R —r,)? ~ 0.1 of the
available cross-sectional domain area. As multiple parallel microtubules are placed within the
domain, their proximity regions cover an increasing fraction of the cross-sectional area. We vary
the number of microtubules N in our simulation, randomizing the placement of each microtubule
and the initial radial position of the peroxisome within the domain. Fig. 3.2b shows the fraction
of iterations where the peroxisome starts within reach of a microtubule (equivalent to the MT-
proximal area fraction fy), as well as kv, an effective rate for peroxisomes initiated outside of
the MT-proximal area to first reach this area (see Methods for details of rate calculations).

The time for a cargo to encounter a passing carrier is governed both by the dynamics
of entering and leaving the MT-proximal region (rates KMt, Kieave) and the rate kpass of carrier
passage in the vicinity of a cargo that is within reach of a microtubule. Because the velocity
of processive motion is rapid compared to the cargo diffusivity, we treat the carrier arrival as a
constant rate process while the peroxisome is within the MT-proximal region. The rate of this

arrival is given by

(re+rp)2

_ __ 1
kpass vp fN(R — rp)2 ) (3.1

where vp is the rate at which carriers pass the axial position of the cargo and the second term
corresponds to the equilibrium probability that the radial position of the passing carrier is within
reach of the cargo, assuming the cargo is uniformly distributed within the MT-proximal area. The
effective rate of leaving the MT-proximal area must be such that the cargo spends fraction fy of its

time within this area at equilibrium. Namely, kjeave = kmr[1 — fiv]/fv- These three rates allow for
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an approximate calculation of the waiting time for a cargo organelle distributed uniformly within
the domain to first encounter a carrier, using the simplified kinetic scheme shown in Fig. 3.2a.

The inverse of this time gives the effective carrier encounter rate (see Appendix B for derivation):

kpasskMT (kleave + kMT)
kpasskleave + (kMT + kleave)z .

(3.2)

kcarrier =

When carrier passage is very frequent (kpass — 0), the average time to carrier encounter reduces
to 1/kearrier — (1 — fv)(1/kmt), equivalent to the probability the cargo starts outside of the
microtubule region multiplied by the time to reach that region.

The typical time-scale for cargo-carrier encounter in simulated trajectories is obtained by
fitting the computed cumulative distribution function to a double exponential process (Fig. 3.2c;
details in Appendix B). As shown in Fig. 3.2d, effective encounter rates obtained from the
simulations are well represented by the simplified kinetic model of Eq. 3.2.

At low carrier density, increasing the microtubule number beyond a couple of microtubules
has little effect on the rate with which the cargo first encounters a carrier. In this regime, the
diffusing cargo has time to enter and leave the MT-proximal region while waiting for a carrier to
pass by. Each carrier passage event becomes essentially independent from the previous one, in
terms of the probability that it will hit the cargo. Splitting up a fixed carrier density across more
microtubules does not change the overall frequency of these independent passage events and
thus has little effect on the encounter rate. By contrast, at higher carrier densities increasing the
number of parallel microtubules can greatly speed up the encounter process. In this limit, carriers
arrive very rapidly and the encounter is limited by the cargo approaching sufficiently close to a
microtubule to enable contact. Hence, increasing kyt by raising the number of microtubules will
increase the overall encounter rate.

Similarly, when there are very few microtubules in the domain, the encounter rate is nearly

independent of the carrier density. A greater frequency of carrier passage events along a single
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microtubule will not speed up encounter times that are dominated by the cargo coming in radial
proximity of that microtubule. At higher microtubule numbers, the cargo spends most of its time
within the MT-proximal region and increasing carrier density enhances the rate at which some
carrier passes the cargo on a nearby microtubule.

We quantified the number of microtubule plus-ends in Aspergillus nidulans hyphae, and
found approximately N =/ 5 parallel microtubules at the hyphal tips (see Appendix B). For this
number of microtubules, the rate of cargo encounter with a carrier increases with the carrier
linear density up to p ~ Sum~!, after which it is insensitive to the presence of additional
carrier organelles. We also quantified the linear density of fluorescently-tagged early endosomes
in A. nidulans hyphae and found approximately 5 endosomes per um length of hypha (see
Appendix B). As approximately 55% of endosomes carry the PxdA linker protein responsible
for peroxisome hitchhiking [17], we would expect the rate of peroxisome encounter with a

PxdA-bearing endosome (p ~ 2.8um~) to be approximately 0.2s .

3.4.2 Rate of encounter with linker proteins

Organelle hitchhiking is generally believed to involve the cargo (hitchhiker) attaching
to a carrier organelle surface via one or more linker proteins [86]. For the case of peroxisome
transport in A. nidulans, the putative linker protein (PxdA) is present on a subpopulation of early
endosomes and is required for peroxisome hitchhiking [17]. This protein contains a long predicted
coiled-coil region, which is approximately 90nm in length if fully extended [17]. Given that the
linker protein may be comparable in size to the organelles themselves, its length, distribution,
and mechanical properties have the potential to substantially impact the efficiency of hitchhiking
initiation. We thus incorporate extended linker proteins on the carrier surface into our dynamic
model and proceed to explore how linker protein parameters modulate the rate at which the cargo
organelle can get picked up for a hitchhiking run.

We use a multi-scale approach to integrate the linkers into our Brownian dynamics
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Figure 3.3: Rates of encounter with hitchhiking linkers. (a) Model of linker protein chains
attached to carrier surface. Top: end distribution of a WLC of length £ = £, with initial end
orientation fixed. Representative configurations of the linker are indicated in white. The color
represents the probability density of the linker tip location. Bottom: probability of contact
between the tip of a linker (black lines) on a carrier (green) and the hitchhiking cargo (magenta).
The color represents the contact probability for each position of the hitchiker center relative
to the linker attachment point. (b) Rate at which the cargo encounters the first linker tip, as
a function of the carrier density and the number of microtubules. (c) Effect of linker length
and linker number per carrier on the encounter rate. (d) Bar graph of the peroxisome flux
in wild-type (WT) hyphae and hyphae overexpressing PxdA(A1-500)-TagGFP (PxdA OE).
Peroxisome flux is quantified as the number of peroxisome movements across a line drawn
10pum from the hyphal tip in a 1 minute movie. Wild-type hyphae had 2.84 = 0.38 (SEM)
peroxisome movements per minute, while hyphae with overexpressed PxdA(A1-500)-TagGFP
had 2.22 +0.33 (SEM) peroxisome movements per minute. p = 0.2569, Mann-Whitney test.
Error bars=SEM. n = 46 WT hyphae and 49 PxdA OE hyphae. See Appendix B for details of
peroxisome flux quantification.

49



simulations. The linkers are treated as semiflexible “worm-like" chains (WLC) [96] of length
¢, with one end fixed at a given position on the endosome and the initial tangent fixed to be
perpendicular to the endosome surface. It is not known whether linker proteins are capable of
diffusing over the carrier surface. In the extreme case of very rapidly diffusing linkers, any close
approach of the hitchhiking cargo to the moving carrier would result in an encounter with a linker,
given that the proteins could explore the entire carrier surface very fast compared to the relative
motion of the organelles. This limiting case approaches the situation where the entire carrier
surface is capable of interacting with the cargo, as discussed in the previous section, albeit with
an expanded effective carrier radius resulting from the added extension of the linker beyond the
carrier surface. We focus here on the opposite limit, where a given number of linker proteins
is attached to fixed points on the carrier surface with no diffusion permitted for the attachment
points.

Assuming that the conformation of an individual linker protein equilibrates much faster
than the large organelle movements, we employ a separation of timescales in our simulation.
Specifically, we assume that each linker samples its configuration from an equilibrium distribu-
tion independently on each Brownian dynamics step. We make use of the analytically known
distribution function for a WLC with fixed end orientation [97] to compute the probability that a
free linker end will intersect with the hitchhiking cargo for a given position of the cargo relative
to the anchoring point of the linker (Fig. 3.3a). These probability distributions are used to sample
whether the cargo has come into contact with a linker tip during each simulation step. The
hitchhiking initiation time is then taken to be the total simulation time until the first such contact
with a linker tip occurs. We note that this model assumes all contacts between a linker tip and a
cargo organelle lead to rapid formation of a long-lasting interaction that results in a hitchhiking
run. In particular, the entire surface of the hitchhiking cargo is assumed capable of interacting
with the linker protein. The hitchhiking rates discussed here are thus an upper estimate on actual

initiation rates.
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The rate of encounter with a linker tip shows a similar dependence on microtubule and
carrier density (Fig. 3.3b) as the rate of coming into contact with the carrier organelle itself
(Fig. 3.2b), discussed in the previous section. Specifically, increasing the carrier density has little
effect for low microtubule numbers. Interestingly, the rates of linker contact are quite similar
to the rate of carrier contact, even for a fairly small number of linkers on the carrier surface.
Fig. 3.3c shows how the rate of linker encounter with cargo depends on the number and length
of the linkers. Due to the flexibility and length of the linker proteins, only a small number of
linkers (~ 5, for linkers of size comparable to the putative PxdA coiled-coil region) is sufficient to
obtain near maximum initiation rates. This prediction from the physical model is consistent with
experimental measurements, which show that overexpressing PxdA linker proteins in A. nidulans
does not increase the rate of hitchhiking initiation (Fig. 3.3d).

Using the standard expansion for a nearly straight wormlike chain, the linker tip will
project a typical distance Az ~ ¢[1 —¢/(6£,)] from the carrier surface [99]. For proteins of length
¢ = 100nm and persistence length £, = 100nm, a single instantaneous encounter between cargo
and carrier surface is expected to yield a roughly 6% chance of any given linker on that carrier
intersecting with the cargo. For 5 independent linkers, this means that approximately 30% of
carrier encounters will result in immediate linker contact. This fraction is increased further
because the diffusion of cargo and carrier during a passage event allows them to sample a greater
fraction of each other’s surface, as has been quantified for the case of molecular diffusion towards
receptor patches on a sphere [100].

In addition, by projecting beyond the surface of the carrier, the linker proteins serve
as antennae, allowing contact while the cargo is further away from the carrier. This type of
interaction effectively replaces r, with r, + Az and results in more rapid encounters. Consequently,
for long and numerous linkers, the rate of initiation can be even faster than the rate of contact
with the carrier. This effect arises from the extra range afforded by long linker proteins, allowing

contact with the linker to occur while the cargo is still at a substantial distance from the carrier
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Figure 3.4: Dependence of encounter rate on linker flexibility. (a) Rate at which cargo encoun-
ters a linker tip, as a function of linker persistence length for different linker numbers. Dashed
lines with shaded areas denote contact rate for infinitely stiff linkers along with standard error.
Dotted vertical line denotes /, = 0.1um, used in all other simulations. (b) End distribution of a
WLC of length £ = 100nm with initial orientation fixed, highlighting the increased extension Az
yet smaller area coverage of stiffer linkers. Top: /, = 10nm, bottom: /,, = 250nm

surface.

The rate at which linker contact occurs depends not only on the geometry and density
of the linker proteins, but also on their flexibility (Fig. 3.4). In order to project beyond the
surface of the carrier organelle, the linker proteins must be relatively stiff (¢, 2 ¢). For linkers
with a substantially shorter persistence length, the smaller value of Az implies that the cargo
organelle would need to approach closer to the carrier surface in order to have a high likelihood
of encountering the linker tip (Fig. 3.4b). Interestingly, when there is only one linker on each
carrier, a slight optimum in linker flexibility is observed. This effect arises from the fact that
the tip of a stiffer linker thermally explores a smaller area in the plane parallel to the surface
of the carrier. Thus, when linker density is low, semiflexible linkers with Zl, comparable to ¢
increase the probability of an encounter with the linker tip each time the cargo approaches a
carrier, above what it would be for infinitely stiff linkers. We note that the effective persistence
length of coiled-coil protein structures is reported to be in the range of 30 — 170nm [101-104].
While the detailed structure and mechanical properties of the PxdA linker are unknown, this
protein appears to fall in the expected range for an efficient hitchhiking linker — namely, it has

a predicted coiled-coil domain with comparable persistence length and end-to-end length. The
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Figure 3.5: Effect of cargo tethering to microtubule on encounter rates with carrier organelles
and their linker proteins. (a) Rate of encounter with a carrier organelle, for different numbers of
microtubules in the domain. (b) Cumulative hitting probability with the tip of a linker protein,
for tethered (solid lines) and untethered cargo (dashed lines), showing more rapid encounters
in the tethered case. (c) Enhancement of overall contact rate with a linker protein tip, due to
tethering of cargo. (d) Encounter rate between a tethered cargo and linker protein tip, as a
function of linker length and number. (e) Ratio of encounter rates with linker protein tips, for a
tethered versus diffusive cargo.

coiled-coil domain of PxdA is thus expected to have sufficient stiffness that would allow the

protein to project beyond the endosome surface, while remaining sufficiently flexible so that the

linker tip could explore a substantial area around its attachment point.

3.4.3 Tethering to microtubules enhances the rate of hitchhiking initiation

A number of organelles, including mitochondria, melanophores, and peroxisomes are
known to become tethered to microtubule tracks by regulatory proteins that are crucial for
maintaining their cellular distribution [50, 89, 92, 105, 106]. Such tethering not only helps
localize organelles along extended cell regions (as in neurons) [51, 105] but is also thought to
facilitate interactions between multiple organelles by restricting their three-dimensional diffusion
through the cytoplasm [92]. In the case of hitchhiking cargos such as peroxisomes in Aspergillus
and Ustilago, tethering to a microtubule has the potential to enhance the rate of hitchhiking
initiation by eliminating the time spent out of reach of the microtubule-bound carrier organelles.

We explore the effect of cargo tethering in the context of our hitchhiking initiation model by
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attaching the cargo surface to a randomly selected microtubule and quantifying the rate at which
the cargo first encounters the carrier surface or a carrier-borne linker protein.

Tethering of the cargo to a microtubule substantially increases the rate of encounter with a
carrier organelle, particularly in the case of low microtubule density (Fig. 3.5a). This enhancement
arises from two related effects. First, the lower volume available to the cargo makes it much more
likely in equilibrium (and hence at the start of the simulation) that the cargo starts in close contact
with a carrier organelle. This is particularly the case for high carrier densities and low microtubule
numbers, where the carriers cover nearly the entire volume available to tethered cargo. A related
effect is that, even for cargos that start far from any carrier, the need to first reach a microtubule
track is eliminated (kypt — ©0), so that the rate of carrier encounter becomes comparable with the
rate of carriers passing a hyphal cross-section along the same (or nearby) microtubule.

When the hitchhiking cargo is tethered to a microtubule, increasing the number of micro-
tubules along the hypha greatly slows the rate of encounter with a passing carrier. Because we
assume a constant linear density of carrier organelles per length of hypha, additional microtubules
provide more options for where the carriers are located in the hyphal cross-section, diverting
some of them away from the one microtubule to which the cargo organelle is attached. Hence,
fewer microtubules makes it more likely that each carrier will come in contact with the cargo as it
passes the relevant cross-section of the hypha.

When hitchhiking initiation requires encounter with the tip of a linker protein, tethering
of the cargo can also greatly increase the rate at which such encounters occur (Fig. 3.5b-d).
Unsurprisingly, tethering has the greatest effect on encounter rates at low microtubule numbers
and short linker lengths, where facilitating the rate at which the cargo comes near the carrier
surface has a large effect on the hitchhiking initiation. For high microtubule numbers and long
linkers, the effect of tethering is less pronounced because even freely diffusing cargos spend most
of their time within the maximum distance (r,, + 2r, + Az) of the microtubule tracks that allows

for hitchhiking initiation during carrier passage events. As seen in Fig. 3.5d, tethering plays a
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greater role when the carrier density is high, since it is in this regime where contact with diffusive
cargo is rate-limited by the cargo coming in proximity of a microtubule track. At lower carrier
densities, the encounter time is dominated by waiting for a carrier passage event and tethering to
a microtubule has less effect.

For the typical microtubule and PxdA bearing early endosome density observed in A.
nidulans hyphae (N ~ 5, p ~ 3um~'; see Appendix B), and for the predicted PxdA coiled-coil
linker length (¢ ~ 90nm), tethering of peroxisomes is expected to increase the rate of hitchhiking
initiation by more than 12-fold (Fig. 3.5d). Peroxisome hitchhiking in hyphae can thus be greatly
enhanced by attaching the peroxisomes to microtubules. The enhancement remains substantial
even if the peroxisomes are assumed to be much larger (8-fold enhancement for r, = 300nm;
see Appendix B). Published kymographs of labeled peroxisomes in ApxdA hyphae [17] hint that
peroxisomes exhibit little axial motion over time periods of up to 10 sec. While time-sampling
limitations of this data preclude a definitive demonstration of tethering, the observed motion is not
inconsistent with these organelles being attached to stationary cellular structures. Furthermore, in
human cells, the peroxisomal membrane protein PEX14 has been shown to bind to tubulin and to
be critical for peroxisome motility along microtubules [89]. There is thus reason to propose that
fungal peroxisomes may also be attached to microtubules and, as shown here, that this tethering

may contribute to their ability to hitchhike throughout the hypha.

3.4.4 Success rate for hitchhiking initiation

Our mechanical model indicates that, for parameters relevant to A. nidulans hyphae, the
rate at which a peroxisome encounters a PxdA linker on a passing endosome is approximately
0.2s~! if the peroxisome is untethered and approximately 2s~! if it is tethered to a microtubule.
These timescales set an upper limit to the rate of hitchhiking initiation, since not all encounters
with the linker will result in a successful hitchhiking run.

We can measure the initiation rate for peroxisome hitchhiking directly by tracking individ-
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Figure 3.6: Experimentally measured hitchhiking initiation rate for peroxisomes in A. nidulans
hyphae. (a) Example trajectory of individual peroxisomes, with passive segments marked in
blue and active segments in red. (b) Cumulative distribution of start times for active motion,
conditional on an active run occuring during the measured time window (f;.x). Grey curves

show variation from bootstrapping. Dashed line gives fit to conditional cumulative distribution
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Figure 3.7: Hitchhiking initiation depends on rate of successful reaction between linker and
cargo during an encounter event. (a) Overall rate of hitchhiking initiation, as a function of
the reaction rate kyx, for each linker. Dashed curves give results for diffusive cargo and solid
curves for tethered cargo. Horizontal line represents experimentally measured initiation rate,
with shaded region indicating standard error. (b) Distribution of encounter durations with an
individual linker for diffusive (top) and tethered (bottom) cargo. (c) Probability of an encounter
successfully resolving in hitchhiking for diffusive (dashed line) and tethered (solid line) cargo.
(d) Enhancement in initiation rate due to tethering, for different values of k.
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ual peroxisome trajectories obtained from time-lapse Lattice light sheet imaging of A. nidulans
hyphae. A wavelet-based adaptive thresholding algorithm [61] is leveraged to classify sections
of the particle trajectories as processive runs versus passive motion (Fig. 3.6a; see Appendix B).
For all trajectories with an active run of duration at least 1sec, we look at the distributions of
times from the start of the trajectory until the active run is initiated (Fig. 3.6b). The empirical
cumulative distribution function is fitted to the conditional cumulative distribution for a Poisson
process with a constant rate kj,j¢, given that an event occurs before the end of the tracking period
(fmax)- The resulting estimate for the hitchhiking initiation rate is kjnjy = 0.035 £ 0.007s~!. This
rate of hitchhiking initiation is nearly an order of magnitude lower than our predicted rate of
linker protein encounter, even for untethered peroxisomes.

This discrepancy implies that only a small fraction of encounter events with the PxdA
linkers result in the successful initiation of a hitchhiking run. We therefore incorporate unsuc-
cessful encounters directly into our model by introducing another rate constant k;xy, giving the
rate at which a successful binding reaction occurs between the linker protein and the peroxisome
surface, while the two are within contact distance of each other. This is a microscopic rate
constant effectively incorporating the molecular-scale sampling of the peroxisome surface by
the linker, after it has already come within binding range. The higher the value of k;,, the more
likely a linker encounter of a certain duration will result in the successful initiation of hitchhiking.
The base model described in previous sections corresponds to the limit with kyx, — oo, when all
encounters result in a hitchhiking run. As k;x, decreases, many encounters are unsuccessful and
the expected rate of hitchhiking initiation diminishes dramatically (Fig. 3.7a).

In addition to finding the time until first encounter, the simulations can also be used to
quantify the distribution of durations for each linker encounter event (Peyc(?); see Appendix B).
The average duration for a diffusive peroxisome encounter with a linker protein is found to be

—diff

73l ~ 0.03s, whereas the average duration for a tethered peroxisome encounter is 7<% = 0.1s

enc

(Fig. 3.7b). Tethered peroxisomes tend to experience longer encounters with a linker, as the carrier
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organelle passes by and maneuvers around the cargo on the microtubule. Using the distribution
of encounter durations, we can find the average probability that a linker encounter event will be

successful for a given kx,. This relationship is given by

Psuccess = 1 _/0 Penc(t)e_erntdl~ (3.3)

Due to the longer duration of encounter events, the overall probability that an encounter will
result in successful initiation is always higher for a tethered than a diffusive cargo (Fig. 3.7¢).
Interestingly, the ratio of hitchhiking initiation rates for tethered versus diffusive peroxisomes
is largely insensitive to kxn, for values above kyxy = 5571 (Fig. 3.7d), even though tethered
encounters are up to 3-fold more likely to be successful. This observation indicates that individual
encounters for diffusive peroxisomes are not independent of each other, so that even a short
encounter with a linker protein means the peroxisome is in a position where subsequent encounters
will happen frequently.

Comparison with the experimentally measured hitchhiking initiation rate (horizontal
line in Fig. 3.7a) indicates that for untethered peroxisomes and a saturating number of linkers,
the reaction rate is expected to be roughly kpm ~ 4s~!, with corresponding success probability
Psuccess =~ 0.1. If the peroxisomes are tethered, the probability of each encounter successfully
initiating a hitchhiking run would need to be pgyccess = 0.02 to yield the observed initiation rate.

Such a low success rate may arise from a variety of biological or mechanical reasons.
First, it is possible that an individual peroxisome and PxdA-bearing endosome are incabable of
forming a hitchhiking interaction during a given encounter. In particular, it is unclear if PxdA is
the actual linker between peroxisomes and early endosomes, or if it is only one component of a
hitchhiking apparatus. It is also unclear if the coiled-coil region of PxdA is consistently in a fully

extended form or if it takes on multiple conformations that may make it less capable of readily

interacting with hitchhiking cargo. Other proteins may also regulate PxdA activity or be involved
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in linking peroxisomes to early endosomes in other ways. For example, only a certain percentage
of peroxisomes may display a binding receptor for PxdA, creating a smaller pool of peroxisomes
competent to hitchhike.

Furthermore, even if the peroxisome and the PxdA linker are capable of binding, this
binding reaction may be comparatively slow, so that many contacts do not result in successful
hitchhiking initiation. For instance, binding receptors on the peroxisome may not cover the
entire surface, forcing the linker protein tip to explore a portion of the peroxisome surface before
actually binding. The linker may also need to sample many conformations before making a
successful contact with a receptor. As the proteins comprising the hitchhiking apparatus are
unknown, the strengths of contacts between the peroxisome and early endosome are unclear and
may be weak, resulting in broken contacts before hitchhiking is initiated. Finally, if peroxisomes
are indeed tethered to microtubules, there may be a high energy requirement to break those tethers
and initiate a hitchhiking event, resulting in an effectively slow reaction rate and a high fraction
of unsuccessful encounters.

Given all of these potential effects beyond the encounter of a hitchhiking cargo with a
linker protein, it is perhaps not surprising that such encounters should be much more frequent
than actual hitchhiking initiation events. The geometric and mechanical parameters described
here thus determine the frequency of opportunities for hitchhiking to occur. This sets an upper
limit on the rate of hitchhiking initiation, for the case of easily broken tethers, a fully reactive

peroxisome surface, and very rapid binding of the linker to the peroxisome surface.

3.4.5 Effect of initiation rate on overall cargo dispersion

Our exploration of the dynamics of cargo and carrier encounters indicates that tethering of
cargo to microtubules can greatly enhance the rate of hitchhiking initiation. However, tethering of
the cargo also inhibits its ability to move diffusively throughout the domain. Therefore, we sought

to determine how these two competing factors (hindered diffusion but increased hitchhiking
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Figure 3.8: Range of a halting creeper particle engaged in bidirectional runs alternating with
diffusive or tethered periods. Solid black line gives range for a particle that diffuses freely with
diffusivity Dy, between processive runs initiated with a rate ky. Dashed lines give range for
particles that are tethered when not engaged in an active run, but with increasing initiation rates.

rate due to tethering of a cargo) would balance each other to affect the long-range dispersal of
hitchhiking cargo organelles throughout a cylindrical region.

To address this, we switch to a simplified, analytically tractable model which focuses
on the motion of hitchhiking cargo organelles along the hyphal axis. Specifically, we leverage
the one-dimensional "halting creeper”" model [87] where cargo organelles are treated as point
particles subject to multimodal transport. The particles exhibit memoryless stochastic switching
between bidirectional processive motions (with velocity v, starting rate kj,j;, and stopping rate
kstop), interspersed with diffusive periods of diffusivity D (Fig. 3.8 inset). The more detailed
mechanical model for hitchhiking initiation described in previous sections allows us to calculate
the effective starting rate kipj; with and without tethering of the cargo organelles to microtubules.

In prior work [87], we developed an analytical expression for the range of an exploring
“halting creeper" particle. Particle range constitutes a metric of interest for intracellular transport
processes because it enables direct calculation of the average time for any target in the cell to

be found by the first of a uniformly distributed set of particles. It also provides an estimate for
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the distance from its site of biogenesis which an organelle explores over a finite time period.
The range thus determines the extent to which organelles accumulate at their site of formation
versus dispersing throughout the cell. It can be shown [87] that the range of a halting creeper
transitions between a ballistic regime [range Z(f) = fvt] and an effectively diffusive regime
[Z(t) = \/m], where Degr = (1 — f)D+ fv?/ kstop is an effective long-time diffusivity, and
f = kinit/ (kinit + kstop) is the equilibrium fraction of time in processive motion. The transition to
the long-range diffusive regime occurs at a time t** = 16D/ (7 f%v?). Increasing the starting
rate for processive motion (kjni;) enhances the overall particle range at long times (above t**),
while decreasing the transition time where the effectively diffusive motion sets in. By contrast, in
the absence of tethering, short-time motion is enhanced, creating a separate regime dominated by
diffusion only with range Z(t) = /4Dt /7.

In Fig. 3.8 we show the expected range of particles with different combinations of diffusiv-
ity and processive starting rate. The solid line represents approximate parameters relevant to the
motion of peroxisomes as measured in Ustilago maydis fungal hyphae, where the peroxisomes
appear to exhibit diffusive, untethered motion between processive runs [11]. Namely, we set
diffusivity Dy = 0.014um? /s, hitch-hiking velocity v = 1.9um/s, and run-length Vkstop = 6.5Um.
The initiation rate for processive runs is estimated at kg = 0.015s~!, such that approximately 5%
of peroxisomes are expected to be hitchhiking at any given time [11]. Tethering of such particles
to a microtubule will reduce the diffusivity to zero, but can enhance the starting rate by a factor of
roughly 12-fold, for the case of 5 parallel microtubules (see Fig. 3.5d). We thus plot how such
increased processive starting rate due to tethering can enhance the range of spreading particles
over time. We note that even a 4-fold increase in the starting rate raises the range of the particles
above a time-scale of a couple of seconds. The 12-fold increase estimated from our hitch-hiking
simulations is expected to raise overall long-time particle range by a factor of about 3-fold.

The halting creeper model thus provides insight into the relation between organelle

dispersion, the rate of hitchhiking initiation, and its enhancement due to tethering. It also
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highlights the possible consequences of a breakdown of the tethering mechanism leading to

inefficient dispersion of organelles.

3.5 Conclusions

In this work, we describe a computational framework for elucidating the key physical
parameters that govern the efficiency of hitchhiking initiation. Using an analytical approach,
we delineate the effects of geometry and transport machinery on the rate of encounter between
a carrier and a hitchhiking organelle. In particular, we focus on the effects of the number of
cytoskeletal tracks upon which the carrier organelles move and the linear density of the carriers.
We show that encounter rates are nearly independent of the carrier density for low microtubule
numbers, where the process is dominated by the ability of the diffusing cargo to come within
proximity of a microtubule track. Splitting up the same carrier density across larger number of
microtubules can improve the encounter rate through increasing the cross-sectional coverage by
the moving carriers.

In some cells, linker proteins are known to mediate the contact between a carrier and a
hitchhiking organelle. We calculate the rate of encounter between a carrier and a hitchhiking
organelle as a function of the length and the number of linkers on the carrier. Our results show
that very few linkers of moderate length are sufficient to saturate the contact rate. This result
helps explain experimental measurements showing that overexpression of PxdA linker protein
does not increase the hitchhiking frequency of peroxisomes in A. nidulans fungal hyphae. Further
exploring the effects of linker flexibility, we show that moderately stiff linkers provide optimal
contact rates between the carrier and hitchhiking cargo, by allowing the linker tips to explore
large volumes of space while extending substantially above the surface of the carrier.

Leveraging our simulation framework, we study the effect of tethering organelles to

microtubules on the initiation of hitchhiking. The increased proximity to moving carriers results
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in a large enhancement of the contact rate, an effect that is particularly pronounced for small
microtubule numbers and high carrier densities. Comparison of computed rates for cargo-linker
encounter and and measured hitchhiking initiation rates for peroxisomes in A. nidulans hyphae
indicates that only a small fraction of encounter events appear to result in successful hitchhiking.
Nevertheless, by increasing the frequency of opportunities for such contact events to occur,
tethering of the peroxisomes to microtubules is expected to enhance the rate of hitchhiking
initiation by about an order of magnitude.

Based on this enhancement in the initiation rate, we compute the increased range covered
by organelles exploring the cell through rare, sporadic hitchhiking runs. Our results show that
tethering can substantially increase the amount of intracellular space explored over time-scales of
seconds or higher, despite restricting diffusive transport.

Our computational framework is generally applicable to any transport process that relies
on attaching to a carrier organelle, either directly or through stiff or flexible linker proteins. While
we focus on the simple geometry of a cylindrical domain, the parameters employed here (carrier
density, density of parallel microtubules) are local in nature. Hence, the initiation rates found
can be applied to any system where microtubules are arranged in a parallel fashion around the
current position of the cargo organelle. This includes cellular projections such as fungal hyphae
and neuronal axons and dendrites, as well as micron-sized regions of the cell soma with no
microtubule intersections. Hitchhiking initiation rates in the vicinity of intersecting microtubules
are left as an extension of interest for further study.

Another topic of further interest is characterizing the biophysical processes that determine
the duration and processivity of a hitchhiking run. In past studies where motor-driven organelles
are observed to halt or change direction, such terminations of processive motion were attributed
to microtubule intersections [21, 88, 107], tug-of-war between multiple motors [53], changes in
motor activation state [22], or obstacles encountered by the organelle [107, 108] or the motors

themselves [109]. The effect of a hitchhiking cargo on all of these processes governing the run-
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length of a motor-driven carrier is currently unclear. Furthermore, additional mechanisms may be
responsible for terminating or regulating hitchhiking runs specifically, including dissociation of
the hitchhiker from the carrier and tug-of-war or cooperative events that may arise from a single
cargo attaching to two different carriers. Establishing the underlying physical mechanisms that
determine hitchhiking run-length is a fruitful topic for future study, necessary to developing a

complete quantitative understanding of this non-canonical mode of intracellular transport.
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Chapter 4

Optimizing Microtubule Arrangements for

Rapid Cargo Capture

4.1 Abstract

Cellular functions such as autophagy, cell signaling and vesicular trafficking involve the
retrograde transport of motor-driven cargo along microtubules. Typically, newly formed cargo
engages in slow undirected movement from its point of origin before attaching to a microtubule. In
some cell types, cargo destined for delivery to the perinuclear region relies on capture at dynein-
enriched loading zones located near microtubule plus-ends. Such systems include extended
cell regions of neurites and fungal hyphae, where the efficiency of the initial diffusive loading
process depends on the axial distribution of microtubule plus-ends relative to the initial cargo
position. We use analytic mean first passage time calculations and numerical simulations to
model diffusive capture processes in tubular cells, exploring how the spatial arrangement of
microtubule plus-ends affects the efficiency of retrograde cargo transport. Our model delineates
the key features of optimal microtubule arrangements that minimize mean cargo capture times.

Namely, we show that configurations with a single microtubule plus-end abutting the distal tip and
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broadly distributed other plus-ends allow for efficient capture in a variety of different scenarios
for retrograde transport. Live-cell imaging of microtubule plus-ends in Aspergillus nidulans
hyphae indicates that their distributions exhibit these optimal qualitative features. Our results
highlight important coupling effects between the distribution of microtubule tips and retrograde
cargo transport, providing guiding principles for the spatial arrangement of microtubules within

tubular cell regions.

4.2 Introduction

Microtubules form an essential component of the intracellular transport system, allowing
for long-distance distribution and delivery of components driven by kinesin and dynein motors.
In eukaryotic cells, microtubules are organized in a wide variety of arrangements depending on
cellular geometry and specific biological transport objectives [110, 111]. These architectures
range from centrally anchored radial arrays, to swirling or planar-polarized structures nucleated at
the cell periphery, to parallel structures in the narrow cylindrical domains of neuronal projections
and fungal hyphae [112]. The stark variation in cytoskeletal organization across different cell
types raises a fundamental question regarding how the arrangement of microtubules affects cargo
transport functionality. Furthermore, pharmacalogical modulation of cytoskeletal architecture by
stabilization of dynamic microtubules has been proposed as a potential intervention to reduce
transport deficits associated with neurological injury and disease [113].

Many studies have sought to relate the efficiency of cargo transport with cytoskeletal
filament arrangements in various contexts. For disordered networks, the dependence of cargo
delivery time on filament polarity, bundling, length, orientation, and local density has been
established via continuum models and simulations of explicit network architectures [47, 114—
118]. Cellular-scale cargo distribution in these models generally relies on multi-modal transport,

incorporating processive runs whose direction is determined by the microtubule arrangement,
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interspersed with pauses or diffusive phases that allow transition between microtubules [87, 119].
The microtubule architecture thus modulates transport efficiency both by directing processive
motion and by determining the rate of capture for cargo in the passive state.

One biologically important objective for intracellular transport is the capture of newly
formed cargo and its delivery towards the perinuclear region. Such cargo includes signaling
endosomes [120, 121] or autophagosomes [13] formed at distal regions, or COPII-coated vesicles
that bud from the endoplasmic reticulum throughout the cell [122]. Because directed motor-driven
transport is much faster than diffusion of vesicular organelles, the initial step of cargo capture can
play an important role in determining the overall timescale of delivery towards the nucleus.

Cells with long tubular projections, such as neurons and fungal hyphae, provide a particu-
larly convenient model system for retrograde cargo transport. In neuronal axons, microtubules
are highly polarized, with their plus-ends pointing towards the distal tip [123]. Similar plus-end-
out polarization is observed in the distal segment of multinucleated hyphae for fungi such as
Aspergillus nidulans and Ustilago maydis [8]. Here, we consider the efficiency of cargo capture
for transport towards the cell body in these tubular model systems.

Because these geometries are much longer than they are wide, the axial distribution of
cargo capture positions becomes particularly important. Given the typical diffusivity of vesicular
organelles on the order of D ~ 0.01um? /s, it should take on the order of 1 minute for cargo to
explore the radial cross-section of an axon or hypha with radius approximately 1um. By contrast,
the time to reach the cell body via pure diffusive transport would range from hours (for a 10um
hyphal tip) to years (in a millimeter-long axon). Cells rely on processive retrograde transport
to replace these unreasonably long time-scales with a much more rapid directed velocity on the
order of 1um/s.

In animal and fungal cells, processive retrograde transport is carried out primarily by
cytoplasmic dynein-1 motors that carry cargo towards anchored microtubule minus-ends. In

some cell types, dynein accumulates near the tips of growing microtubules (plus-ends) and forms
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enriched pools referred to as ‘comets’ that can act as localized capture regions for cargo [124-128].
The placement of comets can be controlled by varying microtubule length (or nucleation sites
in axons), and their positioning in relation to where cargo is formed can determine the diffusive
search time before initiation of active transport.

We consider the process of cargo binding to a dynein comet and look for possible
arrangements of microtubule plus-ends along the axial direction that facilitate this process
for various positions of cargo entry. Our focus is on the initial cargo capture process, with
the processive retrograde motion assumed to be relatively fast regardless of the microtubule
arrangement.

We begin by examining simplified microtubule arrangements that capture cargo entering
at the distal tip of a cell. Using an analytic one-dimensional model to represent the tubular
geometry, we calculate the capture time, defined as the mean first passage time (MFPT) to
encounter the capture zone at a microtubule plus-end. We derive the conditions for which the
MFPT is minimized, and validate the one-dimensional approximation using three-dimensional
(3D) Brownian dynamics simulations. The analysis is then extended to include broadly-distributed
randomized microtubule configurations evaluated for efficiency of cargo capture with different
initial distributions. General features are established for microtubule arrangements that allow
efficient capture for both distally and uniformly derived cargos. A minimal model of microtubule
dynamics highlights how such optimal arrangements may be obtained by tuning microtubule
catastrophe rates. Supplemental results are provided in Appendix C to establish that the optimal
configuration remains efficient even when cargo can be captured throughout the microtubules
and even when the retrograde transport time itself is explicitly taken into account. Finally, we
quantify live-cell images of A. nidulans fungal hyphae to demonstrate that observed microtubule

distributions in hyphal tips exhibit the general features identified for optimal arrangements.
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Figure 4.1: Schematic for cargo capture at microtubule plus-ends in tubular cells. (a) A
depiction of a simplified microtubule arrangement in a tubular cell. Cargo enters at x = L and
diffuses with diffusion coefficient D. Cargo is captured at microtubule plus-ends depicted as red
circles. (b) Schematic of the equivalent 1D model. A capture rate k, is introduced to account for
the time spent by the cargo diffusing radially at the microtubule plus-end axial location.

4.3 Methods

Experimental methods for imaging microtubules in Aspergillus nidulans hyphae are
provided in Appendix C. The development and implementation of the mathematical model and

computational simulations are described below.

4.3.1 Model development assumptions

We briefly summarize the fundamental underlying assumptions that motivated the con-

struction of our mathematical models.

1. The cargo motion prior to capture by a microtubule is assumed to be diffusive in nature.
In particular, we assume cargos detach from the plasma membrane before capture at the
microtubule tips. Apparently diffusive trajectories in the cytoplasm have been observed
for fungal peroxisomes [11], as well as virus-laden endosomal particles and lysosomes in
mammalian cells [54, 129], and endocytic particles in yeast [130]. In some cases vesicular
particles undergo subdiffusive rather than diffusive motion [131, 132]. In many others, the
apparent random walk behavior arises not from thermal Brownian motion but rather from

spatially dispersed active forces from actomyosin contraction [23, 133] or hydrodynamic
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entrainment by passing motor-driven organelles [11]. Newly formed organelles such as
endosomes may exhibit short-range motion along the cortical actin cytoskeleton shortly
after release from the membrane [130]. For simplicity, we subsume all these behaviors
in an effectively diffusive model. To plug in a concrete diffusivity we use the value of
D = 0.01um? /s measured for fungal peroxisomes [11], but other effective diffusivities

could easily be utilized in the context of this model.

. The cellular domain is assumed to be a cylinder that is much longer than it is wide. This
assumption is relevant for (e.g.) fungal hyphae tips (1um wide and 5-40um long [11,
12]) and neuronal axons (a few um across [9], with lengths ranging from hundreds of

micrometers to over a meter [10]).

. We assume cargo capture occurs primarily at microtubule plus-ends, which serve as a site for
accumulation of dynein motors. This assumption is in concert with prior models of search-
and-capture of cellular targets by proteins bound at the microtubule plus ends [134-136]. In
particular, the accumulation of dynein motors in comet-like regions at the microtubule tips is
thought to lead to enhanced capture at the plus-end for endosomes and other organelles [125,
126, 128]. We also briefly explore the opposite extreme of capture along the full microtubule
when establishing the optimal microtubule architectures for rapid capture. In Appendix C

we examine this assumption explicitly by considering capture regions of different length.

. We focus on the initial capture process of cargo onto microtubules, assuming that retrograde
transport itself proceeds in a rapid, directed fashion after capture. Thus, the capture times
here provide a lower limit to which should be added an additional time for retrograde transit
to the cell body. From any given position along the domain, retrograde transport tends to be
much faster than diffusive transport, implying that optimal microtubule structures should
be determined primarily by the initial capture process. This assumption is examined further

in Appendix C, where the additional processive transit time is explicitly incorporated.
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5. For clarity of visualization and discussion, we assume microtubules are nucleated near the
cell body, so that the position of plus-end tips is equivalent to microtubule length. This
assumption is valid for fungal hyphal tips, in the region past the last nucleus[137]. In
neuronal axons, shorter microtubules are nucleated in a staggered fashion throughout the
domain. However retrograde-moving cargo tend to step past the microtubule minus-ends
onto the next microtubule segment with only short (few second) pauses that imply the cargo
is unlikely to dissociate fully into a diffusive state [138]. Even with these tiled microtubule
arrangements the retrograde cargo can exhibit effectively processive motion. Thus we focus
on the positions of microtubule plus-ends, regardless of their actual length, for modeling

cargo capture.

6. In order to highlight the role of steady-state cytoskeletal architecture, we focus primarily
on a model with stationary microtubules. This assumption is then relaxed to incorporate a
basic model of microtubule dynamics, reminiscent of prior work on search-and-capture by

microtubule plus-ends [134, 136].

4.3.2 Simplified model system for cargo capture

To explore the role of microtubule configurations on cargo capture in a narrow cellular
domain, we leverage both an analytically tractable one-dimensional model and three-dimensional
Brownian dynamics simulations for cargo motion in a tube.

We consider a tubular domain of length L and radius R, with x = 0 denoting the cell body
and x = L corresponding to the distal end of the cell (Fig. 4.1a). We set R = 1um, as appropriate
for both neuronal axons [9] and fungal hyphae [11, 12]. The cargo is modeled as a diffusive
particle that either enters the cell at the distal tip, or starts uniformly distributed throughout
the tube. Cargo diffusivity is set to D = 0.01um? /s, in accordance with prior measurements

for vesicular cargo in fungal hyphae [11]. Microtubules are treated as straight axial filaments,
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assumed to be scattered uniformly throughout the radial cross-section of the domain. The
filaments are assumed to be polarized with their minus-ends at the cell body (x = 0) and their
plus-ends distributed at different axial positions.

Cargo is assumed to load onto a microtubule plus-end (representing a dynein-enriched
comet region) instantaneously upon entering within the capture range (r = 0.2um) of the mi-
crotubule tip. The range r is taken to represent a typical contact range from an organelle to
a point-like microtubule plus-end. The effect of longer comet lengths is explored further in
Appendix C. Throughout the text, we refer to the engagement of cargo to a microtubule via
dynein comets as the "cargo capture" process. If the cargo reaches the proximal end of the domain

without interacting with a plus-end, it is assumed to have been absorbed at the cell body.

4.3.3 Analytic one-dimensional model

For very narrow domains (R < L), the simple model described above can be mapped to
an effectively one-dimensional system, as illustrated in Fig. 4.1b. The axial positions of cargo
and microtubules are projected onto the axis of the cell, represented by a linear segment of length
0 < x < L. Cargo can be captured while diffusing within absorbing intervals in the domain, with
the rate of absorption determined by the particular arrangement of microtubules.

Plus-ends are denoted as discrete intervals of width 2r = 0.4um, placed at specific axial
positions. In an interval corresponding to one microtubule end, the capture rate is set to kg,
representing the rate of encountering the microtubule by diffusion across the radial cross-section.
The value of &, is estimated by computing the mean first passage time in a reflecting cylinder of

radius R to a central absorbing cylinder of radius r [69], according to

8DR?

~0.02s !
4r2R2 — * —3R*— 4R*In(r/R) >

kg =

for the estimated parameters R ~ 1um, r ~ 0.2um, and D ~ 0.0lum?/s. For microtubule

72



configurations with multiple nearby plus-ends, the absorption rate is assumed to scale linearly
with the number of plus-ends whose capture range overlaps in a given interval. Under this
set of assumptions, a particular arrangement of microtubules can be represented by a series of
linear intervals with varying absorption rates that are integer multiples of k,. Cargo capture is
then represented by a one-dimensional diffusive process in a domain with a reflective boundary
at x = L (cell tip), absorptive boundary at x = 0 (cell body), and discrete partially absorbing
intervals distributed throughout its length. The MFPT to capture for this process can be obtained
analytically by considering all possible paths of the cargo between the different absorbing intervals.
Ref. [139] describes a propagator-based approach for computing the mean first passage time to
capture a diffusing particle on a network with heterogeneous absorption rates on individual edges.
The linear model described here serves as a specialized case of such a network. Details of the

derivation for the linear model are provided in the Appendix C.

4.3.4 3D simulations for capture dynamics

To validate the approximate one-dimensional model, we also carry out 3D Brownian
dynamics simulations of cargo capture by microtubule tips, directly reproducing the cylindrical
system illustrated in Fig. 4.1a. The simulations assume a domain of length L = 10um, and
radius R = 1um, reflecting the relevant regime for hyphal tips (region past the last nucleus) in
Aspergillus nidulans fungal hyphae. Microtubules are modeled as parallel straight lines nucleating
at the proximal end of the domain, and are distributed randomly over the cross-section. Diffusing
cargos are assumed to be instantaneously captured when approaching within a distance of 0.2pm
from the microtubule plus-ends. For a given axial configuration of microtubule ends, the MFPT
is computed by averaging over 1000 independent simulations, each sampling a different radial
distribution of microtubule positions.

When incorporating microtubule dynamics (in Fig. 4.6), we turn to a minimal model

involving microtubule growth and catastrophe. Microtubules are allowed to grow at a speed
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ve = 0.18um/s, corresponding to typical speeds measured in the hyphae of the fungus Ustilago
maydis [140], which displays similar geometry and transport dynamics to A. nidulans. A growing
microtubule that reaches the distal tip of the cell is assumed to remain paused at that location.
Both growing and paused microtubules can enter the shrinking state with a catastrophe rate k¢y;.
We assume that the cargo-capture ability of microtubule plus-ends (e.g.: presence of dynein
comets) is lost upon catastrophe, so that there is no capture while in the shrinking state. The
number of microtubules in the model (nyT) refers specifically to capture-capable microtubules.
Consequently, microtubules that undergo catastrophe instantaneously disappear, and a new zero-
length microtubule in the growing state appears in its place to maintain a constant number of
capture-capable regions in the cell.

Based on this model, the steady state density of growing microtubule plus-ends [P(x)]
and the number of paused microtubules at the distal tip (Ng,q) are given by

P(x) = nymt <@) e e/,

Ve 4.1)

Nend = nMTeikcatL/vg-

The derivation for these expressions is provided in Appendix C.

Initial microtubule lengths are drawn from this steady state distribution, and microtubules
are allowed to grow and shrink according to the described dynamics. Cargo capture at microtubule
tips is simulated using the same process as described for static microtubules. For a given
catastrophe rate, we carry out 1000 independent simulation runs, each starting with a different
initial configuration of microtubule ends (uniformly sampled in the radial dimension, and sampled
from Eq. C.7 in the axial dimension). All simulations are carried using custom-built code in
Fortran 90, parallelized on the Open Science Grid [141, 142]. Code for both simulations and
analytical calculations with the 1D model is provided at https://github.com/lenafabr/

transportSimCyl.
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A table of the main model parameters is provided in Appendix C.

4.3.5 Minimal-distance metric to quantify clustering of capture regions

In order to quantify the axial dispersion or clustering of capture regions (i.e.: microtubule
plus-ends), we define a "minimal-distance" metric for a configuration of nyT points on an interval.
Namely, this metric measures the average distance between a uniformly distributed probe and its
nearest point in the configuration.

The configuration is described by points x; € [0, L], with 1 <i < nyr. An additional point
xo = 0 1is included to represent absorption at the cell body. The closest capture region for a random
number u distributed uniformly between 0 and L is located at x; if u € (y;,yi+1), where y; are the
mid-points between consecutive absorbing points (y; = (x;—1 +x;)/2, I <i < nyr). End-points
of the domain are denoted by yo = 0 and yy,;1+1 = L, respectively. The average distance between

the uniformly distributed probe u and its nearest absorbing region is then given by,

1 Yi+1
X:ZZ?XJ / |u — xi| du
Yi 4.2)
3x2 L 1 nMT—l
= — M — Xnyr + xi (Xip1 —Xi) -

4L 2 2L ~
i=1

We use d = x/L as the clustering metric throughout the text. Smaller values of d corre-
spond to well-dispersed microtubule plus-ends, with a minimal value of 1/(4nyr +2) for the
configuration where consecutive points are equally spaced. Larger values indicate clustering of
microtubule plus-ends along the axis, with a maximal value of d = 0.25 for the configuration

with all plus-ends at the distal tip.
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4.4 Results and Discussion

4.4.1 Separation of microtubule ends for distal capture

cargo
entry

250

3D simulations
L = 10pm

number of MTs
number of MTs

0 04 08 12 1.6 2 0 04 08 12 1.6 2
separation s (ym) separation s (um)

Figure 4.2: Cargo capture times for axially separated microtubules. (a) Mean first passage
time (MFPT) as a function of number of microtubules and separation (s) between consecutive
microtubules for the effective 1D model. The longest microtubule extends from the cell body at
x = 0 to the cell tip at x = L, which serves as the point of cargo entry. Subsequent microtubules
are axially separated by a distance s. White dots mark the separation distance s that gives the
minimum MFPT for a given number of microtubules. (b) Analogous plot for the 3D model of a
tubular domain.

We first consider the problem of optimizing the axial distribution of a limited number of
capture regions (e.g.: dynein comets at microtubule plus-ends) for rapid capture of diffusive cargo
entering at the distal tip of a tubular cell. To begin with, we consider two extreme arrangements
of microtubule plus-ends. On the one hand, clustering plus-ends near the distal tip will enable
distally-produced cargos to quickly encounter and bind to the microtubule. On the other hand,
any cargo that diffuses past the clustered plus-ends may then embark on very long trajectories

down the tube, resulting in a long-tailed distribution of capture times. In general, a diffusive

particle that starts at distance xo from one absorbing end of a domain of length L will have a mean
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first passage time of T = xo(L —xp)/(2D) to reach the ends, a quantity that approaches infinity as
the domain becomes infinitely long. By contrast, scattering capture regions broadly throughout
the domain ensures a uniform availability of capture regions and precludes very long trajectories
prior to capture. However, if the number of microtubule tips is fixed, such a broad distribution
results in a lower density near the distal origin of the particles and forces each one to diffuse
further along the axis before encountering a tip. To quantify this trade-off, we compute the mean
first passage time (MFPT) to capture distally-produced diffusing cargo for different spacings of
microtubule ends away from the distal tip of the cell.

Specifically, we focus on regularly spaced configurations to explore two key parameters
that play a role in cargo capture. First, the number of microtubules (nyT) determines the number
of capture regions that a cargo can attach to, with a higher quantity generally corresponding to
faster capture. Second, the axial separation (s) of consecutive microtubule ends tunes the breadth
of their distribution away from the point of cargo entry. Unevenly scattered microtubule end
positions are discussed in subsequent sections.

The geometric parameters of the model reflect a typical hyphal tip (beyond the last
nucleus) of the fungus Aspergillus nidulans, which serves as a convenient model system owing
to its neuron-like geometry and genetic tractability. Model construction details are provided
in the Methods section. An important advantage of a narrow tubular geometry is that it can
be modeled analytically as an approximately one-dimensional system. Since the length of our
domain is typically much larger than the radius, a simplified model that represents the tube as a
line with localized binding regions can encompass the overall behavior of the capture process.
The one-dimensional approximation (Fig. 4.2a, top panel) represents the microtubule tips as
short intervals with a finite capture rate within each interval that encompasses the rate of radially
encountering the microtubule while within that slice of the domain. The average time to capture
includes trajectories that pass through multiple capture regions until successfully undergoing

capture within one of them. The MFPT of this process can be computed using a previously
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developed method for reaction rates on heterogeneous tubular networks [139], as described in
Appendix C. Fig. 4.2a shows a plot of the MFPT versus the number of microtubules and the
separation between consecutive microtubule ends.

To verify the validity of the approximate one-dimensional model, we compare our results
to 3D Brownian dynamics simulations that encompass the full model system with a tubular
domain and spherical capture regions of radius r representing the microtubule ends. Details of the
3D model are provided in the Methods section. As shown in Fig. 4.2, the 1D analytic calculations
and 3D simulations give nearly identical results for the MFPT. The mean relative error in the
MFPT between the 1D and 3D approaches is ~6.6%. This close correspondence establishes
the robustness of the approximate 1D model for representing the narrow tubular geometry. We
proceed to employ the 1D model for the remainder of the calculations discussed below.

Interestingly, the MFPT to capture shows non-monotonic behavior as separation s is
increased from 0, reaching a minimum at an intermediate separation distance between microtubule
ends. The existence of the minimum is a consequence of the competition between capturing
cargos quickly near the entry point, and extending the overall capture region for cargos that might
evade the initial cluster. As the number of microtubules, viz. the overall capture capacity, is
increased, the optimal separation decreases. This follows from the fact that fewer cargos can
escape the initial capture near the tip when a large number of microtubules are present. The
optimal separation ranges between ~0.01um for 14 microtubules to ~0.8um for 3 microtubules.
Converting the optimal separation to the overall distance over which plus-ends are scattered, the
results indicate that it is optimal to distribute plus-ends over a distance of ~1.4—2um from the
cell tip for a 10um cell.

The existence of an optimum separation distance for a given number of microtubules high-
lights the benefit of scattering capture sites for cargo generated at the cell tip. Intuitively, scattered
configurations of microtubule ends are more effective in that they are able to capture cargo that

diffuses past the distal region, precluding very long trajectories that explore a large fraction of
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the domain prior to returning for capture. Because the MFPT between two absorbing boundaries
scales in proportion to the domain length, we would thus expect the optimal microtubule end
separation to be larger for longer domains. We therefore proceed to explore the effect of domain

length on the optimal microtubule distribution.
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Figure 4.3: Effect of cell length on microtubule arrangement. The optimal total spread of
microtubule plus-ends (¢ = snyr) is plotted versus the length of the cellular domain (L), for
cargos entering at the distal tip and captured by microtubule plus-ends. Inset shows the fraction
of the entire domain length over which the plus-ends should be spread.

While many tubular cell projections exhibit a similar width of 1 —2um, the length from
the distal tip to the nearest nuclear region can vary widely. In fungal hyphae, the distance from the
hyphal tip to the first nucleus can range from a few to tens of microns in length [11, 12]. Neuronal
axon lengths can vary from hundreds of micrometers up to a meter long [10]. In Fig. 4.3a, we
compute the optimal separation between microtubule ends for cylindrical domains of different
length, where the domain length represents the axial distance from the tip to the nearest nucleus.

As expected, the optimum separation increases for longer domain lengths. However, the
rate of increase is distinctly sublinear with L. This effect arises because as the region containing
the microtubule ends becomes longer, it is increasingly likely that the cargo is captured before

leaving to explore the rest of the domain. Because this initial capture process is independent of
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the domain length, the dependence on L becomes increasingly shallower as the microtubule ends
are more spread out. Consequently, for long tip-to-nucleus distances, an optimum arrangement
of microtubule ends concentrates them over a small fraction of this distance. Cell projections
of length 10 — 20um require the widest relative separation of capture regions (Fig. 4.3a, inset),
scattering the microtubule ends over ~ 15 —25% of the domain.

The scattering of microtubule ends engenders a trade-off between rapidly capturing cargo
at its point of entry, and minimizing search time for cargo that wanders within the cell. The
optimum distribution therefore depends on the location within the cell where cargo first becomes
capable of interacting with the microtubule plus-ends. In Appendix C, we show how the optimal
plus-end separation varies for cargo that must first undergo a maturation process before becoming
available for capture. Examples of organelle maturation include neuronal autophagosomes which
may require fusion with other organelles prior to engaging in retrograde transport [14, 15, 143].
Maturation times above a few minutes allow the cargo to diffuse a substantial distance away from
the distal tip, so that optimal microtubule plus-ends separations become larger.

Varying the maturation rate effectively tunes the initial distribution of capture-ready cargo.
The increased optimal separation of capture zones underscores the importance of initial cargo
distribution in determining the most efficient arrangement of microtubules. While there is still a
trade-off between clustered and dispersed microtubule plus-ends, matching the location of capture
regions to the starting distribution of the cargo leads to more efficient capture. Indeed, a more
general treatment would account for various initial cargo distributions. These can be incorporated
in the model as initial conditions ranging between two extremes: cargo entering at the cell tip or

cargo being distributed uniformly within the cell.

4.4.2 Optimal microtubule configurations for multiple capture conditions

In the previous section, we focused on cargo produced at the distal tip, and loaded

onto microtubules only within a 200nm contact radius of the plus-end. However, both of these

80



a b) ¢
( ) 2000 (1) ( ) A ( ) 2000 — & 10
(l) sl ,g_).
oY @
5 1500 . 1500 .3 B
— —~ (l) —~ e - =]
=4 = = 2 <
H
o £ 1000 £ 1000 =~ 5
o © E‘ E 6 Cr% Q =
= Y = = @ B
@) >§ ; = —_ —e
=5 . 500 Z ==
== 500 - o o
= 1E 5 &
e ® Q
i) 0 0 A &
2 4 6 ) 10 0 0.1 0.2 £
> = clustering metric 65 o
bOD IOHgCSt MT length(unl) (11) less clustered more clustered o
E 2000 g 2000 » 10 @
S (ii) 9 =
— 05 on
5 1500 g 2 =4
= . - - % 5
88 = = Sz F
8 = 1000 ] £ 1000 5 %
o A& & 6 & ]
A = = B
T = 500 = =
500 (iii) + B
(
0 0 0.1 0.2
4 6 8 10 clustering metric

longest MT length(pum)

Figure 4.4: MFPT for random microtubule configurations. (a) Scatter plots showing the
MFPT to capture at microtubule plus-ends vs the length of the longest microtubule for 10°
randomly sampled configurations with 5 microtubules each in a domain of length 10um. (i)
Cargos start at the cell tip. (ii) Cargos start uniformly. Blue triangle indicates the overall fastest
configuration for (i). Green square indicates the overall fastest configuration for (ii). Red circle
denotes a configuration that falls within the lowest 3% of MFPTs for all capture conditions
studied, including results shown in this figure and in Fig. 4.5. (b) Microtubule configurations
corresponding to the (i) blue triangle, (ii) green square, and (iii) red circle in panel (a). (¢)
Scatter plots showing the MFPT plotted against a clustering metric for the randomly sampled
configurations, with color indicating longest microtubule length for each configuration. (i)
cargos start at cell tip. (ii) cargos start uniformly. Blue triangle, green square, and red circle
denote configurations illustrated in panel (b).

assumptions do not necessarily hold for all retrograde transport systems. For example, while the
distal tips of hyphae are the most endocytically active [144], some endosomes may be produced
elsewhere along the membrane. Other organelles, such as peroxisomes, may bud from the

endoplasmic reticulum all along the hyphal length. We therefore consider for comparison the

extreme case of cargo produced uniformly throughout the extended cell region. Furthermore,
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dynein comets exhibit a gradual decrease in density over a micrometer length scale [125], so that
capture may not be limited to such a short range of the microtubule plus-end. In this section,
we explore the overall features of optimal microtubule configurations for retrograde transport
initiation in a variety of cargo production and capture conditions.

We generate 10° random configurations of 5 microtubules, with plus-end positions selected
uniformly at random across the domain. The number of microtubules was chosen to be relevant
for the tip region of A. nidulans hyphae [12]. For each configuration, we compute the MFPT
for capture at the microtubule plus-ends both for distally-initiated and uniformly-initiated cargo
(Fig. 4.4).

One of the key features of the microtubule configuration is the extent to which it covers
the entire cellular domain. This is particularly important for the case of cargo entry at the distal
tip, where the presence of a microtubule end near the entry point can greatly speed up capture.
We use the length of the longest microtubule in each configuration to describe this feature,
demonstrating that the capture time generally decreases as the longest microtubule length is
increased (Fig. 4.4a.1). The optimal configuration in this case involves microtubule plus-ends
scattered over approximately 40% of the length of the cellular region, with several microtubules
approaching near-maximal length. It should be noted that for the case of very long capture
regions, the dependence on the longest microtubule length becomes an even stronger predictor of
the capture time, with little variability among different configurations that have the same longest
length (see Appendix C).

When cargo is produced uniformly throughout the domain, the capture efficiency is not
so well-correlated with the length of the longest microtubule (Fig. 4.4a.ii). In this scenario, the
optimal microtubule architecture exhibits a broad dispersion of the plus ends throughout the
domain (Fig. 4.4b.11), in keeping with the broad initial distribution of the cargo. We therefore
sought to establish another metric that quantifies the extent to which plus-ends are dispersed or

clustered throughout the domain.
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For cargo produced at the distal tip of the cell, the length of the longest microtubule
determines the position of the nearest capture region relative to the point of cargo entry. For
cargo initiated uniformly across all axial positions, we can define an analogous quantity which
we term the minimal-distance clustering metric (d). Namely, for a given set of microtubule end
positions, we compute the expected value of the distance between a point selected uniformly at
random and the nearest microtubule end to that point (see details in Methods). Because particles
are also captured at the cell body, a capture region at x = 0 is appended to all microtubule
configurations. The minimal distance metric measures the clustering of capture regions: high
values correspond to highly clustered microtubule plus-ends (with a maximal value of dp,x =
0.25); low values correspond to plus-ends spread evenly out over the entire domain (minimal
value dpin = 1/(4nmt +2)).

The MFPT to capture at microtubule ends is plotted versus this clustering metric for each
of the sampled microtubule configurations in Fig. 4.4c. When particles start at the distal end of
the domain, the capture times are largely insensitive to the clustering metric (Fig. 4.4c.i). The
most optimal (lowest MFPT) configuration for cargo produced at the distal tip (blue triangle) has
a moderately high clustering metric (d = 0.12), corresponding to slightly separated ends near the
distal tip (see Fig. 4.4b.1), similar to the optimum found in Fig. 4.2.

By contrast, when cargo starts uniformly throughout the domain, lower clustering ensures
that there is always a capture region close to the starting position of the particle, allowing for
faster capture times (Fig. 4.4c¢.ii). The optimal configuration sampled for this scenario (green
square, illustrated in Fig. 4.4b.11) has a relatively low clustering metric of d = 0.049, close to
the minimal possible value of this metric (dyi, = 0.046 for nyt = 5). This effect arises because
clustered configurations near the cell tip require the dispersed cargo to diffuse over long distances
through the cell before it can either reach the cell body or the plus-ends located near the cell tip.
On the other hand, evenly dispersed plus-ends provide capture regions throughout the cell, so that

all cargos have a capture region nearby regardless of where they initiate.
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For both distally initiated and uniformly dispersed cargo, the overall features of optimal
microtubule configurations are unaltered if we include an explicit retrograde transit time to get
the overall MFPT to reach the cell body (see Appendix C). This is unsurprising because from
any given position along the tubule diffusive transport to the cell body is much slower than active
retrograde transport, so that the optimal microtubule architecture is dominated primarily by the

initial capture time.
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Figure 4.5: Cargo capture along full length of microtubule. Scatter plots of the MFPT
for cargo capture along the full length of the microtubule, shown for 10° randomly sampled
configurations with 5 microtubules each in a domain of length 10um. (a) Cargo is initiated at
the distal tip. (b) Cargo is initiated uniformly throughout the domain. Yellow star denotes the
configuration with the fastest capture for each initial cargo distribution. Red circle shows the
globally optimized configuration corresponding to Fig. 4.4b.iii.

Notably, the results so far have focused on cargo that is captured by point-like dynein
comets located at microtubule plus ends. However, dynein comets generally exhibit a gradual
decrease in density over a micrometer length-scale. In Appendix C we provide equivalent results
for the MFPT to capture by regions of increasing length. The extreme case corresponds to capture

regions that are equal in length to the entire microtubule. Such a model is applicable to cargo
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that can be captured equally well along the full microtubule rather than just near the plus-end. In
Fig. 4.5, we see that in this situation the MFPT to capture is determined primarily by the length
of the longest microtubule, regardless of whether the cargo is initiated distally or throughout the
domain. This is a direct consequence of our assumption that the microtubules are nucleated near
the cell body, so that plus-ends placed closer to the distal end correspond to a greater total length
of microtubule available for capture.

Our analysis shows that the length of the longest microtubule is a strong predictor of the
MFPT when cargos are captured by long regions of the microtubule (Fig. 4.5), and a moderate
predictor when distally produced cargos are captured at the microtubule ends (Fig. 4.4a.i). In the
case of uniformly dispersed cargo, the minimal-distance clustering metric is a complementary
predictor of capture efficiency (Fig. 4.4c¢.i1). Microtubule configurations that fulfill both of these
criteria (high longest length and low clustering) are expected to yield a fast capture time for all of
the scenarios considered. We identify a set of 6 microtubule configurations that fall in the lowest
3% of MFPT for both distally produced and uniformly produced cargos, and for the two extremes
of plus-end capture and capture along the whole microtubule. Of these, the configuration with the
lowest MFPT for distal initiation and plus-end capture is shown with red circles in Fig. 4.4 and
4.5. The configuration has one microtubule reaching nearly to the end of the domain and the other
microtubules distributed roughly evenly over more than half of the domain length (Fig. 4.4b.ii1).

Overall, these findings highlight the features of ideal microtubule configurations for
efficiently capturing cargo for retrograde transport. Namely, configurations with one long micro-
tubule and other microtubules of broadly distributed lengths result in near-optimal capture times
regardless of whether cargos are produced distally or throughout the domain, and of whether they
are captured by point-like dynein comets at microtubule ends or more broadly along the whole

microtubule.
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Figure 4.6: Cargo capture by dynamic microtubules (a) Steady-state distributions of mi-
crotubule plus-ends along the cell axis, for different values of the catastrophe rate (kcy). (b)
MEFPT to capture cargo versus k¢, for dynamic microtubules. Inset compares the distribution of
capture times to simulations with stationary microtubules sampled from the steady-state length
distribution corresponding to the optimal value of k., (marked with green star). Dashed lines
indicate the mean value for the corresponding distributions. (¢) MFPT to capture vs average
clustering (minimal-distance metric) for dynamic microtubules. The green star indicates the con-
figuration with minimum MFPT. The inset denotes a representative microtubule configuration
corresponding to the optimal catastrophe rate. Color in (b) and (c) indicates the average length
of the longest microtubule, scaled by the domain length. All plots are shown for a domain of
length L = 10um, radius r = 1um, and 5 dynamic microtubules with growth rate v = 0.18um/s.
MFPTs are obtained using 3D simulations, with cargo starting at the distal tip.

4.4.3 Establishing optimal configurations through microtubule dynamics

The results above demonstrate the overarching features of microtubule configurations that
result in optimal cargo capture. Our model is agnostic as to the dynamic processes by which a
cell might establish such an optimum configuration. Furthermore, a key simplifying assumption
of the model is that individual microtubule architectures remain fixed throughout the capture
process, so that the distribution of microtubule lengths serves as a source of quenched disorder for
the position of the capture regions. Realistically, microtubules in fungal hyphae grow and shrink
on roughly 30sec timescales [140]. Microtubules in growing neuronal projections are similarly
dynamic, although those in mature axons tend to remain relatively stable over time [145, 146]. A
variety of prior studies have highlighted the importance of microtubule dynamics in dictating the
time-scales of capture for relatively stationary cellular targets (including mitotic kinetochores and

cortical regions) [147-150]. In this section, we briefly explore the role of plus-end dynamics in
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the capture of diffusive cargo.

We incorporate microtubule dynamics in the 3D simulations by including basic growth
and catastrophe processes, as described in Materials and Methods, while fixing a total number
of nyt = 5 capture-capable microtubule tips. Our minimal dynamic microtubule model fixes
the growth velocity (v = 0.18um/s) according to published data in fungal hyphae [140]. The
catastrophe rate k¢, sets a time-scale on which a growing microtubule halts and begins to shrink,
and is used as a free control parameter to tune microtubule distributions. Microtubules that reach
the end of the domain are assumed to be capped and to remain fixed until a catastrophe event
occurs.

The catastrophe rate modulates the steady-state distribution of microtubule lengths
(Fig. 4.6a). In this simple model, the length of the longest microtubule in the domain and
the clustering of microtubule ends are coupled together. Low values of k., result in most of
the microtubule plus-ends accumulating at the distal tip of the domain, corresponding to a high
value for the longest MT length and for the clustering metric. Intermediate values of k¢, allow
the microtubule ends to spread more broadly through the domain, while high values result in
substantial shortening of all microtubules.

We carry out simulations with dynamic microtubules, focusing on the mean time to
capture by microtubule plus-ends for particles starting at the distal tip of the cell. Due to the
coupling between the longest microtubule length and the end clustering, an optimum value of
keat = 0.007s~! emerges for minimizing capture time (Fig. 4.6b). For this value, the longest
microtubules are still able to reach the distal tip of the cell, but other microtubule ends remain
relatively well scattered over a broad span of the distal region, as indicated by an average
clustering metric of d ~ 0.14 (Fig. 4.6¢). This optimal catastrophe rate is within the range of the
measured values (0.006 — 0.04s~ 1) in a variety of cellular systems [140]. The existence of an
optimal catastrophe rate of this order of magnitude has previously been established in quantitative

models of ‘search-and-capture’ of mitotic kinetochores by the plus-ends of dynamically growing
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and shrinking microtubules [134, 136].

We note that the absolute values for the capture times are substantially lower when
microtubule dynamics are included in the simulation (Fig.4.6b, inset). This difference arises from
a combination of two effects. First, growing microtubule ends sweep through the domain, tending
to pick up any particles that have meandered away from the distal region. Second, the ability
of dynamic microtubules to sample several configurations over the hundred-second timescale
of particle capture makes it more likely that some microtubule end will encounter the particle,
precluding the occasional very long trajectories associated with particles having to return to the
distal end for capture. These results emphasize the importance of microtubule dynamics for
efficient capture not only of stationary targets [136, 147] but also of vesicular organelles destined
for retrograde transport [135].

Despite the overall faster capture times, the dynamic model reproduces the overall features
of optimal microtubule end configurations for particle capture. The existence of an optimal
catastrophe rate further highlights the balance between allowing a few microtubules to stretch to
the distal end of the cell while retaining a broad distribution of microtubule ends throughout the

domain.

4.4.4 Microtubule arrangements in Aspergillus nidulans

The theoretical work described here provides guiding principles for the performance of
different microtubule architectures in capturing cargo. A logical avenue for further study would be
to quantify microtubule configurations in actual cellular domains, and to compare the distributions
observed with the features identified for optimal capture. To this end, we image hyphae of the
fungus Aspergillus nidulans and visualize microtubule plus-ends along the hyphal axis.

A. nidulans is a filamentous fungus that forms multinuclear tubular projections (hyphae).
Owing to its genetic tractability and simplified geometry, A. nidulans has been used as a model

organism for studies of microtubule-based transport [8, 12, 86]. In the hyphal region beyond the
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Figure 4.7: Microtubule configurations in Aspergillus nidulans hyphae (a) Micrographs of A.
nidulans germlings expressing fluorescently tagged tubulin (TubA-GFP, top), plus-end binding
protein EbA/EB1 (EbA-mCherry), and nuclei (HH1-mCherry, middle panel). White dotted line
shows the outline of the hypha. Yellow box denotes the cropped region shown on the right.
Yellow line denotes measured length between hyphal tip and closest nucleus. Yellow asterisks
denote EB1 plus-ends. (b) Number of microtubules (left), hypha length (center), and scaled
microtubule length (right) for n = 210 hyphal tip regions. Microtubule lengths are scaled by the
length of the corresponding region from the last nucleus to the cell tip. (¢) Scatter plot showing
the scaled length of the longest microtubule, and the clustering metric for hyphal microtubule
configurations. The mean value for these metrics is indicated by the green point (scaled longest
MT 0.89 £0.005; clustering metric d = 0.073 +0.002). The vertical red line (0.82 4 0.0002)
and the horizontal black line (0.09 +0.00004) denote the average value of each corresponding
metric for 10° uniformly sampled configurations. All intervals and error bars correspond to
mean =+ standard error.

most distal nucleus, microtubules form parallel, polarized arrangements, with plus-ends growing
towards the distal tip [8]. The distal hyphal segment is on the order of 10(m in length and 1um
in radius [17, 151], allowing it to be approximated as a narrow, effectively one-dimensional
tubular region. Endosomes carrying signaling particles are thought to initiate primarily at the
distal tip [152, 153], while other organelles, such as peroxisomes, may form by fission or budding
from the endoplasmic reticulum throughout the hyphal axis [154].

A. nidulans germlings (spores that have recently germinated to form hyphae) expressing
GFP-tagged microtubules (tubulin TubA-GFP), mCherry-tagged microtubule plus-ends (micro-
tubule plus-end associated protein EB1 [EbA]-mCherry), and mCherry-tagged nuclei (histone H1
[HH1]-mCherry) were imaged using spinning disk confocal microscopy (details in Appendix C).

Sections of the hypha extending from the last nucleus to the cell tip were chosen for analysis.
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Hyphal length from nucleus to tip was determined by tracing a line along the axis from the end
of the last nucleus to the cell tip (Fig. 4.7a, left). Microtubule plus-ends were enumerated by
counting EbA-mCherry puncta within the region beyond the last nucleus (Fig. 4.7a, right). Finally,
lengths of microtubules were estimated by projecting the locations of the EbA-mCherry puncta
along the traced hyphal axis (yellow line in Fig. 4.7a).

Based on data from n = 210 hyphae, the average length of the region from the last nucleus
to the tip was 6.76 £ 0.16um (s.e.m.). Each post-nuclear hypha region contained 5.13 £0.15
(s.e.m.) microtubules with an average length of 4.154+0.08um (s.e.m.). Fig. 4.7b shows the
distributions of the observed hypha and microtubule lengths. Due to the large variability in cell
size, we scale microtubule lengths with respect to the length of the individual hypha. For all
hyphae, scaled length of the longest microtubule and the minimal-distance clustering metric for
microtubule plus-end positions is calculated and plotted in Fig. 4.7c.

We compare microtubule arrangements in A. nidulans to the null hypothesis of microtubule
ends scattered uniformly throughout the domain. This comparison helps identify non-uniform
features of the microtubule distribution which can then be compared to our computational
predictions for optimal arrangements. To this end, we generate 10° randomly sampled microtubule
configurations. Each configuration has a number of microtubules drawn from the distribution
observed in A. nidulans hyphae (Fig. 4.7b, left), with each scaled microtubule length selected
uniformly at random (between O and 1). The longest microtubule length and the clustering metric
is computed for each random configuration, and the average values are plotted as dashed lines on
Fig. 4.7c.

The quantification of observed hyphal microtubule configurations demonstrated substan-
tial differences from the null hypothesis of uniformly distributed random configurations. Namely,
the mean scaled length of the longest microtubule was significantly longer than the value that
would be expected for uniform architectures (p < 0.001 from one-sided t-test). Furthermore,

the mean clustering metric for A. nidulans microtubules (0.073 £0.002) is significantly lower
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than the 0.09 4+ 0.00004 value for random configurations (p < 0.001 from one-sided t-test). It
should be noted, by contrast, that configurations selected specifically for long microtubules
would be expected to have a clustering metric substantially above the uniformly distributed value,
due to accumulation of multiple plus-ends at the distal tip. These comparisons indicate that
microtubule arrangements in A. nidulans hyphae tend to have one long microtubule, with the
remaining plus-ends broadly distributed throughout the domain. These features match the optimal
configuration predicted from the computational model for particle capture at plus-ends. The
hyphal measurements highlight the fact that microtubules exhibit a distinctly non-uniform, yet
non-clustered, length distribution that should lead to efficient capture of both particles entering at

the cell tip and those produced throughout the entire hypha.

4.5 Conclusions

We have employed analytical modeling and computational simulations to highlight the
role of microtubule arrangements in capturing cargo within tubular cells. For cargo entering at
the distal end of the cell and captured at microtubule plus-ends, we show that spreading capture
regions away from the entry point results in faster engagement with microtubules. The effect of
cell size on such optimal arrangements is explored, revealing that for cell lengths on the order of
10um, it is optimal to distribute microtubule ends over up to 25% of the axial length. In longer
cells, it becomes advantageous to cluster the plus-ends over a relatively smaller fraction of the
domain.

By analyzing random microtubule configurations, we establish general principles for rapid
cargo capture across various scenarios for initial cargo distribution and capture modality. We show
that configurations with a single long microtubule reaching the cell tip, accompanied by broad
dispersal of the remaining microtubule ends, are ideal for rapidly capturing a variety of cargo.

Such distributions can be established by tuning microtubule catastrophe rates as highlighted by
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simulations of cargo capture in a minimal model of dynamic microtubules. Notably, our results
emphasize that an intermediate catastrophe rate is optimal for capture not just because it allows
for more rapid microtubule dynamics [134, 136] but also because it enables a broader steady-state
distribution of microtubule plus-ends.

Finally, we image microtubules in A. nidulans hyphae and show that their length distribu-
tions follow the general principles for optimality laid down by our model. These results highlight
novel aspects of cytoskeletal organization and its impact on cargo capture, providing possible
mechanisms to establish optimal arrangements and validating predictions using in vivo data.

A central challenge for microtubule organization in a cell is the necessity for a single
cytoskeletal architecture to serve as a transport highway for a variety of different cargos with
different transport objectives. In this study, we focused specifically on the retrograde delivery
of cargo to the nuclear region. However, other cargos require delivery from the nucleus to the
periphery or broad distribution throughout the cellular domain. These alternate objectives impose
different utility functions on the possible microtubule configurations. For directed delivery, long
microtubules enable cargo to be deposited close to the distal tip, but axial separation of microtubule
end positions has been shown to promote retention at the tip by reducing the recirculation of
entrained cytoplasmic fluid [155]. For broad distribution of bidirectionally moving cargo,
short microtubules may reduce the processive run-time of directed transport [138], resulting in
increased frequency of reversals and more rapid distribution of cargo [87]. Architectures with short
microtubules of mixed polarity can also enable dispersion of cargos whose motion is dominated
by a single motor type, as observed in the proximal regions of mammalian dendrites [156]. The
analytically tractable 1D modeling approach and 3D simulations developed here can be extended
in future work to consider the impact of microtubule length distributions on this broad variety of
intracellular transport systems.

By delineating the role of microtubule arrangements in individual transport processes, we

can begin to gain a comprehensive picture of the evolutionary pressures guiding the observed
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microtubule architectures in live cells. Furthermore, establishing the impact of cytoskeletal
morphology on the efficiency of key transport objectives is critical to developing a predictive
understanding of how pharmacological or genetic perturbations in cytoskeletal filament length

modulate cellular functions.
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Chapter 5

Modeling Organelle Interaction and

Maturation Processes in Autophagy

5.1 Abstract

Macroautophagy is a key process involved in neuronal homeostasis and degradation of
cellular waste. Neuronal autophagosomes form constitutively in the distal tip of the axon and
must transport to the soma to recycle their cargo. Cargo turnover requires autophagosomes to
fuse with lysosomes to acquire degradative enzymes and lower their pH. However, the timing and
number of these fusion events in the axon have proven difficult to detect using microscopy alone.
Here we generate a theoretical model that reproduces data from live and fixed imaging of primary
hippocampal neurons, and find that lysosome-autophagosome fusion likely occurs independently
of autophagosomal motility in the axon. Endogenous staining for lysosomal enzymes and the
v-ATPase indicates endolysosomes in the distal axon are relatively mature and our computational
model suggests autophagosome maturation requires only a single fusion event in the axon, making
breakdown of the inner autophagosomal membrane the rate-limiting step. These results clarify

the timing and importance of lysosomal fusion for autophagosome maturation in axons.
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5.2 Introduction

Neurons are terminally differentiated cells that last throughout the lifetime of the organism.
One important pathway for maintaining cellular health and homeostasis over this long time period
is macroautophagy (hereafter: autophagy), the formation of “self-eating" double-membraned
organelles that engulf and degrade cellular waste [157]. Neuronal autophagy defects are implicated
in most neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, and
Amyotrophic Lateral Sclerosis (ALS) [158] and genetically blocking autophagosome formation
causes neurodegeneration in mice [159, 160]. It is thus important to understand the specifics of
this process and how it pertains to neuronal health.

Neuronal autophagosomes form primarily in the distal tip of the axon, where they clear
dysfunctional proteins, aggregates, and organelles from the presynaptic region [14]. However,
the vast majority of protein and organelle production occurs in the soma [161-163]. Thus,
autophagosomes must traverse the length of the axon, up to 1m in humans, to turnover and recycle
their cargo [164, 165]. Initially autophagosomes undergo diffusive or bidirectional transport
in the tip while engulfing cargo and closing their membranes, then they acquire microtubule
motors and motor-regulating proteins and switch to robust retrograde motility towards the soma
[166, 167]. During this transport, axonal autophagosomes mature by fusing with late endosomes
and lysosomes, which are formed in the soma and actively delivered to the axon [14, 162, 167].
Fusion is necessary for the autophagosome to acquire degradative enzymes and establish the low
pH at which they function. The maturation of autophagosomes during transport from the axonal
tip to the soma is a well-studied phenomenon; however, there is a lack of studies exploring the
quantitative aspects of autophagosome maturation in relation to transport or interactions with
lysosomes.

In this work, we focus on the interplay between axonal transport of autophagosomes

and autophagosomal maturation, two primary components of neuronal autophagy (Fig. 5.1 a).
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Using a combination of analytical and computational approaches, we construct a comprehensive
model of organelle transport, interactions, and maturation during the axonal autophagy. Our
model reproduces features of organelle distribution and maturation as observed in primary
hippocampal neurons, highlighting the role of dynamic parameters in regulating these quantities.
Staining for endogenous lysosomal and autophagosomal markers indicates roughly half of axonal
autophagosomes fuse with a lysosomal structure prior to exit from the distal tip, and further that
the majority of lysosomes in the distal tip actually contain both degradative enzymes and at least
one vacuolar ATPase to establish and maintain the acidic pH necessary for degradation. However,
autophagosomes in the axon mature very slowly, with only about a quarter in the proximal axon
demonstrating a fully acidified lumen. We show that the observations from experimental data
may arise from a fusion-independent motility switching process, coupled with slow degradation
of autophagosomal contents. Our results shed light on possible mechanisms that can regulate
organelle dynamics, and contribute to a quantitative understanding of cellular organization in

neuronal autophagy.

5.3 Results

5.3.1 Autophagosome Maturation in Axons as a Two-Step Process

Studies in primary dorsal root ganglion (DRG) and hippocampal neurons and in vivo
have established that autophagic vacuoles (AVs) initiate near the distal axonal tip and mature via
endolysosomal fusion during transport towards the soma [14, 167, 168]. However, the reported
extent and spatiotemporal distribution of the maturation process vary widely between different
cell types and measurement modalities (Fig. 5.1b).

Characterizing AV maturation is complicated in part by the multiple different possibilities
for defining a mature state. Markers of maturity include the acquisition of specific membrane

proteins, the acidification of the AV interior, and the presence and activity of degradative enzymes
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Figure 5.1: Double-membraned autophagosomes mature during transport from the distal
tip of the axon to the soma. (a) Autophagic vesicles (AVs) form de novo near the axonal
tip, remaining stationary or engaging in transient diffusive or bidirectional motion. A switch
to retrograde motion occurs at a rate kg, resulting in persistent motion towards the soma at a
velocity v,,. Lysosomes formed near the soma and moving with a velocity vy can fuse with the
AV, resulting in increased acidification and activation of degradative enzymes. (b) Multiple
studies have investigated the maturation of AVs along the axon, using a variety of techniques.
Depending on technique and cell type, the results vary widely. (c) When AVs fuse with
endolysosomes, the endolysosome’s contents enter the intermembrane space and its membrane
proteins remain in the outer membrane. Following breakdown of the inner autophagosomal
membrane (IAM), the autophagic cargo is exposed to the lysosomal proteases and subject to
degradation. (d) Some methods of determining autophagosomal maturity detect more immature
AVs than others. Colocalization with endolysosomal membrane proteins, LysoTracker dye
colabelling, and fluorescence of enzymatic activity reporters all effectively show whether or not
fusion with an endolysosome has occured, but do not clearly say anything about whether the
IAM has been degraded and/or whether the autophagosomal cargo are undergoing degratation.
However, because it is initially protected by the IAM, the quenched EGFP moiety of the
mCherry(mCh)-EGFP-LC3 reporter labels specifically fully matured and acidified AVs wherein
cargo is undergoing degradation. (e) Left, example kymograph showing LC3 in the AV lumen
and lysotracker in the interlumenal space. Right, plotting LysoTracker colabelling and mCh-GFP
quenching together illustrates the large difference in rates of fusion and IAM breakdown in
hippocampal neurons.
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within the AVs. These different markers are not necessarily acquired simultaneously, and may
well appear at different rates or in different cellular locations, depending on cell type.

Initial work in DRGs suggested that AV maturation occurs quickly in the distal tip,
demonstrated by the colocalization between autophagosomal marker LC3 (microtubule associated
protein 1 light chain 3) and late endosomal marker Rab7 (Ras-like protein in brain 7) or lysosomal
marker LAMPI1 (lysosome-associated membrane protein 1) [14]. Additionally, about 50% of
the LC3+ AVs detected in the distal tips of DRGs colabeled for the dye LysoTracker, which
specifically labels acidic membrane-bound organelles. Similarly about half of distal AVs appeared
acidified based on fluorescence of the dual-color LC3 reporter mCherry (mCh)-EGFP-LC3. This
reporter fluoresces in the red and green wavelengths in nonacidified environments, but only red
in acidic environments due to the quenching of the EGFP moiety below pH 5.8 [169, 170]. In
the proximal axonal regions, roughly 75% of AVs show quenching of the EGFP. These results in
DRG neurons imply rapid fusion with lysosomal vesicles and concomitant acidification shortly
after AV production in the distal region, followed by a small amount of further maturation during
the journey towards the proximal axon.

Measurements in primary cortical neurons also showed the presence of degradative
enzyme activity in distal AVs, based on the fluorogenic activity sensors Magic Red and MDW941
[162]. Live-imaging in primary hippocampal neurons confirmed the finding that LC3+ puncta
colocalize robustly with Rab7 and LAMPI in the distal axon and colabel with LysoTracker
[167]. However, use of the mCh-EGFP-LC3 reporter in primary hippocampal neurons revealed
much slower acidification, with almost no AVs in the distal axon and only ~ 25% of those in
the proximal axons showing acidity-triggered EGFP quenching [167]. Slow acidification is also
seen in iPSC-derived cortical i* neurons, where only about 40% of AVs were GFP negative
in the proximal axon [171]. Overall, measurements in these cell types indicate a discrepancy
between different markers of maturation in different cellular locations. AVs appear to acquire

some features of maturity while still in the distal axon, while others are observed primarily in the
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proximal region.

The double-membraned nature of AVs is key to reconciling these seemingly disparate
observations (Fig. 5.1c). When an AV and endolysosome fuse, the endolysosomal membrane
becomes part of the outer membrane and the contents of the endolysosomal lumen become part
of the intermembrane space. Thus any degradative enzymes and H* ions in the endolysosome
reside in the space between the outer and inner membranes until the inner autophagosomal
membrane (IAM) is broken down, exposing the central lumen to enzymatic degradation. While
LC3 colocalization with LysoTracker or fluorogenic enzyme activity sensors gives the impression
of a fully mature autolysosome with active cargo degradation occuring, in fact these structures
may well still have their inner membrane intact, confining any acidity or enzymatic activity to the
intermembrane space. In non-neuronal cells including mouse fibroblasts, Lysotracker can actually
be visualized specifically localizing to the intermembrane space and then collapsing inward when
the IAM is degraded [172]. Unfortunately, axonal AVs are condensed due to the narrow diameter
of the axon and rarely appear as rings after leaving the tip, making this intermembrane space
and inner membrane collapse difficult to resolve. Nevertheless, we can occasionally resolve
LysoTracker localizating to the intermembrane space in axons (Fig. 5.1e ).

Unlike LysoTracker, MagicRed, and MDW941, the tandem mCh-EGFP-LC3 marker
localizes specifically to the inner lumen of the AV (Fig. 5.1 d). Initially LC3 localizes to both
the inner and outer membranes, conjugated to the lipid phosphatidylethanolamine so the protein
extends into the lumen on the inner membrane and into the cytosol on the outer membrane. The
protein extending into the cytosol is rapidly cleaved by the autophagy protease ATG4 leaving only
the lumenal protein, and fluorophores, intact. Once the AV is closed, GFP-LC3 never recovers
following photobleaching, confirming the lumenal state of the LC3 signal [14]. Therefore
quenching of the EGFP moiety can be used as a more specific readout of autophagosomal
maturity, indicating the point at which the inner membrane breaks down and the lumenal LC3

and other cargo are exposed to the lysosomal pH and enzymes (Fig. 5.1e).
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Overall, AV maturation can thus be thought of as a two-step process. The first step
involves fusion with one or more endolysosomes to acquire degradative enzymes and trigger
acidification of the intermembrane space. Given that LysoTracker marking occurs at similar levels
to the presence of endolysosomal membrane markers, the acidification of the intermembrane
space can be assumed to occur rapidly upon fusion. The second, slower, step involves breakdown
of the inner autophagosomal membrane to enable the enzymes and acidic environment to reach
the lumen.

The two-step maturation process can largely account for the disparate data observed
in prior studies. Based on live-cell experiments, AVs in cortical neurons (either primary or
1PSC-derived) and hippocampal neurons fuse with endolysosomes in the distal tip, as indicated
by Rab7, LAMPI, LysoTracker, MagicRed, and MDW941 colocalization [162, 171]. However,
only 8-10% have broken down their inner membrane and therefore fully matured within the first
200um of the axon, indicated by mCh-EGFP-LC3 fluorescence [167, 171]. However, AVs in
DRG neurons not only fuse in the distal axon with endolysosomes, as indicated by Rab7, LAMP1,
and LysoTracker colocalization, but also rapidly break down their inner membrane while still in
the distal region, as determined by quenching of the EGFP moeity of mCh-EGFP-LC3 [14, 15].
We may thus hypothesize that AVs in the central nervous system (CNS) breakdown their inner
membrane more slowly than AVs in the peripheral nervous system (PNS).

Using the mCh-EGFP-LC3 marker as a readout of IAM breakdown, we can also reconcile
the differences observed between GFP quenching and LysoTracker labeling, two techniques that
both measure acidification. The levels of LysoTracker colabeling (= 40% in the distal axon and
~ 95% in the proximal axon) and GFP quenching (~ 50% in the distal axon and ~ 70% in the
proximal axon) more or less agree in DRG neurons, suggesting a short time between fusion and
IAM degradation, perhaps comparable to the 6.6 minutes observed in mouse fibroblasts. However,
in hippocampal neurons, LysoTracker colabeling (= 60% in the distal axon and ~ 90% in the

proximal axon) and GFP quenching (=~ 5% in the distal axon and ~ 25% in the proximal axon)
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are drastically different, suggesting a long time between fusion and IAM degradation.
Using additional live-cell measurements alongside mathematical modeling, we proceed to
explore quantitatively the kinetics and relative spatial distribution of the two steps (fusion and

inner membrane break-down) of the phagosome maturation process.

5.3.2 Spatial Distribution of Autophagosome Maturation in Hippocampal

Neurons

Most of the studies above thus describe a system in which nearly all neuronal AVs in vitro
fuse with endolysosomes in the distal tip of the axon, then mature as they transit along the axon,
with those in PNS axons degrading their IAM rapidly and those in the CNS degrading their IAM
3-4x more slowly. However, work from Maday and colleages [14] demonstrates a delay in the
initial fusion event. It is worth noting in all the other studies, LC3 and/or Rab7/LAMP1 were
overexpresssed; however, Maday et al. used cells from GFP-LC3 knock-in mice where LC3 was
being expressed at endogenous levels. It is therefore possible that the high amount of early fusion
seen in the other studies is an overexpression artifact.

We therefore carried out rigorous immunofluorescence measurements to determine spatial
distribution of fusion throughout the axon under entirely endogenous expression conditions. We
chose to conduct this experiment in primary hippocampal neurons because the CNS is more
impacted by neurodegenerative diseases and hippocampal preparations yield a more homogenous
population of cells than do cortical preparations. In brief, primary rat hippocampals dissected at
embryonic day 18 were fixed in Bouin’s solution at 7 days in vitro, permeabilized in methanol, then
probed with primary and secondary antibodies to detect AVs and lysosomes. This experiment,
while unable to detect IAM degradation, provides a readout of initial AV-lysosome fusion
unperturbed by overexpression.

We initially quantified the total number of LC3+ and LAMP1+ puncta per 30um of axon

in either the distal (within ~ 200um of the axon tip) and proximal (within ~ 200um of the

102



Figure 5.2: Autophagosomes fuse with lysosomes in the distal axon absent overexpression.
(a) Number of LC3+ puncta per 30um in the distal and proximal axon. (b) Histogram showing
the spatial distribution of LC3+ puncta in the distal axon. (c) Number of LAMP1+ puncta
per 30um in the distal and proximal axon. (b) Histogram showing the spatial distribution of
LAMP1+ puncta in the distal axon. (e) & (h) Micrographs showing LC3+ and LAMP1+ puncta
in the distal and proximal axon respectively. The merged micrograph shows LC3+ puncta
colocalized with LAMP1+ puncta. (f) Cumulative fraction of LC3+ puncta colocalized with
LAMPI. (g) Fraction of LC3+ puncta colocalized with LAMP1I in distal and proximal axons. (i)
& (1) Micrographs showing LC3+ and AEP+ puncta in the distal and proximal axon respectively.
The merged micrograph shows LC3+ puncta colocalized with AEP+ puncta. (j) Cumulative
fraction of LC3+ puncta colocalized with AEP. (k) Fraction of LC3+ puncta colocalized with
AEP in distal and proximal axons. (m) & (p) Micrographs showing LC3+ and CathepsinL+
puncta in the distal and proximal axon respectively. The merged micrograph shows LC3+ puncta
colocalized with CathepsinL+ puncta. (n) Cumulative fraction of LC3+ puncta colocalized with
AEP. (0) Fraction of LC3+ puncta colocalized with CathepsinL in distal and proximal axons.
(q) & (t) Micrographs showing LC3+ and ATP6V 1F+ puncta in the distal and proximal axon
respectively. The merged micrograph shows LC3+ puncta colocalized with ATP6V 1F+ puncta.
(r) Cumulative fraction of LC3+ puncta colocalized with ATP6V1F. (s) Fraction of LC3+ puncta
colocalized with ATP6V1F in distal and proximal axons.
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soma) region (Fig. 5.1a) and found similar distributions for both (Fig. 5.2, a-d). The density of
lysosomes in the proximal region is slightly higher than in the distal region (Fig. 5.2 c), while AV
density does not change significantly between the two regions (Fig. 5.2 a). In the distal region
both organelles accumulated in the tip/growth cone, where the LC3+ puncta are likely represent
biogenesis events and nascent AVs that have not yet begun retrograde transport (Fig. 5.2, b and d).

Next we quantified colocalization between the markers and found that roughly half of
the AVs in the distal axon colocalized with LAMP1 which, given our resolution (200nm), likely
represent fused or fusing vesicles (Fig. 5.2, e-f). Likewise, about half of the lysosomes in the
distal axon colocalized with LC3.A higher number of AVs were positive for LAMP1 in the
proximal axon. Thus, an additional ~ 25% of AVs fused with a lysosome in the axon shaft after
exiting the distal end (Fig. 5.2 g).

In addition to LAMP1, LC3 colocalized with lysosomal enzymes Asparagine endopep-
tidase (AEP) and Cathepsin L in the distal axon (Fig. 5.2, i-p). Like LAMP1 colocalization,
AEP colocalization increased in the proximal axon (Fig. 5.2 k). Both enzymes and LAMP1
were acquired by AVs within the first 150um, as demonstrated by the plateau in the cumulative
fractions (Fig. 5.2, j and n), suggesting the majority of the fusion events occur within that region.

Finally, lysosomal proteases require low pH to function, so we tested for the presence
of an activated vacuolar ATPase (vATPase) by measuring colocalization with a V1 subunit.
The V1 subunit of the vATPase is cytoplasmic and forms an activated vATPase, which pumps
protons across a membrane to decrease pH, when interacting with a transmembrane VO subunit.
Therefore colocalization between the V1 subunit (ATP6V 1F) and membrane-bound LC3 suggests
the formation of an active vATPase. Again, roughly half of the LC3 puncta in the distal axon
colocalized with ATP6V1F, the V1 subunit seemed to be acquired within the first 150um of
axon, and an additional ~ 30% of AVs appeared to fuse with V1+ vesicles along the axon shaft
(Fig. 5.2, g-t).

Importantly, LAMP1 acquisition was strongly associated with both degradative enzyme
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acquisition and vATPase acquisition, suggesting the lysosomes with which the AVs fused were
degradatively competent. While some studies agree that competent lysosomes are present in the
distal axon, others have found that lysosomes far from the nucleus are more immature and not de-
gradtively active. We therefore measured the degradative capacity of the lysosomes by measuring
the colocalization between LAMP1 and AEP, Cathepsin L, or ATP6V 1F. Three-quarters of the
LAMP1 puncta colocalized with the other markers in the distal axon, indicating the population of
lysosomes is primarily mature. Further, LAMPI colocalization with either lysosomal enzymes
or the vATPase did not increase in the proximal axon, in contrast with other studies that find
lysosomes closer to the soma are more degradative. Thus, at endogenous expression levels, we
find the majority of lysosomes throughout the axon are degradatively competent. Further, it is
worth noting that we saw very few instances where an LC3 punctum colocalized with LAMP1
but not AEP, Cathepsin L, or ATP6V1F, suggesting the AVs are specifically fusing with the
competent lysosomes (=~ 75% of the population) and not with the immature lysosomes. We
therefore conclude that ~ 50% of AVs fuse with degradatively competent lysosomes in the first
150um of axon, ~ 25% fuse as they move along the axon shaft prior to the proximal axon, and

~ 25% enter the soma without having ever fused with a lysosome.

5.3.3 Autophagosome-lysosome fusion can be described by a minimal math-

ematical model

We next proceed to develop a minimalist mathematical model for the first step of the
AV maturation process: the fusion of autophagosomes and endolysosomes. The model is
parameterized against experimental data and aims to elucidate how organelle transport and
interaction parameters dictate the spatial distribution of autophagosome maturation. The second
step of inner-membrane degradation is introduced into the model framework in a subsequent
section.

Because axons are much longer than they are wide, we focus primarily on dynamics in
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Figure 5.3: (a) distribution of stationary AV (for fitting lambda — initial biogenesis position). (b)
fraction retrograde in the distal axon (either cumulative fraction vs x or just dots for individual
cells). (c) distal fraction retrograde with and without LysoTracker label, indicating motility
independent of fusion.
the axial direction. This allows us to simplify the model system to a one-dimensional domain of
length L = 700um, representing the typical length of primary hippocampal axons at 7-8 days in
vitro, a common time-point used in transport studies [173]. Our model includes the biogenesis
of AVs and lysosomes in the distal axonal region and in the soma respectively, along with their
motion and interactions. Details and model assumptions are provided within the methods section.
In our model, lysosomes are produced at the proximal end near the soma with rate ky.
Upon biogenesis, lysosomes immediately move in the anterograde direction towards the axonal
tip at a constant velocity vy, = 2um/s [173]. AVs are formed at rate k), in the distal axon. The
spatial distribution of AV formation is taken to be exponential (H (x) ~ e /%), where x is the
distance from the distal tip. The characteristic length scale for AV biogenesis positions is taken to
be A = 100um, based on the observed distribution of stationary autophagosomes.
After formation, AVs remain stationary until switching to retrograde motility with a fixed
switching rate kg. The retrograde motion of AVs occurs with a fixed velocity v, = 0.75um/s [173].
While past descriptions of axonal autophagosome dynamics implied that fusion with an endolyso-

some was a prerequisite for switching to retrograde motility, our measurements imply that a
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Figure 5.4: Minimal model for autophagosome-lysosome interaction dynamics. (a)
Schematic of the model. (b) (left) AV production rate k, , required to match the average
linear density of LC3+ puncta observed within the distal axon of hippocampal neurons, plotted
against the switching rate k;. The dashed line denotes the switching rate matched in (d).(right)
Lysosome production rate k), , required to match the average linear density of LAMP1+ puncta
observed within the distal axon of hippocampal neurons, plotted against the fusion probability
pr- The dashed line denotes the fusion probability matched in (e). (¢) Overall fraction of AVs
fused within the distal axon fr, plotted against the fusion probability py, and the retrograde
switching rate k;. The gray region denotes values of fr within 2.5% of the observed measure-
ment. The green star denotes a parameter combination matching the fraction of retrograde AVs.
(d) Overall fraction of AVs exhibiting retrograde motility within the distal axon, plotted against
the switching rate k;. The observed fraction within the distal axon of hippocampal neurons
is denoted by the dashed black line. (e) Overall fraction of AVs fused within the distal axon,
plotted against the fusion probability ps. The dashed line denotes the experimentally measured
value determined from LC3+ puncta colocalized with LAMP1+ puncta in hippocampal neurons.

substantial fraction (~ 20%) of autophagosomes reach the proximal axon without having acquired
lysosomal markers (Fig. 5.2g). While we cannot rule out some dependence of the motility switch
upon the AV maturation state, we initially assume a single constant switching rate to maintain

model simplicity.
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Each time a lysosome passes an AV, a fusion event can occur with a probability py.
Again for simplicity, we assume this fusion probability is constant, independent of organelle
position along the axon and of AV motility state. Upon fusion, the endolysosome disappears,
and the autophagosome is marked as one where fusion has occurred. In this model formulation,
prior fusions are assumed to have no effect on the ability of the AV to fuse with subsequent
endolysosomes.

The dynamics of this system can be probed by stochastic agent-based simulations that
track the movement and fusion of individual organelles. More efficiently, we can describe the
system behavior via a set of mean-field dynamic equations for the spatial distribution of organelles
with different states of fusion and motility (Fig. 5.4a). Namely, Y (x,) describes the distribution of
endolysomes; S, and S give the distribution of un-fused and fused stationary AVs, respectively;
R, and Ry give the analogous distributions for retrograde AVs. At spatial position x, the rate
at which fusion events occur is proportional to the density of lysosomes and AVs, as well as a
rate constant ky. The probability that fusion occurs during passage depends both on this rate
constant and the time it takes for the two organelles to pass each other. Thus for fusion with a
stationary AV we set py = 1— e KrsT where 1, = £/ vy is the passage time and / = 1um gives
the range within which the two organelles can overlap, equivalent to the sum of their diameters.
An analogous expression gives the fusion rate k¢, for a retrograde autophagosome, based on

T =L/ (vy+vp).
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The dynamic mean-field equations are then given by:

%Su(x,t) =kp pH (x,1) — keSu(x,1) — kg Y (x,)S,(x,1), (5.1a)
%Sf(x,t) =Llky Y (x,)S,(x,t) — keSr(x,1), (5.1b)
0 0

ERu(x,t) = koSu(x,1) — lhks Y (x,1)Ry(x,1) — vpaRu(xJ), (5.1¢)

%Rf(x,t) =keSp(x,t) +Llky, Y (x,)Ry(x,1) — vp%Rf(x,t), (5.1d)
d 0

EY(X,I) = vng(x,t) —Llksr(Ru+Ryp) +kps(Su+Sp)] Y (x,1). (5.1e)

The boundary conditions for this system are

WY (L,t) =kp.y,
y Py 52)

0.

Ru/f(oat)

Equations 5.1 and 5.2 are solved to obtain organelle distributions at steady state, as
described in the Methods. Parameters used for the model are noted in Table 5.1. For equivalent
parameter values, the mean-field model accurately reproduces stochastic simulations with discrete
interacting organelles.

Our minimal model of organelle dynamics involves four free parameters, namely, the
AV production rate k), ;, the lysosome production rate k), ,, the probability of fusion p, and the
rate of switching to retrograde motility k;. We establish the relevant values of these parameters
by comparing to robust experimentally accessible metrics. Specifically, we set the production

rates k, ,,, in order to match the measured linear density of AVs and endolysosomes in the distal

/Y
axon (defined as the the region within 250um from the distal tip). The distal density of AVs is
found to be pp = 0.13+0.01um~! and the distal density of puncta with endolysosomal markers
is py =0.1440.02um~! (Fig. 5.2a & 5.2b respectively). The density py includes all unfused

endolysosomes, as well as all AVs that are in the fused state.
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The production rates that fit the experimentally measured densities vary dependending on
the parameters py and k; (Fig. 5.4b). Notably, higher switching rates (ky) require an increase in
the AV production rate to give the same experimentally observed average distal density. This is
because faster switching to the retrograde state decreases the total time AVs spend in the domain,
so that more of them must be produced to maintain a particular steady-state density. For the
lysosomal production rate, higher fusion probabilities require more lysosomes to be produced to
maintain the observed density py. At low fusion probabilities, most lysosomes pass out of the
domain without fusing, so that again a higher production rate is necessary to maintain the same
density.

An additional metric of interest is the fraction of distal AVs that are in the fused state.
In Fig. 5.4b we plot this fraction as a function of the remaining free parameters (ks and py).
Unsurprisingly, the fused fraction increases with the fusion probability p;. Furthermore, it
increases at lower values of the switching rate k;. Low switching rates imply lower AV production,
and the higher ratio of lysosome to AV production results in a greater overall fraction of fused AV's
in the distal zone. The grey region in Fig. 5.4b indicates the experimentally measured value of the
distal fused fraction fr = 0.53 +0.04, defined here as the fraction of LC3+ puncta colocalizing
with the LAMP1 marker (Fig. 5.2f). This experimental measurement substantially narrows the
region of feasible parameter values.

The fourth experimentally accessible metric used to parameterize the model is the fraction
of distal AVs in the retrograde motility state. This quantity is measured by manual classification
of mCh-EGFP-LC3 puncta in live hippocampal cells, giving fr = 0.15+£0.05 (Fig. 5.3). This

metric is dependent primarily on the switching rate kg according to

fom M (d—xg)— A
R el —xg— vy hks) — (A —vp/ks)’

where x; = 250um is the boundary of the distal region. The extracted value for parameters
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specified in Table 5.1 is k; = 0.05min~!. This corresponds to each AV persisting in the stationary
state for an average of 20min after its biogenesis, including all initial steps of formation after the
point when the LC3 marker is present.

For this fixed value of switching rate, a narrow range of fusion probabilities corresponds
to the observed fraction of fused AVs in the distal region (Fig. 5.4¢). Namely, we find py ~
0.013+£0.04, indicating that a very small fraction of passage events between an endolysosome
and an autophagosome is expected to lead to successful fusion.

The four experimentally measured metrics (pp, Py, fr, fs) thus allow us to set the four free
parameters in our model: k; ~ O.OSmin*I,pf ~0.013,k, , = 1.16min~! and kpy= 8.47min" !,
Furthermore, the minimalist nature of the model allows for a quantitative understanding for how
variation of each of these parameters will alter the expected fusion and motility state of the
AVs. In the subsequent section we highlight the model predictions regarding the distribution of

organelles and fusion events.

5.3.4 Dynamic model predicts quantitative features of organelle distribu-

tions

We use the parameterized mean-field model described in the previous section to pre-
dict specific features of the spatial distribution for organelles and fusion events. Furthermore,
stochastic simulations with the same set of parameters are used to both validate the mean-field
approximation and to facilitate visualization of the organelle distributions.

Firstly, we plot the expected density of puncta with autophagosome and endolysosome
markers in the distal axon (Fig. 5.5a). Notably, the “LAMPI1+ puncta" in our model correspond
to both unfused lysosomes and phagosomes that have undergone at least one fusion event. The
predicted densities decrease away from the distal axonal tip, as observed in measurements on
hippocampal neurons (Fig. 5.2b,d).

We next consider the fraction of AVs that have undergone a fusion event, at different
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Figure 5.5: Minimal model predicts quantitative features of organelle interactions.(a) A
snapshot of the simulation of organelle dynamics at steady state. Distances along the horizontal
direction are to scale. The vertical direction and organelle sizes are not to scale. (b) Linear
density of organelles plotted against the distance from the distal tip. Predictions from simulations
and analytical modeling are denoted by dots and solid lines respectively. Average organelle
densities measured in the distal hippocampal axon are denoted by dashed lines. (¢) Cumulative
fraction of fused AVs plotted against the distance from the distal tip. The green circles denote
predictions from explicit simulations, the purple squares denote measurements from colocal-
ization of LC3+ puncta with LAMP1+ puncta in the the distal hippocampal axon. The dashed
line denotes predictions from the analytic model. (d) Cumulative fraction of fused lysosomes
plotted against the distance from the distal tip. The green circles denote predictions from explicit
simulations, the purple squares denote measurements from colocalization of LAMP1+ puncta
with LC3+ puncta in the the distal hippocampal axon. The dashed line denotes predictions from
the analytic model. (e) The average number of fusions among AVs that have fused at least once
plotted against the distance from the distal tip. The orange triangles denote the prediction from
simulations, the dashed line denotes the prediction from the analytic model.

positions along the distal region (Fig. 5.5b). The mathematical model and simulations predict that
the fraction of AVs which have fused is largely constant whether one looks at the first few dozen
micrometers of the distal tip or the entire 250um distal region. This result implies that most AVs
undergo their first fusion in the far distal tip at their biogenesis location rather than acquiring the
endolysosomal markers as they move along their retrograde journey. In fact, simulations with

these model parameters indicate that 81% of autophagosomes undergo fusion before switching to

a retrograde state. We note that this effect does not require that retrograde motion be specifically
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triggered by a fusion event as was assumed in past work [15], but rather is a consequence of the
long time spent by each phagosome in a stationary state, making fusion likely to occur before
motility switching.

An alternate model would allow the switch to retrograde motion to occur only for AVs
that have fused with at least one endolysosome. Such a model can be parameterized against the
same experimental measurements and gives very similar predictions for distribution of organelles
and the fraction of AVs fused. This is unsurprising, since the base model already has most of the
autophagosomes carry on fusion before initiating retrograde motion. Notably, however, the two
models give different predictions for the fraction of autophagosomes that are fused within the
proximal region. In the base model, approximately 84% of AVs found within 250um of the soma
are expected to carry lysosomal markers, similar to experimental measurements (Fig. 5.2g). In
the model where retrograde motility is triggered by fusion, this number jumps up to nearly 100%,
since the only way for an autophagosome to reach the soma is to have first fused and become
mobile. Hence, the presence of unfused AVs in the proximal axon is consistent with the base

model where retrograde motility is independent of fusion.

5.3.5 Few fusion events are sufficient to achieve observed autophagosome

maturation

One of the advantages of mathematical modeling is that it can enable us to assess features
of the system which are difficult to measure experimentally. While colocalization of various
markers allows the determination of whether an AV has fused with at least one endolysosome,
such data gives no indication of how many endolysosomes fuse into a single AV. Past descriptions
of AV maturation have generally assumed multiple fusion events with endolysosomes as the
autophagosome moves down the axon. However, recent data indicates that markers for the
transmembrane SNARE protein Stx17 no longer colocalize with LC3+ AV puncta once the

inner membrane has broken down (as assessed by EGFP quenching) [174]. Such measurements
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imply that maturation of the AV may correspond to an inability to fuse with subsequent passing
endolysosomes.

We consider two extreme models for the ability of AVs to undergo multiple fusions. The
model described thus far allows for unlimited fusions, with the fusion probability p/ taken to be
independent of the AV maturity. In principle, this model allows for a “snow-ball" effect, where a
single AV can pick up many endolysosomes during its journey down an axon, leaving a paucity
of lysosomal organelles that are able to reach the distal tip. We can compute a spatial density of

fusion events at steady state according to:

Zs(x)=1¢ <Iﬁ> Y (x) [Su(x) +Sp(x)]

ks u
%Zr(x) - (f_p) Zlx) 4 (%) Y (%) [Rulx) + Ry (%)] o

where Z;(x) and Z,(x) are the distributions of number of fusion events among stationary and
retrograde AVs respectively. Normalizing by the AV density gives the average number of
fusion events per particle among AVs that are present at each position along the axon [Ny(x) =
(Zs+Z,)/(Su+Sr+R,+Ry)]. This quantity is plotted in Fig. 5.5e. Given the low fusion
probability in the parameterized model (p; ~ 0.013), we expect an average of only ~ 2.5 fusion
events per AV throughout the distal region. Thus each individual autophagosome is expected to
fuse with only a small number of endolysosomes, despite the lack of any built-in mechanism for
limiting the number of fusions in this model.

An alternate extreme scenario is one where each AV is allowed to fuse with only a
single endolysosome and further fusions are prohibited. The dynamics of such a "one-and-done"
model are described by the same set of equations given in Eq. 5.1, with the exception of the
endolysosome consumption depending only on unfused AVs. The resulting parameters that match
experimental measurements are very similar to the original model with unlimited fusions. The

only substantial difference is in the production rate for endolysosomes, which is found to be
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30% lower in the one-and-done model to yield the same distal density of puncta with lysosomal
markers. This shift is expected since there are fewer fusion events that decrease the number
of such puncta in the "one-and-done" model. The model predictions for this case, in terms of
the spatial distribution of fused and unfused puncta, are virtually unchanged from the case with
unlimited fusions.

Overall, our measurements of the distributions for AV and endolysosomal puncta do not
permit us to differentiate whether each AV can fuse with only one lysosome or with an unlimited
quantity of them. However, the mathematical model indicates that the actual number of fusions
for each AV is expected to be quite small, even without an explicit mechanism to limit subsequent

fusion.

5.3.6 Spatial profile of autophagosome membrane breakdown is consistent

with slow degradation
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Figure 5.6: Modeling IAM degradation Modeled fraction of f; of autophagosome with
degraded inner membrane, plotted as a function of the degradation time (7; = 1/k4). Densities
are averages over the most distal (blue) and most proximal (red) 250 m regions of a modeled
axon of length 700um. Parameters used in the model are the same ones extracted from Fig. 5.4.
The range of degradation times corresponding to measured values of f; are shown in yellow for
hippocampal neurons and green for DRG neurons.

Having established and parameterized a spatial model for the first step of autophagosome
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maturation (fusion with endolysosomes), we next proceed to consider the second step in the
maturation process. This step involves break-down of the AV inner membrane, which occurs after
the acquisition of degradative enzymes via a fusion event, corresponding to the experimentally
measured quenching of the EGFP fluorophore in the AV lumen (Fig. 5.1d). For simplicity, we
assume that JAM membrane degradation is a constant rate process, occurring with rate constant
kg for all AVs that are in the fused state. We define additional dynamic equations to account for

the degradation step:

dRE‘i ) (i) () 9 (i) (w)
7 ksSf + ks YR, —vp&fo _def (5.4a)
(d)
dR 9
f d d d w
(i)
ds; , : ,
f l l 1
= kS o+ k¥ — kaS]) (5.4¢)
a5 }d) (d) (d) (i)
7 —ksSf +LlkpYS, '+ def . (5.4d)

Here, the superscript (i) refers to an AV with an intact inner membrane and the superscript (d)

refers to one where the inner membrane has been degraded. The total densities Ry = Rgf) +R§td)

and Sy = S;i) + S;d) still obey the basic model equations (Eq. 5.1).
For any given value of the decay rate k;, we can compute the local fraction of AV puncta

expected to exhibit a degraded IAM according to f; = (R;d)

+S§f1))/(Rf +Sr+Ry+Su). The
distal value of f; is obtained by averaging all densities in the numerator and denominator over
the first 250um from the distal tip. Similarly, the proximal fraction is found by averaging over
the last 250 m near the soma.

The distal and proximal degraded fractions are plotted in Fig. 5.6 as a function the average
degradation time 7; = 1/k,. These calculations allow us to extract an estimate for the degradation

time-scale in hippocampal neurons, which have a distal value of fédi“) ~ 0.05 and a proximal

p

value fé, %) ~0.25. This corresponds to a range of 7; ~ 1 —4 hr. For DRG neurons, the measured
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fractions with degraded IAM are ftgdi“) ~ (0.5 and fagdi“) ~ (.7 corresponding to a degradation
time of 7; ~4 — 6 min.

Overall, these results highlight a potential difference between the AV maturation process in
different neuronal cell types. In both cell types, the initial fusion events, acquisition of lysosomal
markers, and acidification of the intermembrane space occur primarily at the distal tip. However,
measurements in hippocampal neurons are consistent with a much slower degradation of the IAM,

so that the majority of AVs reach the soma with an intact inner membrane.

5.4 Discussion

We have developed a model of organelle dynamics in autophagy to shed light on aspects
of organelle interaction, maturation, and motility. Our model reproduces organelle densities in the
axon, which were determined empirically here using staining for endogenous autophagosomal and
lysosomal proteins. We also quantified the amount of fusion and degradative state of lysosomes
and autophagosomes in primary hippocampal neurons in the absence of overexpression, which
increased the fidelity of our model.

Additionally we performed a meta-analysis of previous studies that measured autophago-
somal maturation in axons and highlighted important differences in the measurement techniques:
while acquisition of endolysosomal membrane markers (Rab7, LAMP1), enzymatic activity re-
porters (Magic Red, MDW941), and LysoTracker convey important information about fusion, they
are unable to determine whether or not the IAM has broken down and therefore whether or not the
AV’s cargo is undergoing degradation. Conversely, the use of markers that specifically localize
to the inner lumen of the AV (mCh-EGFP-LC3) shed light on later stages of autophagosomal
maturation, including IAM breakdown and lumen acidification.

In addition to predicting fusion likelihood and AV maturation in the axon, our model

also provides insight on the coordination between fusion and motility switching by AVs. Using
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kinetic modeling and simulations, we show that populations of retrograde AV that have fused
with lysosomes can arise from fusion-independent switching events for certain parameter ranges.
Thus, while fusion is correlated with a switch to unidirectional transport towards the soma, the
two events are independent.

Both autophagy and axonal transport are affected in neurodegeneration, making the
study of this process invaluable for human disease. Our model can be leveraged to inform
future experiments perturbing axonal transport and autophagosomal maturation in the context of
neurodegeneration-causing mutations or protein aggregates, in addition to basic studies of the
autophagy pathway in neurons. Using endogenous measurements of autophagosome maturation
and computational modelling, we have reconciled multiple conflicting studies of autophagosome

motility and maturation and quantitatively connected organellar transport and fusion.

5.5 Materials and Methods

5.5.1 Primary hippocampal culture

Sprague Dawley rat hippocampal neurons at embryonic day 18 were obtained from the
Neurons R Us Culture Service Center at the University of Pennsylvania. Cells (proximity ligation
assay, 40,000 cells on 7mm glass; live imaging, 200,000 cells on 20 mm glass) were plated in
glass-bottom 35 mm dishes (MatTek) that were precoated with 0.5 mg/ml poly-L-lysine (Sigma
Aldrich). Cells were initially plated in Attachment Media (MEM supplemented with 10% horse
serum, 33 mM D-glucose, and 1 mM sodium pyruvate) which was replaced with Maintenance
Media (Neurobasal [Gibco] supplemented with 33 mM D-glucose, 2 mM GlutaMAX (Invitrogen),
100 units/ml penicillin, 100 mg/ml streptomycin, and 2% B-27 [ThermoFisher]) after 5-20 h.
Neurons were maintained at 37 C in a 5% CO2 incubator; cytosine arabinoside (Ara-C; final
conc. 1 uM) was added the day after plating to prevent glia cell proliferation. Neurons (4-6 DIV)

were transfected with 0.35-1.5 ug of total plasmid DNA using Lipofectamine 2000 Transfection
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Reagent (ThermoFisher, 11668030) and incubated for 18-24 h.

5.5.2 Live-cell neuron imaging and analysis

One hour prior to imaging, HaloTag® ligands and/or most SNAP-tag® ligands were
applied for 15 min at a final concentration of 100 nM, followed by a 30-45 min washout;
SNAP-tag® ligand Blue 430 was applied for 30 min at a final concentration of 2 uM, followed
by a 30 min washout. In applicable experiments, neurons were incubated with LysoTracker
(25 nM) for 15-30 min, which was then removed for imaging. In applicable experiments,
BafilomycinA1l (100 nM) or DMSO was added 2h prior to imaging, and then neurons were
imaged in the third hour of continued treatment. Neurons were imaged in Imaging Media
(HibernateE [Brain Bits] supplemented with 2% B27 and 33 mM D-glucose). Autophagosome
behavior was monitored in the proximal (<100 gum from the soma), distal (<100 ym from the
distal tip), or mid-axon of 6—8 DIV neurons imaged at a rate of 1 timepoints/sec for 2-3 min.
Neurons were imaged in an environmental chamber at 37°C on a Perkin Elmer UltraView Vox
spinning disk confocal on a Nikon Eclipse Ti Microscope with an Apochromat 100 x 1.49
numerical aperture (NA) oil-immersion objective and a Hamamatsu EMCCD C9100-50 camera
driven by Volocity (PerkinElmer). Only cells expressing moderate levels of fluorescent proteins
were imaged to avoid overexpression artifacts or aggregation. It should be noted that the quality
of the primary neuron dissections affected autophagosomal motility, but compared conditions
were always collected from the same dissections and imaging sessions.

Kymographs were generated in ImageJ (https://imagej.net/ImageJ2) using the MultiKy-
mograph plugin (line width, 5) and analyzed either in ImageJ or using the MatLab program
KymoSuite (J. Nirschl, University of Pennsylvania). Puncta were classified as either anterograde
(moving >10um towards the axon tip), retrograde (moving >10um towards the soma), or station-
ary/bidirectional (net movement <10um during the video). Because fluorescent LC3 is cytosolic

(as well as punctate) and neurites occasionally crossed in culture, raw videos were referenced
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throughout kymograph analysis to ensure only real puncta (> 1.5 SD from the axon mean) were
included in analyses. All comigration analyses were performed using kymographs. Line scans
were generated for presentation purposes from raw video stills and normalized either within that

line (for positive channels) or to the local region (for negative channels; surrounding 10um area).

5.5.3 Immunofluorescence experiments and analysis

Neurons were fixed at 7 days in vitro for 30 minutes at room temperature using Bouin’s
solution supplemented with 8% sucrose and diluted 50% in maintenance media. Bouin’s solution
was then removed and the cells were washed in PBS before being stored for up to 6 months in
PBS at 4°C. Cells were then permeabilized for 8 minutes at -20°C in methanol and washed in
PBS, then blocked for 1 hour at room temperature in blocking solution (recipe). Primary and
secondary antibodies (see Table 5.2 for maunfacturers and dilutions) were diluted in blocking
solution and each left on cells for 1 hour at room temperature, with 3 x 5 min washes in PBS after
each incubation. Cells were mounted in Prolong Gold (company) and imaged within 48 hours at

100x on the spinning disk confocal described above.

5.5.4 Statistics for cell-based experiments

All statistical analyses were performed in Prism (GraphPad, San Diego, CA). All error
bars represent S.E.M. and n indicates the number of events or cells pooled across at least 3 trials
per experiment. Parametric or nonparametric tests were used where appropriate, but formal

testing was not performed. Statistical measures are described in the legends.
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Table 5.1: Parameters for modeling the dynamics of organelles in autophagy

Parameter Type Description Value Ref.

L Fixed Length of the domain 700um [173]
Vp Fixed Autophagosome velocity 0.75um/s [173]
Vy Fixed Lysosome velocity 2um/s [173]
p Fixed Autophagosome radius 400nm [14]

ry Fixed Lysosome radius 100nm [14]

A Measurement Autophagosome spawn length 100um  This study
Py Measurement Average distal lysosome density 0.11um~! This study
pp Measurement Average distal AV density 0.11um~! This study
Ir Measurement Distal fraction of retrograde AVs 0.15 This study
Ir Measurement Distal fraction of fused AVs 0.6 This study
kp p Output Autophagosome production rate 1.16min~! This study
kp.y Output Lysosome production rate 8.47min~!  This study
ks Output Rate of switching to retrograde motility 0.05min~! This study
Pf Output Fusion probability 0.013 This study

Table 5.2: Manufacturers and dilutions for materials used in Chapter 5

Antibody Host Dilution = Manufacturer

anti-LC3 Mouse 1:250  Abcam ab48394
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Appendix A

Propagators and first passage times for

one-dimensional multimodal transport

A.1 Propagator for a one-dimensional halting creeper

We calculate the position distribution of a particle switching between diffusive transport
with diffusivity D and processive motion with speed v. Switching between states is a Poisson
process with rate y for entering an active state and rate A for leaving an active state (see Fig. 2.1).
The overall spatial distribution can be obtained by a convolution of propagators for individual
states, summed over all possible state transitions.

Starting at an intial position x = 0, the spatial distribution of a diffusive particle at a time t

18

1 2
Rp(x,t) = \/me_m. (A.1)

We define the joint distribution that the particle first switches to an active state at time ¢

while at position x by,

Hp(x,t) = )/eiWRD(x,t). (A.2)
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A Fourier transform in space (x — k), followed by a Laplace transform in time (¢ — )

gives,

Y

DTS (A-3)

ﬁl)(k, S) =

The position distribution of particles starting at x = 0 in the active state, moving with a
velocity v at time ¢ is given by

Ry(x,t) = 0(xFwr). (A4)

The corresponding joint distribution for the time and location of switching from the active
to the passive state is

Hyi(x,1) =2Ae M8(xFwr). (A.5)
The Fourier and Laplace transformed distribution is given by

A

Helkos) = s

(A.6)

We define a “step” in the particle’s trajectory as a switch from the passive to the active
state and back to the passive state again. If the particle starts in the passive state at zero time, the

position and time distribution at the end of one such step can be expressed as

o0 t
M(x,1) = / dx’ / di' Hp (<, 1')
oo 0

y [H+(x—X’,r—t’)+H_(x—x’,;_z’)] (A7)

2

where the first term denotes a particle reaching x” at time ' via diffusion and the second
term denotes the particle covering a distance x — x’ in the remaining time 7 — ¢’ by walking,

integrated over all values of x’ and #’. The Fourier and Laplace transformed function for the
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propagation of the particle after a full step of active and passive motion is given by,

~ Ho(ks)+H_ (k,S)> _ (A.8)

M(k,s) = Hp(k,s) ( -

To get the spatial propagator of a halting creeper particle that both starts and ends in a
passive state, we sum over all possible paths between the active and passive states, convolved
with the probability that the particle does not leave the passive state in the final time interval

(given by Hp(x,t) /7). The resulting expression for the propagator can then be expressed as:

o (A.9)

+ M kg M x4 (—) + ...,

Y
where *,; denotes convolution with respect to x and #. The first term in the summation corresponds
to a particle that never left the passive state, the second term to a particle that performs a single
active step before returning to the passive state, the third term includes two active steps, and so
forth. Applying a Fourier transform in space and a Laplace transform in time transforms the

convolutions into a geometric series, leading to

()
= Y
GDD (k, S) I ~—

1—M(k,s) (A.10)
B (s+?L)2—|—k2v2
~ (s+y+DE2) ((s+A)2+k2v2) —yA(s +A)’

where the second line follows by substituting expressions from Egs. A.3, A.8.
The distributions for the other quantities appearing in Egs. 2.5, 2.6 of the main text can be

derived similarly. The transformed distributions are:
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= Y(s+ A1)

ODW = DR (54 A2+ ) — YA (s + )
G — (s+y+Dk*)(s+A)
(s+Y+Dk?) ((s+A)>2+k2v?) —yA(s+A)
=~ A(s+A)
Gwp = 2 2 12,2
(s+7v+Dk?) ((s+A)>+k>v?) —yA(s+A) (A1)
5o Als+ A £ikv)
D st y+DRY) (s + A2 +k22) — YA (s + A)
G (s+7v+Dk*) (s + A £ikv)
N Sy DY) ((s+ A2+ k02 —yA(s+A)

A linear combination of these distributions, weighted by the equilibrium fraction of

particles in each state is used to derive the overall propagator in Eq. 2.1:
G=_" (’5 +G )+ A ('Aé +G ) (A.12)
T YEA WD wwW T+ DD Dw | - .

The expressions obtained can be transformed back to real space and real time by a combi-
nation of analytical and numerical methods. To calculate the Laplace-transformed expressions in
Eq. 2.5, 2.6, and 2.7 we invert the Fourier transform analytically as G(x, s) = =, eikxg(k, s) dk.
The Laplace transform of the range and first passage time distribution can then be inverted numer-

ically using Talbot’s algorithm [63].

A.2 Equilibrium fraction of particles

For narrow tubular cells or a rapid transverse diffusivity (D/R? > 7,k;), binding and
walking events take much longer than the time required for particles to equilibrate throughout the
cross section. In this limit, the effective rates of starting a walk or binding to a tether become ot?y

and a’ky, respectively, where o = a/R. The governing equations for the fraction of particles in
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each state are then given by,

d
fd“;alk = beound + O‘Z}/fdiff - Afwalka

d; d 2 f — —|— }' nd 3
ﬂ = kb diff (ku )fbou )

dfy
‘Z(;‘lff = kufoound + A’fwalk - a2 (kb + Y)fdiff’

faift + fwalk + foound = 1

The time derivatives vanish in the steady state, reducing Eq. A.13 to a system of linear

equations which can be solved to obtain,

yo?

) a2k, +y+k,
1 "HL( Ty+ 7+

(st
kb+y+ku
Yot 44 ( aEse )

azkb
A ( kp+y+ky

) Chptytha
re +7L< Ky ¥R

f walk —

faifr =

f bound —

A.3 Analytical model for multimodal transport in a cylinder,
with tethering

In this section we develop the full analytical model for axial transport in a cylinder of
radius R = 1 for particles capable of passive diffusion with diffusivity D, of initiating active
processive walks with a rate y while within a region of radius o of the central axis, and of entering
a stationary tethered state with binding rate k;, while in the same region. The rate constant for
unbinding from a tethered state is k, and for transitioning between an active walk and passive
diffusion is A (see Fig. 2.6(a) for illustration of the model). For ease of the derivation, all length

units in this section as well as Appendix A.4 are non-dimensionalized by the cylinder radius R
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and all time units are nondimensionalized by R/v where v is the processive velocity of actively
walking particles. We give our final results in fully dimensional units to facilitate comparison
with other sections of the manuscript.

Our model is developed in an analogous manner to the approach previously used for
modeling facilitated diffusion by DNA-binding proteins that occurs via a combination of 3D
diffusion and 1D sliding along a filament [175]. We describe the particle motion by a system
of individual states with Markovian transitions between them. The rates of transition between
the states are time-varying, depending specifically on the time interval since the particle first
entered the state. These states ( Fig. A.1) consist of: a tethered state (h), a walking state (w), a
state (n) wherein the particle started at radius & — € and has remained within a radius ¢, a state
(n,) where the particle started uniformly distributed within radius & and has remained within
that inner region, a state (f) where the particle started at radius & + € and has remained outside
the inner region at a radius greater than o and a state f;, where the particle started uniformly
distributed in the outer region and has remained in the outer region. When computing statistics
for the overall motion of the particle, we take the limit € — 0. The axial propagation of a particle
in states n,n,, f, f, is given by the propagator function for diffusive motion Rp(x,7) (Eq. A.1).
The axial propagation in state w is given by 3[R (x,#) + R_(x,t)] (Eq. A.4).

We construct a transition matrix of propagators H, where H, (x,?) is the joint probability
density for the time and position of a particle initially at the origin in state a making its first
transition out of that state, into state b. A Fourier transform in space x — k and a Laplace transform
in time ¢t — s is carried out to yield the transformed propagator ﬁ(k, s). The components of this
propagator matrix are derived from the Laplace-transformed solutions for first passage times to

an inner or outer absorbing boundary for a particle diffusing in a cylindrical domain [176]. For
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instance, the transition propagator from the 7 state to the f state is given by,

an(x7 t) = ei(khjLY)tJnf(t)RD(xa t)
Hyp(k,t) = e~ Rtr=DR) g (p) (A.15)
Hyp(k,s) = Jup (s +kp + v+ DI?),
where J(t) is the distribution of times for a diffusive particle starting at radius & — € to exit to an

absorbing cylindrical boundary at radius . The full matrix of components is listed below:

Hf 2a Il(GD)K1<OCGD) 11<OCGD)K1<GD)
ult (1 — Otz)GD Io(OCGD)KI( D) K()(OCGD)Il(GD)’
?Ifn I((a+¢€)op)Ki(op) +Ko((ex+€)op)li(op)
’ I()(OlO'D> ( )—{—KQ(OCGD)Il(O'D) ’
s 2 heo) = k(@

"l T ooy In(ooy)’ nf = In(oop)
Hnmw:DLsz<1_Hnu,f>7 Hn7w:DLG§<1_Hn,f> (A16)
= k = = k =
Hy = D%,g (1=Hnr), Hun= zTﬁg (1= Hay)

= Y =k
= A(s+A)

H T\
P (s A2 k2

where op = /(s +Dk2)/D, 6, = \/(s+ 7+ k, + Dk?)/D and I, Ky are the modified
Bessel functions of order v of the first and second kind, respectively. All other components of
ﬁ not listed in Eq. A.16 correspond to transitions not allowed in the model and are equal to O.
To calculate the overall distribution of particles, we additionally define a vector of propagators
f. Each component ; « corresponds to the Fourier-Laplace transformed spatial distribution of
particles that first reached state a at time 0 and have moved a displacement x at time ¢, without

having left that state. These components can be expressed in terms of the transition propagators

H,; by calculating the overall probability that the particle has not left its current state. For
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instance,

[1—/ Jup(t 1 ~t Ry (x,1)

Folk,s) = Tos (ks + DI + &y +7) (A.17)

1—
S+Dk2+kb—|—}/[

1 ~
_ 1—H )
s+Dk2-|—kb+y( nf

The other components can be derived analogously, to give:

= 1 = = 1 =
Fr.=+--5 (1—Hfu,n>a Fr=-—-3 (1_Hf7n>

Doy, Doy,
=~ 1 = = 1 o~
Fn":D_Gg(l_Han)’ Fn:D—szO—Hn,f) (A.18)
= A = 1
Fo_ s+

L AR "R —
T AR T T sk

The overall propagator for a particle moving through this system of states can be found by
a convolution over all possible transition paths, analogous to the discrete path sampling technique
used for calculating kinetics on potential energy surfaces [177]. Specifically, the spatial density

of a particle that started at the origin in state i at time 0 and is in state j at time ¢ is given by

Gi7j(x,t) =
(A.19)

=8ijFi+ Y, Y, Hig*...xHy_ x, *Hy, j*Fj
n=1ky,ky,...ky,

where n is the number of intermediate states over which the particle transitions and k; is the
identity of the /-th intermediate state.
Replacing the convolutions with multiplication of the Fourier-Laplace transformed propa-

gators we find the overall spatial distribution for a particle that started in a linear combination of
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Figure A.1: Schematic state diagram illustrating the particle states used to develop the analytical
model for multi-modal transport in a cylinder. Allowed transitions are labeled with arrows and
the rates for the constant-rate transition processes (to and from tethered or actively walking
state) are indicated. The transitions between diffusive states occur with a time-varying rate that
can be derived by evaluating the matrix components in Eq. A.16 at k = 0.

initial states described by the vector P.

(A.20)

where I is the identity matrix.
The Laplace-transformed mean squared displacement can be found directly from the
propagator by taking derivatives with respect to k. Its long time limit is found by expanding to

lowest order in s and taking the coefficient of the 1 /s> term:

0% =
. _ 13 2 v
tlg%MSD— [ }gr(l)s (asz(k,s)

)} t = 2Desit, (A21)
k=0

where the effective long time diffusivity D¢ is given in Eq. 2.21.

The average time for a particle with initial distribution P among the different states to first
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initiate a walk can be found as the time integral of the probability that no walk has yet occurred:

(1, (P)) = /O " ar /O " dx G (x,1:P) (A.22)

—~

where G* is obtained from Eq.A.20 with alternate transition matrices ﬁ,i*‘v* defined by removing

the rows and columns of ﬁ, F corresponding to the walking state (w). The average time to start

walking for a particle initially uniformly distributed within the inner radius & can be evaluated as

(ty) = [(I_ﬁ)_ll F (A.23)

M- k=0,s=0

where the subscript (n,,.) indicates the corresponding row of the inverse matrix. The resulting
expression is given in Eq. 2.22.

We similarly calculate the mean squared time to initiate a walk, using

—\ —1 —~
<ti>:—2% [(I—H*) ] F* : (A.24)

M- k=0,s=0

The variance in the time to start walking is given by 62 = <tvzv> — (tw>2. While the full closed-form
expression is too cumbersome to include here, in the limit of rapid unbinding from the tethered

state (k, > v,k, > D/ a?), the variance in the walking time is

lim o2 =
ky—roo

4D(1+4 a*Keq)? — 0?y(3 — 40 + o* + 4log ) (1 + Keq)
404Dy? (14 Keq)?

(A.25)

Fig. A.2 shows the Fano factor, a measure of the variability in a stochastic process defined as
the standard deviation in the time to start walking, relative to the average time. Large variability

in how long it takes a passively diffusing particle to start walking is seen in the case of slow
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diffusion and strong binding.

2

—2 —1

log (%)

Figure A.2: Fano factor 6/ (f,,) quantifying the variability in the time required for a particle to
first begin a processive walk. The particle is assumed to start uniformly distributed within the
inner radius o. Results shown are for parameters o = 0.1,k, = 100,y = 102

A.4 Simulation details

We simulate moving particles within a cylindrical domain of unit radius and unbounded
length. The axial position of each particle is tracked to determine the range and the mean squared
displacement. We also track the radial position to determine the probability of state transitions
for the particles.

Each particle is assigned to a walking, diffusive or tethered state at initialization. The
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fraction of particles in each state is determined by the equilibrium distribution given in Eq. A.14.
Unbound particles in the diffusive state start uniformly distributed radially throughout the cross
section.

We divide the cylindrical domain in two concentric sections (Fig. 2.6a). The inner domain
of radius o denotes the region within which particles can transition from the diffusive state to the
walking or tethered state. Particles execute explicit Brownian dynamics with a time-step At when
their radial position is smaller than 3¢¢/2. This includes the inner domain along with a buffer
region of radius a /2. The time step is chosen to be smaller than all relevant time-scales in the
model: Ar < min(1/k,1/y,a?/2D). Note that this choice of time-step prevents multiple events
occuring within a single step.

Particles outside the capture domain can spend a long time diffusing before reaching the
region of interest. To accelerate the simulation, we make use of the first passage time distribution
for diffusive particles between two cylindrical boundaries. The cumulative encounter probability

to an absorbing inner boundary of radius o with a reflective outer boundary of unit radius is given

by,

o[ BB
> L | 7))

X o(Bar) Y1 (Ba) = Yo(Bar)Ji (B)]
% (Y1 (Ba )1 (Ba) — J1 (Bact) Vi (Bn)] e P2 (A.26)

where J, and Y, are the bessel functions of the first and second kind respectively, with order
v [176]. The B, are eigenvalues of the equation J; (f3,)Yo(B.0) — Jo(Bn)Y1(Bn) = 0. The time
required to reach the inner domain starting from an initial radial position r is drawn from the
above distribution and the particles are propagated along the axis according to the diffusive
propagator Rp (Eq. A.1) over this time interval.

The simulation is run using a hybrid Brownian Dynamics — kinetic Monte Carlo algorithm
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where the probability of a state transition depends on the radial position of the particle. Particles
in the diffusive state within the inner domain (r < @) can transition to the tethered or walking
states at a combined rate kj, 4 . A transition is attempted at every diffusion time-step based on
the relative probabilities for tethering and walking. Transitions leading away from the tethered
state occur with a rate k,, to the diffusive state, and with a rate y to the walking state. Particles in
the walking state transition to the diffusive state a rate A. Each time particles re-enter the diffusive
state, they are uniformly distributed in the radial dimension within the inner region (of radius «),
ensuring symmetry between the binding and unbinding position. A schematic of these transitions
is shown in Fig. 2.6(a). For each transition out of a tethered or walking state, the waiting time
is drawn from an exponential distribution with the mean equal to the corresponding transition
rate. The particles are propagated in space according to the distribution for the given state over
the duration of the waiting time. The simulation continues until all particles have covered a

predetermined time interval.

A.5 First passive passage time

For certain intracellular particles such as mRNAs [178] and proteins encapsulated within
transport vesicles, we would expect that the particles are unable to perform their target-capture
functions while in the processively moving state. Under this restriction, it is desirable to know
how much time is required for an organelle to reach its target in the correct state while undergoing
multi-modal transport. An important quantity in this context is the passive first passage time
distribution (Fp(x,t)), which is the overall probability density for the time ¢ at which the particle
first passes position x in a diffusive state. While the renewal equations (Eq. 2.5 and Eq. 2.6) can be
used to obtain the probability of first passage occuring in the diffusive state, in order to obtain the
required distribution we must also consider particles that achieve first passage in the processive

state and after subsequent state transitions eventually return to the target in the diffusive state.
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Figure A.3: Effects of state dependent activity: a) Time to reach 90% capture probability f9gg,
for different run lengths and biologically relevant transport parameter values. Solid lines denote
toog for particles that can capture their target only in the passive state. Dashed lines denote f9gg,
for particles that capture their target in either state. o, *,{ denote run lengths of 0.1pum,1um,
and 10um respectively. Plots for £ = 0.1um overlap. b) Average time for target capture by
a uniformly distributed population as a function of the starting rate ¥ for different values of
diffusivity D. The particle density p = 0.3 and other parameter ranges include the observed
parameters for peroxisome transport in fungal hyphae.

The halting creeper model allows for the calculation of Fp(x,t) by summing over all
trajectories that first pass the target in the diffusive state at the specified time. For particles
that pass in the processive state, the turning events required to return to the target can be
expressed as a series of convolutions over time. A Laplace transform <Fp(x,t) — Fp(x, s)>

converts these convolutions to multiplication, leading to an expression for the first passive passage

time distribution as follows,

~

Fp(x,s) =

Fup(x,5) + Fuy (x,5) ﬁw(o-,s)+F+_(o—,s)ﬁ_p(o+,s)] i [f+_(0_,s)f_+(0+,s)]m,

m=0

(A.27)

where F; i(x,s) denotes the Laplace transformed first passage time distribution of a particle
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starting in the state i and reaching the target position x in the state j. The possible states are the
passive state (D), walking in the forward or backward direction (), and walking in any direction
(W). An asterisk (x) denotes a sum over all possible starting states, weighted by the respective
steady state probabilities for each state. The first term in the expression denotes the particles that
reach the target in the diffusive state for the first time. Subsquent terms in the infinite sum include
particles which need to change states and return to the target position, with each term denoting an
additional return to the target in a non-functional state.

Under the assumption of symmetric starting rates, we can write ﬁ+_ (07,s) = I/T\_Jr (0T,s),

and F, (0™, s) = F_p(0*, s), which reduces Eq. A.27 to

P = E+()C, S)ﬁ_D(0+,S)
Fp(x,s) = Fip(x,s)+ = (A.28)
Pl = Foles )t T 0 )

Eqgs. 2.5,2.6 allow us to calculate the probability density of a particle that starts at equilib-
rium executing first passage at a particular time while in the passive state (I?*D (x, s)) or while
actively walking forward <ﬁ+(x, s)) Other quantities appearing in Eq. A.28 can be calculated

from the renewal equations for particles starting in the active state walking backward,

t
G_D@J):iéch/VLDOQxﬂhMﬂQt—tq

+ F_ (t'sx)Gyp(0; —1)],

; (A.29)
GWWO:/dHRmﬂ@Qme4@
0
+ F_y (t:x)Gyw (0750 — )] .
After a Laplace tranform, Eq. A.29 reduces to a system of linear equations,
(/;\DD 0 6 D 0 ﬁ,D X C/;\,D X
Goo0) Gen(©) | | Foole) | _ | Gonle) | A0
Gpw(0) Gaw(0F) | | Fov(x) G_w(x)
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where the argument (1 — s) is implied. The right-hand side can be evaluated at x = 0" by

~

carrying out the Fourier inversion of 5_ p, G_w through direct integration of the expressions in
Eq. A.11 over k. The Laplace transformed first passive passage time distributions F_ D, ﬁ_+ are
then inverted numerically using Talbot’s algorithm [63].

We study the implications of this search process, where particles are functional only in
the passive state, by first calculating the time required for a single particle to reach its target with
90% probability (Fig. A.3a). As in the case where both active and passive states allow capture, we
see that an intermediate run-length can optimize the capture time. However, when only passive
capture is allowed, this optimal run-length is shifted to much shorter values, as would be expected
since long run lengths result in the particle spending less time in a functional state.

Additionally, we calculate the average time required by any particle within a uniformly
distributed population (of density p = 0.3) to reach a stationary target (Fig. A.3b). As compared
to a particle that is functional in both states (Fig. 2.5), the diffusivity has a much bigger role to
play for a particle that can only capture while passive. Because increasing diffusivity allows a
particle to search a wider region during each sojourn in a functional state, the diffusion coefficient
substantially modulates the capture time even at very large values of §. Furthermore, in the case
of passive capture, increasing the fraction of processively moving particles does not necessarily
speed up capture. An optimum starting rate } arises from two competing effects. On the one
hand, the faster transport in the processive state allows particles to reach the region near the target
more rapidly. On the other hand, a large value of the starting rate proves detrimental, as particles
reaching the target are less likely to be in the functional state. This optimization in terms of
the fraction of time spent moving processively has previously been noted by several studies on
two-dimensional multi-modal search processes[27, 34, 179].

A search process where the particle is functional only in the passive state is applicable to
components, such as neurotransmitters, that are encapsulated within vesicles but must be released

in order to carry out their function. Additionally, in the case of a tubular cell region (see Section
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2.6), a target that is located away from the microtubule track could only be reached when the

organelle is in the diffusive state.
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Appendix B

Methods for Aspergillus nidulans strain
development, image processing, and
Brownian dynamics simulations for

hitchhiking initiation

B.1 Aspergillus nidulans growth conditions

A. nidulans strains were grown on yeast extract and glucose media agar gum plates for
maintenance [180]. A. nidulans spores were then transferred prior to imaging to 1% glucose
minimal media [181] supplemented with 1mg/ml uracil, 2.4mg/ml uridine, 2.5t g/ml riboflavin,
1 g/ml para-aminobenzoic acid, and/or 0.5 g/ml pyridoxine if required.

For TIRF microscopy of mature hyphae overexpressing PxdA(A1-500)-TagGFP from
the AlcA promoter, spores were inoculated onto minimal media agar gum plates with 100mM
threonine (without glucose) for 22-25 hours at 37°C. Colonies were excised from agar plates

and inverted onto an eight-chambered Nunc Lab-Tek II coverglass (Thermo Fisher Scientific) for
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imaging. PxdA(A1-500)-TagGFP expression was confirmed by observation of motile puncta in
the 488-channel (imaged as described in Section B.3.3)).

For lattice light sheet and spinning disk microscopy of A. nidulans germlings, A. nidulans
spores were resuspended in 1 mL of 0.01% Tween-80. The spore/Tween-80 solution was then
added 1:1000 to 1% glucose minimal media supplemented with 1ug/ml para-aminobenzoic acid

on 1.5 thickness Smm circular coverglass, and incubated for 20-24 hours at 30°C.

B.2 Aspergillus nidulans Strain construction

Table B.1: A. nidulans strains used in Chapter 3

Strain Genotype Source
yA::[gpdA(p)-mCherry-FLAG-PTS1::Afpyro]; pyroA4;
RPA288 pyrG89; AnkuA::bar 171
RPA402 wA, [ebA-mCherry-Afribo], [tubA-GFP-Afpyro]; pyroA4; This study

pyrG89; pabaAl; AnkuA:.argB

yA::[gpdA(p)-mCherry-FLAG-PTS1::Afpyro];
RPA495 [TagGFP2::rabA::AfpyrGl; pyroA4; pyrG89; pabaAl; [17]
AnkuA:.argB+

yA::[gpdA(p)-mCherry-FLAG-PTS1::Afpyro]; pyroA4,
RPA1205 wA::[alcA(p)-pxdA(A1-500)-tagGFP::pyrG]; pyrG89; This study
AnkuA::bar

Aspergillus nidulans strains used in this study are listed in Table B.1. Strain RPA402
expressing EbA-mCherry and TubA-GFP was created through genetic crossing, as previously
described [182]. Strain RPA1205 overexpressing PxdA(A1-500)-TagGFP was created by ho-
mologous recombination of a single copy at the wA (white) locus using AfpyrG (Aspergillus
fumigatus pyrG) selection into a strain lacking the A. nidulans homolog of human KU70, nkuA
[181]. A PxdA construct without the first 500 amino acids was chosen and created following

difficulties with cloning a GFP-tagged PxdA full-length construct, and because PxdA without the
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first 500 amino acids rescues a pxdAA strain similarly to full-length PxdA (unpublished). The
PxdA(A1-500)-TagGFP DNA construct contains an AlcA promoter sequence [183] followed
by the PxdA gene without the region encoding the first 500 amino acids [17], TagGFP codon
optimized for A. nidulans, pxdA’s native 3’ UTR, and the AfpyrG selectable marker, all flanked
by 1 kb wA locus arms of homology. These fragments were all inserted into the Blue Heron
Biotechnology pUC vector at 5" EcoRI and 3’ HindIII restriction sites using isothermal assembly
[184]. The plasmid was confirmed by sequencing, and linear DNA to be transformed into A.

nidulans was created by PCR using primers at the 5’ and 3’ ends of the wA arms of homology.

B.3 Imaging Methods

B.3.1 Lattice light sheet microscopy

A. nidulans germlings are grown on 1.5 thickness Smm circular coverglass as described
in Section C.8, then mounted and imaged on a home-built lattice light sheet microscope to
obtain timelapse z-stacks of endosomes and peroxisomes. Our home-built lattice light sheet
microscope was constructed following the design described by Chen et al. [185] and detailed
design information provided by the Betzig group at the Howard Hughes Medical Institute Janelia
Research Campus. The optical layout was modified yet retained the relative optical component
locations and optical performance of the original layout. A square lattice pattern, corresponding
to 73 Bessel beams, was displayed on a SLM (Forth Dimension Displays, SXGA3DM). A 488nm
laser (Coherent Genesis MX) with 0.2mW total output was shaped with two cylindrical lens
pairs to illuminate the pattern. The Fourier transform of the resulting beams was projected by
a 500mm lens onto an annular mask, conjugate to the back focal plane (BFP) of the excitation
objective lens. The annular mask used, corresponding to numerical aperture 0.55(outer diameter)
and 0.44(inner diameter) of the excitation objective lens, spatially filtered the pattern to remove

unwanted diffraction orders. This annular mask provided for a 10um beam waist (FWHM)
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and sheet thickness at the center of 0.92um, measured by scanning and imaging 0.2um beads
(Thermo Fisher Scientific F8811). The BFP was projected onto galvo mirrors and used to dither
the lattice pattern in the x direction continuously over a 30um range in 0.15um step for even
sheet illumination. The fluorescence signal was imaged with a sSCMOS Camera (Hamamatsu
Photonics Orca Flass4.0 v3) through a bandpass filter ET525/50m (Chroma Technology) with
a 20msec exposure time. All imaging was performed at room temperature. To acquire 3D
images the sample was moved in 0.98um steps over a 19.6um range by the piezo stage it was
mounted on. This corresponds to 0.51um steps and a 10.2um range in the detection optical
axis because of a 31.5° angle between the stage axis and the light-sheet plane. Following data
acquisition, the image volumes underwent rotation and deconvolution based on a measure PSF
with a custom cudaDeconv software (https://github.com/dmilkie/cudaDecon) using the
Richardson-Lucy deconvolution algorithm distributed by the Betzig group and LLSpy software
developed by Dr. Tally Lambert at Harvard University (https://github.com/tlambert03/
LLSpy) to automate the process. Maximum intensity projections of the deconvolved and rotated

data were created using F1JI/Image] [186, 187].

B.3.2 Spinning disk microscopy

A. nidulans germlings were imaged using a Yokogawa W1 SoRa confocal scanhead
mounted to a Nikon Ti2-E microscope, set to 1x intermediate magnification, with an Apo TIRF
100x 1.49 NA objective. The scope was run with NIS Elements using the 488nm and 561nm lines
of a six-line (405nm, 445nm, 488nm, 515nm, 561nm, and 640nm) LUNF-XL laser engine and a
Prime95B camera (Photometrics). Image channels were acquired sequentially using bandpass
filters for each channel (525/50 and 595/50). Z-stacks were acquired using a piezo Z stage (Mad
City Labs). The z-range used to image a field of germlings was set manually depending on

germling extension from the coverglass surface.
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B.3.3 TIRF microscopy

For TIRF imaging, time-lapse images were collected using a TIRF 100x /1.49 oil im-
mersion objective on an inverted epifluorescence Ti-E microscope with Perfect Focus System
(Nikon) and controlled by NIS-Elements software (Nikon). Stage position is controlled by a
ProScan linear motor stage controller (Prior). GFP or mCherry fluorescence was excited by a
488-nm (S0mW) or 561-nm (50mW) laser line, respectively, from an LUNV laser engine (Nikon).
Excitation and emission paths were filtered with the appropriate single bandpass filter cubes

(Chroma) and emitted signal was detected using an EM-CCD camera (Andor, iXon Ultra 888).

B.4 Estimating parameters for A. nidulans hyphae

B.4.1 Estimating linear density of peroxisomes and endosomes
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Figure B.1: (a) Schematic of organelle density quantification. (Top) Maximum intensity z-
projection of an A. nidulans germling expressing mCherry-Pts1 (peroxisome marker). White
dotted line shows outline of the hypha. (Middle) Yellow line shows example hyphal length
measurement. (Bottom) White dots represent each peroxisome identified . Scale bar, Sum, (b)
Scatter plots of organelle density per um hyphal length. Each circle represents the organelle
density of one hypha quantified in the 10th frame of a timelapse movie. Mean peroxisome
density was 0.90 £0.11 (SEM) per um hyphal length. Mean early endosome density was
4.57£0.41 (SEM) per um hyphal length. Error bars=SD. n = 19 hyphae for peroxisome
density measurements and 12 hyphae for early endosome density measurements.

To calculate endosome or peroxisome density, lattice light sheet images of an A. nidulans
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strain expressing TagGFP-RabA (endosomes) and mCherry-Pts1 (peroxisomes) were deconvolved
and z-aligned as described in Section B.3.1. Maximum intensity projections were then created
using FIJI/ImagelJ[186]. As our simulations take into account organelle (early endosome or
peroxisome) density per unit hyphal length, the organelle density was quantified by measuring
the length of the hypha and quantifying the number of early endosomes or peroxisomes within
that hyphal length. The length of the hyphae within the field of view was measured by manually
drawing a line along the hyphal length using FIJI/ImageJ (Fig. B.1) and taking a measurement.
Early endosomes or peroxisomes were identified within the same regions using the Crocker-Grier
3D particle tracking algorithm [188], implemented via publicly available code[189]. The number

of organelles per unit length was then calculated to determine organelle density.

B.4.2 Estimating microtubule number
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Figure B.2: (a) Maximum intensity z-projection of an A. nidulans germling expressing TubA-
GFP (microtubules) (top) and EbA(EB1)-mCherry (microtubule plus-end marker) (middle) and
a merged image (bottom). White dotted line denotes outline of A. nidulans germling. Yellow
box denotes region in which EbA(EB1) puncta were counted (the region between the hyphal tip
and the nuclei nearest the hyphal tip). Scale bar, Sum. (b) Bar graph of number of EbA(EB1)
puncta in the region between the hyphal tip and the nucleus nearest the hyphal tip. Mean number
of EbA(EB1) puncta was 4.62 + 0.14 (SEM). Error bars=SD. n = 133 hyphae.
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To quantify microtubule number, maximum intensity projections of spinning disk images
from A. nidulans hyphae expressing EbA-mCherry (microtubule plus-end marker) and TubA-GFP
(microtubules) were created using FI1JI/ImageJ[186]. Microtubule number was quantified by
manually counting EbA tips within the region between the nucleus nearest the hyphal tip and
the hyphal tip. The nucleus was identified as a dark circular region in the EbA background
fluorescence. If the first visible nucleus closest to the hyphal tip was further than 10um from the

hyphal tip, then the EbA spots within 10um of the hyphal tip were counted.

B.4.3 Estimating the diameter of Aspergillus nidulans hyphae
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Figure B.3: (a) Schematic of hyphal diameter measurements. Maximum intensity z-projection of
an A. nidulans germling expressing TagGFP-RabA (early endosomes). White dotted line shows
outline of the hypha. Five diameter measurements were taken along each hypha, represented
by yellow lines. Scale bar, Sum. (b) Scatter plot of A. nidulans hyphal diameter measurements.
Each circle represents the average of five measurements for one hypha. Mean hyphal diameter
was 2.33+£0.25 (SEM) pum. Error bars=SD. n = 23 hyphae.

To quantify the diameter of A. nidulans hyphae, lattice light sheet images of an A. nidulans
strain expressing TagGFP-RabA (endosomes) and mCherry-Pts1 (peroxisomes) were deconvolved
and z-aligned as described in Section B.3.1. Five measurements of hyphal diameter were taken
along each hypha by manually drawing a line across the hypha width and measuring using

FlJI/Image].
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B.4.4 Estimating number of peroxisome movements

To quantify peroxisome movements, time lapse images of A. nidulans strains expressing
mCherry-Pts1 with or without overexpressed PxdA(A1-500)-TagGFP were collected at 500ms
intervals for 1 minute total. Overexpression of PxdA(A1-500)-TagGFP was verified by motile
puncta in the GFP channel. A line was drawn perpendicular to the hyphae 10um from the hyphal
tip. The number of peroxisomes that crossed the line over a 60 second movie was counted [8]. A

Mann-Whitney test was performed to determine statistical significance.

B.5 Extraction and classification of peroxisome trajectories

B.5.1 Extracting peroxisome trajectories from live-cell imaging data

Lattice light sheet images of an A. nidulans strain expressing mCherry-Pts1 (peroxisome
signal) were deconvolved and z-aligned as described in Section B.3.1. Image stacks of voxel
size 0.104um x 0.104um x 0.5um were generated at a rate of 0.36 — 0.42 seconds per frame.
Images were thresholded to remove pixels of brightness below the 10™ percentile.

Peroxisome punctae in these images were located by adapting a publicly available im-
plementation[189] of the Crocker-Grier 3D particle tracking algorithm[188]. The image is first
denoised with a bandpass filter, followed by identification of brightness peak centroids. Peaks are
filtered according to a minimal separation between objects. Peaks with average brightness below
a certain percentile of overall image intensity (mass cutoff) were excluded. Punctae identified in
frames of time-lapse images were linked together to obtain trajectories of individual peroxisomes.
We allow linking of trajectories that may skip up to 1 frame, and only keep trajectories that are
longer than a minimum duration. Parameters used for identifying and linking peroxisome punctae

are shown in Table B.2.
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Table B.2: Parameters for extracting trajectories of peroxisomes in A. nidulans hyphae

Parameters for particle identification

Parameter Description Value
band;;?zz filter size of band-pass filter 8 x 8 x 3 pixels
object . . . .

. minimum separation between objects 7 %7 x 2 pixels
separation
mass cutoff minimal percentile for average feature brightness 96

Parameters for linking tracks

Parameter Description Value
memory number of frames that can be skipped while linking 1
displacement max displacement of an object from one frame to 0.75um
another
fntmum minimum number of frames in a trajectory 20
length

B.5.2 Identification of peroxisome hitchhiking events from extracted tra-
jectories

3D trajectories of peroxisomes extracted from Lattice light sheet images were analyzed
using a wavelet-based adaptive thresholding algorithm[61] to identify peroxisome hitchhiking.
This approach uses the Haar wavelet transform over varying time-scales to identify segments of
processive motion in trajectories. A sliding wavelet transform over a scale of 2 frames was used
to extract a global estimate of noise for all the trajectories. A universal threshold was calculated
based on the estimated fluctuations, to determine the typical displacement driven by diffusion
over a given time-scale. We used a sliding window of 6 frames to identify time points when the

wavelet coefficient was greater than 0.5 times the universal threshold. These points were marked
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as corresponding to processive motion, since they corresponded to average particle displacements
bigger than what would be expected for diffusion over that time scale.

Trajectory sections with at least 3 consecutive frames of processive motion were marked as
“active" and assumed to correspond to hitchhiking events. The remaining sections were classified

as “passive". Sample trajectories with marked active and passive sections are shown in Fig. B.4.
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Figure B.4: Sample trajectories of peroxisomes extracted from time-lapse Lattice light sheet
images. Active (red) and passive (blue) sections of trajectories are shown. Trajectories shown
are extracted from multiple hyphae and from different time-lapse series (biological replicates).
Only trajectories with at least one active section are shown here.

To obtain statistics for the rate of hitchhiking initiation, we included only those trajectories
of length at least 100 frames. All longer trajectories were cut off beyond 100 frames (f,x /= 40sec).
Only those trajectories which started in the passive state and had at least one active section prior
to tmax Were included in the analysis (n = 115 trajectories). An empirical cumulative distribution
function was calculated for the waiting time until the first active section (Fig. 6b). This distribution

was fit to the conditional cumulative distribution function for waiting times of a Poisson process
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with rate constant k;nj;:

1 — ¢ kinitt

Pcum(t) — (Bl)

1— e*kinittmax )

The denominator in this expression accounts for the fact that only trajectories eventually exhibiting
an active section are included in the analysis. We use bootstrapping to repeat the analysis for
100 samples of trajectories drawn with replacement from the measured trajectory population,

allowing calculation of a standard error for our fitted value of kiyj;.

B.6 Derivation of timescale to encounter a carrier organelle

In this section we provide a brief derivation for the average time a cargo must wait to
encounter a carrier organelle. The inverse of this timescale gives the rate of carrier encounter
kearrier glven by Eq. 3.2. A fundamental assumption in this derivation is that the cargo organelle is
initially formed with a uniform distribution within the cross-sectional area of the domain, so that
its probability of starting in the microtubule-proximal region is fy.

We label the three states in Fig. 3.2a as A (far from microtubule), B (close to microtubule),
and C (hit by carrier), and treat transitions between the states as memory-less Poisson processes.
The propagator functions P,;(¢) are defined as the probability distribution that a particle arriving
at state i at time O will first transition to state j at time ¢, without previously leaving state i.
First passage times in a system of discrete Markovian states can be derived from a convolution
of these propagator functions[175, 190], an approach which has been termed “discrete path
sampling"[177] or “Markov state models"[191] in different contexts.

Namely, for a system starting in state A (outside the microtubule-proximal region), the
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distribution of first-passage times to reach state C (encounter with a carrier) is given by

Fuc(t) = Pap * Ppc + Pap * (Ppa * Pag)Ppc + Pap * (Pa * Pag) (Ppa * Pa)Pac - .- (B.2)

where * denotes convolution, the first term corresponds to the particle reaching state B and then
transitioning to state C, and the second term corresponds to the particle executing one excursion
from B back to A before finally reaching state C, the third term has two such excursions, and so
forth.

A Laplace transform in time (P,j(s) = %_,s[P,j(t)]) converts the convolutions into multi-

plications, allowing this expression to be simplified to:

A T — PO PipPyc
Fac = PapPsc Y (PsaPap)" = —5—— (B.3)
=0 1 — PpaPag

The Laplace transforms for the individual propagators are:

kpass

kMT A kleave 5
Ppc =

Pip=—"—, Ppa= ;
s +kmr 5+ Kieave + kpass § + Kieave + kpass

(B.4)
Plugging these into the distribution of first passage times (Eq. B.3), and taking the limit
s — 0 allows the calculation of average time to encounter a carrier (for a particle starting far from

a microtubule):

S dEsc o = kicave +kmT + Kpass
ds = kMTkpass .

We note that the inverse of this first passage time is the standard rate constant for a Michaelis-
Menten process which involves a substrate binding on and off an enzyme prior to a final irre-
versible reaction. The current model is analogous to this process, with a starting state far from the

microtubules corresponding to the unbound substrate.
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However, in our model system we expect the cargo to sometimes originate within the
microtubule proximal region, especially if there are many microtubules in the domain. A similar

analysis for particles starting with state B gives a first passage time to carrier encounter:

. )%
Fye = __"BC
| — PpaPag (B.5)
T = _dFBC‘ 0= kleave +kMT
ds "~ kMTkpass

Overall, we assume the particle starts in state A with probability ps = kieave / (kMT + Kicave )
and in state B with probability pp = 1 — p4. This allows us to calculate the overall mean first

passage time to carrier encounter

(kleave + kMT>2 + kleavekpass

(B.6)
kMTkpass (kleave + kMT)

T=PpATA+ PBTB =

The inverse of this expression gives the effective rate for carrier encounter kcypyier = 1/7

(Eq. 3.2).

B.7 Extracting the rate of contact between carrier and hitch-

hiker

The rate of contact between the carrier and the hitchhiker is extracted from the cumulative
probability of contact vs time obtained from simulations. As described in the Methods section,
2500 trials of carrier passage in a tubular geometry are simulated with Brownian dynamics. For
each trial, we record the probability of contact occurring within a given time-step. This probability
density is integrated to obtain the cumulative probability distribution as a function of time, which
is then fit to a double exponential function F(fi, Ty, f>,T2,1) =1 — fie~"/® — fe!/®. The two

weights f1, f> need not sum to 1, because some trajectories start with the cargo already in contact
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Figure B.5: Cumulative contact probability (solid black line) vs time showing single (blue,
dotted line) and double (green, dashed line) exponential fits.

with a carrier organelle or linker tip. The average time to contact is obtained as T = f] 7| + f272,

and the overall rate of contact is defined by kp;; = 71

. This approach effectively extrapolates
the cumulative contact time distribution to longer times using a double-exponential fit. It allows
the calculation of an effective rate even when that rate is quite small, without the need for the
very long simulations that would be required for all trials to achieve contact. We note that the
double-exponential form is chosen ad-hoc as a smooth functional form that reproduces the data
reasonably well. No explicit physical meaning is assigned to the two time-scales. The more
commonly used single exponential fitting function [F(f,7,1) = 1 — fe /7] provides a poor fit
compared to the double exponential (Fig. B.5). We note that the qualitative behavior of the rate
of contact between a hitchhiker and carrier remains the same regardless of the choice of fitting
function.

The same fitting procedure is used to extract the rate of contact with a linker protein

(Fig. 3-5, 7) and the average time for a cargo to reach a microtubule proximal region (Fig. 2b).

A double-exponential functional form was used for all of these quantifications, as a single
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exponential did not accurately reproduce the observed cumulative distribution.

B.8 Simulating linker protein encounters
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Figure B.6: (Top) Spatial distribution for the free end of a wormlike chain with persistence
length £, = 0.1um, where one end has its position fixed at the white dot and orientation fixed
upwards. Color indicates the probability density of finding the linker tip at a given location.
Sample configurations of linkers are shown with white lines. (Bottom) Probability of contact
[p(d, B)] between a cargo organelle and a linker protein, shown as a function of cargo position
relative to the linker attachment point (black dot). The carrier organelle location (green), example
cargo location (magenta), and sample linker configurations (black lines) are shown. Both cargo
and carrier have a radius of 0.1um.

In A. nidulans hyphae, the protein PxdA is a putative linker that connects hitchhiking
peroxisomes to motor-driven early endosomes. Analysis of the makeup of PxdA reveals a coiled-
coil region that is predicted to be about ~ 90nm in length[17]. We also note that the persistence
length of coiled-coil proteins is reported to be in the range 30 — 170nm [101-104]. The expected
mechanical properties of these linker proteins thus fall in the category of semiflexible polymer
chains, and we therefore model a typical linker protein as a “worm-like" chain[96] (WLC) whose
base is fixed on the surface of the carrier organelle.

Using analytically derived Greens’ functions, we first obtain the spatial probability dis-

tribution G(r, 0, ¢;2) of the linker end point, assuming the initial orientation (2) points radially
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outward from the carrier [97]. Since the distribution is azimuthally symmetric, we can represent
the distribution in terms of r and 6 as G'(r,0;2) = 21G(r, 0, ¢;2). Note that this representation
preserves the normalization fom I foé r*G(r,0,¢;2)drd(cos 8)d¢ = 1. Fig. B.6 (top) shows the
end distribution G'(r, 6;2) for a WLC with persistence length [, = 0.1um, and varying chain
lengths ().

To determine the probability of contact between the linker and a hitchhiker located at
any given position, we calculate the overlap between the equilibrium spatial distribution of the
WLC tip and the volume occupied by the hitchhiking cargo. In the reference frame of the fixed
linker end, we assume a sphere of radius r,, is placed at polar coordinates (d,8,0), where d is the
distance from the linker attachment point and f is the angle of the hitchhiker position relative to
the initial linker orientation. The integral of the linker end distribution over the volume occupied
by the sphere then gives the probability of contact for that particular position of the hitchhiking
cargo.

Assuming the tip of the WLC is located at (r,0,¢), its distance from the center of a

hitchhiker located at (d, ,0) is given by

R= \/r2+d2—2rd(sin9cosq)sinﬁ +cos 6 cosf)

For the point (r,0,¢) to be in the interior of the hitchhiker, the distance R should be less than the
hitchhiker radius, or R < rj,. Comparing these expressions gives us a range of possible values of

¢ for which the point (r, 0, ¢) lies inside the hitchhiker. The range of ¢ values satisfies

2rd?_ g2

> P cotOcotf.
COS¢_2rdsin65in/3 cot6 cot

The total amount of azimuthal overlap can be obtained from the values of ¢ that satisfy the above
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inequality. Denoting this overlap by A®(r, 0;d, ), we can write

2rd?_ g2

P —cothot[)’) .

. — -1 N7 NN

Note that A® = 0 if the linker tip cannot overlap with the hitchhiker, and A® = 27 for complete
overlap.
Using the azimuthal overlap, we can write the probability of interaction between the tip

of the WLC and the hitchhiker as

p(d,B) = /_lld(cose)/oérzdr%;d’md(n9;2)

The probability p(d, B) is tabulated with d varying from ~ 0 to (¢ +r,), and B varying
from O to 7. Fig. B.6 (bottom) shows p(d, ) for varying linker lengths. In our simulations,
whenever the hitchhiker comes within a distance (¢ + r,) from the base of a linker, we calculate
its position (d, ) relative to that linker base and obtain the associated overlap probability p(d, )
by interpolating the tabulated values. Successful contact is determined by sampling from this

probability at each time-step.

B.9 Determining the distribution of encounter durations be-
tween linker protein and hitchhiker

In the case where the cargo’s encounter with a linker protein does not immediately result
in a successful hitchhiking event (Fig. 7), we sought to estimate the duration of a single encounter.
During an encounter, the cargo, carrier, and linker protein can diffuse briefly in and out of contact,
while remaining in close proximity to each other. We therefore define many such transient

contacts as a single encounter over the time period associated with the carrier passing from one
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side of the cargo to the other. Specifically, an encounter begins when a given linker first contacts
the cargo (determined as described in Section B.8). The encounter terminates when the axial
position of the processively moving carrier has passed a certain distance (r, + r, + £+ A) beyond
the position of the cargo. This distance is picked to represent the point at which a diffusing cargo
can no longer catch up to a processively moving carrier to continue the same correlated encounter
event. During this period, only those time points for which the linker is in contact with the cargo
(defined as in Section B.8) are included in the calculation of encounter duration.

The cutoff distance A is selected to be the length scale beyond which processive displace-

ments exceed the root mean squared displacement due to diffusion:

vt* >V4Dt*, A=wvt*>4D/v ~ 30nm (B.7)

We pick a separation above this cutoff (A = 50nm). Once the carrier has moved this far away
from the cargo surface, it is assumed that any further contact with the same linker is an unrelated,

separate, encounter event.

B.10 Contact rates for larger hitchhikers

Peroxisomes are dynamic organelles that can vary in size ranging from 0.1um-1um
depending on the cell type. Peroxisomes are also known to modify their interactions with other
subcellular components resulting from morphological changes [192]. In this section, we explore
how changing the size of the hitchhiking cargo affects the rate of encounter with passing carriers.

For the tubular geometry described in the main text, increasing the size of the hitchhiker
enables it to access a larger cross-section of the intracellular space, making it more likely to come
in contact with a carrier. Assuming the radius of the hitchhiker as 0.3um (compared to 0.1um

used in the main text), we calculate the rate of encounter with the tip of a linker on a carrier
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organelle. We note that while the overall rate of encounter increases, the qualitative dependence
on carrier density, linker length and number remains the same.

Exploring the effect of tethering large hitchhikers to microtubules, we note that the
enhancement of the encounter rate due to tethering is somewhat diminished compared to smaller
hitchhikers. However, the overall enhancement still remains substantial and can be up to 8-fold
for carrier transport parameters discussed in the main text (compared to ~12-fold for hitchhikers

of radius 0.1um).
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Figure B.7: Rates of linker encounters for larger hitchhiking organelles (r, = 0.3um). (a) Rate
at which hitchhiker encounters the first linker tip as a function of carrier density and the number
of microtubules. (b) Effect of linker length and linker number per carrier on the encounter rate.
(c) Enhancement of overall contact rate with a linker protein tip, due to tethering of cargo. (d)
Ratio of encounter rates with linker protein tips, for a tethered versus diffusive cargo.

160



Appendix C

Derivations, supplemental results, imaging
methods and Aspergillus nidulans strain
information for the role of microtubule

arrangements in cargo capture

C.1 1D model for calculating the MFPT to capture diffusive
cargo

The 1D representation of capture regions for a particular distribution of microtubule
lengths can be obtained as described in the Methods section of the main text. The cellular region
is denoted by a linear domain of length L, with partially absorbing intervals positioned at the axial
location of microtubule plus-ends. Assume that the 1D representation divides the domain into
N intervals. Each interval has a fixed, discrete number of overlapping plus-end capture regions.
Boundaries of each interval are denoted by the points x;, 0 < i < N, such that the i interval is

bounded by x;_1 and x;. The first interval begins at the reflecting boundary xo = L (cell tip), and
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the last interval ends at the perfectly absorbing boundary at xy = 0 (cell body). The length of
an interval is denoted as /;, which is the length between the node x; and x;, where k =i+ 1.
The absorption rate in the intervals bounding the node x; is similarly denoted as ¥y, k =i+ 1.
The absorption rates 7;, are linearly proportional to the number of microtubule plus-end capture
regions that overlap on that interval. The rates are treated as integer multiples of the single-end
absorption rate k.

For a particle that starts at node x;, the splitting probability of diffusing to the neighboring

nodes x;1 without being captured is given by

-1
Py = }gr(l) ik (sinh Ak j:Zi;tl o;j coth Otijgi]) , (C.1)

where o;; = /(s +7¥:;)/D, and k = i £ 1. The duration for which the particle has remained within
the intervals adjacent to x;, and has not been absorbed or reached another node (x;+1) is given by
the waiting time
Y L tanh(%4)
=Y
0;=lim—

s—0D ) (XijCOth(OCijfij).
j=itl

(C.2)

The mean first passage time to capture for particles starting at the distal end can then be

calculated as

t=V.1-P) .0, (C.3)

where P is an N x N matrix whose elements Py represent the splitting probabilities between
nodes, with the rows and columns corresponding to the absorbing boundary at node xy41 (x = 0)
are set equal to zero. Q is an N x 1 vector with elements representing the waiting time at each

node except Xy 1. Visan 1 x N vector denoting the initial particle distribution at each node (for
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distally produced particles: Vj = 1 and all other elements are zero).
For cargo that starts uniformly distributed along an interval m, the splitting probability

and the waiting time to leave the interval at its bounding node x; (m — 1 < j < m) are given by

(C4)

Eq. C.3 can be modified to obtain the MFPT for cargo initially distributed uniformly

throughout the cell as

1B =W ®) . [gE) { pE) (1_p)". Q] _ (C.5)

Here, w(E) represents the initial distribution along each interval, and elements of Q(E ) and P(£)
are obtained using Eq. C.4. Further details of the propagator based approach are available in

Ref. [139].

C.2 Steady state distribution of dynamic microtubule plus-
ends

Microtubule dynamics are incorporated using a basic model of growth and catastrophe as
described in the methods section of the main text. Here, we obtain the steady-state probability
density of microtubule plus-end positions P(x) within the interval 0 < x < L representing the
axis of the tubular cell. Microtubules are assumed to grow with velocity v, within the linear
interval, and enter a paused state upon reaching the cell tip at x = L. Both growing and paused
microtubules can switch to a shrinking state with a catastrophe rate k¢,r. Shrinking microtubules

are assumed to instantaneously disappear, and are replaced by zero-length growing microtubules
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to maintain a constant number of capture-capable microtubules throughout the cell. Shrinking
microtubules are assumed to have lost the dynein comet due to depolymerization, and thus are
incapable of capture.

The dynamics of microtubule plus-end positions under these assumptions can be repre-
sented by

0 0

EP(x,t) = —vgaP(x,t) — keatP(x,1),
d

ENend = VgP(Lat) — keatNend,

(C.6)

where the P(x,7) is the density of growing microtubule ends and Nepg is the number of mi-
crotubules paused at the distal tip. The boundary condition is given by setting the influx of
growing microtubules at the cell body in such a way that the total number of microtubules
(nvmT = fOL P(x) + Neng = 5) stays constant. Integrating Eq. C.6 over the domain and setting the

resulting time derivative to zero yields the boundary condition:

The steady-state solution for this system of equations is given by:

P(x) = nmt <@> ¢ Keart/ Ve,

Vg

(C.7)

Nend = nMTe_kcatL/Vg

C.3 List of model parameters

List of parameters used in this study are provided in Table C.1.
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Table C.1: Model parameters used in Chapter 4

Parameter Description Value Source
L Length of tubular cellular region 10um-100pum This study
R Radius of tubular cellular region lum [12]
D Diffusion coefficient of cargo 0.01pum?/s [11]
r Radius of dynein comet 0.2um [125]
AMT Number of microtubules 5 This study
Vg Growth velocity for dynamic microtubules 0.18um/s [140]

C.4 Capture of cargo with a finite maturation rate

In some cases, the newly formed cargo may not be immediately available for capture,
requiring additional maturation steps such as the acquisition of various adaptor proteins. We
analyze optimal microtubule distributions for capture of cargo with a finite maturation time during
which it moves diffusively without being able to bind to microtubule ends.

Varying the maturation rate effectively results in tuning the initial distribution of capture-
ready cargo. For example, a very slow maturation rate results in a nearly uniform distribution of
cargo available for capture since there is more time to diffuse before maturing. On the other hand,
instantaneous maturation reverts to the previously studied case of capture-ready cargo entering at
the cell tip. Maturation of cargo can be incorporated as a constant-rate Poisson process that must
be completed prior to capture, convolved together with a capture process where particles start in
the appropriate distribution that spreads out from the distal end. Details of the calculation are
described in prior work [139].

Fig. C.1 shows the MFPT plotted against the maturation time and the separation between
consecutive microtubules. As before, there is an optimum separation that minimizes the MFPT
for each maturation time. The optimum separation increases as cargo maturation slows down,

highlighting the need to spread microtubule plus-ends further in order to capture diffusively
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Figure C.1: Capture times for maturing cargo. MFPT for maturing cargos entering at the
distal end of the cell and loaded at microtubule plus-ends, plotted against the maturation time
and separation between consecutive microtubules. The white line denotes the separation with
minimum MFPT for a given maturation time. Results are shown for a 100um cell with 5
microtubules.

wandering cargo that matures slowly. For a 100um cell, the optimal separation of microtubule

tips begins to increase noticeably only for maturation times above 100 s.
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C.5 Optimal configurations for cargo capture in long cellular
regions

Fig. C.2 shows how optimal configurations for cargo capture behave in cellular regions

with length 100um.
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Figure C.2: MFPT for random microtubule configurations. (a) Scatter plots showing the
MFPT to capture at microtubule plus-ends vs the length of the longest microtubule for 10°
randomly sampled configurations with 5 microtubules each in a domain of length 100um. (i)
Cargos start at the cell tip. (i1) Cargos start uniformly. Blue triangle indicates the overall fastest
configuration for (i). Green square indicates the overall fastest configuration for (ii). Red circle
denotes a configuration that falls within the lowest 2.5% of MFPTs for both starting distributions.
(b) Microtubule configurations corresponding to the (i) blue triangle, (ii) green square, and (iii)
red circle in panel (a). (c) Scatter plots showing the MFPT plotted against a clustering metric
for the randomly sampled configurations, with color indicating longest microtubule length for
each configuration. (i) cargos start at cell tip. (ii) cargos start uniformly. Blue triangle, green
square, and red circle denote configurations illustrated in panel (b).
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C.6 Retrograde cargo delivery to the cell body
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Figure C.3: MFPT to deliver cargo to the cell body. (a) Scatter plots showing the MFPT to
reach the cell body (including the time to capture at microtubule plus-ends) vs the length of the
longest microtubule for 10® randomly sampled configurations with 5 microtubules each in a
domain of length 10um. The cargo moves persistently towards the cell body with an effective
velocity of v = 0.6um/s (left), or v =0.04um/s (right) after being loaded onto the microtubule.
Top: cargos start at the cell tip. Bottom: cargos start uniformly. The red circle denotes the
configuration shown in Fig. 4.4b.iii of the main text. (b) Same plot as (a) for a cellular region of
length 100um. The red circle here denotes the configuration shown in Fig. C.2b.iii. For both (a)
and (b), yellow stars denote the overall fastest configuration for a given capture condition. The
color of the scatter points denotes the clustering metric described in the main text.

The results shown in the main text focus on the role of microtubule length distribution
in the initial loading of cargo, neglecting the time required to deliver the captured cargo to the
cell body. Here, we further explore the extent to which incorporating retrograde transport itself
alters the optimal microtubule configurations. While many organelles are observed to exhibit
bidirectional motion along microtubules [22, 125], others (such as neuronal autophagosomes [14]
and signaling endosomes [121]) move processively towards the cell body. Our focus here is on
optimizing the specific cellular objective of retrograde transport (shortest time to reach the cell

body). Assuming that the cargo does not dissociate back to a diffusive state after it is loaded onto
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the microtubules, the retrograde transport process can then be treated as an overall effective ’drift
velocity’ towards the cell body.

The retrograde transport time after capture can range widely depending on the length of
the domain and the pausing or reversal behavior. We consider here two examples: particles with
retrograde velocities of 0.6um/s and 0.04um/s, corresponding to measured values of effective
average velocity towards the cell body for largely processive autophagosomes and bidirectional
Rab5-marked early endosomes in hippocampal axons [173]. We also consider two domain lengths:
L =10um and L = 100um.

The time required to deliver cargo at a constant velocity in the retrograde direction can be
incorporated in the MFPT calculations from Section C.1. The probability of cargo being captured

(loaded on a microtubule) in each absorbing region is given by

ﬁabs = (I _P) : 13 (C.8)

where P can be obtained using Eq. C.1, and 1 is an appropriately sized column vector with all
elements 1. Once the cargo is captured within an absorbing region, the time required to transport

it to the cell body at a constant effective velocity v is given by

?move = y/V, (C.9

where ¥ is a vector whose elements denote the distance of the midpoint of each absorbing region
from the cell body. For the coordinates established in Sec. C.1, the corresponding distance
for interval i is given by y; = L — (x; +x;_1)/2. Here, we have assumed that the length of the
absorbing region itself is small compared to its distance from the cell body. This assumption
allows us to approximate the capture location as the midpoint of an absorbing region. For cargo

captured at microtubule plus-ends in fungal hyphae, the size of an absorbing region is in the order
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of 0.4um, while the distance from the cell body is in the order of 10um, supporting the validity
of the assumption for this particular system.

The overall time to deliver cargo to the cell body can be obtained by a weighted sum over
all absorbing regions. The delivery time can be incorporated as an additional term in the survival

time vector Q. The MFPT for a cargo to reach the cell body can then be given by

7(CB) :V.(I_p)—l .Q(CB)7 (C.10)
where
Q(CB) - Q+ (ﬁabs : 1T> '?move- (C'l 1)

Fig. C.3 reproduces Fig. 4.4a and Fig. C.2a, while incorporating the time required to
travel to the cell body for two different domain lengths and effective retrograde velocities. We
see that the qualitative results regarding optimal architectures for retrograde delivery still hold.
For cargo originating at the cell tip, the MFPT is determined primarily by the length of the
longest microtubule — an effect that is even more pronounced for longer domains. For dispersed
cargo, optimal configurations have somewhat shorter maximum microtubule length and very low
scores of the clustering metric. The general architecture indicated by the red dot, which has one
maximally long microtubule and all other plus-ends broadly dispersed, falls within the lowest
2.5% of the calculated MSDs in each of the cases studied here. Thus, incorporation of processive
retrograde movement does not substantially alter the optimal microtubule tip distribution within

the range of parameters studied here.
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Figure C.4: Cargo capture by regions of varying size. Scatter plots showing the MFPT vs the
length of the longest microtubule for 10° randomly sampled configurations with 5 microtubules
each in a domain of length 10um. The length of the capture region is indicated by ¢. The top
row denotes the MFPT for cargo formed at the cell tip. The bottom row denotes the MFPT for
cargo initially dispersed uniformly. The red circle denotes a configuration that falls within the
lowest 3% of MFPTs for both starting distributions for capture near plus-ends (¢ = 0.4(tm, main
text Fig. 4.4b.iii) and for capture along the whole microtubule (main text Fig. 4.5). Yellow stars
denote the overall fastest configuration for a given capture condition. The color of the scatter
points denotes the clustering metric described in the main text.

C.7 Effect of capture region size on cargo capture time

In the main text, we focused on cargo loaded onto microtubules only within a 200nm
contact radius of the plus-end. However, dynein comets generally exhibit a gradual decrease in
density over a micrometer length scale [125]. Furthermore, some cargos may recruit their own
motor protein assembly and should be able to initiate retrograde transport elsewhere along the
microtubule. For a given arrangement of microtubule lengths, the cargo capture time can vary
widely depending on the size and availability of regions along the microtubule where the cargo
can bind. In this section, we quantify the relation between the size of the capture region along a
microtubule and the MFPT to capture cargo.

Fig. C.4 shows the MFPT for 10° randomly sampled configurations of 5 microtubules, for
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several different values of the capture region length ¢ (equivalent to twice the capture radius). The
left-most plots correspond to Fig. 4.4a. The right-most plots represent the limiting case where
cargo can be captured along the entire microtubule, corresponding to Fig. 4.5. In this limiting
case, we see that the longest-microtubule length is a strong predictor of the capture time, with
very little variation among the MFPT for different configurations with the same longest length.
Intermediate values of the capture length behave essentially as an interpolation between narrow
capture at the tip and capture along the whole microtubule.

The red dots in Fig. C.4 correspond to the configuration shown in Fig. 4.4b.iii, which
performs nearly optimally for plus-end capture with both cargo entering at the cell tip and cargo
starting with a uniform distribution. This configuration has a single microtubule stretching all
the way to the distal tip, with the other microtubule ends spaced out evenly throughout the
domain. Notably, such a configuration also falls within the lowest 3% of MFPTs for the case with
capture along the entire microtubule. Thus microtubule architectures with these dual features are
near-optimal for rapid initiation of retrograde transport in a broad variety of scenarios, including

different cargo entry points and different lengths of microtubule capture regions.

C.8 Methods for growing and imaging Aspergillus nidulans
strains used in Chapter 4

Aspergillus nidulans strains were grown on yeast extract and glucose media agar gum
plates for maintenance [180]. For spinning disk microscopy of A. nidulans germlings, A. nidulans
spores were resuspended in 1 mL of 0.01% Tween-80. The spore/Tween-80 solution was then
added 1:1000 to 1% glucose minimal media with no supplements in a 4-chamber 35mm dish with
#1.5 coverglass bottom (Cellvis), and incubated for 16-20 hours at 30°C. Germlings were imaged
using a Yokogawa W1 confocal scanhead mounted to a Nikon Ti2 microscope with an Apo TIRF

100x 1.49 NA objective. The scope was run with NIS Elements using the 488nm and 561nm lines
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of a six-line (405nm, 445nm, 488nm, 515nm, 561nm, and 640nm) LUN-F-XL laser engine and a
Prime95B camera (Photometrics). Image channels in 488 and 561 were acquired sequentially
using bandpass filters for each channel (525/50 and 595/50). The 488nm laser was 0.740 mW
measured at the objective, and the 561nm laser was 0.980 mW measured at the objective, with an
exposure time of 200 milliseconds for each. Z-stacks were acquired using a piezo Z stage (Mad
City Labs). As the germlings do not grow flat along the coverglass surface but frequently extend
from the surface, the z-range used to image a field of germlings was set differently for different
fields depending on germling extension from the coverglass surface.

For both identification of EbA/EB1 puncta in A. nidulans hyphal tips and for the images
shown in Figure 6A, maximum intensity projections were generated from z-stacks in FIJI [186].
To count the number of microtubules in a hyphal tip, the number of microtubule plus-ends
(identified by the presence of EbA/EB1) were counted in germlings in which the entire hyphal
tip was included within the maximum intensity projection. Using the multi-point tool and ROI
manager in FIJI, bright EbA/EB1 puncta between the hyphal tip and the first nucleus were
identified and counted. All EbA/EBI1 spots were overlaid with the TubA-GFP/microtubule
channel to ensure that they corresponded to a microtubule end. Hyphal tip lengths were measured
by manually tracing the hyphal axis from the last nucleus to the furthest point on the hyphal tip
in FIJI. Microtubule lengths were measured by first drawing a line along the hyphal axis, along
which all microtubule length measurements were taken. The edge of the nucleus closest to the
hyphal tip was then identified and denoted as site x=0 along the hyphal axis. Any EbA/EB1
puncta located within the region between the edge of the nucleus and the hyphal tip was then
identified, and its position in x along the hyphal axis determined (position in y, perpendicular to
the hyphal axis, was ignored for the purposes of this measurement). The distance between the
edge of the nucleus (x=0) and each EbA/EB1 puncta (x=#) was then measured.

Aspergillus nidulans strains used in this study are listed in Table C.2. Strain RPA361

expressing EbA-mCherry, TubA-GFP, and HHI-mCherry was created through genetic crossing,
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as previously described [182].

Table C.2: A. nidulans strain used in Chapter 4

Strain Genotype Source

[ebA-mCherry-Afribo], [tubA-GFP-Afpyro],
RPA361  [HHI-mCherry-AfPyrG]; riboB2; pyroA4; pyrG89; This study
AnkuA::bar
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