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Abstract

Collective problem solving is supposed to benefit from cogni-
tive diversity (e.g., when a team consists of individuals with
different learning strategies). However, recent evidence for
this claim fails to rule out an alternative explanation: that
the benefit is due to moderate non-conformity, not diversity.
We extend a previous agent-based simulation to distinguish
these hypotheses, and demonstrate that diverse learning strate-
gies alone do not yield the expected benefit. We extend the
model further, based on an idea from the philosophy of sci-
ence: Group-level benefits in complex problem solving often
entail individual-level failures. Accordingly, we parameterize
tolerance for failure, and show that there is an interaction be-
tween tolerance for failure and diversity. When tolerance for
failure is zero, heterogeneous and homogeneous groups per-
form equally; when non-zero, diverse groups can outperform
heterogeneous groups. Our agent-based simulations help clar-
ify when cognitive diversity benefits collective problem solv-
ing.

Keywords: communication; diversity; problem solving; social
learning; explore/exploit; epistemic landscape; agent-based
simulation

Collectively, humans can solve problems of astonishing
complexity. This success would be impossible without our
communicative abilities, which allow us to share informa-
tion efficiently. However, communication is a double-edged
sword: communication is necessary to spread the informa-
tion crucial to solving a problem as a group, but in doing so,
it reduces the diversity of information in the group (Lazer &
Friedman, 2007). This can lead to herding (Salganik, Dodds,
& Watts, 2006) or premature convergence on suboptimal out-
comes (Zollman, 2010). It can also reduce people’s tendency
to engage in further exploration (Yahosseini, Reijula, Molle-
man, & Moussaı̈d, 2018) or to share relevant private informa-
tion (Gigone & Hastie, 1993).

While a complete lack of communication is clearly a bar-
rier to collective problem solving, these findings imply that
unconstrained communication is also not ideal. But how to
strike a balance? Agent-based simulations show how group
problem solving can be optimized by throttling communica-
tion to some extent. One approach focuses on social factors,
such as the network structure that the agents are embedded

in, limiting who can talk to who (Zollman, 2010). A sec-
ond approach focuses on cognitive factors, such as the strate-
gies used by the agents to tackle the problem, where some
strategies involve less communication than others (Pöyhönen,
2017; Thoma, 2015; Weisberg & Muldoon, 2009).

This second approach is particularly intriguing, as it is used
to argue that cognitive diversity helps groups to solve com-
plex problems. Building on these agent-based simulations,
we demonstrate that, as things stand, this approach does not
in fact make a clear-cut case for cognitive diversity. We then
show how the inclusion of an additional factor — tolerance
for failure — fills this gap, thus enabling cognitive diversity
to yield a benefit.

A division of cognitive labor in epistemic landscapes
We draw from a modeling tradition rooted in the philosophy
of science, not only because science is a prime example of
the phenomenon of interest here — complex problem solv-
ing by human collectives (Muthukrishna & Henrich, 2016)
— but also because it involves a tension between the best
outcome for an individual and the best outcome for a group
(Kitcher, 1990). To illustrate: imagine that two researchers
are leading teams that develop vaccines, and each must de-
cide which of two approaches (depending on the field, these
may be methods, theories, frameworks, or research questions)
to use during the upcoming year. Let’s say approach A has a
good chance of success while approach B has a poor chance
of success.

From the point of view of each individual researcher, the
optimal strategy is to choose approach A. However, given that
there is a chance that approach A will fail and that approach
B will succeed, from the point of view of the collective (i.e.,
medical science), the optimal strategy is for one researcher
to pick approach A and the other to pick approach B. Sci-
ence thus benefits from a ‘division of cognitive labor’ where
individuals pursue different approaches, even if this means
some of them pursue approaches that are more likely to fail
(Kitcher, 1990). Two core ingredients for this division of la-
bor, then, are: the pursuit of diverse approaches, and accep-
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Figure 1: An epistemic landscape, with two hills of signif-
icant epistemic value topped by peaks of outstanding epis-
temic value.

tance of possible failure.
A subsequent research tradition uses epistemic landscape

models (Weisberg & Muldoon, 2009) to relate diverse ap-
proaches (features of the problem space) to cognitive differ-
ences (features of the individuals who explore that problem
space). In these models, a population of agents explores an
abstract landscape (Fig. 1). Each position on the landscape
represents some approach in a scientific field, and the height
the landscape at that point represents the epistemic value of
that approach: how much useful knowledge can be gained by
pursuing that theory or research question or method. In this
example, there are two peaks, so two scientific theories of
outstanding epistemic value. Generally, in such models, the
agents explore the landscape with the aim of discovering the
highest peaks.

Agents are imbued with various learning strategies, or
ways of exploring the landscape. Two main types of learn-
ing strategy are common across models. An individual learn-
ing strategy involves an agent gathering information about
the landscape directly: the agent moves on to new patches,
and thereby learns the epistemic value of those patches. A
social learning strategy involves the agents communicating
with each other, thereby learning the value of the patches that
the others are currently occupying. Thus, an agent can either
learn where a peak is by visiting it, or by hearing from another
agent who has discovered it.

A homogeneous population of mavericks (agents with ex-

treme individual strategies) is inefficient, as nobody benefits
from sharing current knowledge about the location of poten-
tial hills, though such a group eventually succeeds in dis-
covering both peaks. A homogeneous population of con-
formists (agents with extreme social learning strategies) typ-
ically does not succeed, as the group quickly discovers and
converges on one hill, but commonly does not to discover the
other. In a mixed population, consisting of some mavericks
and some conformists, the mavericks explore new patches
and reduce overall herding, preventing convergence on a sin-
gle peak, while the conformists exploit the regions of known
potential value. Thus, such models typically conclude that
cognitive diversity leads to better collective problem solving
(Pöyhönen, 2017; Thoma, 2015).

However, there are two reasons for caution regarding this
conclusion, stemming from the fact that these models em-
ploy categorically different learning strategies (maverick vs.
conformist, or some terminological equivalent). A practical
concern is that human learning is not so categorical: there is
stable variation in people’s tendency to incorporate social in-
formation into their beliefs (Molleman, Kurvers, & van den
Bos, 2019). This limits the relevance of such findings for
human problem solving. A theoretical concern is that this
qualitative distinction in learning strategies means that such
models cannot distinguish between two possible hypotheses.
For the sake of illustration, say that conformists do 0% in-
dividual learning while mavericks do 100% individual learn-
ing, and that it turns out — for a population of 10 agents on
a given landscape — the optimal mix is 2 mavericks and 8
conformists. Is this due to the diversity of the group? Or
could it just be due to the fact that the average strategy in
the group is 20% individual learning? That is, perhaps a ho-
mogeneous population where everyone has the same 20% in-
dividual learning strategy would do just as well as a mixed
population of 2 mavericks (all of whom are 100% individual
learners) and 8 conformists (all 0% individual learners). In
that case the model would support moderate non-conformity
rather than cognitive diversity.

It is important to explore whether these two different com-
positions of collectives, that differ in diversity but not the
mean of their learning strategy, could produce distinctive col-
lective behaviors. To address this, we adapt an epistemic
landscape model to include intermediate strategies, allowing
us to test whether group performance is driven by the average
level of social learning, or by its variance (i.e., cognitive di-
versity). Then, we further adapt the model to include a key
element of a division of cognitive labor mentioned above: it
involves variable risk of failure, so it is plausible that any ben-
efits of diversity that derive from a division of cognitive labor
should be sensitive to that.

The broadcasting model
We take the ‘broadcasting model’ by Pöyhönen (2017) as our
starting point, as it offers two useful features for studying
cognitive diversity in collective problem solving.

The first important innovation in Pöyhönen’s model is how
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epistemic success is evaluated. Rather than just exploring
the landscape, agents also do some epistemic work to ex-
tract value. Concretely, this involves excavating the land-
scape: at every time point, each agent depletes the value of the
patch that they are currently standing on by a small amount.
This means that only so much value can be extracted from
a patch before it becomes useless, analogous to how, in the
real world, a given theory cannot be exploited indefinitely for
epistemic gain. What this means, in terms of collective prob-
lem solving, is that it is not enough for one agent to discover
one peak and for another agent to discover the other peak,
because unless other agents come to collaborate with them
in mining those scientific positions, it will take a long time
for these two agents to fully excavate the hills of epistemic
value. The relevance for our interest in communication and
problem solving is that this makes collaboration crucial for
group success. Otherwise, the claim that it is useful to throt-
tle communication would be trivial.

The second important innovation by Pöyhönen is the
eponymous ‘broadcasting’ implementation of learning strate-
gies. An individual’s strategy is defined by their social-
learning threshold: how much of an improvement in epis-
temic value they could accept if they moved to where another
agent is (by analogy, adopting that other agent’s approach
or theory), relative to the distance they would have to travel
to get there. As this threshold amounts to the ratio between
height climbed and distance travelled, it can be thought of as
a slope m (Fig. 2). For a given threshold, an agent will con-
sider learning socially from other agents that lie above that
slope. In the context of a 3D landscape, all places above a
given slope can be thought of as lying within a cone, centered
on the agent in question. In that case, a maverick strategy
involves a steep slope or narrow cone, whereas a conformist
strategy involves a flat slope or wide cone.

In this model, a simulation run of t time steps begins
with population of N agents with social learning thresholds
m1 . . .mN . The agents are randomly placed on low-value po-
sitions in the landscape (i.e., not on the hills).

At the start of the run (t0), every agent i learns the epis-
temic value of its starting position ei,0. It then picks a random
heading, and starts moving in that direction at a constant ve-
locity. At each subsequent time point (t j), it learns the epis-
temic value of its new position ei, j and compares this to the
epistemic value of its previous position ei, j−1. The difference
in value at that time ∆ei, j = ei, j −ei, j−1 indicates whether the
agent is going downhill (∆ei, j < 0) or not (∆ei, j ≥ 0).

If an agent is not going downhill (i.e., is improving or
maintaining its epistemic position), it simply continues along
its original heading. However, if it is going downhill, it aban-
dons its heading, and decides between an individual or social
learning strategy on the basis of its social threshold mi. Every
agent polls all other agents who are above its social learning
threshold. That is, each agent can only learn from those oth-
ers who are close enough or high enough that they lie within
its cone (Fig. 2).

Figure 2: The broadcast implementation of social learning
(Pöyhönen, 2017). The focal agent has a social learning
threshold ma, and it is able to learn from other agents above
that threshold. In this illustration, the epistemic value gained
by traveling to target position B has slope mt , and as mt > ma,
the focal agent considers it worthwhile to travel to position B.
Even though position A is within the focal agent’s cone, there
is nobody there: the cone does not represent a view of the
landscape, but rather a view of other agents. Even though
position C is closer than position B, it falls below the focal
agent’s threshold.

If there are no such others, the agent does individual learn-
ing: it explores its immediate vicinity and sets a new heading
in the direction of the highest adjacent patch (or a random
heading if all surrounding patches are lower than it). It thus
engages in local hill-climbing. But if there are other agents
above its social threshold, it does social learning: it identifies
which other agent represents the greatest gain for the least
travel, and sets its heading for that other agent. Regardless of
whether the new heading derives from individual learning or
social learning, it continues in that direction, checking its ∆e
at each time step, unless it goes downhill again, at which point
the process repeats. Agents’ thresholds do not change, so a
maverick agent is simply an agent with a very high threshold:
it will be unlikely to ever encounter other agents it considers
worth learning from. A conformist agent has a low threshold,
and will consider any agent a higher point at any position on
the landscape to be worth learning from.

As the final action of each time step, all agents do epistemic
work, excavating some value w from their position, depleting
the landscape by the equivalent amount. At the end of t time
steps, the epistemic success of the group is the sum of all
excavated values.

We stress that no agent has a god’s eye view of the land-
scape (which is why they have to explore), and they do not
build a representation of the landscape while they explore.
Each agent’s memory only retains the height of its current po-
sition and the height of its position at the immediately preced-
ing time step. The only information it can access is the height
and distance of other agents within its cone, and it can only
access this information at a moment when it is going downhill
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and deciding which learning strategy to employ next.

The DE-land model
Agents The first main departure in our Diversity in Epis-
temic landscapes (DE-land) model is how the social learn-
ing thresholds are set. For each run, an aggregate thresh-
old m is selected from the range of possible thresholds (see
below for the parameter space), and the run is randomly as-
signed to one of two conditions (‘homogeneous’ vs. ‘hetero-
geneous’). In the homogeneous condition, N agents are all
initialized with threshold m. In the heterogeneous condition,
m1 . . .mN thresholds are randomly sampled from a Beta distri-
bution (α,β) that has mean m = α

α+β
. Thus, both conditions

have the same average threshold.
We note that samples from Beta distributions are in the

range (0, 1), so even our most maverick agent will choose
to learn from another agent whose position offers a climb of
1 for a travel distance of 1. Thus, our mavericks are not as ex-
treme individualists as in previous models, where mavericks
are typically unwilling to learn from anybody, no matter how
large of improvement in epistemic value they offer. How-
ever, such extreme maverick attitudes are unlikely to reflect
the target phenomenon (doing science, yet being unwilling to
be influenced by anybody else, no matter how valuable their
approach or theory). Further, our results show a ceiling effect
around this maximum. Finally, previous work has shown that
the optimal group composition is mostly conformists with a
minority of mavericks (Pöyhönen, 2017), so the most interest-
ing region of the parameter space is lower, rather than higher
social learning thresholds.

A further departure is that we parameterize the agents’ tol-
erance for failure. Previously, an agent abandoned its heading
and decided on a learning strategy every time it went downhill
(∆e < 0), which amounts to zero tolerance for failure. Now,
this decision kicks in when ∆e < f , with f representing the
tolerance for failure. Thus, with f = 0.2 an agent will toler-
ate a decrease in epistemic value of up to 0.2 in one time step,
continuing its original heading rather than making a decision
about which learning strategy to employ next.

Landscape The landscape is toroidal (wrapping around on
both sides), and has 2 peaks of equal height, situated maxi-
mally far apart and generated from multivariate normal distri-
butions. To this is added a layer of Perlin noise, with variable
amplitude a: a higher amplitude means the base landscape is
noisier, with local hills and troughs (though far smaller than
the main 2 peaks). This allows us to parameterize problem
difficulty, as when a is low, the landscape is smooth, so so-
cial information about positive epistemic value reliably indi-
cates the location of the 2 hills. With some noise, however,
one agent may end up following another agent who is higher
than it, but is not near the hills. At the beginning of the run,
the total amount of positive epistemic value on the landscape
is calculated as its total epistemic mass. A group’s problem
solving success is the proportion of this total mass excavated
during the run.

Simulation 1: Does cognitive diversity yield a
group-level benefit?

A division of labor cognitive based on learning strategies is
one way to improve collective problem solving outcomes.
However, we raised the concern that this may be due to the
average level of conformity, rather than cognitive diversity, in
previous epistemic landscape models. For our first simula-
tion, we compare homogeneous and diverse groups when, as
in previous models, there is no tolerance for failure ( f = 0).
We ran 3000 simulations each of 400 time steps with 40
agents on a 40×40 landscape, and all possible combinations
of the following parameters.

• Perlin noise amplitude a in: [1, 6, 10]

• Social learning threshold m from Beta(α,β) in: [(1, 9), (3,
7), (5, 5), (7, 3), (9, 1)]

• Condition in: [‘homogeneous’, ‘heterogeneous’]

Thus, for instance, in a heterogeneous run where the distri-
bution parameters are (1,9), agents’ social learning thresholds
were sampled randomly from this distribution, whereas in a
homogeneous run, agents’ thresholds were set to the mean of
this distribution (m = 1

1+9 = 0.1).
Fig. 3a shows the main effect of social learning thresh-

old. Having a higher social learning threshold produces bet-
ter group outcomes, but this benefit plateaus in the middle-
to-upper end of our range (Fig. 3a). A balanced strategy
(m = 0.5) does quite well overall, and a moderately non-
conformist strategy (0.5 ≤ m ≤ 0.9) only slightly better. Al-
though all strategies start off similarly, the difference emerges
well into the run. All populations discover at least one hill
early on. But then conformist populations, having converged
on that hill, fail to explore much more and are unlikely to
discover the second hill (consistent with findings outlined in
the Introduction). In contrast, balanced and moderately non-
conformist populations are quite likely to discover the second
hill, which is how they discover substantially more than 50%
of the landscape’s epistemic mass.

Fig. 3b shows the main effect of noise. Performance for
moderate noise (a = 6) was better than for low noise (a = 1).
This occurs because, in low-noise landscapes, as soon as any
agent starts climbing one of the hills, it represents an unam-
biguous signal as to where a peak is. The other agents con-
verge, abandoning further exploration. In contrast, in nois-
ier landscapes, even if one agent is starting to climb the hill,
some agents may not converge on it because they are dis-
tracted by other agents who are at higher positions, even if
those positions are only higher due to random noise. This
is enough to prevent premature convergence, and ultimately,
both peaks are discovered.

Fig. 3c shows the comparison between heterogeneous and
homogeneous populations, for varying levels of noise and so-
cial learning threshold. There is a clear interaction between
noise and social learning threshold: for low levels of noise,
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Figure 3: Results of simulation 1, showing aggregates across
simulation runs with Loess splines. (A) The main effect of
mean social learning threshold. A higher threshold implies
more maverick behavior; (B) The main effect of noise (C);
The interactions between threshold, noise and condition.

the threshold does not matter (the lines in the top row over-
lap). No matter whether an agent is more maverick or more
conformist, if they are on a fairly flat plain, and some other
agent starts climbing a hill, everyone converges on that point.
The previously described effect of social learning threshold
emerges for higher levels of noise. Thus, moderate non-
conformity becomes valuable in noisier environments.

However, the most notable feature of Fig. 3c is the lack of
any substantial difference between homogeneous and hetero-
geneous populations. Thus, consistent with the concern we
raised earlier, even if epistemic landscape models claim to
show a benefit of cognitive diversity, in fact they really show
a benefit of a population that is, on average, moderately non-
conformist. Moderate non-conformity can occur when the
entire population is moderately non-conformist, or when a
population has diverse strategies, but their average threshold
is moderately non-conformist.

Simulation 2: Does tolerance for failure
contribute to a benefit of diversity?

Variable chance of failure was one of the two elements of
the division of cognitive labor outlined above (Kitcher, 1990),
and the degree of failure that agents are willing to accept is
one factor that has not been implemented in previous epis-
temic landscape models. Converging evidence from social
epistemology (Thoma, 2015) and cultural evolution (Boyd &

Richerson, 1985) shows that it is costly to explore individu-
ally, without the benefit of social learning. While some mav-
ericks may encounter epistemic rewards, many do not, and
consequently do worse than the average conformist (Thoma,
2015). Nonetheless, their presence helps the group, as when
those rare mavericks discover a hill, this allows conformists
to follow them.

As occasional failure is an unavoidable part of the maver-
ick strategy, perhaps tolerance for failure is what is missing,
for a mixed population of mavericks and conformists to do
well. To test this, we ran 9000 simulations as described in
Simulation 1, additionally setting tolerance for failure to f in
[0, 0.2, 0.4].

To facilitate presentation of results with the inclusion of
this additional variable, we focus on the epistemic mass ex-
cavated at the end of the run (at t = 400). Fig. 4 shows this
final standing. Here, the points where tolerance for failure is
zero simply recapitulate the end-points of the Loess splines
at t = 400 in Fig. 3c), where there is no substantial difference
between heterogeneous and homogeneous groups. What is
striking, though, is that values of f > 0 make a difference for
heterogeneous populations, but not for homogeneous ones.

For low levels of noise (a = 1), increasing tolerance for
failure decreases the overall performance of heterogeneous
groups (though there is still no effect of social learning thresh-
old for low-noise landscapes). For higher levels of noise, the
outcome is more complex. The aforementioned decrease in
performance remains (if weakly) for more maverick diverse
groups, but performance improves with increasing tolerance
for more conformist groups. In particular, compare the red
lines (for m = 0.1) between heterogenous and homogeneous
groups. Whereas these more conformist populations do con-
sistently poorly when they are homogeneous, tolerance drives
a marked improvement when they are heterogeneous. Thus,
tolerance for failure interacts with learning strategy to pro-
duce an effect of diversity, though the direction and strength
of this effect depends on landscape noisiness. When social
learning thresholds make a difference at all (i.e., when noise
a > 1), there is a major boost to performance for more con-
formist populations who are more tolerant to failure, but a
minor dip in performance for more maverick populations.

Discussion
Under the rubric of a division of cognitive labor, epistemic
landscape models are used to argue that cognitive diversity
benefits collective problem solving. However, we have shown
that this conclusion is premature, as the same findings can be
produced by homogeneous populations that are moderately
non-conformist. However, individual failure is another fac-
tor entailed by the division of cognitive labor, and mavericks
are on average more likely to fail. By parameterizing toler-
ance for failure (which was effectively at 0 in previous mod-
els), we have shown that epistemic landscape models do in
fact support an effect of diversity, though this interacts with
landscape noisiness and average social learning threshold.
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Figure 4: Results of Simulation 2, showing the final epistemic
value excavated at t = 400, for varying levels of landscape
noise (in 3 rows), mean social learning threshold (in color),
and tolerance for failure (along the x-axis). The lines for so-
cial threshold overlap substantially for noise a = 1.

We also replicate previous findings, from entirely different
paradigms (e.g., models with payoffs derived from two-arm
bandits and with agents embedded in social networks, Zoll-
man, 2010), that some disruption to communication can in
fact benefit group epistemic outcomes. Here, this is accom-
plished by adding noise to the landscape, so that signals of
positive epistemic value are unreliable guides to the state of
the world.

Why is useful to know that the benefits of diversity are
clearest for more conformist groups (e.g., the red and orange
lines in Fig. 4)? These results are consistent with previous
findings that a minority of mavericks in a general population
of conformists yields the best group outcomes (Pöyhönen,
2017). More importantly, though, humans are a social species
and our greatest accomplishments depend heavily on cumu-
lative culture (Muthukrishna & Henrich, 2016), and many of
our decisions weight conformity heavily (Cialdini & Gold-
stein, 2004). If there is to be any benefit of diversity in learn-
ing strategies for humans, this is the area of the parameter
space where that we should expect one.

Does tolerance for failure simply mean that agents have
fewer chances to engage in social learning, as this only oc-
curs once they fail to improve, and as we vary what counts
as failure? If so, the results would be less interesting, as
they would simply recapitulate what Simulation 1 showed
about the benefits of moderate non-conformity. However,
if this worry were true, we would expect the same to hold

for homogeneous groups, and Fig. 4 shows that it does not.
This is not just individual learning by another name. Fur-
ther, the effect of tolerance is sometimes negative (as in low-
noise situations), so this is also not simply a matter of over-
parameterizing the model. Rather, it is specifically a matter
of leveraging diversity in cases where social information is a
flawed guide to the state of the wold.

In future work, a necessarily step will be a deeper and more
detailed exploration of the parameter space, including deple-
tion rates or the size of the landscape (affecting the spar-
sity of hills). This includes alternative distribution families
for social learning: Here we have used the Beta distribution,
but other continuous non-negative distributions such as the
Gamma would allow for more extreme maverick behavior.
In addition to tweaking or redefining parameters in this way,
another goal will be to allow social learning thresholds and
tolerance for failure to covary: Here, tolerance for failure is
uniform across the population, but it will be interesting to
learn if this benefits everyone, or if it has better effects for
specific types of learning strategies (Thoma, 2015). More-
over, the model can be extended to include parameters (such
as flexibility or range of movement, Thoma, 2015) that con-
tribute to group performance. Overall, a substantial challenge
will be to integrate two quite different traditions — cultural
evolution and the philosophy of science — that study indi-
vidual vs. social learning and individual-level vs. group-level
benefits.

Moving beyond these models, it will be useful to under-
stand the analogues of these parameters in real-world prob-
lem solving. Whereas our range of noise parameters was
chosen because it yielded interesting variation (e.g., no ef-
fect of learning threshold for noise = 1 in Fig. 3c, with this
effect maxing out by noise = 10), it would be useful to know
what concrete measures of noise or complexity in real world
problem solving show the strongest benefit of diversity (Su-
lik, Bahrami, & Deroy, in press). Similarly, whereas our pa-
rameter for tolerance of failure is an abstract decision thresh-
old, failure in the real world may be a matter both of indi-
vidual psychology (e.g., how people feel when they fail, or
what motivates them to persevere) and social context (e.g.,
how incentives are set up in societies or institutions in such a
way that encourages an optimal amount of risky exploration,
Mann & Helbing, 2017). Further, problem solving here fo-
cuses on discovery (e.g., discovering the peaks of high epis-
temic value), whereas doing science in the real world requires
a balance between discovering new things and checking that
they can replicate, and as this latter issue is another important
dimension in the study of diversity (Devezer, Nardin, Baum-
gaertner, & Buzbas, 2019), it would be useful to see whether
these dimensions (diversity of learning strategies and diver-
sity of roles within science) are orthogonal or related.

In any case, do we really need more evidence for the bene-
fits of cognitive diversity? There is already evidence point-
ing to such benefits (e.g., Hofstra et al., 2020). However,
the pressing issue is that there is also evidence pointing in
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the opposite direction (e.g., Almaatouq, Yin, & Watts, 2020).
Thus, the question is not ‘Does cognitive diversity benefit
group epistemic outcomes?’ but rather ‘When does cogni-
tive diversity benefit group epistemic outcomes?’ (Sulik et
al., in press). Identifying (and then expanding on) the limits
of computational simulations is one way to do just that.
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