1	Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend
2	on Water Vapor Concentration
3	Caleb Arata*†§, Nadja Heine‡, Nijing Wang¶, Pawel K. Misztal§#, Pawel Wargocki^, Gabriel
4	Bekö [^] , Jonathan Williams [¶] , William W Nazaroff ^{II} , Kevin R. Wilson [‡] , Allen H. Goldstein ^{§II}
5	†Department of Chemistry, §Department of Environmental Science, Policy and Management, and
6	Department of Civil and Environmental Engineering, University of California, Berkeley,
7	California 94720 United States
8	‡Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
9	94720, United States
10	Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
11	^Department of Civil Engineering, Technical University of Denmark, 2800 Kgs. Lyngby,
12	Denmark
13	#Now at: Department of Civil, Architectural and Environmental Engineering, The University of
14	Texas at Austin, Austin, TX 78712
15	*Phone: 310 968 8331. Email: caleb.arata@berkeley.edu
16	
17	Abstract
18	Previous work examining the condensed-phase products of squalene particle ozonolysis found

19 that an increase in water vapor concentration led to lower concentrations of secondary ozonides,

20	increased concentrations of carbonyls, and smaller particle diameter, suggesting that water
21	changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an
22	increase in gas-phase products, we measured gas-phase volatile organic compound (VOC)
23	concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were
24	conducted in a flow-tube reactor at atmospherically relevant ozone (O3) exposure levels (5-30
25	ppb h) with pure squalene particles. An increase in water vapor concentration led to strong
26	enhancement of gas-phase oxidation products at all tested O3 exposures. An increase in water
27	vapor from near zero to 70% relative humidity (RH) at high O3 exposure increased the total mass
28	concentration of gas-phase VOCs by a factor of three. The observed fraction of carbon in the
29	gas-phase correlates with the fraction of particle volume lost. Experiments involving O ₃
30	oxidation of shirts soiled with skin oil confirms that the RH dependence of gas-phase reaction
31	product generation occurs similarly on surfaces containing skin oil under realistic conditions.
32	Similar behavior is expected for O ₃ reactions with other surface-bound organics containing
33	unsaturated carbon bonds.

34 Introduction

People spend 90% of their lives indoors1. Each day, adult humans inhale 12-15 kg of air,
making indoor air an important route of exposure to many chemicals, including volatile organic

37	compounds (VOCs). People can be the dominant indoor VOC emission source in densely
38	occupied spaces, and, in the presence of ozone (O ₃), the oxidation of skin lipids adds ketones and
39	aldehydes to the composition of indoor air2-8.
40	Indoor O ₃ concentrations are commonly 20-70% of outdoor levels, with the ratio
41	depending on building air-change rate (ACR), type of ventilation system, and the nature of
42	indoor surfaces9. Indoor air is estimated to contribute 25-60% of an individual's daily O3
43	exposure.10 In densely occupied spaces, occupants may be the dominant indoor sinks for O3,
44	mainly due to reactions with lipids on their skin, hair, and clothing.11
45	Squalene (C30H50) constitutes 10% of the mass of human skin lipids, and contributes 50%
46	of the unsaturated carbon bonds.12 When exposed to O3, squalene is quickly oxidized to products
47	that span a wide range of volatility; some products remain in the condensed phase while others
48	become gaseous.5
49	Researchers have investigated effects of human occupancy on aircraft cabin air,
50	considering that interior O3 levels are sometimes elevated in airplanes.13 Weschler et al.
51	conducted experiments in a simulated aircraft cabin section and found that more than half of the
52	observed oxidation products in the gas phase came from O3 reacting with human skin lipids.4
53	Further work studied O ₃ deposition on materials common to aircraft cabin interiors, finding that
54	soiled clothing exposed to O3 emits 6-methyl-5-hepten-2-one (6-MHO).14,15 Surface bound

55	squalene was found to have a high reaction probability with O ₃ , in the range of $0.5-1 \times 10$ -3, and
56	reaction of ozone with squalene on soiled clothing has been shown to be mass-transport
57	limited.16-18 Both 4-oxopentanal (4-OPA) and 6-MHO are known respiratory irritants.19,20
58	Acetone and 6-MHO are among the most prominent VOCs emitted from human skin.21 While
59	acetone is known to originate from a wide variety of sources, including breath, 6-MHO is
60	thought to be specific to squalene oxidation. The high emission rate suggests that squalene
61	oxidation contributes significantly to VOC emissions from human skin.
62	Heine et al. investigated the influence of RH on squalene ozonolysis using pure squalene
63	particles in a flow-tube reactor.22 They showed that water vapor concentration does not affect the
64	rate of squalene ozonolysis, but does substantially change the product composition. Under dry
65	conditions, as O3 consumes squalene, secondary ozonide concentrations increase in the
66	condensed phase and initial particle volume is reduced by 15%. At 60% RH, condensed-phase
67	ozonolysis products shift from secondary ozonides to carbonyls, and particle volume is reduced
68	by as much as 50%. Such losses of particle volume should correspond to an increase in gas-
69	phase oxidation products.
70	For this study, we designed experiments specifically to observe the mass lost to the gas
71	phase and the products formed by O3-squalene reactions as a function of RH, and to understand
72	the implications for the fate of the Criegee intermediate on squalene particle surfaces and skin-oil

73	coated clothing. Here, we investigate the gas-phase products from squalene particle ozonolysis in
74	a flow tube reactor, and on skin-oil soiled shirts in a climate chamber. From the flow-tube
75	experiments, we show that the RH dependent loss of particle diameter corresponds to an increase
76	in gas-phase reaction products, consistent with the mechanism of water molecules promoting
77	carbonyl formation from the Criegee intermediate under real world conditions. We discuss
78	implications for product yields from skin oil ozonolysis indoors under varying RH conditions.
79	Experimental Methods
80	Squalene ozonolysis was carried out in a flow-tube reactor, as described in Heine et al.22,23
81	Liquid squalene in a tube furnace was heated to 145 °C, generating, by means of homogeneous
82	nucleation, polydisperse particles with a mean surface-weighted diameter of 250 +/- 40 nm. A
83	continuous flow of 300 standard cm3 min-1 dry nitrogen (N2) carried the particles from the
84	furnace through a charcoal denuder to remove any gas-phase contamination. This flow was then
85	combined with flows of oxygen (O2), O3, dry N2, and humidified N2 for a total flow of 1 L min-1.
86	Levels of O2 were held at a constant 10%, while the flows of dry and humidified N2 were varied
87	to give a range of nearly 0% (< 3%) to 100% RH. This combined flow traversed the flow tube
88	reactor (130 cm long, 2.5 cm inner diameter) with a residence time of 37 s.24 Ozone was
89	produced by a corona discharge generator, and the concentrations of O3 were in the range 0-4

90 ppm, giving O₃ exposures of 0-44 ppb h. The initial particle loading in the flow reactor was 1000
91 μg m-3.

92	Upon leaving the flow-tube reactor, the outflow composition was measured by proton-
93	transfer-reaction time-of-flight mass spectrometry (Ionicon PTR-TOF-MS 8000), an electrostatic
94	classifier (TSI model 3080L) with a butanol-based condensation particle counter (TSI model
95	3772), and a custom-built vacuum ultraviolet aerosol mass spectrometer (VUV-AMS). The
96	particle size and composition measurements are described in Heine et al.22; the PTR-TOF-MS
97	was used to measure speciated gas-phase VOC concentrations.
98	PTR-TOF-MS is a chemical ionization technique with minimal fragmentation using H ₃ O+
99	as the primary reagent ion. PTR-TOF-MS has been previously used to detect gas-phase products
100	of squalene ozonolysis.2,4,5 For these experiments, the instrument was calibrated with a
101	multicomponent VOC gas standard to ensure stability throughout the campaign. Of the
102	compounds reported here, only acetone was determined using a direct calibration. All other
103	compound concentrations were calculated using a default proton transfer reaction rate constant of
104	2.5×10^{-9} cm ³ s ⁻¹ for both the primary ion, H ₃ O ₊ , as well as for the first water cluster,
105	H ₃ O+(H ₂ O). Direct calibration accuracies are estimated to be +/- 10%, whereas concentration
106	accuracies derived from the default rate constant are typically +/- 50%.25 Increases in RH can

107	cause increases in instrument sensitivities for certain compounds. However, these changes are
108	typically a few percent, much lower than concentration differences reported in this work.26,27
109	Measurements of VOCs at each specified RH and O3 exposure were made by allowing
110	concentrations in the reactor to stabilize. Once stable, the particle flow was quickly replaced with
111	a flow of N2. After 2 min, 95% of the particles were removed from the reactor, and a background
112	concentration was taken. To account for both compounds being desorbed from the flow-tube
113	walls as well as compounds being produced by heterogeneous oxidation on the walls, O3 flow
114	was maintained during the background sampling procedure. The difference between the stable
115	concentration and the background concentration was taken to be the gas-phase concentration
116	attributable to squalene-particle ozonolysis. Tables S1-S5 show the concentrations for each
117	species as measured from the flow tube, as well as the measured background.
118	An experiment to analyze emissions from skin-oil soiled clothing under varying
119	conditions of RH and O3 was performed as part of the Indoor Chemical Human Emissions and
120	Reactivity (ICHEAR) project. Four identical T-shirts (100% cotton) were washed with
121	fragrance-free detergent and tumble dried, before being worn by four people overnight
122	(minimum of 8 h). The skin-oil soiled T-shirts were then placed inside a stainless-steel climate
123	chamber (volume 26.8 m ₃) ventilated with an air-change rate of 3.2 h-1. Outdoor air was used for
124	ventilation. It was filtered using particle and activated carbon filters to avoid interference from

125	outdoor VOCs, and conditioned to reach the required temperature and RH. Ozone was generated
126	(Jelight Model 600 UV) in the HVAC system downstream of the activated carbon filter and
127	continuously introduced into the chamber at levels between 95-100 ppb. The temperature inside
128	the chamber was maintained at 27.4–28.3 °C during the experiment and the O ₃ levels were
129	monitored throughout. Four RH levels were established. The lowest RH levels (at the beginning
130	and end of the experiment) were not controlled (humidifier off, no dehumidifying present), while
131	the two higher RH levels were achieved by operating a steam humidifier in the HVAC system.
132	The first three levels were maintained for 1.5-2 hours to allow steady-state conditions to be
133	reached. The resulting average RH levels during these three periods were 26%, 41%, and 56%.
134	The final, fourth, RH condition was a decay from 50% to 28% with the humidifier off. The
135	average RH for this period was 33%.
136	A PTR-TOF-MS (8000, Ionicon Analytik GmbH Innsbruck, Austria) was deployed
137	during ICHEAR to monitor VOCs produced from O3 oxidation of skin oil. The operational
138	conditions of the PTR-TOF-MS were drift tube pressure 2.2 mbar, temperature 60 °C and 137 Td
139	(E/N). The 3.2-mm (1/8") Teflon inlet of the instrument was attached to the main exhaust duct of
140	the chamber, approximately 1 m from the terminal through which the air was exhausted from the
141	chamber and set to draw 100 mL min-1 (via a main high flow inlet of 7 L min-1) continuously
142	into the mass spectrometer. Data reported for the skin-oil T-shirt experiment represent sample

time resolution of 20 s. Before putting T-shirts inside the chamber, a background level of the
empty chamber was established and maintained for 10 minutes. The measured background VOC
levels were subsequently subtracted from the VOC levels measured while the T-shirts were in
the chamber.

147 **Results and Discussion**

148 Figure 1 shows the chemical structures of squalene and selected gas-phase ozonolysis 149 products. The first-generation gas-phase products are acetone, 6-methyl-5-hepten-2-one (6-150 MHO), and geranylacetone. Terminal oxidation products found in the gas phase, i.e. products 151 that are minimally reactive with O₃ because of their lack of carbon-carbon double bonds, are 152 acetone, 4-oxopentanal (4-OPA), and 1,4-butanedial (succinaldehyde). Scheme 1 shows a 153 simplified mechanism for alkenes reacting with O₃. In **R1**, O₃ adds across the double bond, 154 forming a primary ozonide (not shown), which quickly decomposes to one of two combinations 155 of carbonyl and Criegee intermediate. This reaction is fast and does not include water, so water 156 vapor concentration has no effect on the rate of alkene loss.22 The Criegee intermediate produced 157 by **R1** is reactive, and can proceed through **R2** or **R3**, as well as through rearrangement or 158 reactions with carboxylic acids28,29. **R2** shows the Criegee intermediate reacting with water to 159 form the α -hydroxyhydroperoxide, which decomposes to a carbonyl and to hydrogen peroxide.

160 **R3** shows the Criegee intermediate reacting with another carbonyl to form a secondary ozonide.

161 The carbonyl products are more volatile than their respective secondary ozonides; in the

- 162 presence of water, **R2** occurs faster than **R3**, leading to greater release of reaction products to the
- 163 gas phase and a concomitant shrinking of the particle.

164	Figures 2A and 2B show the gas-phase concentration of geranylacetone and 6-MHO
165	exiting the flow-tube reactor as a function of O3 exposure and RH. Both compounds are primary
166	products of squalene oxidation, and both have carbon-carbon double bonds that can further react
167	with O3. At all RH levels, geranylacetone production peaks at an O3 exposure of 10 ppb h. Dry
168	conditions yield 5 μ g m-3 of geranylacetone, whereas more humid conditions (70% RH) enhance
169	the concentration to 19 μ g m-3, an increase by almost 4×. More humid conditions, specifically
170	RH of 30% and 50%, also show an increase in geranylacetone concentration compared to dry
171	conditions. At exposures of 20 ppb h, the geranylacetone is fully consumed by ozonolysis and is
172	not detected. Compared to other products measured, concentrations of geranylacetone are small.
173	As a 13-carbon ketone, with a vapor pressure of 3.5 Pa at 298 K, most of the geranylacetone is
174	expected to remain in the condensed phase.6 Furthermore, there are fewer possible reaction
175	pathways to produce geranylacetone than the other, shorter chain products. The low
176	concentration measured in this study is consistent with a classroom study by Tang et al., where
177	both 6-MHO and 4-OPA were found at significantly higher concentrations than geranylacetone.2

178	The production of 6-MHO shows strong RH dependence. At all levels of O3 exposure, an
179	increase in RH leads to an increase in 6-MHO concentration. As 6-MHO is a primary product
180	that can also be consumed, peak concentrations are found at the lower levels of O3 exposure. At
181	70% RH and 12 ppb h of O ₃ exposure, the detected concentration is 170 μ g m-3, 3 times the level
182	of 6-MHO detected at the same O3 exposure but under dry conditions. Unlike geranylacetone, 6-
183	MHO is detected at even the highest levels of O3 exposure tested, 30 ppb h. The 6-MHO species
184	is used as a primary tracer compound for squalene oxidation, along with 4-OPA as a secondary
185	tracer. The fact that 6-MHO is consumed at higher O3 exposures, while 4-OPA is not, suggests
186	that 6-MHO concentrations could be used as a proxy indicator for the age of oxidation products:
187	at longer timescales, 6-MHO becomes depleted while 4-OPA does not.
188	Figures 3A-3C show the gas-phase concentrations as a function of O ₃ exposure and RH
189	of the three terminal products: acetone, 4-OPA, and 1,4-butanedial. At most levels of O3
190	exposure, increasing RH produces increasing concentrations of acetone, again showing strong
191	humidity dependence. At very low O3 exposure (5-6 ppb h), 30% RH produces 32 μg m-3 of
192	acetone, whereas 70% RH conditions give 77 μ g m-3, an increase by more than 2×. Under dry
193	conditions, acetone increases to 100 μ g m-3 at 12 ppb h exposure, and then does not increase with
194	increasing O3 exposure. As acetone does not have carbon-carbon double bonds, it does not react
195	significantly with O3 and so increasing exposure is not expected to consume acetone. Under

196	higher RH conditions, the same leveling off is seen, but at higher concentrations. At 70% RH,
197	acetone concentrations begin to plateau at 20 ppb h exposure, at a concentration of 280 μ g m-3.
198	At O3 exposures greater than 10 ppb h, increasing RH from 0% to 70% increases acetone
199	concentrations by a factor of 2.5 to 3.
200	Figure 3B shows the RH dependence of 4-OPA from the ozonolysis of squalene. A
201	minimum of two reactions involving O3 are required to produce 4-OPA from squalene, so
202	concentrations are observed to increase later than the primary products, acetone and 6-MHO.
203	Despite being a terminal product, 4-OPA does not show the same leveling off behavior as
204	acetone. Under dry conditions, production stops increasing at 20 ppb h O3 exposure, but under
205	high RH conditions no leveling off is seen; production of 4-OPA may increase past 30 ppb h
206	exposure. At O3 exposures less than 12 ppb h, no RH dependence is seen, but production is also
207	small. At higher O3 exposures, 4-OPA shows strong RH dependence, with a factor of 6 increase
208	in concentration between dry and humid conditions at 30 ppb h O3 exposure. In both mixing ratio
209	and mass concentration, 4-OPA is the most abundant gas-phase product, with a peak
210	concentration of 600 μ g m-3. If each double bond in squalene proceeds through reaction R2, one
211	molecule of squalene would produce a single 1,4-butanedial molecule, two acetone molecules,
212	and four 4-OPA molecules. While the observed mixing ratios of terminal products do not follow
213	these stoichiometric ratios, the relatively large number of 4-OPA molecules that can be made

214	from each squalene molecule help to explain why it is the most abundant gas-phase product.
215	Figure 3C shows the concentration of 1,4-butanedial as a function of RH and O ₃
216	exposure. As a terminal product, abundance of this species increases with O3 exposure, and, for
217	some RH conditions, eventually levels off. As with 4-OPA, production of 1,4-butanedial requires
218	a minimum of two ozonolysis reactions, so concentrations substantially increase at greater O3
219	exposure. Production of 1,4-butanedial shows a more complicated relation to RH than other
220	species. The lowest levels of production, across all O3 exposures, are under the most humid
221	conditions. The next lowest levels of production are under the driest conditions. Although it does
222	not follow the pattern of the other species measured, 1,4-butanedial levels do show strong
223	variability with RH. At 30 ppb h O3 exposure, switching from 70% RH to 30% RH increases the
224	concentration of 1,4-but anedial from 52 μg m-3 to 140 μg m-3. This ~3× increase in production is
225	in line with the $3-6\times$ changes in production observed at different RH for other compounds. The
226	fact that 1,4-butanedial production peaks at intermediate RH, and declines at low and high RH,
227	suggests that water plays a more complicated role than depicted in Scheme 1. Specifically,
228	reaction R2 increases 1,4-butanedial production up to a point, and then facilitates other reactions
229	that suppress production.
230	Wisthaler and Weschler (2010) observed 12 prominent VOCs from squalene ozonolysis,
231	including the five compounds already discussed.5 When glass wool soiled with human skin oil

232	was exposed to O ₃ (0-75 ppb h), three species — 4-methyl-8-oxo-4-nonenal (4-MON), 4-methyl-
233	4-octene-1,8-dial (4-MOD), and 1-hydroxy-6-methyl-5-hepten-2-one (OH-6MHO) — showed
234	mixing ratios similar to the observed mixing ratios of 4-OPA and 1,4-butanedial. These species
235	were also observed during ozonolysis of a pure squalene film; however, the mixing ratios for that
236	experiment were not reported. In our work, all three compounds were detected (4-MON, 4-
237	MOD, and OH-6MHO), but at very low concentrations, 2 μ g m-3 or less. Possibly due to the low
238	concentration of these species, a RH dependence isn't discernible.
239	Four other compounds identified by Wisthaler and Weschler (2010) — 1-hydroxypropan-
240	2-one (hydroxyacetone), 4-oxobutanoic acid, and the isobaric compounds 5-hydroxy-4-
241	oxopentanal and 4-oxopentanoic acid (levulinic acid) — are found in the present work at peak
242	concentrations much lower than 6-MHO, acetone, 4-OPA, and 1,4-butanedial (5-15 μg m-3
243	versus 140-600 μ g m-3). All four compounds are terminal products; concentrations either
244	increase or level off with increasing O3 exposure, and none of the products show increasing
245	production with increasing RH. Hydroxyacetone shows a muted response to changes in RH, as
246	seen in Figure S1. Production is similar at 30% RH, 50% RH, and 70% RH, but increase by \sim 50-
247	100% under dry conditions. Concentrations are modest, peaking at 15 μ g m-3 under dry
248	conditions and 30 ppb h O3 exposure. Levulinic acid or 5-hydroxy-4-oxopentanal (or a
249	combination of the two) only shows a RH effect at the highest O3 exposure. At 30 ppb h, 70%

250	RH yields 7 µg m-3 while 30% RH produces 15 µg m-3, as seen in Figure S2. Figure S3 shows 4-
251	oxobutanoic acid production <i>decreasing</i> with increased RH. At 70% RH and 30 ppb h O3
252	exposure, we observe 1 μ g m-3, whereas under dry conditions we measure 5 μ g m-3.
253	One fragmentation ion was produced in quantities comparable to those of the dominant
254	products, m/z 43.018 Da, C ₂ H ₃ O ₊ . This fragment is common to acetic acid and acetate esters, but
255	ions consistent with these parent masses were only found in low concentrations, so it is
256	unassigned.30 The fragment was found at mixing ratios comparable to 1,4-butanedial, and shows
257	similar responses to RH.
258	To explore whether our gas-phase measurements agree with the amount of material lost
259	from the particle phase, we summed the amount of carbon detected in the gas-phase products at
260	different levels of RH. We used a carbon-balance approach to test whether the loss of material
261	from the particle phase could be accounted for by generation of gas-phase products. The
262	concentration of squalene entering the flow tube reactor was 1000 μ g m-3, corresponding to 880
263	μg m-3 of carbon. Converting the measurements in Figures 2-3 from μg m-3 to μg C m-3, and
264	normalizing to the initial concentration of carbon entering the flow tube, gives the percent carbon
265	in the gas phase. (As with the reported concentrations, these measurements are accurate to +/-
266	50% for all species except for acetone, which is accurate to $+/-10\%$ because it is directly
267	calibrated.) Figure 4 shows the percent carbon in the gas phase at 20 ppb h O3 exposure. Note

268	that only the dominant products are shown. Switching from 0% RH to 70% RH increases the
269	proportion of carbon entering the gas phase from 21% to 65%, with increases in all dominant
270	products except 1,4-butanedial. Assuming that an average of two molecules of oxidation
271	products are generated for each molecule of ozone that reacts with squalene, this outcome
272	corresponds to yields of between 42% and 130% for gas-phase oxidation products per molecule
273	of ozone consumed. Even a moderate change, from dry conditions to 30% RH, increases the
274	proportion of carbon entering the gas phase by 60%. The largest increases are seen in 4-OPA
275	production.
276	Because the VUV-AMS only measures relative concentrations of species, there is no
277	direct measurement of the amount of carbon present in the condensed phase. However,
278	measurements of the change in particle volume can be used as a quantitative indicator for mass
279	loss from the particle. Note that this approach ignores any mass gained by the addition of oxygen
280	to condensed phase products of ozonolysis, as well as any difference in densities between
281	squalene and condensed-phase reaction products. Despite these limitations, using this approach,
282	there is a clear and strong correlation between the carbon detected in the gas phase and the
283	volume lost from the particle, as shown in Figure 5. Under dry conditions, at all levels of O ₃
284	exposure, ~20% of the particle volume is lost, and ~20% of the carbon from squalene is found in
285	the gas phase. At higher RH values, both the particle volume lost and the amount of carbon

286	entering the gas phase are more sensitive to O ₃ exposure, as shown by the larger spread for these
287	humidified conditions. The highest RH level (70%) gives both the greatest particle volume loss
288	and the largest percent of carbon in the gas phase. Notwithstanding experimental uncertainties,
289	the evidence displayed in Figure 5 is consistent with expectations for the quantitative loss of
290	particle-phase carbon being balanced with increased abundances of gaseous carbon species.
291	Figures 6 and S4 show the measurements in chamber air of several pertinent VOCs along
292	with O3 and RH. Four T-shirts were placed inside the measurement chamber at 10:25 with RH
293	maintained at ~26% for 1.5 h. Thereafter the RH was increased in a series of steps. The
294	previously identified squalene oxidation products (4-OPA, 1,4-butanedial, acetone, 6-MHO, and
295	geranylacetone) were observed to vary in response to the changing RH levels. Owing to the
296	working principle of the humidifier, the RH in the chamber fluctuated regularly within a 10%
297	range with a cycle of 38 minutes. In the data shown, primary unsaturated products and terminal
298	products all faithfully follow the RH variation, confirming the dependence of gas-phase squalene
299	ozonolysis products on RH, consistent with the flow-tube experiments. In accordance with
300	previous studies, 4-OPA was the most abundant product (especially at higher RH levels);
301	geranylacetone concentration was consistently the lowest among the quantified species.
302	In contrast with the flow-tube experiment, in which squalene particles were continuously
303	supplied, the skin-oil soiled T-shirts contained a limited amount of squalene that was

304	progressively consumed by O ₃ . Therefore, at any given RH, most of the compounds showed a
305	decreasing trend as the available squalene was depleted, except the first level where the lagging
306	terminal products still increase towards steady state. In particular, acetone clearly followed the
307	RH modulation while steadily decreasing as the experiment progressed. To better quantify the
308	relative yields of the VOCs as a function of RH, two pairs of RH levels were selected,
309	corresponding to points labeled 1-4 in Figure 6. As shown in Table 1, the concentration of 4-
310	OPA increased by 5.9 μ g m-3 as the RH increased from 26% (point 1) to 44% (point 2). A
311	similar increase of 5.1 μ g m-3 was seen in a second cycle as the RH changed from 46% (point 3)
312	to 59% (point 4). The other terminal products (1,4-butanedial, hydroxy acetone, 4-oxobutanoic
313	acid and 5-hydroxy-4-oxopentanal/levulinic acid) also showed slightly higher yields during the
314	first RH increase (point 1 to point 2). Although the level of the first-generation products
315	(acetone, 6-MHO and geranylacetone) tended to decrease with time, an increase was still
316	observed in the second step (points 3 and 4) when the RH increased from 46% to 59%. However,
317	unlike 4-OPA, the concentration changes were much lower than during the first RH increase
318	(points 1 and 2), as shown in Table 1. For 6-MHO and geranylacetone, additional oxidation by
319	O3 could also be a contributing factor. Ozone removal was 3.4 ppb in the second RH step (46%
320	to 59%), compared to 2.9 ppb in the first step, indicating that more 6-MHO and geranylacetone
321	were produced and subsequently oxidized by O3 at this stage. Significantly elevated 4-OPA

322 concentrations after the second increase of RH further supports this explanation.

323	Effects of RH on squalene ozonolysis have been observed in prior studies. Petrick and
324	Dubowski studied the condensed phase of squalene film oxidation while varying RH, finding
325	that increased RH led to more ketone production.31 They also note that RH did not influence
326	reaction kinetics, a finding also reported by Fu et al.32 Wang and Waring examined secondary
327	organic aerosol formation from the ozonolysis of surface-film squalene at 21% RH and 51%
328	RH.33 At high O3 exposures, they found that the higher RH increased the aerosol mass fraction
329	(AMF) from squalene. This increase suggests that higher RH leads to more oxidation products
330	entering the gas phase, where they then can condense onto airborne particles. Zhou et al.
331	examined the RH dependence of squalene film oxidation on the condensed phase products,
332	finding that increasing the RH increased the yield of lower molecular weight products and
333	decreased the yield of higher molecular weight products.34 Although not quantitatively
334	comparable, these previous studies qualitatively agree that an increase in RH leads to an increase
335	in volatile products from squalene ozonolysis.
336	Humidity is already known to be an important factor that can influence VOC emissions
337	from materials, compete with VOCs for sorptive uptake, and influence how indoor air is
338	perceived.35-44 Humidity is also known to change the rate of uptake of O3 on indoor surfaces, a
339	relationship that varies among common indoor materials.45 Few studies have assessed how RH

340	changes ozonolysis products and emission rates. Coleman et al. (2008) found that increasing RH
341	from 10% to 50% doubled the emissions of most ozonolysis byproducts from a cotton surface,
342	with nonanal and decanal emissions increasing by about 5×.14 Gall et al. (2013) studied primary
343	and secondary ozonolysis emissions from building materials, finding RH to have mixed effects.46
344	Secondary emissions increased with RH for painted drywall, while emissions from carpet and
345	ceiling tile did not. The present work contributes new knowledge, showing that RH can directly
346	influence the products of squalene ozonolysis, providing an alternate route by which water vapor
347	can increase VOC concentrations. At realistic indoor O3 exposures, a change from 0% RH to
348	70% RH results in \sim 3 times the amount of carbon entering the gas phase. Squalene, with six
349	carbon-carbon double bonds, is a model molecule to show this effect. Other unsaturated
350	compounds, especially those with double bonds separating small moieties, may show similar
351	behavior. The reactions shown in Scheme 1 are not specific to squalene, and so long as the
352	carbonyls formed by reaction R2 have sufficient volatility, increased production of gas-phase
353	products are generally expected from increases in RH.
354	The effects seen in this study suggest that RH can significantly alter the gas-phase
355	composition of indoor air. In high occupancy settings, skin-oil oxidation can be the dominant
356	source of VOCs, and changes in RH can alter the strength of this source by as much as a factor
357	of 3.4 In the flow-tube reactor, at the highest level of O3 exposure and RH, the sum of the

358	concentrations of dominant products was 940 μ g m-3, comparable to the 1000 μ g m-3 of squalene
359	entering the reactor. It should be noted that RH does not change the rate of squalene ozonolysis:
360	at low RH, oxidized products are still being formed, but remain in the condensed phase. If that
361	condensed phase is the skin surface, then the products might be taken up dermally, where they
362	might influence health.19,47 The large effect of RH on ozonolysis products from squalene, and the
363	potential for the underlying mechanism to act on other alkenes, warrants further research on how
364	humidity may modulate indoor reactive chemistry and its consequences.
365	
366	Supporting Information. Tables of raw and background concentrations of species measured for
367	this study. Figures for species not seen in large quantities.
368	Acknowledgments. The UC Berkeley team was funded by the Alfred P. Sloan Foundation via
369	Grant 2016-7050. Kevin R. Wilson and Nadja Heine were supported by the Department of
370	Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences,
371	and Biosciences Division, in the Gas Phase Chemical Physics Program under Contract No. DE-
372	AC02-05CH11231. This research used resources of the Advanced Light Source, which is a DOE
373	Office of Science User Facility under contract no. DE-AC02-05CH11231. The ICHEAR team
374	(MPI and DTU) were funded by the Alfred P. Sloan Foundation via Grant G-2018-11233. Allen
375	H. Goldstein gratefully acknowledges a Humboldt Research Award from the Alexander von

- 376 Humboldt Foundation. The authors gratefully acknowledge members of the ICHEAR team
- 377 including Nora Zannoni, Mengze Li, and Lisa Ernle for their contributions in performing the T-

378 shirt experiments.

379 References

- 380 (1) Klepeis, N. E.; Nelson, W. C.; Ott, W. R.; Robinson, J. P.; Tsang, A. M.; Switzer, P.;
- 381 Behar, J. V; Hern, S. C.; Engelmann, W. H. The National Human Activity Pattern Survey
- 382 (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. *J. Exposure* 383 *Anal. Environ. Epidemiol.* 2001, *11*, 231–252.
- Tang, X.; Misztal, P. K.; Nazaroff, W. W.; Goldstein, A. H. Volatile Organic Compound
 Emissions from Humans Indoors. *Environ. Sci. Technol.* 2016, *50*, 12686–12694.
- 386 (3) Weschler, C. J. Roles of the human occupant in indoor chemistry. *Indoor Air* 2016, *26*, 6–
 387 24.
- Weschler, C. J.; Wisthaler, A.; Cowlin, S.; Tamás, G.; Strøm-Tejsen, P.; Hodgson, A. T.;
 Destaillats, H.; Herrington, J.; Zhang, J.; Nazaroff, W. W. Ozone-Initiated Chemistry in
- an Occupied Simulated Aircraft Cabin. *Environ. Sci. Technol.* **2007**, *41*, 6177–6184.
- 391 (5) Wisthaler, A.; Weschler, C. J. Reactions of ozone with human skin lipids: Sources of
 392 carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. *Proc. Natl. Acad. Sci.* 2010,
 393 107, 6568–6575.
- 394 (6) Lakey, P. S. J.; Wisthaler, A.; Berkemeier, T.; Mikoviny, T.; Pöschl, U.; Shiraiwa, M.
- 395 Chemical kinetics of multiphase reactions between ozone and human skin lipids:
- implications for indoor air quality and health effects. *Indoor Air* **2017**, *27*, 816–828.

397	(7)	Lakey, P. S. J.; Morrison, G. C.; Won, Y.; Parry, K. M.; von Domaros, M.; Tobias, D. J.;
398		Rim, D.; Shiraiwa, M. The impact of clothing on ozone and squalene ozonolysis products
399		in indoor environments. Commun. Chem. 2019, 2, 56.
400	(8)	Kruza, M.; Carslaw, N. How do breath and skin emissions impact indoor air chemistry?
401		Indoor Air 2019 , <i>29</i> , 369–379.
402	(9)	Weschler, C. J. Ozone in indoor environments: Concentration and chemistry. Indoor Air
403		2000 , <i>10</i> , 269–288.
404	(10)	Weschler, C. J. Ozone's Impact on Public Health: Contributions from Indoor Exposures to
405		Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114,
406		1489–1496.
407	(11)	Fischer, A.; Ljungström, E.; Langer, S. Ozone removal by occupants in a classroom.
408		Atmos. Environ. 2013, 81, 11–17.
409	(12)	Nicolaides, N. Skin Lipids: Their Biochemical Uniqueness. Science. 1974, 186, 19–26.
410	(13)	Bhangar, S.; Cowlin, S. C.; Singer, B. C.; Sextro, R. G.; Nazaroff, W. W. Ozone Levels in
411		Passenger Cabins of Commercial Aircraft on North American and Transoceanic Routes.
412		Environ. Sci. Technol. 2008, 42, 3938–3943.
413	(14)	Coleman, B. K.; Destaillats, H.; Hodgson, A. T.; Nazaroff, W. W. Ozone consumption
414		and volatile byproduct formation from surface reactions with aircraft cabin materials and
415		clothing fabrics. Atmos. Environ. 2008, 42, 642-654.
416	(15)	Wisthaler, A.; Tamás, G.; Wyon, D. P.; Strøm-Tejsen, P.; Space, D.; Beauchamp, J.;
417		Hansel, A.; Märk, T. D.; Weschler, C. J. Products of Ozone-Initiated Chemistry in a
418		Simulated Aircraft Environment. Environ. Sci. Technol. 2005, 39, 4823–4832.
		23

419	(16)	Wells, J. R.; Morrison, G. C.; Coleman, B. K. Kinetics and Reaction Products of Ozone
420		and Surface-Bound Squalene. J. ASTM Int. 2008, 5, 101629.
421	(17)	Jacobs, M. I.; Xu, B.; Kostko, O.; Heine, N.; Ahmed, M.; Wilson, K. R. Probing the
422		Heterogeneous Ozonolysis of Squalene Nanoparticles by Photoemission. J. Phys. Chem. A
423		2016 , <i>120</i> , 8645–8656.
424	(18)	Salvador, C. M.; Bekö, G.; Weschler, C. J.; Morrison, G.; Le Breton, M.; Hallquist, M.;
425		Ekberg, L.; Langer, S. Indoor ozone/human chemistry and ventilation strategies. Indoor
426		<i>Air</i> 2019 , <i>29</i> , 913–925.

- 427 (19) Anderson, S. E.; Franko, J.; Jackson, L. G.; Wells, J. R.; Ham, J. E.; Meade, B. J. Irritancy
 428 and Allergic Responses Induced by Exposure to the Indoor Air Chemical 4-Oxopentanal.
 429 *Toxicol. Sci.* 2012, *127*, 371–381.
- 430 (20) Wolkoff, P.; Larsen, S. T.; Hammer, M.; Kofoed-Sørensen, V.; Clausen, P. A.; Nielsen,
- G. D. Human reference values for acute airway effects of five common ozone-initiated
 terpene reaction products in indoor air. *Toxicol. Lett.* 2013, *216*, 54–64.
- 433 (21) Mochalski, P.; King, J.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Emission rates of
 434 selected volatile organic compounds from skin of healthy volunteers. *J. Chromatogr. B.*435 2014, 959, 62–70.
- 436 (22) Heine, N.; Houle, F. A.; Wilson, K. R. Connecting the Elementary Reaction Pathways of
 437 Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
 438 *Environ. Sci. Technol.* 2017, *51*, 13740–13748.
- 439 (23) Heine, N.; Arata, C.; Goldstein, A. H.; Houle, F. A.; Wilson, K. R. Multiphase
- 440 Mechanism for the Production of Sulfuric Acid from SO2by Criegee Intermediates

- 441 Formed during the Heterogeneous Reaction of Ozone with Squalene. J. Phys. Chem. Lett.
 442 2018, 9, 3504–3510.
- 443 (24) Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.;
- 444 Worsnop, D. R.; Wilson, K. R. The heterogeneous reaction of hydroxyl radicals with sub-
- 445 micron squalane particles: a model system for understanding the oxidative aging of
- 446 ambient aerosols. *Atmos. Chem. Phys* **2009**, *9*, 3209–3222.
- 447 (25) Zhao, J.; Zhang, R. Proton transfer reaction rate constants between hydronium ion (H₃O₊)
 448 and volatile organic compounds. *Atmos. Environ.* 2004, *38*, 2177–2185.
- (26) Kari, E.; Miettinen, P.; Yli-Pirilä, P.; Virtanen, A.; Faiola, C. L. PTR-ToF-MS product ion
 distributions and humidity-dependence of biogenic volatile organic compounds. *Int. J. Mass Spectrom.* 2018, *430*, 87–97.
- 452 (27) Vlasenko, A.; MacDonald, A. M.; Sjostedt, S. J.; Abbatt, J. P. D. Formaldehyde
- 453 measurements by proton transfer reaction mass spectrometry (PTR-MS): correction for
 454 humidity effects. *Atmos. Meas. Tech.* 2010, *3*, 1055–1062.
- 455 (28) Zhou, S.; Joudan, S.; Forbes, M. W.; Zhou, Z.; Abbatt, J. P. D. Reaction of Condensed-
- 456 Phase Criegee Intermediates with Carboxylic Acids and Perfluoroalkyl Carboxylic Acids.
 457 *Environ. Sci. Technol. Lett.* 2019, *6*, 243–250.
- 458 (29) Zhao, R.; Kenseth, C. M.; Huang, Y.; Dalleska, N. F.; Kuang, X. M.; Chen, J.; Paulson, S.
- 459 E.; Seinfeld, J. H. Rapid Aqueous-Phase Hydrolysis of Ester Hydroperoxides Arising
- 460 from Criegee Intermediates and Organic Acids. J. Phys. Chem. A 2018, 122, 5190–5201.
- 461 (30) Pagonis, D.; Sekimoto, K.; de Gouw, J. A Library of Proton-Transfer Reactions of H₃O+
- 462 Ions Used for Trace Gas Detection. J. Am. Soc. Mass Spectrom. 2019, 30, 1330–1335.

463	(31)	Petrick, L.; Dubowski, Y. Heterogeneous oxidation of squalene film by ozone under
464		various indoor conditions. Indoor Air 2009, 19, 381–391.

- 465 (32) Fu, D.; Leng, C.; Kelley, J.; Zeng, G.; Zhang, Y.; Liu, Y. ATR-IR Study of Ozone
- 466 Initiated Heterogeneous Oxidation of Squalene in an Indoor Environment. *Environ. Sci.*
- 467 *Technol.* **2013**, *47*, 10611–10618.
- 468 (33) Wang, C.; Waring, M. S. Secondary organic aerosol formation initiated from reactions
 469 between ozone and surface-sorbed squalene. *Atmos. Environ.* 2014, *84*, 222–229.
- 470 (34) Zhou, S.; Forbes, M. W.; Abbatt, J. P. D. Kinetics and Products from Heterogeneous
- 471 Oxidation of Squalene with Ozone. *Environ. Sci. Technol.* **2016**, *50*, 11688–11697.
- 472 (35) Markowicz, P.; Larsson, L. Influence of relative humidity on VOC concentrations in
 473 indoor air. *Environ. Sci. Pollut. Res.* 2015, *22*, 5772–5779.
- 474 (36) Andersen, I.; Lundqvist, G. R.; Mølhave, L. Indoor Air Pollution Due to Chipboard Used
 475 as a Construction Material. *Atmos. Environ.* 1975, *9*, 1121–1127.
- 476 (37) Fang, L.; Clausen, G.; Fanger, P. O. Impact of temperature and humidity on chemical and
 477 sensory emissions from building materials. *Indoor Air* 1999, *9*, 193–201.
- 478 (38) Huang, H.; Haghighat, F.; Blondeau, P. Volatile organic compound (VOC) adsorption on
- 479 material: influence of gas phase concentration, relative humidity and VOC type. *Indoor*
- 480 *Air* **2006**, *16*, 236–247.
- 481 (39) Huang, S.; Xiong, J.; Cai, C.; Xu, W.; Zhang, Y. Influence of humidity on the initial
- 482 emittable concentration of formaldehyde and hexaldehyde in building materials:
- 483 experimental observation and correlation. *Sci. Rep.* **2016**, *6*, 23388.
- 484 (40) Liang, W.; Yang, S.; Yang, X. Long-Term Formaldehyde Emissions from Medium-

485		Density Fiberboard in a Full-Scale Experimental Room: Emission Characteristics and the
486		Effects of Temperature and Humidity. Environ. Sci. Technol. 2015, 49, 10349–10356.
487	(41)	Parthasarathy, S.; Maddalena, R. L.; Russell, M. L.; Apte, M. G. Effect of Temperature
488		and Humidity on Formaldehyde Emissions in Temporary Housing Units. J. Air Waste
489		Manag. Assoc. 2011, 61, 689–695.
490	(42)	Sidheswaran, M.; Chen, W.; Chang, A.; Miller, R.; Cohn, S.; Sullivan, D.; Fisk, W. J.;
491		Kumagai, K.; Destaillats, H. Formaldehyde Emissions from Ventilation Filters under
492		Different Relative Humidity Conditions. Environ. Sci. Technol. 2013, 47, 5336–5343.
493	(43)	Xu, J.; Zhang, J. S. An experimental study of relative humidity effect on VOCs' effective
494		diffusion coefficient and partition coefficient in a porous medium. Build. Environ. 2011,
495		46, 1785–1796.

- 496 (44) Won, D.; Corsi, R. L.; Rynes, M. Sorptive interactions between VOCs and indoor 497 materials. Indoor Air 2001, 11, 246-256.
- 498 Shen, J.; Gao, Z. Ozone removal on building material surface: A literature review. Build. (45) 499 Environ. 2018, 134, 205–217.
- 500 Gall, E.; Darling, E.; Siegel, J. A.; Morrison, G. C.; Corsi, R. L. Evaluation of three (46) 501 common green building materials for ozone removal, and primary and secondary 502 emissions of aldehydes. Atmos. Environ. 2013, 77, 910-918.
- 503 (47) Anderson SE, Franko J, Jackson LG, Wells J, Ham JE, Meade B. Irritancy and allergic 504 responses induced by exposure to the indoor air chemical 4-oxopentanal. Toxicol Sci. 505 **2012**, 127, 371–381.

Figure 1: Chemical structure of squalene and selected squalene ozonolysis products

Figure 2: Primary unsaturated products from squalene ozonolysis as a function of humidity and O_3 exposure.

Figure 3: Terminal products from squalene ozonolysis as a function of humidity and O_3 exposure.

Figure 4: Percent of carbon in the gas phase at 20 ppb h O_3 exposure as a function of RH. Converting the measurements in Figures 2-3 from $\mu g \text{ m}^{-3}$ to $\mu g \text{ C} \text{ m}^{-3}$, and normalizing to the initial concentration of carbon entering the flow tube gives the percent carbon in the gas phase.

Figure 5: Percent carbon in the gas phase compared to the percent of particle volume lost for all RH and O_3 exposures.

Figure 6: Time series of primary unsaturated products (lower panel) and terminal products (middle panel) with relative humidity and O_3 removal (upper panel) for clothing experiment (O_3 removal was obtained by subtracting measured O_3 level from the level of O_3 in supply air; the gap in the O_3 removal curve is due to the measurement of O_3 level in supply air). Circled numbers in the top panel refer to conditions referenced in Table 1.

m ⁻³) hydroxy 4-oxobutanoic 5-hydroxy-4- l acetone acid oxopentanal	1.28 0.340 0.339	0.881 0.327 0.284
$\frac{\Delta \text{VOCs} (\mu \text{g}}{1,4}$ butanedia	1.14	0.812
e 0. 2 geranyl acetone	0.117	0.084
6-MHO	2.54	0.652
ar to pound	5.91	5.09
acetone	2.17	0.960
ΔO ₃ (ppb)	2.90	3.37
RH (%)	$\begin{array}{c} 1\\26\\44\end{array}$	$\underbrace{ \begin{array}{c} & & \\ & $

Table 1: The concentration change of squalene oxidation products (ΔVOCs , $\mu \text{g m}^{-3}$) due to relative humidity (RH) included numbers of motion of the motion of the second second numbers of the motion of

Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend on Water Vapor Concentration

Caleb Arata^{*†§}, Nadja Heine[‡], Nijing Wang[¶], Pawel K. Misztal^{§#}, Pawel Wargocki[^], Gabriel Bekö[^], Jonathan Williams[¶], William W Nazaroff^{||}, Kevin R. Wilson[‡], Allen H. Goldstein^{§||}

[†]Department of Chemistry, [§]Department of Environmental Science, Policy and Management, and ^{||}Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720 United States

[‡]Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

[¶]Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany

^Department of Civil Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

 $^{\#} \rm Now$ at: Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712

*Email: caleb.arata@berkeley.edu

Supporting Information

Pages S1-S8

Tables S1-S5

Figures S1-S4

Table S1: Geranyl acetone concentration data used to calculate production from ozonolysis. Once concentrations were stable in the flow tube reactor, a 'Raw' measurement was taken. Shortly after, the particle flow was replaced with a flow of N_2 , and squalene particles were removed from the flow tube reactor, allowing for a background measurement. Background measurements were taken 2 min after the particle flow was removed, when 95% of particles are removed from the flow tube.

RH (%)	O ₃ Exposure (ppb h)	Background ($\mu g m^{-3}$)	Raw ($\mu g m^{-3}$)	Difference ($\mu g m^{-3}$)
0	9	9	14	5
0	12	1	4	3
0	17	0	0	0
0	21	0	0	0
0	27	0	0	0
0	32	0	0	0
30	5	69	70	1
30	10	22	37	15
30	12	3	10	7
30	17	0	1	1
30	23	0	0	0
30	30	0	0	0
50	6	149	160	11
50	10	20	34	14
50	12	3	9	6
50	16	0	1	1
50	21	0	0	0
50	26	0	0	0
50	28	0	0	0
70	6	118	127	9
70	9	24	43	19
70	12	3	12	9
70	16	0	1	1
70	21	0	0	0
70	31	0	0	0

Table S2: 6-MHO concentration data used to calculate production from ozonolysis. Once concentrations were stable in the flow tube reactor, a 'Raw' measurement was taken. Shortly after, the particle flow was replaced with a flow of N_2 , and squalene particles were removed from the flow tube reactor, allowing for a background measurement. Background measurements were taken 2 min after the particle flow was removed, when 95% of particles are removed from the flow tube.

RH (%)	O ₃ Exposure (ppb h)	Background ($\mu g m^{-3}$)	Raw ($\mu g m^{-3}$)	Difference ($\mu g m^{-3}$)
0	9	36	94	57
0	12	15	69	52
0	17	7	31	25
0	21	2	18	15
0	27	1	7	6
0	32	1	3	2
30	5	151	152	1
30	10	112	172	59
30	12	51	132	79
30	17	12	58	45
30	23	6	31	25
30	30	3	13	9
50	6	290	401	115
50	10	105	218	112
50	12	41	169	128
50	16	6	90	83
50	21	2	47	45
50	26	1	27	25
50	28	1	15	14
70	6	240	355	115
70	9	109	260	151
70	12	42	216	173
70	16	6	121	115
70	21	2	68	65
70	31	2	12	11

Table S3: 4-OPA concentration data used to calculate production from ozonolysis. Once concentrations were stable in the flow tube reactor, a 'Raw' measurement was taken. Shortly after, the particle flow was replaced with a flow of N_2 , and squalene particles were removed from the flow tube reactor, allowing for a background measurement. Background measurements were taken 2 min after the particle flow was removed, when 95% of particles are removed from the flow tube.

$\mathrm{RH}~(\%)$	O_3 Exposure (ppb h)	Background ($\mu g m^{-3}$)	Raw ($\mu g m^{-3}$)	Difference ($\mu g m^{-3}$)
0	9	148	185	38
0	12	147	205	58
0	17	134	209	75
0	21	105	202	96
0	27	96	192	95
0	32	101	199	98
30	5	191	229	38
30	10	335	353	19
30	12	378	425	47
30	17	368	492	125
30	23	344	502	160
30	30	337	522	184
50	6	848	887	42
50	10	579	601	20
50	12	712	785	75
50	16	676	917	240
50	21	626	950	323
50	26	618	1020	399
50	28	640	1038	398
70	9	857	871	11
70	12	1083	1165	79
70	16	1233	1516	282
70	21	1179	1630	447
70	31	1136	1734	606

Table S4: 1,4-butanedial concentration data used to calculate production from ozonolysis. Once concentrations were stable in the flow tube reactor, a 'Raw' measurement was taken. Shortly after, the particle flow was replaced with a flow of N_2 , and squalene particles were removed from the flow tube reactor, allowing for a background measurement. Background measurements were taken 2 min after the particle flow was removed, when 95% of particles are removed from the flow tube.

RH(%)	O_3 Exposure (ppb h)	Background ($\mu g m^{-3}$)	Raw ($\mu g m^{-3}$)	Difference ($\mu g m^{-3}$)
0	9	81	106	25
0	12	87	126	40
0	17	88	143	55
0	21	67	150	82
0	27	57	142	85
0	32	57	143	85
30	5	66	87	20
30	10	112	135	25
30	12	122	166	45
30	17	110	205	95
30	23	100	218	118
30	30	92	229	135
50	10	153	178	25
50	12	161	207	46
50	16	152	238	86
50	21	146	242	96
50	26	149	257	107
50	28	159	260	101
70	9	189	206	16
70	12	223	246	23
70	16	254	297	43
70	21	239	289	50
70	31	257	309	53

Table S5: Acetone concentration data used to calculate production from ozonolysis. Once concentrations were stable in the flow tube reactor, a 'Raw' measurement was taken. Shortly after, the particle flow was replaced with a flow of N_2 , and squalene particles were removed from the flow tube reactor, allowing for a background measurement. Background measurements were taken 2 min after the particle flow was removed, when 95% of particles are removed from the flow tube.

RH (%)	O_3 Exposure (ppb h)	Background ($\mu g m^{-3}$)	Raw ($\mu g m^{-3}$)	Difference ($\mu g m^{-3}$)
0	9	81	167	84
0	12	71	173	102
0	17	71	169	98
0	21	57	165	107
0	27	52	154	102
0	32	52	158	105
30	5	105	137	32
30	10	142	227	84
30	12	123	267	141
30	17	92	293	197
30	23	81	289	206
30	30	75	288	213
50	6	163	240	77
50	10	135	249	112
50	12	110	289	178
50	16	71	301	230
50	21	62	302	238
50	26	60	319	256
50	28	62	307	243
70	6	137	216	77
70	9	158	293	133
70	12	142	337	194
70	16	122	381	258
70	21	149	428	278
70	31	184	459	278

Figure S1: Hydroxy acetone concentration as a function of humidity and O_3 exposure.

Figure S2:5-hydroxy-4-oxopentanal and levulinic acid concentration as a function of humidity and O_3 exposure.

Figure S3: 4-oxopentanoic acid concentration as a function of humidity and O_3 exposure.

Figure S4: Time series of other squalene oxidation products with relative humidity and O_3 removal (upper panel) for the clothing experiment (O_3 removal is the difference between O_3 measured in supply air and the chamber; the data gap is due to the supply air measurement).