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Modeling Dynamic Channel-Allocation Algorithms
in Multi-BS TDD Wireless Networks
With Internet-Based Traffic

William Cooper, Student Member, IEEE, James R. Zeidler, Fellow, IEEE, and Robert R. Bitmead, Fellow, IEEE

Abstract—Future time-division-duplex (TDD) systems oper-
ating over small wireless networks will utilize intelligent base
station (BS)-coordinated dynamic channel-allocation algorithms
in order to support high-bandwidth asymmetric traffic in adjacent
cells. In this paper, we use extensive measurements of wireless
Internet traffic from a large 802.11b network to create two random
traffic models. One model, called “binomial,” is memoryless and
the other, called “dynamic,” is based on an event-driven Markov
state model with bidirectional flows and deterministic residence
times. We then develop a two-BS two-zone wireless TDD inter-
ference model that describes the spatial features of interference
between cochannel mobile stations (MSs) in adjacent BSs. This is
a simplified precursor to more sophisticated models for multiple
BSs and/or multisector BSs. We present a set of candidate TDD
channel-allocation algorithms, which vary in their level of time-slot
coordination and intelligent allocation between BSs. Lastly, we
combine the three components (i.e., traffic models, interference
models, and channel-allocation algorithms) to demonstrate the
capacity for evaluating dynamic channel-allocation algorithms in
realistic interference and Internet traffic scenarios. The results
show that, for active MSs, the dynamic traffic model has a higher
number of packet requests per time frame than the binomial traffic
model, given the same mobile activity factor. Additionally, fixed
channel-allocation algorithms generally perform much worse than
pseudorandom and intelligent BS-coordinated algorithms, espe-
cially for asymmetric BSs. The pseudorandom algorithm performs
well at low traffic, but suffers from severe interference blocking at
high traffic. The intelligent BS-coordinated algorithm performs
best, as it avoids MS-to-MS interference blocking from nearby
users in adjacent cells and maximizes the overall throughput by
attempting to allocate up- and downlink packet requests in cor-
responding time slots matched to the incoming uplink—downlink
traffic demand for each time frame.

Index Terms—Dynamic channel allocation, Internet traffic, time
division duplex (TDD), WiFi, wireless networks.

1. INTRODUCTION

HE demand for wireless mobile Internet access is driven
by the continuing emergence of new multimedia services
and applications, such as instant messaging, real-time media
streaming, peer-to-peer file transfer, interactive gaming, etc., as
well as by the introduction of ever smaller and more powerful
wireless devices, such as personal digital assistants, two-way in-
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telligent e-mail communicators, integrated web-camera servers,
multimedia and game players, etc. Thus, the overall traffic char-
acteristics for a wireless Internet network such as a ‘WiFi’ (i.e.,
IEEE 802.11b) system [1] can include a wide range of dynamic
traffic properties (e.g., asymmetric up- and downlink message
size, packet size, desired data rate and message latency, mes-
sage-flow probability, etc.) that are dependent on the type of
Internet service or application from each of the users on the
network [2], [3] and the wireless terminal’s capabilities. Ad-
ditionally, the observed wireless Internet traffic message-arrival
characteristics are quite different from the traditional Poisson-
based call-arrival model, which has been widely used to char-
acterize the voice traffic capacity for mobile cellular systems
[4], [5]. These differences in traffic characteristics for the wire-
less Internet have a major impact on the packet capacity of
an individual base station (BS) and the wireless network as a
whole. Previously, in [6], the performance for multiple wire-
less web-browsing Internet users was optimized using polling
resource-assignment algorithms with the aim to maximize the
number of satisfied mobile stations (MSs) at a single BS, rather
than any physical layer (e.g., radio-signal interference) consid-
erations. This research investigates optimizing the overall wire-
less network throughput performance across multiple BSs si-
multaneously, with the goal of maximizing time-slot assignment
while minimizing cochannel interference blocking.

Recently, wireless time-division-duplex (TDD) operating
modes have been developed for third-generation networks,
such as UTRA [7]-[9] and broad-band radio-access networks,
such as HiperLAN2 [10]. TDD networks have a distinct
advantage over frequency-division-duplex (FDD) networks
for supporting these wireless Internet services, in that almost
the entire transmission link (i.e., timeslots) can be dedicated
to uplink (i.e., MS transmit) or downlink (i.e., MS receive)
traffic. Also, the link capacity can be dynamically assigned on
a per time frame basis to a single or plurality of users [11].
However, TDD networks suffer from a big disadvantage in
that when multiple BSs are operating in close proximity to
one another (as in a campus environment), significant levels of
BS-BS and MS-MS (i.e., same-entity) interference can occur
[12], in addition to the BS—-MS and MS-BS (i.e., other-entity)
interference that is normally experienced in multicellular FDD
networks [13]. This same-entity interference is maximized
when the uplink—downlink traffic ratios are asymmetric and the
time slots are not coordinated between adjacent BSs.

Dynamic channel-allocation (DCA) schemes have been re-
cently developed for FDD systems to mitigate inter- and intra-
cell MS—BS interference by assigning users to predetermined
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physical channels, usually based on idle channel-signal level,
some algorithms that consider factors such as mobility, user dis-
tribution, effect of handoffs, transmission delay [14]-[18], and,
more recently, antenna arrays [19]. Similarly, packet-scheduling
and transmission strategies for TDD systems have been pro-
posed to reduce the transmission delay [20], maximize capacity
[21], [22], and minimize overall interference [23].

This paper analyzes key conceptual issues and relationships
between the instantaneous time-slot assignment and MS-MS
interference-blocking performance (i.e., packet loss due to
radio-signal interference) of various dynamic channel-alloca-
tion rules, traffic models, and spatial user distributions in two-
BS wireless TDD networks. This analysis can then be expanded
to encompass both multisector BSs and multi-BS networks.

Measured wireless Internet traffic from the University of
California at San Diego (UCSD) campus-wide 802.11b wireless
network is used to characterize the parameters for two random
traffic models, known as “binomial” and “dynamic.” In the bino-
mial traffic model, which is stationary and memoryless, the users
are characterized by their location, activity factor, and uplink—
downlink packet-transmission ratio. In the dynamic model, an
event-driven Markov process is developed to generate traffic
streams for each user, where each active state is characterized
by a bidirectional client—server message-flow sequence with
predetermined message sizes. Independent Markov processes
are then scaled up in parallel to create the overall instantaneous
up- and downlink pseudo-Internet traffic for the desired number
of users.

The wireless traffic streams from the binomial and dy-
namic models are then fed into two adjacent BSs using either
“fixed,” “pseudorandom,” or “intelligent-coordinated” channel-
allocation algorithms, which vary in their level of inter-BS
coordination and corresponding performance. The fixed al-
gorithm allocates time slots between BSs so as to avoid any
MS cochannel interference, but does not optimize time-slot
utilization. The pseudorandom algorithm ensures maximum
time-slot allocation, but does not attempt to mitigate the
MS-MS cochannel interference. The intelligent-coordinated
algorithm optimizes both the time-slot allocation, as well as
avoiding MS—-MS cochannel interference.

The performance of the fixed and pseudorandom channel-as-
signment algorithms was then studied analytically for the bino-
mial traffic model, but the treatment of the “intelligent BS-coor-
dinated” channel-allocation algorithm with the dynamic traffic
model was determined to be an NP-hard (i.e., nondeterministic
in polynomial time) problem [24] and so was not attempted.

The rest of this paper is organized as follows. In Section II,
the wireless Internet traffic measurements are described. In Sec-
tion I11, a two-BS MS location and cochannel interference model
is described. In Section IV, stationary binomial and Markov-
based dynamic traffic models for wireless Internet traffic are
developed. In Section V, various channel-allocation algorithms
(i.e., orthogonal, symmetric, pseudorandom, and intelligent) are
explained and in Section VI the performance of orthogonal, sym-
metrical, and pseudorandom allocation algorithms are derived
for stationary binomial traffic. In Section VII, the performance
of the channel-allocation algorithms is simulated and discussed
for both binomial and the equivalent dynamic traffic models.
Lastly, Section VIII concludes this paper.
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II. WIRELESS INTERNET TRAFFIC MEASUREMENTS
A. Wireless Internet Traffic Source

During 28 days in May 2002, aggregated Internet flow
message logs were collected from the main Internet router
for the entire campus-wide 802.11b network at UCSD, which
at the time consisted of around 100 network access points,
3000 registered wireless Internet protocol (IP) addresses, and
approximately 500 active users. (For more information on
the current status of UCSD’s Next Generation Network, see
www.ngn.ucsd.edu.)

The dynamic characteristics of the UCSD 802.11b Internet
traffic used in this paper were felt to be applicable to the analysis
of DCA algorithms for the UMTS TDD mode for the following
reasons.

a) Wireless Data Rate: 802.11b supports wireless data rates
that are similar to the UMTS-TDD mode (11 Mb/s versus
2 Mb/s peak), so the same types of services and applica-
tions could be supported, e.g., web browsing, e-mail, file
transfer, instant messaging, media streaming, etc.

b) Network Configuration: The UCSD 802.11b network
consists of a large number of wireless access points in
a campus environment, for both in-building and outside
pico-cell-type pedestrian coverage. The UMTS-TDD
mode is envisaged to support similar environments.

The aggregated Internet flow logs were collected in files, each
representing 30 min intervals of flows. Overall, log data for ap-
proximately 377 GB of Internet message traffic from just over
16 million flows was collected, where a “flow” is defined as a
self-contained independent entity of data carrying sufficient in-
formation to be routed from the source to the destination com-
puter without reliance on earlier exchanges between this source
and destination computer and the transporting network.

B. Flow Log Information

The Internet router traffic logs provided detailed information
for each of the aggregated Internet flows. The information in the
flow logs included the following.

1) Source and Destination IP Address: UCSD wireless net-
work is allocated a range of discrete IP addresses (e.g.,
128.54.xxx.xxx), which may be used to identify whether
the flow originates (uplink) and/or terminates (downlink)
in the UCSD wireless network.

Source and Destination Port Address: There are 65535
Internet port numbers available, which are used to
indicate the server application being accessed and the
respective flow packet format. For most client—server
applications, the source port for the client is chosen at
random from a range of reserved ports and the destina-
tion and source ports for the server is dependent on the
specific Internet application (e.g., HT'TP port 80,
FTP = port 20, Telnet = port 23, Proxy Server = 3128,
DNS = port 53, etc.). This source and destination port
information, along with the corresponding IP address
and flow log-order information, can in many cases be
used to tell whether the flow originated on a wireless
client (e.g., a wireless web browser) or terminated in
a wireless server (e.g., a website hosted on a wireless

2)
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3)

4)

5)

6)

device). Exceptions to this include some peer-to-peer
applications (e.g., Kazaa, etc.), where both source and
destination can use the same port number.

Number of Packets: Each flow may consist of one or
multiple packets segmented under the IP flow control. A
packet is defined here as the unit of data that is routed
between an origin and a destination on the Internet.
In some Internet protocols [i.e., transmission control
protocol (TCP)], individual packets are numbered and
include the Internet destination address, so they can be
routed around the Internet individually and reassembled
into the original message at the destination.

Flow Size: Flow size (measured in bytes) indicates the
total size of the overall flow from all the packets in
the message including the retransmitted packets, but
not including the overhead packets required for packet
acknowledgment, flow and error control, etc. Given the
number of packets in the flow and the flow size, the
average packet size for each flow can be determined.
Internet Protocol: IP type indicates the message-flow pro-
tocol that is used. Three IP types are used for the majority
of Internet flows.

a) TCP: Connection-oriented protocol including
packet sequencing, positive packet acknowledg-
ment, error checksum, timeout and retransmit flow
control, duplicate packet detection, long message
segmentation into multiple packets, etc. The posi-
tive packet acknowledgment increases the overall
flow-transmission time.

b) User Flow Protocol (UDP). Connectionless trans-
port-layer protocol that, unlike TCP, adds no
reliability, flow control, packet sequencing, or
error-recovery functions to IP. Because of UDP’s
simplicity, UDP headers contain fewer bytes and
consume less network overhead than TCP. UDP
is useful in situations where the reliability mech-
anisms of TCP are not necessary, such as in cases
where a higher layer protocol might provide error
and flow control. UDP is the transport protocol for
several well-known application-layer protocols,
including network file system (NFS), simple net-
work management protocol (SNMP), domain name
system (DNS), and trivial file transfer protocol
(TFTP), as well as some real-time applications, e.g.,
voice-over-IP, media streaming, multicasting, etc.

¢) Internet Control Message Protocol (ICMP): Error-
reporting and transmission-link diagnostics pro-
tocol that does not include any source or destination
port information. One of the more common uses
of UDP is send a “ping” (echo request) to an IP ad-
dress and wait for the response, indicating the flow-
routing and roundtrip propagation delay through the
network.

Interval: Period in seconds between the arrival of the first
and last packets in the aggregated flow, as measured at
the router. Clearly, for a given packet-transmission route
between the source IP address and the router, the fewer
the number of packets in a flow and the smaller their size,
the shorter is the interval.
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C. Traffic-Measurement Limitations and Assumptions

Although the aggregate flow logs indicate the overall mes-
sage size, they do not capture the exact message dynamics of the
Internet link. For instance, as mentioned above, some Internet
applications using UDP (such as some media-streaming appli-
cations) employ their own external flow control, long-message
segmentation, packet-error correction, packet sequencing, and
data-buffering mechanisms within their program code (i.e., in-
dependently of the IP layer) to avoid the packet delays inherent
in TCP. Note that this application-based external flow-control
mechanism creates multiple bidirectional flows per overall
Internet flow. Similarly, the aggregated flow logs collected
in this trace do not include any information about the size or
number of packet-acknowledgment messages or the number of
retransmitted packets contained within the flow. So, although
some TCP and UDP applications may have similar overall
message sizes, the aggregated flow logs do not accurately
reflect their dynamic up- and downlink packet characteristics.
Nevertheless, this is the appropriate level of aggregation to
formulate and test DCA algorithms. Thus, due to this ambiguity
and in order to simplify the analysis, it was decided to ignore the
IP (i.e., TCP/UDP/ICMP) field information and the associated
packet-flow-control mechanisms and dynamics and instead
assume that all the flows were single contiguous packets.
Also, it was assumed that individual message flows always
originated in clients (e.g., web browsers, POP mail clients, etc.)
and were immediately followed by message-flow responses in
the opposite direction (i.e., originating in the corresponding
server and terminating in the client). For peer-to-peer flows,
the up- and downlink flows were assumed to be combined into
corresponding pairs of flows, which may not exactly model
the correct peer-to-peer flow sequence, but does not affect
the overall traffic uplink—downlink byte ratio for the dynamic
traffic model. Lastly, rather than creating a probability mass
function (PMF) of the flow size for each Internet application
type (i.e., port number) for the dynamic model, the message
size was averaged over the measurements for each application.

D. Traffic-Analysis Method

The approximately 16 million flow logs from the router were
processed in the following manner.

1) Sort Logs by IP Address: Aggregated logs were separated
by source and destination IP address. Three classes of
files were generated for each 30-min collection interval.

a) Uplink Flows (SrcIP = 128.54.xx.xxx, DestIP #
128.54.xx.xxx). These logs represent 802.11b up-
link transmit messages.

b) Downlink Flows (SrcIP  #  128.54.xx.XxX,
DestIP = 128.54.xx.xxx). These logs represent
802.11b downlink receive messages.

¢) Uplink and Downlink Flows (SrcIP =
128.54.xx.xxx, DestIP = 128.54.xx.xxx). These
logs represent the same 802.11b message flow being
received by the router from a wireless source, which
is then transmitted back to the wireless network.

By totaling the number and sizes of the flow message

logs over all collected files, it was possible to determine
the ratio of uplink-to-downlink traffic flows and bytes.
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TABLE 1
SUMMARY OF WIRELESS INTERNET TRAFFIC-LOG MEASUREMENTS

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 53, NO. 3, MAY 2004

TABLE 1I
LARGEST WIRELESS INTERNET APPLICATIONS (BYTES >1%)

Flow Direction % of Total Flows % of Total Bytes % Average %

Uplink (i.e. Tx) 45% 21% Port Application Name Total Bytes Per Total
Downlink (i.e. Rx) 41% 73% Bytes Flow Flows
Uplink & Downlink % 6% 1214 Kazaa (Uplink) 3.28% 18,952 4.08%
Total Uplink 47% 24%, Kazaa (Downlink) 24.4% 130,813 4.32%
Total Downlink 43%, 76% 6346 Gnutella (Uplin.k) 4.06% 17,957 5.32%
Totals 16 Million 377 GB Gnutella (Downlmk) 4.68% 19,837 5.56%
6699 Napster (Uplink) 0.96% 210,171 0.11%

Note the roughly equal percentage of up- and downlink flows, but Napster (Downlink) 0.7% 219,387 0.08%
asymmetric uplink-to-downlink byte ratio. 80 HTTP (Uplink) 1.06% 1,523 16.38%
HTTP (Downlink) 19.46% 28,382 16.15%

3128 Proxy (Uplink) 2.97% 1,233 2.97%

2) Collate Logs by Port: For each of the classes of files Proxy (Downlink) 1‘34‘;4) 14,517 2.99%

. 1 1 0,
mentioned above, the logs were sorted by the source and 2234 Dli)rgccf;l}; ??ég&lli'lﬁ)k) gféoﬁ; 2222 632132 g'ggoﬁ;
destination port to determine the originating and termi- 20 FTP (Uplink) 0.19% ’55,9’62 0.08%
nating message logs for both wireless clients and wire- FTP (Downlink) 1.87% 538,954 0.08%
less servers for each application, as per Section II-B.2) 519 AOL/;I(I;’[L/ IS\%I((EJQPII“I‘) 045% 2,980 3.55%
above. From this information, the total number of flows (Downhnk‘) 1.84% 3,835 3.67%

per application for wireless clients and servers and their 548 AppleTalk (Uplink) 3.60% 3,665,344 0.02%
respective average flow size was determined. Appletalk (Downlink)  0.95% 935,742 0.02%
Totals Uplink 16.79% 10,827 32.53%

Total Downlink 58.92% 33,929 32.9%
E. Traffic-Measurement Results Summary Total Uplink & Downlink 75.71% 65.43%

The flow log measurements from the UCSD 802.11b wire-
less network are used to derive the parameters for the bino-
mial and dynamic traffic models in order to evaluate the per-
formance of some fixed and dynamic channel-assignment al-
gorithms. The traffic measurements should not be regarded as
anything other than a 28-day snapshot of the traffic on the wire-
less network, which is used to validate the dynamic channel-al-
location evaluation framework. Future flow log measurements
will certinly show different results as new services and appli-
cations become more prevalent (e.g., online gaming) and older
services are phased out, (e.g., Napster). Our aim here is to de-
velop a method. It is apparent how it might be amended to ac-
commodate new traffic behavior.

Table I shows the total flows and traffic (in bytes) for the up-
and downlink flow logs. Even though the percentage of transmit
(Tx) and receive (Rx) flows is reasonably even (47% total uplink
versus 43% total downlink), the total uplink traffic bytes are
approximately one-third of the total downlink bytes (24% total
uplink versus 76% total downlink). Note that the total uplink
Rx bytes percentage (i.e., 76%) is used later, in Section IV, as
the basis for the parameter J in the traffic models. As will be
shown below, the imbalance in uplink—downlink traffic bytes is
mainly due to the large percentage of the wireless Internet users
who are downloading large files from nonwireless web hosts
and peer-to-peer servers.

Table II below shows the largest up- and downlink applica-
tions that have greater than 1% of the total traffic bytes. The
traffic was sorted by source and destination IP address and port
number to determine the flow direction and application. These
applications represent ~66% of the total flows and ~76% of the
total bytes.

From Table II it can be seen that, in this measurement, the
peer-to-peer file transfer applications (i.e., Kazaa, Gnutella, and
Napster) represented approximately 40% of the bytes and 20%
of the flows, whereas HTTP web browser access represented
approximately 23% of the bytes and 40% of the total flows. This

Approximately 76% of the total traffic bytes were associated with ap-
plications that each had greater than 1% of the total traffic bytes. Note
that these flow logs were collected in May 2002 and that Napster no
longer operates as a file-sharing service.

would suggest that the flows associated with the peer-to-peer
file transfers (e.g., music, movies, etc.) were much larger than
those associated with the wireless web access.

By sorting and collating individual flows by source and
destination IP address and port number, the flows were then
separated into up- and downlink flows for wireless clients and
servers. The respective client “request” and server “response”
message sizes for the up- and downlink were then averaged and
the flow percentages were normalized, as shown in Table III.

From the above averaged flow sizes and normalized flow
percentages in Table III, it can immediately be seen that
approximately 80% of the normalized flows are associated
with wireless connected clients versus 20% associated with
wireless servers. Also, the uplink flows from HTTP wire-
less clients (e.g., web page requests) are generally very
small (average = 1,523 bytes) and that the corresponding
downlink flows (e.g., web page responses) are much larger
(average 28382 bytes). The largest application of wire-
less “servers” was for peer-to-peer file transfer (e.g., Kazaa,
Gnutella, etc.) with a total of about 16% of the flows. The other
main source of wireless server flows was HTTP servers, i.e.,
users hosting web sites on wireless connected devices, such
as laptops, etc. It was also expected that instant messaging
(e.g., AOL-IM/ICQ) from wireless clients would have small
average up- and downlink message sizes (348 and 3835 bytes,
respectively), but it was not expected that wireless servers
running AOL-IM/ICQ would have such large average up- and
downlink message sizes (8.35 and 3.9 M bytes, respectively).
We assume but did not confirm that this large message size
resulted from a small number of users attaching large files to
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TABLE 1II
CLIENT AND SERVER APPLICATIONS WITH NORMALIZED FLOWS (BYTES >1%)

Cell Sector

Average Average .
Port Application Name Uplink Size Downlink N(;rlmah;cd .
(Bytes) Size (Bytes) oW 7o [ ] ] . .
1214 Kazaa (Client) 7,268 143,692 7.07% Near Region Far Region
Kazaa (Server) 37,297 116,477 5.91% BS ® (Low Power MSs) (High Power MSs)
6346 Gnutella (Client) 12,377 22,626 6.56%
) Gnutella (Server) 22,248 18,410 10.43% ®
6699 Napster (Client) 69,135 219,387 0.219%
Napster (Scrver) 568,848 57,906 0.1%
80 HTTP (Client) 1,523 28,382 46.49%
HTTP (Server) 64,356 270 4.19%
3128 Proxy (Client) 1,233 14,517 8.44%
Proxy (Server) 2,162 15,377 0.09%
2234 DircctPlay (Clicnt) 110,587 1,399,766 0.037% i ) ) o )
DircctPlay (Server) 265,312 3,116,422 0.053% Fig. 1. User location and transmit power distribution model for simple two-
20 FTP (Client) 28,928 538,954 0.23% region BS. Nyear and Ng,, are the numbers of low and high power MSs in the
FTP (Server) 23,373,679 443,923 0.0003% “near” and “far” regions, respectively.
5190 AOL-IM/ICQ (Client) 348 3,835 10.07%
AOL-IM/ICQ (Server) 8,351,772 3,906,697 0.003%
548 AppleTalk (Client) 3,665,334 949,107 0.066%
AppleTalk (Server) 1,190,851 363,017 0.001 Cell X CellY
A Total.ﬂows to and from wirglcss clients 7921%
(i.e. uplink requests and dow.nlmk responses) BS X ‘ BSY
' Total ﬂqws to and from w1rglcss servers 20.79% Rx Tx
(i.c. downlink requests and uplink responses) V\/

Note the roughly 1:4 ratio of flows associated with wireless servers
versus those flows associated with wireless clients.

their messages. However, the flow percentage for AOL-IM/ICQ
servers was so small as to be insignificant (0.003%), so this
large message size was not investigated.

Given the above flow log measurements, equivalent binomial
and dynamic traffic models can be created as follows.

III. TwoO-BS INTERFERENCE MODEL

A two-BS two-zone TDD interference model was created to
model the effects of interference in small wireless TDD net-
works, (such as in a campus-wide 802.11b system). The model
describes the spatial features of interference between cochannel
MSs in two adjacent BSs and was designed to isolate the factors
underlying the time-slot assignment and interference-blocking
probabilities. The model allows for a mathematical analysis of
the performance of the channel-allocation algorithms with bino-
mial traffic. This is a simplified precursor to more sophisticated
models for multiple BSs and/or multisectored BSs.

Each BS consists of two regions known as “near” and “far,”
although more regions could have been assigned as appropriate
to the interference model. The number of MSs in each region
of a BS was defined as N,c,r and Ng,,. Up to one active MS
in the near and/or far regions can be assigned by the BS to
a time slot. Individual BSs ensure that any active MSs in the
near or far region assigned to a time slot do not conflict with
another MS in the corresponding region at that BS (i.e., either
two transmit or two receive packets can be assigned to a time
slot, but never a transmit and receive packet in the same time
slot). MSs assigned to time slots in the near region transmit
their packets at a low power level and MSs assigned to time
slots in the far region transmit their packets at a high power
level, as shown in Fig. 1.

Asymmetric: 'Far' Tx packets in Cell X block Rx packets in Cell Y

Cell X CellY

BSY
Tx

BS X
Rx

(=3
D

@
&

Asymmetric: 'Near' Tx pkts in Cell X do not block Rx pkts in Cell Y

Cell X CellY
BS X BSY
Rx Rx

Symmetric: All Tx packets successfully transmitted to BSs

Cell X CellY
BS X BSY
Tx Tx

Symmetric: All Tx packets successfully received by MSs

Fig. 2. Simple adjacent-cell interference model for a single time slot in a
two-BS TDD network. MS transmit packet requests are always successfully
transmitted to their respective BS. MS receive packets can be blocked by MS
transmit packets in the far region of the adjacent cell.

Once assigned to a time slot, MS Tx packet requests are al-
ways successfully transmitted to their respective BSs, but MS
Rx packets are only successfully received if they are not inter-
ference blocked by MS Tx packets assigned to the “far” (i.e.,
high-power) region of the adjacent (asymmetric) BS, as shown
in Fig. 2.

Given the above assumptions for MS region assignment and
the associated MS power levels and the simple rules for BS Rx
interference blocking, the binomial and dynamic traffic models
for each MS can now be defined.
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Fig. 3. Histograms of the total number of Tx and Rx packets generated per time frame from all MSs for binomially generated traffic, given N = 48 MSs, T' = 8,

3 = 0.75,and o« = 0.125. Note that the mean total number of Tx and Rx packets per time frame = 12 and 36, respectively.

IV. BINOMIAL AND DYNAMIC TRAFFIC MODELS

The binomial and dynamic traffic models determine the
number of Tx and Rx packet requests generated in a TDD time
frame for each BS, based on the number of MS in the near and
far BS regions, the number of time slots in a time frame, the
MS activity factor, and the ratio of uplink (MS Tx) to downlink
(MS Rx) packets, as determined from the wireless Internet
traffic measurements described in Section II.

Whereas the purpose of the dynamic traffic model is to gen-
erate Internet traffic to simulate the performance of the wireless
TDD network with various DCA algorithms, the purpose of the
binomial traffic model is to analytically validate the DCA sim-
ulation model itself.

A. Binomial Traffic Model

In the binomial model, the MSs have a probability « of being
active during a time slot and, given that a MS is active, then the
MS has a probability 3 of being a Rx (i.e., downlink) packet.
Thus, the probability that a transmit packet is generated by an
individual MS during a time slot is given as

Pr(XTx_timo slot) = (1 - /B)Ol (1)

Similarly, the probability of a receive packet being generated by
a MS during a time slot is given as

Pr(XRx_time slot) = ,HOé. (2)

Given Nye,, users in the near region of a BS, the probability
of having X packets generated in the near region over a time
frame with 7" time slots is given by

TNnear) ((1 _ ﬁ)Q)XTX

XTx
X (1= (1= Fa) T30 3)

PT(XTx_near) = (

The corresponding histograms for the total number of Tx
and Rx packets generated per time frame from all the MSs
given the binomial traffic model with high traffic (N = 48)
are shown in Fig. 3, where the value of 3 was chosen to
approximately match the 3 of the UCSD traffic from Table I,
ie., 8 = 0.75.

Note that Fig. 3 represents the distribution of the total
number of Tx and Rx packets generated per time frame by
all the active MSs and not the distribution of the message
lengths from the individual MSs. The message lengths for the
binomial traffic model are exponentially distributed, i.e., the
probability of Xryx and Xt packets being generated sequen-
tially by an individual MS equals (3a)~®= and ((1—3)a)X*x,
respectively.

From Fig. 3, it can be observed that the mean number of Rx
and Tx packets per time frame per region is 36 and 12, respec-
tively (i.e., 8 = 0.75) and precise traffic measurements confirm
this. The histograms are similar to Gaussian distributions and
can be viewed as the sum of a large number of identically dis-
tributed binomial random variables (but are clearly limited in
range between 0 and N'T packets per time frame). Note that the
probability of having zero Rx or Tx packets generated in a time
frame is very small with the binomial traffic model in contrast
to the dynamic traffic histograms shown later.

For those time frames when a Tx packet is generated by the
binomial traffic model, the corresponding Tx packet request dis-
tribution is given from [26] and [27] by

Pr(Xrxpen [ X Txpear = 1)

TNncar -1 (X1x—1)
(e w@-ma

x (1= ((1 = B)a))((MNnear—D=¥rx—1))

“
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Similarly, the probability of a Tx packet being generated
during a time frame with a total of X and Xgry packets is
given by

Pr(XTx|XTx>XRx)
Xrx + Xpx — 1 Xr (Xe—1)
= x 1 _ A Tx
(" e -g)
< NnearT -1

(XTx+<YRx_1)
XRx + XTX - 1> (a)
% (1 _ Oé)(N,,eMT—XTX-l—XRX). (5)

Equations for the corresponding Rx distributions are derived
using the same equation forms.

Using the above model, four long series of integers (equiva-
lent to at least 1 million time frames), representing the number
of Tx and Rx packets per time frame in the near and far regions
of a BS were generated and then fed into the various dynamic
channel-allocation algorithms.

B. Dynamic Traffic Model

The dynamic traffic model is a Markov event-based state
model with bidirectional flows and multiple states to represent
the wireless client and wireless server applications for which
the traffic distributed by the port types (in Table II) represented
greater than 1% of the total bytes, as shown in Table IV.

The dynamic model uses the normalized flow percentages
and average flow sizes from the UCSD 802.11b traffic measure-
ments in Table III as the parameters for the different Markov
states.

The “wireless client” states shown in Fig. 4 represented
those states in which an uplink request flow was immediately
followed by a downlink response flow. Similarly, the wireless
server states represented those states in which a downlink
request flow was immediately followed by an uplink response
flow.

As an example of a state transition, given that an idle MS
transitions to an active state, the probability P; of that MS going
to state (D) “Kazaa (Client)” is 7.07% (from Table III) and then
the uplink Tx message flow size will be 7268 B immediately
followed by a downlink Rx message of 143 692 B. The MS then
returns to the “idle” state (0).

Peer-to-peer states (i.e., one-way flows) could have been
created, but for expediency the corresponding up- and downlink
peer-to-peer flows were paired to created pseudoclient and
server states. This did not affect the ratio of uplink-to-downlink
traffic or the number of peer-to-peer flows generated, just the
dynamics with which the peer-to-peer flows were generated.

The Markov state-transition matrix for the event-driven dy-
namic traffic model (as shown in Fig. 5) is a 19 x 19 square
matrix with the bottom 18 terms of the first column consisting
of the normalized flow probabilities (from Table III) and the first
row consisting of all ones except for the first term (i.e., in the
first column), which is a zero.

From Fig. 5, the probability of being in state P at time (i+1)
is given by

Priiyr)=Xe1 Proy+ Xia Poiy + Xea P3iy+, -« - +kapm((2i

TABLE IV
DYNAMIC EVENT DRIVEN MARKOV MODEL STATES

MS Tx or Rx

State P(x) State Description (Uplink or
Downlink)

ldle Py Idle MS -
Kazaa (Client) B D(Eiféi?ﬁklggsl;cs;sc E;((
sy, DRI K
Gnutella (Client) P, D;ifﬁ?fkfgg;;c;:sc Ei
oty _r, DK R
Napster (Client) Ps Dolj“ziilrilli(klggsl;?l:sc Ei
s v SIS R
e n ke L
RN v
TR T
T+ i
DirectPlay (Client) P Dfﬁﬁﬁ‘;ﬁ’;‘;ﬁ “ Ei
DirectPlay (Server)  Pis D[?:ri?)lli(n};cl:;gﬁzst ?;(
e R
S+ i B
AOL-IM/ICQ (Client) Py waprllil?fk‘ggsl;cs;sc ;;:
AOL-IM/ICQ (Server) Py Iﬁ’:ﬁ‘:}‘i“é‘;ﬁ;gzggt l%:
AppleTalk (Server)  Pig I{;);T]?lllin}lz(clzsgﬁfzt ?i

Note that the event-driven states model a typical client—server flow
for applications such as HTTP, FTP, etc. Peer-to-peer flows have been
combined to fit the model, which does not affect the MS activity factor
« or the Rx/total packets generated ratio (3.

Note that each state returns to the idle state Py with proba-
bility 1. Additional states could have been added to represent
the probabilities that client requests and server replies did not
get successfully received. The Markov states are also modulated
with a probability « to indicate whether the MS is active (i.e.,
Tx or Rx packets) or inactive (i.e., idle time slots).

The Markov state probabilities and associated flow sizes
dictate the resulting 3 for the dynamic traffic model. From
Table III, it can easily be shown that the average (i.e., the
expectation of the) uplink (Tx) and downlink (Rx) flow sizes
are 14295 and 40344 B respectively, given a mobile activity
factor a = 1. Thus, the theoretical § of the dynamic model is
40344/(14,295 + 40344) = 0.74, which corresponds very
closely with the measured Sycsp of the UCSD 802.11 traffic
in Table I, i.e., 0.76.

In this investigation, the traffic channel model was based upon
an eight time-slot system with each user able to transmit at 384
kb/s (e.g., one of the UMTS-TDD datarates) and 1500 time slots
per second, so each time slot is equivalent to 32 B. Fig. 6 shows
the Tx and Rx packet-request flows generated for NV users, with
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Fig. 4. Markov event-driven state diagram for the dynamic traffic model. Each transition to an active traffic state (see Table IV) starts in the idle state and has a

client request flow followed by a server response flow back to the idle state.

Juture
state

Fig. 5.

the users starting in state O and transitioning to any of the wire-
less client or server states and back to (the idle) state O and re-
peating the process until the array equivalent to 256 MB is filled
with Tx, Rx, or idle time slots. The Tx and Rx packets gener-
ated by the dynamic model are then summed for each time frame
over all the MSs and for the near and far regions of each BS.

ro o oo sl T
Po 0 11 1 Po
P 0.0707 0 0 0 P
P2 0.0591 0 0 P
Ps 0.0657 Ps
P 0.1043 P
Ps 0.0022 Ps
Pe 0.0010 Pe
P 0.4649 P
Ps 0.0419 P
Po T 1 0.0844 Po
Po 0.0009 P o
P 0.0003 P
P 0.0005 P2
P 0.0022 P
P 0.00002 P
P s 0.1077 Ps
P 0.00003 : Pe
P 0.0006 0 0 P

LPw ey | 0.00001 0 0 0| LPusd @

current
state

State-transition matrix for finite state Markov process. Note that all the columns sum to 1.

Using the above Markov-state-based traffic model, the
simulated up- and downlink flows and idle periods for each
user were generated and measured. The measurements of the
total number of Tx and Rx packets generated by the dynamic
traffic model over 1 M time frames (i.e., 256 MB) resulted
in values of ﬂDYNAMIC = 0757, ADYNAMIC = 0.128, and
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1 million timeframes per MS = 256 MBytes

[

AppleTalk

8 timeslots per timeframe, 1 timeslot = 32 octets
(i.e. UMTS-TDD @ 384kb/s per user & 1500 timeslots per sec)

|

Idle
Rx
Tx

Kazaa
Server

AOL
Client

Idle Idle

MS N
Total Rx 8 1 15 27 11
Total Tx 17 9 1 5 7
-«  »
Timeframe

Fig. 6. Markov dynamic traffic generator. The total number of near and far Tx and Rx packets per BS from all the active MSs is calculated for each time frame.

This dynamic traffic data is then fed into the DCA algorithms.
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Fig. 7. Histograms of the total Tx and Rx packets per time frame generated by all the MSs at a BS using the dynamic traffic model, given N = 48 MSs, T" = 8,
B = 0.75 (measured), & = 0.125. Note that the short spikes are due to some MS message lengths not being an exact multiple of the time frame length. Compare
these histograms with those in Fig. 3, which utilize the same /N, T', o, and 3 and result in the same mean total number of Tx and Rx packets per time frame (i.e.,

12 and 36, respectively).

(Nnear/NTOTAL)DYNAMIC = 0.5048, which validates the
output statistics of the dynamic traffic model.

Additional measurements were used to create histograms of
the total number of Tx and Rx packet requests generated (in the
near and far regions) per time frame by all the MSs, as shown
in Fig. 7, for the high traffic case (i.e., N = 48).

It should be noted that the histograms in Fig. 7 do not repre-
sent the distribution of the Tx and Rx flow sizes. Instead, the cor-
responding up- and downlink flow sizes for each Markov state
in the dynamic traffic model are given in Table III.

From the histograms in Figs. 3 and 7, it can be observed that
the dynamic and binomial traffic models have approximately the
same mean total Tx and Rx packets generated per time frame

(i.e., approximately 12 and 36 packets, respectively) and, in-
deed, the dynamic model was measured to have the an average
of 12.82 Tx and 35.17 Rx packets per time frame (given the pa-
rameters in Fig. 7), which corresponds with the § =~ 0.75. Sim-
ilarly, the dynamic traffic model was measured to have a MS
activity factor « = 0.125.

It can be seen in Fig. 7 that the histogram peaks are spaced
at increments of the number of time slots per time frame (i.e.,
T = 8), indicating that the flow sizes for each MS are much
larger than the number of bytes per time frame (i.e., 256 bytes).
The peaks at 0 packets per time frame represent those time
frames when no MSs are active and the peaks spaced at £*7T'
packets per time frame represent those time frames when & MSs
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BS Allowable Request Permutations Invalid
Region 1 ] m v v Vi Vil Pemutations
Near Tx Tx Idie Idie Rx Rx Idie 2Tx Rx Tx Rx
Far Tx | Ide | Tx Idie Rx Idie Rx Tx Rx | Rx | Tx
Fig. 8. Allowable BS time-slot assignments. Multiple or opposing allocations are not allowed.
Pemutation Number
1 2 3 4 5 6 7 8 9 . 49
BS Near Tx | Tx Rx Rx | Tx | Tx | ... Idle
1 Far Tx Tx Rx | Rx | Tx Idie
BS Far Tx | Tx | Tx | Tx | T™x | Tx | Tx | Tx | Tx | .. Idle
2 Near Tx | Tx | Tx | Tx | Tx | Tx | Tx Idie
BS 1 Throughput | 2Tx | 1Tx | 1Tx | @ 0 0 0 | 2Tx | 1Tx (%]
BS 2 Throughput | 2Tx | 2Tx | 2Tx | 2Tx | 2Tx | 2Tx | 2Tx | 1Tx | 1Tx | ... (%]

Fig. 9. Channel assignments throughputs for 49 possible time-slot assignments.

are active during that time frame. Note that there are some very
small spikes (<2%) with non-T" packet spacing, which indi-
cate those time frames where the messages end and the message
length was not an exact multiple of the time-frame length.

It is interesting to observe in Fig. 7 that even with N =
48 MSs and the large flow sizes generated by the dynamic traffic
model, there is a high percentage of time frames with no Tx
packets generated (i.e., ~16%).

C. Assumptions and Limitations of the Traffic Models

In order to keep the analysis and simulation of the
channel-allocation algorithms tractable, the binomial and
dynamic models were designed to be as simple as possible.
This simplification is acceptable as long as the traffic-model
assumptions are understood and do not affect the assessment of
the dynamic channel-allocation algorithms.

1) Limitations of the Binomial Traffic Model.

a) Arrivals process: The binomial process does not
model bursty packet arrivals from multiple MSs.
Rather, it assumes that each mobile is identically
distributed in its packet generation probability (i.e.,
«), so the number of active mobiles per time slot is
exponentially distributed.

b) Packet Generation: The binomial model is a mem-
oryless process and does not create server/client
message-flow sequences. The binomial process
generates active receive packets according to
known probabilities (i.e., & and ) without respect
to their order of generation.

c) Message Length: The binomial traffic model has
an exponentially distributed message size for each
user, rather than a long-tailed distribution as seen
in some Internet traffic measurements (e.g., Pareto
and self-similar traffic models [3], [25]).

2) Limitations of the Dynamic Traffic Model.

a) Message Length: Message length is fixed to the av-
erage measured message length (in Table III) rather

than some long-tailed distribution that is more rep-
resentative of actual Internet traffic.

b) Single-Packet Messages: Messages are assumed to
be contained in a single aggregated flow, rather
than segmented into multiple packets, as with long
messages in TCP/IP. The flow control, packet ac-
knowledgment, and error-correction flows are not
reflected in the Markov model.

¢) Markov Model: The Markov model assumes a
number of parallel users each with their own single
traffic state at any instant in time. The Markov
model implemented does not support multiple data
streams from individual users, e.g., simultaneous
file download and web-page access.

d) NP-Hard Problem: Theoretical analysis of the
various channel-allocation algorithms with the
Markov based dynamic traffic model was deter-
mined to be an NP-hard (i.e., nondeterministic
in polynomial time) problem [24], so the calcu-
lation of the throughput of the channel-allocation
algorithms with the dynamic model is limited to
simulations.

Given these assumptions and limitations, the traffic models are
applied to the various dynamic channel-allocation algorithms.

V. CHANNEL ALLOCATION

A. Allowable Time-Slot-Assignment Permutations

The channel-allocation algorithms have some basic rules that
are independent, of which channel-allocation algorithm is used
as shown in Fig. 8. First, only one packet can be assigned in the
near or far regions of a BS per time slot. Second, any time slot
can be allocated to Tx or Rx packet requests, but not both.

B. Channel-Assignment Throughput

Fig. 9 shows some of the possible permutations for a two-BS
system.
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Pemmutation Number
1 2 3 4 5 6 7 8 9 e | e | 49
Bs | Near | Tx | Tx Rx Rx | Tx | Tx Idie
1| Far | Tx Tx Rx | Rx | Tx Idle
Bs | Far | Tx | Tx | Tx | Tx | Tx | Tx | Tx | Tx | Tx Idie
2 |Near | Tx | Tx | Tx | Tx | Tx | Tx | Tx Ide

Fig. 10. Allowable pseudorandom assignments. Conflicting assignments are allowed, so assignment blocking is minimized, but interference blocking is

experienced.

Given these possible packet-assignment permutations, some
rules about packet throughput can be deduced.
1) Tx Throughput:
* 100% regardless of any packets at the corresponding
time slot at the adjacent BS.
2) Rx Throughput:
* 100% if an Rx or Idle packet is in the far region of
the corresponding time slot at an adjacent BS.
* 0% if a Tx packet is in the far region of the corre-
sponding time slot at the adjacent BS.
Four channel-allocation algorithms were investigated in this
paper, as follows:
1) Pseudorandom Allocation (no time-slot coordination or
inter-BS communications);
2) Orthogonal Allocation (open-loop time-slot coordination
without inter-BS communications);
3) Symmetrical Allocation (open-loop time-slot coordina-
tion without inter-BS communications);
4) Intelligent Dynamic Channel Allocation (closed-loop in-
telligent time-slot coordination via BS communication).
These algorithms are described below.

C. Pseudorandom Allocation

Allocation Rule: Assign Rx and Tx packets to time slots inde-
pendently of the other BS and of the Rx/Tx packet ratio for each
time frame at that BS and without trying to align or order packets
within the time frames. Thus, the probabilities of assigning Tx
or Rx packets to a time slot are equal, (i.e., 0.5). Some of the al-
lowable permutations for pseudorandom assignment are shown
in Fig. 10.

Since all assigned transmit packets are received correctly,
the transmit throughput with pseudorandom channel assignment
in binomial traffic is equivalent to the corresponding transmit
packet-assignment probability. Also, there is no attempt to avoid
adjacent BS interference and the Rx throughput is dependent on
the Tx packet assignment in each time frame at the adjacent BS
(see Section V-B and Fig. 2).

D. Orthogonal Allocation

Allocation Rule: Assign discrete time slots for each BS to
transmit and receive, such that there is no packet activity in the
corresponding time slot at the adjacent BS, as shown in Fig. 11.

The packet throughput is dependent on the uplink—downlink
ratio at the BS, as an equal number of time slots are assigned
to transmit and receive packets. Thus, the throughput is very

Timeslot Number
1(/2(3 (4| 5|6 |78
BS | Near Rx Tx Rx Tx
1 Far Rx Tx Rx Tx
Bs | Far | Rx Tx Rx Tx
2 | Near | Rx Tx Rx Tx

Fig. 11. Orthogonal channel assignments. No interference
experienced, but assignment blocking is severe.

blocking is

Timeslot Number
1|23 4|56 |78
BS| Near | Tx [Rx | Tx | Rx | Tx | Rx | Tx | Rx
1 Far | Tx |Rx | Tx [ Rx | Tx | Rx | Tx | Rx
BS| Far | Tx [Rx | Tx [ Rx | Tx | Rx | Tx | Rx
2 | Near |Tx |Rx | Tx | Rx | Tx | Rx | Tx | Rx

Fig. 12. Symmetric channel assignments. No interference blocking is
experienced and all time slots are assigned, given sufficient traffic.

inefficient in asymmetric traffic, although the assignment min-
imizes inter-BS interference, since all users are orthogonal be-
tween BSs.

E. Symmetric Allocation

Allocation Rule: Assign equal numbers of receive and
transmit time slots for corresponding packets at both BSs, as
shown in Fig. 12.

The intelligent coordinated-BS channel-allocation algorithm
is optimal in the sense that it attempts to maximize the overall
throughput of the two adjacent BSs independent of the traffic
model, but it is by no means the only algorithm that may achieve
this level of throughput. Indeed, there are many other algorithms
that have other desired allocation characteristics, which have
not been considered here. The flow diagram for the intelligent
coordinated-BS assignment algorithm is shown in Fig. 13.

The up- and downlink traffic must be symmetric at the BSs to
achieve optimal capacity. There is increased “MS to other BS”
physical layer interference over the interleaved orthogonal case,
since twice as many time slots are allocated for traffic, although
in this simple model the “MS to other BS” physical layer inter-
ference is not reflected in the channel throughput rules.
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Calculate the number of Tx and Rx
packets generated per timeframe in the
Near and Far regions of each BS by the
selected traffic model.

Randomly allocate corresponding
pairs of Tx/Rx packets at both BS’s o
to the next available timeslot with P
Pr(Rx pair allocation) = 3 timeframe ¥

A Rule a)

Any Near-Far pairs of

corresponding Tx/Rx packets at
Yes both BSs which have not been

allocated to available timeslots?

Randomly allocate Near-Far pairs of
Tx/Rx packets one BS with a single
corresponding Tx/Rx packet at the other } No
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Pr(Rx pair allocation) = f3 timeframe

A

Any Near-Far pairs of Tx /Rx
packets at one BS with a single
corresponding Tx /Rx packet at
the other BS which have not
been allocated to available
timeslots?

Allocate Near-Far pairs of Rx packets at
one BS with a Near Tx packet at the other |
BS to next available timeslot

A
Any Near-Far pairs of Rx
packets at one BS with a single
Near Tx packet at the other BS
Yes which have not been allocated to

available timeslots?

Allocate single Tx/Rx packet at one BS
with a corresponding Tx/Rx packet at the
other BS to next available timeslot with |
Pr(Rx pair allocation) = 3 timeframe

y
Rule d)

Any single Tx/Rx packets at one
BS with a single corresponding
Tx/Rx packet at the other BS
Yes which have not been allocated to
available timeslots?

Allocate single Near Tx packets at one
BS with a single Rx packet at the other | No
BS to the next available timeslot

A
Any single Near Tx packets at
one BS with a single Rx packet
at the other BS which have not
Yes been allocated to available

timeslots?

Allocate Near-Far pairs of Tx/Rx packets
at either BS to the next available timeslot | No
with Pr(Rx pair allocation) = 3 timeframe

A

Any Near-Far pairs of Tx/Rx
packets at ecither one BS which
have not been allocated to
available timeslots?

No Rule g)

Allocate any remaining single Tx/Rx packets at either BS to next
available timeslot with Pr(Rx packet allocation) *ﬂtimcframc

Fig. 13. Flow diagram for intelligent coordinated-BS channel allocation.
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Intelligent Coordinated-BS Channel Allocation

Timeslot 1T 123 || e | e || T
Bs | Near |Rx | Tx |Rx | Tx | Tx |Rx | Tx | Tx

1 | Far |Rx| Tx Tx Tx | Tx Tx
Bs | Far |Rx| Tx | Rx Rx | Rx | Rx Rx

2 | Near |Rx | Tx |Rx| Tx | Rx

Rule ay|a)|b)|b)|cy|dy|[e)| H |g|g|a

Fig. 14. Example of possible intelligent coordinated-BS channel assignment
for a time frame with 7" time slots. Note that time-slot assignment blocking is
minimized and interference blocking is avoided.

E. Intelligent Coordinated-BS Allocation

The intelligent coordinated-BS allocation algorithm consists
of a series of allocation rules that are performed in strict order
and are designed to:

* maximize the overall number of packets that can be packed
into the time frame at both BSs by attempting to match the
maximum number of corresponding Tx or Rx packets at
both BSs and then allocating them to time slots;

» avoid MS-to-MS interference between adjacent BSs, as
shown in Fig. 2, by only allowing allocation of

* corresponding Tx or Rx packets at both BSs;

* Rx packet(s) at one BS with a Tx packet in the near

region at the other BS;
* pairs of or single Tx or Rx packets at one BS;
 improve the traffic-load balancing across both BSs by as-

signing time slots to single corresponding packets at both
BSs before allocating a matching pair of packets at one
BS;

* approximately match the Tx/Rx packet allocation to the 3
of the time frame, where the number of Tx or Rx packets
allocated to a time slot at both BSs could achieve the same
packet throughput.

The allocation rules in the intelligent coordinated-BS algo-
rithm are executed in order from a) to g) for each time frame
until all the packets are allocated or all of the time slots are as-
signed, whichever comes first.

A possible assignment sequence is shown in Fig. 14, although
for illustration purposes, there are more than eight time slots
allocated.

The intelligent coordinated-BS channel-allocation algorithm
can easily be modified to operate in a multi-BS multisector en-
vironment, given an appropriate interference-blocking model,
as shown by Fig. 2 for the case of the simple two-BS network).
In a multi-BS multisector network, the allocation algorithm has
to be adjusted to avoid the possibility of interference blocking
between adjacent sectors within a single BS and between sec-
tors in adjacent BSs. Thus, new allocation rules need to be es-
tablished that utilize a larger number of geographically defined
areas within each BS sector. The effect of these additional ge-
ographically defined areas and associated allocation rules is to
reduce the number of permissible time-slot allocation combina-
tions, which reduces the packet-assignment rate. Clearly, as the
number of adjacent sectors increases, so the packet assignment
efficiency degrades. Thus, the intelligent coordinated-BS allo-
cation algorithm works best on small TDD systems.
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VI. THEORETICAL THROUGHPUT WITH BINOMIAL TRAFFIC

Given the time-slots assignment algorithm and the binomial
packet-generation model, the throughput can be derived for all
cases except the intelligent coordinated-BS algorithm, where it
was determined that the number and complexity of the rules
made a theoretical analysis impractical.

A. Pseudorandom Throughput

1) Transmit Throughput With Pseudorandom Alloca-
tion: As mentioned previously, the Tx packet throughput is
equivalent to the Tx packet-assignment probability. Assuming
that both near and far regions for each BS are assigned (as in the
high-traffic case), the probability of Aty packets being assigned
given that Xy receive and Xty transmit packets are generated
in a time frame with 7" time slots is given by the hypergeometric
distribution shown in (7) at the bottom of the page.

Substituting in (7) for the probability of generating Xy and
Xrx packet requests, given that a Tx packet is generated from
(5), we get the equation for the transmit throughput with pseu-
dorandom channel allocation as

Pr(Tx Throughput_Pseudorandom)

S

Arx=1 Xrx=Arx Xgrx=0
X Pr(XTX7XRx|XTx > 1)

X Pr(ATX|XTX7 XRX)

S (e

Arx=1X7y=ATry Xprx=0

XTx XRX
A min A
Tx T — ATX
XTx + XRX
Ay + min { N

T — ATX
> XRx+XTx_
XTx

X

) (1= g

NT — 1 (<YRx+XTx—1)
XRx + XTx - 1) (a)

)(NT XRx_\Ix). (8)

X

x (1-—

2) Receive Throughput With Pseudorandom Alloca-
tion: Calculating the receive-packet throughput requires
knowledge of both adjacent BSs’ pseudorandom channel allo-
cation. The assigned receive packets get successfully received
if the corresponding time slot in the other BS also contains a
receive packet, an unused time slot, or a transmit packet in the
near region. A receive packet will be interference blocked by a
transmit packet at the corresponding time slot in the far region
of the adjacent BS. Again, we assume that both the near and far
regions are assigned as in the high-traffic case.

Thus, the probability of successfully receiving Sgrx packets
at BS1 with pseudorandom allocation is given by

Pr(Rx_Throughput_Pseudorandom)

= Z Pr(Srx_ps1 = k)

k=1
T T—k
k=1 Arx_Bs1=k Arx_s2=0
X (Pr(Arx_ss1) Pr(Arx_Bs2)

X Pr(Sgrx_ss1 = k|Arx_Bs1, Arx_Bs2)).  (9)

Given that Ay and Ar, packets are assigned to time slots
in BS1 and BS2, respectively, the probability that Sgry receive
packets are successfully received at BS1 is given by the hyper-
geometric distribution as shown in (10) at the bottom of the next
page.

The probability of assigning Ar_ps1 receive packets at BS1
given that a receive packet is generated at BS1, is given by

Pr(Agrx_psi = k)
NT— X

-y oy

A\Tx_B51—0 XRx Bgl—k
y <Pr<ARx_BSI = k| Xrx_Bs1, X1x-BS1)
XRx_Bs1

X Pr<XRx_BS1|XRx_B517XTX_B51)> . adn

Note thatin (11) the probability of assigning & receive packets
is normalized by the number of receive packets generated (i.e.,

Pr(Tx_Assignment_Pseudorandom)
XTx X Rx
A min Xrx
Tx T — ATx

Xy + XRx ’
Ay + min { N

T_ATX

_ XTx XTX+XRXST
B {T_XRX7XTx+XRx>T
XTx XTXST
T "X >T

Xpx =0 . @)
o |
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XRrx_Bs1) in order to calculate the throughput per receive packet
generated at BS1.

Similar to the transmit throughput case (7), the prob-
ability of Agyx packets being assigned time slots as
BS1 given Xgpyx and Xr. packets being generated, i.e.,
Pr(Arx_ssi|Xrx_Bs1, XTx_Bs1), is a hypergeometric distri-
bution given by (12) at the bottom of the page.

The probability of assigning Ary_pso transmit packets at BS2
is given by

Pr(Arx Bs2 = k)

NT NT—X1x_Bs2

Xrx_Bs2=k Xmrx_Bs2=0

X (Pr(Arx_Bs2 = k| X1x_Bs2, Xrx-BS2)

x Pr(Xrx_Bs2, Xrx_Bs2))

13)

where the probability of assigning Aty pge transmit
packets at BS2 given Xty and Xgry packets at BS2, ie.,
PT(ATX_BSQ |XTX_B527 XRX_BSZ) is identical to the form given
in (12).

Now that the Rx and Tx packet-assignment probabil-
ities have been defined for BS1 and BS2, respectively,
the probability of generating Xgy receive packets in a
time frame containing X7, 4+ Xgrx packet requests (i.e.,
Pr(XRX_BSI|XRX_BSI7XTX_BSI) from (11) can be obtained.
First, we need to derive the probability of generating a receive
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packet in a time frame where Xy receive packets are gener-
ated, which is given by

Pr(XRX|XRx Z ].)
NT
Z Xactive — 1 (§)na-D
XRx -1
XacTivE=XRrx
X (1 _ /j’)(XACTWE—XRX)

NT -1 -
(Xacrive—1)
X a
<XACTIVE - 1>( )

X (1 _ a)(NT_XACTIVE).

(14)

The probability of generating a receive packet in a time frame
containing X1y + Xgrx packet requests is then given by
Pr(XRx|XRx> XTX)
_ <X Rx T X Tx — 1

Xen 1 >(5)(XR"‘1)(1 — B)¥m)

NT -1
(Xrx+Xrx—1)
% <XRX + XTx - 1) (a)

x (1— a)(NT_XRx_XTx)
1 < Xgx
1 < Xpx + X7x < NT. (15)
Finally, substituting (10) — (13) and (15) back into (9) and ap-

plying the appropriate limits, we get the equation for the receive
throughput with pseudorandom allocation in binomial traffic.

Pr(Successful Rxpg; -Pseudorandom)

ATxq,, _Bs2 T — Ary,,, Bs2
ARX_BSI - SRX SRX

T
ARy Bs1
Spe = {0 Aty _Bs2 > ARrx_Bs1
Fmin ARrx_Bs1 — Arx_Bs2 " Arx Bs2 < Arx_Bs1 (10)
Spa = ARx_Bs1 T — Arx Bs2 > Arx_Bs1
Tmax T — Arx Bs2 1" — Arx_Bs2 < Arx_Bs1
Pr(Assign_Rx_Pseudorandom)
(
XRX )A(;(FX XTx >0
Ay ) \ min{ 5T _ ) Xgx Xrx+ Xpx <T
T — ARX ARXmin - )
X X ’ T_XTX XTx+XRX>T
S Xpe Xpxe <7
min Rx T ATx ARx oy = { )
T T Xrx > T
= Xy =0 (12)
0, { ARX <T
XRx 7£ ARX
XTX =0
17 { ARX =T
\ XRX Z ARX
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B. Orthogonal Throughput
The transmit packet throughput in the near region with or-
thogonal channel allocation and binomial traffic is given as

Pr(Tx_Throughput_near_Orthogonal)

T

T Nuear T (1)
= Z (PXTx—near) + Z (PXTx—near) (XL)
h Tx
et xe=(E41)
%
TNpear — 1 e
= > (1= B)a) -7
Xrx—1
Xrye=1

% (1 _ ((1 _ ﬂ)a))((TN|]onr_1)_(4Y'[‘x_l))

NnearT
— TNpear — 1 (X1x—1)
1 _ Tx
(e w@=-ma)

Xpe=(T+1)

T
X (1= (1= o)) Noeor )=o) (%) . (6)

The transmit packet throughput in the far region with orthog-
onal channel allocation and binomial traffic are derived in a sim-
ilar manner.

The overall transmit packet throughput with orthogonal
channel allocation is then given by

Pr(Tx_Througput_Overall_Orthogonal )

Nnear
= Pr(Tx_Througput_near_Orthogonal )

Nar
+ % Pr(Tx_Througput_far_Orthogonal).  (17)

The Rx throughput results for orthogonal allocation and bi-
nomial traffic are obtained following the same process as with
the Tx throughput case.

C. Symmetric Throughput

The transmit packet throughput in the near region with sym-
metric channel allocation and binomial traffic is given as

NnearT' (Z)
(PXTx—near) (X?I‘x>
+1)

Pr(Tx_near_Symmetrical)
T

S (Paa o) +

(]

Xrx=1 Xsz(%
—_— % TNllear - 1 (XTx_l)
- Z ( Xpx—1 >((1—[3)a)

Xoye=1

% (1= ((1 = B)a)) (T Nacar=D)=(Xrx=1))

NnearT TNneaI‘ - 1 -
> < Xpx— 1 >((1‘5)a)(X‘* b
XTx:(%—‘,-l) Tx
x (1—((1- ﬂ)a))((TNnearfl)f(XTx—l)) <@) ‘
XTX

(18)

Similarly, the transmit packet throughput in the far region
with symmetric channel allocation and binomial traffic is de-
rived in a similar manner.

The overall BS Tx throughput with symmetric channel allo-
cation in binomial traffic is then given by

Pr(Tx_Througput_Symmetrical Overall)

Nnear .
=N Pr(Tx_Througput_near_Symmetrical )

N ar .
—f—Tf Pr(Tx_Througput_far_Symmetrical).

19)

The Rx throughput results for symmetric allocation and bi-
nomial traffic are obtained following the same process as with
the Tx throughput case.

VII. SIMULATION RESULTS AND DISCUSSION

The results in this section show simulated throughputs from
the four dynamic channel-allocation algorithms with binomial
and dynamic traffic. Note that the theoretical results exactly
match the simulated results for the symmetric, orthogonal, and
pseudorandom allocation algorithms with binomial traffic.

Before the results are discussed, it is first necessary to derive
the number of packets generated per time frame at low and high
traffic levels by the binomial and dynamic traffic models.

The binomial traffic model at low traffic levels (i.e.,
Niotal = 4) generates an average of four packet requests per
time frame (i.e., E[Xiota] = NiotaT'ax =4 %8 % 0.125 = 4).
Given that Nyear/tar = 0.5 and 3 = 0.75, this is equiva-
lent to E[XTx_near] = E[XTx_far] = 05, E[XRx_near] =
E[XRx_tar] = 1.5.

Similarly, at high traffic levels (i.e., Niota1 = 48), the bino-
mial traffic model generates an average of 48 packet requests per
time frame (i.e., E[ Xiotal] = NiotaiT = 48 x 8 % 0.125 = 48).
Given that Nyear/tar = 0.5 and 8 = 0.75, this is equivalent to
E[XTx_near] = E[XTx_far] =6, E[XRx_near] = E[XRx_far] =
18, as shown in Fig. 3.

For the dynamic model, the average number of packets per
time frame is the same as with the binomial model, but the dy-
namic model exhibits the following characteristics:

1) very large numbers of packets generated per time frame
(.e.,T,2T, 3T, etc., due to the large flow sizes compared
with the small number of time slots per time frame (as
observed by the large spikes in Fig. 7);

2) small number of packets per time frame, which corre-
sponds to those flows that are not an exact multiple of
the number of time slots per time frame (as observed by
the very small non-T—spaced spikes in Fig. 7);

3) no packets generated at all (as observed in Fig. 7 by the
spikes showing ~16% and ~1% of time frames without
any Tx and Rx packets, respectively).

A. Tx Throughput with Binomial Traffic

At low traffic levels, it can be seen in Fig. 15 that the
throughput with the binomial traffic model is high for all
allocation algorithms. This is because at low traffic levels only
a small number of Tx packets are generated per time frame
(i.e., E[XTx_near] = 0.5) and there are sufficient time slots
with all channel-allocation algorithms to allow nearly all the
packet requests to be assigned.
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Fig. 15.

Tx throughput with various channel-allocation methods in binomial traffic. @ = 0.125, 3 = 0.75, Npcar / Near = 0.5, T = 8, and time frame trials =

100000. Note that the intelligent coordinated-allocation algorithm has the worst Tx throughput as single Tx packets in the far region are purposely limited (i.e.,

unassigned) to reduce adjacent BS Rx interference blocking.

At high traffic levels, i.e., E[X1x_near] = E[XTx_far] = 6,
the following can be observed about the Tx throughput with
binomial traffic:

1) symmetric throughput is approximately 0.64, which is
reasonable since only four time slots are available at the
near and far regions for Tx allocation, (i.e., 4/6 = 0.66);
orthogonal throughput is approximately 0.33, since only
half as many time slots (i.e., 2) are available for Tx allo-
cation compared to the symmetric algorithm (i.e., 2/6 =
0.33);

pseudorandom throughput is approximately 0.61 (note
that the pseudorandom and symmetric allocation have ap-
proximately the same throughput at high traffic levels,
as the pseudorandom algorithm assigns Tx packets to
time slots with a 0.5 probability (see Section V-C) and
the symmetric algorithm allocates 50% of the time slots
to Tx packets, so when the channel is saturated the Tx
throughput of both algorithms is about the same);
intelligent coordinated-BS throughput is approximately
0.3, as it limits the number of Tx packets assigned in the
far region (see Fig. 13 and Rules C and E) to avoid Tx
interference blocking at the adjacent BS.

2)

3)

4)

B. Rx Throughput With Binomial Traffic

In Fig. 16, the Rx throughput is again high at low traffic levels
(i.e., E[XRrx_near] = E[XRrx_far] = 1.5) for all allocation al-
gorithms as few packets are generated per time frame with the
binomial model and most of the Rx packets are assigned time
slots.

At high traffic levels, i.e., E[XRx_near] = E[XRx_tar] = 18,
the following can be observed in Fig. 16 about the Rx
throughput with binomial traffic:

1) symmetric throughput is approximately 0.22, which cor-
responds to T/2 = 4 time slots allocated to Rx packets
and 18 Rx packets generated in each region;

orthogonal throughput performs the worst at 0.11, which
is half the symmetric throughput, as half as many time
slots (T/4 = 2) are allocated to meet the Rx traffic de-
mand and the channel saturates;

pseudorandom throughput is very poor as the Tx:Rx
packet assignment is uniform (see Section V-C) and the
Rx packets are blocked by interference from Tx packets
in the corresponding time slots at the adjacent BS;
intelligent coordinated-BS throughput is highest of all the
allocation algorithms at 0.35, as the algorithm biases the
allocation of Rx packet requests (see Fig. 13 and Rules C
and E).

2)

3)

4)

C. Overall Throughput With Binomial Traffic

The overall BS throughput in binomial traffic is shown in
Fig. 17. At low traffic levels, all the channel-allocation algo-
rithms have good throughput performance. At high traffic levels,
when the channel is saturated, the following can be observed
about the overall throughput in binomial traffic:

1) symmetrical throughput is approximately 0.33, which
corresponds to 16 packets (eight time slots for the near
and far regions) assigned out of an average of 48 packets
generated per time frame;

orthogonal throughput is approximately 0.17, approxi-
mately half of the symmetric algorithm throughput, as the
orthogonal algorithm allocates only half of the time slots
to traffic;

2)
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Fig. 17. Overall throughput of BS with various channel-allocation methods in binomial traffic. « = 0.125, 3 = 0.753, Npear/Niar = 0.5, T = 8, and
time frame trials = 100000. The intelligent coordinated-allocation algorithm has the best overall throughput, as the maximum number of packets are allocated

to the time slots and Tx interference blocking is avoided.

3) pseudorandom throughput is high at low traffic levels,
but the algorithm suffers from significant Tx interference
blocking at high traffic levels;

4) intelligent coordinated-BS throughput is the best at all
traffic levels as it maximizes the packet allocation and
avoids Tx interference blocking.

Note the throughputs of the intelligent coordinated-BS
and symmetric algorithms converge at high traffic levels, as
the channels saturate when all the available time slots are
filled. Thus, at high traffic levels any algorithm that allocates
all of the time slots and avoids interference blocking is
optimal.
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T = 8, and time frame trials = 1 million).

D. Tx Throughput With Dynamic Traffic

Fig. 18 shows the Tx throughput in dynamic traffic. The fol-
lowing can be observed about the Tx throughput at low traffic
levels:

1) symmetric throughput is approximately 0.5, as given
Niotal = 4, (i.e., Npear = Niar = 2); even if one MS is
active, the number of packets generated per time frame
is twice the number of time slots allocated to Tx traffic
and the channel is saturated;
orthogonal throughput is approximately 0.25, (i.e., half
the symmetric throughput) as only T/4 time slots are
allocated to Tx traffic and the channel is saturated; this
channel saturation at all traffic levels with the dynamic
model explains why the throughput function is much
flatter for the symmetric and orthogonal allocations, as
shown in Fig. 18;
pseudorandom throughput is about 0.85, as the algorithm
allows all the time slots to be assigned;
intelligent coordinated-BS throughput is approximately
0.73, which is a little worse than the pseudorandom algo-
rithm, as even though all the time slots can be allocated
to Tx traffic, the algorithm limits the Tx packets allocated
in the far region.

At high traffic levels, the following characteristics can be ob-
served about the Tx throughput with the dynamic traffic model:

2)

3)

4)

1) symmetric throughput is approximately 0.36 and the
channel has saturated, as shown by the flat throughput
function in Fig. 18;

orthogonal throughput is approximately 0.19, as the
channel has saturated and there are half as many time
slots allocated to Tx packets compared to the symmetric
algorithm;

2)

Tx throughput of a two-BS system with various channel-allocation algorithms in dynamic traffic. « = 0.125, 8 & 0.75 (measured), Nnear /Near = 0.5,

3) pseudorandom throughput converges with the symmetric
throughput as the pseudorandom algorithm assigns Tx
packets to time slots with a 0.5 probability (see Sec-
tion V-C); the symmetric algorithm allocates 50% of the
time slots to Tx packets, so when the channel is satu-
rated, the Tx throughput of both algorithms is about the
same;

intelligent coordinated-BS throughput is poor, as the
channel is saturated and the algorithm limits the
allocation of Tx packets, which would otherwise
cause interference blocking (see Fig. 13 and Rules C
and E).

Comparing the Tx throughput with dynamic traffic in Fig. 18
to the Tx throughput with binomial traffic in Fig. 15, it is clear
that the Tx throughput is better with the binomial traffic model,
particularly at low traffic levels. This is because even though
the two traffic models have the same average number of packets
generated per time ~ frame, the binomial model has a much
larger proportion of time frames with a smaller number of Tx
packets generated (as shown in Fig. 3), whereas the dynamic
model generates a large number of packets per time slot per
active MSS, which saturates the channel even at low numbers of
MSs.

Note that in the dynamic traffic model results (Figs. 18-20
and Fig. 22), ( is stated as being =~ 0.75 (measured), because in
the dynamic traffic model 8 was a measured value that varied
slightly for each simulation run. The theoretical 3 for the dy-
namic traffic model (i.e., 0.74 from Section IV-B) is dependent
on the Markov state probabilities and flow sizes specified in
Table III, whereas, in the binomial traffic model, the 3 can be
directly specified as an input parameter to the binomial traffic
model.

4)
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T = 8, and time frame trials = 1 million).

E. Rx Throughput With Dynamic Traffic

Fig. 19 shows the Rx throughput in dynamic traffic, of which
the following can be observed:

1) symmetric throughput is approximately 0.5, as the
channel has saturated and only half the time slots are
allocated to Rx traffic;

orthogonal throughput is approximately 0.25, as the
channel has saturated and only a quarter of the time slots
are allocated to Rx traffic;

pseudorandom throughput is high at approximately 0.88,
since all the time slots can be assigned and the Tx inter-
ference blocking is low;

intelligent coordinated-BS throughput is high at around
0.9 as all the time slots can be assigned to traffic and Rx
packet assignment is biased.

2)

3)

4)

At high traffic levels, the following can be observed about the
Rx throughput with the dynamic traffic model:

1) symmetric throughput is approximately 0.2 and the
channel has saturated, as shown by the flat throughput
function in Fig. 18;

orthogonal throughput is approximately 0.1, as the
channel has saturated and there are half as many time
slots allocated to Rx packets compared to the symmetric
algorithm;

pseudorandom throughput converges with the symmetric
throughput (to approximately 0.2) as the pseudorandom
algorithm suffers from Tx interference blocking;
intelligent coordinated-BS throughput is highest at
around 0.37, as even though the channel is saturated,
the algorithm biases the allocation of the Rx packets
generated.

2)

3)

4)

E Overall Throughput With Dynamic Traffic

Fig. 20 shows the overall throughput with dynamic traffic.
The following observations can be made:

1) symmetric throughput is approximately 0.5 at low traffic,
reducing to 0.24 at high traffic, as the channel has satu-
rated and only half the time slots are allocated to Rx traffic
and Tx traffic, whereas the large flow sizes in the dynamic
traffic model have all the time slots filled with either Tx
or Rx packets;

orthogonal throughput is around 0.25 at low traffic, re-
ducing to 0.12 at high traffic, as the channel has saturated
and only a quarter of the time slots are allocated to Rx
traffic;

pseudorandom throughput is approximately 0.87 at low
traffic, reducing to 0.23 at high traffic and converging to
the same throughput as the symmetric throughput due to
the Tx interference blocking;

intelligent coordinated-BS throughput is the best of all the
algorithms as it maximizes the overall packet assignment,
while avoiding Tx interference blocking.

2)

3)

4)

Interestingly, the results indicate that pseudorandom channel-
allocation performs well in low traffic and at least as good as
symmetric fixed channel allocation in high traffic, even with the
receive interference blocking.

G. Assignment Versus Throughput With Pseudorandom
Channel Allocation

Fig. 21 shows the assignment and throughput for pseudo-
random assignment in binomial traffic. At high traffic levels,
the Rx assignment is 23%, whereas the Rx throughput is 12%
due to adjacent BS Tx interference blocking.
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Fig. 21.

Throughput of a two-BS system with pseudorandom channel-allocation in binomial traffic. « = 0.125, 3 = 0.75, Nyear / Near = 0.5, 7 = 8, and

time frame trials = 100 000). Note that Tx interference blocking reduces Rx packet throughput by 50% below Rx assignment rate at high traffic levels.

Note that the Tx assignment is much higher than the Rx as-
signment, since there are far fewer Tx packets generated per
time frame (with § = 0.75) and the pseudorandom algorithm
assigns Tx packets to time slots with a 0.5 probability.

Fig. 22 shows the assignment and throughput probabilities
for pseudorandom assignment in dynamic traffic. Here, there is

less of a difference between the Tx and Rx throughputs as the
traffic generated by the dynamic model is either almost all idle
or active packets and the active packets are either all Tx or all Rx
packets, but not often both, except at high traffic levels. Thus,
the main blocking is due to the lack of available time slots, not
the adjacent BS Tx interference.
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VIII. CONCLUSION

In this paper, we have developed a two-BS interference
model and a dynamic Markov event-driven traffic model rep-
resentative of wireless Internet traffic. An equivalent binomial
model was developed to derive the theoretical performance of
fixed and pseudorandom channel-allocation algorithms and to
validate the throughput-simulation model. The characteristic
differences between the two traffic models were observed and
showed the limitations of the binomial model, particularly
with respect to message-flow length and uplink—downlink
traffic dynamics. For active MSs, the dynamic traffic model
generated much larger numbers of packets per time frame than
the binomial model, even at low MS activity factors.

It was seen that the throughput performance is highly depen-
dent on the traffic source and that the intelligent coordinated
algorithm provided the best overall throughput with both bino-
mial and dynamic traffic models and at all traffic levels.

The pseudorandom algorithm performed surprisingly well
even in dynamic traffic, because all of the time slots could be
allocated to packet requests and, due to the low MS activity «
and large message size used in the simulations, the interference
blocking was mitigated, particularly at low traffic levels. How-
ever, it is clear that the pseudorandom allocation will perform
poorly at high traffic levels when there is a large difference in
[ between the two adjacent BSs, i.e., one BS having a high
number of Rx packets assigned and the adjacent BS having a
high number of Tx packets assigned.

The symmetric allocation algorithm works reasonably well,
especially when the number of Tx and Rx time slots assigned
is matched to the [ of the traffic model, but the algorithm is
still limited by the fixed time-slot allocation with the dynamic
traffic model. The orthogonal allocation algorithm only works

well with the binomial model at low traffic levels, as there are
insufficient time slots allocated to support the traffic load.
Further research is necessary to determine whether a dynamic
wireless Internet traffic model that does not include the flow
size distribution for each traffic type is sufficiently realistic to
simulate the performance of DCA algorithms. Additionally,
the simulation model needs to be expanded to support small
multi-BS multisector networks with a space—time multiple-
input-multiple-output (MIMO) wireless propagation channel.
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