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Turbulent Equipartition and Homogenization of Plasma Angular Momentum
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9500 Gilman Drive, La Jolla, California 92093-0424, USA
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Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543-0451, USA

(Received 13 September 2007; published 3 April 2008)

A physical model of turbulent equipartition (TEP) of plasma angular momentum is developed. We show
that using a simple, model insensitive ansatz of conservation of total angular momentum, a TEP pinch of
angular momentum can be obtained. We note that this term corresponds to a part of the pinch velocity
previously calculated using quasilinear gyrokinetic theory. We observe that the nondiffusive TEP flux is
inward, and therefore may explain the peakedness of the rotation profiles observed in certain experiments.
Similar expressions for linear toroidal momentum and flow are computed and it is noted that there is an
additional effect due the radial profile of moment of inertia density.

DOI: 10.1103/PhysRevLett.100.135001 PACS numbers: 52.35.Ra

The question of angular momentum transport in mag-
netic fusion devices is decades old. The theory traditionally
focuses on description of angular momentum evolution in
the presence of external torques [1]. Early theoretical pre-
dictions that !" ! !i were based on the structure and
properties of long wavelength drift-wave turbulence [2].
Subsequent observations [3] indicate that anomalous an-
gular momentum transport is important for tokamaks.
Recent observations of intrinsic plasma rotation, its current
scaling [4–7] or correlation with pressure gradients [8]
observed in the high confinement regime (H mode) and
the density bifurcations [9] observed in the low confine-
ment regime (L mode), suggest that this simple picture of
angular momentum transport is incomplete. In particular a
nondiffusive component of the angular momentum flux is
required. Recently, several theories explaining various as-
pects of these observations have been proposed. One par-
ticular idea, using E" B shear as the source of imbalance
in the wave population density propagation direction, pre-
dicts a residual stress component of the momentum flux
[10] mostly localized to the pedestal region. This may help
explain intrinsic rotation via the interaction with sharp
edge pressure and density gradients. However, in some
cases, the rotation profiles are peaked on the plasma axis.
Thus, a ‘‘pinch’’ (an inward radial flow of momentum,
especially active in the core region) is also needed in order
to explain these observations. A generic reformulation of
this theory where the source of symmetry breaking is
general (several possibilities are considered) indeed results
in such a pinch term [11]. This effect is linked to wave-
particle momentum exchange and therefore is independent
of the details of geometry. Note that, whatever the reason
may be, some symmetry breaking (in parallel wave number
kk, interpreted broadly) is needed in order to have a non-
vanishing off-diagonal component of the toroidal Reynolds
stress.

Nonlinear gyrokinetic theory that respects the conser-
vation properties of the Vlasov equation [12,13] yields
such a pinch term when the parallel velocity moment is
computed [14]. This has been interpreted as symmetry
breaking in B# due to ballooning structure of fluctua-
tions [14] or as a manifestation of Coriolis drift in rotating
frame [15]. Here we use turbulent equipartition theory
(TEP) [16–18] and turbulent homogenization of angular
momentum to derive a simple model which includes a
similar radial convection term. Here homogenization refers
to the process of flattening of the gradient of a scalar
quantity that is advected by an incompressible flow (a
locally conserved field) and diffused by molecular or tur-
bulent diffusion [19]. Local differential rotation, such as
that caused by zonal flows [20], ubiquitous in fusion plas-
mas, tends to speed up this process of homogenization
[21]. This approach allows us to clarify the physical basis
of this geometry dependent term. In a simple, model
insensitive ansatz, we will show that this term corresponds
to a part of the previous gyrokinetic result but follows from
a simple physical explanation. We will show that the same
form for the TEP pinch can be obtained from the simple
assertion that L"=#1$B% is locally conserved. Here L" is
the angular momentum density and #1 is a function of the
magnetic field, which depends on geometry and/or plasma
dynamics.

There are three aspects of the mechanism that are dis-
cussed in this Letter. First, there is the familiar TEP pinch.
Just like particle number, angular momentum is also con-
served by the underlying physical processes. Hence, being
a ‘‘density,’’ L", the angular momentum density, diffuses
in the flux surface variable  ( just like the particle density).
This suggests that it is roughly L"=#1 that is ‘‘locally
conserved’’ by the E" B flow due to the fact that it is u &
vE"B#1, which is divergence free, and not the E" B flow
itself. This results in a pinch of angular momentum,
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equivalent to the TEP particle pinch (the ratio of two is
V$n%
r =V$L%

r !Dn=!").
The second aspect of the mechanism is linked to the

relation between angular momentum and linear toroidal
momentum (i.e., P"). In general, L" ' $hR2i=hRi%P" &
#(1
2 P", and the proportionality (i.e., #(1

2 ' hR2i=hRi) is
related to the effective moment of inertia and is an in-
creasing function of r (i.e., minor radius). For a simple
torus with concentric circular flux surfaces mn$ %hR2i !
I0$ %=V 0$ % ! mn$r%$R2

0 ) 3r2=2%, which suggests that
the core is less inert (i.e., lighter) than the edge, so if the
angular momentum is homogenized by turbulence (and we
will show that it is in fact L"=#1 that is homogenized), the
rotation near the core will be faster than at the edge (see
Fig. 1). Note that here I$ % is the moment of inertia density.
Because of this ‘‘radial profile’’ of the moment of inertia
density in toroidal geometry, linear momentum evolution
does not have the form of divergence of a flux. One can put
it in such a form (approximately) after integrating by parts,
where it can be observed that P"=$#1#2

2% is the locally
conserved field.

The final aspect of the mechanism involves the trans-
formation P" ! nv" and the fact that it is v" that is
actually measured. Decoupling the density and the flow
evolutions leads to a recoil effect of !n on v" evolution. It
should be noted that the geometric part of the pinch effect
(i.e., the part due to the divergence of E" B flow) is
mainly a result of L" being a density of angular momen-
tum. However v" is not a density. Thus, the main pinch
effect on v" is due to the moment of inertia profile.

The TEP theory can be briefly reviewed using the equa-
tion of continuity:

 @tn) r * $nv% ' 0 (1)

and following Naulin et al. [17] in defining v ' u=#1
where r * u ' 0. This means that mixing conserves
n=#1, not n: i.e.,

 @t$n=#1% ) v * r$n=#1% ' 0: (2)

Separating n ' hni ) ~n, we can write
 

~n ' ($c#1~v * r$hni=#1%;

!n +
!
#1 ~vr

"
~n
#1

#$
!($c

!
j~vrj2#1

@
@r

"hni
#1

#$
;

or V$n%
r + ( Dn

hj~vrj2i

!
j~vrj2#1

@
@r

"
1
#1

#$
:

(3)

Here the flux has the form !n ' (Dn@hni=@r) V$n%
r hni

and Dn ' $chj~vrj2i, where $c is a turbulence decorrelation
time. Note that hni is, by definition, independent of the
poloidal angle %, j~vrj2 and #1 ' #1$r; %% may not be.

Physically, the basis of the pinch is that the underlying
physical processes (e.g., microturbulence) cause the parti-
cle number (the globally conserved quantity) to be homo-
genized among toroidal ‘‘shells,’’ which means each shell
ultimately contains an equal number of particles. However,
since the volume of each shell is different, the density will
be inversely proportional to the shell volume: n /
,V 0$ %-(1. Here V$ % is the total volume within the flux
surface labeled by  . The volume of a shell of thickness "r
is approximately V 0$ %"r. For circular concentric flux
surfaces V 0$r% ! $2&%2R0r.

The form of the TEP theory that we use here is valid
where the transport is turbulent drift-wave transport mixed
via the self-consistent sheared flows, and the E" B shear
effects, while dynamically important, are not strong as in a
barrier. This is sufficient, for the effect is invoked to
explain the pinch mechanism in the core region and not
the generation in the pedestal. However, since the TEP is a
geometry effect and is linked to diffusion, if one uses a
more complex response (instead of just the $c) for the
diffusive part (for instance, include E" B shear suppres-
sion), the same response applies to the pinch term as well.

The same is true for angular momentum density. It
follows from the Rv""̂ moment of the Vlasov equation
that for Jr ' 0 angular momentum density is exactly con-
served (e.g., [1]):

 

@
@t

$L"% ) r * $L"v% ' 0; (4)

which, in general, contains the fluctuations as well as the
flux surface average. Letting v ' u=#1 where u is diver-
gence free (i.e., r * u ' 0) and #1 ' #1$r% is time inde-
pendent, we arrive at the local angular momentum density
evolution equation

 @t$L"=#1% ) v * r$L"=#1% ' 0: (5)

In other words, the locally conserved field is L"=#1 (e.g.,
for v ' cẑ" r#=B à la [18], #1 ' B). Thus, for fluctua-

FIG. 1 (color online). Two toroidal shells of moment of inertia
densities 'I1 and 'I2. Since 'I1 < 'I2, the core has less moment
of inertia density than the edge; as a result, when the momentum
is homogenized, the core rotates faster.
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tions, we can write

 

~L" ' ($c#1~v * r$hL"i=#1%: (6)

The mean field equation can be obtained by averaging (4):

 

@
@t

hL"i )
1
r
@
@r

,rh ~L"~vri- ' 0; (7)

so that substituting (6) into (7) we get

 

@
@t

hL"i (
1
r
@
@r

"
r
%!

$cj~vrj2#1
@
@r

"hL"i
#1

#$&#
' 0: (8)

Note that (8) has the form of divergence of a flux. This is
because the total angular momentum is a globally con-
served quantity (for Jr ' 0), like particle number, and has
the form

 

@
@t
L" ( 1

r
@
@r

$r$"% ' 0;

where

 $" + ((T
@
@r
L" ( (T

hj~vrj2i

!
j~vrj2#1

@
@r

"
1
#1

#$
L";

with turbulent viscosity (also called !") given by (T !
$chj~vrj2i. In general, a more realistic kernel can be used, or
collisional (molecular) viscosity in addition to turbulent
viscosity may be considered. These are not essential for
our current argument, and thus are excluded. The pinch
velocity is

 V$L%
r ' ( (T

hj~vrj2i

!
j~vrj2#1

@
@r

"
1
#1

#$
: (9)

Thus, the physical basis of the ‘‘angular momentum
pinch’’ is the same as the particle pinch. Instead of being
diffused in the r coordinate, angular momentum is homo-
genized among infinitesimal shells by turbulent mixing.
When each shell has equal ‘‘total’’ angular momentum, the
process stops. Since the volumes of these shells are not
equal, we have hL"i / ,V 0$ %-(1. This is the origin of the
TEP angular momentum pinch. Note that here we assumed
the turbulence is electrostatic; hence, the field angular
momentum remains constant overall. Note also that the
angular momentum pinch as given in (9) relies on shaping
as well as on whether the velocity fluctuations are balloon-
ing or not. Equation (9) suggests that some ballooning is
necessary. However, the mixing via self-consistent sheared
flows, which enter the formulation by setting $c and by
reducing the ballooning, are also dynamically important, as
they enhance the mixing process responsible for the pinch.

In order to describe the evolution of ‘‘average linear
momentum’’ in the " direction, we use the relation be-
tween flux surface averaged angular and linear momenta:
hL"i ' hI!"i + $hR2i=hRi%hP"i, where I is the moment
of inertia density. Noting that #2 ' hRi=hR2i is time inde-
pendent, we can write

 

@
@t
P" ( #2

1
r
@
@r

"
r
!
(T#1

@
@r

" P"

#1#2

#$#
' 0; (10)

where P" & mhnv"i and #2 ' mnhRiV 0$ %=I0T$ % '
hRi=hR2i. Here IT$ % is the total moment of inertia of the
plasma within a given flux surface  . Notice that, (10) is
not exactly in the form of ‘‘divergence of a flux’’ due to an
extra #2 outside the divergence in the second term. After
moving #2 into the parenthesis by integrating by parts, part
of the remaining term also takes the form of a divergence
of a flux and can be combined with the first term.
Consequently (10) can be expressed as

 

@
@t
P" ( 1

r
@
@r

"
r
!
(T#1#2

2

@
@r

" P"

#1#2
2

#$#
' )$P%P"; (11a)

where

 )$P% '
!

1
#1#2

1
r
@
@r

"
r(T#1

@#2

@r

#$
(11b)

and

 !$p%
" ' ((T

@
@r
P" ) V$p%

r P": (11c)

Here the pinch of linear momentum density is

 V$P%
r ' ( (T

hj~vrj2i

!
j~vrj2#1#2

2

@
@r

"
1

#1#2
2

#$
: (11d)

This form of the TEP pinch, which follows from the local
conservation of P"=#1#2

2, can be directly deduced from
(11a). Here )$P% is the flux surface averaged manifestation
of the fact that while angular momentum exchange be-
tween two fluid elements preserves total angular momen-
tum, the total linear momentum may increase or decrease
as a result of such exchange (for instance if angular mo-
mentum moves towards larger R, linear momentum has to
decrease). Also noting that (T ! $chj~vrj2i, for circular flux
surfaces with positive or zero fluctuation intensity gradient,
)$P% < 0.

As noted, it is the toroidal flow and not the momentum
density that is measured in experiments. In order to write
the evolution of toroidal flow, we need to disentangle the
flow and the density. Assuming P" ' hnihv"i in Eq. (11),
we get

 

@
@t

hv"i)
hv"i
hni

@
@t
hni(#3

1
r
@
@r

"
r
%
(T#1

@
@r

"hv"i
#1#3

#&#
' 0;

where #3 & #2=hni. Using the equation of continuity and
going through the same steps as for linear momentum, we
obtain

 

@
@t

hv"i )
1
r
@
@r

$r!$v%
" % ' )hv"i; (12a)

where
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with #3 ' #2=hni and !n ' (Dn#1
@
@r $

hni
#1
%.

The radial convection term is explicitly

 V$v%
r ' V$P%

r ( 2
(T
hni

@
@r

hni; (13)

where V$P%
r is given in (11d) and is always inward. The

additional term is small if the density profile is flat (e.g., as
in the core inH mode), but near the edge where the density
gradient is large, the additional term (which is outward)
may dominate. However, H mode sharp density gradient
also implies a sharp temperature gradient, and there, the
thermoelectric component [14] and the E" B shear also
become important [10].

The primary results of this Letter [Eqs. (9), (11d), and
(13)] are given in terms of #1 and #2. While #2 is given
explicitly (i.e., as #2 ' hRi=hR2i), #1 is given only indi-
rectly [i.e., r * $vE#1% ' 0]. In a general sense, appearance
of #1 in the angular momentum equation is a manifestation
of the ‘‘frozen-in law’’ and the fact that density and angular
momentum density are ‘‘linked.’’ We can show the latter
using the equation of continuity for a compressible plasma
to write r * vE + ($1=n%dn=dt. This suggests that
d$L"=n%=dt ' 0 (i.e., density and angular momentum
density are linked). If the frozen-in law, i.e., d$n=B%=dt '
0 is applicable, this also implies d$L"=B%=dt ' 0. The
connection between angular momentum density and den-
sity is general, but the frozen-in law relies on an equation
of state, and thus on geometry, dimensionality, and/or
dynamics. This links #1 / n / V 0$ %(1, and connects the
coefficient to compressibility of the E"B flow due to
geometry.

For simple slab geometry with an inhomogeneous mag-
netic field à la [18], vE ' ẑ" r#=B, and so #1 ' B
(leading to local conservation of L"=B). But for a low *
torus, r * $vEB2% ! J * r# . B2r#, so we can use #1 +
B2, leading to local conservation of L"=B2 instead. Note
that characterizing ballooning structure of fluctuations via
F / hj~vrj2$cos%) ŝ sin%%i=hj~vrj2i, one can recover
V$L%
r ' (2!"F=R0, the same expression for the TEP part

of the pinch as in [14]. The same assumptions (with con-
centric circular flux surfaces) lead to V$P%

r ' (2!"$F)
+%=R, where + ' r=R0. This means that some pinch effect
that comes from the radial profile of moment of inertia in a
torus persists even if F ' 0 (flute limit), for linear momen-

tum in the toroidal direction. Furthermore, for toroidal
flow, one may use Eq. (13) and obtain V$v%

r ' 2!",($F)
+%=R) L(1

n -. Note that a better understanding of the ef-
fects of density gradient on flow pinch requires a detailed
study of the particle transport and, in particular, a realistic
electron response.

In this Letter, we present a simple interpretation of the
TEP pinch of angular momentum. The resulting angular
momentum pinch agrees with the TEP part of the total
pinch that was derived previously using gyrokinetic for-
mulation. We also show that for average linear momentum,
there is an additional term related to the radial profile of
moment of inertia density in a torus.
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