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Abstract

Interpreting causal relations plays an important role in every-
day life, for example in scientific inquiries and text compre-
hension. Errors in causal reasoning can be a recipe for disaster.
Despite vast literature on the psychology of human causal rea-
soning, there are few investigations into preferred inferences
in relational three-term problems. Based on a previous formal
investigation about relevant causal relations we develop a cog-
nitive modeling approach with mental models. The key prin-
ciple for this approach proves to be the prediction of preferred
inferences by model operations and the process of sub model
integration. Subsequent experiments test preferred inferences,
the number of model operations, and if concrete or generic
problems make a difference in causal reasoning performance.
Implications of the model are discussed.

Introduction
Causal reasoning has often been studied in both Artificial In-
telligence and with human reasoners (e.g., Russell & Norvig,
2003). How we, as humans, reason and draw inferences is
quite different from classical AI approaches. Nevertheless,
being able to correctly interpret causal relations is an impor-
tant everyday skill. For example, a production manager must
be able to understand the complex interdependencies of sup-
ply chains in order to identify delivery bottlenecks in time.
This way solutions can be found before serious supply prob-
lems occur in the production process. Consider another ex-
ample: A clear stream flows through green countryside, its
route is winding going this way and that, even splitting even-
tually into two creeks, as shown in Figure 1.
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Figure 1: A river flow example.

One day people begin to notice dying cattails and reeds
while picnicking at the park (point D). Downstream a farmer
whose pasture (point F) is divided by the stream notices that
several of his cows are sick. Something has polluted the wa-
ter. There is much speculation about the culprit: A new fac-

tory (point B), the old tannery (point A), something even far-
ther upstream? How can the townspeople determine what is
polluting their stream? What areas should the townspeople
investigate to glean the most information? If the new tannery
(at A) caused the pollution at the park (point D), then it prob-
ably also caused the duck family to leave their home (at point
C). However, the pollution is probably not to blame for the
sheep missing from the green (point G, downstream from the
factory). Why? If you walk upstream from the park or the
ducks’ home, you’ll eventually get to the same point. Walk-
ing upstream from the green, will get you somewhere else.

When reasoning about causes and effects, elements can
have various relationships to one another. One element may
cause another (point A comes before point D in the river ex-
ample; represented by ≺); conversely, one element may be
caused by another (point D comes after point A; represented
by �) – these are called dependent relations. Another type of
dependency, like we saw with points D and C, is also think-
able; we call this relationship in which two elements share
a common ancestor or cause fork (and represent it with f).
Two elements can also be independent of each other (like
points B and D in the example, represented by �). There are
cases in which not all dependencies are known. For example
we can imagine a fishing hole some ways distant from our
stream and ask if the fishing hole is connected to the stream
by water flowing underground? In these instances imprecise
knowledge is described by unions of basic relations (in our
example the fishing hole is � or � of the tannery). Depen-
dencies of probabilities (when observations depend on each
other, as with our stream) are often described by a Bayesian
network (Pearl, 2000). Looking at the structure of the net-
work can reveal to us whether two random variables are in-
dependent. Orders (relationships between elements) may re-
main partly unspecified between elements when it does not
matter. For example, we may not know whether the fishing
hole is downstream, upstream or not at all connected to the
park, but it doesn’t really matter to us either.

In other cases the specific order is vital and is necessary to
deduce the hidden truth. Causal networks are not just impor-
tant for deducing sources of pollution, complex dependencies
also play a role in identifying delivery bottlenecks in supply
chain networks, minimizing delays in railways systems, and
in inhibiting the spread of diseases. This last example pro-
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Table 1: Relations of causal reasoning and their partial order definitions (cf. Ragni and Scivos, 2005).

Relation Name Partial Order
X ≺ V X causes V X ≤V and not V ≤ X
X � V X depends on V X ≤V and not V ≤ X
X fV X and V have only a common cause ∃C C ≤V ∧C ≤ X and neither X ≤V nor V ≤ X
X �V X and V are independent neither ∃C C ≤V ∧C ≤ X nor X ≤V nor V ≤ X

Note. The relation “has a common cause” requires the introduction of an additional variable which we call C.

vides a situation in which specific orders are important: To
stop a contagious disease it is desirable to identify a patient
zero (the origin of the disease) and also know whether pa-
tients have had contact with one another. However, this is not
always clear. Reasoning based on known dependencies can
help detect formerly unknown causes or rule out possibilities,
thus limiting their number.

While causal reasoning has often been examined with the
assumption of base rates or probabilities, these are not always
given; in the example above the townspeople do not know
how probable it is that their stream will become poisoned, that
cows will get sick because of pollution, etc. Syllogistic and
relational reasoning have often been studied using three term
series problems. This paradigm can be extended to causal rea-
soning. Consider the problem that emerges looking at some
of the facts the townspeople have (the letters representing the
facts are used here for the sake of simplicity):

G and C are independent of each other.
C and D have a common cause.

May we assume that G and D are independent of each
other? The answer(s) to this problem, and how the average
townsperson might solve it are explained in depth in the next
section. Before moving on, let us consider an AI approach
to the problem. In order for reasoning to be automated, a
calculus that expresses the relation between a pair of nodes
is needed to help distinguish between possibly affected areas
and those that are unaffected. Do such efficient algorithms
exist that can detect causes and implications, discover depen-
dencies and find an order compliant with a given specification
(i.e., was it actually necessary for the townspeople to invest so
much time in investigation, or could a computer have solved
their problem for them)? One such calculus, the dependency-
calculus has been formally investigated. It can represent
and deduce knowledge about dependencies and causal rea-
soning and can be formally grounded by extending the lan-
guage of partial ordering. The calculus is NP-complete and
all tractable subclasses have been identified (Ragni & Scivos,
2005). This calculus is useful in various applications deal-
ing with reasoning about spatial, temporal, spatio-temporal,
topological, competitive, and causal relations. In the next
section we will review the theory of partial orders and de-
fine causal relations based on them. We will also extend the
Theory of Mental Models to deal with preferred inferences.
To more thoroughly investigate the theory and its extension,
we present two experiments on human reasoning with causal

relations and identify preferences in the next section. We will
conclude by summarizing our results and raise questions left
open.

Causal reasoning, partial orders, and theories
Causal relations can be formally described by an extension
of a partial order: A partial order is a relation ≤ that satisfies
the following three properties for any x,v,z: reflexivity (x≤ x),
antisymmetry (if x≤ v and v≤ x, then x = v), and transitivity
(if x≤ v and v≤ z, then x≤ z).1

We can base our interpretation of causal relations on the
notion of partial order relations. We consider four basic re-
lations, which we denote by ≺,�,f,�. If x, v are points
in a partial order 〈T,≤〉, then we define these relations in
terms of the partial order as follows: Semantically, a con-
straint v1 R v2 holds in a partial order (T,≤) that complies
with this definition. All relations between nodes in Fig. 1
can be described by these basic relations. To describe trees,
the relations {≺,�,f} are sufficient. Therefore, whenever
the relation � occurs, the graph cannot be a tree and requires
separate representations.

It is possible to show that reasoning with such causal rela-
tions {≺,�,f,�} forms a relation algebra (Ladkin & Reine-
feld, 1992), i.e., it contains all unions, intersections, and com-
plements of a set of basic relations, and composition and in-
verse operations (Ragni & Scivos, 2005).

Transitive inferences are represented by applying the com-
position operator on two premises for the four causal relations
≺,�,f,� and the associated composition as shown in Table
2. An interesting question is whether the relation “indepen-
dent” (�) provides additional complexity in comparison to
classical partial orders.

A computational model
The graphical representation of causal relations (e.g., Fig-
ure 1) is not sufficient to explain preferred inferences in hu-
man reasoning. A systematic approach to representing causal
reasoning by mental models was introduced by Goldvarg and
Johnson-Laird (2001). They developed mental models for the
four causal relations: causes, allows, prevents, and does not
allow. To accommodate a few more relations (like those we
saw above), we propose the following extension found in Ta-
ble 3:

1Note that a total order is a partial order that satisfies a fourth
property: Comparability (for any x,v, either x≤ v or v≤ x).
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Table 2: The formal composition table for transitive inferences with causal relations.

P1/P2 ≺ � � f
≺ ≺ ≺,�,�,f � ≺,f,�
� ≺,�,f � �,�, f �,f
� ≺,�,f � ≺,�,�,f ≺,�,f
f ≺,f �,�,f �,�,f ≺,�,�,f

Note. The leftmost column represents the relation of the first premise (abbreviated by P1, e.g., X ≺ V) and the upmost row the
relation of the second premise (abbreviated by P2, e.g., V � Z). Each intersecting cell contains all possible relations for the
given premises (e.g., X � Z). The relation are: ≺ (causes), � (caused by), � (independent), f (have a common cause).

Table 3: Causal relations and possible mental models.

Relation Name Model
X ≺ V X causes V X V
X � V X is caused by V V X
X � V X and V are independent X

V
X f V X and V have a common cause C X

C V

Please note that for the relation “have a common cause”
we assume2 reasoners may use an additional place holder, a
variable such as ‘C’ to represent this internally (recall that a
common cause was something like the tannery which polluted
water both at the pasture and at the park) .

(P) Premise 1: X and V are independent
Premise 2: V and Z have a common cause
Conclusion: X and Z are independent

The words in italics are only given here for representational
purposes – they do not typically appear in an experiment.
After reading the first premise, a reasoner might construct a
mental representation of the form:

X
V

which represents that X and V are independent by having
them in no horizontal order (cf. Table 3). According to the
representation above, a model for the second premise might
look like:

C V
C Z

In a second phase – the premise integration phase – the two
representations are combined and form a greater model. The
operations of the integration process are relevant and we hy-
pothesize that reasoners try to match identical objects (in the

2Note that formally it is a base relation, i.e., it excludes that ad-
ditionally any other relation such as causes can hold at the same
time. However, in Experiment 2 we found that when causes was the
preferred conclusion, participants also considered “have a common
cause” true significantly more often than not (W = 22, p < .001).

sense of substituting them) in both sub models (in this case
the “V”). The goal is to generate a minimal model represen-
tation, e.g., to reduce working memory load. We call this
integration principle sub model integration. This operation
leads to the following model (*), which we call the preferred
model:

(*) X
C V
C Z

In this integrated representation the putative conclusion “X
and Z are independent” holds (cf. Table 3). X and Z are not
in a horizontal linear order (this would imply that Z, if it is
to the right of X, is caused by X). Instead they are in vertical
order; this implies that they are independent of one another.

From a logical perspective, however, there are other pos-
sible conclusions from the premises: “X is cause of Z” and
“X and Z have a common cause” (cf. Table 2) are both as
possible as “X and Z are independent.” These conclusions do
not hold in the preferred model and so should be less likely
chosen by participants.

What precisely is a preferred model? Given a reasoning
problem like the one above, a preferred model is reached by
submodel integration. It is the easiest model to build, thus
reasoners prefer it over models that take more effort to build
(more on how other models may be built below). A preferred
conclusion may be read from the model, in this case, that
X and Z are independent. Practically, this means that we ex-
pect participants in experiments to most often choose this pre-
ferred conclusion.

As previously mentioned, reasoners can reach non-
preferred conclusions. To this end a model revision process
might take place, i.e., the participants may try to accommo-
date the new conclusion in the model by operations. Consider
the first conclusion: “X is cause of Z”. For this the reasoner
would need to revise their preferred model representation (*)
such that they can now “read” this conclusion from it. Two
operations are necessary (delete the entry X in the first row
and add the entry X to the third row):

C V
C X Z

If we consider the alternative conclusion “X and Z have a
common cause,” we again need two operations (delete the
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entry X in the first row; add the entry X to the row with V).
C V X
C Z

Model operations and manipulations cost time and can in-
crease reasoning difficulty. In this case both alternatives
should be rather neglected, and we can predict preferences.
We hypothesize that there are two reasons for preferences:
How a reasoner integrates the sub models and the number of
operations necessary to construct a model for the conclusion.
The preferred model is generated by the fewest model oper-
ations. Model representations give us an interesting advan-
tage: We can derive reasoning difficulty based on the model
operations necessary to construct them. If we construct mod-
els then, as outlined, the costs to integrate this information
should reflect – at least to some extent – the reasoning diffi-
culty which is a deterministic process (cp. Frosch & Johnson-
Laird, 2011). In other words, we can derive from the model
theory a principle of sub model integration. A hypothesis is
that participants construct a linear ordering of the elements
only when this is the only possibility. However, once the
premises allow for separate entities (cp. Problem 1 above),
they are kept separately and this property is inherited to con-
nected sub models. In the next section we present a study
designed to test this hypothesis.

Research Questions
• RQ 1: Do participants show a preference for linear over

non-linear orders (i.e., ≺,� over f,�) or vice versa?

• RQ 2: Can reasoning performance be explained by the con-
struction of a preferred model and associated mental costs?

• RQ 3: Do generic or content problems have an effect on
reasoning performance?

Empirical Study 1
Participants
We tested seventy-five participants (age: M = 32.67; SD =
10.51) on an online website (Amazon’s Mechanical Turk).
They received a nominal fee for their participation.

Material, Design, and Procedure
Participants were randomly assigned to four conditions in a
2× 2 design: Type of text (with vs. without explicit causal
relations) × order of tasks (generic vs. concrete tasks first).
Participants read about the effects of the Asian ladybug in
vineyards and the effects of the Horse-chestnut leafminer on
chestnut trees. One version of the texts included explicit
causal relations identical to the ones later given in the con-
crete tasks while the other included all of the content infor-
mation without explicit causal relations. Each problem con-
sisted of two premises and a putative conclusion. Each prob-
lem in the abstract version used the letters X, V, and Z and
in each premise and conclusion we systematically varied the
relations: cause of, caused by, is independent of, have a com-
mon cause based on a former formal analysis (cf. Ragni &

Scivos, 2005). All possible combinations of these four causal
relations (for two premises and one conclusion) allow for 64
different problems. Of the 64 problems 41 (64%) are correct
conclusions (they can be found in the composition table), and
for 23 problems the conclusion is incorrect (36 %, these are
all relations left out in each associated cell in Table 2). Each
participant was presented with 64 problems (whereby half of
the problems were generic and half were concrete) consisting
of two premises and one conclusion. The participants’ task
was to determine if, given the premises, the conclusion was
possible.

Sentences were sequentially presented one by one: Par-
ticipants first received premise 1; after pressing the space-
bar the first premise disappeared and the second premise ap-
peared. After pressing the spacebar again participants re-
ceived the putative conclusion. The reason for this sequen-
tial order presentation was to require participants to store the
information in working memory. This follows the separate-
stage-paradigm (Potts & Scholz, 1975). Each problem re-
flected different possible causal relations and had the form of
problem P above. For each problem participants were asked
to decide if the putative conclusion was possible (correct) or
impossible by pressing the keys “C” (correct) or “N” (not
correct). Participants were asked to keep their forefingers on
these keys.

Results

Research Questions 1 and 2 dealt with the overall preference
effect. The derived conclusions and their acceptance rate for
each three-term series problem can be found in the composi-
tion table (Table 4). Based on how often participants judged
each conclusion to be correct, our results indicate that par-
ticipants seem to prefer the independent relation (�) and the
fork relation (f) over the linear relations ≺, � (RQ1). Fur-
thermore, the overall correctness was higher for a conclusion
‘independent’ (�) vs. all other relations (65.3% vs. 52%,
Wilcoxon, W = 168, p < .05). This is precisely what the
Mental Model Theory predicts (the principle of sub model
integration and more precisely the number of operations to
transform the initial model of the first two premises into one
which fits the conclusion). It yields a significant correlation
with the accuracy data (Spearman’s rho ρ= .801, S= 20,000,
p < .000001).

Further support comes from a central prediction of the
Mental Model Theory – namely that reasoners are better in
single model cases (80.25%) than in multiple model cases
(48.25%, Wilcoxon, p < .01). In addition to overall prefer-
ence effects RQ 3 dealt with the influence of content and task
order: There was a significant main effect of the order of tasks
on reasoning difficulty assessed by accuracy on generic prob-
lems (F(3,71) = 9.00, p = .004; η2 = .114) but not for con-
crete problems (F(3, 71) = 2.00, p = .162). That is, generic
problems were perceived as significantly more difficult when
generic problems were solved first.
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Table 4: Composition table with human data (accuracy in percentage) for Exp 1. Relations predicted by our model are in bold.

Premise1 / 2 ≺ � � f
≺ ≺: 73≺: 73≺: 73 ≺: 60≺: 60≺: 60,�: 34,f : 49,�: 58�: 58�: 58 �: 79�: 79�: 79 ≺: 59,f : 75f : 75f : 75,�: 56
� ≺≺≺: 50�: 50�: 50�: 50,f : 30 �: 77�: 77�: 77 �: 40,�: 80�: 80�: 80, f : 16 �: 18,f : 50f : 50f : 50
� ≺: 29,�: 74�: 74�: 74,f : 49 �: 92�: 92�: 92 ≺: 28,�: 71�: 71�: 71,f : 23,�: 23 ≺: 27,�: 74�: 74�: 74,f : 31
f ≺: 50,f : 80f : 80f : 80 �: 53,�: 31,f : 55f : 55f : 55 �: 28,�: 69�: 69�: 69,f : 43 ≺: 49,�: 64�: 64�: 64,f : 68,�: 39

Note. The leftmost column represents the relation of the first premise (abbreviated by P1, e.g., X ≺ V) and the upmost row the
relation of the second premise (abbreviated by P2, e.g., V � Z). Each intersecting cell contains all possible relations for the
given premises (e.g., X � Z) and accuracy in percentage.

Empirical Study 2
An additional important aspect in causal reasoning is that
some events can prevent others (for example, the stream be-
ing polluted will prevent the annual River Festival from tak-
ing place). We conducted a second experiment to include this
relation and assume the following mental model representa-
tion for X prevents V:

Relation Model
X prevents V X ¬ V

Participants

30 participants were recruited and tested on Amazon’s Me-
chanical Turk. Before analysis, four datasets were eliminated
because participants took an average of less than 2s per prob-
lem, so that data from 26 participants was analyzed (19 fe-
male; mean age 41 years, SD = 12.5 years).

Material, Design, and Procedure

This experiment worked with the four causal relations:
causes, prevents, have a common cause, and independent.
Problems were presented as questions of consistency. Three
(abstract) assertions were given:

X causes V
V prevents Z
X causes Z

And followed by the question: Can all three assertions be true
at the same time? As in Study 1, all 64 combinations of the
four relations were presented to participants in a randomized
order, in this study, however, only in abstract form (with X,
V, and Z). Before beginning the experiment, participants were
given two example problems. As previously, the three asser-
tions and the question were given individually and self-paced
such that participants had to press the space-bar to receive the
next assertion. To answer the questions, participants clicked
“Y” for “yes, all three assertions can be true at the same time”
and “N” for “no, the three assertions cannot all be true at the
same time.” At the end of the experiment participants were
asked several open-ended questions about the difficulty of the
problems and what they interpreted the four relations to mean.

Results
Results from this second experiment offer some further sup-
port for the patterns identified in Study 1 with regard to pref-
erence effects (RQ 1). Problems in which X and Z are inde-
pendent was the third assertion were given answers of “yes”
significantly more often than any other sort of problem (in
82.2% of cases; Wilcoxon: W = 588, p < .001). The second
most popular relation in this experiment, however, proved
to be prevents which was accepted significantly more often
than causes or have a common cause (in 64.9% of cases;
Wilcoxon: W = 644, p = .046). Unlike above, there were
no significant differences regarding preferences for common
cause and causes (58.2% and 58.7% respectively). A sec-
ond aspect of analysis dealt with preferences wrt. integration
strategies (of the first two premises). Where the sub model
integration strategy was possible (nine sets of the first two
premises), results showed a clear preference for this strategy
(84.6% correct) over others (63.1% correct; Wilcoxon: W =
178, p < .001). How participants react to the presence of
both a term and its negation in one model is an interesting
question that arises from the use of prevents. Two possibili-
ties seemed particularly likely: 1) Reasoners would consider
the term and its negation to be independent or 2) They would
perform a full negation, that is, if X prevents V and V causes
Z, then X prevents Z. Neither of these two scenarios could
be confirmed or discarded – an almost equal number of prob-
lems supported each and this is an interesting matter to con-
sider in future research. The third area of interest was the
assessment of the difficulty of the problems. Acceptance of
a set of assertions as true (RQ 3) did indeed prove to cor-
relate significantly with the number of operations necessary
(non-parametric bootstrapping with 2000 resamples [r = -.58,
95 % CI = (-.82,-.36)]). Closer analysis furthermore revealed
that problems that required a modification of the initial model
rather than the building of a completely new model, were
answered correctly significantly more often (59% vs. 45%;
Wilcoxon: W = 30, p = .036). No other significant differ-
ences between the model operations were found.

General Discussion
When reading and interpreting texts and when solving logi-
cal problems people form mental models by merging infor-
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mation at hand with prior knowledge (Graesser, Singer, &
Trabasso, 1994). In text comprehension these mental models
are often referred to as situation models (Kintsch, 1998). Hu-
mans draw inferences and reason about causes and effects on
a daily basis; how we go about this is different from classi-
cal approaches in AI. Expanding on classical Mental Model
Theory, we analyzed three-term series problems of five causal
relations, namely causes, depends on, have a common cause,
prevents, and independent. The computational complexity of
the associated satisfiability problem is NP-complete (Ragni
& Scivos, 2005). This means, in general, the problem of
checking if there is a network that satisfies certain conditions
is rather difficult. In many cases though, there are polyno-
mial algorithms. Computational complexity is, however, an
asymptotic measure, i.e., it makes no testable predictions for
three-term series problems and especially does not make any
predictions about differences in the preferred causal relations.

How do humans draw inferences for classical three-term-
series problems if they use causal relations? We derived a
prediction from the way model representations for the causal
relations are built: The principle of sub model integration.
Recall that sub model integration refers to a sort of “match-
ing” of same elements to build a minimal representation.
Whenever the relation “independent” appeared in a prob-
lem it seemed to trump the other relations. Participants then
avoided constructing minimal representations, that is total or-
ders, although they were possible. In all other cases they
tended to perform a model integration leading to preferred
answers. The introduced computational model based on the
number of operations is a good predictor of reasoning diffi-
culty. This computational model is an adaption of PRISM
(Ragni & Knauff, 2013) that proved useful in explaining rea-
soning difficulty in spatial relational reasoning.

At a first glance, there is an alternative interpretation
of the findings based on the surface or the form of the
premise, namely the classical atmosphere hypothesis effect
(Woodworth & Sells, 1935; Chapman & Chapman, 1959).
This effect, however, does not explain the predominance of
the two relations independent and have a common cause over
linear relations in all but one case. From a modeling per-
spective models can be differentiated by their compactness,
i.e., if an order is partial or total. Although a total order
has a higher degree of informativity, as it allows a compar-
ison of the relations between all nodes, it is rarely chosen.
This is a consequence that requires further analysis. Perfor-
mance on interpreting causal relations is also influenced by
content: If the content supports the correct conclusion it fa-
cilitates performance, but it may also suggest an incorrect
conclusion thereby impeding performance (Beller & Spada,
2003). Against the background of these potentially negative
content effects and also considering cognitive load principles
it seems reasonable to train learners on generic instantiations
first before having them solve concrete tasks. An interest-
ing consideration, perhaps especially in the case of content,
is what cognitive processes underly model operations. When

participants add an element to a model representation they
may think about alternative causes for events derived from
the context and content. Similarly they may derive further
possible elements that prevent events. All these mental opera-
tions, however, may cause additional costs within our compu-
tational model and may explain reasoning difficulty and why
some answers are strongly preferred over others.
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