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PDE-based methods for multiscale gas dynamics simulations

Abstract

In this dissertation, we develop a numerical simulation framework for multiscale fluid flows in

multiple space dimensions. We couple a robust front-capturing approach with an efficient front-

tracking scheme; adaptivity is incorporated via a novel adaptive meshing procedure. The work

presented is comprised of four articles published in the Journal of Computational Physics. We

begin with a summary of the research performed, introducing the problems under consideration

and an overview of our framework and its principal components. We summarize the new meth-

ods developed, their mathematical formulations and associated algorithmic implementations, and

the results obtained. Each of the three subsequent chapters then describes in detail a particular

component of the multiscale framework.
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chapter 1

Introduction

1. Multiscale fluid flows

The focus of this dissertation is the development of robust numerical algorithms for simulating

multiscale flows in gas dynamics.

1.1. Two motivating experiments

Figure 1: Shadowgraph taken 300µsec after
initiation in the exploding glass sphere exper-
iment. Figure taken from [3].

An example of the type of problem we are interested in

is shown in Figure 1. This image is from an experiment

conducted in 1959 by D. W. Boyer [3]. The experimen-

tal setup is as follows: a 3 ft diameter spherical “shock

chamber” contains a 2 in diameter sphere made of soda-

lime glass and filled with pressurized air. The sphere is

hand-blown and fitted with a small hollow stem that is

then cemented to a pipe (shown at the top of the figure),

suspending the sphere in the center of the shock cham-

ber. Air is pumped into the glass sphere through the

pipe until the pressure inside reaches 400 psi, roughly

the same as the pressure at a depth of 275 m underwater. The experiment is initiated when a

spring-loaded mallet, visible at the bottom of the figure, strikes the glass sphere, shattering it. The

resulting gas flow, driven by the escaping pressurized air, is visualized along a two-dimensional slice

using shadowgraph photography.

The multiscale nature of the flow is clearly demonstrated in Figure 1. The shattering of the
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chapter 1 Introduction

glass sphere generates a spherical shock wave: a thin1 adjustment layer across which certain fluid

properties (such as pressure, density, temperature, flow velocity, etc.) vary rapidly. This shock wave

then propagates radially outwards into the surrounding air. Meanwhile, the compressed air in the

sphere is expanded through a spherical rarefaction wave that propagates radially inwards. Lying

between the two waves, separating the air compressed by the shock from the expanded sphere gas,

is another wave: a contact discontinuity. The contact discontinuity is inherently unstable; the initial

spherically symmetric flow quickly develops asymmetries, visualized in Figure 1 as the small whorls

and eddies of the contact surface. The instability is enhanced by the asymmetries introduced by

the experimental apparatus: the pipe, the cemented hollow stem, and the fragments of shattered

glass flowing through the air. Eventually, we observe the emergence of a turbulent mixing region

containing flow structures across a wide range of spatial scales.

In 1960, less than a year after Boyer’s experiments, the laser was invented. It was quickly realized

that this new technology appeared to be the perfect mechanism for driving inertial fusion devices, a

concept proposed in 1957 by J. Nuckolls. In a 1972 paper, Nuckolls introduced laser-based inertial

confinement fusion (ICF) [20]. The numerical simulation in Figure 2 is taken from [6] and is one of

several described therein, with each simulation representing an experiment that might be conducted

at the National Ignition Facility (NIF), the world’s largest and most powerful ICF device [10].

The NIF is the size of 3 football fields; the bulk of the facility is occupied by an array of

192 beamlines forming a laser delivery system. The beamlines are connected to a 10 m diameter

spherical target chamber which contains, at its center, a 1 cm cylindrical cavity made of gold and

depleted uranium known as a hohlraum. Inside the hohlraum is a 2 mm diameter spherical fuel

capsule composed of a thin layer of frozen Deuterium-Tritium (DT) ice surrounded by a diamond

ablator. The fuel capsule is fitted with a fill tube through which DT gas is pumped, then suspended

at the center of the hohlraum via a capsule support tent.

An experiment at NIF begins with the passage of the 192 laser beams through the beamlines,

where they are energized to 30 quadrillion watts. The lasers are then focused into the center of the

target chamber, where they enter the hohlraum and reflect off the internal walls, creating an x-ray

bath that turns the surface of the fuel capsule into a superheated plasma. The surface explodes
1Shock waves in air have been measured to have a width of approximately 200 nm, which is roughly 4 times the

mean free path of air molecules and 100 times smaller than the width of a human hair.
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chapter 1 Introduction

outwards, which, in turn, causes the DT gas to implode inwards: the gas is compressed down to a

core half the width of a human hair. At peak compression, the pressure/temperature of the DT gas

is more than two times (respectively, five times) the pressure/temperature at the center of the sun.

Large enough compression of the gas at high enough temperatures for a sufficiently long amount of

time then results in ignition: a series of self-sustaining fusion reactions and a thermonuclear burn

wave that replicate, in a laboratory on Earth, the energy production method that powers the stars.

Figure 2: Numerical simulation of an ICF
experiment at the NIF. Figure taken from
[6].

The key to achieving ignition is maintaining a highly

uniform compression of the DT gas; controlling the insta-

bility at the ablation front is the main difficulty in doing

so. As shown in Figure 2, asymmetries introduced by the

fill tube and the capsule support tent cause the ablation

front to penetrate into the interior “hot spot”, which is

then cooled down and cannot ignite. Enormous resources

are invested into removing the asymmetries seeding the in-

stability: the capsule support tent is manufactured to be

just 12 nm thick, the diameter of the fill tube is just 2 µm,

and the surface of the ablator is meticulously smoothed

to remove tiny non-uniformities in the capsule. In addition, the lasers are focused into the hohlraum

in a carefully designed sequence of pulses, which, in turn, generates a set of converging shock waves

that help suppress the instability [6, 30]. The purpose of numerical simulations like the one shown

in Figure 2 is to help inform the specific design choices for an ignition experiment; these simulations

are incredibly computationally expensive, requiring roughly one month to complete while running

on six thousand processors [6].

In December 2022, NIF conducted experiment N221204, in which ignition was achieved for the

first time. Separating N221204 and Boyer’s experiments are six decades of advances in theoretical,

computational, and experimental physics; mathematics; computer science and hardware; mechan-

ical engineering; materials science; laser science, and numerous other scientific fields. And yet,

remarkably, the two experiments share many of the same qualitative features.

Multiscale fluid flows are ubiquitous. They are observed in: atmospheric flows, such as cyclones,

jet streams, and wildfires [31, 16]; astrophysical phenomena, such as relativistic jets, star/galaxy
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chapter 1 Introduction

formation, and black hole accretion disks [11, 12, 13, 32, 9]; and industrial applications, such as

fusion reactors, combustion engines, and wind flow around turbines [17, 2, 15, 22]. Already, this short

and entirely non-exhaustive list of applications indicates the necessity of having robust numerical

algorithms for simulating such flows. However, capturing their wide range of dynamically evolving

and interacting spatial and temporal scales efficiently and accurately is a formidable problem that

usually requires massive supercomputing resources. Even with such resources, it is the case that

many, if not most, problems of interest remain out of reach of traditional numerical algorithms [18].

1.2. A PDE-based simulation framework

Mathematically, the dynamics of fluids are described by nonlinear hyperbolic systems of conservation

laws; the prototypical example is the compressible Euler system of gas dynamics, which we write

in conservation law form as

∂tρ + div(ρu) = 0 , (1a)

∂t(ρu) + div(ρu⊗ u) + ∇p = 0 , (1b)

∂tE + div(u(E + p)) = 0 , (1c)

where ⊗ denotes the tensor product, and divM denotes the row-wise divergence of a matrix M .

The velocity vector is u = (u1 , . . . , ud), ρ > 0 is the fluid density (assumed strictly positive), E

denotes the energy, and p is the pressure defined by an equation of state.

The nonlinear nature of wave transport in the Euler system is the key mechanism by which

multiple spatial and temporal scales develop in the flow. For instance, steepening of sound waves is

the mechanism by which shock formation occurs [4, 19]. Interactions between vorticity waves lead

to the onset of shearing instabilities and the generation of small-scale vortical structures [1]. Addi-

tional complex physics, such as combustion chemistry, often introduce further small-scale solution

structures, such as reaction zones, cellular detonation structures, and combustion instabilities [8].

The Euler system already captures many of the fundamental difficulties with simulating solutions

to multidimensional nonlinear conservation laws, and we shall focus our attention on this system

henceforth.
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chapter 1 Introduction

1.2.1. Designing SAFE numerical algorithms. Before we describe our multiscale simulation

framework, we first provide some guiding design goals.

1. First, we require our algorithms to be accurate. The numerical solutions constructed must

exhibit: sharp, but non-oscillatory, representation of shocks and contact discontinuities; small

errors and high-order accuracy in smooth regions of the flow; and convergence towards the

correct entropy solution as the mesh is refined. This can be readily tested in 1D due to

the availability of exact solutions to Riemann problems; in multiple space dimensions, we

instead rely upon more qualitative comparisons with the existing literature, as well as exper-

imental data when available. Of central importance is the requirement that our simulations

accurately reproduce the dynamics of highly singular phenomena relevant in practical appli-

cations; examples include strong blast waves, unstable contacts, self-similar implosions, and

shock reflection.

2. Another key design goal is efficiency; specifically, we want our simulations to run in real-

time with serial implementations on standard computer hardware. Our algorithms should

also be scalable; that is, parallelizable and of optimal complexity. Algorithmic efficiency is

benchmarked against comparable state-of-the-art methods.

3. An important consideration when developing an efficient simulation framework is the simplic-

ity of the code. For instance, we avoid time-dependent data structures and external routines.

More generally, we develop a code with a “hierarchical” structure in which well-tested portions

of the code are re-used and “bootstrapped” to form the full algorithm. From the mathemat-

ical point of view, we would like our formulations to have simple interpretations (often of a

geometric nature) with physical justifications.

4. To keep our code simple, we will generally work in 2D rectangular geometry using finite-

difference methods; on the other hand, it is essential that the algorithms we develop are

flexible and generalizable to more complex physics, geometries, and numerical discretization

strategies.

To summarize, the goal of our framework is to provide a set of SAFE (simple, accurate, flexible,

and efficient) numerical algorithms for capturing multiscale flows.
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chapter 1 Introduction

1.2.2. PDE-based modifications. To construct an algorithm satisfying the requirements de-

scribed above, we introduce a set of PDE-based modifications to the underlying compressible Euler

system (1). As a result, the methodology is independent of problem-specific geometry, numerical

discretization strategy, and often even the particular physics under consideration.

Specifically, we develop a hybrid Eulerian-Lagrangian scheme set in a unified Arbitrary Lagrangian-

Eulerian (ALE) framework; a schematic is provided in Figure 3.

Figure 3: Front-capturing and front-tracking with adaptivity: a schematic of the numerical framework.
The Eulerian (or front-capturing) part of the scheme is the C-method; the Lagrangian (or front-tracking)
part of the scheme is the z-model, which is coupled to the C-method via a multiscale flow decomposition.
Adaptivity is incorporated via a Smooth Adaptive Meshing algorithm, which allows us to recast the coupled
Lagrangian-Eulerian scheme in Arbitrary Lagrangian-Eulerian coordinates.

• The Eulerian part of the scheme is a space-time smooth nonlinear artificial viscosity method

for capturing shocks and contacts, which we refer to as the C-method [26, 27].

• The Lagrangian part of the scheme is based on a multiscale compressible-incompressible de-

composition, together with an asymptotic model for incompressible vortex sheet evolution;

this part of the algorithm is referred to as the multiscale decomposition & z-model for

contacts [24].
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• Unifying the two is a smooth adaptive meshing (SAM) algorithm [25] that allows us to

recast our PDE-based hybrid Lagrangian-Eulerian scheme in ALE coordinates via the chain

rule.

In the following three sections, we briefly describe each of these three components.

2. Space-time smooth nonlinear artificial viscosity: the C-method

2.1. Smooth front-tracking and stabilization

The central feature of the C-method is the construction of so-called C-functions for smoothly

tracking the location and geometry of propagating fronts. These C-functions are found as solutions

to auxiliary scalar reaction-diffusion equations of the form

∂tC + 1

ε
C − κ∆C = F ,

where F is a user-defined forcing function, and ε and κ are parameters controlling the localization

and smoothness of C, respectively. A suitable choice of F then forces the associated C-function to

track specific fronts that require explicit stabilization.

The C-functions allow us to implement directionally isotropic and anisotropic artificial viscosity

schemes for the stabilization of shocks and contacts, respectively. Based on the original idea of von

Neumann & Richtmyer [33], we add to the right-hand side of the momentum equation (1b) artificial

viscosity terms of the form

β ∂i(ρC ∂iu), for isotropic stabilization of shocks;

µ∂i(ρ τ iτ j ∂ju), for anisotropic stabilization of contacts .

Here, C is a smooth shock-tracking function; τ is a vector-valued function tracking the geometry of

the contact; and β and µ are user-defined parameters.

We emphasize here the importance of using anisotropic artificial viscosity for contact discon-

tinuities: on the one hand, the propagation of an unstable contact in directions not aligned with

the underlying grid produces spurious small-scale Kelvin-Helmholtz (KH) structures that quickly
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corrupt the numerical solution; on the other hand, isotropic stabilization (as in the classical artificial

viscosity method) produces a smeared density profile with incorrect bubble/spike growth rates and

prevents the development of the (physical) roll-up structure.Our anisotropic C-method smooths

the contact only in directions tangential to the evolving interface, thereby preventing the growth of

spurious small-scale KH structures, while preserving the classical “mushroom” roll-up (see Figure 4).

Figure 4: Roll-up of the contact in the RT instability. Video available at [23].

2.2. Numerical implementation and applications

Our numerical implementation of the C-method for the Euler system is based on a simplified 5th

order WENO-type solver (with no characteristic decompositions or Riemann solvers) for advection,

central differencing for the artificial viscosity terms, and 3rd order Runge-Kutta temporal inte-

gration. Meanwhile, the C-equations are efficiently solved using the classical alternating direction

implicit scheme. Extensive error analysis and convergence tests show that the resulting WENO-C

scheme is high-order accurate and produces smaller errors and better convergence rates than both

the classical WENO scheme, as well as the classical artificial viscosity scheme of von Neumann &

Richtmyer.

The C-method allows us to effectively treat the singular phenomenon of shock-wall collision and

bounce-back. To further dampen the high-frequency oscillations (or noise) that occurs during shock-

collision, we also develop a wavelet-based noise-detection scheme and an associated noise-removal

procedure based on a localized heat equation solver. Shown in Figure 5 is the C-method applied to

a problem involving an initially radially symmetric shock colliding with the walls of a square shock

chamber, with numerous shock-wall, shock-shock, and shock-contact collisions occurring thereafter;
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chapter 1 Introduction

the C-method produces oscillation-free numerical solutions and is able to capture the intricate small-

scale structure produced by the various wave interactions. Furthermore, we show that the C-method

is able to simulate extremely challenging shock problems, such as the LeBlanc problem and the Noh

implosion; to the best of our knowledge, no other numerical scheme is able to predict the correct

shock speed and location for these two problems while preventing anomalous “wall-heating”.

Figure 5: The C-method applied to a shock reflection problem. Video available at [23].

3. Asymptotic models for fluid instabilities: the z-model and

multiscale algorithm

It is extremely difficult to capture the small-scale geometry associated with unstable Rayleigh-Taylor

(RT) and Richtmyer-Meshkov (RM) interfaces using a traditional Eulerian grid. Instead, we use a

Lagrangian method in which the contact discontinuity is described by a parametrized co-dimension

one hypersurface. As described below, the Lagrangian method is then coupled to the Eulerian

C-method to form an efficient hybrid Eulerian-Lagrangian scheme.

3.1. The z-model for incompressible & irrotational dynamics

We begin with a description of our method for simulating vortex sheets in incompressible & irrota-

tional flows; we will justify this simplification of the dynamics in the next subsection. Specifically,

we assume that the vorticity is a measure supported on the interface and rewrite the 2D Euler sys-

tem using the Birkhoff-Rott (BR) formulation of vortex sheet evolution, which reduces the problem

9
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to 1D evolution of the parametrization z(α, t) = (z1, z2) and the amplitude of vorticity $(α, t).

Figure 6: The parametrized curve in the z-
model.

The dimensional reduction provided by the BR

formulation allows for high-resolution representation

of the contact; on the other hand, it is well-known

that the nonlinear and non-local $ equation is dif-

ficult to simulate efficiently and accurately. As

such, we instead develop a reduced-order asymptotic

model for the BR system, which we refer to as the z-model. In contrast to traditional reduced-order

models for BR dynamics (that rely upon smallness of slope or curvature), our z-model is instead

derived using small non-locality in the asymptotic parameter.

Figure 7: z-model simula-
tion of the RT instability.

The z-model allows for interface turn-over and roll-up, and yields a

significant simplification for the $ equation. Our numerical implemen-

tation of the z-model is based upon a hybrid scheme: the $ equation

is efficiently solved in Fourier space with a stabilized spectral method,

while the z equations are solved in physical space using the classical

vortex-blob method [14]. The z-model is generalized to 3D flows in [21].

Our z-model is validated via comparison with experimental data for

both single-mode and multi-mode RT problems. In particular, the z-

model solutions are shown to predict the correct growth rates for the

bubble/spike amplitudes and mixing layer, while efficiently capturing the

small-scale vortical structures of the flow. The z-model solutions are also

shown to be in excellent agreement with “reference” solutions calculated

using a numerical method for the full BR dynamics, while running approximately 75 times faster.

We perform a number of convergence tests and demonstrate the convergence of “large-scale” solution

structures (such as bubble/spike location and radius of the roll-up region) as the interfacial mesh

is refined. Moreover, we show how the z-model can be used to simulate diffusion and mixing layer

growth [28, 34] via ensemble averaging of randomly initialized z-model runs (see Figure 8).
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(c) t = 0.15

(b) t = 0.10

(a) t = 0.05

Figure 8: Mixing layer growth via ensemble averaging of randomly initialized z-model runs; compare with
the experimental studies of Read [28] & Youngs [34]. Video available at [23].

3.2. Multiscale decomposition for compressible RT and RM instabilities

For flows with bulk compression and vorticity, we propose a multiscale compressible-incompressible

decomposition of the velocity field u = v+w, which is, in turn, based upon a two-phase elliptic system

of Hodge type [5]. The incompressible component w is also irrotational, contains the small-scale

structures of the flows, and has a discontinuity in its tangential component across the interface,

but can be efficiently computed using the z-model; meanwhile, the compressible component v is

forced by bulk compression and vorticity, but remains smooth near discontinuities and can thus be

computed on relatively coarse grids while receiving sub-grid scale information from w. By analogy

with turbulence models, such as LES and RANS, our multiscale decomposition involves a coarse-

scale component v (the mean flow) and a fine-grid component w (the sub-grid scale fluctuations).

Our motivation for this type of multiscale decomposition comes from Mach number studies of

single-mode RT problems [29] which showed that low-Mach flows exhibited more roll-up and small-

scale structure. In addition, the low-Mach number limit is a well-known problem for traditional

compressible solvers; the fast acoustic waves impose stringent time-step restrictions on explicit time-

stepping schemes, and the piston-like motion at the unstable interface continually generates spurious
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high-frequency noise. Our multiscale decomposition provides a novel mechanism for avoiding these

issues with low-Mach flows.

Our numerical implementation of the multiscale decomposition is based on a simple hybrid

Eulerian-Lagrangian scheme in which the small-scale flow is computed using the z-model, while

the large-scale flow is computed using the C-method; appropriate source terms are added to the

equations of motion to couple the two together. For RM problems, we formulate a weak baroclinic

term for the z-model to account for vorticity production due to misalignment of pressure and density

gradients; in addition, a version of Taylor’s “frozen turbulence” hypothesis is enforced to ensure the

correct balance between temporal and spatial derivatives of w.

We perform a number of numerical experiments involving RT and RM flows and demonstrate

that our multiscale simulations agree both qualitatively and quantitatively with high-resolution

reference simulations, while running two orders of magnitude (or more) faster.

4. Fast and smooth dynamic mesh adaptivity: the SAM algorithm

4.1. Smooth adaptive mesh redistribution

The central feature of our smooth adaptive meshing (SAM) algorithm is the explicit construction2

of a space-time smooth diffeomorphism (or ALE map) ψ(⋅, t) that maps a fixed reference mesh Tref
to a moving adaptive mesh T (t) that “zooms in” on small-scale solution structures. The map ψ is

constructed by prescribing the local cell volume of the adaptive mesh, i.e., the Jacobian determinant;

this leads to the classical Monge-Ampère (MA) equation

det∇ψ(x) = G ○ ψ(x) , (2)

where G is a user-constructed target Jacobian function that indicates regions of compression/expansion

of the adaptive mesh.

Equation (2) is a nonlinear3, non-local elliptic equation that is, in fact, ill-posed in multiple

space dimensions; the single scalar equation (2) is insufficient to fully determine ψ and there are
2This is in contrast to Lagrangian-type or adaptive mesh refinement (AMR) methods.
3The nonlinearities appear not only as quadratic nonlinearities in the highest order derivatives on the left-hand

side, but also in the composition G ○ ψ, i.e. the right-hand side is itself an unknown of the problem.
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infinitely many solutions. Previous studies have generally utilized variational methods to solve

(2), wherein a unique solution is constructed by optimizing for certain geometric quantities (e.g.

mesh displacement, skewness, etc.). However, variational techniques often lead to complicated

formulations with numerical implementations requiring costly iterative techniques; as such, their

applicability in 3D and in complex geometries has thus far been somewhat limited. Our approach

is to instead optimize for efficiency.

Specifically, we propose a solver based on the deformation method of Dacorogna & Moser [7],

which reduces (2) to the solution of a linear Poisson problem and a set of linear transport equations.

Our numerical implementation is based on a compact 4th order accurate finite-difference scheme

for the Poisson problem, and 5th order linear upwind spatial differencing and 4th order Runge-

Kutta temporal integration for the transport equations. Our SAM algorithm is simple, accurate4,

flexible5, and highly efficient, running approximately 200 times faster than a comparable state-of-

the-art solver for (2).

Figure 9: Three-dimensional unstable mushroom cloud and the associated adaptive mesh. Video available
at [23].

4SAM is 4th order accurate whereas all other schemes are, to the best of our knowledge, 2nd order accurate at
best.

5SAM is fully generalizable to unstructured meshes in complex geometries.
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4.2. A perturbation reformulation for dynamic adaptivity

While our SAM algorithm as described above is highly efficient for a single mesh generation call,

we encounter two problems with an implementation in practical applications: first, its use at every

time-step of a dynamic fluids simulation is expensive; second, generating meshes with large zoom-in

factors (necessary for capturing small-scale structures in RT problems, for instance) can create non-

convex or tangled cells. While these may appear to be two different problems, our solution to both

is the same; specifically, we introduce a novel perturbation formulation of (2) in which the map ψ

is constructed via composition of a sequence of near identity deformations δψk ≈ id of the reference

mesh Tref .
A chain rule computation shows that each of the maps δψk solves an equation of exactly the

same form as (2); consequently, we can use exactly the same solution algorithm as described above

to construct each δψk, then form the full map ψ via composition. As such, the basic SAM algorithm

can be “bootstrapped” up with minimal extra effort to obtain the dynamic and large zoom-in version

of the algorithm. Moreover, our numerical implementation is of optimal complexity when applied

to hyperbolic systems of conservation laws.

4.3. Implementation in an ALE framework

To demonstrate the efficacy of our SAM algorithm in practical applications, we formulate a simple

coupled SAM-ALE for 2D gas dynamics. This is made possible by the explicit construction of

the map ψ, which allows us to reformulate the Eulerian C-method and Lagrangian z-model6 in

a unified ALE framework via the chain rule of calculus. Thus, rather than computing Eulerian

variables and Lagrangian interfaces, we instead evolve geometrically modified versions of these

quantities, i.e. ALE variables and interfaces. On the other hand, the same Eulerian/Lagrangian

numerical solution algorithms (with minor modifications via additional geometric terms) can be used

to compute the ALE quantities; as such, the numerical implementation of our coupled SAM-ALE

scheme is relatively straightforward.

We apply our SAM-ALE scheme to two challenging test problems: the infinite-strength Noh

shock implosion, and the classical RT instability. For both problems, we demonstrate that coarse-
6For simplicity, we have implemented a simplified Lagrangian model in which the parametrized interface z is simply

transported by the Eulerian velocity. Future work will formulate the full z-model dynamics in the ALE framework.
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grid SAM-ALE simulations are qualitatively and quantitatively comparable to fine-grid uniform-

mesh solutions, while running approximately 6-10 times faster. This type of speed-up result for the

RT problem is, to the best of our knowledge, the first of its kind7.

(a) Adaptive mesh (b) Zoom-in

Figure 10: SAM scheme applied to the RT instability. Video available at [23].

5. Future work

Our immediate task for the future is the complete implementation of the z-model in the ALE

setting, together with a thorough study of our unified simulation framework applied to classical gas

dynamics tests. Apart from this, there are several different avenues of research we are interested in

pursuing in the future:

• incorporating combustion and other complex physics (such as magnetohydrodynamics, radia-

tion transport, and plasma physics);

• implementation of level-set and semi-Lagrangian methods into our simulation framework;

• further refinement of the multiscale decomposition and development of new interface models

for propagating waves in compressible gas dynamics;

• numerical study of shock formation and other types of blow-up in multiple space dimensions.

7In fact, most attempts at using moving-mesh adaptivity to simulate the RT instability focus on simply producing
a simulation that does not crash due to mesh tangling.
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In this first part of two papers, we extend the C-method developed in [40] for adding 
localized, space-time smooth artificial viscosity to nonlinear systems of conservation laws 
that propagate shock waves, rarefaction waves, and contact discontinuities in one space 
dimension. For gas dynamics, the C-method couples the Euler equations to a scalar 
reaction-diffusion equation, whose solution C serves as a space-time smooth artificial 
viscosity indicator.
The purpose of this paper is the development of a high-order numerical algorithm for 
shock-wall collision and bounce-back. Specifically, we generalize the original C-method 
by adding a new collision indicator, which naturally activates during shock-wall collision. 
Additionally, we implement a new high-frequency wavelet-based noise detector together 
with an efficient and localized noise removal algorithm. To test the methodology, we use a 
highly simplified WENO-based discretization scheme. We show that our scheme improves 
the order of accuracy of our WENO algorithm, handles extremely strong discontinuities 
(ranging up to nine orders of magnitude), allows for shock collision and bounce back, and 
removes high frequency noise. The causes of the well-known “wall heating” phenomenon 
are discussed, and we demonstrate that this particular pathology can be effectively treated 
in the framework of the C-method. This method is generalized to two space dimensions in 
the second part of this work [41].

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This is the first in a two-part series of papers, in which we develop a high-order numerical algorithm to simulate 
compressible fluid flow with shock waves and contact discontinuities, as well as shock-wall collision and bounce-back. In 
the second part of this series [41], we treat problems in two space dimensions. In this first part, we begin the development 
for one-dimensional flows.

The initial-value problem for a nonlinear system of conservation laws in one space dimension is given as

∂t u(x, t) + ∂x F (u(x, t)) = 0, (1a)
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E-mail addresses: rramani@math.ucdavis.edu (R. Ramani), reisner@lanl.gov (J. Reisner), shkoller@math.ucdavis.edu (S. Shkoller).
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0021-9991/© 2019 Elsevier Inc. All rights reserved.
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u(x, t = 0) = u0(x), (1b)

where u(x, t) denotes a vector of conserved quantities, x denotes the space coordinate, and t denotes the time coordinate. 
Many different physical phenomena can be modeled by (1), including gas dynamics, described by the compressible Euler 
equations, which shall be the focus of this paper.

It is well known that solutions of (1) can develop finite-time discontinuities, even for smooth initial data u0. In this case, 
the discontinuities are propagated according to the Rankine-Hugoniot conditions (see §2.2). Consequently, it is important to 
develop robust numerical schemes that can approximate discontinuous solutions. This is a nontrivial task, since approxima-
tions to discontinuous solutions usually result in the occurrence of small-scale oscillations, or Gibbs-phenomenon; however, 
a variety of high-order discretization schemes and techniques have been developed to combat this issue and produce non-
oscillatory solutions. In the case of 1-D gas dynamics, the construction of non-oscillatory, higher-order, numerical algorithms 
such as ENO by Harten, Engquist, Osher & Chakravarthy [16] and Shu & Osher [45], [46]; WENO by Liu, Osher, & Chan [29]
and Jiang & Shu [19]; MUSCL by Van Leer [23], Colella [7], and Huynh [17]; or PPM by Colella & Woodward [9] requires 
carefully chosen reconstruction and numerical flux.

Such numerical methods evolve cell-averaged quantities; to calculate an accurate approximation of the flux at cell-
interfaces, these schemes reconstruct kth-order (k ≥ 2) polynomial approximations of the solution (and hence the flux) from 
the computed cell-averages, and thus provide kth-order accuracy away from discontinuities. See, for example, the conver-
gence plots of Greenough & Rider [15] and Liska & Wendroff [25]. Given a polynomial representation of the solution, a 
strategy is chosen to compute the most accurate cell-interface flux, and this is achieved by a variety of algorithms. Centered 
numerical fluxes, such as Lax-Friedrichs, add dissipation as a mechanism to preserve stability and monotonicity. On the other 
hand, characteristic-type upwinding based upon exact (Godunov) or approximate (Roe, Osher, HLL, HLLC) Riemann solvers, 
which preserve monotonicity without adding too much dissipation, tend to be rather complex and PDE-specific; moreover, 
for strong shocks, other techniques may be required to dampen post-shock oscillations or to yield entropy-satisfying ap-
proximations (see Quirk [39]). Again, we refer the reader to the papers [15], [25] or Colella & Woodward [8] for a thorough 
overview, as well as a comparison of the effectiveness of a variety of competitive schemes.

Majda & Osher [22] have shown that any numerical scheme for a problem with discontinuities will suffer from a formal 
loss of accuracy near the discontinuity. Nonetheless, the use of high-order schemes is imperative for the resolution of 
finer structures in smooth regions of the flow. Formally high-order WENO schemes (as well as other high-order methods) 
maintain high-order accuracy in regions away from shocks, but are only first-order accurate at the discontinuity.

In order to ascertain the performance of a method, it is essential to conduct numerical tests for a range of problems with 
different features of varying complexity. These tests are made precise by calculating error norms of the computed solution 
relative to either an exact solution (if available), or a highly resolved solution which may be regarded as the exact solution. 
Proposed numerical algorithms should demonstrate small error norms and close to optimal convergence for a range of 
test problems. However, due to the fact that different tests can exhibit very different phenomena and features, it is not 
so surprising that there are a number of situations in which anomalous behavior of solutions is observed, which results 
in large errors and poor rates of convergence. Examples of such errors are wall-heating, the carbuncle phenomenon, long 
wavelength instabilities in slow-moving shocks, and non entropy-satisfying “expansion shocks” (see Quirk [39] for further 
details).

In this paper, we continue the development of the C-method [40], a nonlinear artificial viscosity modification of the 
Euler equations of gas dynamics, whose numerical discretization by a simple WENO-type (or even central differencing) 
scheme can stabilize the type of instabilities noted above. As proven in [40], weak solutions of the C-method modification 
of the Euler equations converge to the unique (entropy) solutions of the Euler equations as the artificial viscosity parameter 
tends to zero. Herein, we present numerical error analysis and order of accuracy studies for a number of classical shock 
tube experiments; we show that a highly simplified WENO discretization of the C-method yields highly accurate solutions 
displaying close to optimal rates of convergence.

For instance, we show that for the Sod problem, our simple WENO-type discretization of the C-method yields smaller 
errors and faster rates of convergence in the L1, L2, and L∞ norms as compared to the same WENO discretization of the 
unmodified Euler equations. In particular, for the difficult problem of shock-wall collision (to be introduced in §1.2 and 
developed in §3) for the Sod problem on a grid with 801 cells, we show that the L1 error with the C-method is 35% of 
the error without the C-method. Moreover, the order of convergence of solutions is approximately 0.95, which is close 
to optimal and more than twice the order of convergence when the C-method is not employed. Similar conclusions hold 
also for the extremely difficult LeBlanc problem, for which we show that the use of the C-method produces L1 errors that 
are approximately four times smaller prior to shock-wall collision, and approximately three times smaller post shock-wall 
collision.

Our quantitative analysis, together with the qualitative observations we make via plot comparison, lead us to conclude 
that the use of a simple discretization of the C-method provides a flexible, highly accurate scheme that produces solutions 
with close to optimal rates of convergence for a variety of problems with different features.

1.1. Using artificial viscosity with conservation laws

Artificial viscosity is an effective method for the numerical stabilization of shock waves in gas dynamics; the simplest 
such regularization of (1) replaces the right-hand side with the linear second-order operator (see, for instance, [20,50,11])
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β �x∂xxu(x, t) , (2)

where β = O (1) is a constant, and �x denotes a small asymptotic parameter that, when the term (2) is numerically dis-
cretized, represents the grid spacing.

For each such β > 0, solutions to the regularized conservation law smooth the shock across a small region of width pro-
portional to �x, and simultaneously prevent small-scale oscillations from corrupting sound waves in numerical simulations; 
nevertheless, the uniform application of diffusion given by (2) ensures only first-order accuracy of numerical schemes and 
overly diffuses wave amplitudes and speeds.

In [49], Von Neumann and Richtmeyer replaced the uniform linear viscosity (2) with a nonlinear term given by

β (�x)2∂x (|∂xu| ∂xu) , (3)

which we shall refer to as classical artificial viscosity. Here, u(x, t) represents, in the case of the Euler equations of gas 
dynamics, the velocity of the fluid. The use of the localizing coefficient |∂xu| in (3) concentrates the addition of viscosity to 
the narrow intervals containing shocks, while maintaining high-order accuracy in regions away from the shock, wherein the 
solution is smooth. See also Margolin [31] and Mattsson & Rider [32] for a description of the origin and the interpretation 
of artificial viscosity as a physical phenomenon.

It is now well-known [21,14] that classical artificial viscosity corrects for the over-dissipation of the linear viscosity (2), 
and allows for the implementation of numerical methods that are both non-oscillatory at shocks, as well as high-order 
accurate in smooth regions. On the other hand, the fact that the localizing coefficient |∂xu| itself becomes highly irregular 
in regions containing shocks often results in the failure of such schemes to suppress spurious oscillations. This inadequacy 
of classical artificial viscosity may be observed with the highly singular phenomenon of shock-wave wall collision. In this 
case, large amplitude, high frequency, non-physical oscillations appear in the solution post-collision behind the shock curve, 
and the rough nature of |∂xu| in both space and time means that the classical artificial viscosity is often unable to remove 
such oscillations.

This suggests that a space-time smoothed variant of the localizing coefficient |∂xu| might allow for a less oscillatory, 
more accurate solution profile. We propose the use of the C-method as a means of producing such a localizing coefficient. 
A similar method is employed by Cabot & Cook [3,4], who use a high-wavenumber indicator together with a Gaussian filter 
to produce such a function, though we note that the produced function is only spatially regularized, and not temporally. See 
also the work of Barter & Darmofal [2], who utilize a PDE-based approach to smooth the localizing function. As we shall 
explain below, the function C(x, t) will play the role of |∂xu|; not only will it be a space-time smooth approximation, but it 
will moreover be an envelope for |∂xu|, maintaining its highly localized properties while retaining a certain memory of the 
behavior of the shock wave.

1.2. Stabilizing shock collision

In the context of fixed-grid, explicit, finite-difference schemes, shock-wall collision and bounce-back leads to egregious 
oscillatory behavior. This is primarily due to the fact that the shock-wall collision causes an immediate change in the 
sign of the shock speed σ̇ (t), leading to a discontinuity in σ̇ (t). Consequently, shock-wall collision is a highly singular 
phenomenon that requires explicit stabilization. In §3, we introduce a simple modification of the C-method, which we 
call the wall C-method, that implements a space-time smooth stabilization for shock-wall collision. This method is then 
applied to various test cases in §5, with the computed solutions showing excellent agreement with the exact solution 
post shock-wall collision. Error analysis and convergence tests show that the wall C-method produces solutions with much 
smaller errors, even for the difficult LeBlanc shock tube problem.

1.3. High-frequency noise

The occurrence of high-frequency, often small amplitude, spurious oscillations (or noise) is a common issue in numerical 
schemes. One cause of this noise is related to the stability (CFL) condition for explicit time-integration methods. A simple 
method for suppressing such noise is the use of the linear viscosity (2), though, as explained above, this often results in 
the degradation of the solution in regions without noise. An alternative is to first decompose the solution using a basis of 
orthogonal wavelets, then truncate the decomposition so as to remove the high frequency components (which correspond 
with noise), though this may be very computationally expensive and, moreover, requires the use of a fully orthogonal basis 
of wavelets. In §4, we introduce a hybridized version of the two above methods, wherein wavelets are used to accurately 
locate high frequency noise, and then a linear viscosity is used, via a localized heat equation solver, to remove this noise. 
This noise detection and removal algorithm is very simple to implement, and is applied to a number of test problems in §5. 
Error analysis shows that the algorithm improves the accuracy of the solution while retaining the order of convergence; 
in particular, the algorithm is able to suppress high-frequency noise while preserving the amplitude of lower frequency 
(physical) sinusoidal waves for the Osher-Shu problem.
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1.4. Outline of the paper

In §2.1, we introduce the compressible Euler equations, the corresponding flux, and the Rankine-Hugoniot jump condi-
tions. In §2.2, we review the original C-method, as introduced in [40]. Then in §3, we discuss the problem of shock-wave 
wall collision, and introduce a novel generalization of the C-method, which relies on a new artificial wall viscosity mecha-
nism that suppresses post shock-collision oscillations. We then introduce our WENO-C-W scheme as a discretized version 
of our new C-method for shock-wall collision. In §4, we present a wavelet based noise indicator, that locates regions of noise 
containing high frequency oscillations on the discretized domain. A noise removal algorithm, based on a localized solution 
of the heat equation, is then used to remove high frequency oscillations. We then describe our WENO-C-W -N algorithm 
which adds the noise indicator and noise removal scheme to our WENO-C-W method. Finally, in §5, we demonstrate the 
efficacy of our method for a number of classical shock tube problems, including the Sod, LeBlanc, Peak, and Osher-Shu tests. 
We show numerical results and order-of-accuracy studies, and in the process, we explain the cause and solution to the wall-
heating problem. In Appendix A, we describe two WENO schemes that we use for comparison purposes: the first couples 
WENO with classical artificial viscosity, while the second couples WENO with Noh’s artificial viscosity operator, designed 
specifically for the case of shock-wall collision and the wall-heating phenomenon.

2. The compressible Euler equations and the original C -method

2.1. The conservation laws of gas dynamics

The compressible Euler equations on a 1-D spatial interval x1 ≤ x ≤ xM , and a time interval 0 ≤ t ≤ T are written in 
vector-form as the following coupled system of nonlinear conservation laws:

∂t u(x, t) + ∂x F (u(x, t)) = 0, x1 < x < xM , t > 0, (4a)

u(x,0) = u0(x), x1 ≤ x ≤ xM , t = 0, (4b)

where the 3-vector u(x, t) and flux function F (u(x, t)) are defined, respectively, as

u =
⎛
⎝ ρ

ρu
E

⎞
⎠ and F (u) =

⎛
⎝ ρu

ρu2 + p
u (E + p)

⎞
⎠ ,

while the given initial data for the problem is

u0(x) =
⎛
⎝ ρ0(x)

(ρu)0(x)
E0(x)

⎞
⎠ .

The conservative variables ρ, ρu, and E denote the density, momentum, and energy of a compressible gas, while the variable 
u represents the velocity field. The variable p denotes the pressure function, and according to the ideal gas law is given by

p = (γ − 1)

(
E − 1

2
ρu2

)
, (5)

where γ is the adiabatic constant. Equations (4) represent the conservation of mass, linear momentum, and energy in the 
evolution of a compressible gas.

The total energy per unit volume E is the sum of kinetic energy and the potential energy,

E = 1

2
ρu2

︸ ︷︷ ︸
kinetic

+ p

γ − 1︸ ︷︷ ︸
potential

. (6)

We also define the specific internal energy per unit mass of the system e, defined as

e = p

(γ − 1)ρ
, (7)

so that the total energy of the system may be written as the sum of the kinetic energy and the internal energy per unit 
volume ρe,

E = 1

2
ρu2 + ρe .

The gradient of the flux F (u) is given by
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DF (u) =

⎡
⎢⎢⎣

0 1 0
1
2 (γ − 3)u2 (3 − γ )u γ − 1

−γ uE
ρ + (γ − 1)u3 γ E

ρ + 3
2 (1 − γ )u2 γ u

⎤
⎥⎥⎦

with eigenvalues

λ1 = u + c , λ2 = u , λ3 = u − c ,

where c = √
γ p/ρ denotes the sound speed (see, for example, Toro [48]). These eigenvalues determine the wave speeds. 

Since the behavior of the various wave patterns is greatly influenced by the speed of propagation, we define the maximum 
wave speed S(u) as

S(u) = [S(u)](t) = max
i=1,2,3

max
x

{|λi(x, t)|} . (9)

We are interested in solutions u with discontinuous wave profiles, such as those with shock waves and contact disconti-
nuities. The Rankine-Hugoniot (R-H) conditions determine the speed σ̇ = σ̇ (t) of the moving shock or contact discontinuity, 
and represent conservation of mass, linear momentum and energy across the discontinuity (see, for example, [24]). For a 
shock wave, the R-H condition is given by the relation

F (ul) − F (ur) = σ̇ (ul − ur)

where the subscript l denotes the state to the left of the discontinuity, and the subscript r denotes the state to the right of 
the discontinuity. This means that the following three jump conditions must hold:

(ρlul) − (ρrur) = σ̇ (ρl − ρr) (10a)(
ρlu

2
l + pl

)
−
(
ρru2

r + pr

)
= σ̇

(
(ρu)l − (ρu)r

)
(10b)

(ul(El + pl)) − (ur(Er + pr)) = σ̇ (El − Er) . (10c)

Uniqueness for weak solutions that have jump discontinuities in general does not hold, unless entropy conditions are sat-
isfied (see the discussion in §2.9.4 in [40]). However, solutions obtained in the limit of zero viscosity are known to satisfy 
the entropy condition and are hence unique. We refer the reader to [40] for a discussion of the convergence of C-method 
solutions as �x → 0.

2.2. A review of the original C-method

We now briefly review the C-method from [40], which is a spacetime smooth version of classical artificial viscosity with 
a compression switch:

β(�x)2 ∂x

(
1(−∞,0)(∂xu) |∂xu| ∂xu

)
,

where the compression switch 1(−∞,0)(∂xu) ensures that artificial viscosity is only activated during compression, and not 
in regions of expansion where there are no shocks.

The localizing function C(x, t) is given as the solution to the scalar reaction-diffusion equation1

∂t C + S(u)

�x
C − S(u)�x∂xxC = S(u)

�x
G ,

where the forcing G is

G ≡ G(x, t) = 1(−∞,0)(∂xu)
|∂xu|

maxx |∂xu| , (11)

and S(u) is the maximum wave speed (9). The C-method artificial viscosity term is then given by

β̃(�x)2 ∂x (C ∂xu) , where β̃ = maxx |∂xu|
maxx C

β ,

and the compressible Euler equations coupled with the C-method are written as the following Euler-C system:

1 We note that this scalar reaction-diffusion equation is not Galilean invariant. In the current implementation, the C -method is viewed purely as a 
numerical tool, whereas the function C may very well be viewed as an important physical quantity, in which case the C -equation itself should be preserved 
under Galilean transformations. This can be accomplished by the addition of an advection term to the current C -equation. We have checked for some 1-D
examples that the addition of such a term has little effect on the demonstrated success of the C -method.
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∂tρ + ∂x(ρu) = 0 , (12a)

∂t(ρu) + ∂x(ρu2 + p) = β̃(�x)2 ∂x (ρC ∂xu) , (12b)

∂t E + ∂x(u(E + p)) = β̃(�x)2 ∂x (ρC ∂x(E/ρ)) , (12c)

∂t C + S(u)

�x
C − S(u)�x∂xxC = S(u)

�x
G(∂xu) . (12d)

Solutions of the Euler-C equations (12) converge to solutions of the Euler equations (4) as β → 0 (see Section 2.9 in [40] for 
a proof). As was demonstrated in [40], a simple WENO-type numerical discretization of the Euler-C equations (12) (as will be 
described in §3) is an effective high-order scheme which compares favorably to the best state-of-the-art algorithms for the 
classical shock-tube experiments of Sod, Osher-Shu, Woodward-Colella, and LeBlanc. In particular, this simple WENO-type 
discretization of the C-method is able to remove the large overshoot in the LeBlanc contact discontinuity for the internal 
energy function (see [40]), whereas the other state-of-the-art schemes were not able to do so.

Herein, we generalize the C-method to allow for shock-wave wall collision and bounce-back, and introduce a wavelet-
based noise indicator algorithm that locates high-frequency noise; a heat equation-based local solver will be used for noise 
removal. We shall also explain the well-known problem of wall-heating (see, for example, [43,37]).

3. A new C -method for shock-wall collision

We now consider the highly singular problem of shock-wall collision and bounce-back, and specifically, the removal of 
spurious post collision oscillations.

3.1. The Euler-C-W system

As a generalization to the Euler-C system (12), we consider the following coupled Euler-C-W system:

∂tρ + ∂x(ρu) = 0, (13a)

∂t(ρu) + ∂x(ρu2 + p) = ∂x

(
B(u)(t)ρ C ∂xu

)
, (13b)

∂t E + ∂x(u(E + p)) = ∂x

(
B(E)(t)ρ C ∂x(E/ρ)

)
, (13c)

∂t C + S(u)

ε�x
C − κ�x · S(u)∂xxC = S(u)

ε�x
G , (13d)

∂t C w + S(u)

εw�x
C w − κw�x · S(u)∂xxC w = S(u)

εw�x
G , (13e)

where

B(u)(t) = (�x)2 · maxx |∂xu|
maxx C

(
βu + βu

w · C w(t)
)

, (14a)

B(E)(t) = (�x)2 · maxx |∂xu|
maxx C

(
β E + β E

w · C w(t)
)

, (14b)

and where the smooth and localized bump function C w(t) is defined as

C w(t) = C w(xM , t)

maxx C w(x, t)
, (15)

and xM denotes the right boundary, where the shock-wall collision and bounce-back is assumed (for simplicity) to occur. 
Furthermore, S(u) is the maximum wave-speed (9), and G = G(x, t) is the forcing to the C-equation, defined by (11). The 
indicator function 1(−∞,0)(∂xu) is the compression switch, in which G is non-zero only if ∂xu < 0. For convenience, we list 
all of the parameters and variables associated with the system (13) in Table 1. We note that due to the presence of the 
compression switch in the definition of G , we can instead define G(x, t) = 1(−∞,0)(∂xρ) · |∂xρ|

maxx |∂xρ| and obtain identical 
results.2

We shall explain the use of this new C w (x, t) function and the localized time-function C w(t) below, when we present 
the results of numerical experiments of shock-wall collision.

We remark that the artificial viscosity terms on the right-hand side of the momentum equation (13b) and the energy 
equation (13c) ensure that the total energy is conserved; in particular, the solution E(x, t) of (13c) continues to obey the 
identity (6). For simplicity, we consider the case of periodic boundary conditions. On the one hand, integration of the 

2 Indeed, this will be our strategy for the 2-D C -method that we introduce in [41].
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Table 1
Relevant parameters and variables for the Euler-C -W system (13).

Parameter / Variable Description

βu , β E artificial viscosity coefficients for the momentum and energy, respectively.
βu

w , β E
w wall viscosity coefficients for the momentum and energy, respectively.

S(u)(t) maximum wave speed maxx (max { |u(x, t)|, |u(x, t) ± c| }).
ε, εw parameters controlling support of C and C w , respectively.
κ , κw parameters controlling smoothness of C and C w , respectively.
C w (t) smooth and localized bump function.

Fig. 1. The grid, together with ghost cells, for the WENO-C -W algorithm.

energy equation (13c) over the spatial domain [x1, xM ] shows that d
dt

∫ xM
x1

E dx = 0. On the other hand, multiplying the 
momentum (13b) by u, integrating over the domain [x1, xM ], utilizing the conservation of mass (13a) together with the 
pressure identity (5), and the energy equation (13c), we find that

d

dt

xM∫
x1

(
1

2
ρu2 + p

γ − 1

)
dx = 0 .

This shows that the velocity u and pressure p adjust accordingly to maintain the relation (6), and that our modified 
Euler-C-W system conserves total energy.

3.2. Boundary conditions for the Euler-C-W system

We consider two types of boundary conditions on the interval x1 ≤ x ≤ xM . For many of the test problems, we employ 
the so-called reflective or solid wall boundary conditions at x = x1 and x = xM and t ≥ 0:

∂xρ(x, t) = 0 , ρu(x, t) = 0 , ∂x E(x, t) = 0 , ∂xC(x, t) = 0 , ∂xC w(x, t) = 0 . (16)

Alternatively, we shall sometimes use the free flow boundary conditions:

∂xρ(x, t) = 0 , ∂x (ρu) (x, t) = 0 , ∂x E(x, t) = 0 , ∂xC(x, t) = 0 , ∂xC w(x, t) = 0 . (17)

3.3. The WENO-C-W algorithm

3.3.1. Discretization of the Euler-C-W system
We now describe the simple WENO-based space discretization scheme used for the Euler-C-W system (13). We use a 

formally fifth-order WENO reconstruction procedure together with upwinding, based on the sign of the velocity at the cell 
edges. We stress that the WENO-type discretization we use is highly simplified, and is not meant to be representative of the 
class of full WENO solvers. However, we note that, for certain problems, our simplified WENO-type discretization produces 
solutions with similar errors and convergence rates to those produced using a standard WENO scheme (see §5.2.5).

The spatial domain x1 ≤ x ≤ xM is subdivided into M equally sized cells of width �x, where the left-most and right-most 
cells are centered on the left and right boundaries, respectively (Fig. 1). We denote the cell centers by xi for i = 1, . . . , M , 
and the cell edges with the fractional index

xi+ 1
2

= xi + xi+1

2
, for i = 1, . . . , M − 1 .

Any quantity evaluated at a cell center xi shall be denoted by wi , and a quantity evaluated at a cell edge xi+ 1
2

is denoted 
by wi+ 1

2
. Given a vector wi corresponding to cell-center values, and vectors zi− 1

2
and zi+ 1

2
corresponding to cell edge 

values, we define the jth component by[
WENO(wi, zi± 1

2
)
]

j
= 1

�x

(
w̃ j+ 1

2
z j+ 1

2
− w̃ j− 1

2
z j− 1

2

)
,
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where the cell-edge values w̃ j+ 1
2

are calculated using a standard fifth-order WENO reconstruction procedure (see [19], [47]) 
with upwinding based on the sign of z j+ 1

2
.

Then, defining the vectors u = [ρ, ρu, E]T and C = [C, C w ]T , we now construct the operators AWENO and BWENO as

[AWENO(ui, C i)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
WENO

(
ρi, ûi± 1

2

)]
i

[
WENO

(
(ρu)i, ûi± 1

2

)]
i
+ ∂̃4 pi − B(u)(t) ·

∂̃C

(
u

i+ 1
2

)
−∂̃C

(
u

i− 1
2

)
�x

[
WENO

(
(E + p)i, ûi± 1

2

)]
i
− B(E)(t) ·

∂̃C

(
(E/ρ)

i+ 1
2

)
−∂̃C

(
(E/ρ)

i− 1
2

)
�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

and

[BWENO(ui, C i)] =

⎡
⎢⎢⎢⎣

S(ui)
ε�x {Ci − Gi} +

∂̃S C
i+ 1

2
−∂̃S C

i− 1
2

�x

S(ui)
εw�x

{
[C w ]i − Gi

}+
∂̃S [C w ]

i+ 1
2
−∂̃S [C w ]

i− 1
2

�x

⎤
⎥⎥⎥⎦ . (19)

Here, we have used the notation ∂̃4 pi to denote the fourth-order central difference approximation for the derivative of 
the pressure at the cell center xi :

∂̃4 pi = pi−2 − 8pi−1 + 8pi+1 − pi+2

12 · �x
.

The cell-edge velocities ûi± 1
2

used for upwinding are calculated using a fourth-order averaging:

ûi− 1
2

= −ui−2 + 7ui−1 + 7ui − ui+1

12
.

We have also used the notation ∂̃C

(
wi+ 1

2

)
and ∂̃S Ci+ 1

2
to denote

∂̃C

(
wi+ 1

2

)
= ρi+ 1

2
Ci+ 1

2
∂̃ wi+ 1

2
,

∂̃S Ci+ 1
2

= κ�x S(ui) ∂̃Ci+ 1
2
,

respectively. Here, the notation zi+ 1
2

denotes a quantity calculated at the cell edge xi+ 1
2

using the standard averaging

zi+ 1
2

= zi + zi+1

2
,

while the quantity ∂̃ wi+ 1
2

denotes the central difference approximation for ∂x w at the cell edge xi+ 1
2

,

∂̃ wi+ 1
2

= wi+1 − wi

�x
.

Now, given un at a time t = tn = n�t , we evolve the solution as follows:

un+1
i = RK

(
un

i ,AWENO(un
i , Cn

i )
)

, (20a)

Cn+1
i = RK

(
Cn

i ,BWENO(un
i , Cn

i )
)

, (20b)

where RK denotes the explicit fourth-order Runge-Kutta time-integration method.

3.3.2. Discretization of boundary conditions and ghost node values
Boundary conditions for the functions C and C w are imposed through the assigning of the so-called ghost node values. 

More precisely, the ghost node values for the functions C and C w are prescribed via an even extension:

C1−k = C1+k and CM+k = CM−k, (21)

for k = 1, . . . , Mg , where Mg is the number of ghost nodes. For our (formally) fifth-order WENO scheme, Mg = 3.
The associated boundary conditions for the conservative variables are also imposed via the ghost node conditions. For 

the Dirichlet boundary condition, an odd extension is used, while for the Neumann boundary condition, an even extension 
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is used. More precisely, suppose that we wish to impose the free-flow boundary conditions (17). This is done by choosing 
the ghost node values as

ρ1−k = ρ1+k and ρM+k = ρM−k, (22a)

ρu1−k = ρu1+k and ρuM+k = ρuM−k, (22b)

E1−k = E1+k and E M+k = E M−k, (22c)

for k = 1, . . . , Mg .
The solid wall boundary conditions (16) are imposed by replacing the even extension of the momentum in (22) with the 

odd extension of the momentum:

ρ1−k = ρ1+k and ρM+k = ρM−k, (23a)

ρu1−k = −ρu1+k and ρuM+k = −ρuM−k, (23b)

E1−k = E1+k and E M+k = E M−k, (23c)

for k = 1, . . . , Mg . Again, it is easy to verify that the density ρ and the energy E satisfy the homogenous Neumann boundary 
condition in (16). To verify that the momentum satisfies the homogenous Dirichlet boundary condition, we need to use the 
momentum equation in the semi-discrete form (20). Suppose that at time-step n, the velocity at the boundaries vanishes: 
un

M = un
1 = 0. For simplicity, we restrict to the right boundary in cell xM . The even extensions of ρ and C and the odd 

extension of u mean that the diffusion term on the right-hand side of the momentum equation vanishes since

∂̃C

(
uM+ 1

2

)
= ρM+ 1

2
· CM+ 1

2
· (uM+1 − uM)

�x

= ρM− 1
2

· CM− 1
2

· (−uM−1 + uM)

�x
= ∂̃C

(
uM− 1

2

)
.

Moreover, since the pressure p is evenly extended, the derivative at the boundaries ∂̃4 pM and ∂̃4 p1, also vanishes. One can 
also check that the derivative of the flux term at the boundary vanishes: 

[
WENO

(
(ρu)i, ûi± 1

2

)]
M

= 0. This means that 
∂t(ρu) = 0 at the boundaries, so that momentum satisfies ρu = 0 at the boundaries for t ≥ 0, provided that the initial 
momentum vanishes on the boundaries.

3.4. Using WENO-C-W for the Sod shock-wall collision problem

The reflection of a shock wave from a fixed wall was first considered in [10] from a theoretical viewpoint (see also [1,
36]). Further investigations in [37,12] were done primarily in the context of the wall-heating phenomenon (to be discussed 
below). The reflection of a shock-wave from a non-rigid boundary was considered in [33,18], wherein an artificial viscosity 
method was utilized to stabilize the solution.

As a motivating example, we first consider the classical Sod shock tube experiment. This is a Riemann problem on the 
domain 0 ≤ x ≤ 1, with initial data given by⎡

⎣ ρ0
(ρu)0

E0

⎤
⎦=

⎡
⎣ 1

0
2.5

⎤
⎦1[0, 1

2 )(x) +
⎡
⎣0.125

0
0.25

⎤
⎦1[ 1

2 ,1](x) and γ = 1.4 , (24)

where 1[a,b)(x) denotes the indicator function on the interval a ≤ x < b. The solution consists of a rarefaction wave, a 
contact discontinuity, and a shock wave. The shock propagating to the right collides with the wall, modeled by the point 
x = 1, at time t ≈ 0.28. In Fig. 2(a), we show the success of the WENO-C method for this problem prior to the collision of 
the shock wave with the wall at x = 1; however, as shown in Fig. 2(b), the WENO-C scheme (without the addition of the 
wall function C w(t)) is not sufficient to remove spurious oscillations post shock collision in the case of small β = 0.5. On 
the other hand, by setting β = 4.0, the velocity is mostly free of post shock-wall collision oscillations at t = 0.36, at the 
expense of an overly diffused shock profile prior to shock-wall collision at t = 0.2. Moreover, for more difficult problems, 
such as the LeBlanc problem considered in §5.4, very precise choices of the artificial viscosity parameters are required to 
maintain stability and correct wave speeds. Consequently, it is difficult to choose β such that the solutions both pre and 
post shock-wall collision are accurate and noise-free. The use of the wall viscosity will provide a nice solution strategy.

3.4.1. An explanation of the temporal bump function C w(t)
We now explain the use of the new C w (x, t) function together with the temporal bump function C w(t). We shall assume, 

for simplicity, that the shock wave is traveling to the right, so that the shock wave collides with the wall x = 1. Thanks to the 
homogeneous Neumann boundary condition ∂xC w = 0 at the wall x = 1, there is a smooth growth (in time) of the amplitude 
of C w(1, t) just prior to shock-wall collision, followed by a smooth decrease of amplitude during shock bounce-back.
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Fig. 2. The velocity profile for the Sod shock tube problem, calculated using our WENO-C scheme with 201 cells. The blue and red curves are the velocity 
profiles and the dashed green curve is the exact solution. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 3. The velocity profile for the Sod shock tube problem, calculated using our WENO-C -W scheme with 201 cells. The blue curve is the velocity profile 
and the dashed green curve is the exact solution. The red curve is the (normalized and resized) function C w(x, t).

In Fig. 3, we illustrate the WENO-C-W scheme as applied to Sod. While the shock is away from the wall, C w (1, t) is 
zero, and thus by formula (15) so is C w(t); see the purple curve in Fig. 3(a). As the shock approaches the wall (as shown 
in Fig. 3(b)), the Neumann boundary condition for the C w -equation ensures that C w(t) increases smoothly, until it reaches 
a maximum when the shock collides with the wall (Fig. 3(c)), before smoothly decreasing back to zero as the shock moves 
away from the wall (Fig. 3(d)).

In Fig. 4, we plot the graph of C w(t). The localized nature of the temporal bump function C w(t) means that the extra 
viscosity, given by βw in (14), is added only during shock-wall collision and bounce-back; prior to collision, no extra viscosity 
is added and the solution is consequently not overly diffused. In §5, we apply the WENO-C-W scheme to a number of 
different shock tube problems for shock collision and bounce-back.

3.4.2. A generalization of our algorithm to shock-shock collision problems
We remark here that a shock hitting a wall is simply a special case of shock-shock collision; indeed, the shock-wall 

collision problem may be viewed as the collision between two identical shocks but with different signs for the shock 
speed. A simple generalization of the Euler-C-W algorithm which allows for arbitrary shock-shock collision is obtained by 
redefining the temporal bump function (15) with the new function
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Fig. 4. The wall indicator function C w (t) for the Sod shock tube problem. The function is zero when the shock is away from the wall, increases smoothly 
as the shock approaches the wall, and reaches a maximum when the shock collides with the wall, before decreasing smoothly as the shock moves away 
from the wall.

Fig. 5. The density profile for a non-identical shock-shock collision problem. The blue curve is the density profile and the purple curve in Fig. 5(a)-5(c) is 
the (normalized and resized) function C w(x, t). The red curve in Fig. 5(d) is the temporal bump function C w (t).

C w(t) =
∑

i

C w(x∗
i , t)

maxx C w(x, t)
, (25)

where x∗
i (t) denotes the time-dependent local minima of the function C w (x, t) and approximates the location of the shock-

shock collision (at the collision time). The functions x∗
i (t) are analogous to the time-independent wall location xM in the 

shock-wall collision problem (where the location of the collision is predetermined).
Fig. 5 shows the density function during shock-shock collision. Also shown, is the temporal bump function C w , which 

naturally increases as two shock waves approach one another, and provides a natural method for the addition of spacetime 
smooth additional artificial viscosity during the shock-shock collision process. As can be seen, the two shocks collide at 
t = 0.192, at which time the function C w achieves its maximum value. We examine this problem of shock-shock collision 
in great detail in [42].

4. A wavelet-based noise indicator: the WENO-C -W -N method

Numerical solutions of gas dynamics often develop high-frequency noise. These (often small amplitude) spurious oscil-
lations can occur if the time-step is too large or because of the smearing of contact discontinuities. Large time-step noise 
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Fig. 6. The velocity profile for the Sod shock tube problem, calculated using our WENO-C scheme with 201 cells. The blue curve is the velocity profile and 
the dashed green curve is the exact solution. There is noise in the region x ∈ [0.65, 0.75]. This is the location of the contact discontinuity in the density 
and momentum profiles.

can be seen with any explicit numerical scheme, while noise in the velocity field at the contact discontinuity is illustrated 
in Fig. 6 for the Sod problem. This noise is caused by the slightly different slopes that the momentum and density profiles 
have at the contact discontinuity.

To deal with the occurrence of spurious noise, we implement a localized wavelet-based noise indicator. Wavelets were 
first used in fluid dynamics in the analysis of turbulence by Farge [13] and Meneveau [34]. They have also been used in 
the numerical solution of PDE on adaptive grids (see the review paper [44]). With regard to noise detection and removal, 
wavelets have generally been used in the form of a nonlinear filter, in which a noisy function is first decomposed using 
wavelets, and the function is then de-noised by retaining only the low-frequency components. Such filtering techniques 
often over-smooth the noisy data, or introduce additional Gibbs-like oscillations [6].

The main novelty of our approach is the use of wavelets only for high-frequency noise detection, while noise removal is 
achieved by a highly localized heat equation approach.

4.1. Construction of wavelets

A wavelet is like a traditional wave (sine or cosine waves), but localized in space i.e. it has a finite support. We define 
a mother wavelet ψ(x) = ψ0,0(x) that represents the lowest frequency oscillation, and then use a dyadic scaling and integral 
translation to produce wavelets of higher frequencies:

ψr,s(x) = 2r/2ψ(2r x − s); r = 0,1,2, . . . and s = ±1,±3, . . . ,±(2r − 1).

Suppose that the spatial domain is given by x1 ≤ x ≤ xM . For our purposes, there are two key properties that the wavelet 
family {ψr,s} needs to satisfy:

1. Zero mean:

xM∫
x1

ψ(x)dx = 0.

Note that due to the dyadic scaling and integral translation, this condition also ensures that wavelets of higher frequency 
have zero mean.

2. “Quasi-orthogonality” of the form:

xM∫
x1

ψr,s(x) · ψr,s′(x)dx = 0, for r ≥ 0 and 0 ≤ s, s′ ≤ 2r − 1.

That is, each wavelet is orthogonal to every other wavelet of the same frequency. This is to ensure that one can locate 
exactly where each frequency is active.

We define our wavelets to take the form shown in Fig. 7. Since we are only interested in the highest frequency noise, 
we provide the exact formula for the highest frequency wavelet as
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Fig. 7. The highest frequency wavelet ψi .

ψi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− a

�x
(x − x2i−1), if x2i−1 ≤ x ≤ x2i− 1

2

+ 3a

�x
(x − x2i) + a, if x2i− 1

2
≤ x ≤ x2i

− 3a

�x
(x − x2i) + a, if x2i ≤ x ≤ x2i+ 1

2

+ a

�x
(x − x2i+1), if x2i+ 1

2
≤ x ≤ x2i+1

(26)

for each i = 1, 2, . . . , M−1
2 , where the notation xk+ 1

2
denotes the midpoint of xk and xk+1. It is clear from formula (26) that 

each ψi is supported in the interval Ii := [x2i−1, x2i+1].
The constant a := √

3/�x in (26) is a normalization factor to ensure that the wavelets have L2 norm equal to 1. Since 
the highest frequency wavelets have disjoint supports, it is obvious that the quasi-orthogonality property is satisfied. One 
can also check that the zero mean property is satisfied.

4.2. High-frequency noise detection

Given a discretized spatial domain, the highest frequency wavelet is supported over two grid cells and is shown in Fig. 7. 
There are M−1

2 two-cell intervals in the computational domain. Each two-cell interval is denoted by I j , and there is a 
highest frequency wavelet ψ j(x) corresponding to each I j for every j = 1, ..., M−1

2 .
For a given function f (x), we next compute the wavelet coefficients C j( f ) for this function. For each j = 1, ..., M−1

2 ,

C j( f ) := 〈 f , ψ j〉L2 =
∫
I j

f (x)ψ j(x)dx for j = 1, ...,
M − 1

2
.

Given the cell-center values f (x2 j−1), f (x2 j), f (x2 j+1), we can approximate the given function f (x) on the interval I j =
[x2 j−1, x2 j+1] by a piecewise linear function f̃ (x); in particular, we define f̃ (x) by linear interpolation of the cell-center 
values of f (x). We then approximate the wavelet coefficients by C j( f ) ≈ C j( f̃ ), and can compute

C j( f̃ ) = 〈 f̃ ,ψ j〉L2 = −
√

�x

48
·
[

f (x2 j+1) − 2 f (x2 j) + f (x2 j−1)
]
. (27)

Notice that the right-hand side of (27) is proportional to the second-order central difference approximation to f ′′(x2i). Also, 
note that if f (x2i) = 1

2 ( f (x2i+1) + f (x2i−1)), i.e., if the function f̃ is linear on Ii , then the associated wavelet coefficient is 
zero. This is crucial in ensuring that only the highest frequency noise is detected.

The magnitude of the wavelet coefficients grows with the amplitude of the high-frequency oscillations. For example, 
consider the case that f (x) is a hat function over the interval I j = [x2 j−1, x2 j+1] and that f (x2 j−1 j) = f (x2 j+1) = 0. Then 
the amplitude of the oscillation is given by the magnitude at the peak of the hat, f (x2 j), and |C j( f )| is proportional to 
f (x2 j). Consequently, |C j( f )| grows linearly with the amplitude of the oscillation.

On the other hand, suppose that we have a lower frequency oscillation, given by a hat function that spans 4 cells, say the 
intervals I j and I j+1. In each of these intervals, the oscillating function is linear, so that the associated wavelet coefficients 
C j( f ) and C j+1( f ) are equal to zero. This illustrates the fact that the highest frequency wavelets detect only the highest 
frequency noise.

4.3. Noise detection in the presence of a shock wave

We next examine the noise detection algorithm, applied to a function u(x) which has a shock discontinuity. For j =
1, ..., (M − 1)/2, we again compute the wavelet coefficients C j(u) for each two-cell interval I j according to (27). Suppose 
the shock discontinuity occurs spans the two-cell interval I j ; then, on I j the shock curve is essentially linear and C j(u) = 0, 
but if the shock is out of phase by one cell with I j , then the wavelet coefficient C j(u) can be large (see Fig. 8).
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Fig. 8. Wavelet coefficients at the shock curve compared with wavelet coefficients in regions where there is noise. The blue curve is u(x), and the red dots 
indicate the relative magnitude of the associated wavelet coefficient C j(u). The wave profile in Fig. 8(b) is identical to that in Fig. 8(a), but shifted by one 
cell to the left.

In order to avoid over-diffusion at the shock, we prevent noise detection near shock discontinuities. This is achieved by 
noting that the function C(x, t) attains a local maximum for points x along the shock curve. Consequently, we locate the 
local maximums of C(x, t), by finding the cells for which ∂xC = 0 and ∂xxC < 0. We then deactivate the noise detection in 
the cells surrounding the shock curve.

Having deactivated the noise indicator near the discontinuity, the largest wavelet coefficients are now those where the 
high-frequency oscillations exist. We may then define the noise detector function 1noise(x) as follows: for each j = 1, ..., M−1

2
and x ∈ I j , we set 1noise(x) = 1 if |C j(u)| > Cref > 0 and set 1noise(x) = 0 otherwise.

The constant Cref is obtained by computing the wavelet coefficient of a standard hat function on the interval [−�x, +�x]
with amplitude δh:

Cref = δh ·
√

�x

12
. (28)

4.4. Noise removal algorithm

Having described the noise detection algorithm, we next propose an efficient scheme for removing noise from a given 
function u(x) by solving a localized heat equation over the collection of intervals I j where high-frequency noise has been 
detected.

The union of all noisy intervals I j consists of K connected intervals V 1, ..., V K . For each set Vk , k = 1, ..., K , we define 
the set Wk by affixing one cell on the left and one cell on the right. We then solve a localized heat equation for the 
“de-noised” solution w(x, τ ) in each of the domains Wk:

∂τ w(x, τ ) = η · ∂xx w(x, τ ), for x ∈ Wk and τ ≥ 0 , (29a)

w(x,0) = u(x), for x ∈ Wk , (29b)

w(x, τ ) = u(x), for x ∈ ∂Wk , (29c)

where 0 < η � 1 is a small constant, which we refer to as the noise removal viscosity. The function w(x, τ ) = u(x) for 

x ∈
(⋃K

k=1 Wk

)C
and τ ≥ 0. We remark that the time τ is a “fictitious” time, introduced for the diffusion mechanism. 

Equation (29b) is the initial condition over the intervals where noise has been detected, and (29c) is a Dirichlet boundary 
condition ensuring that w(x, τ ) continuously transitions to u(x).

We use an explicit scheme to solve (29), and in practice, one time-step is sufficient to remove noise. If an explicit 
time-stepping scheme is used to solve (29), it is not necessary to construct the domains Wk . Instead, one can simply use 
the noise indicator function 1noise(x), and solve a modified heat equation:

∂τ w(x, τ ) = η · 1noise(x) · ∂xx w(x, τ ), for x1 < x < xM and τ ≥ 0, (30a)

w(x,0) = u(x), for x1 < x < xM , (30b)

w(x, τ ) = u(x), for x = x1 and x = xM . (30c)

The utilization of an explicit scheme results in the stability constraint η�τ/(�x)2 < 1/2. However, in practice, we have 
found that much smaller values η�τ/(�x)2 � 1/2 are sufficient to dampen spurious noise. We also remark that the use of 
a single time-step means that the noise removal provided by the localized heat equation can be viewed as a filtering process, 
in which noise is removed through a local averaging. Consequently, the averaging provided by the Laplacian term on the 
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Table 2
Relevant parameters and variables used in the numerical tests.

Parameter / Variable Description

βu , β E artificial viscosity coefficients for the momentum and energy, respectively.
βu

w , β E
w wall viscosity coefficients for the momentum and energy, respectively.

δh, η amplitude of noise and noise removal viscosity, respectively.
ε, εw parameters controlling support of C and C w , respectively.
κ , κw parameters controlling smoothness of C and C w , respectively.

right-hand side of (30a), namely (wi+1 − 2wi + wi−1)/2, can be replaced by other local averages, such as that provided by 
Gaussian filtering [3].

However, we wish to stress that there is a distinction between the operation of smoothing a noisy function and the 
noise removal process we have outlined. While, of course, removing high-frequency noise does indeed smooth the function, 
because we remove highly localized (in space and time) packets of oscillations, the procedure is quite different to more tra-
ditional smoothing algorithms, in which one uses truncation of frequencies in Fourier space or the analogous hyperviscosity 
operators in physical space. As such, it is difficult to obtain analytically the truncation error by means of a Taylor expansion, 
but it is possible to measure the error improvement by virtue of convergence studies comparing the algorithm with and 
without the noise removal algorithm activated. We provide results of such studies in §5.

4.5. The WENO-C-W -N algorithm

We now describe how we implement the above noise indicator algorithm for the Euler equations. The algorithm proceeds 
in two stages; in the first stage, we use the WENO-C-W scheme described in §3.3 to solve for an intermediary solution 

ũ =
[
ρ̃, ρ̃u, Ẽ

]T
; in the second stage, we feed this intermediary solution ũ into the noise indicator algorithm to de-noise 

the solution. The two-stage process is now described.

1. An intermediary solution ũ is obtained as

ũi = RK
(
un

i ,AWENO(un
i , Cn

i )
)

,

Cn+1
i = RK

(
Cn

i ,BWENO(un
i , Cn

i )
)

.

2. The intermediate velocity ũi is then de-noised using the procedure described in §4.3 and §4.4, producing the noise-free 
velocity u(x, tn+1). The updated solution u(x, tn+1) is then obtained as

u(x, tn+1) ≡ (ρ(x, tn+1),ρu(x, tn+1), E(x, tn+1)) :=
(
ρ̃(x) , ρ̃(x) · u(x, tn+1) , Ẽ(x)

)
.

Remark 1. Implementation of our noise removal scheme has been motivated by the high-frequency oscillations of the ve-
locity field that occur exactly at the contact discontinuity (see, for example, Fig. 6). We note that once the noise indicator 
function 1noise(x) is computed, there are many possible choices for the noise removal portion of the algorithm. For example, 
while our implemented algorithm only removes high-frequency oscillations form the velocity, we could also remove such 
oscillations from ρ and E , and we could in place of the velocity field, instead remove oscillations from the momentum ρu. 
We have found that any of these choices produce the same relative errors in the one-dimensional test problems considered 
herein. Moreover, as we demonstrate in §5, the removal of high-frequency oscillations from u alone, is sufficient to remove 
noise from the density and energy as well. A more detailed examination of various noise removal algorithms (as well as 
those more ideally suited for parallelization) is made in [42].

5. Numerical simulations of classical shock tube experiments

In this section, we show results of the discretized C-method for a variety of classical shock tube experiments. For some of 
the problems, we will compare against WENO-based classical artificial viscosity schemes and Noh schemes. See Appendix A
and Table 12 for a description of all of the numerical methods employed herein.

As with any artificial viscosity scheme, parameters must be chosen for the problem under consideration. Before present-
ing our numerical results, we consider this issue for the C-method, whose parameters are listed in Table 2. The artificial 
viscosity parameters β are chosen in the following manner: we set β E = 0, choose βu , βu

w large enough so that post-shock 
oscillations are removed both pre and post shock-wall collision, then choose β E

w large enough so that the wall-heating phe-
nomenon (discussed later in §5.2) does not occur. A similar philosophy is applied to choice of parameters for the noise 
detection and removal algorithm: first, we determine the amplitude of highest-frequency oscillation δh and then choose the 
artificial viscosity parameter η large enough to diffuse the noise.
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Table 3
L1 error of the computed density minus the exact solution and convergence for the linear advection 
problem.

Scheme Cells

51 101 201 401

WENO Error 7.298 × 10−6 2.318 × 10−7 7.526 × 10−9 2.654 × 10−10

Order – 4.977 4.945 4.826

The parameters ε, εw , κ , and κw are O (1) constants. Setting a larger value for ε or εw serves to increase the support of 
the corresponding C-function, while increasing the value of κ or κw produces smoother C-functions. For certain problems, 
smoothing the C-variables by using a larger κ further minimizes noise that occurs in the solution.

In Appendix C we demonstrate the accuracy of the C-method when the values of the parameters ε, εw , κ , and κw are 
fixed values for the different test problems. It is shown that the differences between the solutions computed using the 
optimized parameter sets we use for the problems in this section and the fixed-parameter sets we use for the runs in 
Appendix C are minimal, and that the fixed choice of parameters can be used for general problems. However, we wish to 
emphasize that one of the strengths of the C-method is its flexibility to optimize parameters for specific features associated 
with particular data.

The error analysis and convergence studies we perform for the numerical experiments considered in the following sec-
tions use the L1, L2, and L∞ norms. Given two functions f (x) and g(x) defined on the computational grid with M cells, 
these error norms are defined by

|| f − g||L1 = 1

M

M∑
i=1

| f (xi) − g(xi)| , (31a)

|| f − g||L2 =
√√√√ 1

M

M∑
i=1

| f (xi) − g(xi)|2 , (31b)

|| f − g||L∞ = max
i=1,...,M

| f (xi) − g(xi)| . (31c)

As stated by Greenough & Rider [15], the L1 and L2 norms provide a global view of the errors in the computed solution, 
whereas the L∞ norm highlights local errors, such as the undershoot or overshoot that occurs at a discontinuity. Thus, these 
three norms together provide a precise quantitative description of the errors of numerical solutions, and complement the 
qualitative evidence we provide through the visualization of numerical simulations.

5.1. Linear advection

We begin by considering a linear advection problem to demonstrate the high-order convergence of the base WENO 
scheme. The domain is 0 ≤ x ≤ 1, the adiabatic constant is γ = 1.4, the initial data is⎡

⎣ ρ0
(ρu)0

E0

⎤
⎦=

⎡
⎣ 1 + 0.5 sin(2πx)

1 + 0.5 sin(2πx)
0.5 + 0.25 sin(2πx) + 1

γ −1

⎤
⎦ ,

and we employ periodic boundary conditions. In the exact solution, the velocity and pressure remain a constant value of 1, 
while the initial density field is advected by the velocity, so that the density at time t satisfies ρ(x, t) = ρ0(x − t). We 
employ our simplified WENO scheme on grids with 51, 101, 201, and 401 cells. Each simulation is run with a CFL number 
of approximately 0.6, and the final time is t = 1.0.

In Table 3, we list the L1 error of the computed density minus the exact solution; as expected, the solutions converge 
with almost fifth-order accuracy.

5.2. The Sod shock tube problem

The data for the Sod shock tube is given in (24), with the exact solution given by a shock wave, a rarefaction wave, and 
a contact discontinuity. To simulate the shock-wave wall collision, we employ reflective boundary conditions (16). In the 
tests below, we employ our WENO-C-W scheme with 201 cells.

5.2.1. The wall-heating problem in the Sod shock tube
We first demonstrate the well-known wall-heating problem ([37,43]) in which an anomalous slope appears in the density 

and internal energy upon shock bounce-back. We shall then explain what the root cause of this problem is, and its solution.
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Fig. 9. The velocity profile for the Sod shock tube problem, with the wall viscosity activated for the momentum equation. The dashed green curve is the 
exact solution.

Fig. 10. The density profile for the Sod shock tube problem, calculated with the wall viscosity activated for the momentum equation. The dashed green 
curve is the exact solution.

We begin by choosing the parameters in equations (13) and (14) as

βu = 0.5, β E= 0.0, βu
w = 3.0, β E

w = 0.0

ε = 1.0, κ = 5.0, εw = 50.0, κw= 1.0 .

The resulting solutions for the velocity before and after the shock-wall collision are shown in Fig. 9. Before the shock 
collision with the wall (Fig. 9(a)), the solution maintains a sharp shock front. After the shock collision (Fig. 9(b)), the 
high-frequency oscillations behind the shock wave are damped-out for sufficiently large βu

w > 0, while maintaining a sharp 
front.

While post-collision oscillations in the density profile are suppressed, Fig. 10 shows the presence of the anomalous 
density slope ∂xρ(1, t) at the wall (which should be zero). This incorrect slope is termed wall heating because the undershoot 
in the density results in an overshoot in the internal energy (7) (and hence temperature) at the wall. Noh [37] suggested 
that wall heating would occur in any artificial viscosity scheme, and is in fact built into the exact solutions of the difference 
equations of the artificial viscosity method. Menikoff [35] argues that wall-heating is caused by the smearing of the shock 
curve that occurs with any artificial viscosity scheme, and is thus unavoidable. Rider [43] argues that incorrect wave speeds 
result in too much or too little dissipation.

In fact, it appears that the wall-heating error is the result of the misalignment of the gradient of fluxes for the density, 
momentum and energy equations, which in turn is caused by a slight difference in the speed of the shock fronts for the 
density, momentum and energy. We define the forcing terms

H(ρ) = −∂x(ρu),

H(ρu) = −∂x(ρu2 + p) + ∂x

(
B(u)(t)ρ C ∂xu

)
,

H(E) = −∂x(u(E + p)) + ∂x

(
B(E)(t)ρ C ∂x(E/ρ)

)
.
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Fig. 11. Comparison of the energy and energy forcing term H(E) (blue/blue dashed) with the density, suitably resized, and the density forcing term 
H(ρ) (red/red dashed) and the momentum forcing term H(ρu) (black dashed) for the Sod shock tube problem with the wall viscosity activated for the 
momentum equation. The green dashed curve is the exact solution. The figures shown are zoomed in at the shock just before or just after the shock front 
has collided with the wall at x = 1.

In Fig. 11, we compare the energy and density profiles, along with the terms H(ρ), H(ρu), and H(E), all suitably 
resized3 for ease of comparison, at various times just before or after the shock fronts have collided with the wall, zoomed-in 
on the region next to the wall. In Fig. 11(a), the density and energy profiles are very similar, but the forcing terms are 
slightly misaligned; it is clear that H(E) is slightly behind both H(ρ) and H(ρu). This misalignment causes the solution 
profiles for the energy and density to begin to diverge, as can be seen in Fig. 11(b). Again, there is a misalignment between 
the forcing terms H(E) and H(ρ). As the shock moves away from the wall in Fig. 11(c) and Fig. 11(d), the difference 
between the solution profiles is now clear. Even though the forcing terms are now better aligned, the earlier misalignment 
ensures that the difference between the energy and density profiles is permanent.

5.2.2. A solution to the wall-heating problem
The solution to the wall heating problem suggested by Noh [37] is the addition of a heat conduction term to the energy 

equation. For the WENO-Noh scheme we implement in this study, we shall use a heat conduction term of the form4

∂x

(
β E

Noh ρ |∂xu| ∂xe
)

, (32)

where e = p/(γ − 1)ρ = cv� is the internal energy of the system, proportional to the temperature �, with cv the specific 
heat capacity at a constant volume.

We use the following artificial (wall) viscosity for the energy equation (13c):

∂x

(
B(E)(t)ρ C ∂x(E/ρ)

)
. (33)

There are two differences between the terms (33) and (32):

1. While (32) uses the oscillatory localizing coefficient |∂xu(x, t)|, we instead use the space-time smooth localizer C(x, t).

3 More precisely, we plot the following: first, 3
2

H
max� H for each of the forcing terms H(ρ), H(ρu), and H(E); second, the function 1.1928 + 4.4403ρ; 

and finally, the energy E .
4 In equations (2.1)-(2.5) in the paper of Noh [37], there is, in fact, an additional term proportional to −ρ|∂xu|2∂xu on the right-hand side of (32). We 

have found that this term is not necessary to remove the wall-heating error, and thus omit it from the Noh scheme we implement in this paper.
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Fig. 12. The velocity and density profiles for the Sod shock tube problem before and after shock-wall collision.

2. We use ∂x(E/ρ) in our diffusion operator rather than the function ∂xe. This difference can be explained as follows: 
equation (7) shows that

∂x

(
B(E)(t)ρ C ∂x(E/ρ)

)
= ∂x

(
B(E)(t)ρ C ∂xe

)
+ ∂x

(
B(E)(t)ρ C u∂xu

)
. (34)

Hence, (34) has a similar form to (32) (with C replacing |ux|), but with the additional term ∂x
(
B(E)(t)ρ C u∂xu

)
. Indeed, 

the two terms in (34) are both proper diffusion operators near shock waves. This is easy to see: multiplying (34) by E
and integrating by parts then shows that

xM∫
x1

B(E)(t)ρ C ∂xe∂x E dx +
xM∫

x1

B(E)(t)ρ C u ∂xu∂x E dx .

At the shock, ∂xe has the same sign as ∂x E so that 
∫ xM

x1
B(E)(t) ρ C ∂xe∂x E dx ≥ 0; moreover, in the case of a right-

traveling shock front, ∂xu < 0, ∂x E < 0 and u > 0 at the shock, so that 
∫ xM

x1
B(E)(t) ρ C u ∂xu∂x E dx ≥ 0, while for a

left-moving shock, ∂xu < 0, ∂x E > 0 and u < 0, so that once again 
∫ xM

x1
B(E)(t) ρ C u ∂xu∂x E dx ≥ 0. This then ensures 

that (33) is a dissipative operator and that the structure of the artificial viscosity term in (33) adjusts the Noh-type 
dissipation ∂x

(
B(E)(t)ρ C ∂xe

)
by the velocity-dependent term ∂x

(
B(E)(t)ρ C u∂xu

)
.

In our numerical experiments, presented below, we compare Noh’s scheme, called WENO-Noh (see Appendix A), with 
our WENO-C-W scheme. For WENO-Noh, we set βu

Noh = 15.0 and β E
Noh = 10.0 in (40). These viscosity coefficients were 

chosen in the following manner: βu
Noh was first chosen large enough to suppress the post-collision oscillations, and then 

β E
Noh was chosen to correct the wall-heating error. In our WENO-C-W scheme, we set βu = 0.5, βu

w = 3.0, β E = 0.0, and

β E
w = 6.0.

In Fig. 12, we compare the velocity and density profiles computed with the two schemes above. It is clear that the 
WENO-C-W scheme produces a superior solution both before and after the shock-wall collision. The large amount of 
viscosity needed in the WENO-Noh scheme post-collision means that the solution prior to shock-wall collision is af-
fected, with a smeared shock curve and overshoot at the top of the expansion wave. Moreover, even the relatively large 
value of βu

Noh as compared with βu + βu
w is unable to fully suppress the oscillations behind the shock curve that oc-

cur post-collision. This is due to the smoothness of the localizing coefficient C as compared with the rough nature 
of |∂xu|.
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Fig. 13. Comparison of the energy and energy forcing term H(E) (blue/blue dashed) with the density, suitably resized, and the density forcing term 
H(ρ) (red/red dashed) and the momentum forcing term H(ρu) (black dashed) for the Sod shock tube problem with the wall viscosity activated for the 
momentum and energy equations. The green dashed curve is the exact solution. The figures shown are zoomed in at the shock just before or just after the 
shock front has collided with the wall at x = 1.

As is the case with the velocity profile, prior to shock collision the WENO-C-W scheme produces a superior solution for 
the density profile, with a much sharper shock front and more accurate expansion wave. Post-collision, the heat conduction 
terms ensure that neither of the methods exhibit the wall heating error. However, there are still small oscillations present 
in the solution computed with the WENO-Noh scheme, and the shock front is much more smeared than that of the solution 
computed with WENO-C-W .

Finally, comparing Fig. 11 and Fig. 13, we see that the wall viscosity for the energy equation has properly aligned the 
forcing terms H(ρ), H(ρu) and H(E). Realignment of the gradient of fluxes removes the wall-heating problem, created by 
the smearing of the shock fronts. The artificial viscosity term (33) is responsible for this realignment.

5.2.3. Noise removal with the noise indicator
We now employ our noise indicator algorithm to the Sod shock tube problem with the aim of removing the noise present 

in the velocity profile at the contact discontinuity.
In the test below, we employ our WENO-C-N scheme with η chosen such that η�τ/�x2 = 0.005 in the heat equation 

used for noise removal; an explicit time-stepping scheme is used and only one time-step is taken. For the noise detection 
algorithm, Cref in (28) is computed using δh = 0.0001. Fig. 14(b) shows that the noise indicator removes the spurious oscil-
lations from the velocity profile. The localized diffusion mechanism ensures that the solution in other regions is unchanged, 
and this is demonstrated in Fig. 14(a). We note that the noise indicator algorithm affects neither the sharpness of the shock 
front nor the speed of the shock, nor the order of the numerical method (which we shall show results for below).

There is also high-frequency noise present to left of the expan-
sion wave (shown in the figure to the left); again, the noise indicator 
detects and removes this noise.

In Fig. 15(a), we show the velocity profile, computed using 
the WENO-C-W -N scheme, after the shock-wall collision. Here, all 
of the post-collision noise is damped by the wall viscosity. The 
WENO-C-W -N scheme removes spurious oscillations in the solution, 
while ensuring that a sharp shock front and the correct wave speed 
are retained, even after multiple shock-wall collisions, as shown in 
Fig. 15(b).
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Fig. 14. Comparison of the velocity profiles for the Sod shock tube problem computed with WENO-C and WENO-C -N with 201 cells. The red crosses in 
Fig. 14(a) indicate where the function 1noise(x) is active.

Fig. 15. Comparison of the velocity solution profile produced using WENO-C and WENO-C -W -N for the post-collision bounce-back in the Sod shock tube 
problem with 201 cells.

5.2.4. Error analysis and convergence tests
We now compare the errors of the various numerical schemes given in Table 12 in Appendix A applied to the Sod 

shock-wall collision and bounce-back problem. The solutions are computed with all parameters fixed across the different 
methods, giving an objective evaluation of each scheme.

As advised by Greenough & Rider [15], and in order to fairly compare our results with those found in the numerics litera-
ture, we use the CFL number equal to 0.6. We have found that the use of a smaller CFL number of 0.3 does not (appreciably) 
change the conclusions of our numerical tests. For instance, the solutions produced using WENO and WENO-C-W -N show 
(roughly) the same relative error and order of convergence when CFL = 0.3 as they do when CFL = 0.6. However, the pres-
ence of the nonlinear artificial viscosity terms in the Euler-C equations, when combined with an explicit time-integration 
scheme, place restrictions on the CFL number that would otherwise not be present in the stand-alone WENO algorithm. In 
particular, for the Sod test problem, due to the additional artificial viscosity present during the shock-wall collision phase, 
we have found an upper bound on the CFL number to be ≈ 0.7. While our stand-alone WENO scheme is (formally) stable for 
much larger CFL numbers, the relative error and the order of convergence degrades as the CFL number is increased. Indeed, 
it is demonstrated by Greenough & Rider [15] that only 75% of the fifth-order convergence rate of WENO is achieved when 
CFL = 1.0, whereas the full fifth-order convergence is achieved for CFL = 0.6. Therefore, the use of the smaller CFL = 0.6 is 
also necessary for the stand-alone WENO scheme.

In Table 4, we list the L1 error of the computed velocity minus the exact solution, and study the order of convergence for 
the Sod problem with shock-wall collision and bounce-back. WENO-C produces solutions that are significantly better than 
those produced with WENO-|ux|, which are significantly better than those solutions produced with the stand-alone WENO 
algorithm. Note that the use of the noise removal algorithm consistently improves the error bounds, while maintaining the 
order of accuracy.

On the coarser grids containing 101 or 201 cells, the WENO-C-W and WENO-C-W -N schemes produce solutions with 
slightly larger errors than the solution produced with WENO-C-N; this is caused by the slight smearing of the shock, post 
wall collision. The solutions are, however, qualitatively significantly better, as evidenced by Fig. 12 and Fig. 15 above, as well 
as Fig. 16 below. Both WENO-C-W and WENO-C-W -N maintain a relatively high order of accuracy, whereas the presence 
of the post-collision noise ensures that both WENO and WENO-|ux| have convergence rates that are irregular and relatively 
poor.
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Table 4
Post shock-wall collision (t = 0.36) L1 error of the computed velocity minus the exact solution and 
convergence for the Sod problem with shock-wall collision and bounce-back.

Scheme Cells

101 201 401 801

WENO Error 1.662 × 10−2 1.772 × 10−2 1.086 × 10−2 8.214 × 10−3

Order – −0.093 0.706 0.403

WENO-|ux| Error 1.534 × 10−2 1.441 × 10−2 8.444 × 10−3 5.864 × 10−3

Order – 0.090 0.771 0.526

WENO-Noh Error 3.436 × 10−2 1.799 × 10−2 9.117 × 10−3 4.795 × 10−3

Order – 0.934 0.980 0.927

WENO-N Error 1.667 × 10−2 1.666 × 10−2 1.064 × 10−2 7.262 × 10−3

Order – 0.001 0.648 0.550

WENO-C Error 1.520 × 10−2 1.160 × 10−2 6.453 × 10−3 3.927 × 10−3

Order – 0.390 0.846 0.717

WENO-C-N Error 1.504 × 10−2 1.134 × 10−2 6.412 × 10−3 3.780 × 10−3

Order – 0.407 0.823 0.763

WENO-C-W Error 1.990 × 10−2 1.151 × 10−2 5.774 × 10−3 3.019 × 10−3

Order – 0.790 0.995 0.936

WENO-C-W -N Error 1.983 × 10−2 1.146 × 10−2 5.770 × 10−3 3.018 × 10−3

Order – 0.791 0.990 0.935

Fig. 16. Comparison of the velocity solution profile produced using WENO-C -W -N , WENO-C -W , and WENO-C -N for the post-collision bounce-back in the 
Sod shock tube problem with 201 cells.

We remark that our conclusions described above do not change if we replace the L1 norm with either the L2 or L∞
norms. We list in Table 5 the L2 and L∞ error analysis for the post shock-wall collision velocity for the Sod problem, where 
the velocity is computed using either WENO-|ux| or WENO-C-W -N .

For the L2 error analysis, we first note the odd behavior for WENO-|ux| on the coarser grids with 101 and 201 cells. The 
increase in the L2 error despite mesh refinement is caused by the base WENO scheme; referring to Table 4, we see that the 
L1 error of solutions produced with WENO increases as the mesh is refined from 101 to 201 cells. This phenomenon is due 
to the large oscillations that occur post shock-wall collision. The WENO-C-W -N scheme removes these oscillations, at the 
cost of a slight smearing of the shock front; this smearing results in a larger L2 error on coarse grids when compared with 
WENO-|ux|, but smaller L2 errors and better rates of convergence as the mesh is refined.

Table 5 shows that the L∞ errors for both WENO-|ux| and WENO-C-W -N grow as the mesh is refined. As noted in [15], 
this is due to the localization of the error at the shock. However, we remark that the L∞ errors for WENO-C-W -N are 
smaller than the L∞ errors for WENO-|ux| on the grids with 201, 401, and 801 cells; moreover, these errors grow at a faster 
rate for WENO-|ux| than for WENO-C-W -N .

In addition to the figures and qualitative evidence provided, the L1, L2, and L∞ error studies indicate that the C-method 
produces highly accurate solutions with close to optimal rates of convergence for the Sod shock-wall collision and bounce-
back test.

5.2.5. Comparison with other schemes
For the purposes of benchmarking our WENO and WENO-N schemes prior to shock-wall collision, we present error 

analysis and convergence rates comparing our simplified WENO scheme with the scheme utilized by Greenough and Rider 
in [15]. The WENO scheme that is presented in [15] is formally fifth-order accurate in space, with time integration done 
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Table 5
Post shock-wall collision (t = 0.36) L2 and L∞ error of the computed velocity minus the exact solution and 
convergence for the Sod problem with shock-wall collision and bounce-back.

Norm Scheme Cells

101 201 401 801

L2 WENO-|ux| Error 4.775 × 10−2 6.068 × 10−2 4.640 × 10−2 3.765 × 10−2

Order – −0.346 0.387 0.302
WENO-C-W -N Error 6.953 × 10−2 6.098 × 10−2 4.423 × 10−2 3.324 × 10−2

Order – 0.189 0.463 0.412

L∞ WENO-|ux| Error 4.262 × 10−1 7.417 × 10−1 8.024 × 10−1 8.925 × 10−1

Order – −0.799 −0.113 −0.154
WENO-C-W -N Error 5.663 × 10−1 6.926 × 10−1 7.124 × 10−1 7.456 × 10−1

Order – −0.290 −0.041 −0.066

Table 6
Pre shock-wall collision (t = 0.20) L1

G R error analysis and convergence tests for the density for the Sod 
shock tube problem.

Scheme Cells

101 201 401

WENO Error 1.57 × 10−2 7.93 × 10−3 4.49 × 10−3

Order – 0.99 0.82

WENO-N Error 1.60 × 10−2 7.90 × 10−3 4.37 × 10−3

Order – 1.02 0.85

RK3-WENO5 Error 1.58 × 10−2 8.24 × 10−3 4.47 × 10−3

Order – 0.93 0.88

using a total variation diminishing (TVD) third-order Runge-Kutta method. Flux-splitting is accomplished using a method 
similar to the Lax-Friedrichs flux-splitting (see [15] for the details). We will refer to this method as RK3-WENO5.

The error norm utilized in [15] is of the form

||ρ(·, t) − ρ∗(·, t)||L1
G R

:= 1

M

M∑
i=1

|ρ(xi, t) − ρ∗(xi, t)|
|ρ∗(xi, t)| ,

where ρ is the computed density and ρ∗ is the exact solution for the density. We will refer to this norm as the L1
G R norm.

In Table 6, we calculate the L1
G R errors for the density for the Sod shock tube problem computed with WENO and 

WENO-N , and compare them with the corresponding values in [15]. All simulations were run with a CFL number of 0.6. We 
see that our simplified WENO scheme and noise indicator algorithm compare well with the more complicated RK3-WENO5 
scheme. Consequently, using our simplified WENO algorithm for the purposes of comparison in our error analysis for the 
artificial viscosity methods presented is justified; that is to say, comparing the performance of our artificial viscosity meth-
ods with our simplified WENO scheme is similar to comparing the performance of our artificial viscosity methods with the 
more complicated (and ‘industry-standard’) RK3-WENO5.

5.3. The Noh problem

As a further example of wall-heating, we next consider the classical 1-D planar Noh problem [37,25]. The domain of 
interest is −0.5 ≤ x ≤ 0.5, the adiabatic constant is γ = 5/3, and the initial data is given by⎡

⎣ ρ0
(ρu)0

E0

⎤
⎦=

⎡
⎣ 1

1

0.5 + 10−6

γ −1

⎤
⎦1[−0.5,0)(x) +

⎡
⎣ 1

−1

0.5 + 10−6

γ −1

⎤
⎦1[0,0.5](x) .

The solution for this problem consists of two infinite strength shocks propagating with speed 1/3 outwards from the origin, 
with a state of constant density and pressure left behind.

As demonstrated in [25], most schemes tend to produce the anomalous wall-heating at the center origin. We shall utilize 
our WENO-C method (i.e. no shock-wall collision algorithm) with 101 cells. We choose the relevant parameters as

βu = 1.0, β E = 10.0, ε = 50.0, κ = 1.0 .

The value of βu is chosen large enough to eliminate post-shock oscillations, while β E is chosen to minimize the wall-heating. 
In Fig. 17, we compare the solutions computed using WENO and WENO-C ; it is clear that WENO-C produces a much more 
accurate solution, with the post-shock oscillations and wall-heating eliminated.
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Fig. 17. The density profile at time t = 1.0 for the Noh problem, with the solution computed using (a) WENO or (b, c) WENO-C . The dashed green curve is 
the exact solution.

5.4. The LeBlanc shock tube problem

We now turn our attention to the LeBlanc shock tube problem. Here, the domain of interest is 0 ≤ x ≤ 9, the adiabatic 
constant is γ = 5

3 , and the initial data is given by⎡
⎣ ρ0

(ρu)0
E0

⎤
⎦=

⎡
⎣ 1

0
10−1

⎤
⎦1[0,3)(x) +

⎡
⎣10−3

0
10−9

⎤
⎦1[3,9](x) .

The large jump in the initial energy E0 produces a very strong shock wave, making the LeBlanc shock-tube problem a 
very difficult test case. Most numerical schemes tend to produce large overshoots in the internal energy at the contact 
discontinuity, which results in a loss of accuracy in the shock speed, as shown in Fig. 18. This overshoot in the internal 
energy is in fact an example of wall-heating; a small undershoot in the density and the continuity of the pressure at the 
contact produce this observed overshoot in the internal energy. We refer the reader to [40,26,30] for further details.

Our strategy is to add an additional diffusion term to the right-hand side of the energy equation (13c) that will serve to 
remove the large overshoot in the internal energy at the contact discontinuity. Specifically, we solve an additional C-equation 
for a variable Ce forced by |∂xe|/ maxx |∂xe|. Thus, equation (13c) is replaced by

∂t E + ∂x(uE + up) = ∂x

(
B(E)(t)ρ C ∂x(E/ρ)

)
+ ∂x

(
B(e)(t)ρ Ce ∂x (E/ρ)

)
, (35)

where the function Ce is computed using

∂t Ce + S(u)

εe�x
Ce − κe�x · S(u)∂xxCe = S(u)

εe�x
Ge . (36)

The artificial viscosity coefficients are given by (14) and

B(e)(t) = (�x)2 · maxx |∂xu|
maxx Ce

(
βe + βe

w · C w(t)
)

,

and C , C w(x, t), and C w(t) are defined by (13d), (13e), and (15), respectively. The forcing to the Ce equation (36) is
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Fig. 18. The internal energy profile at time t = 6.0 for the LeBlanc shock tube problem, with the solution computed using WENO. The dashed green curve 
is the exact solution.

Fig. 19. The (a) velocity and (b) internal energy profiles for the LeBlanc shock tube problem before the collision with the wall. The solution is computed 
with viscosity activated for the momentum and energy equations.

Ge(x, t) = 1(0,∞)(∂xu)
|∂xe|

maxx |∂xe| .

Here, the indicator function 1(0,∞) (∂xu) represents an expansion switch, in which Ge is non-zero only if ∂xu > 0.

5.4.1. Stabilizing shock-wall collision
To simulate the collision of the shock-wave with the wall, we use solid wall boundary conditions (16). Motivated by the 

results for the Sod shock tube problem presented in 5.2.1, we add wall viscosity to the momentum and energy equations; 
we choose the parameters as

βu = 0.001, β E = 0.0, βe = 0.4, βu
w = 4.0, β E

w = 0.0, βe
w = 0.0,

ε = 1.25, κ = 10.0, εe = 1.25, κw= 14.0, εw = 50.0, κw = 4 .

We employ our WENO-C-W scheme with 721 cells. Since this is a more challenging problem than the Sod shock tube 
problem, we use the smaller CFL number of 0.25.

For the purpose of comparison, we also implement the WENO-Noh scheme, with the parameters in (40) set as βu
Noh = 8.0

and β E
Noh = 9.0. These parameters were chosen with the aim of suppressing post-collision noise while preventing the occur-

rence of the wall heating error. We remark that WENO-Noh failed for CFL = 0.25, and required the much smaller CFL ≈ 0.045
to run.

The shock-wave moves to the right and collides with the right wall at time t ≈ 7.2. Prior to shock collision, the WENO-
Noh scheme produces a solution with an overshoot in the internal energy at the contact discontinuity. This results in an 
incorrect shock front and wave speed. The viscosity for the momentum at the shock and the energy at the contact discon-
tinuity in our WENO-C-W scheme remove post-shock oscillations and the overshoot in the internal energy, respectively, as 
shown in Fig. 19.

Post shock-wall collision, the wall viscosity for the momentum and energy equations damp-out the oscillations behind 
the shock, while ensuring that the solution maintains a sharp shock front and the correct shock speed (see Fig. 20). More-
over, the wall viscosity for the energy equation prevents the wall heating error from occurring, as shown in Fig. 20(d). 
Due to the lack of smoothness of the localizing artificial viscosity coefficient |∂xu|, the WENO-Noh scheme is unable to 
fully suppress all the post-collision oscillations, though the heat conduction term in the energy equation prevents the wall 
heating error from occurring. In Fig. 20(c), we zoom in on the internal energy profile near the wall; it is evident that the 
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Fig. 20. The (a) velocity, (b) internal energy, (c) zoomed in internal energy and (d) zoomed in density profiles for the LeBlanc shock tube problem after the 
collision with the wall. The solution computed with WENO-C -W has the wall viscosity activated for the momentum and energy equations.

solution computed with WENO-C-W is better than that computed with WENO-Noh, but there is a small error between the 
computed solution and the exact solution. This error occurs because of a very small inaccuracy in the density profile, shown 
in Fig. 20(d). Since the density is so small here, and since the internal energy is given by (7), even tiny errors are greatly 
amplified, making it very difficult to get a completely accurate solution for the internal energy.

5.4.2. Error analysis and convergence tests
We now compare the errors of the various numerical schemes listed in Table 12 applied to the LeBlanc shock tube 

problem, with the various relevant parameters fixed across the different methods. The L1 errors in the velocity are computed 
using formula (31a), and are listed in Table 7 (time t = 6.0) and Table 9 (time t = 8.0). All of the simulations were run with 
a CFL number of 0.25, except for WENO-Noh, which required CFL ≈ 0.045.

Prior to shock-wall collision, it is evident from Table 7 that the C-method produces a solution that is significantly better 
than those solutions produced without the C-method. The L1 errors for the velocity computed using WENO-C are almost 
an order of magnitude smaller than the L1 errors for the velocity computed using WENO and WENO-Noh. This is primarily 
due to the removal of the overshoot in the internal energy, which results in an accurate shock speed.

On the other hand, the removal of the overshoot in the internal energy through the use of Ce results in a more smeared 
contact discontinuity, as shown in Fig. 19(b). The smearing of the contact discontinuity results in a non-physical “bump” 
appearing in the velocity profile, as shown in Fig. 19(a). Note that this bump does not appear in the velocity profile com-
puted using WENO-Noh, since in this case the contact discontinuity is sharper, at the expense of a large overshoot in the 
internal energy. We suggest, however, that this defect in the solution computed using Ce is relatively insignificant when 
compared against the magnitude of the error in the internal energy solutions computed without Ce . This is primarily due to 
the fact that the internal energy error results in a highly inaccurate shock speed which, in turn, leads to a highly inaccurate 
solution, as evidenced by Table 7. On the other hand, the velocity bump error arises from the correction of the overshoot 
in the internal energy, and subsequently the shock speed and location; the latter two corrections result in a much more 
accurate solution overall, again demonstrated in Table 7. Moreover, we note that the bump error decreases with mesh re-
finement approximately four times as fast as the overshoot error, as shown in Table 8. Here, the overshoot/bump error is 
computed by calculating the difference between the value at the peak of the overshoot/bump and the value of the exact 
solution there.5

We note here that Table 7 seems to suggest that the WENO and WENO-Noh schemes produce solutions that converge 
at first-order, even though the solutions computed using these schemes are very poor, as shown, for example, in Fig. 18. 

5 This error is thus a local L∞ error.
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Table 7
Pre shock-wall collision (t = 6.0) L1 error analysis and convergence tests for the velocity for the LeBlanc shock 
tube problem.

Scheme Cells

361 721 1441 2881

WENO Error 3.469 × 10−2 1.659 × 10−2 8.010 × 10−3 4.016 × 10−3

Order – 1.065 1.050 0.996

WENO-Noh Error 2.546 × 10−2 1.239 × 10−2 6.001 × 10−3 3.010 × 10−3

Order – 1.040 1.045 0.996

WENO-N Error 3.468 × 10−2 1.661 × 10−2 8.015 × 10−3 4.022 × 10−3

Order – 1.062 1.051 0.995

WENO-C Error 7.190 × 10−3 3.959 × 10−3 2.008 × 10−3 1.096 × 10−3

Order – 0.864 0.976 0.873

WENO-C-N Error 7.169 × 10−3 3.881 × 10−3 2.007 × 10−3 1.113 × 10−3

Order – 0.885 0.951 0.851

Table 8
Comparison of the overshoot error in the internal energy and the bump error in the velocity for solutions to the 
LeBlanc shock tube problem at time t = 6.0.

Scheme Cells

361 721 1441 2881

WENO Overshoot Error 7.330 × 10−2 6.780 × 10−2 6.200 × 10−2 5.620 × 10−2

Order – 0.113 0.129 0.142

WENO-C Bump Error 1.500 × 10−2 9.700 × 10−3 6.600 × 10−3 3.900 × 10−3

Order – 0.629 0.556 0.759

Table 9
Post shock-wall collision (t = 8.0) L1 error analysis and convergence tests for the velocity for the LeBlanc shock 
tube problem.

Scheme Cells

361 721 1441 2881

WENO Error 2.160 × 10−2 9.832 × 10−3 5.336 × 10−3 2.896 × 10−3

Order – 1.136 0.882 0.882

WENO-Noh Error 1.528 × 10−2 6.544 × 10−3 3.407 × 10−3 1.668 × 10−3

Order – 1.224 0.942 1.030

WENO-N Error 2.141 × 10−2 9.684 × 10−3 5.178 × 10−3 2.793 × 10−3

Order – 1.144 0.903 0.891

WENO-C Error 5.703 × 10−3 3.486 × 10−3 2.024 × 10−3 1.052 × 10−3

Order – 0.710 0.785 0.944

WENO-C-N Error 5.627 × 10−3 3.384 × 10−3 2.001 × 10−3 1.045 × 10−3

Order – 0.734 0.758 0.937

WENO-C-W Error 6.077 × 10−3 3.170 × 10−3 1.694 × 10−3 8.257 × 10−4

Order – 0.939 0.904 1.037

WENO-C-W -N Error 6.064 × 10−3 3.143 × 10−3 1.703 × 10−3 8.363 × 10−4

Order – 0.948 0.884 1.026

This “super-convergence” [19] is due to large errors on coarser meshes, rather than smaller errors on finer meshes, and is 
therefore superficial. On the other hand, the WENO-C and WENO-C-N schemes produce solutions with much smaller errors, 
and suggest close to first-order convergence.

Post shock-wall collision, the wall C-method produces a highly accurate non-oscillatory solution, while ensuring that 
the wall heating error does not occur. While the WENO-Noh scheme is able to suppress most of the oscillations, the large 
amount of viscosity needed due to the lack of smoothness of |∂xu| results in a shock front that is too smeared, as well as the 
imposition of a smaller time-step. Again, we see that the noise indicator algorithm serves primarily as an error correction 
mechanism, removing small-scale high-frequency oscillations from the solution.
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Fig. 21. Comparison of WENO and WENO-C for the Peak shock tube problem with 801 cells. The green curve is the exact solution.

5.5. The Peak shock tube problem

We next consider the Peak shock tube problem, introduced in [25]. The domain of interest is 0.1 ≤ x ≤ 0.6, the adiabatic 
gas constant is γ = 1.4, and the initial data is given by⎡

⎣ ρ0
(ρu)0

E0

⎤
⎦=

⎡
⎣ 0.1261192

11.1230540
1.962323 × 103

⎤
⎦1[0.1,0.5)(x) +

⎡
⎣ 6.591493

14.932505
24.800422

⎤
⎦1[0.5,0.6](x).

The difficulty in simulating solutions to Peak is due to the fact that the shock wave moves significantly slower than the 
expansion wave; moreover, the distance between the contact discontinuity and the shock is very small, resulting in a sharp 
and narrow peak in the density. Most schemes produce inaccurate velocity profiles with large overshoots and low-frequency 
noise at the expansion wave [25,15].

The stand-alone WENO scheme produces a similarly poor velocity profile, but the C-method can be used to produce a 
good solution. Since the noise appears in the velocity profile in the region with the rarefaction wave, and since the usual 
C-method includes a compression switch so that artificial viscosity is active only in regions of compression, we employ an 
additional C-equation for the rarefaction wave, whose solution is Cr(x, t). We consider the following modification to (13b):

∂t(ρu) + ∂x(ρu2 + p) = ∂x

(
ρ
(
β̃u C + β̃r Cr

)
∂xu
)

,

∂t Cr + S(u)

ε�x
Cr − κ�x · S(u)∂xxCr = S(u)

ε�x
Gr ,

where C is the solution to (13d), and where β̃u = maxx |∂xu|
maxx C βu and β̃r = maxx |∂xu|

maxx Cr βr , with

Gr(x, t) = 1(0,+∞)(∂xu) · |∂xu(x, t)|
maxx |∂xu(x, t)| .

We remark that we have omitted the wall function C w since we are not simulating the shock-wall collision for this problem.
WENO and WENO-C (with the above modification) are used on a grid with 801 cells and with a time-step �t ≈ 3.55 ×

10−6, giving CFL = 0.6. The final time is t = 0.0039, and the results are shown in Fig. 21. The relevant parameters are chosen 
as

βu = 1.0, βr = 10.0, ε = 10.0, κ = 40.0, εr = 1.0, κr = 20.0 .

As shown in Fig. 21, the extra viscosity provided by βr at the rarefaction wave removes the large overshoot and low 
frequency non-physical oscillations that are present in the solution produced with WENO.

In [25], an error analysis of various schemes applied to the Peak shock tube problem with the above specifications is 
provided. We compute the L1 and L2 errors for the computed velocity minus the exact solution, using (31a) for the L1 error 
and

||u(·, t) − u∗(·, t)||L2 ≈
√√√√ 1

M

M∑
i=1

|u(xi, t) − u∗(xi, t)|2 ,

where M is the number of cells used in the simulation and u∗ is the exact solution. Following [25], we list the errors in 
percentage form with the ratio in question given by ||u−u∗||

||u∗|| . We also list the smallest error computed from all the schemes 
considered in [25]; namely, the error computed from the scheme of Liu and Lax [27,28], which we will refer to as LL. We 
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Table 10
L1 and L2 error analysis for the velocity u for the Peak shock tube problem at time 
t = 0.0039.

Norm Scheme Cells
801

‖u − u∗‖L1 WENO Error 1.057 × 10−1

% 1.0 %
WENO-C Error 7.260 × 10−2

% 0.7 %
LL Error –

% 0.8 %

‖u − u∗‖L2 WENO Error 5.168 × 10−1

% 4.7 %
WENO-C Error 4.684 × 10−1

% 4.3 %
LL Error –

% 4.4 %

see in Table 10 that WENO-C compares very well with LL, with the solution producing smaller errors in both the L1 and L2

norms.
This test demonstrates the flexibility of the C-method; although a standard WENO scheme produces an inaccurate and 

oscillatory solution, a very simple modification of the C-method allows for the suppression of these oscillations, resulting 
in a more accurate solution.

5.6. The Osher-Shu shock tube problem

The Osher-Shu shock tube problem, introduced in [46], simulates a shock front, perturbed by sinusoidal fluctuations. The 
computational domain is −1 ≤ x ≤ 1, γ = 1.4, with initial data⎡

⎣ ρ0
(ρu)0

E0

⎤
⎦=

⎡
⎣3.857143

10.14185
39.1666

⎤
⎦1[−1,−0.8)(x) +

⎡
⎣1 + 0.2 sin(5πx)

0
2.5

⎤
⎦1[−0.8,1](x) . (37)

We employ free-flow boundary conditions (17) at the left wall x = −1, and solid wall boundary conditions (16) at the right 
wall x = 1.

5.6.1. Noise removal with the noise indicator
In order to test the efficacy of our noise detection and removal algorithm for the Osher-Shu test, we perform our nu-

merical simulations using too large a time-step and hence a numerically unstable CFL number, which produces spurious 
high-frequency oscillation behind the shock.6 Of course, high-frequency oscillations can be created by numerous numerical 
instabilities, but an unstable CFL number creates the prototypical oscillation pattern for testing a noise removal scheme.

Our goal is to remove the high-frequency noise from the solution without affecting the low-frequency sinusoidal oscilla-
tions that are the main feature of this test problem. To this end, we first compute a solution using WENO with 1025 cells 
with a time-step �t = 5.0 × 10−4, giving a CFL number of 1.2.

The relatively large number of cells and time-step produce noise with a frequency that is significantly higher than 
the lower frequency non-spurious oscillations present in the solution. The WENO-N scheme is used with the reference 
coefficient Cref in (28) calculated using δh = 10−3. The noise removal viscosity η is chosen such that η�τ/�x2 = 0.25 and 
only one time-step is taken in the heat equation. Since an exact solution is not available for this problem, our “exact” 
solution is computed with WENO using 8193 cells and a time-step of �t = 3.125 × 10−5, so that CFL ≈ 0.6.

In Fig. 22, we compare the solutions computed with WENO and WENO-N . The noise indicator algorithm locates and 
removes the high-frequency noise present in the solution, without affecting the sinusoidal oscillations. The sharpness of the 
shock front remains unaffected with the use of the noise indicator, due to the deactivation of noise detection in a small 
region surrounding the shock.

For the purpose of benchmarking our noise detection and removal algorithm, we also conduct tests in which we use 
linear (hyperviscosity) operators (see [20,50,5,38,3,4]) of the form

(−1)r−1βr(�x)2r−1 ∂2ru

∂x2r
(38)

6 Artificially inflating the CFL number allows us to model a typical scenario in computational physics in which a DNS-type simulation requires a pro-
hibitively small time-step, and forces simulations that require entering the unstable CFL regime. Our objective is to demonstrate that this high-frequency 
instability can be suppressed by use of our localized noise removal algorithm.
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Fig. 22. Comparison of WENO and WENO-N for the Osher-Shu problem with 1025 cells. The red crosses indicate where the noise indicator function 1noise(x)
is active. The green curve is the “exact” solution.

Fig. 23. Comparison of the velocity profiles at t = 0.36 for the Osher-Shu test. The green curve is the exact solution.

to remove noise, where r ≥ 1. The equations of motion we consider are the Euler equations (4a) with the term (38) on 
the right-hand side of the momentum equation. When numerically approximated using our WENO-type discretization, the 
resulting scheme is referred to as the WENO-�r u scheme. We perform numerical tests for the WENO-�r u scheme with 
r = 1, 2, 3, and set β1 = 0.2, β2 = 0.05, and β3 = 0.01, with these values determined a posteriori to optimize the resulting 
solutions.

We compare in Fig. 23 the WENO-N and WENO-�r u simulations; each subfigure shows the computed velocity, obtained 
using one of the schemes on grids with 513, 1025, 2049, and 4097 cells, as well as the exact solution. The plots shown are 
zoomed in on the region behind the shock where there is high-frequency noise.

It is clear from these figures that, qualitatively, the WENO-N scheme produces solutions with minimal noise that appear 
to converge to the exact solution. The hyperviscosity schemes, on the other hand, produce solutions with erratic behavior; 
for instance, despite mesh refinement, the WENO-�3u solution on the 4097 cell grid appears much worse than the solu-
tions on the 1025 and 2049 cell grids. Similarly inconsistent convergence behavior can be observed with WENO-�u and 
WENO-�2u. This is due to the CFL condition violation. It is interesting to observe, on the other hand, that the WENO-N
solutions are not subject to this erratic convergence behavior. This is likely the result of the highly localized (in both space 
and time) nature of the noise detection. Overall, WENO-N appears to produce noise-free, accurate, and convergent solutions.
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Table 11
L1 and L1

t error analysis and convergence tests for the velocity u for the Osher-Shu problem at time t = 0.36, 
with ũ = u − u∗ the difference between the computed solution u and the “exact solution” u∗ .

Norm Scheme Cells

513 1025 2049 4097

‖ũ‖L1 WENO Error 1.003 × 10−2 5.478 × 10−3 2.018 × 10−3 1.258 × 10−3

Order – 0.873 1.440 0.682
WENO-�u Error 1.045 × 10−2 4.717 × 10−3 1.990 × 10−3 9.770 × 10−4

Order – 1.148 1.245 1.026
WENO-�2u Error 1.050 × 10−2 4.774 × 10−3 2.459 × 10−3 1.132 × 10−3

Order – 1.137 0.957 1.119
WENO-�3u Error 1.084 × 10−2 4.806 × 10−3 1.981 × 10−3 1.109 × 10−3

Order – 1.174 1.279 0.838
WENO-N Error 1.013 × 10−2 4.432 × 10−3 1.973 × 10−3 1.005 × 10−3

Order – 1.193 1.168 0.973

‖ũ‖L1
t

WENO Error 7.328 × 10−3 3.223 × 10−3 1.139 × 10−3 6.761 × 10−4

Order – 1.185 1.501 0.752
WENO-�u Error 7.484 × 10−3 3.348 × 10−3 1.192 × 10−3 6.418 × 10−4

Order – 1.161 1.490 0.893
WENO-�2u Error 7.333 × 10−3 3.316 × 10−3 1.254 × 10−3 7.255 × 10−4

Order – 1.145 1.403 0.789
WENO-�3u Error 7.419 × 10−3 3.340 × 10−3 1.196 × 10−3 6.903 × 10−4

Order – 1.151 1.482 0.793
WENO-N Error 7.066 × 10−3 3.004 × 10−3 1.050 × 10−3 5.656 × 10−4

Order – 1.234 1.517 0.893

Defining the L1
t norm as

‖ f ‖L1
t
:=

t∫
0

+1∫
−1

| f |dx dt ≈ 1

K M

K∑
j=1

M∑
i=1

| f (xi, t j)| ,

in Table 11 we compute the L1 and L1
t errors for the velocity at time t = 0.36 at various mesh refinements. Once again, we 

see that the noise indicator algorithm functions as an “error correcter”, reducing the numerical error through the removal 
of high-frequency noise, while maintaining a relatively high order of accuracy. Among all the schemes considered, WENO-N
produces solutions with the smallest errors, providing a quantitative validation of the observations made from Fig. 23.

We note that the numerical error and the order of convergence remains unchanged when using the density ρ instead of 
the velocity u; in particular, the WENO-N algorithm produces solutions with smaller errors and similar rates of convergence 
as WENO, when errors and accuracy are computed using ρ . And so, the removal of high-frequency noise in u, in turn, 
provides a density field that is also free of high-frequency oscillations (cf. Remark 1).

5.6.2. Stabilizing shock-wall collision for Osher-Shu
We now turn to the issue of stabilizing shock-wall collision for the Osher-Shu problem. The problem is set up as follows: 

the initial data is (37), the time-step is given by �t = 5 × 10−4 with final time t = 0.63, and the number of cells is 512, so 
that the CFL number is 0.6. We impose the solid wall boundary conditions (23) at the right boundary x = 1, and free-flow 
boundary conditions (22) at the left boundary x = −1. The shock-wave moves to the right and collides with the wall at 
x = 1 at time t ≈ 0.5. Post-collision, there is a large amount of noise present in the solution behind the shock-wave, and our 
aim is to remove the noise while preserving the sharpness of the shock front and minimizing the damping of the post-shock 
low frequency oscillations.

We employ our WENO-C-W scheme and choose the relevant parameters as

βu = 1.0, β E= 0.0, βu
w = 2.5, β E

w = 0.85

ε = 1.0, κ = 5.0, εw = 40.0, κw = 4.0 .

The results are shown in Fig. 24. Post shock-wall collision, WENO produces a noisy solution with high frequency noise 
interfering with the sinusoidal oscillations, while WENO-C-W produces a solution with a sharp front and without noise.

6. Concluding remarks

In this paper, we have presented three ideas: the first is a space-time smooth artificial viscosity method that is versatile 
and simple to implement; the second is a shock-wall collision scheme that can be used to suppress post-collision noise that 
occurs when a shock-wave collides with a fixed boundary and bounces-back; the third is a wavelet-based noise detection 
and removal scheme that is highly localized and can be used to remove noise present in solutions. We have demonstrated 
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Fig. 24. Comparison of WENO vs. WENO-C -W for the density just after the shock-wall collision problem for the Osher-Shu problem with 512 cells.

the efficacy of the new method on a variety of 1-D test problems with different features, and demonstrated that the 
solutions produced retain sharp fronts, correct wave speeds, remain oscillation-free, are not subject to the wall-heating 
error, and maintain high-order accuracy.
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Appendix A. The WENO-|ux| and WENO-Noh schemes

For our numerical simulations, we use a variety of combinations of the WENO scheme, the C-method, the wall C-method, 
and the noise indicator. For the purpose of comparison, we implement two additional methods. The first is a classical 
artificial viscosity scheme, WENO-|ux|, and the second is WENO-Noh, an artificial viscosity method introduced by Noh [37]. 
We will employ WENO-Noh primarily as a comparison for the wall C-method for shock-wall collision, while WENO-|ux| will 
serve as a benchmark for the usual C-method.

A.1. WENO-|ux|: classical artificial viscosity

This is the classical artificial viscosity scheme, where viscosity is only added to the momentum equation and the local-
izing coefficient is given by |∂xu|. More precisely, we implement the method in the following manner:

∂tρ + ∂x(ρu) = 0, (39a)

∂t(ρu) + ∂x(ρu2 + p) = ∂x

(
(�x)2βu ρ |∂xu| ∂xu

)
, (39b)

∂t E + ∂x(uE + up) = 0 . (39c)

The time and spatial discretizations are done in as in §3.3. This scheme will serve primarily as a benchmark for WENO-C .

A.2. WENO-Noh: an artificial viscosity method of Noh

This artificial viscosity scheme of Noh [37] introduces an additional heat conduction term to the energy equation, in 
addition to the usual viscosity term in the momentum equation. For more details, we refer the reader to [37]. We implement 
the method in the following fashion: the equations of motion are

∂tρ + ∂x(ρu) = 0, (40a)

∂t(ρu) + ∂x(ρu2 + p) = ∂x

(
(�x)2βu

Noh ρ |∂xu| ∂xu
)

, (40b)

∂t E + ∂x(uE + up) = ∂x

(
(�x)2β E

Noh ρ |∂xu| ∂xe
)

. (40c)
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Table 12
Various numerical schemes used in the simulations.

Scheme Description

WENO standard fifth-order WENO procedure for the usual Euler equations.
WENO-|ux| WENO scheme with classical artificial viscosity.
WENO-Noh WENO scheme with Noh’s artificial viscosity method.
WENO-C WENO scheme with the C-method.
WENO-C-W WENO scheme with the C-method and the wall C-method outlined in §3.
WENO-N WENO scheme with the noise indicator outlined in §4.
WENO-C-N WENO scheme with the C-method and the noise indicator.
WENO-W -N WENO scheme with the wall C-method and the noise indicator.
WENO-C-W -N WENO scheme with the C-method, the wall C-method and the noise indicator.
WENO-�r u WENO scheme with linear hyperviscosity (38).

Fig. 25. Comparison of the optimized-parameter and fixed-parameter WENO-C -W runs for the Sod shock tube problem before and after shock-wall collision. 
The artificial viscosity parameters for the fixed-parameter Run 2 are chosen as βu = 1.0, β E = 0.0, βu

w = 5.0, β E
w = 10.0.

Here, e = p
(γ −1)ρ is the specific internal energy of the system. The numerical discretization is then done in an identical 

fashion to that described in §3.3. We will employ this scheme with the aim of fully suppressing post-collision noise, even 
at the expense of a less accurate solution prior to shock-wall collision.

For readability, we will use Table 12 to refer to these various schemes.

Appendix B. Calculation of the exact solution post shock-wall collision

In this section, we provide details for the calculation of the exact solution to Sod-type problem post shock-wall collision. 
The solution, calculated based on the Rankine-Hugoniot conditions (10) and the assumption that the post-shock velocity 
is identically zero both pre and post shock-wall collision, is valid until the reflected shock front collides with the contact 
wave. We assume for simplicity that the shock front is traveling to the right (so that the shock speed σ̇ satisfies σ̇ (t) > 0
pre shock-wall collision) and collides with, and reflects back off of, the right boundary. We also assume that the shock σ(t)
separates two constant states, ul and ur , to the left and right of the shock, respectively.

The left states ul and the post-shock velocity ur = 0 are all known; the unknowns are thus the post-shock density ρr , 
energy Er (or, equivalently, pressure pr ), and shock speed σ̇ (t). The R-H conditions (10b) and (10a) yield

pr = ρlu
2
l + pl − σ̇ ρlul , (41)
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Fig. 26. Comparison of the optimized-parameter and fixed-parameter WENO-C runs for the Noh problem. The artificial viscosity parameters for the fixed-
parameter Run 2 are chosen as βu = 3.0, β E = 30.0.

Fig. 27. Comparison of the optimized-parameter and fixed-parameter WENO-C -W runs for the LeBlanc shock tube problem before and after shock-wall 
collision. The artificial viscosity parameters for the fixed-parameter Run 2 are chosen as βu = 0.001, β E = 0.0, βe = 0.5, βu

w = 4.0, β E
w = 15.0, βe

w = 0.0.

ρr = ρl − ρlul

σ̇
, (42)

respectively, so it only remains to calculate the shock speed σ̇ . Substituting (41) into (10c) and simplifying leads to a 
quadratic equation for σ̇ ,

σ̇ 2 − 1

2
(3 − γ )ulσ̇ − (γ − 1)(El + pl)

ρl
= 0 ,

which has solutions

σ̇ = 1

4
(3 − γ )ul ±

√(
(3 − γ )ul

4

)2

+ (γ − 1)(El + pl)

ρl
.

We take the negative root σ̇ < 0, since the shock moves to the left post shock-wall collision:

σ̇ = 1

4
(3 − γ )ul −

√(
(3 − γ )ul

4

)2

+ (γ − 1)(El + pl)

ρl
. (43)
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Fig. 28. Comparison of the optimized-parameter and fixed-parameter WENO-C runs for the Peak shock tube problem. The artificial viscosity parameters for 
the fixed-parameter Run 2 are chosen as βu = 1.0, β E = 0.0, βr = 10.0.

Fig. 29. Comparison of the optimized-parameter and fixed-parameter WENO-C -W runs for the Osher-Shu shock tube problem after shock-wall collision. 
The artificial viscosity parameters for the fixed-parameter Run 2 are chosen as βu = 1.0, β E = 0.0, βu

w = 2.5, β E
w = 0.85.

The relations (41), (42), and (43) then provide the complete exact solution post shock-wall collision, up until the time 
that the reflected shock front collides with the contact discontinuity.

Appendix C. Comparison of optimized-parameter runs with fixed-parameter runs

In this section, we compare the optimized-parameter runs presented in §5, with a set of runs using fixed parameters. 
The fixed-parameter runs have the C-equation parameters ε and κ take the fixed value 1, with the exception of εw , to 
which we assign the fixed value εw = 50.0. The artificial viscosity parameters β are still free to choose, and so vary from 
problem to problem. The particular choices of β for each test problem shown in Figs. 25–29 are listed in the corresponding 
caption. For the initial data, we refer the reader to the relevant section in the main body of the paper.

We present results for the Sod shock-wall collision, Noh, LeBlanc shock-wall collision, Peak, and Osher-Shu shock-wall 
collision problems. In Figs. 25–29, Run 1 indicates the solution computed using the optimized set of parameters, while Run 
2 indicates the solution computed using the fixed set of parameters.
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This is the second part to our companion paper [18]. Herein, we generalize to two space 
dimensions the C-method developed in [20,18] for adding localized, space-time smooth 
artificial viscosity to nonlinear systems of conservation laws that propagate shock waves, 
rarefaction waves, and contact discontinuities. For gas dynamics, the C-method couples the 
Euler equations to scalar reaction-diffusion equations, which we call C-equations, whose 
solutions serve as space-time smooth artificial viscosity indicators for shocks and contacts.
We develop a high-order numerical algorithm for gas dynamics in 2-D which can 
accurately simulate the Rayleigh-Taylor (RT) instability with Kelvin-Helmholtz (KH) roll-up 
of the contact discontinuity, as well as shock collision and bounce-back. Solutions to our 
C-equations not only indicate the location of the shocks and contacts, but also track the 
geometry of the evolving fronts. This allows us to implement both directionally isotropic 
and anisotropic artificial viscosity schemes, the latter adding diffusion only in directions 
tangential to the evolving front. We additionally produce a novel shock collision indicator 
function, which naturally activates during shock collision, and then smoothly deactivates. 
Moreover, we implement a high-frequency 2-D wavelet-based noise detector together with 
an efficient and localized noise removal algorithm.
To test the methodology, we use a highly simplified WENO-based discretization scheme. 
We provide numerical results for some classical 2-D test problems, including the RT 
problem, the Noh problem, a circular explosion problem from the Liska & Wendroff [13]
review paper, the Sedov blast wave problem, the double Mach 10 reflection test, and a 
shock-wall collision problem. In particular, we show that our artificial viscosity method 
can eliminate the wall-heating phenomenon for the Noh problem, and thereby produce an 
accurate, non-oscillatory solution, even though our simplified WENO-type scheme fails to 
run for this problem.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This is the second in a two-part series of papers, in which we develop a high-order numerical algorithm, the C-method, 
to simulate compressible fluid flow with shock waves and contact discontinuities, as well as shock-wall collision and bounce-
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back. In the first part [18], we developed our scheme in one space dimension. This second part is devoted to the more 
geometric problem of simulating shocks, contacts, and collisions in two space dimensions.

Compressible fluid flow is an example of a system of nonlinear conservation laws, which in two space dimensions, can 
be written as

∂t U (x, t) + ∂x F (U (x, t)) + ∂y G(U (x, t)) = 0 ,

U (x, t = 0) = U 0(x) ,

where x = (x, y) denotes coordinates on the plane, t denotes time, U (x, t) is a vector of conserved quantities, and F (U ) and 
G(U ) denote the horizontal and vertical flux functions, respectively.

Even with smooth initial conditions, multi-dimensional conservation laws such as the compressible Euler equations 
develop singularities in finite-time [27,4] and, in general, solutions consist of propagating shock waves and contact dis-
continuities. In two space dimensions, shocks and contacts produce curves of discontinuities, also known as fronts, which 
propagate according to the Rankine-Hugoniot conditions (see §2). The objective of a high-order numerical scheme is to pro-
duce a simulation which keeps the fronts sharp, while simultaneously providing high-order accuracy in smooth regions 
away from the front.

1.1. Numerical discretization

In §1.1 of [18], we described the tools necessary for designing high-order accurate numerical schemes in 1-D . In multi-D , 
similar tools are required to obtain non-oscillatory numerical schemes, but the multi-dimensional analogues are generally 
limited by mesh considerations. For structured grids (such as products of uniform 1-D grids), dimensional splitting is com-
monly used, decomposing the problem into a sequence of 1-D problems. This technique is quite successful, but stringent 
mesh requirements prohibits its use on complex domains. Moreover, applications to PDE outside of variants of the Euler 
equations may be somewhat limited. For further discussion of the limitations of dimensional splitting, we refer the reader 
to Crandall & Majda [6], and Jiang & Tadmor [9]. For unstructured grids, dimensional splitting is not available and alterna-
tive approaches must be employed, necessitated by the lack of multi-D Riemann solvers. WENO schemes on unstructured 
triangular grids have been developed in Hu & Shu [7], but using simplified methods, which employ reduced characteristic 
decompositions, can lead to a loss of monotonicity and stability.

Algorithms that explicitly introduce diffusion provide a simple way to stabilize higher-order numerical schemes and 
subsequently remove non-physical oscillations near shocks. We refer the reader to the introductory sections in [20,18] for a 
review of the classical artificial viscosity method [36].

In this paper, we develop a stable high-order 2-D numerical scheme that does not use approximate Riemann solvers or 
characteristic decompositions, but instead relies upon a 2-D generalization of the 1-D C-method [20,18]. The extensive error 
analysis and convergence tests performed for the 1-D C-method in [18] indicate that the scheme is high order accurate. We 
expect that the 2-D implementation of the method presented in this paper is similarly high-order accurate, and we perform 
a number of numerical experiments to qualitatively support this claim. We also present error analysis and convergence 
studies for the Sedov problem to provide quantitative evidence for the claim of high order accuracy; further extensive 
convergence tests will be presented in [19].

1.2. Localization to shocks and contacts and capturing the geometry of the front

As we noted above, part one [18] provides a self-contained development of the 1-D C-method; for problems in one space 
dimension, the function C(x, t) is the solution to a forced scalar reaction-diffusion equation, and serves as a highly localized 
space-time smooth indicator for the shock location. In 2-D , we again solve a scalar reaction-diffusion equation for C(x, t)
on the plane; in this instance, the function C(x, t) not only serves as a localized indicator for both shocks and contacts, 
but is also able to accurately represent the geometry of the evolving fronts. Having this geometry allows us to define 
time-dependent normal and tangent vectors to the fronts, which, in turn, enables the construction of artificial viscosity 
methods that add diffusion only in certain directions rather than uniformly across the mesh. As we shall explain below, this 
type of anisotropic artificial viscosity scheme is essential in accurately capturing Kelvin-Helmholtz roll-up without overly 
diffusing the mixing regions in such flows.

1.3. Shock collision and wavelet-based noise removal

In part one [18], we consider the difficult problem of shock-wall collision and bounce-back in 1-D . In particular, when 
a shock wave collides with and reflects off of a fixed boundary, spurious oscillations develop behind the reflected shock. In 
addition to these post-collision oscillations, most schemes produce solutions that exhibit the phenomenon of anomalous wall 
heating [21]. A novel modification to the C-method in 1-D [18], wherein the time-dependent artificial viscosity parameter 
B(t) naturally increases during shock-wall collision and bounce-back, allows for the addition of extra “wall viscosity” to the 
shock front. This suppresses post-collision noise and the wall heating error, and ensures that the solution retains high-order 
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accuracy away from the shock and prior to collision. In §5 of this paper, we present a generalization of the 1-D shock 
collision scheme to the 2-D setting, and apply the method to a circular explosion problem in §10.2.

The occurrence of high frequency noise in numerical solutions to PDE is a well-known issue. The first part of this work 
[18] provides a description of an efficient wavelet-based noise detection and heat equation-based noise removal algorithm 
for 1-D gas dynamics simulations. Error analysis and convergence tests in [18] show that the noise detection and removal 
algorithm decreases the errors of numerical solutions and improves the rate of convergence. In §6 of this paper, we present 
the natural extension of this 1-D algorithm to the 2-D case, with applications to the RT problem in §12 and the Noh 
problem in §8.

1.4. Outline of the paper

In §2, we introduce the 2-D compressible Euler equations and the Rankine-Hugoniot jump conditions relating the speed 
of propagation of curves of discontinuity with the jump discontinuities in the conservative variables. In §3, we present 
the isotropic C-method, and in §4, the anisotropic C-method, the latter designed for the long-time evolution of contact 
discontinuities. A new 2-D shock-wall collision scheme is introduced in §5, and a wavelet-based noise detection and localized
heat equation-based noise removal procedure is developed in §6. Details about the numerical methods implemented are 
provided in §7 and Appendix A. We then apply the methods to a number of test problems. In particular, the C-method 
produces an accurate, non-oscillatory solution for the difficult Noh problem, whereas our simplified WENO-type algorithm 
(as well as more sophisticated advection schemes) fails to run for this problem.

2. The compressible Euler equations in 2-D

The compressible Euler equations in a 2-D rectangular domain � = (x1, xM) × (y1, yN) ⊂ R2 and a time interval [0, T ]
are given in conservation law form as

∂t U (x, t) + ∂x F (U (x, t)) + ∂y G(U (x, t)) = 0, x ∈ �, t > 0, (1a)

U (x,0) = U 0(x), x ∈ �, t = 0, (1b)

where the 4-vector U (x, t) and the flux functions F (U ) and G(U ) are defined as

U =

⎛
⎜⎜⎝

ρ
ρu
ρv
E

⎞
⎟⎟⎠ and F (U ) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv
u(E + p)

⎞
⎟⎟⎠ and G(U ) =

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + p
v(E + p)

⎞
⎟⎟⎠ .

Here, the vector x = (x, y) denotes the two Cartesian coordinates, ρ and E are the density and energy fields, respectively, 
u and v are the velocities in the x-direction and y-direction, respectively, and we use the notation u to denote the velocity 
vector field u = (u, v). The pressure function p is defined by the equation of state

p = (γ − 1)

(
E − 1

2
ρ|u|2

)
, (2)

where |u| = √
u2 + v2 and γ > 1 is the adiabatic constant. The system (1) represents the conservation of mass, momentum, 

and energy:

∂tρ + div(ρu) = 0 , ∂t(ρu) + div(ρu ⊗ u) + ∇p = 0 , ∂t E + div ((E + p)u) = 0 ,

and defines a hyperbolic system, in the sense that both ∇ F and ∇G have real eigenvalues; in particular, the four eigenvalues 
of ∇ F are

λ1 = u − c , λ2 = λ3 = u , λ4 = u + c ,

and the four eigenvalues of ∇G are

λ5 = v − c , λ6 = λ7 = v , λ8 = v + c .

The eigenvalues λ1, λ5, λ4 and λ8 correspond to sound waves, while the repeated eigenvalues λ2, λ3, λ6, and λ7 correspond 
to vorticity and entropy waves. We define the maximum wave speed S(u) as

S(u) = [S(u)](t) = max
i=1,...,8

max
�

{|λi(x, y, t)|} . (3)

We focus on solutions U to the compressible Euler equations (1) that have a jump discontinuity across a time-dependent 
curve
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Fig. 1. The function Gρ for the Sod explosion problem at time t = 3.2. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

�(t) = ∪p
i=1�i(t) , (4)

where for each index i = 1, ..., p, �i(t) represents either a shock front or a contact discontinuity. In the case that �i(t) is a 
closed curve, we define U +(x, t) to be the value of U (x, t) inside of �i(t) and U −(x, t) to be the value of outside of �i(t). 
We then set

[U ]+− = U + − U − at �(t).

Let 	n = 	n(x, y, t) and 	τ = 	τ (x, y, t) be the unit normal and tangent vectors to �(t), respectively. The Rankine-Hugoniot 
conditions relate the speed of propagation σ̇ of the curve of discontinuity �(t) with the jump discontinuity in the variables 
U via the relation

σ̇ [U ]+− = [F · 	n ]+− .

If �i(t) is a shock,[
u · 	n]+− 
= 0 and [u · 	τ ]+− = 0 ,

while if �i(t) is a contact discontinuity, then[
u · 	n]+− = 0 and [u · 	τ ]+− 
= 0.

For the problems we consider in this paper, [ρ]+− 
= 0 for both shocks and contacts.

3. The C -method in the 2-D setting

3.1. Smoothly localizing the curves of discontinuity and tracking the geometry

As noted above, the jump discontinuities of the density function describe the location of both the shock and contact 
fronts; as such, it is natural to use |∇ρ(x, t)| as an indicator for these time-dependent curves. Consequently, we track 
discontinuities by considering the quantity

Gρ := |∇ρ|
max� |∇ρ| . (5)

We note that in the 1-D C-method formulation in [18], we use |∂xu| instead of |∂xρ| as the forcing function for the 
C-equation. In 1-D , using either |∂xu| or |∂xρ| as the forcing, together with the compression switch, produces identical 
results. In 2-D , the velocity is a vector quantity, whereas the density is a scalar function, so that the latter provides a 
simpler approach to tracking discontinuities.

In 2-D , we are interested in tracking both shock fronts and contact curves, and the density gradient provides a natural 
method for tracking both of these discontinuities. In Fig. 1, we see that Gρ captures both of the discontinuities, namely the 
shock front and the contact discontinuity, present in the solution.

Although the function Gρ is able to localize artificial viscosity to a curve of discontinuity, its use in artificial viscosity 
operators often serves to produce an oscillatory solution [20,18]. This is due to the rough nature of the localizing function 
Gρ . Consequently, we first produce a space-time smooth variant of Gρ through the use of the C-method. We describe the 
natural 2-D generalization of the 1-D C-equation as follows: we first define the operator L as
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L [C ;ε,κ] := − S(u)

ε|δx| C + κ S(u)|δx|
C , (6)

where δx = (δx , δy) with δx, δy the grid spacings in the x and y directions, respectively, S(u) is the maximum wave-speed 
(3), and 
 = ∂xx + ∂yy denotes the 2-D Laplace operator. The space-time smooth version of Gρ , which we denote by 
C = C(x, t), is the solution to the scalar linear parabolic PDE

∂t C(x, t) − L [C(x, t);ε,κ] = 1divu<0
S(u)

ε|δx| Gρ(x, t) , (7)

where the function 1divu<0 is a compression switch1 that ensures that C vanishes in regions of expansion, where there are 
no discontinuities in the solution. The parameters ε and κ in (6) control the support and smoothness of the solution C , 
respectively [20,18].

The function C(x, t) provides not only the location of the shock and contact fronts, but also a good approximation to 
the geometry of the front. Specifically, the C function is sufficiently localized so as to provide the shape of the evolving 
front. In Fig. 2, we show results of the evolution of a contact discontinuity associated to the Rayleigh-Taylor instability 
(which is discussed in §12). As can be seen, |∇ρ| and hence the function Gρ track the material interface accurately but the 
function Gρ is very rough, particularly in directions tangential to the contact front. The function C , by contrast, is smooth 
and exhibits no oscillatory behavior, but is still highly localized to the contact discontinuity.

3.2. The isotropic C-method and the Euler-C system

We begin with a very natural generalization of the 1-D C-method to the 2-D setting. In particular, we first consider the 
2-D Euler-C system with isotropic space-time smooth artificial viscosity:

∂tρ + div(ρu) = 0, (8a)

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = div
(
β̃u ρ C ∇u

)
, (8b)

∂t(ρv) + ∂x(ρuv) + ∂y(ρu2 + p) = div
(
β̃u ρ C ∇v

)
, (8c)

∂t E + div(u(E + p)) = div
(
β̃ E ρ C ∇(E/ρ)

)
, (8d)

∂t C − L [C ;ε,κ] = 1divu<0
S(u)

ε|δx| Gρ , (8e)

where the pressure p is given by the equation of state (2), L = L [C ; ε, κ] is the operator defined in (6), Gρ is the forcing 
function defined in (5), and the artificial viscosity parameters are given by

β̃(·) := |δx|2
max� C

β(·) , (9)

with β(·) a constant.
We refer to the system (8) as the isotropic C-method, because artificial viscosity is added uniformly in all directions 

(although clearly still localized to the fronts via the use of C ). We remark that the particular form of artificial viscosity used 
in the momentum equations (8b) and (8c) as well as the energy equation (8d) ensure that total energy remains conserved, 
and that E continues to evolve as the total energy function. For simplicity, suppose that periodic boundary conditions 
are enforced. On the one hand, integrating the energy equation (8d) yields d

dt

∫
�

E dx = 0. On the other hand, multiplying 
(8b) and (8c) by u and v , respectively, integrating over the domain �, summing the resulting quantities and utilizing the 
conservation of mass equation (8a), the energy equation (8d), and the equation of state (2) yields

d

dt

∫
�

1

2
ρ|u|2 + p

γ − 1
dx = 0 .

This shows that the velocity u and the pressure p adjust accordingly to maintain the relation (2), and that the Euler-C
system conserves the total energy.

The space-time smooth localizing function C ensures that viscosity is added only at discontinuities, thereby ensuring 
that the solution retains high-order accuracy away from discontinuities, and, moreover, given that C(x, t) is a solution to a 
reaction-diffusion equation, it is smooth in both space and time. See [20] for the analysis of the solutions C .

1 1divu<0 is equal to 1 on the set divu < 0 and is equal to zero on divu ≥ 0.
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Fig. 2. Comparison of Gρ and C for the Rayleigh-Taylor instability at various times. Plots (a,b,c) are surface plots of Gρ , and plots (d,e,f) are surface plots of 
the corresponding C .

4. The anisotropic C -method for contact discontinuities

We next consider the anisotropic C-method, specifically designed for the long-time evolution of contact discontinuities in 
the presence of Rayleigh-Taylor (RT) instabilities which lead to Kelvin-Helmholtz (KH) roll-up. We are particularly interested 
in the case that [ρ]+− 
= 0 across the contact discontinuity,2 for which we also have that 

[
u · 	n]+− = 0 and [u · 	τ ]+− 
= 0.

Conservation of mass can be written as

∂tρ + u · ∇ρ = −ρ div u ,

2 KH instabilities can occur with a constant density profile, but we consider problems for which [ρ]+− 
= 0. The method described here requires the 
condition [ρ]+− 
= 0 to calculate the normal and tangent vectors to the evolving front. However, we remark that our algorithm can be adapted for problems 
for which [ρ]+− = 0, and details are provided in the paper [19] under preparation.
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and near an evolving front with tangent and normal vectors given by 	τ and 	n, respectively, the divergence of the velocity 
vector field u is given by

div u = ∂	τ u · 	τ + ∂	nu · 	n .

Across a contact curve, ∂	nu · 	n remains smooth, while ∂	τ u · 	τ can become extremely oscillatory due to a combination of 
the discontinuity of u · 	τ across the contact curve together with interpolation error of the contact curve onto a fixed grid 
(particularly in specifying the initial data). For simulations that require a great deal of time steps, it is important to add 
artificial viscosity in the tangential directions, but not in the normal directions.

In classical RT problems (and particularly for low Mach-number flows), instabilities that are generated by a small per-
turbation of the equilibrium interface position require a large number of time-steps to fully develop the KH roll-up of the 
contact curve, and it is most often the case that fluid mixing (due to numerical dissipation) is present in this roll-up region, 
so that the amplitude of the density and the gradient of the density can be significantly smaller than their maximum values.

The objective of our anisotropic C-method is to add diffusion only in directions that are tangent to the contact disconti-
nuity, while adding no artificial diffusion in directions that are normal to the contact curve. In doing so, we can maintain a 
very sharp interface, and prevent over-diffusion of the slight “hills-and-valleys” which arise in the KH mixing zones. More-
over, when generating the RT instability of a small interface perturbation on a uniform rectangular grid (rather than using 
a velocity perturbation as done by ATHENA [29]), spurious tangential spikes can form in the velocity fields u and v along 
the contact curve; these spikes, in turn, generate small-scale numerical KH structures which contaminate the solution (this 
is discussed further in §12.1). Consequently, it is necessary to remove these spikes while maintaining a sharp interface; this 
may be accomplished through the use of anisotropic diffusion.

4.1. Calculating the normal and tangential directions to �(t)

The first task is to accurately compute a good approximation to the tangent vectors 	τ to any curve of discontinuity �(t), 
defined in (4). For the problems we consider here, this may be accomplished by setting

τ1(x, y, t) := 	τ · e1 = −∂yρ , (10a)

τ2(x, y, t) := 	τ · e2 = ∂xρ , (10b)

where e1 and e2 denote the unit vectors in the x and y directions, respectively. In Fig. 3, we provide vector plots of 	τ
calculated using (10), as well as surface plots of each component of 	τ , for the specific case of the RT instability.3

As shown in Fig. 3, the functions τ1 and τ2 suffer from the same issue affecting the localizing function Gρ ; namely, a 
lack of smoothness in both space and time. Consequently, we utilize the space-time smoothing mechanism provided by the 
C-method to produce regularized versions of τ1 and τ2, which we denote Cτ1 and Cτ2 , respectively:

∂t C − L
[
Cτ1 ;ε,κ

]= S(u)

ε|δx| τ1 , (11a)

∂t C − L
[
Cτ2 ;ε,κ

]= S(u)

ε|δx| τ2 , (11b)

where L is the operator defined in (6). We also define the function

μ = μ(t) := max
�

{
max

{|Cτ1 | , |Cτ2 |}} , (12)

which can be used to produce a “normalized” tangent vector 1
μ

	Cτ = 1
μ Cτ1 e1 + 1

μ Cτ2 e2.

In Fig. 4, we provide vector plots of the vector 	Cτ , as well as surface plots of the components 1
μ Cτ1 and 1

μ Cτ2 . These 
should be contrasted with the corresponding figures in Fig. 3; we see that 	Cτ is much smoother than 	τ , while remaining 
localized to the discontinuity �(t).

4.2. Directional artificial viscosity and the Euler-Cτ system

We now consider the following Euler-Cτ system for contact discontinuity evolution:

∂tρ + div(ρu) = 0 , (13a)

3 We note that the vector plots in Figs. 3(a) and 3(b) appear asymmetric only because of the Matlab plotting routine we use. In fact, for the RT problem 
we consider in this paper, the interface �(t) is symmetric across the line x = 0. Since we fix an orientation for �(t), the horizontal component of the 
tangent vector τ1 is symmetric across x = 0, while the vertical component τ2 is anti-symmetric, as can be seen in Figs. 3(c) and 3(d). These facts, combined 
with the particular Matlab plotting routine we employ, cause the perceived asymmetry in the vector plots.
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Fig. 3. Calculation of the tangent vector 	τ for the RT instability.

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = ∂i

(
β̃ ρ C Cτi Cτ j ∂ ju

)
, (13b)

∂t(ρv) + ∂x(ρuv) + ∂y(ρv2 + p) = ∂i

(
β̃ ρ C Cτi Cτ j ∂ j v

)
, (13c)

∂t E + div(u(E + p)) = 0 , (13d)

∂t C − L [C ;ε,κ] = S(u)

ε|δx| Gρ , ∂t Cτi − L [Cτi ;ε,κ] = S(u)

ε|δx|τi for i = 1,2 , (13e)

where Gρ is given by (5), τ1 and τ2 by (10), L by (6), and we utilize the Einstein summation convention, where a repeated 
free index in the same term implies summation over all values of that index. We note that ∂1 ≡ ∂x and ∂2 ≡ ∂y , and we use 
the two notations interchangeably. The artificial viscosity parameter is defined by

β̃ = |δx|2
μ2 max� C

β , (14)

with μ = max�

{
max

{|Cτ1 | , |Cτ2 |}}.

We note that the artificial viscosity operator −∂i

(
β̃ ρ C Cτi Cτ j ∂ j

)
is a positive semi-definite operator. The proof is as 

follows: taking the scalar product of −∂i

(
β̃ ρ C Cτi Cτ j ∂ j u

)
with u and integrating over � yields

∫
�

β̃ ρ C Cτ j ∂ j u · Cτi ∂i u dx =
∫
�

β̃ ρ C |∂ 	Cτ u|2 dx ≥ λ̃

∫
�

|∂ 	Cτ u|2 dx ,

for some λ̃ ≥ 0. Here, ∂ 	Cτ = 	Cτ · ∇ denotes the smoothed tangential derivative operator. Thus, the anisotropic artificial 
viscosity operator is obtained as the Euler-Lagrange extremum associated to the function 

∫
β̃ ρ C |∂ 	Cτ u|2 dx. Just as in the 

case of isotropic artificial viscosity, our solutions to the Euler-Cτ system preserve total energy E(t) (see §3.2).
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Fig. 4. Calculation of the smoothed tangent vector 	Cτ for the RT instability.

5. The C -method for shock-wall collision

We now present a simple extension of the 1-D shock-wall collision scheme (see §3 [18]). Recall that the main novelty 
of the 1-D shock wall collision scheme is the use of a wall function C(t) which naturally activates during shock-wall col-
lision and bounce-back. This allows for the addition of extra “wall viscosity” during shock-collision, which results in the 
suppression of post-collision noise while maintaining high-order accuracy prior to collision.

The natural generalization to the two-dimensional setting results in the 2-D Euler-C-W scheme:

∂tρ + div(ρu) = 0, (15a)

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = div
(
Bu ρ C ∇u

)
, (15b)

∂t(ρv) + ∂x(ρuv) + ∂y(ρu2 + p) = div
(
Bu ρ C ∇v

)
, (15c)

∂t E + div(u(E + p)) = div
(
BE ρ C ∇(E/ρ)

)
, (15d)

∂t C − L [C ;ε,κ] = 1divu<0
S(u)

ε|δx| Gρ , (15e)

∂t C w − L [C w ;εw , κw ] = 1divu<0
S(u)

εw |δx| Gρ , (15f)

where L is the operator defined in (6), Gρ is the forcing function defined in (5), and 1divu<0 is a compression switch. The 
artificial viscosity parameters B are given by

B(·) = |δx|2
max� C

(
β(·) + β

(·)
w C(x, t)

)
, (16)

with the wall function C(x, t) defined by

C(x, t) = C w(x, yl, t)

max� C w(x, y, t)
.
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Fig. 5. Grid setup for the construction of the wavelets in 2-D . The dashed black curve denotes the boundary ∂�, while the solid black lines indicate cell 
edges. The black dots indicate cell centers, and the domains bounded by red lines indicate the support of each of the highest frequency wavelets.

Here, we assume that the shock-wall collision occurs at the bottom boundary y = yl . A Neumann boundary condition for C w

is enforced at the bottom boundary y = yl . As in the 1-D case, this results in the smooth growth in time of the amplitude 
of C(x, t) as the shock approaches the wall, and allows for the addition of “wall viscosity” during shock-wall collision and 
bounce-back.

6. A wavelet-based 2-D noise detection and removal algorithm

In this section, we extend the noise indicator algorithm presented in [18] to the two-dimensional setting, using the same 
ideas as in the 1-D case. Again, we construct a family of wavelets 

{
ψi, j

}
and obtain a set of wavelet coefficients 

{
Ci, j
}

, found 
by calculating the inner product of the highest frequency wavelets with the noisy function. These wavelet coefficients will 
indicate the location of the noise, and we employ a localized heat equation-based solver to remove this noise.

6.1. Construction of the highest frequency wavelets

We first discretize our grid by assuming we have M cells in the x-direction, and N cells in the y-direction. Label the cell 
centers by (xi, y j), where xi and y j are given by

xi = xl + (i − 1) · δx for i = 1, . . . , M,

y j = yl + ( j − 1) · δy for j = 1, . . . , N,

with δx = (xr − xl)/(M − 1) and δy = (yr − yl)/(N − 1). We group the cells into 3 × 3 blocks of 9 cells each, and then define 
the highest frequency wavelet with support over the domain spanned by the cell centers in each of these blocks, as shown 
in Fig. 5.

This yields a set of (M−1)
2 × (N−1)

2 highest frequency wavelets. We denote these wavelets by ψi, j = ψi, j(x, y), for i =
1, . . . , (M − 1)/2 and j = 1, . . . , (N − 1)/2, with each ψi, j is supported in the rectangular domain Ii, j = [x2i−1, x2i+1] ×
[y2 j−1, y2 j+1].

We now have to fix a form for the 2-D wavelet. The two key properties that are required of the wavelet family are:

1. Zero mean:∫
�

ψi, j(x)dx = 0.

2. “Quasi-orthogonality” of the form:∫
�

ψi, j(x) · ψr,s(x)dx = δirδ js, for i, r = 1,
M − 1

2
and j, s = 1, . . . ,

N − 1

2
,

so that each of the highest frequency wavelets is orthogonal to every other wavelet of the same frequency.
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Fig. 6. The highest frequency wavelet ψ = ψ(x, y) in 2-D . We assume that the support of ψ is I = [−δx, δx] × [−δy, δy].

We recall from [18] that each member of the 1-D wavelet family is oscillatory and orthogonal to all linear functions. 
Consequently, we design the 2-D wavelet family to also have these two properties. For simplicity, assume that a highest fre-
quency wavelet ψ is supported in the domain [−δx, δx] × [−δy, δy]. The highest frequency wavelets ψi, j are then obtained 
by translation of ψ to the domain Ii, j . Our wavelets take the form shown in Fig. 6.

The exact formula for the highest frequency wavelet ψ that is supported in the domain I = [−δx, δx] × [−δy, δy] is

ψ(x, y) =
⎧⎨
⎩

ψ(1)(x, y), if 0 ≤ | x
δx | + | y

δy | ≤ 1
2 ,

ψ(2)(x, y), if 1
2 ≤ | x

δx | + | y
δy | ≤ 1,

where ψ(1) and ψ(2) are given by

ψ(1)(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + 2(b − a)
(

x
δx + y

δy

)
, if x > 0, y > 0,

a + 2(b − a)
(
− x

δx + y
δy

)
, if x < 0, y > 0,

a + 2(b − a)
(
− x

δx − y
δy

)
, if x < 0, y < 0,

a + 2(b − a)
(

x
δx − y

δy

)
, if x > 0, y < 0,

ψ(2)(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2b − 2b
(

x
δx + y

δy

)
, if x > 0, y > 0,

2b − 2b
(
− x

δx + y
δy

)
, if x < 0, y > 0,

2b − 2b
(
− x

δx − y
δy

)
, if x < 0, y < 0,

2b − 2b
(

x
δx − y

δy

)
, if x > 0, y < 0.

Here, the values of a and b are chosen so that ψ satisfies ||ψ ||L2(�) = 1 and the zero mean condition 〈ψ , 1〉L2(�) = 0, and 
can be calculated as

a = −6b and b = −
√

3

8
· 1

δx δy
.

The highest frequency wavelets ψi, j are then obtained by translation of ψ to the domain Ii, j = [x2i−1, x2i+1] ×
[y2 j−1, y2 j+1].

Now, given a function f (x, y) defined at the cell centers (xi, y j), we wish to calculate the inner product of f with 
each of the highest frequency wavelets. The first step is to approximate the function f (x, y) over Ii, j , the support of ψi, j . 
In 1-D , a function f (x) is approximated as a piecewise linear function over the interval Ii , the support of a 1-D highest 
frequency wavelet, by linearly interpolating between the cell center values (see §4 in [18]). The analogue of a line in 
the two-dimensional setting is a plane, so a first attempt is to approximate f (x, y) by a plane in each of the sub-cells 
[xr, xr+1] × [ys, ys+1]. However, this is not possible, since 3 points define a plane, whereas each of the sub-cells contains 4 
cell center values.
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Fig. 7. Dividing Ii, j into 8 regions.

Our solution is to divide Ii, j into 8 regions as shown in Fig. 7. Each of these regions contains precisely 3 cell-center 
values, and these 3 values define a plane. Thus, we can approximate f (x, y) by a plane in each of these 8 regions, and 
define a piecewise linear function f̃ (x, y) such that f̃ (xi, y j) = f (xi, y j). We may then approximate the (i, j)-th wavelet 
coefficient as

Ci, j( f ) := 〈 f ,ψi, j〉L2(�) ≈ 〈 f̃ ,ψi, j〉L2(�)

= −
√

6 δx δy

192

⎧⎪⎨
⎪⎩

f2i−1,2 j+1 + 2 f2i,2 j+1 + f2i+1,2 j+1 +
2 f2i−1,2 j + −12 f2i,2 j + 2 f2i+1,2 j +
f2i−1,2 j−1 + 2 f2i,2 j−1 + f2i+1,2 j−1

⎫⎪⎬
⎪⎭ ,

(17)

where fm,n = f (xm, yn). One can verify that the inner product of ψi, j with an arbitrary plane is identically zero i.e. if 
f (x, y) = αx +β y for some constants α and β , then Ci, j(u) = 0 for every i = 1, . . . , (M − 1)/2 and j = 1, . . . , (N − 1)/2. This 
is analogous to the result in 1-D that each of the highest frequency wavelets is orthogonal to linear functions.

6.2. Algorithm

Given a noisy function ũ(x, y), we now present an algorithm for first detecting and then subsequently removing the 
noise. The algorithm is almost identical to that presented for the 1-D case (see §4 in [18]).

6.2.1. Noise detection in the presence of discontinuities
We first calculate, using formula (17), the M−1

2 × N−1
2 wavelet coefficients, each associated with one of the highest 

frequency wavelets. The coefficients that are largest in magnitude should indicate the location of the noise. However, as in 
the 1-D case, it is possible that the wavelet coefficients that are largest in magnitude are actually indicating the location of 
the curve of discontinuity �(t). Since the C-method is taking care of artificial diffusion in this region, one needs to manually 
“turn off” the noise detection in a small region surrounding the shock curve �(t). There are numerous ways to do this, but 
we employ one of the simplest methods, namely to turn off the noise detection if

C

max� C
> δoff , (18)

where δoff is some value between 0 and 1. A typical range of values for δoff is δoff ∈ [0.05, 0.25].
With noise detection deactivated in the region surrounding �(t), the wavelet coefficients that are largest in magnitude 

now indicate the location of the noise. We now “turn on” a noise detector function 1noise(x, y) in the domain Ii, j if 
the associated wavelet coefficient Ci, j satisfies |Ci, j | ≥ Cref. The constant Cref is the wavelet coefficient obtained from a 
“typical” high-frequency oscillation, namely a hat function (see Fig. 8) centered in the domain [−δx, +δx] × [−δy, +δy]
with amplitude δh. The associated wavelet coefficient may then be calculated as

Cref = δh

√
6 δx δy

16
. (19)

6.2.2. Noise removal with a localized heat equation
The noise removal process in the 2-D case is identical to that in 1-D . We first construct the domain V , given by the 

union of all domains Ii, j such that the noise detector function 1noise(x, y) is non-zero in Ii, j . We write V as the union of 
its connected subsets V =⋃

k Vk , and then define the domains Ṽk as the domain Vk extended by one cell in each outward 
in each direction (see Fig. 9). For example, if Vk = [x1, x2] × [y1, y2], then Ṽk = [x1 − δx, x2 + δx] × [y1 − δy, y2 + δy].

A localized heat equation with Dirichlet boundary conditions is then solved in each of the domains Ṽk for a “de-noised” 
solution u(x, y, τ ),

∂τ u(x, y, τ ) = η · 
u(x, y, τ ), for x ∈ Ṽk and τ > 0, (20a)

u(x, y,0) = ũ(x, y), for x ∈ Ṽk, (20b)
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Fig. 8. The 2-D reference oscillation: a hat function with amplitude δh.

Fig. 9. Construction of the domains Vk and Ṽk . The squares bounded by the red lines indicate the support of each of the highest frequency wavelets ψi, j . 
The shaded green regions indicate where the noise indicator algorithm detects noise, and represent the domains Vk . The hatched regions indicate the 
extension of each Vk to Ṽk . The domains Ṽk are the regions bounded by the solid black lines.

u(x, y, τ ) = ũ(x, y), for x ∈ ∂Ṽk and τ > 0, (20c)

while u(x, y, τ ) = ũ(x, y) for x ∈
(⋃

k Ṽk

)C
and τ ≥ 0. The time τ is a fictitious time, introduced solely for the diffusion 

mechanism, while 0 < η � 1 is a small constant, which we refer to as the noise removal viscosity. Equation (20b) is the 
initial condition, and (20c) is a Dirichlet boundary condition ensuring continuity of u(x, y, τ ) over the domain �.

However, as in the 1-D case, it is not necessary to explicitly construct the domains Ṽk . Instead, one can use the noise 
detector function 1noise(x, y) and solve a modified heat equation with Dirichlet boundary conditions, given by

∂τ u(x, y, τ ) = η · 1noise(x, y) · 
u(x, y, τ ), for x ∈ � and τ > 0, (21a)

u(x, y,0) = ũ(x, y), for x ∈ �, (21b)

u(x, y, τ ) = ũ(x, y), for x ∈ ∂� and τ > 0. (21c)

In practice, the system (21) is solved using a simple, explicit forward Euler time integration scheme, along with a 
second order central difference approximation for the spatial derivatives. Moreover, in the simulations shown below, a single 
time-step is sufficient to remove noise; thus, our procedure is the equivalent of the inversion of a Helmholtz elliptic operator, 
and can hence be viewed as a filtering process, in which high frequency noise is eliminated from the solution through a 
local averaging or localized frequency truncation. However, we remark that for certain simulations with very large amplitude 
high frequency noise, it may be necessary to solve the localized heat equation for several time steps to completely remove 
the oscillations.

6.3. Implementation of the algorithm for the Euler equations

We now describe how we implement the noise detection and removal algorithm described above for the particular case 
of the Euler system (1). Suppose that we are given the solution U = U (x, y, tn) at time t = tn = n · δt , and we wish to 
calculate the solution U (x, y, tn+1) at time t = tn+1 = (n + 1) · δt . The implementation proceeds in two steps:
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Table 1
Relevant parameters and variables used in the numerical tests.

Parameter / Variable Description

βu , β E artificial viscosity coefficients for the momentum and 
energy, respectively.

βu
w , β E

w wall viscosity coefficients for the momentum and energy, 
respectively.

δh, δoff, η amplitude of noise, noise detection deactivation parame-
ter, and noise removal viscosity, respectively.

ε, εw parameters controlling support of C (and Cτi ) and C w , 
respectively.

κ , κw parameters controlling smoothness of C (and Cτi ) 
and C w , respectively.

1. We first compute in the usual manner the (potentially noisy) solution at time t = tn+1. We denote this solution by 
Ũ (x, y). In the numerical studies below, a simplified WENO-based scheme for the spatial discretization and an explicit 
Runge-Kutta method for the time integration are used to calculate this solution.

2. We then pass the potentially noisy velocity components ũ(x, y) and ṽ(x, y) through the noise detection and removal 
algorithm described in §6.2, to produce de-noised velocity components u(x, y, tn+1) and v(x, y, tn+1). We then define
the solution U (x, y, tn+1) at time t = tn+1 by

U (x, y, tn+1) ≡

⎡
⎢⎢⎣

ρ(x, y, tn+1)

ρu(x, y, tn+1)

ρv(x, y, tn+1)

E(x, y, tn+1)

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎣

ρ̃(x, y)

ρ̃(x, y) · u(x, y, tn+1)

ρ̃(x, y) · v(x, y, tn+1)

Ẽ(x, y)

⎤
⎥⎥⎦ .

This algorithm mimics the 1-D version in [18]. We apply this procedure to the Rayleigh-Taylor instability in §12 and 
demonstrate its ability to suppress spurious high frequency noise that otherwise corrupts the solution.

Remark 1. We note that the noise removal procedure for the horizontal velocity component ũ is completely independent 
from the noise removal procedure for the vertical velocity component ṽ . It is also perhaps more useful to view our algorithm 
as a predictor-corrector method, in which we first compute auxiliary quantities using the WENO-based portion of the 
algorithm, and then “correct” these quantities by removing high frequency noise from the solutions in the corrector portion 
of the method. Extensive testing of the method in the 1-D setting [18] shows that the noise reduction algorithm successfully 
eliminates high-frequency noise from the auxiliary solution, thereby producing “corrected” solutions with smaller errors. In 
the 2-D setting, we provide error analysis and convergence tests for the Sedov problem in Table 3. These tests indicate that 
the noise removal algorithm decreases the error of the computed solution; furthermore, our numerical experiments for the 
Noh problem in §8 and Rayleigh-Taylor problem in §12 demonstrate that, qualitatively, the noise removal algorithm greatly 
reduces the numerical error of solutions. Further quantitative evidence in the form of error analysis and convergence tests 
is presented in [19].

7. The numerical algorithm for the C -method

The systems (1), (8), (13), and (15) are discretized using a simplified finite-differencing WENO scheme for the nonlinear 
flux terms, and a standard central difference approximation for the diffusion terms. Time integration is done using a kth

order Runge-Kutta scheme. For each simulation, a fixed 
t is used at every time step, so that the CFL number can change 
at each time level; however, for each of the problems presented, the time step 
t is chosen so that the CFL condition is 
not violated at any time t during the simulation. For convenience, we provide full details of the numerical discretization of 
these systems in Appendix A. In particular, we refer the reader to Table 5 listing the various methods (and combinations of 
the methods) that we will use for the numerical tests.

We stress that the WENO-type discretization we use is highly simplified, and is not meant to be representative of the 
class of full WENO solvers. However, we note that, for certain problems, our simplified WENO-type discretization produces 
solutions with similar errors and convergence rates to those produced using a standard WENO scheme (see §5.2.5 in [18]).

As with any artificial viscosity scheme, parameters must be chosen for the particular problem under consideration. All 
of the relevant parameters for the schemes considered are listed in Table 1. In [18], we suggest some practical guidelines 
on choosing these parameters; a brief summary of the discussion in [18] is the following. We choose the artificial viscosity 
parameters β(·) , β(·)

w , and η large enough to damp post-shock oscillations and high frequency noise both pre and post 
shock-wall collision. The parameters ε and κ in the C-equations control the support and smoothness of the C-functions. For 
a more thorough discussion, we refer the reader to §5 of [18].
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Table 2
Relative L1 and L∞ errors at t = 4 of the computed solution minus the exact solution at and convergence for the linear advection problem. The errors are 
given in percentage form.

Scheme Error Cells

25 × 25 50 × 50 100 × 100 200 × 200

WENO L1 Error in % 2.894 × 10−2 9.014 × 10−4 2.820 × 10−5 8.821 × 10−7

Order – 5.005 4.998 4.999

WENO L∞ Error in % 5.254 × 10−2 1.929 × 10−3 6.253 × 10−5 1.970 × 10−6

Order – 4.767 4.947 4.988

7.1. Accuracy study: linear advection

For the purposes of demonstrating the high order convergence of the base WENO-type scheme, we consider the following 
linear advection equation [13,8]

∂tϕ(x, t) + div(aϕ(x, t))) = 0, x ∈ [−1,1]2 , t > 0, (22a)

ϕ(x,0) = 1 + 0.2 sin(π(x + y)), x ∈ [−1,1]2 , t = 0, (22b)

with a = (1, −0.5). Periodic boundary conditions are employed, and the exact solution at time t is given by ϕ(x, t) =
1 + 0.2 sin(π(x + y − 0.5t)). The problem is run on grids with 25 × 25, 50 × 50, 100 × 100, and 200 × 200 cells until the 
final time t = 4, at which time the sinusoidal wave has been advected one full wavelength. We choose the time-step so 
that CFL = 0.8. Following [13], the relative L1 and relative L∞ errors are listed in percentage form in Table 2. Our simplified 
WENO-type scheme achieves the advertised fifth-order convergence rate, and the errors are similar to those produced with 
an “industry-standard” WENO method [13].

8. The Noh infinite strength shock problem

We begin our numerical experiments by considering a radially symmetric version of a classic test of Noh [15,13]. This 
problem simulates an infinite strength shock wave formed by uniformly compressing a cold gas with constant velocity 1 
directed towards the origin. The initial pressure is identically zero, but following [13] we use the initial value p0 = 10−6. 
The domain is � = [−1, 1]2 ⊂ R2, the adiabatic constant is γ = 5/3, and the initial data is⎡

⎢⎢⎣
ρ0

(ρu)0
(ρv)0

E0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
− cos(θ)

− sin(θ)

0.5 + 10−6/(γ − 1)

⎤
⎥⎥⎦ , (23)

where θ ∈ [0, 2π) is the polar angle. The final time is t = 2.0.
The exact solution consists of a shock front moving radially outwards into the cold gas with speed 1/3. The shock is 

of “infinite strength”, since the sound speed satisfies c = 0 in the cold gas. The numerical solution is computed in the 
positive quadrant [0, 1]2 and then reflected appropriately to yield the solution on all of [−1, 1]2. Consequently, reflecting 
boundary conditions are employed on the x and y axes. The exact solution is used to enforce the boundary conditions at 
the boundaries x = 1 and y = 1 (see [13] for the details).

The Noh test is a difficult problem; among the numerical methods considered in [13], only the PPM and CFLFh schemes 
produce somewhat satisfactory solutions with sharp shock fronts, though the solutions are still noisy and have large errors 
at the origin due to the phenomenon of anomalous wall-heating [21,18,13,15]. In particular, the WENO scheme considered 
in [13] fails for this problem. Consequently, it is not so surprising that our grossly simplified WENO scheme also fails for this 
problem. That is to say, our stand-alone WENO scheme is unable to run until the final time t = 2.0; the solution develops 
noise in the region with the cold gas, which eventually causes a violation of the positivity of the density and, subsequently, 
blow-up of the solution. This is the case even for a very small time-step δt; using CFL = 5.0 × 10−3 still results in blow-up. 
We propose the use of the C-method and the noise detection and removal algorithm to deal with these issues.

8.1. Application of WENO-C-N to the Noh problem

We will apply the WENO-C-N scheme on a grid with 200 ×200 cells in the domain [0, 1]2 with a time-step δt = 5 ×10−4, 
giving a CFL number of approximately 0.25. A modified noise detection algorithm is employed, which we now describe. The 
“input functions” in the noise detection procedure described in §6.3 are the (potentially noisy) horizontal and vertical 
velocities ũ(x, y) and ṽ(x, y). The noise detection procedure for each of these functions produces two different “noise 
indicator functions”, denoted by 1u

noise(x, y) and 1v
noise(x, y). The function 1u

noise(x, y) is then used to de-noise the velocity 
field ũ, while 1v

noise(x, y) is used to de-noise ṽ . For the Noh problem, we exploit the radial symmetry available by using the 
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Fig. 10. Application of WENO-C -N to the Noh problem on the grid [0, 1]2 with 200 × 200 cells. Shown on the left is a heatmap of the density ρ at time 
t = 2.0. This is overlaid by 23 density contours, from 2.5 to 4 with step 0.25, and 14 to 17 with step 0.2. On the right is a scatter plot of the density versus 
radius. The green curve is the exact solution.

radial velocity ũr(x, y) := cos(θ)ũ(x, y) + sin(θ)ṽ(x, y) to produce a noise indicator function 1r
noise(x, y), where θ is the polar 

angle. The de-noising procedure for ũ and ṽ then uses the function 1r
noise(x, y), but is otherwise identical to the algorithm 

described in §6.2 and §6.3.
The parameters for the WENO-C-N scheme are chosen as

βu = 50.0, β E = 350.0, ε = 200.0, κ = 0.5,

η · δτ/|δx|2 = 5 × 10−2, δh = 10−5, δoff = 0.2 .

The artificial viscosity term on the right-hand side of the energy equation (8d) serves to correct for the wall-heating error. 
The local heat equation solver for noise removal is iterated for a single time step only.

We provide in Fig. 10 a heatmap plot of the density computed using WENO-C-N , as well as a scatter plot of the density 
versus radius. We see that the space-time smooth artificial diffusion provided by the C-method stabilizes the strong shock 
wave and prevents spurious oscillations from developing behind the solution, while the artificial heat conduction term on 
the right-hand side of the energy equation (8d) significantly reduces the wall-heating error. The noise detection and removal 
procedure prevents high frequency noise from corrupting the solution and does not affect the sharpness of the shock front. 
Moreover, the solution maintains, for the most part, angular symmetry, though there are minor variations in the azimuthal 
direction; this should be contrasted with the results presented in [13], which show a much more obvious lack of symmetry 
by other schemes.

8.2. Comparison with Noh’s artificial viscosity scheme

For the purposes of comparison, we also implement our WENO scheme together with a modification of Noh’s artificial 
viscosity scheme [15], which is designed specifically for the Noh problem. The resulting scheme is referred to as WENO-Noh. 
Noh’s scheme couples the classical artificial viscosity method of Von Neumann and Richtmeyer with a heat conduction term 
for the energy equation. In particular, the diffusion terms on the right-hand sides of (8b), (8c), and (8d) are replaced with 
the terms

div
(
β̃u

N ρ |∇ur |∇u
)

+ α̃u
N
u , (24a)

div
(
β̃u

N ρ |∇ur |∇v
)

+ α̃u
N
v , (24b)

div
(
β̃e

N ρ |∇ur |∇e
)

+ α̃e
N
e , (24c)

respectively, where ur is the radial velocity, e = p/ρ(γ − 1) is the internal energy of the system, and the artificial viscosity 
parameters β̃N and α̃N are defined by

β̃N = |δx|2
max� |∇ur |βN and α̃N = |δx|αN .

The parameter βN controls the amount of classical artificial viscosity added to the system, while the parameter αN controls 
the amount of linear viscosity added to the system. We refer the reader to [18] for a discussion on the differences between 
the diffusion terms used in WENO-Noh and the diffusion terms used in WENO-C-N .
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Fig. 11. Application of WENO-Noh to the Noh problem on the grid [0, 1]2 with 200 × 200 cells. Shown on the left is a heatmap of the density ρ at time 
t = 2.0. This is overlaid by 23 density contours, from 2.5 to 4 with step 0.25, and 14 to 17 with step 0.2. On the right is a scatter plot of the density versus 
radius. The green curve is the exact solution.

We implement the above WENO-Noh scheme for the Noh problem, with the following choices of viscosity parameters: 
βu

N = 50.0, βe
N = 350.0, αu

N = 0.5, and αe
N = 1.5. The results are shown in Fig. 11. The WENO-Noh scheme produces a 

solution that is, for the most part, oscillation-free; however, there are still some oscillations in the density profile behind the 
shock, and the shock curve is overly smeared. We remark here that the use of the linear viscosity term in (24) was needed 
to allow the WENO-Noh scheme to run; indeed, when that linear viscosity term was removed, the numerical simulation 
could not run as the solution blew-up. This is due primarily to the extremely oscillatory nature of the localizing function 
|∇ur |; the additional linear viscosity stabilized the solution, at the cost of a very smeared shock curve and a loss of accuracy.

The solution produced with WENO-C-N has a much sharper shock front. In fact, a simple computation shows that 
max� |∇ρ(x, y, 2)| ≈ 856 and max� |∇ρ̃(x, y, 2)| ≈ 774, where ρ is the WENO-C-N solution for the density and ρ̃ is the 
WENO-Noh solution for the density. Consequently, we see that WENO-C-N produces a less oscillatory, more accurate solu-
tion with a sharper shock front.

9. The Sedov blast wave

The Sedov problem [22,31,1] models the self-similar evolution of a cylindrical blast wave, arising from a point-source 
explosion in a cold, uniform density fluid. The computational domain is � = [0, 1.2] × [0, 1.2] ⊂ R2. The initial density and 
velocity are, respectively, ρ0 = 1, u0 = v0 = 0, and the initial energy is set to E0 = 10−12 everywhere except in the lower 
left corner cell, where it takes the value 0.244816

δx·δy . The adiabatic constant is γ = 1.4, reflecting boundary conditions are 
employed at the bottom and left boundaries, while inhomogeneous Dirichlet boundary conditions are enforced on the top 
boundary and the right boundary; in particular, the velocity, density, and energy are set equal to the corresponding values 
of the initial data on those boundaries.

The solution consists of an infinite strength radially symmetric shock front propagating outwards from the origin, leaving 
behind a near vacuum state. The simulation is run until time t = 1.0, at which time the shock front is a circle with radius 
equal to 1. A semi-exact solution exists for this problem [23,10,11], and we shall use the code made available by [33] to 
compute this solution. Our WENO and WENO-C-N schemes are employed on a grid with 96 cells in both directions, and 
with a time-step δt = 10−4. This fixed time-step was chosen as the largest possible value for which the WENO simulation 
runs on the desired time interval. For the noise detection portion of our WENO-C-N scheme, we utilize the modified 
algorithm for radially symmetric flow, described in §8.1 for the Noh problem. The parameters for the C-N-method are as 
follows:

βu = 1.0, β E = 10.0, ε = 1.0, κ = 0.5,

η · δτ/|δx|2 = 10−2, δh = 10−4, δoff = 0.02 .

The results are shown in Figs. 12 and 13. Our stand-alone WENO scheme produces a solution with inaccurate shock 
speed and location, and is corrupted by a large amount of high-frequency oscillations (or noise) behind the shock front. 
On the other hand, our WENO-C-N algorithm provides a solution with accurate wave speed and location, stabilizes the 
dynamics during early time-steps, and removes high-frequency oscillations behind the shock front.

We next conduct L1 error analysis and convergence tests for the Sedov problem. Due to the fact that the exact solution 
is known only in radial coordinates, and our solution is defined on a rectangular mesh, we shall compute the errors of 
the density ρ and radial velocity ur along the cut y = 0. We thus define the quantities ρ̃ = ρ(x, 0, t) − ρ∗(x, t) and ũr =
ur(x, 0, t) −u∗

r (x, t), where ρ∗ and u∗
r are the exact solutions. The L1 norm for a function f (x) defined on a one-dimensional 

computational grid of M cells with cell centers xi is defined as
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Fig. 12. Application of our standalone WENO scheme to the Sedov problem on the grid [0, 1.2]2 with 96 × 96 cells. Shown are (a) a surface plot of the 
radial velocity ur , (b) ur along the cut y = 0. The red curves are the exact solutions.

Fig. 13. Application of WENO-C -N to the Sedov problem on the grid [0, 1.2]2 with 96 × 96 cells. Shown are (a) a surface plot of the radial velocity ur , 
(b) ur along the cut y = 0. The red curves are the exact solutions.

‖ f ‖L1 = 1

M

M∑
i=1

| f (xi)| . (25)

In Table 3, we list the L1 norms and order of convergence for the errors ρ̃ and ũr . For the solution produced with the 
stand-alone WENO algorithm, the presence of the computational noise and the incorrect shock speed result in large errors 
and poor convergence rates.4 The shock stabilization and noise removal provided by the WENO-C-N algorithm produces 
solutions with much smaller errors than those computed with stand-alone WENO, as well as better rates of convergence.

In Fig. 14, we show plots of the computed density ρ and radial velocity ur along the cut y = 0 at various grid resolutions. 
It is clear from these plots, as well as the data in Table 3, that WENO-C-N produces solutions that are both quantitatively 
and qualitatively better than those produced with WENO.

4 We note the “super-convergence” [8] of the WENO solutions on the coarse grids; this is due to large errors on coarser meshes, rather than smaller 
errors on finer meshes, and is therefore superficial.
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Table 3
L1 error analysis and convergence tests for the Sedov problem at t = 1.0.

Norm Scheme Cells

24 48 96

‖ρ̃‖L1

WENO
Error 6.347 × 10−1 4.722 × 10−1 4.648 × 10−1

Order – 0.427 0.023

WENO-C-N
Error 3.939 × 10−1 1.081 × 10−1 5.765 × 10−2

Order – 1.866 0.907

‖ũr‖L1

WENO
Error 2.113 × 10−1 8.993 × 10−2 7.266 × 10−2

Order – 1.232 0.308

WENO-C-N
Error 4.695 × 10−2 1.979 × 10−2 1.482 × 10−2

Order – 1.247 0.417

Fig. 14. Plots of (a,b) the density and (c,d) the radial velocity along the cut y = 0. Subfigures (a) and (c) show the solutions computed with WENO-C -N , 
while Subfigures (b) and (d) show the solutions computed with WENO.

10. The Sod circular explosion problem

The explosion problem proposed in [34,13] is a radially symmetric version of the classic Sod shock tube problem [28].

⎡
⎢⎢⎣

ρ0
(ρu)0
(ρv)0

E0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
0
0

2.5

⎤
⎥⎥⎦1[0,0.4)(r) +

⎡
⎢⎢⎣

0.125
0
0

0.25

⎤
⎥⎥⎦1[0.4,∞)(r) , (26)

where r = √
x2 + y2, and 1� denotes the indicator function on the set �. We remark that the initial conditions are im-

plemented in [13,34] by assigning area-weighted initial values for the cells which are crossed by the initial curve of 
discontinuity. We omit this modification, noting that an instability develops at the contact surface regardless of whether 
the area-weighted initial conditions are implemented. Since we wish to capture the evolution of the unstable contact, we 
do not smear the initial data, and instead employ our anisotropic artificial viscosity method.

Reflecting boundary conditions are employed on the x and y axes, and free-flow boundary conditions are employed at 
the boundaries x = 1.5 and y = 1.5. The free-flow boundary conditions are implemented using the characteristic form of 
the Euler equations so as to minimize the reflection from the outgoing waves (see [32] for the details). Nonetheless, there 
are numerical boundary effects occurring at the top and right boundaries that we were unable to eliminate.

The solution consists of a circular shock front and contact curve traveling outwards from the origin, and a circular 
expansion wave traveling inwards to the origin. The shock front and contact surface become weaker as time evolves, with 
the contact eventually coming to rest before traveling inwards, while the shock front passes through the free-flow boundary. 
The rarefaction wave traveling inwards collides with itself at the origin and reflects as an outwards traveling expansion 
wave. This results in an inward traveling shock forming and subsequently imploding into the origin. This shock then reflects 
outwards from the origin and eventually passes through the contact curve.

We shall demonstrate the ability of the C-method to allow the artificial viscosity operator associated with the shock 
wave to “communicate” with the artificial viscosity operator associated to the contact discontinuity. The objective of the 
scheme is to allow the shock wave to pass through the contact discontinuity, while leaving the small-scale KH structure of 
the contact undisturbed by over-diffusion. Our results compare favorably to those produced by PPM, CLAW, and WAFT [13].

75



64 R. Ramani et al. / Journal of Computational Physics 387 (2019) 45–80

10.1. The WENO-C-Ĉ scheme applied to the Sod explosion problem

We employ a combination of our WENO-C and WENO-Cτ schemes for this problem. More precisely, we use isotropic 
artificial viscosity (as provided by the WENO-C scheme) to stabilize shock fronts, and anisotropic tangential artificial vis-
cosity (as provided by the WENO-Cτ scheme) to add diffusion to the unstable contact curve. We utilize a combination 
of compression and expansion switches to track the contact curve and shock fronts. In particular, we remark that, since 
shock implosion is a highly singular phenomenon, the shock that reflects from the origin requires stabilization. However, 
this shock passes through the contact curve, and consequently we ensure that the stabilization of the shock does not result 
in an overly diffused contact discontinuity. We do so by turning-off the artificial viscosity on the shock front as it passes 
through the contact curve by using compression and expansion switches (which are detailed below).

More precisely, we consider the following Euler-C-Ĉ system:

∂tρ + div(ρu) = 0 , (27a)

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = div
(
β̃u ρ C ∇u

)
+ ∂i

(
α̃ ρ Ĉ Cτi Cτ j ∂ ju

)
, (27b)

∂t(ρv) + ∂x(ρuv) + ∂y(ρv2 + p) = div
(
β̃u ρ C ∇v

)
+ ∂i

(
α̃ ρ Ĉ Cτi Cτ j ∂ j v

)
, (27c)

∂t E + div(u(E + p)) = div
(
β̃ E ρ C ∇(E/ρ)

)
, (27d)

∂t C − L [C ;ε,κ] = S(u)

ε|δx| Gρ (27e)

∂t Ĉ − L [Ĉ ;ε,κ] = S(u)

ε|δx| Ĝρ , ∂t Cτi − L [Cτi ;ε,κ] = S(u)

ε|δx| τ̂i for i = 1,2 . (27f)

The forcing functions to the C-equations are given by

Gρ = [1 − 1(−∞,0)(∂re ∂rρ)
] · 1(−∞,0)(divu) · |∇ρ| , (28a)

Ĝρ = 1(−∞,0)(∂re ∂rρ) · |∇ρ| , (28b)

τ̂1 = −1(−∞,0)(∂re ∂rρ) · ∂yρ , (28c)

τ̃2 = 1(−∞,0)(∂re ∂rρ) · ∂xρ , (28d)

where ∂r = cos θ ∂x + sin θ ∂y denotes the radial derivative. The function 1(−∞,0)(divu) is a compression switch that localizes 
C to shocks, while the function 1(−∞,0)(∂re ∂rρ) localizes Ĉ and τ̂i to the contact curve. Consequently, the use of the 
function 

[
1 − 1(−∞,0)(∂re ∂rρ)

]
in (28a) ensures that C deactivates during the short time interval that the shock front 

passes through the contact, so that isotropic diffusion is not added during this time interval, which prevents the smearing 
of the contact curve.

The artificial viscosity parameters β̃ and α̃ are defined by

β̃ · = |δx|2
max� C

β · and α̃ = |δx|2
μ2 max� Ĉ

α ,

with μ = max�

{
max

{|Cτ1 | , |Cτ2 |}}.

The Euler-C-Ĉ system is numerically discretized in an identical fashion to the other schemes presented; we will refer to 
the discretized method as the WENO-C-Ĉ scheme. We employ the method to the problem on a grid with 400 × 400 cells 
with a time-step of δt = 6.4 × 10−4, giving an initial CFL number of approximately 0.75. The parameters for the WENO-C-Ĉ
method are chosen as

βu = 15.0, β E = 200.0, α = 2.0, ε = 1.0, κ = 10.0 .

The results are presented in Fig. 15, which show heatmap plots of the pressure function p overlaid with density con-
tours. These figures should be contrasted with those presented in [13]. The stand-alone WENO scheme produces a highly 
oscillatory solution behind the shock front (see Fig. 15(b)), whereas the C-method allows for the stabilization of the shock 
front. Additionally, we may see the role that the function 

[
1 − 1(−∞,0)(∂re ∂rρ)

]
plays by comparing with the solution com-

puted without the deactivation of C during shock-contact collision; this solution, shown in Fig. 15(c), is noticeably more 
smeared at the contact discontinuity. Finally, in Fig. 15(d) we show the solution computed using isotropic diffusion for both 
the contact discontinuity as well as shock fronts, with all the relevant parameters identical to those used in the WENO-C-Ĉ
simulation. It is clear that the contact discontinuity is not as sharp as the contact curve for the solution computed using 
WENO-C-Ĉ ; this is due to the addition of diffusion in the direction normal to the contact curve. The WENO-C-Ĉ scheme 
produces a non-oscillatory solution with minimal noise, a sharp shock front, and a sharp contact curve.
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Fig. 15. Comparison of WENO and WENO-C -Ĉ for the Sod explosion problem. The figures shown are heatmap plots of the pressure p overlaid with 27 
density contours from 0.08 to 0.21 with step 0.005. Results are presented at time t = 3.2.

10.2. Shock-wall collision for a Sod-type explosion problem

To test the shock-collision scheme presented in §5, we consider a modified version of the Sod circular explosion problem. 
The domain is � = [−1, 1] × [−0.7, 1.3] ⊂ R2, the adiabatic constant is γ = 1.4, and the initial data is⎡

⎢⎢⎣
ρ0

(ρu)0
(ρv)0

E0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
0
0

2.5

⎤
⎥⎥⎦1[0,0.1)(r) +

⎡
⎢⎢⎣

0.125
0
0

0.25

⎤
⎥⎥⎦1[0.1,∞)(r) , (29)

where r =√x2 + y2, and 1� denotes the indicator function on the set �.
We are interested in the problem of shock-wall collision, and so treat the bottom boundary as a fixed wall, so that 

solid-wall (or reflecting) boundary conditions are enforced at y = −0.7. Free-flow (or symmetric) boundary conditions are 
implemented at the other three boundaries. The final time is t = 0.6. The outwards traveling shock front collides with the 
bottom boundary y = −0.7 at time t ≈ 0.4. As the gas is compressed, an increase in the density leads to a reversal in the 
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Fig. 16. Comparison of WENO and WENO-C -W for the Sod explosion and bounce-back problem. The figures shown are surface plots of the density ρ after 
shock-wall collision.

Fig. 17. Comparison of WENO, WENO-Noh, and WENO-C -W for the Sod explosion and bounce-back problem. Shown are cross-sections of the vertical 
velocity v(0, y, t) along x = 0, at time t = 0.6 after the shock-wall collision.

direction of travel of the shock front. The collision with the bottom boundary breaks the radial symmetry of the problem; 
since the first point of contact of the shock front with the bottom boundary occurs at x = 0, the gas is forced outwards 
along the bottom boundary y = −0.7.

We employ our WENO-C-W scheme (see §5), which couples the C-method with a shock collision scheme. Due to the 
symmetry of the problem, we compute the solution in the half domain [0, 1] × [−0.7, 1.3], and then reflect appropriately 
to obtain the solution on all of �. The WENO-C-W scheme is applied on a grid with 200 × 400 cells in the half domain 
[0, 1] × [−0.7, 1.3], with a time-step δt = 5 × 10−4, giving a CFL number of approximately 0.4. The parameters in the 
WENO-C-W method are chosen as

βu = 20.0, β E = 0.0, ε = 1.0, κ = 1.0,

βu
w = 50.0, β E

w = 100.0, εw = 10.0, κw = 1.0 .

For the purposes of comparison, we also implement our stand-alone WENO scheme as well as the WENO-Noh scheme 
with the following modification: due to the loss of radial symmetry when the shock front collides with the bottom boundary 
y = 0, we do not use the (normalized) gradient of the radial velocity |∇ur |/ max� |∇ur | to track the shock front; instead, 
we use the function 1divu<0|∇ρ|/ max� |∇ρ|, where 1divu<0 is a compression switch. The artificial viscosity parameters in 
(24) are chosen as

αu
N = αe

N = 0 and βu
N = 70.0 , βe

N = 200.0 .

The results are provided in Fig. 16, which shows surface plots of the density, and Fig. 17, which is a plot of the vertical 
velocity v(0, y, t) along x = 0.

The stand-alone WENO scheme produces an oscillatory solution both pre and post shock-wall collision. In particular, the 
shock implosion at the origin results in a large amount of noise (see Fig. 17). The solution computed using WENO-Noh 
is also oscillatory, albeit to a lesser extent, and the shock fronts are overly smeared. On the other hand, the WENO-C-W
scheme produces a solution that is completely noise-free while retaining sharp shock fronts and correct wave speeds.
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Fig. 18. A density contour plot of the stand-alone WENO solution computed on a grid with δx = δy = 1/120. Shown are 30 equally spaced density contours 
from ρ = 1.5 to ρ = 22.9705. The carbuncle instability leads to a kink at the leading shock front, causing a spurious triple point to form. There are 
high-frequency oscillations behind the reflected shock front, especially in the regions where shock curves intersect with the reflecting wall.

11. The Mach 10 shock reflection problem

The double Mach shock reflection problem introduced by Woodward & Colella [5] features a Mach 10 shock in a γ = 1.4
gas reflecting from a wedge inclined at an angle of 60◦ . The computational domain is � = [0, 3.25] × [0, 1], and the initial 
data is given by⎡

⎢⎢⎣
ρ0

(ρu)0
(ρv)0

E0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

8
66 cos(π/6)

−66 sin(π/6)

563.5

⎤
⎥⎥⎦1�(x, y) +

⎡
⎢⎢⎣

1.4
0
0

1.0

⎤
⎥⎥⎦1�\�(x, y) , (30)

where � =
{
(x, y) ∈ � | y >

√
3(x − 1/6)

}
is the region behind the initial position of the shock. On the left boundary, the 

density, velocity, and energy are prescribed the values of the corresponding initial conditions, while free-flow boundary 
conditions are imposed at the right boundary. The conditions at the top boundary are set to describe the exact motion 
of the initial Mach 10 shock. At time t , the shock intersects with the top boundary y = 1 at the point (s(t), 1), where 
s(t) = 1/6 + (1 + 20t)/

√
3. The pre- and post-shock conditions are then imposed for x ≥ s(t) and x < s(t), respectively. At 

the bottom boundary, reflecting boundary conditions are prescribed, except for the short region 0 ≤ x < 1/6, along which 
the exact initial conditions are imposed. This condition forces the reflected shock to remain “attached” to the wedge.

The solution develops a complex self-similar flow structure featuring two triple points and a jet attached to bottom 
wall. Numerical methods applied to this problem often produce solutions suffering from the “carbuncle phenomenon” [16]. 
In such solutions, the wave speed of the leading Mach stem is incorrect, leading to a “kink” in the stem, and often the 
formation of a spurious additional triple point. In fact, our simplified WENO-type scheme produces a solution, shown in 
Fig. 18, exhibiting this error; moreover, the solution is corrupted by a large amount of high frequency noise, especially in 
the regions where the shock fronts meet with the reflecting wall.

To eliminate the carbuncle error and the high-frequency noise in the computed solution near the reflecting wall, we 
shall employ our WENO-C-W algorithm for this problem, with the following simple modification: since there is noise in 
the solution near the wall-jet, we do not use the compression switch 1divu<0 in the C-equation (15e). This allows the 
C-function to remain active at the wall-jet, so that the artificial viscosity damps the high-frequency oscillations in this 
region. The discontinuities are stabilized through the use of directionally isotropic viscosity, and the wall C-method is used 
to implement additional viscosity in the regions where the shock fronts meet with the bottom reflecting boundary. We note 
that the compression switch 1divu<0 remains active for the wall C equation (15f); this forces the wall function C(x, t) to 
vanish at the wall-jet, which subsequently prevents the over-smearing of the contact discontinuity.

We implement the WENO-C-W scheme, with the small modification mentioned above, on a grid with 781 × 241 cells, 
giving a mesh resolution of δx = δy = 1/240. The time-step is set as δt = 4 × 10−5, giving CFL ≈ 0.4. This time-step was 
chosen as the largest possible value for which the stand-alone WENO simulation runs until the final time t = 0.2. The 
relevant parameters for the WENO-C-W method are chosen as

βu = 3 × 102, β E = 0.0, ε = 10.0, κ = 1.0,

βu
w = 1 × 103, β E

w = 0, εw = 10.0, κw = 1.0 .

A contour plot of the density computed using WENO-C-W is shown in Fig. 19. The artificial viscosity stabilizes the 
shock fronts and corrects the wave speeds, resulting in the elimination of the spurious carbuncle instability at the leading 

79



68 R. Ramani et al. / Journal of Computational Physics 387 (2019) 45–80

Fig. 19. A density contour plot of the WENO-C -W solution computed on a grid with δx = δy = 1/240. Shown are 30 equally spaced density contours from 
ρ = 1.5 to ρ = 22.9705.

shock. Moreover, the high-frequency oscillations at the intersections of shock fronts with the bottom boundary, and near 
the wall-jet, are suppressed by the additional viscosity provided by the wall C-method active in those regions. Our result is 
comparable to the simulations presented, for example, by Shi, Zhang, & Shu [25], for their developed WENO schemes.

12. The Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability [17,30] is an instability of a heavy fluid layer supported by a light one. Specifically, 
RT occurs when a perturbed interface, between two fluids of different density, is subjected to a normal pressure gradient; 
the light fluid bubbles into the heavy fluid, while the heavy fluid spikes into the lighter fluid, which in turn initiates the 
Kelvin-Helmholtz (KH) instability. The RT instability occurs in a wide range of physical phenomena; see [24,12] and the 
references therein for an overview.

We use the following setup for the RT problem considered by Liska & Wendroff [13]: the domain is � = [−1/6, +1/6] ×
[0, 1], the adiabatic constant is γ = 1.4, and the initial data is⎡

⎢⎢⎣
ρ0

(ρu)0
(ρv)0

E0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
0
0

p0/(γ − 1)

⎤
⎥⎥⎦1[0,h0)(y) +

⎡
⎢⎢⎣

2
0
0

p0/(γ − 1)

⎤
⎥⎥⎦1[h0,1](y) . (31)

Here, the initial interface �0 is parameterized by (x, h0(x)) with h0(x) = 0.5 + 0.01 cos(6πx), and p0 is the initial pressure, 
defined as

p0 =
{

P0 + g (h0(x) − y) + 2g (1 − h0(x)) , if y < h0(x)

P0 + 2g (1 − y) , if y ≥ h0(x)
, (32)

with g = 0.1 the gravitational acceleration, and P0 the reference pressure. While Liska & Wendroff [13] do not provide P0, 
we follow the ATHENA code [29] and use the value P0 = 2.4 so as to produce a sound speed c = √

3.5 in the lower density 
gas at the interface. The equations of motion governing the flow are given by the Euler system (1) with the addition of 
the gravity forcing on the right-hand side of (1a): f = [0 , 0 , −gρ , −gρv]T . Due to the symmetry of the problem, it is 
sufficient to calculate the solution in the half-domain [0, 1/6] × [0, 1], and then use reflection.

For a very short time, when the amplitude of the perturbation remains very small compared with the wavelength of the 
perturbation, the motion of the interface can be analyzed using linear stability analysis [17,30,3,14]. Quickly, however, the 
nonlinearity is activated, and the interface evolves to the classical “mushroom-shaped” profile [35]. The flow at later times 
is characterized by the development of “roll-up” regions, driven by the KH shear instability [12].

The particular problem set up described above results in a low Mach number flow. For explicit time-integration schemes, 
the CFL stability condition requires the time-step to be very small for such flows, due to the fact that, in this regime, sound 
waves are much faster than the advection of the flow. We do not switch to implicit time-integration, but note that one of the 
authors has extensively compared implicit and explicit temporal differencing for low Mach number flows and found little 
differences between the two approaches, provided the time step size is below the sound speed in the explicit approach; the 
time step size can be at least a factor of 10 bigger in the implicit approach. Likewise, for time-split methods, it has been 
shown that time-split errors grow as the time step begins to exceed the fastest time scale of the problem, i.e. the speed of 
sound waves. Hence, it is presumed for the current algorithm, in which the time steps utilized are below this fast time scale, 
that the temporal error growth is small. Moreover, we note that explicit time integration is used by Liska & Wendroff [13], 
and so for the purposes of comparison we utilize the same approach. We also note that the Navier-Stokes equations (rather 

80



R. Ramani et al. / Journal of Computational Physics 387 (2019) 45–80 69

than the Euler equations) are often used for low Mach flow calculations; however, for the numerical tests presented here, 
the mesh resolution is so low that the kinematic viscosity coefficient appearing in the Navier-Stokes equations is negligible, 
and consequently algorithms for either sets of equations will produce similar results.

To highlight the applicability of our noise reduction algorithm to RT problems, we shall artificially generate noise in the 
solution by using explicit forward Euler time integration, rather than the usual third order Runge-Kutta method used for the 
other test problems. As we shall show in §12.2.2, the use of the explicit first order in time method results in the generation 
of spurious high frequency oscillations in solutions computed without any noise reduction algorithm. This test allows us 
to model a typical scenario in computational physics, in which high resolution and long time simulations require the use 
of an extremely small 
t and, consequently, a prohibitively large number of time steps. Our aim is to show that the noise 
generated by using a larger time step (or lower order time integration method) can be removed by means of our noise 
algorithm, resulting in a noise-free and accurate solution.

Numerical simulations of the RT instability often suffer from the development of spurious small-scale structure due 
to the discretization of the problem (to be described in more detail below); see [13] for example. On the one hand, as 
described in [13], the numerical methods with the least amount of implicit diffusion, such as the Piecewise Parabolic 
Method (PPM), Virginia Hydrodynamics 1 (VH1) and WENO schemes, produce interface break-up at early times which 
corrupts the solution (even if the initial density and pressure are smoothed over a few cells). The solutions produced using 
these schemes generally do not possess the classical mushroom-shaped profile; the spurious small-scale structures give rise 
to a complex interface and a significant amount of mixing. On the other hand, the more dissipative methods in [13], such 
as the scheme of Liu and Lax (LL) and the CFLF hybrid (CFLFh) scheme, suppress this small-scale spurious structure from 
developing but, in doing so, produce solutions with overly smeared interfaces and overly diffused mixing zones with very 
little KH roll-up.

Our aim, therefore, is to produce a noise-free solution with a sharp interface and the classical mushroom-shaped profile, 
while ensuring that the KH-driven roll-up regions are not significantly affected. We do so by implementing the anisotropic
version of the C-method (that we detail below).

12.1. Tangential spikes and the need for anisotropic diffusion

We now consider numerical simulations of the RT problem with data given by (31). Let us motivate the need for strictly 
tangential artificial viscosity operators for the long-time motion of contact discontinuities. In Fig. 20, we show results of RT 
simulations, run with our simplified WENO scheme (without the use of any artificial viscosity); due to interpolation errors 
of the cosine function onto the uniform mesh, together with a lack of artificial viscosity, extremely large tangential spikes are 
produced in the vertical velocity, shown in Fig. 20(a). These oscillations are, of course, non-physical. The interpolation error 
is demonstrated in Fig. 20(b); the initial density profile has a tangential “staircase” whose jumps produce the tangential 
spikes in the vertical velocity, which in turn cause the interface to develop thin fingers as shown in Fig. 20(c). The fingers 
continue to grow and, in the absence of any artificial diffusion, eventually interact with each other and corrupt the solution 
as shown in Fig. 20(d).

Liska and Wendroff [13] smooth the initial density and pressure functions over a region of width O(δy) in the vertical 
direction; using smoothed initial data mitigates the development of the tangential spikes (although not entirely), but has 
the undesirable effect of overly diffusing the contact discontinuity, and modifying wave speeds in a non-transient manner. 
Moreover, this smoothing is not enough to suppress the development of spurious small-scale structure for the highest order 
schemes with the least amount of numerical diffusion; in particular, as shown in [13], both WENO and PPM break-up the 
interface.

Our strategy, therefore, is to implement the explicit anisotropic diffusion term in (13) for use with our simplified WENO 
scheme. The tangential artificial viscosity operators smooth the solution only in tangential directions with no diffusion added 
in directions normal to the contact curve. This is extremely important for RT problems which take a very long time to fully 
develop (for example, in the runs presented here, 425,000 time-steps are used for the numerical simulation). The equations 
of motion are thus given by the Euler-Cτ system (13) with the addition of the gravity term f = [0 , 0 , −gρ , −gρv]T to the 
right-hand side of the equations.

Fig. 21(a) and Fig. 21(b) show the effect of tangential artificial viscosity: the contact discontinuity remains sharp, while 
the spurious tangential spikes are suppressed.

12.1.1. Boundary conditions for the RT problem
We implement reflecting boundary conditions for the RT problem on all four boundaries. Let 	ν denote the normal 

vector to the boundary ∂�. The reflecting boundary condition mean that 	ν · u|∂� = 0 for all time t ≥ 0. In the numerical 
discretization of the problem, this condition is enforced through the choice of ghost node values via an even or odd extension 
of each of the conservative variables. We provide further details in Appendix A.4, but mention here that the presence of the 
gravity terms in (13) requires that the pressure be extended in a linear fashion at the top and bottom boundaries so as to 
ensure that the vertical velocity v satisfies v = 0 there.
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Fig. 20. Figures demonstrating the occurrence of tangential spikes due to the discretization of the initial conditions, which leads to the development 
of fingers and subsequent mixing. The solution is computed on a 50 × 200 grid on [0, 1/6] × [0, 1] using stand-alone WENO i.e. without any artificial 
diffusion.

Fig. 21. Demonstration of the removal of tangential spikes using anisotropic diffusion. Solutions are computed using WENO-N and WENO-Cτ -N in the 
domain [0, 1/6] × [0, 1] with 50 × 200 cells.
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Fig. 22. Application of WENO-Cτ -N to the RT instability in the domain [0, 1/6] × [0, 1] with 50 × 200 cells; figures are heatmap plots of the density ρ at 
various instances of time.

12.2. Application of WENO-Cτ -N to the RT instability

We now apply the WENO-Cτ -N scheme (detailed in Appendix A.3) to the RT instability. The domain [0, 1/6] × [0, 1]
is discretized using a 50 × 200 cell grid with a time-step of δt = 2 × 10−5, and the problem is run up to a final time of 
t = 8.5. The artificial viscosity parameter in (14) is set as β = 20.0, the C-equation parameters are chosen as ε = 0.4 and 
κ = 10.0, and we employ our noise detection and removal algorithm, with δh = 2 × 10−5 in (19), δoff = 0.05 in (18), the 
noise removal viscosity η in (21) chosen such that η · δτ/|δx|2 = 5 × 10−4, and the local heat equation solver iterated for 
only a single time-step.

The density heatmap at various instances of time are presented in Fig. 22. At time t = 4.0, the anisotropic diffusion 
acting in the tangential direction to the interface � prevents grid noise from developing into fingers and corrupting the 
solution, while ensuring that the interface � itself remains sharp, see Fig. 22(a). By time t = 5.5, the solution begins to 
assume the classical “mushroom”-shaped profile (Fig. 22(b)), and at time t = 7.0, the roll-up begins to occur, see Fig. 22(c). 
The anisotropic diffusion ensures that the solution in the roll-up region does not become overly diffused, and this is demon-
strated in Fig. 22(d). This final figure should be compared with those figures in [13], which were produced with a finer mesh 
of 100 × 400 cells.

The WENO-Cτ -N solution shown in Fig. 22 compares very favorably with those in [13], which are either overly diffused 
(such as LL, CFLFh), or are corrupted by the small-scale structure at the interface (PPM, VH1). We note here that low 
resolution simulations generally exhibit a significant amount of mixing due to numerical diffusion [2]. This is in contrast 
with the results presented here, where the low resolution 50 × 200 WENO-Cτ -N simulation produces a solution with 
a sharper interface and more development in the roll-up region than the solutions obtained from the high resolution 
100 × 400 simulations in [13].

12.2.1. Comparison with isotropic artificial viscosity
If we instead use isotropic artificial viscosity, we cannot produce an RT simulation which is as good as that produce by 

the anisotropic scheme. Fig. 23 shows the density profile for the RT simulation using the isotropic C-method as described 
by the Euler-C system (8) with β E = 0 and βu = β v = β with four different values of β .

The choice of β = 1.0 is insufficient to smooth the density oscillations in the tangential direction, so that the fingers 
develop, interact with each other and eventually corrupt the solution. Setting β = 5.0 removes the density oscillations and 
produces a solution that is closer to the classic mushroom-shaped profile, but still results in a depression at the top of the 
mushroom. Moreover, there is very little roll-up occurring, as can be seen from Fig. 23(b). Increasing to β = 10.0 removes 
the depression at the top of the mushroom, but results in almost no roll-up, see Fig. 23(c). In Fig. 23(d), we show the result 
computed with β = 20.0, which is the value of β used for the anisotropic C-method simulation shown Fig. 22. The isotropic 
solution with β = 20 shows no roll-up at all.
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Fig. 23. Application of WENO-C -N (with isotropic viscosity) to the RT instability in [0, 1/6] × [0, 1] with 50 × 200 cells; figures are of the density ρ at the 
final time t = 8.5.

Fig. 24. Comparison of the L1 and L2 norms of vorticity ω for solutions computed with anisotropic or isotropic diffusion.

In Fig. 24, we compute the Lq norm (with q = 1, 2) of the vorticity ω := ∂x v − ∂yu, which is a measure of the local 
rotation of the fluid, and hence provides a measure of the amount of interface roll-up in the flow. It is evident that the 
solution computed with the anisotropic C-method displays the largest growth (in time) of the norm ‖ω(·, ·, t)‖Lq(�) . The 
simulation with isotropic diffusion and β = 1.0 has a distinct increase in ‖ω(·, ·, t)‖L1(�) at around time t = 4.5. This is 
due to the fingers that develop and roll-up; the growth then slows down due to the interaction between the fingers which 
causes mixing. The isotropic β = 5.0, β = 10.0 and β = 20.0 simulations share similar profiles for ‖ω(·, ·, t)‖Lq(�) , with all 
three displaying significantly less growth of vorticity than the simulation run using WENO-Cτ -N .

12.2.2. Suppression of noise with the noise detection and removal algorithm
In this section, we briefly discuss the role of the noise detection and removal algorithm described in §6 in suppressing 

noise that would otherwise occur and corrupt the solution. In Fig. 25, we compare the results from two simulations: one 
run using WENO-Cτ -N , which includes the noise detection and removal algorithm, and one run using WENO-Cτ , which 
does not include the noise detection and removal algorithm. The figures shown are of the horizontal velocity u at time 
t = 1.0. We recall that explicit forward Euler time integration is used for both simulations.

It is clear that the WENO-Cτ -N solution is much better than the WENO-Cτ solution. The noise that develops5 corrupts 
the WENO-Cτ solution at time t = 1.0, as shown in Fig. 25(a). This is in contrast to the WENO-Cτ -N solution, which remains 

5 The use of explicit forward Euler time-stepping to simulate low Mach flow results in extremely severe stability constraints and, although the CFL 
condition is not violated, solutions are quickly corrupted by high-frequency noise.
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Fig. 25. Figures demonstrating the ability of the wavelet-based noise detection and removal algorithm to suppress high-frequency spurious noise that can 
occur in the solution. Figures are of the horizontal velocity u. Fig. 25(a) shows the solution computed with WENO-Cτ , while Fig. 25(b) shows the solution 
computed with WENO-Cτ -N . Both solutions were solved in [0, 1/6] × [0, 1] with 50 × 200 cells and explicit forward Euler time integration, and are shown 
at time t = 1.0.

noise-free. We note here that the WENO-Cτ -N solution is unaffected at the interface �, due to the deactivation of the noise 
detection near the interface.

For the purpose of benchmarking our noise detection and removal procedure, we compare the algorithm with a simple 
alternative, namely the addition of a linear viscosity term to the right-hand side of the momentum equations (13b) and 
(13c) of the form

βl|δx|2
u , (33)

with βl the linear viscosity parameter. The resulting scheme is referred to as the WENO-Cτ -
u scheme.
Setting βl = 25.0 corresponds to the choice of η · δτ/|δx|2 = 5 × 10−4, which is the value used for the simulation shown 

in Fig. 22. We present in Fig. 26 the solutions obtained when the noise detection and removal algorithm is replaced by the 
linear viscosity (33), with various choices of βl .

The issue with the uniform application of linear viscosity (33) is that the parameter βl controlling the amount of diffusion 
needs to be large enough so as to suppress noise, while simultaneously small enough to allow some physical structure to 
develop in the KH mixing zones. For the RT problem considered here, this is not possible; for instance, the simulation run 
with βl = 25.0, shown in Fig. 26(d), is overly diffused with no structure at all in the roll-up region. The same is true, albeit 
to a lesser extent, with the choice of βl = 3.0, shown in Fig. 26(c). On the other hand, setting βl too small by choosing, for 
example, βl = 1.0 means that there is not enough viscosity to suppress the high frequency oscillations. This is demonstrated 
in Fig. 26(a). The same is true, again to a lesser extent, when βl is set as βl = 2.0, see Fig. 26(b). In this case, the noise is 
suppressed at the early stages, but begins to develop near the boundaries at later times, and again corrupts the solution. 
On the other hand, the use of the noise detection and removal algorithm allows for the use of a large amount of viscosity, 
due to the localized nature of the heat equation solver. The solution produced is noise-free, does not require the use of a 
smaller time-step, and retains the physical structure in the KH roll-up regions.

To quantitatively demonstrate the improvement in accuracy, we compare the solutions shown above with a “reference” 
solution U ∗ . This reference solution is computed using WENO-Cτ with 50 × 200 cells and explicit third order Runge-Kutta 
time integration; the use of a higher order in time method results in a noise-free solution. We define the L1 error norm of 
a computed quantity f as

E f (t) = 
x · 
y
M∑

i=1

N∑
j=1

| f (xi, y j, t) − f ∗(xi, y j, t)| , (34)

where f ∗ is the reference solution, and M and N are the number of cells in the x and y directions, respectively. For this 
test, M = 50 and N = 200.

In Table 4, we provide Eρ(t), Eu(t), and E v(t) at various times t for solutions computed using either WENO-Cτ , 
WENO-Cτ -N , or WENO-Cτ -
u. We see that the WENO-Cτ -N method produces solutions with smaller errors in all of 
the quantities and at each of the times t , which establishes the high accuracy of the method. Finally, we compare in Fig. 27
WENO-Cτ -N with WENO-Cτ -
u for βl = 2, which is the optimal artificial viscosity parameter value for the linear viscosity 
scheme. It is clear from the figure that the WENO-Cτ -N solution is much closer in appearance to the reference solution than 
the WENO-Cτ -
u solution is; the latter solution is overly smeared in the mixing regions due to the uniform application 
of viscosity, whereas the former solution retains the KH roll-up and matches almost exactly with the reference solution. 
These qualitative and quantitative observations establish the superiority of the noise detection and removal algorithm over 
the simple linear viscosity method.
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Fig. 26. Figures showing solutions computed with linear viscosity replacing the noise detection and removal algorithm. Solutions computed in [0, 1/6] ×
[0, 1] with 50 × 200 cells using WENO-Cτ and a linear viscosity term to suppress the noise.

Table 4
L1 error analysis for the RT problem at various times t .

Error Scheme Time

3.0 7.0 8.5

Eρ(t)

WENO-Cτ -N 1.066 × 10−4 6.286 × 10−3 9.180 × 10−3

WENO-Cτ 5.812 × 10−3 fail fail
WENO-Cτ -
u: βl = 1.0 3.914 × 10−4 8.033 × 10−3 fail
WENO-Cτ -
u: βl = 2.0 4.475 × 10−4 6.349 × 10−3 9.222 × 10−3

WENO-Cτ -
u: βl = 3.0 5.694 × 10−4 7.197 × 10−3 9.479 × 10−3

WENO-Cτ -
u: βl = 25.0 1.852 × 10−3 2.238 × 10−2 2.952 × 10−2

Eu(t)

WENO-Cτ -N 1.938 × 10−5 5.753 × 10−4 8.094 × 10−4

WENO-Cτ 5.569 × 10−3 fail fail
WENO-Cτ -
u: βl = 1.0 1.302 × 10−4 2.691 × 10−3 fail
WENO-Cτ -
u: βl = 2.0 6.694 × 10−5 6.013 × 10−4 8.819 × 10−4

WENO-Cτ -
u: βl = 3.0 7.921 × 10−5 6.205 × 10−4 9.393 × 10−4

WENO-Cτ -
u: βl = 25.0 2.040 × 10−4 1.085 × 10−3 1.160 × 10−3

E v (t)

WENO-Cτ -N 8.603 × 10−5 1.046 × 10−3 1.355 × 10−3

WENO-Cτ 4.794 × 10−3 fail fail
WENO-Cτ -
u: βl = 1.0 2.469 × 10−4 2.776 × 10−3 fail
WENO-Cτ -
u: βl = 2.0 1.015 × 10−4 1.109 × 10−3 1.480 × 10−3

WENO-Cτ -
u: βl = 3.0 1.137 × 10−4 1.172 × 10−3 1.587 × 10−3

WENO-Cτ -
u: βl = 25.0 2.651 × 10−4 2.253 × 10−3 2.820 × 10−3
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Fig. 27. Comparison of (a) WENO-Cτ -N , (b) WENO-Cτ with 3rd order Runge-Kutta, and (c) WENO-Cτ -
u with βl = 2.0. Figures are of the density ρ at the 
final time t = 8.5.

13. Concluding remarks

This paper presents the two-dimensional generalization of the 1-D C-method described in [18]. The 2-D C-method is 
a space-time smooth artificial viscosity scheme for adding isotropic diffusion to shock curves and anisotropic diffusion to 
contact discontinuities. We have applied the isotropic C-method to four difficult problems, namely the Noh problem, the 
Sedov point blast test, the Sod circular explosion problem, and the Mach 10 reflection test, and demonstrated that our 
method compares favorably to stand-alone WENO as well as the WENO-Noh scheme, the latter using the artificial viscosity 
method of Noh [15].

We have also demonstrated the efficacy of the anisotropic C-method. For problems requiring long-time evolution of 
contact discontinuities with hundreds of thousands of time-steps, the anisotropic C-method works extremely well. This 
method was applied to the RT instability problem of Liska-Wendroff [13], and was shown to be able to suppress tangential 
spikes, while keeping the interface sharp and not overly diffusing the KH roll-up regions.

For problems with shock-contact interaction, our C-method uses a C-function to track the shock and another Ĉ -function 
to track the contact discontinuity. These two functions interact with one another: when the shock interacts with the contact, 
the C tracking the shock goes to zero, allowing the Ĉ of the contact to stabilize the contact curve without dissipation from 
the shock front.

We have also described a simple shock-wall collision scheme for stabilizing shock fronts during wall collision and 
bounce-back, and demonstrated its ability to suppress post-collision noise for a Sod-type explosion problem and the double 
Mach 10 reflection test.

For high-frequency noise detection and removal, we have devised and implemented a simple 2-D wavelet-based scheme 
for detecting these oscillations followed by a highly localized (in both space and time) removal algorithm based on a local 
explicit heat equation solver. This noise detection and removal scheme has been applied to the RT and Noh problems, 
wherein it suppressed high-frequency noise while retaining sharp shock and contact fronts.

The qualitative and quantitative observations presented in this paper, together with the extensive accuracy studies pre-
sented in [18] in the 1-D case, indicate that the schemes are high-order and produce accurate solutions, even with the use 
of our highly simplified finite-difference WENO method.
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Table 5
Various numerical schemes used in the simulations.

Scheme Description

WENO standard fifth-order WENO procedure for the usual Euler 
equations (1).

WENO-Noh WENO scheme with Noh’s artificial viscosity method (24).
WENO-C WENO scheme with the isotropic C-method (8).
WENO-Cτ WENO scheme with the anisotropic C-method (13).
WENO-C-N and WENO-Cτ -N WENO-C and WENO-Cτ with the noise detection and re-

moval algorithm described in §6.
WENO-C-Ĉ WENO scheme with the isotropic C-method for shock fronts 

and the anisotropic C-method for contact discontinuities (see 
§10.1).

WENO-C-W WENO scheme with the shock-wall collision scheme (15).

Appendix A. Numerical discretization and schemes

In this section, we provide details for the WENO-based schemes used to produce the results in this paper. We first de-
scribe the simplified WENO procedure used for the spatial discretization of the nonlinear flux terms in the Euler equations. 
We then describe the implementation for the Euler-C and Euler-Cτ systems.

For readability, we will use Table 5 to refer to these various schemes.

A.1. WENO reconstruction procedure

Our WENO reconstruction procedure is formally fifth-order with upwinding performed based only on the sign of the 
velocity at the cell edges. In particular, no approximate Riemann solvers are used.

The spatial domain � = [x1, xM ] ×[y1, yN ] is subdivided into M · N cells, each with area δx · δy. We employ the notation

xi+ 1
2

= xi + xi+1

2
and y j+ 1

2
= y j + y j+1

2
.

Any quantity w evaluated at a cell center (xi, y j) shall be denoted by wi, j . Similarly, any quantity w evaluated at the center 
of the cell edge (xi± 1

2
, y j) shall be denoted by wi± 1

2 , j , and at the cell edge (xi , y j± 1
2
) by wi, j± 1

2
. The quantity w evaluated 

at the cell corners (xi± 1
2
, y j± 1

2
) is denoted by wi± 1

2 , j± 1
2

.

Given an array (ar,s) corresponding to cell-center values of the quantity a, and arrays fr± 1
2 ,s and gr,s± 1

2
corre-

sponding to cell-edge values of the quantities f and g , respectively, we define the (i, j)th component of the array 
WENO

(
ar,s, fr± 1

2 ,s, gr,s± 1
2

)
by

[
WENO

(
ar,s, fr± 1

2 ,s, gr,s± 1
2

)]
i, j

=
[

WENOx

(
ar,s, fr± 1

2 ,s

)]
i, j

+
[

WENOy

(
ar,s, gr,s± 1

2

)]
i, j

,

with [
WENOx

(
ar,s, fr± 1

2 ,s

)]
i, j

= 1

δx

(
ãi+ 1

2 , j f i+ 1
2 , j − ãi− 1

2 , j f i− 1
2 , j

)
[

WENOy

(
ar,s, gr,s± 1

2

)]
i, j

= 1

δy

(
ãi, j+ 1

2
gi, j+ 1

2
− ãi, j− 1

2
gi, j− 1

2

)
,

where the cell-edge values ãi± 1
2 , j and ãi, j± 1

2
are calculated using a standard fifth-order WENO reconstruction procedure 

(see [8,26]) with upwinding performed based on the sign of f i± 1
2 , j and gi, j± 1

2
, respectively.

Then, defining the vector U = [ρ, ρu, ρv, E]T , we construct the operator FWENO as

[
FWENO(U r,s)

]
i, j = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
WENO

(
ρr,s, ûr± 1

2 ,s, v̂r,s± 1
2

)]
i, j[

WENO
(
(ρu)r,s, ûr± 1

2 ,s, v̂r,s± 1
2

)]
i, j

+ ∂̃x,4 pi, j

[
WENO

(
(ρv)r,s, ûr± 1

2 ,s, v̂r,s± 1
2

)]
i, j

+ ∂̃y,4 pi, j

[
WENO

(
(E + p)r,s, ûr± 1

2 ,s, v̂r,s± 1
2

)]
i, j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Here, we use the notation ∂̃x,4 pi, j and ∂̃y,4 pi, j to denote the fourth-order central difference approximation for ∂x p and 
∂y p, respectively, at the cell-center (xi, y j). The cell-edge velocities ûi± 1

2 , j and v̂ i, j± 1
2

are calculated using a fourth-order 
averaging:

ûi− 1
2 , j = −ui−2, j + 7ui−1, j + 7ui, j − ui+1, j

12
,

v̂ i, j− 1
2

= −vi, j−2 + 7vi, j−1 + 7vi, j − vi, j+1

12
.

The operator FWENO provides the discretization of the nonlinear flux terms in the Euler systems (1), (8), (13) and (15). 
Below, we describe the discretization and implementation of the various forms of artificial viscosity used in this paper. If 
no artificial viscosity is implemented, then we have the semi-discrete equations

d

dt
U i, j = [FWENO(U r,s)

]
i, j

corresponding to the Euler system (1). Given the solution at a time-step tn = n · δt , denoted by U n
i, j , time integration is done 

using an explicit kth order Runge-Kutta method:

U n+1
i, j = RK(U n

i, j,
[
FWENO(U n

r,s)
]

i, j
;k) . (35)

We will refer to the scheme (35) as “WENO”, or “stand-alone WENO”.

A.2. The WENO-C and WENO-C-N schemes

We first describe the discretization of the Euler-C system (8). Given arrays (wr,s), (Cr,s) and (ρr,s) corresponding to 
cell-center values of the quantities w , C and ρ , and a time-dependent function β̃ , the (i, j)th component of the array 
DIFF(wr,s, Cr,s, ρr,s; β̃) is defined as

[
DIFF(wr,s, Cr,s,ρr,s; β̃)

]
i, j

:= β̃

δx

(
ρi+ 1

2 , jCi+ 1
2 , j ∂̃ wi+ 1

2 , j − ρi− 1
2 , jCi− 1

2 , j ∂̃ wi− 1
2 , j

)

+ β̃

δy

(
ρi, j+ 1

2
Ci, j+ 1

2
∂̃ wi, j+ 1

2
− ρi, j− 1

2
Ci, j− 1

2
∂̃ wi, j− 1

2

)
,

where

∂̃ wi+ 1
2 , j = wi+1, j − wi, j

δx
and ∂̃ wi, j+ 1

2
= wi, j+1 − wi, j

δy
,

and the notation zi± 1
2 , j and zi, j± 1

2
denote the quantity evaluated at the cell edges (xi± 1

2
, y j) and (xi, y j± 1

2
), respectively, 

using a standard averaging e.g.

zi+ 1
2 , j = zi+1, j + zi, j

2
.

The operator DDIFF is then defined by

[
DDIFF(U r,s, Cr,s)

]
i, j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0[
DIFF

(
ur,s, Cr,s,ρr,s; β̃u

)]
i, j[

DIFF
(

vr,s, Cr,s,ρr,s; β̃u
)]

i, j[
DIFF

(
(E/ρ)r,s, Cr,s,ρr,s; β̃ E

)]
i, j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the artificial viscosity coefficients are given by (9).
We also define the operator L(Cr,s; ε, κ) by

[
L(Cr,s;ε,κ)

]
i, j = S(ur,s)

ε|δx| ([Gρ ]i, j − Ci, j) + κ S(ur,s)|δx|
(
∂̃Ci+ 1

2 , j − ∂̃Ci− 1
2 , j + ∂̃Ci, j+ 1

2
− ∂̃Ci, j− 1

2

)
,

where S(ur,s) is given by (3).

89



78 R. Ramani et al. / Journal of Computational Physics 387 (2019) 45–80

The isotropic Euler-C system (8) is then approximated by the semi-discrete equations{
d
dt U i, j = [FWENO(U r,s) + DDIFF(U r,s, Cr,s)

]
i, j ,

d
dt Ci, j = [L(Cr,s;ε,κ)

]
i, j ,

and time integration is again done using a kth order Runge-Kutta method:

U n+1
i, j = RK

(
U n

i, j,
[
FWENO(U n

r,s) + DDIFF(U n
r,s, Cn

r,s)
]

i, j
;k
)

, (36a)

Cn+1
i, j = RK

(
Cn

i, j,
[
L(Cn

r,s;ε,κ)
]

i, j
;k
)

. (36b)

We will refer to the scheme (36) as the WENO-C scheme. When coupled with the noise detection and removal algorithm 
as detailed in §6.3, the scheme will be referred to as the WENO-C-N scheme.

A.3. The WENO-Cτ and WENO-Cτ -N schemes

Next, we describe the discretization procedure for the Euler-Cτ system (13). The anisotropic diffusion operator DIFFτ is 
defined by[

DIFFτ (wr,s, Cr,s, Cτ1
r,s, Cτ2

r,s,ρr,s; β̃)
]

i, j
:=

β̃

δx

(
ρi+ 1

2 , jCi+ 1
2 , jC

τ1

i+ 1
2 , j

Cτ1

i+ 1
2 , j

∂̃ wi+ 1
2 , j − ρi− 1

2 , jCi− 1
2 , jC

τ1

i− 1
2 , j

Cτ1

i− 1
2 , j

∂̃ wi− 1
2 , j

)

+ β̃

δy

(
ρi, j+ 1

2
Ci, j+ 1

2
Cτ2

i, j+ 1
2

Cτ2

i, j+ 1
2
∂̃ wi, j+ 1

2
− ρi, j− 1

2
Ci, j− 1

2
Cτ2

i, j− 1
2

Cτ2

i, j− 1
2
∂̃ wi, j− 1

2

)

+ β̃

δx

(
ρi+ 1

2 , jCi+ 1
2 , jC

τ1

i+ 1
2 , j

Cτ2

i+ 1
2 , j

∂̂ wi+ 1
2 , j − ρi− 1

2 , jCi− 1
2 , jC

τ1

i− 1
2 , j

Cτ2

i− 1
2 , j

∂̂ wi− 1
2 , j

)

+ β̃

δy

(
ρi, j+ 1

2
Ci, j+ 1

2
Cτ1

i, j+ 1
2

Cτ2

i, j+ 1
2
∂̂ wi, j+ 1

2
− ρi, j− 1

2
Ci, j− 1

2
Cτ1

i, j− 1
2

Cτ2

i, j− 1
2
∂̂ wi, j− 1

2

)
,

where ∂̂wi± 1
2 , j and ∂̂ wi, j± 1

2
are approximations to the derivatives ∂y w at (xi± 1

2
, y j) and ∂x w at (xi, y j± 1

2
), respectively:

∂̂ wi± 1
2 , j =

wi± 1
2 , j+ 1

2
− wi± 1

2 , j− 1
2

δy
,

∂̂ wi, j± 1
2

=
wi+ 1

2 , j± 1
2

− wi− 1
2 , j± 1

2

δx
.

We use the notation wi± 1
2 , j± 1

2
to mean the quantity w evaluated at the cell corner (xi± 1

2
, y j± 1

2
) using a simple averaging. 

For example,

wi+ 1
2 , j+ 1

2
= wi, j + wi+1, j + wi, j+1 + wi+1, j+1

4
.

Defining the vector C = [C, Cτ1 , Cτ2 ]T , we construct the operator Dτ
DIFF as

[
Dτ

DIFF(U r,s, C r,s)
]

i, j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0[
DIFFτ

(
ur,s, Cr,s, Cτ1

r,s, Cτ2
r,s,ρr,s; β̃

)]
i, j[

DIFFτ

(
vr,s, Cr,s, Cτ1

r,s, Cτ2
r,s,ρr,s; β̃

)]
i, j

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the artificial viscosity coefficient β̃ is defined by (14).
The anisotropic Euler-Cτ system (13) may then be approximated by the semi-discrete equations{

d
dt U i, j = [FWENO(U r,s) + Dτ

DIFF(U r,s, C r,s)
]

i, j ,

d
dt C i, j = [L(C r,s;ε,κ)

]
i, j ,

and time-integration is done using a kth order Runge-Kutta solver:
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U n+1
i, j = RK

(
U n

i, j,
[
FWENO(U n

r,s) + Dτ
DIFF(U n

r,s, Cn
r,s)
]

i, j
;k
)

, (37a)

Cn+1
i, j = RK

(
Cn

i, j,
[
L(Cn

r,s;ε,κ)
]

i, j
;k
)

. (37b)

We refer to the anisotropic scheme (37) as the WENO-Cτ scheme or, when coupled with the noise detection and removal 
algorithm in §6.3, as the WENO-Cτ -N scheme.

A.4. Boundary conditions and ghost node values

In general, the boundary conditions for the various problems considered here are imposed through the assigning of 
values to the ghost nodes. Generally, either an even extension or an odd extension of the variable in question is employed. 
For our (formally) fifth-order WENO reconstruction procedure, 7 nodes in each direction are used to reconstruct the flux 
at a cell-center, so that three ghost node values are required in each direction. By an even extension at the left and right 
boundaries of the variable w , we mean that

w1−i, j = w1+i, j and w M+i, j = w M−i, j for i = 1,2,3 ,

while an odd extension at the left and right boundaries means

w1−i, j = −w1+i, j and w M+i, j = −w M−i, j for i = 1,2,3 .

An analogous identity holds for the top and bottom boundaries.

A.4.1. Boundary conditions for the RT problem
The numerical solution to the Rayleigh-Taylor problem 12 is computed on the half-domain [0, 1/6] × [01] and then 

reflected appropriately to yield the solution on all of � = [−1/6, 1/6] × [0, 1]. Consequently, reflecting boundary conditions 
are used on the left boundary x = 0 and right boundary x = 1/6. These are imposed through the ghost-node values; an even 
extension of ρ , E , ρv , C , and Cτ1 is imposed, while an odd extension of ρu and Cτ2 is enforced. At the top and bottom 
boundaries, ρ , ρu, C , Cτ1 , and Cτ2 are extended in an even fashion, ρv is extended in an odd fashion, and the pressure p
is extended linearly so as to preserve hydrostatic equilibrium:

pi,1− j = 2pi,1− j+1 − pi,1− j+2 and pi,N+ j = 2pi,N+ j−1 − pi,N+ j−2

for j = 1, 2, 3 and i = 1, . . . , M .
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We develop a novel multiscale model of interface motion for the Rayleigh-Taylor instability 
(RTI) and Richtmyer-Meshkov instability (RMI) for two-dimensional, inviscid, compressible 
flows with vorticity, which yields a fast-running numerical algorithm that produces both 
qualitatively and quantitatively similar results to a resolved gas dynamics code, while 
running approximately two orders of magnitude (in time) faster. Our multiscale model 
is founded upon a new compressible-incompressible decomposition of the velocity field 
u = v + w . The incompressible component w of the velocity is also irrotational and is 
solved using a new asymptotic model of the Birkhoff-Rott singular integral formulation of 
the incompressible Euler equations, which reduces the problem to one spatial dimension. 
This asymptotic model, called the higher-order z-model, is derived using small nonlocality 
in the asymptotic parameter, allows for interface turn-over and roll-up, and yields a 
significant simplification for the equation describing the evolution of the amplitude of 
vorticity. This incompressible component w of the velocity controls the small scale 
structures of the interface and can be solved efficiently on fine grids. Meanwhile, the 
compressible component of the velocity v remains continuous near contact discontinuities 
and can be computed on relatively coarse grids, while receiving subgrid scale information 
from w . We first validate the incompressible higher-order z-model by comparison with 
classical RTI experiments as well as full point vortex simulations. We then consider both 
the RTI and the RMI problems for our multiscale model of compressible flow with vorticity, 
and show excellent agreement with our high-resolution gas dynamics solutions.
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1. Introduction

The instability that occurs when an interface separating two fluids of different densities is perturbed and subjected to 
an acceleration force is a fundamental problem in fluid mechanics. The Rayleigh-Taylor instability (RTI) [67,96] occurs when 
the lighter fluid is accelerated towards the heavier fluid (under the action of gravity, for instance). The Richtmyer-Meshkov 
instability (RMI) [81,71] is initiated by the passage of a shock wave across the perturbed interface separating the two fluids. 
In either case, perturbations of the interface initially grow according to the linear theory, before the system enters the 
nonlinear regime, in which the light fluid bubbles into the heavy fluid, while the heavy fluid spikes into the light fluid. 
The velocity of the resulting flow is discontinuous at the material interface (or contact discontintuity), which initiates the 
Kelvin-Helmholtz instability (KHI) [89,50]. This causes the interface to roll up into complex vortical structures, and eventually 
leads to turbulent mixing. Each of these instabilities arises in numerous important applications, including in astrophysics 
[51], inertial confinement fusion [13], and ocean mixing [90]. We refer the reader to the works [85,58,15] and the references 
therein for further details.

The fundamental mathematical model for the RT and RM instabilities is the Euler system of hydrodynamics equa-
tions, consisting of the conservation of mass, momentum, and energy. The mathematical analysis of the Euler equations 
is extremely challenging due to the ill-posed nature of the equations in the absence of stabilizing mechanisms such as 
surface tension or viscosity, with the RTI and RMI causing growth of perturbations at the smallest scales available. The 
highly unstable nature of both the RTI and RMI also poses significant difficulties for numerical methods, and the devel-
opment of algorithms to study these instabilities has been the subject of intensive research over the last several decades 
[32,9,40,98,41,36,1,59], and continues to remain a challenge.

As the linear theory shows, the highest frequency perturbations of the interface have the largest growth rates; numerical 
solutions thus often suffer from the development of spurious small scale structure [62], which does not appear to agree 
with laboratory experiments [104]. Numerical methods with a large amount of implicit diffusion suppress these small scale 
eddies, but, in doing so, prevent the development of the KHI mixing zones.

Moreover, even when numerical schemes can be manipulated into producing better solutions [78], simulations can be 
prohibitively (computationally) expensive. Direct Numerical Simulations (DNS) solve the complete governing equations with 
exact physical parameters and sufficient resolution to represent all the scales of the flow [73], but the requirement that all 
the spatial and temporal scales be numerically resolved results in overwhelmingly expensive calculations, both in terms of 
computational runtime, as well as other basic computational resources, such as memory. As such, simulations are currently 
generally limited to small Reynolds number flows and simple geometries [102]. These observations indicate a great need for 
fast algorithms that can be used to accurately predict the RTI and RMI mixing layers and associated growth rates.

In this work, we develop a multiscale model for interface evolution during RTI and RMI for two-dimensional, inviscid, 
compressible flow with vorticity. Our multiscale model is founded upon a new compressible-incompressible decomposi-
tion of the velocity field u = v + w , which is, in turn, based upon a two-phase elliptic system of Hodge type [19]. The 
incompressible component w of the velocity is also irrotational and is solved using a new asymptotic model of the Birkhoff-
Rott singular-integral formulation of the incompressible Euler equations, which already reduces the problem to one spatial 
dimension. This asymptotic model, called the higher-order z-model, is derived using small nonlocality in the asymptotic pa-
rameter, allows for interface turn-over and roll up, and yields a significant simplification for the equation describing the 
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evolution of the amplitude of vorticity. This incompressible component w of the velocity controls the small scale structures 
of the interface and can be solved efficiently on fine grids. Meanwhile, the compressible component of the velocity v field 
remains smooth near contact discontinuities and can be computed on relatively coarse grids, while receiving subgrid scale 
information from w .

Specifically, our higher-order z-model, approximates the Birkhoff-Rott (BR) equations [26] of interface evolution in 
two-dimensional multiphase incompressible and irrotational flow, which are, in turn, a reduction of the incompress-
ible and irrotational Euler equation to one-dimensional evolution for the parameterization of the interface z(α, t) =
(z1(α, t), z2(α, t)) and the amplitude of vorticity �(α, t). The original (low-order) z-model was derived by Granero-
Belinchón and Shkoller [44] using an asymptotic expansion in a small non-locality parameter, and its main advantage over 
the full BR evolution is a drastic simplification of the dynamics for the amplitude of vorticity � . Without this simplification, 
the BR dynamics of � is nonlinear, non-local, and is in fact a Fredholm integro-differential equation of the second kind. 
Numerical methods for this type of equation are thus often quite complex and computationally expensive. On the other 
hand, the � dynamics given by the z-model allow us to implement an extremely simple numerical method which avoids 
costly upwinding and iterative procedures [7,92]; in particular, we use a simple Fourier collocation method to evolve � . For 
the evolution of the interface z, the original (low-order) z-model of [44] used a local equation, while our new (high-order) 
z-model instead uses Krasny’s δ-desingularization [56] of the singular integral kernel. The solution of z and � then provide 
us with the incompressible velocity field w via an efficient kernel computation. The compressible velocity field v is solved 
on a very coarse grid (while receiving small-scale information from w) using a very simple WENO scheme together with a 
nonlinear, spacetime smooth, artificial viscosity method termed the C-method [80,77,78].

We first validate our incompressible and irrotational (high-order) z-model by performing a number of numerical ex-
periments, including both the single-mode and multi-mode RTI, to demonstrate the accuracy of the z-model and its 
numerical implementation. The computed z-model solutions are compared with observations from laboratory experiments 
[104,79,107], and are shown to achieve very similar growth rates of the bubbles and spikes, as well as the mixing layer. We 
additionally compare our z-model solutions with “reference” solutions computed using a sophisticated numerical method 
for the complete Birkhoff-Rott equations [92], and show that the two solutions are in excellent agreement, thereby demon-
strating the validity of the z-model. Moreover, our simplified model equations allow for a numerical computation that is 
a factor of at least 75 times faster than the reference solution calculation. We also compare the simple Krasny desingular-
ization used in the numerical implementation of the z-model with two other higher-order regularizations that smooth the 
singular integral kernel via convolution with Gaussian-type functions which satisfy certain moment conditions. We demon-
strate that all three numerical methods for smoothing the singular integral produce similar numerical solutions (in a sense 
to be made precise below); as will be shown, these solutions are in reasonable agreement in the asymptotic limit as the 
mesh spacing �α and viscosity parameter δ converge to zero.

Then, we use our multiscale model, designed to simulate interface evolution in compressible flows with vorticity. As 
we noted above, we decompose u = v + w , where w is both divergence-free and curl-free, but has a discontinuity in 
its tangential component across the contact discontinuity, while v is continuous across the contact, but is forced by the 
bulk compression and vorticity of the fluid. By analogy with turbulence models, such as large-eddy simulation (LES) [70], 
Reynolds-averaged Navier-Stokes (RANS), and Lagrangian-averaged Navier-Stokes (LANS-α) [72], our multiscale model in-
volves the decomposition of the flow into a part which can be solved on a coarse grid (the mean flow), and a part which 
must be solved on a fine grid (the sub-grid scale fluctuations). The novelty of our approach is that, for the RTI and RMI, the 
fine grid coincides with the interface itself, and is thus one-dimensional. This means that fine structures can be simulated 
with much less computational expense than is required for fully two-dimensional calculations on similarly fine meshes.

We describe a simple Eulerian-Lagrangian algorithm for our multiscale model that couples the equations on a coarse 
two-dimensional mesh with the equations on the high resolution one-dimensional interface. For modeling the RMI, a mod-
ified set of equations is used, in which we account for both the effects of shock-contact interaction, as well as the classical 
Taylor “frozen turbulence” hypothesis [95]. We then discuss the numerical implementation of the algorithm, which uses our 
incompressible z-model, as well as simple interpolation and integral-kernel calculation techniques. A number of numerical 
experiments for the RTI and RMI are performed to demonstrate the efficacy of our multiscale model and algorithm for com-
pressible flows with vorticity. In particular, we show that our algorithm produces solutions that agree both qualitatively and 
quantitatively with (relatively) high-resolution reference solutions. We again perform some basic convergence studies, and 
find good agreement between the multiscale solutions and high-resolution reference solutions in the limit as the interfacial 
mesh spacing �α and desingularization parameter δ converge to zero. Moreover, the run times of our multiscale algorithm 
are two orders of magnitude (or more) faster than those of the corresponding high-resolution reference solutions.

Outline of the paper. Section 2 is devoted to the notation and definitions that will be used throughout the paper. In Sec-
tion 3, we introduce the full system of Euler equations for compressible flow, followed by the incompressible and irrotational 
simplification. For the latter, we explain how those equations can be solved using the Birkhoff-Rott singular integral-kernel
equations for the interface parameterization and amplitude of vorticity. We then describe our asymptotic (in nonlocality) 
z-model. We next consider the full compressible Euler equations as a two-phase elliptic system for the velocity, and derive 
a novel compressible-incompressible decomposition of the velocity. This decomposition is the foundation of our multiscale 
model and algorithm.
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In Section 4, we consider the numerical implementation of the incompressible z-model. A simple numerical method is 
introduced, and results for several numerical experiments are shown, including comparisons with laboratory experiments, 
theoretical predictions and models, and benchmark numerical simulations. We then present, in Section 5, our multiscale 
model and algorithms for the compressible RTI and RMI, and give details about their numerical implementations.

Our multiscale algorithm is then applied to two RTI and two RMI test problems Section 6, and compared against both 
high-resolution simulations and low-resolution simulations. Finally, our conclusions are in Section 7. Two short sections 
of the Appendix are provided: the first concerns mesh refinement studies for the multiscale algorithm and the second 
summarizes our numerical method for gas dynamics.

2. Preliminaries

2.1. Some notation and definitions

2.1.1. Derivatives
We write

∂i f = ∂ f

∂xi
for i = 1,2 , ∂t f = ∂ f

∂t
, ∇ = (∂1, ∂2) , ∇⊥ = (−∂2, ∂1) ,

and for a vector F ,

div F = ∇ · F and curl F = ∇⊥ · F .

The Laplace operator is defined as � = ∂2
1 + ∂2

2 . Given a transport velocity u(x, t), we shall denote the material derivative 
∂t + u · ∇ by D

Dt .

2.1.2. Fourier series
Let TL denote the interval [−L/2, L/2]. If f : TL → R is a square-integrable L-periodic function, then it has the 

Fourier series representation f (α) =
∞∑

k=−∞
f̂ (k)e

2π ikα
L for all α ∈ TL , where the complex Fourier coefficients are defined 

by F{ f }(k) ≡ f̂ (k) = 1

L

∫
TL

f (α)e− 2π ikα
L dα. We have the following standard identity:

F{∂n
α f }(k) =

(
2iπ

L
k

)n

f̂ (k) , (1)

where ∂α = ∂
∂α . We shall sometimes write f̂k for f̂ (k).

2.1.3. Principal value integral
The principal value integral of a function f :R →R is defined as

P
∫
R

f (β)dβ := lim
ε→0+

∫
(−1/ε,−ε)∪(ε,1/ε)

f (β)dβ . (2)

2.1.4. Hilbert transform
The Hilbert transform of a function f :R →R is defined as

H f (α) = 1

π
P
∫
R

f (β)

α − β
dβ . (3)

If f is an L-periodic function on TL , then

H f (α) = 1

L
P
∫
TL

f (β)

tan(π
L (α − β))

dβ . (4)

Equivalently, using the Fourier representation, the Hilbert transform H can be defined as

Ĥ f (k) = −isgn(k) f̂ (k) . (5)

In particular, we note that H2 = −1.
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2.1.5. Discrete operators in Fourier space
Let α ∈TL . We discretize the parameter α with N + 1 = 2r + 1 nodes,

αk = −L/2 + (k − 1)�α ,

with �α = L/N . Given an L-periodic function f (α), we denote by fk = f (αk) the function f evaluated at a point αk ∈ TL

Let F̃ and F̃−1 denote the discrete Fourier and inverse Fourier transforms, respectively, defined for sequences ( fk) of length 
N = 2r by

F̃ { fk}m =
N∑

l=1

fl · e− 2iπ
N (m−1)(l−1) and F̃−1 { f̂m

}
k = 1

N

N∑
l=1

f̂ l · e
2iπ

N (k−1)(l−1) .

We define the discrete Fourier operators (Hk), (Dk), (D2
k ) ∈CN as

Hk =

⎧⎪⎨⎪⎩
0 if k = 1 ,

−i if 2 ≤ k ≤ (N + 1)/2 ,

i if k > (N + 1)/2 ,

(6)

Dk =

⎧⎪⎨⎪⎩
2π i

L (k − 1) if k < (N + 1)/2 ,

0 if k = (N + 1)/2 ,

− 2π i
L (N − k) if k > (N + 1)/2 ,

(7)

D2
k =

⎧⎪⎨⎪⎩−
(

2π
L

)2
(k − 1)2 if k ≤ (N + 1)/2 ,

−
(

2π
L

)2
(N − k)2 if k > (N + 1)/2 .

(8)

Formula (6) is the discrete Hilbert transform in Fourier space, while (7) and (8) are the discrete derivative operators ∂α and 
∂2
α , respectively, in Fourier space.

2.2. Computational platform and code optimization

All of the numerical simulations conducted in this work were run on a Macbook Pro laptop using a 2.4 GHz Intel Core 
i5 processor with 8 GB of RAM. The operating system is macOS High Sierra 10.13.6, and the GFortran F90 compiler is used.

The codes for the numerical methods described in the paper are implemented in the same programming framework, but 
are not otherwise specially optimized (apart from a specific calculation described in the paper). The same input, output, and 
timing routines are used in all of the codes. This consistency allows for a reliable comparison of the different algorithms 
and their associated imposed computational burden.

3. The Euler equations

3.1. The compressible Euler equations

The fundamental mathematical model for the motion of an inviscid two-dimensional fluid is given by the compressible 
Euler equations:

∂tρ + div(ρu) = 0 , (9a)

∂t(ρu) + div(ρu ⊗ u) + ∇p + ρge2 = 0 , (9b)

∂t E + div(u(E + p)) + ρgu2 = 0 , (9c)

where ⊗ denotes the tensor product, and div M denotes the row-wise divergence of a matrix M . The velocity vector is u =
(u1 , u2) with horizontal component u1 and vertical component u2, ρ > 0 is the fluid density (assumed strictly positive), E
denotes the energy, and p is the pressure defined by an equation of state. These equations are, in fact, the basic conservation 
laws of fluid dynamics: (9a) is conservation of mass, (9b) is conservation of linear momentum, and (9c) is conservation of 
energy.

The system (9) can be written in classical conservation-law form as the Cauchy problem

∂tU(x, t) + ∂x1 F(U(x, t)) + ∂x2 G(U(x, t)) = H(x, t), x ∈R2 , t > 0, (10a)

U(x,0) = U0(x), x ∈R2 , t = 0, (10b)

where the 4-vector U and the flux functions F(U) and G(U) are defined as
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Fig. 1. An example of a time-dependent contact discontinuity �(t) separating the two fluid regions �+(t) and �−(t).

U =

⎛⎜⎜⎝
ρ

ρu1
ρu2

E

⎞⎟⎟⎠ and F(U) =

⎛⎜⎜⎝
ρu1

ρu2
1 + p

ρu1u2
u1(E + p)

⎞⎟⎟⎠ and G(U) =

⎛⎜⎜⎝
ρu2

ρu1u2

ρu2
2 + p

u2(E + p)

⎞⎟⎟⎠ . (11)

The space coordinate is x = (x1, x2), with x1 denoting the horizontal component, x2 denoting the vertical component, 
and t ≥ 0 denoting time. The function H denotes the forcing function due to gravity, and so will be given as H =
(0 , 0 , −ρg , −ρgu2), where g is a gravitational acceleration constant. The pressure p is defined by the ideal gas law,

p = (γ − 1)

(
E − 1

2
ρ|u|2

)
, (12)

where γ is the adiabatic constant, which we will assume takes the value γ = 1.4, unless otherwise stated. We also define 
the specific internal energy per unit mass of the fluid as e = p/(ρ(γ − 1)). Once the initial data u0(x), ρ0(x), E0(x) are 
specified, solutions of (10) provide the velocity, density, and energy for each instant of time for which the solution exits.

3.2. The incompressible and irrotational Euler equations

In the absence of sound waves, the system (9) can be simplified to model incompressible flows. The incompressible Euler 
equations are written as

ρ [∂t w(x, t) + (w · ∇)w] + ∇p + gρe2 = 0, x ∈R2 , t > 0, (13a)

div w = 0, x ∈R2 , t ≥ 0, (13b)

w(x,0) = w0(x), x ∈R2 , t = 0 , (13c)

where w = (w1, w2) denotes a divergence-free velocity vector field, the density ρ is assumed to be a constant (or piecewise 
constant as we shall consider below), and the pressure p is a Lagrange multiplier which enforces the incompressibility 
constraint (13b). We define the two-dimensional vorticity function ω = curl w , where

curl w := ∇⊥ · w = ∂1 w2 − ∂2 w1 .

Computing the curl of (13a) and using (13b) shows that the two-dimensional vorticity is transported by incompressible 
flows,

∂tω + w · ∇ω = 0 ,

and hence if the initial velocity w0(x) is chosen to be irrotational such that ω0(x) = 0, then ω(x, t) = 0 for all time t for 
which the solution exists. Thus, for such data, we supplement (13) with

curl w = 0, x ∈ R2 , t ≥ 0 . (13d)

3.3. The compressible Euler equations as a two-phase hyperbolic system

We are particularly interested in two-dimensional discontinuous solutions of the Euler equations (10) which propagate 
curves of discontinuity, whose evolution is determined by the Rankine-Hugoniot conditions (see, for example, [31]). Specif-
ically, our focus is on two-dimensional solutions U = (ρ, ρu1, ρu2, E) to (10) which have jump discontinuities across a 
time-dependent, space-periodic material interface �(t) (see Fig. 1).

The two-dimensional fluid domain is written as

R2 = �+(t) ∪ �−(t) ∪ �(t) ,

where �+(t) denotes the time-dependent open domain lying above �(t), while �−(t) denotes the open domain lying below 
�(t). We let n(·, t) denote the unit normal vector to �(t) pointing into �+(t) and let τ (·, t) denote the unit tangent vector 
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to �(t), so that the pair (τ , n) denote a right-handed basis. We denote by U+ the solution in the domain �+(t) and by U− , 
the solution in �−(t). The jump of a function U across �(t) is denoted by

�U� = U+ − U− on �(t) .

The Rankine-Hugoniot conditions relate the speed of propagation σ(t) of the curve of discontinuity �(t) with the jump 
discontinuity in the variables U = (ρ, ρu1, ρu2, E) via the relation

σ �ρ� = �ρu · n� , (14a)

σ �ρu� = �(ρu · n)u + pn� , (14b)

σ � E � = �(E + p)u · n� , (14c)

which represent, respectively, the conservation of mass, linear momentum, and energy across the discontinuity. Notice that 
(14b) admits solutions with � p� = 0 and �(σ − u · n)ρu� = 0, and that the latter condition is satisfied if u± · n = σ . Such 
discontinuities are known as contact discontinuities, in which case the interface �(t) is transported by the fluid velocity 
u, and the pressure p is continuous across �(t). Contact discontinuities are the class of two-dimensional discontinuous 
solutions solving the following coupled two-phase system of hyperbolic equations:

∂tρ
± + div(ρu±) = 0, in �±(t) , (15a)

∂t(ρ
±u±) + div(ρ±u± ⊗ u±) + ∇p± + ρge2 = 0, in �±(t) , (15b)

∂t E± + div(u±(E± + p±)) + ρgu±
2 = 0, in �±(t) , (15c)

�u · n� = 0, on �(t) , (15d)

�u · τ � 
= 0, on �(t) , (15e)

� p� = 0, on �(t) , (15f)(
u±(x,0),ρ±(x,0), E±(x,0),�(0)

)= (u±
0 ,ρ±

0 , E±
0 ,�0

)
, at t = 0 . (15g)

As already noted the interface �(t) is transported by the velocity u and we will make the dynamics of �(t) precise, once we 
introduce a parameterization for �(t). The tangential velocity jump discontinuity is the primary mechanism that initiates 
the Kelvin-Helmholtz instability . The densities ρ± and the energies E± are, in general, also discontinuous across �(t). The 
initial data is specified in (15g).

3.4. The two-phase incompressible and irrotational Euler equations

The incompressible and irrotational Euler equations for two-phase flow are written as

ρ± (∂t w± + w± · ∇w±)+ ∇p± + ρ± ge2 = 0 in �±(t) , (16a)

curl w = div w = 0 in �±(t) , (16b)

� w · n� = 0 on �(t) , (16c)

� w · τ � 
= 0 on �(t) , (16d)

� p� = 0 on �(t) , (16e)(
w±(x,0),�(0)

)= (w±
0 ,�0

)
at t = 0 , (16f)

and ρ+ and ρ− are constant in each phase. Again, the interface �(t) is transported by the velocity w , and for incompressible 
and irrotational flows, the interface �(t) is called a vortex sheet, because the vorticity is restricted to the one-dimensional 
interface as a measure, as will be made precise.

Incompressibility and irrotationality of the flow allow for a reduction of the system (16) to a coupled system of evolution 
equations in one space dimension. We let TL = [−L/2 , L/2] denote a (periodic) interval of length L, and introduce a param-
eterization of the interface �(t) by a mapping z :TL →R2, so that for each α in TL , the vector z(α, t) = (z1(α, t), z2(α, t))
represents a point on the interface �(t). Moreover, for any α0, the vector ∂αz(α0, t) is tangent to �(t) at the point z(α0, t), 
and τ = ∂αz/|∂αz| is the unit tangent vector at that point (as shown in Fig. 2).

Now, since �(t) moves with speed w · n, it follows that ∂t z(α, t) = [w(z(α, t), t) · n]n and that the tangential motion of 
the interface ∂t z · ∂αz has no constraints at all. The dynamics of the interface �(t) are governed by the evolution equation

∂t z(α, t) = w(z(α, t), t) . (17)
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Fig. 2. The curve �(t) is parameterized by z(α, t) = (z1(α, t), z2(α, t)). A tangent vector at a point z(α, t) on �(t) is given by ∂α z(α, t).

The vorticity ω vanishes in each of �±(t), and is in fact a measure supported on �(t), written as

ω = �δ�(t) ,

where δ�(t) is the Dirac delta distribution supported on �(t), and the function � is the amplitude of vorticity along �(t). 
More precisely, if ϕ is any smooth test function with compact support in R2, then

〈ω ,ϕ〉 =
∫
R

�(β, t)ϕ(z(β, t))dβ .

The amplitude of vorticity � may be computed in terms of the jump in the velocity as∫
R

�(β, t)ϕ(z(β, t))dβ = 〈ω ,ϕ〉 := −
∫
�

w · ∇⊥ϕ dx

=
∫

�+∪�−
ϕ∇⊥ · w dx −

∫
�

� w · τ �ϕ dS .

Since the vorticity ω = ∇⊥ · w = 0 in �+(t) ∪ �−(t), it then follows that∫
TL

�(β, t)ϕ(z(β, t))dβ = −
∫
�

� w · τ �ϕ dS = −
∫
R

� w · τ �ϕ(z(β, t))|∂αz(β, t)|dβ

for any smooth test function ϕ with compact support in R2, which implies that

� = −� w · τ �|∂αz| = −� w · ∂αz� .

Due to the fact that the flow is both irrotational and incompressible, there exist scalar stream functions ψ±(x, t) such that 
�ψ± = 0 in �±(t) and w± = ∇⊥ψ± .

Following [83,14], we next reduce (16) to a system of coupled evolutionary integro-differential equations in one space 
dimension. The incompressible and irrotational velocity w can be reconstructed from the vorticity measure � using the 
well-known Biot-Savart kernel KR(x), which is an integral representation for ∇⊥�−1 in R2. The kernel is defined by

KR(x) = x⊥

2π |x|2 = 1

2π

(
−x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)
. (18)

Away from the interface, the velocity w is then given as

w(x, t) = P
∫
R

KR(x − z(β, t))�(β, t)dβ , (19)

for x ∈ �+(t) ∪�−(t), where we recall that the integral is to be understood in the principal value sense (2). At the interface 
�(t), the velocity w|�(t) is defined to be the average (w+ + w−)/2 on �(t). The Plemelj formulae give

w±(z(α, t), t) = P
∫
R

KR(z(α, t) − z(β, t))�(β, t)dβ ± 1

2

�(α, t)

|∂αz(α, t)|τ ,

from which it follows that

w(z(α, t), t) = P
∫
R

KR(z(α, t) − z(β, t))�(β, t)dβ .

This integral is over the real line. For horizontally periodic flows, the integral can be summed over the periodic images to 
yield an integral over a single period, with the kernel given by
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KTL (x) = (− sinh(2πx2/L) , sin(2πx1/L))

2L (cosh(2πx2/L) − cos(2πx1/L))
, (20)

where TL = [−L/2 , L/2] denotes the periodic interval with period L. Hence,

w(z(α, t), t) = P
∫
TL

KTL (z(α, t) − z(β, t))�(β, t)dβ . (21)

Together with (17), the system is closed by determining the evolution equation for the amplitude of vorticity � . A 
lengthy computation [26,44] using the Bernoulli equation, the Plemelj formulae, and (16e) provides the dynamics for � ; 
together with (17) and (21), we obtain the following coupled system:

∂t z(α, t) = P
∫
TL

KTL (z(α, t) − z(β, t))�(β, t)dβ , (22a)

∂t�(α, t) = −∂α

⎡⎢⎣ A

4π2

∣∣∣∣∣∣P
∫
R

�(β, t)
(z(α, t) − z(β, t))⊥

|z(α, t) − z(β, t)|2 dβ

∣∣∣∣∣∣
2

− A

4

�(α, t)2

|∂αz(α, t)|2 − 2Agz2

⎤⎥⎦ (22b)

+ A

π
∂t

⎡⎣P
∫
R

�(β, t)
(z(α, t) − z(β, t))⊥

|z(α, t) − z(β, t)|2 · ∂αz(α, t)dβ

⎤⎦ ,

where

A = (ρ+ − ρ−)/(ρ+ + ρ−)

is the Atwood number. These equations are solved for α ∈TL and t > 0. The coupled equations (22) are the incompressible 
and irrotational Euler equations, reduced to a one-dimensional problem for the three unknowns (z1, z2, �).

The analysis of the BR system (22) is difficult, due to the presence of the Kelvin-Helmholtz instability. Linear stability 
analysis yields perturbation solutions with arbitrarily large growth rates, so that the problem is ill-posed in the sense of 
Hadamard [38,54]. Delort [34] proved existence of global weak solutions for initial data that is a signed vorticity measure 
(concentrated on the interface); see also [68,39,65]. Uniqueness of these solutions has not been proved, and there is evidence 
to suggest that such solutions are, in fact, not unique [94,76,69,66].

3.5. An asymptotic model for incompressible interface motion: the z-model

As we will explain in Section 4, the numerical solution of the system (22) can be computationally expensive and difficult 
to implement. Moreover, the equations are sufficiently complex that, in many cases, the dynamics of solutions is extremely 
difficult to analyze. As such, there has been a sustained effort to develop model equations that can suitably approximate the 
Euler equations in certain asymptotic regimes. For water waves (i.e. A = −1), there are a number of such equations (see, for 
example, [5,30] and references therein), and for the two-fluid case (i.e. −1 < A < 1), a number of modal models have been 
proposed for the evolution of the interface, such as the models of [42] and [46]; we refer the reader to Zhou [108] for an 
extensive review of the subject.

The fundamental difficulty is the nonlocal nature of the singular integral equations (22), in which the dynamics at a 
point on the interface require information at all other points on the interface. By developing a new asymptotic procedure 
in which z and � are expanded in a small non-locality parameter, Granero-Belinchón and Shkoller [44] obtained model 
equations, approximating the solution to (22), which allow for interface turn-over and place no constraints on the steepness 
of the interface. These localized equations are

∂t z(α, t) = 1

2
H�(α, t)

∂αz⊥(α, t)

|∂αz(α, t)|2 , (23a)

∂t�(α, t) = −∂α

[
A

2|∂αz(α, t)|2 H (�(α, t)H�(α, t)) − 2Agz2(α, t)

]
, (23b)

where H denotes the Hilbert transform, defined in (5). The equations (23) are called the (lower-order) z-model.
A number of numerical experiments of the (lower-order) z-model were performed in [44], which demonstrated very good 

agreement with experimental data and theoretical predictions of interface growth, but the localized nature of the evolution 
for z(α, t) in (23a) can inhibit the initiation of Kelvin-Helmholtz roll-up. On the other hand, the fundamental challenge in 
simulating the Euler system (22) stems from the evolution equation for � . As such we introduce the higher-order z-model 
as the following system:
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∂t z(α, t) = P
∫
TL

KTL (z(α, t) − z(β, t))�(β, t)dβ , (24a)

∂t�(α, t) = −∂α

[
A

2|∂αz(α, t)|2 H (�(α, t)H�(α, t)) − 2Agz2(α, t)

]
, (24b)

in which the asymptotic model for � evolution is coupled to the integral equation for z.

3.6. The Euler equations as a two-phase elliptic system for velocity

We now reformulate the full compressible Euler equations (15) as a two-phase elliptic system for the compressible 
velocity vector u. As we have already stated, by using the parameterization z(α, t) for the interface �(t), the dynamics of 
the interface �(t) are governed by the evolution equation ∂t z(α, t) = u(z(α, t), t), and from the definition of the amplitude 
of vorticity � , we have the following jump conditions for the velocity:

�u · τ � = − �
|∂α z| and �u · n� = 0 .

Next, from equation (15a), we have that

F ± := div u± = −
Dρ±

Dt

ρ± .

Letting the operator curl act on (15b), and setting ω = curl u, we find that ω is the solution of

Dω
Dt + ω div u = −∇ρ·∇⊥ p

ρ2 .

Thus, given z, � , F ± , and ω± , we can reconstruct u± by solving the following two-phase elliptic system:

div u± = F ±, in �±(t) , (25a)

curl u± = ω±, in �±(t) , (25b)

�u · n� = 0, on �(t) , (25c)

�u · τ � = − �
|∂α z| , on �(t) . (25d)

For the two-dimensional geometry that we are considering, the system (25) is uniquely solvable [19], and thus u obtained 
from (25) is the velocity field solving the compressible Euler equations (15).

3.7. A compressible-incompressible decomposition of the Euler equations

We substitute the additive decomposition u = v + w into the two-phase elliptic system (25) and define v± and w± to 
be the solutions of

div v± = F ± in �±(t) , div w± = 0 in �±(t) , (26a)

curl v± = ω± in �±(t) , curl w± = 0 in �±(t) , (26b)

�v · n� = 0 on �(t) , � w · n� = 0 on �(t) , (26c)

�v · τ � = 0 on �(t) , � w · τ � = − �
|∂α z| on �(t) , (26d)

together with

∂t z(α, t) = v(z(α, t), t) + w(z(α, t), t) , (26e)

�(α, t) = −� w(z(α, t), t) · ∂αz(α, t)� . (26f)

The velocity w is incompressible and irrotational, but has a discontinuity in its tangential component, while the velocity 
v is continuous and is forced by the bulk compression and vorticity of the fluid. There are a number of different ways to 
find velocities v and w such that u solves the full compressible Euler equations (15). We shall simultaneously solve for the 
pair (v, w) as the solution of the following system:
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ρ̄± (∂t w± + w± · ∇w±)+ ∇p± + ρ̄± ge2 = 0 in �±(t) , (27a)

curl w± = div w± = 0 on �±(t) , (27b)

� w · n� = 0 on �(t) , (27c)

� w · τ � = − �
|∂α z| on �(t) , (27d)

� p� = 0 on �(t) , (27e)(
w±(x,0), z(α,0)

)= (0, z0(α)) at t = 0 , (27f)

where z0(α) is the initial data for the parameterization of the interface, the initial amplitude of vorticity is computed as

�(α,0) = −�u(z0(α),0) · ∂αz0(α)� ,

and the density functions ρ̄± are constants given by ρ̄± = ρ±
0 |�0 . This is coupled to

∂tρ
± + div(ρ±v±) = −div(ρ±w±) in �±(t) , (28a)

∂t(ρ
±v±) + div(ρ±v± ⊗ v±) + ∇p± + ρ±ge2 = −∂t(ρ

±w±)

− div
(
ρ±(w± ⊗ w± + w± ⊗ v± + v± ⊗ w±)

)
on �±(t) , (28b)

∂t E± + div(v±(E± + p±)) + ρ±gv±
2 = −div(w±(E± + p±)) − gρ±w±

2 on �±(t) , (28c)

�v � = 0 on �(t) , (28d)

� p� = 0 on �(t) , (28e)(
v±(x,0),ρ±(x,0), E±(x,0), z(α,0)

)= (u±
0 ,ρ±

0 , E±
0 , z0(α)

)
at t = 0 , (28f)

together with (26e) and (26f). This decomposition of the flow into velocities v and w provides a natural setting for a 
multiscale model of compressible interface evolution. In particular, we shall develop a two-scale solution strategy, in which 
(27) is solved over small scales using our higher-order incompressible z-model (24), and (28) is solved over large scales.

An equivalent formulation for this (v, w) system is given by replacing (26e), (26f), and (27) with

∂t z(α, t) = P
∫
TL

KTL (z(α, t) − z(β, t))�(β, t)dβ + v(z(α, t), t) , (29a)

∂t�(α, t) = −∂α

⎡⎢⎣ A

4π2

∣∣∣∣∣∣P
∫
R

�(β, t)
(z(α, t) − z(β, t))⊥

|z(α, t) − z(β, t)|2 dβ

∣∣∣∣∣∣
2

− A

4

�(α, t)2

|∂αz(α, t)|2 − 2Agz2

⎤⎥⎦
+ A

π
∂t

⎡⎣P
∫
R

�(β, t)
(z(α, t) − z(β, t))⊥

|z(α, t) − z(β, t)|2 · ∂αz(α, t)dβ

⎤⎦ , (29b)

and coupling these equations with (28). Then w is computed using (19). This will be the basis for our multiscale modeling 
approach.

We note that both the two-dimensional compressible and incompressible Euler equations are ill-posed in Sobolev spaces 
for most vortex sheet initial data.1 On the other hand, these systems of equations become well-posed in Sobolev spaces 
if either bulk viscosity [35] or surface tension along the contact discontinuity [18] is added. As such, any state-of-the-art 
high-order numerical discretization of the compressible Euler equations uses some form of regularization to remove small-
scale instability and oscillations (see the review paper [62]). In order to generate high-resolution reference solutions for 
comparison with our multiscale algorithm, we too rely on a regularization scheme that employs a new type of anisotropic 
artificial viscosity operator which is described in Section 5.4.1. This anisotropic operator adds nonlinear viscosity only in 
directions tangential to the evolving front while adding virtually zero viscosity in the direction normal to the interface. This 
approach ensures that the contact discontinuity does not become too smeared (which indeed occurs for more traditional 
isotropic artificial viscosity operators).

In deriving the multiscale decomposition, we return to the inviscid Euler setting in which all regularization is removed. 
The inviscid velocity u is decomposed into v and w , which are evolved by the equations (28) and (29). As such v and w are 
again governed by inviscid systems, and in particular, w is governed by the inviscid incompressible and irrotational Euler 

1 The two-dimensional compressible Euler equations are weakly well-posed in Sobolev spaces if the initial vorticity measure (tangential jump of velocity 
along the interface) is sufficiently large relative to the Mach number of the flow [29,28].
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equations, which are once again ill-posed, while v no longer has a discontinuity and does not suffer from the same small-
scale instabilities as the original Euler system it was derived from. Now, the w system must be numerically regularized, but 
before we do so, we make a significant simplification for the dynamics for the amplitude of vorticity � . The equation (29b)
is a highly nonlinear and nonlocal equation. We replace this complicated evolution with our asymptotic z-model (24b). This 
is a Burgers-type equation which leads to shock formation from initial data consisting of small perturbations of equilibrium. 
This Burgers-like equation can be stabilized in the same way as the one-dimensional Burgers equation, and the use of ar-
tificial viscosity is the most natural (and efficient) method for this purpose. As shown in [5], the � equation (24b) (with 
and without regularization) is locally well-posed for analytic data; for such data (with periodic boundary conditions), there 
exists a limit of zero artificial viscosity.

On the other hand, since the foundational work of Chorin and Bernard [22], it is very natural to use the vortex blob 
method (to be described below in Section 4.1) to solve for z1 and z2. While there are many other choices for regularizing 
the z-model, using this combination of artificial viscosity for � and vortex blobs for z1 and z2 produces an efficient and 
stable algorithm which allows for convergence of the large-scale structures of the flow (such as bubble and spike locations), 
as will be demonstrated below.

An alternative approach to our multiscale decomposition might have been to decompose solutions of the compressible 
Navier-Stokes equations into large-scale and small-scale velocities, but special (and very restrictive) interface conditions 
would then be required to keep the interface sharp, while the standard interface conditions would instead enforce continuity 
of the velocity across the interface. While vortex methods for viscous flows [27] have been developed by Chorin [20,21]
using the random walk method and by Degond and Mas-Gallic [33] using weighted particle methods, we instead rely upon 
a simple artificial viscosity scheme restricted to the interface for our multiscale algorithm which is computationally less 
expensive than the vortex methods for viscous flows.

4. Numerical implementation of the z-model

Our multiscale model will rely on a fast-running numerical implementation of the higher-order z-model (24). In this 
section, we explain the method, and perform some classical numerical experiments to demonstrate the efficacy of our 
scheme.

4.1. A regularization of the incompressible z-model

A simple method for approximating the singular integral on the right-hand side of (24a) is to use a standard trapezoidal 
quadrature rule. This is the original point vortex method of Rosenhead [82]. Unfortunately, as demonstrated in [55,22], solu-
tions computed using the point vortex method often suffer from irregular point vortex motion due to small perturbation 
errors introduced by round-off error.2 Such irregular motion is then amplified by the Kelvin-Helmholtz instability. More-
over, this irregular motion persists as the mesh is refined, and is in fact initiated at earlier times as the number of nodes 
increases.

In [56,57], the equation (24a) is desingularized by smoothing the singular kernel KTL to yield the desingularized kernel

Kδ
TL

(x) = (− sinh(2πx2/L) , sin(2πx1/L))

2L
(
δ2 + cosh(2πx2/L) − cos(2πx1/L)

) , (30)

with δ ∈R some constant. This yields a more numerically stable set of equations to which the standard trapezoidal quadra-
ture rule can be applied. Computational evidence [56] suggests that this approximation converges beyond the singularity 
time if the mesh is refined and the smoothing parameter δ is decreased, in the appropriate order. In our numerical experi-
ments, we have found that the scaling

δ2 = |�α log �α| · δ̃2 , (31)

with δ̃ a constant, yields stable solutions with increasing amounts of roll-up as �α → 0. The details of how the parameter 
δ̃ is chosen are provided in §4.3.2, in which we provide an example of the procedure applied to a KHI test problem.

The full-space version of the desingularized kernel (30) is given by

Kδ
R(x) = 1

2π

x⊥(|x|2 + δ2
) . (32)

We will make use of (32) in the numerical experiments in Section 4.3.
Convergence of the point vortex and vortex blob methods for smooth flows is proved in [47,12,43]. For vortex sheets, 

where the initial data is not smooth, Caflisch and Lowengrub [16] proved global existence of analytic solutions from arbitrary 
analytic initial data for the desingularized equations in the case A = 0. They also proved short time convergence of the 

2 Few digits of precision can also be regularizing, as shown by the calculations of Rosenhead [82].
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vortex blob method as the desingularization parameter δ, mesh size, and time-step converge to zero. When the sheet is 
analytic, the error due to the desingularization is O(δ) [16], assuming round-off errors are sufficiently small. Convergence 
for weak solutions was proved by Liu and Xin [63] in the case that the vorticity measure is of distinguished sign (and the 
Atwood number vanishes, A = 0).

Let us note that the full-space desingularized kernel (32) satisfies the sufficient conditions of the theorem of Liu and 
Xin [63], whereas the periodic desingularized kernel (30) does not satisfy the assumptions. Consequently, it is not known 
whether the solutions to the system induced by the regularized kernel (30) converge to a weak solution of the incompress-
ible Euler system. Nonetheless, there is numerical evidence to suggest that the numerical solution does indeed converge 
[56,8].

Next, we turn to the evolution equation for the amplitude of vorticity � . The nonlinearity in (24b) often results in the 
development of steep profiles of the variable � , analogous to the formation of shocks for solutions to nonlinear conserva-
tion laws. The shock formation in � generally occurs at late times, and is followed by the roll-up of the vortex sheet. One 
can handle this phenomenon by using shock-capturing methods (see for instance Sohn [92]). However, we use the simplest 
possible technique, namely a linear artificial viscosity operator μ∂2

α with μ ≥ 0, to smear the shock over a small number of 
cells and thereby stabilize the solution.

We therefore consider the following regularization of the higher-order z-model (24) as follows:

∂t z(α, t) =
∫
TL

Kδ
TL

(z(α, t) − z(β, t))�(β, t)dβ , (33a)

∂t�(α, t) = −∂α

[
A

2|∂αz(α, t)|2 H (�(α, t)H�(α, t)) − 2Agz2(α, t)

]
+ μ∂2

α�(α, t) . (33b)

When δ = 0, the Cauchy principal value of the integral in (33a) must be taken, while for δ > 0, the integral is proper and 
the equations are then a regularized approximation to periodic vortex sheet evolution.

4.1.1. Other regularizations of the singular kernel (20)
For the purposes of comparison with the Krasny approximation, we consider two other desingularized kernels that 

approximate the singular kernels (20) or (18). These kernels were derived by Baker and Beale [7] (see also [11]), and are of 
the form

Kδ
i (x) = K(x)(1 + gi(ηδ)) , (34)

where the subscript i is related to the number of moment conditions satisfied by the kernel (see [7] for the details). More 
precisely, we shall consider gi for i = 1, 3, in which case we have

g1(ηδ) = −exp(−η2
δ ) ,

g3(ηδ) = (−1 + 2η2
δ )exp(−η2

δ ) .

Here, K(x) refers to either the R2 kernel (18) or the periodic kernel (20). In the former case, the variable ηδ is given by 
ηδ = |x|/δ, while in the latter case, η2

δ = 2 (cosh(x2) − cos(x1)) /δ2.
Formula (34) is indeed a desingularization due to the fact that the functions gi satisfy 1 + gi(ηδ) = O(η2

δ ) as ηδ → 0, 
whereas the singular kernel K(x) has an O(1/x) type singularity at the origin, so that the denominator is canceled and 
Kδ

i (x) is a smooth function of x. We note that the exponential decay of (34) as |ηδ | → ∞ is in contrast to the slower 
algebraic decay of the Krasny desingularization (30).

The kernels Kδ
i satisfy the sufficient conditions of the theorem of Liu and Xin [63], and consequently, solutions to the 

regularized system converge as δ → 0, when the initial vorticity amplitude � is of distinguished sign.

4.2. Discretization of (33)

Suppose that a single wavelength of the periodic interface �(t) is parametrized by the function z(α, t), and that the 
parameter α is discretized with N + 1 = 2r + 1 nodes,

αk = −L/2 + (k − 1)�α ,

with �α = L/N .
We spatially discretize the equations of motion, then use a standard third-order explicit Runge-Kutta solver for time 

integration. A trapezoidal quadrature rule is used to approximate the right-hand side to the z-equation. Define for k =
1, . . . , N + 1 the functions Gk(α, t) :TL × [0, T ] →R2 on the discretized domain as

Gk(αl, t) =
{

Kδ
TL

(zk(t) − zl(t))�l(t) , if l 
= k ,

0 , if l = k ,
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where we have used the notation fk(t) = f (αk, t). The right-hand side to the z-equation (33a) may then be approximated 
as

d

dt
zk(t) = �α

2
Gk(α1, t) + �α

N∑
l=2

Gk(αl, t) + �α

2
Gk(αN+1, t) . (36)

The trapezoidal rule we employ, while in general is only second order accurate, achieves spectral accuracy when the 
integrand is smooth and the mesh is uniform [8].

For the � equation, we follow [44] and convert the equation to Fourier space. Using the identities (1) and (5), we write 
the � -equation (33b) in frequency space as

∂t�̂ (ξ, t) = − A

2

(
2iπ

L
ξ

)
F
{

1

|∂αz|2 F−1 {−i sgn(ξ)F
{
�F−1 {−i sgn(ξ)�̂ }}}} (ξ, t) (37)

+ 2Ag

(
2iπ

L
ξ

)
ẑ2(ξ, t) − μ

∣∣∣∣2π

L
ξ

∣∣∣∣2 �̂ (ξ, t) ,

where F−1{·} denotes the inverse Fourier transform operator.
The discretized version of (37) then becomes

d

dt
(�̂k) = − A

2

(
DkF̃

{(
1

|∂αzl|2 F̃−1
{(

HmF̃
{(

�nF̃−1 {(Hr�̂r)}n

)}
m

)}
l

)}
k

)
(38)

+ 2Ag
(

Dk̂zk
2

)
− �α · μ̃

(
D2

k�̂k

)
,

where we have used (6)-(8) to denote the discrete Hilbert and derivative operators in Fourier space. We remark that we are 
not using the usual summation convention in (38), and instead use the notation ( fk) to denote the vector with entries fk
for k = 1, . . . , N , so that ( fk gk) denotes the vector with entries fk gk for k = 1, . . . , N .

Let us note that we have used the scaling μ = �α · μ̃ for the artificial viscosity parameter for the � -equation. In 
general, we shall keep μ̃ fixed as the resolution �α varies, but note that it is often necessary to vary μ̃ with the resolution 
to stabilize small-scale noise that may occur in the variable � .

Equations (36) and (38) form a nonlinear system of coupled ordinary differential equations, to which we can apply a 
standard third-order explicit Runge-Kutta time integration scheme. We supplement the equations with initial data zk(0) and 
�k(0), as well as periodic boundary conditions zN+1

1 (t) = L + z1
1(t), zN+1

2 (t) = z1
2(t), and �N+1(t) = �1(t) for all t ≥ 0.

The direct summation method (36) employed for the integral calculation (33a) is O(N2), and is thus inefficient for large 
values of N . Other methods have been proposed to reduce the computational complexity of the velocity calculation. For 
instance, one technique is the so-called “vortex-in-cell” method [23,6,98], in which the velocity of a point vortex is computed 
by solving a Poisson equation on an underlying mesh, and interpolation is used to compute values on the interface. This 
method reduces the computational cost by virtue of the use of fast Poisson solvers, and appears to accurately predict the 
large-scale behavior of the vortex sheet, but does not seem suitable for the study of small-scale behavior [99].

Other fast summation methods include the Fast Multipole Method of Greengard and Rokhlin [45] (see also [17]), the 
Barnes-Hut algorithm [10], and various other so-called “treecode” algorithms [4,100,2,48,37,84,61]. Such methods reduce 
the computational complexity of the summation to O(N) or O(N log N) by combining large numbers of point vortices 
into single computational elements. However, they are often complicated to implement since the computations must be 
organized in a manner that leads to an efficient and accurate algorithm. Moreover, such algorithms often have significant 
computational overhead that make them efficient only for large values of N . In the numerical simulations considered in 
the current paper, we restrict our attention to problems requiring only relatively small values of N; for such problems, the 
direct summation method we employ is likely comparable (in terms of efficiency and CPU time) to the more sophisticated 
algorithms mentioned above. In future studies, we shall implement a fast summation method to study vortex sheet evolution 
for large values of N .

Following Krasny [57], we reduce the computational expense of calculating (36) in the following two ways: first, we 
use the relation Kδ

TL
(zk − zl) = −Kδ

TL
(zl − zk) so that the calculation (36) is required for only half the points; second, for 

problems which are symmetric about α = 0, we compute (36) for only half the points and use reflection to obtain the values 
for the rest.

4.3. Numerical studies and discussion

We next conduct several numerical studies to validate our regularized z-model system, as well as its numerical imple-
mentation. In particular, we shall compare the Krasny desingularization (30) with the two other desingularizations (34). We 
provide numerical evidence to show that all three numerical methods produce similar solutions, and that the computed 
numerical solutions appear to converge. The situation is somewhat complicated by the fact that there is a large gap in the 
theory of vortex sheet evolution when the vorticity does not have distinguished sign. In particular, the question of existence 

107



R. Ramani, S. Shkoller / Journal of Computational Physics 405 (2020) 109177 15

of solutions to the incompressible Euler system when the vorticity is a measure but is not of distinguished sign is open; 
additionally, the question of uniqueness is open, even when the vorticity is of distinguished sign. Consequently, compar-
isons of the numerical methods as the mesh is refined is complicated due to the fact that the convergence may be towards 
different solutions. Nonetheless, in agreement with prior numerical studies [8,93], we find that the computed numerical 
solutions agree, in a sense to be made precise below.

Specifically, the quantities that we shall be interested in with regards to our convergence studies are (1) the bubble 
and spike tip locations, (2) the radius of the spiral roll-up region, and (3) the location of the center of the roll-up region. 
Quantity (1) provides some information about the convergence of solutions “at the large scales”, while the quantities (2) 
and (3) provide information about the convergence of solutions “at the small scales”. The bubble and spike tip locations are 
defined by maxi z2(αi) and mini z2(αi), respectively, while the radius and center of spiral roll-up region are computed as 
follows. We first find the intersection points 

{
(x∗

1 , x∗
2)
}

of the computed curve z with a fixed horizontal axis x2 = x∗
2. These 

intersection points are computed by bilinear interpolation. The radius rδ and location of the center σδ of the spiral region 
may then be approximated as rδ ≈ (max x∗

1 − min x∗
1)/2 and σδ ≈ (max x∗

1 + min x∗
1)/2, respectively. The subscript δ indicates 

that these quantities depend on the regularization parameter δ (as well as the mesh resolution �α).
In the convergence studies presented, we will be interested in two different limits: the first is the limit δ → 0 with N

held fixed, and the second is the limit δ → 0 and N−1 → 0. In the latter case, it is important exactly how the limits are 
taken [56]. For the Krasny desingularization, we will use the scaling (31), and we will show that the resulting solutions are 
stable with increasing amounts of roll up as N → ∞.

We are unaware of scaling laws similar to (31) for the kernels of (34), and will instead use the following empiri-
cal (though tedious and computationally expensive) procedure employed by Anderson [3] and Krasny [56]. This empirical 
method amounts to fixing a value of �α, say �α = �α1, then choosing the smallest δ = δ1 such that the computed nu-
merical solution is stable for every δ > δ1. This procedure is then repeated for �α2 < �α1, yielding δ2 < δ1. In this way, a 
sequence (�α1 , δ1), (�α2 , δ2), . . . is constructed, with δi, �αi → 0, and we are able to discuss the limit δ → 0 and N−1 → 0.

One of our goals in this section is to justify our use of the Krasny kernel in the numerical implementation of our 
multiscale algorithm in Section 5. We shall show that the Krasny kernel produces solutions with similar asymptotic behavior 
(i.e. as δ, N−1 → 0) as those produced using the kernels (34). On the other hand, calculations using the Krasny kernel 
require less computational expense than the corresponding calculations using the kernels of (34). Consequently, as our goal 
in Section 5 is to produce a fast-running algorithm for compressible flow simulations, we will use the Krasny approximation 
rather than the kernels (34).

We remark that, in general, we will be restricted to using relatively large values of the regularization parameter δ for 
the 3rd-order kernel Kδ

3, compared to those for the lower order Krasny and Kδ
1 kernels. This is due to the fact that a large 

amount of nodes N is required to fully resolve the small scale structure that is observed with the 3rd order kernel [7], 
which proves prohibitively computationally expensive for our purposes.

Standard MATLAB plotting routines have been employed to present interface evolution; in particular, we follow 
Krasny [57] and use trigonometric polynomials of degree N/2 to interpolate the discrete computed interface nodal posi-
tions zk(t).

4.3.1. KHI test on an ellipse: comparison with an exact solution
We begin with a numerical experiment for which there is a known exact solution; namely, we consider the KHI problem 

of Baker and Beale [7]. For this test, we compute the velocity induced by a vorticity measure concentrated on an ellipse. 
More precisely, we set the Atwood number to be zero, A = 0, so that the amplitude of vorticity � remains constant over 
time, and choose the initial data as

z1(α,0) = λ cosh(σ ) cos(α) ,

z2(α,0) = λ sinh(σ ) sin(α) ,

�(α,0) = �(α, t) = sin(α) ,

with α ∈ [0, 2π ]. The parameter λ measures the eccentricity of the ellipse, with λ → 0 yielding a circle, and λ → 1 yielding 
a slit. The constant σ is determined from λ by the relation λ cosh(σ ) = 1.

The exact solution [7] is of the form

w1(α) = R

4λD
, and w2(α) = I

4λD
,

with

R = 2e−σ
(

2 sinh2(σ ) cos2(α) + e−σ cosh(σ ) sin2(α)
)

,

I = sinh(σ ) sin(2α) , D = cosh2(σ ) − cos2(α) .

Since the curve z is a closed curve, we use the regularized versions of the R2 kernel (18) i.e. (32) and (34). We set λ = 0.01, 
consider N = 16, . . . , 512 in increasing powers of 2, and consider two different values of δ/�α.
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Table 1
Error analysis and convergence results for the exact solution test of Baker and Beale [7]. 
Shown are the number of digits of accuracy, − log10 EN , for the three different numerical 
schemes employed.

N δ = �α δ = �α/4

Kδ
1 Kδ

3 Krasny Kδ
1 Kδ

3 Krasny

16 0.960 2.440 0.820 1.204 1.204 1.175
32 1.258 3.320 1.057 1.505 1.505 1.490
64 1.558 4.031 1.318 1.806 1.806 1.798
128 1.859 4.484 1.599 2.107 2.107 2.103
256 2.160 4.833 1.891 2.408 2.408 2.406
512 2.461 5.147 2.187 2.709 2.709 2.708

We measure the L∞ error E N = maxi=1,...,N |w(αi) − wi |, where w(αi) is the exact velocity and wi is the computed 
velocity. Then, the quantity − log10 E N denotes the number of digits of accuracy of the computed solution (see [7]). In 
Table 1, we list − log10 E N for the three different methods of desingularizing the integral kernel.

For the larger value δ = �α, we see that the higher order kernel Kδ
3 is the most accurate of the three methods, with the 

computed velocity accurate to 5 digits when N = 512; the lower order kernel Kδ
1 and the Krasny kernel perform similarly, 

with the computed velocity accurate to 2 digits when N = 512. For the smaller value δ = �α/4, all three regularizations 
produce a velocity that is accurate to 2 digits. Thus, in the limit δ → 0 and N → ∞, all three methods of regularization 
perform similarly; the main difference is then the fact that the kernels Kδ

i are more expensive to compute than the Krasny 
kernel (32).

4.3.2. KHI problem on a periodic curve: test of the Krasny δ-regularization
The purpose of the following test is to demonstrate how the regularization parameter δ scales with the mesh resolution 

�α. The procedure we employ for determining the appropriate value of δ̃ for use in the Krasny desingularization method 
is as follows: fix a relatively small value of N , say N = 32 or N = 64. Next, we find the smallest value of δ̃ such that the 
computed interface demonstrates roll up, but without self-intersection. Finally, we fix this value of δ̃ , and use the scaling 
relation (31) for larger values of N .

Below, we provide an example of the above procedure applied to a periodic KHI problem. In this case, the Atwood 
number vanishes A = 0, and thus the amplitude of vorticity � remains constant over time. The initial data is [7]

z1(α,0) = α ,

z2(α,0) = 0 ,

�(α,0) = �(α, t) = 1 − 0.5 cos(α) ,

with α ∈ [0, 2π ]. Numerical studies indicate that a curvature singularity forms at α = π and t ≈ 1.61, after which time the 
sheet rolls up in a tightly wound spiral.

Experimentation with the value of δ̃ with N = 64 shows that choosing δ̃ = 0.15 produces an interface which demon-
strates roll-up but for which self-intersection does not occur (see Fig. 3(a)). A smaller value of δ̃, say δ̃ = 0.1, produces an 
interface which self-intersects. The runtime for such a simulation is < 1 s, so that experimentation with the precise value 
of δ̃ is not computationally expensive. Once the value of δ̃ is set for N = 64, the same value is chosen for N > 64. The 
computed results are presented in Fig. 3. We observe that the scaling relation δ2 = |�α log �α| · δ̃2 results in more turns 
appearing in the core region as N increases, but that the solution remains stable and the curve does not self-intersect or 
suffer from irregular vortex motion.

Next, we consider the convergence of the numerical solution as δ , N−1 → 0. The convergence of solutions as δ → 0 with 
N fixed is considered in detail in [56,8], wherein it is shown that the computed numerical solution appears to converge.

In Fig. 4(a), we show how the amplitude max z2 of the curve varies as δ, N−1 → 0. The value for N−1 is obtained by cubic 
extrapolation. We see that the amplitude appears to converge to a finite value ≈ 0.81. Similarly, in Fig. 4(b), we estimate the 
radius of the spiral region by rδ ≈ π − min x∗

1, where x∗ are the intersection points with the axis x2 = x∗
2 = 0. By symmetry, 

the center of the spiral is located at (π, 0). Again, with the value for N−1 = 0 obtained by cubic extrapolation, we see that 
the rδ appears to converge to a value close to 0.28. This demonstrates that the scaling (31) appears to be appropriate for 
recovering a meaningful solution as δ, N−1 → 0.

4.3.3. Single-mode RTI: comparison with experiments
We continue our numerical studies for the z-model by performing simulations for the low Atwood number single-mode 

RTI experiments of Waddell et al. [104]. The particular problem setup considered is a heavy fluid lying atop a lighter 
fluid, with the Atwood number given by A = 0.155 and the two fluids subject to an approximately constant gravitational 
acceleration g = 0.74 × 9.8ms−2. The z-model is employed for this problem on the domain α ∈ [−0.027, 0.027] with initial 
data
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Fig. 3. Numerical simulation of a KHI test using the z-model with the Krasny desingularization. Shown is the interface position z(α, t) at time t = 3.0 for 
six simulations with resolution starting from N = 64 and doubling until N = 2048.

Fig. 4. Convergence behavior for a KHI test using the z-model with the Krasny desingularization. Shown are (a) the amplitude of the curve max z2 and (b) 
the radius of the spiral region rδ .

z1(α,0) = α ,

z2(α,0) = 0.0012 cos(2πα/L) ,

�(α,0) = 0 .

We perform six simulations with resolution starting from N = 32 and doubling until N = 1024. The strategy for param-
eter choice we adopt here is to keep the parameters δ̃ = 2 and μ̃ = 0.02 fixed as N varies, while allowing the time-steps δt
to vary with N . Specifically, we first choose δt for N = 64 as the largest possible value that will allow the N = 64 simulation 
to run until the final time t = 0.3795. The values of δt for larger N are then determined by repeatedly halving this value 
until δt is sufficiently small so as to allow the simulation to complete.

The results of the six simulations are shown in Fig. 5, which should be compared with Fig. 4(l) of [104]. The bubble 
and spike shapes are roughly symmetric, in agreement with the observations in [104]. The scaling for the regularization 
parameters δ̃ and μ̃ results in more roll-up of the vortex sheet as the resolution is increased. This is demonstrated in 
Fig. 6, which shows that the interface for the N = 1024 simulation has a tightly packed spiral region with several complete 
revolutions of each branch of the spiral.

We next compare the growth rate of the z-model solution interface with growth rates obtained from small-time 
linear theory predictions and late-time experimental observations. Define the amplitude of the interface as a(t) =
1
2 [maxα z2(α, t) − minα z2(α, t)]. Linear theory [67,96] predicts that for early times t before the non-linearity is activated, 
the amplitude satisfies a(t) = a(0) cosh(t

√
2π Ag/L). We plot in Fig. 7(a) the linear theory amplitude and the computed 

amplitude a(t) versus time for the simulations shown in Fig. 5. It is clear from the graph that the computed amplitude and 
linear prediction are in excellent agreement, as expected, for small times t ≤ 0.15.

For large times, the nonlinearity is no longer negligible and the linear theory breaks down. Experimental observations 
indicate that the amplitude grows linearly at late times; a linear fit of the measured late time amplitude from experimental 
data is shown as the blue curve in Fig. 7(b). This curve is defined in [104] as −0.007436 + 0.078177t . It is clear from the 
graph that the measured amplitude differs considerably from the amplitude computed using the z-model. This difference 
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Fig. 5. Numerical simulation of the Waddell et al. [104] RTI using the z-model. The interface parameterizations z(α, t) for six simulations with resolution 
starting from N = 32 and doubling until N = 1024 are shown at time t = 0.3795.

Fig. 6. Closeup view of the roll-up region for N = 1024.

may be explained by the fact that the (effective) gravitational acceleration in the experiments is only approximately constant, 
and is in fact time-dependent, whereas we have used3 a constant value of g .

While the amplitudes themselves differ, we nonetheless observe that the growth rates of the computed amplitude and 
measured amplitude are in excellent agreement. The green curve shown in Fig. 7(b) has the same slope as the blue curve 
(i.e. the measured amplitude) and is given explicitly as −0.01115 + 0.078177t . This curve matches almost exactly with 
the computed a(t) for large times t ≥ 0.25. In fact, the true gravitational acceleration in the experimental setup is initially 
time-dependent, but eventually reaches a constant value; in our numerical simulation, we have used this final constant 
value for g , which is why the amplitude of the numerical solution at large times t ≥ 0.25 grows at the same rate as that 
observed in the experiment. The numerical solution and the experimental data are thus in good agreement (modulo the 
issue regarding the non-constant value of g), which consequently provides validating evidence for the z-model.

Next, we consider the convergence of the computed numerical solution in the limits δ → 0 with N = 256 fixed. Fig. 8(a) 
shows that the bubble and spike tip locations appear to converge linearly, which agrees with the results of [56] for the 
KHI test. Here, the value at δ = 0 is obtained by linear extrapolation. In Fig. 8(b) and Fig. 8(c), we show the convergence of 
the computed spiral center σδ and radius rδ . We choose the axis x2 = x∗

2 = −0.0023 to compute the intersection points x∗ . 
Again, the computed values appear to converge, though the precise nature of this convergence is less clear. In this case, we 
obtain the value at δ = 0 via cubic interpolation.

We repeat our convergence tests for N = 256 fixed and δ → 0 with the kernels (34), and compare the results with the 
Krasny kernel results in Fig. 9. We find excellent agreement between all three methods in the limiting behavior of the 
bubble and spike tip locations, as shown in Fig. 9(a); this is in agreement with previous numerical studies [8,93]. The small 
scale structure of the limiting solutions are slightly different, with the Krasny kernel and first order kernel Kδ

1 producing 
similar spiral center locations σδ and radii rδ . Here, the value at δ = 0 is obtained by cubic extrapolation. Let us note that 
for δ > 0, all three methods predict similar values of σδ and rδ .

3 We note that it is of course possible to have time-dependent g for z-model simulations. Our use of a constant value of g for this experiment is due to 
the fact that only an approximate constant value of g is provided in [104].

111



R. Ramani, S. Shkoller / Journal of Computational Physics 405 (2020) 109177 19

Fig. 7. Plots of the amplitude a(t) versus time t for the Waddell et al. [104] RTI problem. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 8. Convergence behavior for the RTI test of Waddell et al. [104] using the z-model with the Krasny desingularization. Shown are (a) the bubble and 
spike tip locations, | max z2| and | min z2|, respectively, (b) the location of the center of the spiral region σδ , and (c) the radius of the spiral region rδ .

Fig. 9. Convergence behavior as δ → 0 with N = 256 fixed for the RTI test of Waddell et al. [104] using the z-model. Shown are (a) the bubble and spike 
tip locations, | max z2| and | min z2|, respectively, (b) the location of the center of the spiral region σδ , and (c) the radius of the spiral region rδ . The solid, 
dashed, and dotted curves in (a) refer to the Krasny, Kδ

1, and Kδ
3 kernels, respectively. The blue, red, and black curves in (b) and (c) refer to the Krasny, 

Kδ
1, and Kδ

3 kernels, respectively.
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Fig. 10. Convergence behavior as δ, N−1 → 0 for the RTI test of Waddell et al. [104] using the z-model. Shown are (a) the bubble and spike tip locations, 
| max z2| and | min z2|, respectively, (b) the location of the center of the spiral region σδ , and (c) the radius of the spiral region rδ . The solid, dashed, and 
dotted curves in (a) refer to the Krasny, Kδ

1, and Kδ
3 kernels, respectively. The blue, red, and black curves in (b) and (c) refer to the Krasny, Kδ

1, and Kδ
3

kernels, respectively.

Next, we consider the limit δ, N−1 → 0, simultaneously; for the Krasny kernel, we use the scaling (31), while for the 
kernels Kδ

i we use the empirical procedure discussed at the beginning of Section 4.3. We consider six simulations with res-
olution starting from N = 32 and doubling until N = 1024, and again compute the bubble/spike tip locations and quantities 
σδ and rδ . We find excellent agreement between all three methods for the limiting values of each of the relevant quantities, 
see Fig. 10. Moreover, the Krasny scheme is the least computationally expensive method: for the N = 1024 simulation, the 
runtime for the Krasny scheme is TCPU ≈ 333 s, whereas the runtime for the 3rd order kernel Kδ

3 scheme is TCPU ≈ 469
s, and thus the simpler Krasny scheme is 40% faster. As such, we conclude that, as the simplest and least computationally 
expensive method, the Krasny desingularization is the most suitable method for our objective.

4.3.4. Single-mode RTI: comparison with numerical simulations
Next, we compare the numerical simulations of Sohn [92] that used the discretized equations (22), with our higher-order 

z-model solutions. A brief description of the numerical method in [92] is as follows. The z-equation (22a) is treated in an 
identical fashion as in our numerical framework; in particular, the same Krasny δ-desingularization and trapezoidal rule 
is used. The � -equation (22b) is discretized in physical space, rather than in Fourier space as in our numerical method. 
The nonlinear term is treated using upwinding via the Godunov method, while an iterative procedure is used for the 
time-derivative term appearing on the right-hand side of (22b). Let us remark that, on average, 6 iterations per time-step 
are required for this numerical method.

Since we are interested in capturing vortex sheet roll-up, we consider the low Atwood number RTI test problem from 
[92]. The domain is α ∈ [−π, π ], the Atwood number is A = 0.05, the gravitational constant is g = 1, and the initial data is

z1(α,0) = α ,

z2(α,0) = 0.5 cos(α) ,

�(α,0) = 0 .

The z-model is run for this problem with N = 400, which is the same value employed in [92], but whereas the value 
δt = 0.002 is required in [92], we are able to use the much larger δt = 0.025. The regularizing parameters chosen as δ̃ = 0.6
and μ̃ = 0.005. This value of δ̃ was chosen to agree with the parameter choices in [92].

The computed z for the above numerical experiment is shown in Fig. 11 at various times t . This figure should be 
compared with Fig. 1(a) in [92], upon which it is clear that the two are essentially indistinguishable. In particular, we note 
that the two solutions are in excellent agreement in the roll-up region, with both branches of the spirals having almost four 
full rotations at the final time t = 22.

To quantify the agreement between our z-model solution and the reference solution from [92], we plot various computed 
quantities in Fig. 12. The bubble tip and spike tip speeds versus time are shown in Fig. 12(a) (compare with Fig. 3(a) in 
[92]). Shown also are theoretical predictions for the bubble speed from asymptotic potential flow models. Such models 
aim to describe analytically the evolution of the amplitude of the interface z, after the transition from exponential growth 
z ∼ z0et

√
Ag at small times (as predicted by the linear theory) to linear-in-time growth z ∼ w∞t (as observed in experiments, 

for instance), where w∞ is the asymptotic bubble velocity. The Goncharov [42] and Sohn [91] models estimate w∞ as

w∞ =
√

2A

1 + A

g

3
and w∞ =

√
Ag

2 + A
,
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Fig. 11. Numerical simulation of the RTI using the z-model with the setup as in the numerical studies of Sohn [92]. Plots of the interface z for a simulation 
with Atwood number A = 0.05 are shown at various times t .

Fig. 12. Plots of various computed quantities for the Sohn [92] RTI problem.
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Table 2
Time-step δt choices for the rocket rig test.

N

128 256 512 1024 2048

δt 1 × 10−3 1 × 10−3 5 × 10−4 1.25 × 10−4 3.125 × 10−5

respectively. As shown in Fig. 12(a), the computed speed and asymptotic predictions are in good agreement; let us note that 
the bubble and spike speeds computed using the z-model appear identical to those in [92].

Next, we compute the vortex sheet strength γ (·, t) = �(·, t)/|∂αz(·, t)|. We plot γ (s, t) versus s in Fig. 12(b), where s(t)
is the normalized arclength. Comparing Fig. 12(b) with Fig. 7(a) in [92], we see that γ (s, t) computed using the z-model 
is slightly larger in magnitude at the shock, but is otherwise identical to the solution in [92]. Finally, we compute the 
magnitude of the bubble tip and spike tip curvatures |κ | in Fig. 12(c), which is in excellent agreement with Fig. 6(a) in [92].

The above observations indicate that the z-model is able to accurately simulate interface turnover and roll-up, while 
minimizing the cost of the numerical computations. In particular, since six iterations are required, on average, for the 
algorithm in [92], the z-model computation is at least 6 times faster if the same time-step δt used. For the above simulation, 
we were able to use a much larger time-step, which shows that the z-model computation is a factor of at least 6 ×
0.025/0.002 = 75 times faster. In fact, since the Fast Fourier Transform (FFT) is used to efficiently compute the � -equation 
(38), whereas costly upwinding is required for the algorithm in [92], it is highly likely that the z-model computation is 
much greater than 75 times faster than the algorithm in [92].

4.3.5. Multi-mode RTI: the rocket rig experiment of Read and Youngs
We next consider the rocket rig experiment of Read [79] and Youngs [106], in which the initial interface separating the 

two fluids of densities ρ+ and ρ− is given by a small and random perturbation of the flat interface. Our aim is to compare 
the growth rates of the mixing layer computed using our z-model with the growth rates observed in experiments [79] and 
2-D DNS simulations [106]. The experimental and numerical evidence indicate that the width of the mixing layer grows 
like

�Agt2 , (43)

where � is some constant. The experimental evidence suggests that the constant � lies in the range � ∈ (0.05, 0.775), 
while the numerical simulations give � ∈ (0.04, 0.05). We shall follow Youngs [107], and employ the value � = 0.06 for 
comparison purposes.

We set up the problem as follows: the domain is α ∈ [−π, +π ], the densities of the two fluids are ρ+ = 0.66 and 
ρ− = 1.89, giving an Atwood number of A ≈ 0.482, the gravitational acceleration is g = −9.8 × 2π

0.3 , and the initial data is 
given by

z1(α,0) = α ,

z2(α,0) = 1

σ

s∑
r=1

ar cos(rα) + br sin(rα) ,

�(α,0) = 0 ,

where ar and br are random number chosen from a standard Gaussian distribution, s = 32, and σ is a constant chosen such 
that ||z2(·, 0)||L2 = 0.01.

We perform 5 simulations using the z-model and with resolution starting from N = 128 and doubling until N = 2048. 
The regularization parameters are fixed as δ̃ = 0.065 and μ = 0.06 for all of the simulations. The time-step δt varies with 
N , and is listed in Table 2. We show plots of the computed interface parametrization z(α, t) at the final time t = 0.15 in 
Fig. 13. As expected, there is more-roll up of the interface as the resolution is increased. To quantify the amount of mixing, 
the width of the mixing region is approximated as maxα z2(α, t) − maxα z2(α, 0). A comparison of the computed mixing 
region width and the predicted quadratic growth rate (43) with � = 0.06 is shown in Fig. 14, from which it is clear that 
the two are in very good agreement.

Since the initial conditions for the rocket rig test are random, it may be difficult to obtain a clear qualitative picture of 
the mixing region from a single simulation alone. Consequently, we repeat the test for N = 512 with six different random 
initial conditions. The interface position for the ensemble of runs is shown in Fig. 15(a), while the mean mixing region 
width is compared with the quadratic growth rate in Fig. 15(b). It is clear from Fig. 15(b) that the computed mixing region 
width is in excellent agreement with the predicted quadratic growth rate, thus providing strong evidence for the validity of 
the z-model. The average runtime for the N = 512 simulations is only TCPU ≈ 20s; thus, the use of the z-model permits the 
inference of large-scale qualitative and quantitive information with minimal computational expense.

115



R. Ramani, S. Shkoller / Journal of Computational Physics 405 (2020) 109177 23

Fig. 13. Numerical simulation of the rocket rig test using the z-model. The results for five simulations with resolution starting from N = 128 and doubling 
until N = 2048 are shown at time t = 0.15.

Fig. 14. Plot of the mixing region width max z2(·, t) − min z2(·, 0) versus time t for the rocket rig test. Results are shown for five simulations using the 
z-model with increasing resolution N . The red curve is the predicted quadratic growth rate (43) with � = 0.06.

Fig. 15. Ensemble of simulations for the rocket rig test with N = 512. Shown are (a) the interface position z at time t = 0.15, and (b) the mean mixing 
region width versus time.
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5. A mutliscale model for interface evolution in compressible flow

We now derive a multiscale interface model, founded upon our incompressible-compressible decomposition of the Euler 
equations. The discontinuous incompressible velocity w solving (27) (and, in particular, obtained from (24)) can be used 
to compute small scale structures on the interface �(t) and the Kelvin-Helmholtz instability (KHI). It is often the case that 
vortex sheet roll-up, caused by the KHI, occurs at spatial scales which are smaller than the scales along which bulk vorticity 
is transported and for which sound waves propagate. When this occurs, the continuous velocity v solving (28), which is 
only forced by bulk compression and vorticity, may be computed at larger spatial scales than the velocity w .

5.1. A multiscale model for the compressible RTI

In order to produce a fast-running model of the compressible RTI, we begin by using the higher-order z-model (24) to 
generate the velocity w . Our model is generated by coupling the equation for v (28) together with

∂t z(α, t) = P
∫
TL

KTL (z(α, t) − z(β, t))�(β, t)dβ + v(z(α, t), t) , (45a)

∂t�(α, t) = −∂α

[
A

2|∂αz(α, t)|2 H (�(α, t)H�(α, t)) − 2Agz2(α, t)

]
, (45b)

and computing w using (19). As we explain below, the compressible equations (28) will be solved on a coarse grid, while 
(45) will be solved on a fine, but one-dimensional, grid.

5.2. A multiscale model for the compressible RMI

5.2.1. Vorticity production
For flows in which shock waves collide with contact discontinuities and initiate the RMI, we shall derive a modified form 

of the z-model which accounts for the vorticity production that is caused by the misalignment of the pressure gradient at 
the shock wave and the density gradient at the interface.

Computing the curl of (15b), we obtain the two-dimensional vorticity equation for compressible flow as

Dω

Dt
+ ω div u = −∇ρ · ∇⊥ p

ρ2
. (46)

The term on the right-hand side of (46) is the baroclinic term, responsible for vorticity production on the interface when a 
shock-wave collides with a vortex sheet. The amplitude of vorticity � is the weak (or distributional) form of the vorticity, 
and consequently it is important to include a weak form of the baroclinic term in the dynamics of � . We thus introduce 
the following modification of the z-model

∂t z(α, t) = P
∫
TL

KTL (z(α, t) − z(β, t))�(β, t)dβ + v(z(α, t), t) , (47a)

∂t�(α, t) = −∂α

[
A

2|∂αz(α, t)|2 H (�(α, t)H�(α, t)) − 2Agz2(α, t)

]
− �∇p · ∂αz(α, t)/ρ� + μ∂2

α�(α, t) , (47b)

which will be used for flows in which shocks collide with contact discontinuities.

Remark 1. Let us mention that for Richtmyer-Meshkov problems, at the time at which the planar shock collides with the 
perturbed contact, the pressure is discontinuous along points in the intersection of the shock and contact. As such the 
numerator in the baroclinic term, �∇p · ∂αz(α, t)� can be large at such points. Such a pressure profile does not occur in 
the Rayleigh-Taylor problems, for which the numerator �∇p · ∂αz(α, t)� vanishes along the contact. Thus, the use of this 
baroclinic term in the � -equation is imperative for the simulation of the RMI problems.

5.2.2. Taylor’s frozen turbulence hypothesis
Taylor’s “frozen turbulence” hypothesis [95], roughly speaking, states that if the mean flow velocity is much larger than 

the velocity of the turbulent eddies, then the advection of the turbulent flow past a fixed point can be taken to be due 
entirely to the mean flow, or in other words, that the turbulent fluctuations are transported by the mean flow. For shock-
contact collisions that initiate the RMI, the velocity v at the shock front is much larger in magnitude than the velocity w . 
That is to say, the relation maxx |v| � maxx |w| holds true. For instance, for the RMI problem considered in Section 6.4, the 
quantity maxx |w| is two orders of magnitude smaller than the quantity maxx |v|. For such flows, we view the velocity v
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as the mean velocity and w as the fluctuation velocity, and impose the Taylor hypothesis that for very short time-intervals 
(i.e., about one time-step in an explicit numerical simulation), w is transported by v , so that

∂t w + (v · ∇)w = 0 . (48)

As we described in Remark 1, at points along the interface at which the shock front intersects the contact discontinuity, 
there exists a large increase in the baroclinic term, which in turn, produces a large increase in the amplitude of vorticity and 
this then leads to a localized increase in the small-scale velocity field w via equation (47b) at each such intersection point at 
each time-step. As the shock passes through the contact discontinuity these points of intersection evolve, and this evolution 
causes large (and localized) space gradients ∇w and temporal gradients ∂t w . The Taylor hypothesis (48) ensures that a 
proper balance is retained between the space and time gradient of w in a numerical implementation which approximates 
these two different types of derivatives in a very different manner.

Using (48) together with (28a), we find that

∂t(ρw) + div(ρw ⊗ v) + div(ρw ⊗ w) = ρ(w · ∇)w ,

and hence (28b) must be replaced by

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇p + ρge2 = −∇ · (ρv ⊗ w) − ρ(w · ∇)w . (28b’)

Therefore, our model for the RMI problem couples (47) with (28), but with (28b’) replacing (28b). Using a Richtmyer-
Meshkov test problem, we explain in detail in Section 6.4 the reasons for using the Taylor hypothesis and (28b’) in our 
multiscale algorithm for RMI flows.

5.3. The multiscale algorithms for the RTI and RMI problems

We are now ready to give a precise description of the multiscale algorithm. Denote by V(x, t) = (ρ, ρv1, ρv2, E)T , the 
solutions to the compressible equations (28). We shall use a standard 3rd order Runge-Kutta procedure for time-integration; 
in the following algorithms, we use the superscript notation to denote the Runge-Kutta stage.

We shall use two slightly different algorithms; the first is for our multiscale model for RTI problems, while the second 
is for the multiscale model for RMI problems.

We note that the ordering of Steps 4(b), 4(c), and 4(d) in the RTI multiscale algorithm is important; our numerical 
experiments have shown that it is important that the velocity w ′(x) is computed before the auxiliary interface z̃ is updated.

For Richtmyer-Meshkov problems, we use a slightly different algorithm. In particular, we are no longer required to 
compute the time-derivative ∂t(ρw) and so shall omit those steps from the algorithm. Notice that this means that we can 
omit in particular Step 4(b) of the RTI algorithm, which removes at each time-step one of the costly integral computations. 
On the other hand, we must compute in Step 4(d) of the RMI algorithm the baroclinic term in the � -equation (47).

Remark 2. In this work, we apply our multiscale algorithm to 2-D flows that are symmetric across the line x1 = 0. In 
particular, this means that the velocities w1 and v1 are odd functions of x1, and the vorticity amplitude � is an odd 
function of α.

RTI MULTISCALE ALGORITHM.

Step 0 Suppose that we are given the solution z(α, t), �(α, t), and V(x, t) at time-step t , as well as a velocity w ′(x), and we wish to compute the 
solution at t + δt . Define z0(α) := z(α, t), � 0(α) := �(α, t), and V0(x) := V(x, t), and let ρ ′(x) := ρ0(x) = ρ(x, t).

Step 1

1(a) Compute a velocity w̃(x) from z0(α) and � 0(α) using the Biot-Savart law.
1(b) Approximate ∂t (ρ w̃)(x) = [ρ0(x)w̃(x) − ρ ′(x)w ′(x)

]
/δt .

1(c) Solve the compressible equations (28) (with w = w̃) to obtain V1(x).
1(d) Compute an auxiliary z̃(α) and �(α) by solving the system (45).
1(e) Calculate the interfacial velocity v(z̃(α)) = v1(x)|z̃(α) using interpolation.
1(f) Update z1(α) = z̃(α) + δt · v(z̃(α)), and set � 1(α) = �̃ (α).

Step 2 Repeat Step 1 but with quantities evaluated at the next Runge-Kutta stage.
Step 3 Repeat Step 2 but with quantities evaluated at the next Runge-Kutta stage.
Step 4

4(a) Use the standard 3rd order Runge-Kutta formula to produce V(x, t + δt), and an auxiliary interface z̃(α) and vorticity amplitude �(α).
4(b) Compute a velocity w ′(x) from z̃(α) and �̃ (α) using the Biot-Savart law.
4(c) Calculate the interfacial velocity v(z̃(α)) = v(x, t + δt)|z̃(α) using interpolation.
4(d) Update z(α, t + δt) = z̃(α) + δt · v(z̃(α)), and set �(α, t + δt) = �̃ (α), then return to Step 0.
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RMI MULTISCALE ALGORITHM.

Step 0 Suppose that we are given the solution z(α, t), �(α, t), and V(x, t) at time-step t , as well as the baroclinic term φ(α, t) = �∇p · ∂α z/ρ� and we 
wish to compute the solution at t + δt . Define z0(α) := z(α, t), � 0(α) := �(α, t), and V0(x) := V(x, t).

Step 1

1(a) Compute a velocity w̃(x) from z0(α) and � 0(α) using the Biot-Savart law.
1(b) Solve the modified compressible equations (28) (with w = w̃), using (28b’) in place of (28b), to obtain V1(x).
1(c) Compute an auxiliary z̃(α) and �(α) by solving the system (47).
1(d) Calculate an auxiliary baroclinic term φ̃(α) using z̃(α), p1(x), and ρ1(x).
1(e) Calculate the interfacial velocity v(z̃(α)) = v1(x)|z̃(α) using interpolation.
1(f) Update z1(α) = z̃(α) + δt · v(z̃(α)), and set � 1(α) = �̃ (α).

Step 2 Repeat Step 1 but with quantities evaluated at the next Runge-Kutta stage.
Step 3 Repeat Step 2 but with quantities evaluated at the next Runge-Kutta stage.
Step 4

4(a) Use the standard 3rd order Runge-Kutta formula to produce V(x, t + δt), and an auxiliary interface z̃(α) and vorticity amplitude �(α).
4(b) Calculate the interfacial velocity v(z̃(α)) = v(x, t + δt)|z̃(α) using interpolation.
4(c) Update z(α, t + δt) = z̃(α) + δt · v(z̃(α)), and set �(α, t + δt) = �̃ (α).
4(d) Compute the baroclinic term φ(α, t + δt) using z(α, t + δt), p(x, t + δt), and ρ(x, t + δt), then return to Step 0.

5.4. Numerical implementation of the multiscale algorithm

We now describe how we numerically implement the multiscale algorithm described in Section 5. Suppose that the 
conservative variables V are computed in the bounded domain � = TL × [x1

2 , xn
2], and that the flow is periodic in the 

horizontal variable x1. Suppose also that a single wavelength of the periodic interface �(t) is parametrized by the function 
z(α, t).

Discretize the domain � with (2m − 1) × n cells with cell centers at

xi
1 = −L/2 + (i − 1)δx1 ,

x j
2 = x1

2 + ( j − 1)δx2 ,

with δx1 = L/(2m − 2) and δx2 = (xn
2 − x1

2)/(n − 1), and suppose that the parameter α is discretized with N = 2r + 1 nodes,

αk = −L/2 + (k − 1)�α ,

with �α = L/(N − 1). We spatially discretize the equations of motion, then use a standard third-order explicit Runge-Kutta 
solver for time integration. We shall use a space-time smooth artificial viscosity method, which we call the C-method [78], 
for the compressible v-equations (28) to stabilize shock fronts and contact discontinuities, and thereby prevent the onset of 
Gibbs oscillations.

It remains to describe the following: first, the numerical implementation of the space-time smooth artificial viscosity 
C-method; second, the computation of the velocity w on the plane; third, the bilinear interpolation scheme; and finally, the 
calculation of the weak baroclinic term �∇p · ∂αz/ρ�.

5.4.1. Numerical implementation of the C-method
We implement a simple finite difference WENO-based scheme to spatially discretize the system (28). Our simplified 

WENO scheme is devoid of any exact or approximate Riemann solvers, and instead relies on the sign of the velocity to 
perform upwinding. A fourth-order central difference approximation is used to compute the pressure gradient ∇p, while a 
second-order central difference approximation is employed to compute the diffusion terms (60). For brevity, we omit further 
details of the numerical implementation of the C-method and refer the reader to Appendix B and [78] for further details.

5.4.2. Computing the w velocity
We first describe our method for calculating the discrete velocity wi, j = w(xi

1, x
j
2) from a given discretized interface 

parametrization zk and vorticity amplitude �k .
Since integral-kernel calculations can be computationally very expensive, we begin by proposing a simplification to speed 

up such calculations. Suppose first that we wish to compute the velocity w at a point xi, j such that |x j
2 − zk

2| � 1 for every 
k. Then the following approximations are valid:

− sinh(2π(x j
2 − zk

2)/L)

cosh(2π(x j
2 − zk

2)/L) − cos(2π(xi
1 − zk

1)/L)
≈ ±1 ,

sin(2π(xi
1 − zk

1)/L)

cosh(2π(x j
2 − zk

2)/L) − cos(2π(xi
1 − zk

1)/L)
≈ 0 .
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Then, using the fact that � is an odd function (cf. Remark 2), it follows that wi, j ≈ 0. Consequently, it is sufficient to 
compute w only for those xi, j that lie in the horizontal strip

�z =
{

x ∈ TL × [x1
2, xn

2] s.t. min
k

zk
2 − λ ≤ x2 ≤ max

k
zk

2 + λ

}
.

For the simulations considered here, we set λ = 0.075, but note that this parameter is problem dependent. Computing the 
velocity only in the strip �z speeds up an otherwise time-consuming calculation.

We now define the scalar function J δ(x) by

J δ(x) = 1

4π
log
{
δ2 + cosh(2πx2/L) − cos(2πx1/L)

}
.

The function J δ is a smoothed version of the singular kernel used in the integral representation of �−1, so that Kδ
TL

(x) =
∇⊥J δ(x).

The velocity w is determined by first calculating the stream function ψ(x, t) using the formula

ψ(x, t) =
∫
TL

J δ(x − z(β, t))�(β, t)dβ ,

then using the relation w = ∇⊥ψ . Since integral-kernel calculations are computationally expensive, it is advantageous to 
perform a single such computation then take derivatives, rather than perform two such computations. Moreover, the func-
tion J δ(x) is (roughly speaking) one derivative smoother than the kernel Kδ

TL
(x), so that we may hope that the integral 

calculation is numerically more stable. Using the stream-function formulation also guarantees that the velocity field w pro-
duced is divergence free, whereas a direct singular integral calculation of w can produce inaccuracies so that the resultant 
velocity field does not satisfy ∇ · w = 0.

For xi, j ∈ �z , we can compute the stream function ψi, j using the same trapezoidal method as described in Section 4. 
We define ψi, j = 0 for xi, j /∈ �z . We then use a standard second-order central difference approximation to determine the 
velocity wi, j from ψi, j .

5.4.3. Bilinear interpolation scheme
We shall employ a simple bilinear interpolation scheme as follows. Let zk be the discretized interface parametrization, 

and suppose that we are given a scalar function f i, j defined at the cell centers xi, j ∈ �. We wish to determine an approxi-
mation f k to the value of f i, j at the points αk . For fixed k, we determine for which i and j the point zk lies in the rectangle 
[xi

1, x
i+1
1 ] × [x j

2, x
j+1
2 ] by requiring that (z1

k − xi
1)(z1

k − xi+1
1 ) ≤ 0 and (z2

k − x j
2)(z2

k − x j+1
2 ) ≤ 0. The interpolated quantity fk is 

then defined as

f k = f i, j

(
1 − (zk

1 − xi
1)

δx1

)(
1 − (zk

2 − x j
2)

δx2

)

+ f i+1, j

(
1 − (xi+1

1 − zk
1)

δx1

)(
1 − (zk

2 − x j
2)

δx2

)

+ f i, j+1

(
1 − (zk

1 − xi
1)

δx1

)(
1 − (x j+1

2 − zk
2)

δx2

)

+ f i+1, j+1

(
1 − (xi+1

1 − zk
1)

δx1

)(
1 − (x j+1

2 − zk
2)

δx2

)
.

5.4.4. Calculation of the weak baroclinic term
Next, we discuss the calculation of the weak baroclinic term �∇p · ∂αz/ρ� on the interface �(t). Suppose that we are 

given the pressure pi, j and density ρi, j defined on the plane, and the discretized interface parametrization zk .
We begin by computing the unit normal n to the interface as

n = ∂αz⊥

|∂αz⊥| = (−∂αz2 , ∂αz1)

|(−∂αz2 , ∂αz1)| .

The jump across the interface in a quantity f defined at grid points is approximated as

� f � ≈ −δn · ∇ f ≈ −|δx|
2

n · ∇ f |z(α,t) , (49)
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where ∇ f |z(α,t) denotes the evaluation of the quantity ∇ f (x1, x2) at the interface parametrization z(α, t); this is ac-
complished using the bilinear interpolation scheme described above. All derivatives are approximated using second-order 
accurate central difference approximations.

Thus, to evaluate the baroclinic term �∇p · ∂αz/ρ�, we compute ∇(∂i p/ρ) for i = 1, 2 on the fixed Eulerian grid, inter-
polate onto the interface, and use formula (49). More explicitly,

�∇p/ρ� · ∂αz ≈ − |δx|
2|∂αz|∂αz⊥M∂αz , (50)

where M is the 2 × 2 matrix defined as

M =
[
∂1(∂1 p/ρ) ∂1(∂2 p/ρ)

∂2(∂1 p/ρ) ∂2(∂2 p/ρ)

] ∣∣∣∣
z(α,t)

,

and |z(α,t) once again denotes evaluation at the interface parametrization (using bilinear interpolation).

6. Numerical simulations of the RTI and RMI using the multiscale model

We next present results from four numerical experiments to demonstrate the efficacy of our multiscale model and its 
numerical implementation. The objective of this section is (1) to show that the multiscale model produces solutions with 
accurate interface motion that correctly captures the KH structures during RTI and RMI, and (2) to demonstrate that the 
multiscale algorithm is roughly two orders of magnitude times faster to run that a standard gas dynamics simulation.

6.1. The compressible RTI test of Almgren et al.

We first consider the compressible single-mode RTI test from the paper of Almgren et al. [1]. The domain is (x1, x2) ∈
[−0.25, 0.25] × [0, 1] and the gravitational constant is g = 1. Periodic conditions are applied in the horizontal x1 direction 
and free-flow conditions are imposed at the boundaries in the x2 direction. In particular, the pressure is extended linearly to 
satisfy the hydrostatic assumption at the top and bottom boundaries. The initial data is given as follows: the initial velocity 
is identically zero u0 = 0, and the pressure p0 is defined as

p0 =
{

5 − ρ−gx2 , if x2 < 0.5

5 − 0.5ρ−g − ρ+g(x2 − 0.5) , if x2 ≥ 0.5
, (51)

where ρ+ = 2 and ρ− = 1. The initial density ρ0 is defined as

ρ0(x1, x2) = ρ− + ρ+ − ρ−

2

[
1 + tanh

(
x2 − η0(x1)

h

)]
, (52)

with η0(x1) = 0.5 − 0.01 cos(4πx1). The tanh profile introduces a small length scale h over which the initial density is 
smeared.

We begin by computing a benchmark or high-resolution reference solution using the anisotropic C-method4 on a fine mesh 
consisting of 128 × 512 cells, a CFL number of CFL ≈ 0.4, and h = 0.005 as in [1].

The computed density is shown in Fig. 16 at the final time t = 2.5. In [1], the authors compare solutions computed using 
the piecewise-parabolic method (PPM) and the piecewise-linear method. It is shown that the (dimensionally) operator-split 
versions of the methods result in spurious secondary instabilities, whereas the unsplit versions of the methods suppress 
these instabilities while keeping a sharp interface and well-defined roll-up regions (see Fig. 9 in [1]). While the C-method 
is dimensionally split, the use of the anisotropic artificial viscosity [78] prevents the onset of the spurious secondary insta-
bilities, while ensuring that the KHI roll-up region and mixing zones are not smeared.5

6.1.1. The multiscale algorithm applied to the RTI
We next employ the RTI multiscale algorithm described in Section 5.3 with the following parameter values: the under-

lying coarse mesh used to solve for v contains 8 × 32 cells, while the interface is discretized with a fine mesh consisting 
of N = 128 nodes; the time-step is δt = 2.5 × 10−3, giving CFL ≈ 0.4. The Atwood number is A = 1/3, the initial velocity is 
v0 = 0, the initial pressure is given by (51), the initial density is given by (52) with h = 0.02, and

4 This is a spacetime smooth artificial viscosity method employed with a highly simplified WENO discretization of the compressible Euler equations (see 
[80,77,78]).

5 We note that both the CPU time and memory usage are approximately a factor of 2 larger for unsplit methods than for split methods [1]. The C -method 
uses a highly simplified dimensionally-split WENO-type scheme and is thus relatively fast.
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Fig. 16. The density profile at time t = 2.5 for the RTI test of Almgren et al. [1]. The solution is computed using the anisotropic C -method on a mesh with 
128 × 512 cells.

Fig. 17. Results for the multiscale algorithm applied to the compressible single-mode RTI test of Almgren et al. [1], with the underlying grid containing 
8 × 32 cells and the interface discretized with N = 128. Shown are (a) computed interface parametrization z, (b) benchmark interface position, and (c) the 
computed interface z (blue) overlaying the benchmark solution (dashed black) at the final time t = 2.5.

z1(α,0) = α ,

z2(α,0) = 0.5 − 0.01 cos(4πα) ,

�(α,0) = 0 .

The artificial viscosity parameters are chosen as β = 50, δ̃ = 1.0, and μ = 1.5 × 10−3.
We provide plots of the resulting solutions using our multiscale algorithm. The interface position z, at the final time 

t = 2.5, is shown in Fig. 17(a), and the high-resolution reference solution is shown in Fig. 17(b). In Fig. 17(c), we compare 
the interface positions computed using the multiscale algorithm and the high-resolution run; we see that the two solutions 
are in excellent agreement, with nearly identical spike tip and bubble tip positions; moreover, the multiscale algorithm 
successfully simulates the roll up of the vortex sheet. The reference solution computation had a runtime of TCPU ≈ 5015 s, 
whereas the multiscale algorithm runtime was only TCPU ≈ 7 s, giving a speed-up of approximately 683 times.

Increasing the resolution of both the coarse grid for v and the fine grid for w results in a solution with even more 
roll-up and accuracy. We show in Fig. 18(a) the multiscale solution computed using 16 × 64 cells for the coarse mesh 
and N = 256 nodes for the fine mesh. The time-step is δt ≈ 8.333 × 10−4, giving CFL ≈ 0.27, and the artificial viscosity 
parameters are unchanged from the previous run. We observe that the computed interface shows more roll up, and is in 
even better agreement with the reference solution. The runtime of this simulation was TCPU ≈ 105 s, resulting in a speed-up 
factor of approximately 48.

6.1.2. Comparison of the low resolution density with the multiscale density
The multiscale algorithm solves for the velocity v on a coarse mesh, using fine-scale information from the velocity w . In 

order to show how small-scale information improves the coarse-mesh simulation, we shall compare the solution obtained 
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Fig. 18. Results for the multiscale algorithm applied to the compressible single-mode RTI test of Almgren et al. [1], with the underlying grid containing 
16 × 64 cells and the interface discretized with N = 256. Shown are (a) computed interface parametrization z, (b) benchmark interface position, and (c) the 
computed interface z (blue) overlaying the benchmark solution (dashed black) at the final time t = 2.5.

Fig. 19. Comparison of the low resolution density with the multiscale density for the RTI test of Almgren et al. [1]. Fig. 19(a) is a plot of the density 
computed using the multiscale algorithm, and Fig. 19(b) is a plot of the low resolution Euler density, computed using the C -method on a coarse grid. Both 
solutions are computed using identical parameters.

with our multiscale algorithm with the solution obtained by solving the Euler equations (using the same gas dynamics 
code as used for the high-resolution reference solution) on the same coarse meshes used to solve for v in the multiscale 
algorithm. We shall refer to this gas dynamics simulation as the low resolution solution.

To be more precise, we obtain the low resolution density profile (using the C-method) on a grid with 16 × 64 cells and 
with a time-step of δt ≈ 8.333 × 10−4. In Fig. 19, this solution is compared against the multiscale density function obtained 
from the simulation shown in Fig. 18. It is clear that the low resolution density profile does not have any of the basic KHI 
structure of the actual solution, and is very different from the multiscale density which (although solved for on the same 
coarse mesh) shows the KH roll-up structure. The multiscale algorithm allows for the recovery of small-scale information 
on the coarse grid via the computation of the velocity w using a fine mesh for the interface. This small-scale information 
subsequently results in more structure in the roll-up region, and, therefore, a solution that is qualitatively more similar to 
high resolution simulations.

6.1.3. Comparison with other schemes and convergence studies
We next compare our multiscale algorithm with a modified version of the multiscale algorithm, in which the incom-

pressible, irrotational velocity w is computed using the kernels (34), rather than the Krasny kernel (30). As in Section 4.3, 
we are interested in the convergence properties of (1) the bubble and spike tip locations, and (2) the radius rδ and location 
σδ of the spiral roll up region. We choose the axis x2 = x∗

2 = 0.4125 to compute the intersection points x∗ .
We first take N = 128 fixed and consider the limit δ → 0. The results are shown in Fig. 20. We observe that all three 

methods are in reasonable agreement with regards to the computed bubble and spike tip locations. The 3rd order kernel is 
in better agreement with the exact solution for the bubble position, whereas the Krasny kernel is in better agreement with 
the exact solution for the spike position. All three methods produce similar spiral radii rδ , and the computed values are in 
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Fig. 20. Convergence behavior as δ → 0 with N = 128 fixed for the compressible RTI test of Almgren et al. [1] using the z-model. Shown are (a) the bubble 
and spike tip locations, | max z2 − 0.5| and | min z2 − 0.5|, respectively, (b) the location of the center of the spiral region σδ , and (c) the radius of the spiral 
region rδ . The solid, dashed, and dotted curves in (a) refer to the Krasny, Kδ

1, and Kδ
3 kernels, respectively. The blue, red, and black curves in (b) and (c) 

refer to the Krasny, Kδ
1, and Kδ

3 kernels, respectively. The green curves indicate the corresponding quantities for the exact solution.

Fig. 21. Convergence behavior as δ, N−1 → 0 for the compressible RTI test of Almgren et al. [1] using the z-model. Shown are (a) the bubble and spike tip 
locations, | max z2 − 0.5| and | min z2 − 0.5|, respectively, (b) the location of the center of the spiral region σδ , and (c) the radius of the spiral region rδ . 
The solid, dashed, and dotted curves in (a) refer to the Krasny, Kδ

1, and Kδ
3 kernels, respectively. The blue, red, and black curves in (b) and (c) refer to the 

Krasny, Kδ
1, and Kδ

3 kernels, respectively. The green curves indicate the corresponding quantities for the exact solution.

good agreement with the exact solution for δ > 0. The 3rd order kernel, in particular, is in excellent agreement with the 
exact solution. The spiral center locations are similarly reasonably accurate for δ > 0.

Next, we consider the limit δ, N−1 → 0. In particular, we consider N = 32, 64, 128, 256. We use the scaling (31) for 
the Krasny scheme, and the empirical procedure described at the beginning of Section 4.3 for the Kδ

i kernel schemes. The 
results are shown in Fig. 21. All of the schemes perform similarly, with the Krasny and Kδ

1 schemes in better agreement 
with the exact solution with regards to spike tip position, spiral center location σδ , and spiral radius rδ , while the 3rd order 
kernel more accurately predicts the bubble tip location. We note that the convergence behavior of the 3rd order kernel 
scheme with regards to the quantities σδ and rδ is rather erratic; this is a result of the sensitivity of the scheme to the 
choice of parameter δ. The asymptotic behavior of σδ and rδ in the Krasny scheme with the scaling (31), on the other hand, 
is more uniform.

6.2. The compressible RTI test of Liska & Wendroff

For our next numerical experiment, we consider the compressible single-mode RTI from the review paper of Liska and 
Wendroff [62]. The domain is (x1, x2) ∈ [−1/6, +1/6] × [0, 1], the gravitational constant is g = 0.1, and the initial data is⎡⎣ ρ0

(ρu)0
E0

⎤⎦=
⎡⎣ 1

0
p0/(γ − 1)

⎤⎦1[0,η0)(x2) +
⎡⎣ 2

0
p0/(γ − 1)

⎤⎦1[η0,1](x2) , (53)

where the initial interface �0 is parameterized by (x1, η0(x1)) with η0(x1) = 0.5 + 0.01 cos(6πx1), and p0 is the initial 
pressure, defined as
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Fig. 22. Results for the multiscale algorithm applied to the compressible single-mode RTI test of Liska and Wendroff [62], with the underlying grid containing 
8 × 32 cells and the interface discretized with N = 64. Shown are (a) computed interface parametrization z, (b) benchmark interface position, and (c) the 
computed interface z (blue) overlaying the benchmark solution (dashed black) at the final time t = 8.5.

p0 =
{

2.4 + g (η0(x1) − x2) + 2g (1 − η0(x1)) , if x2 < η0(x1)

2.4 + 2g (1 − x2) , if x2 ≥ η0(x1)
.

Periodic conditions are applied in the horizontal direction x1, while free-flow conditions are applied at the boundaries in 
the x2 direction.

In [78], we used the anisotropic C-method to solve this problem; the resulting solutions have the classic mushroom-
shaped interface profile without overly diffused KHI roll-up regions and mixing zones. We shall use this solution, computed 
on a fine mesh of 50 × 200 cells with CFL ≈ 0.1 as our high resolution reference solution.6

6.2.1. The multiscale algorithm applied to the RTI
We begin by employing the multiscale algorithm to the RTI problem (53) with the following parameter values: the coarse 

mesh for v contains 8 × 32 cells, the fine mesh for w uses N = 64, and the time-step is δt = 2.5 × 10−3, giving CFL ≈ 0.35. 
The Atwood number is set as A = 1/3, and the initial data is given by (53) (with u replaced by v) with the following 
modification: as in the numerical experiment performed in Section 6.1, we smooth the initial density field ρ0 over a length 
scale. The initial density is thus given by formula (52) with η0(x1) = 0.5 + 0.01 cos(6πx1), and the smoothing length scale 
is chosen as h = 0.02. We also set

z1(α,0) = α ,

z2(α,0) = 0.5 + 0.01 cos(6πα) ,

�(α,0) = 0 .

The artificial viscosity parameters are chosen as β = 5, δ̃ = 1.5, and μ = 0.001.
The multiscale interface position z at time t = 8.5 is shown in Fig. 22; the high resolution reference solution computation 

is presented in Fig. 22(b), and the comparison of the two solution is made in Fig. 22(c). We see that the spike tip position 
of the computed solution matches almost exactly with the spike tip position of the reference solution, and the bubble tip 
positions are also in good agreement. Moreover, the multiscale solution successfully simulates the roll-up of the contact 
discontinuity and, by comparing with Fig. 22(b), we observe that this roll-up occurs in the correct region of the flow and 
matches well with the scale of the high resolution solution.

In Fig. 23, we compare the interface z(α, t) from the multiscale run and the high-resolution run at various times t . As 
can be seen, the two solutions are in very good agreement throughout the time interval of the simulation.

To compare the bubble and spike tip positions, we plot in Fig. 24 the quantities σb(t) = |0.5 − maxα z(α, t)| and σs(t) =
|0.5 − minα z(α, t)|. The spike tip position is in excellent agreement with the reference solution for all times t , while the 
bubble tip position is also in excellent agreement for times t < 6. For t > 6, the bubble tip position diverges slightly from 

6 We have found that this smaller CFL number is required for this low Mach number flow calculation to prevent high frequency noise from corrupting 
the solution.
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Fig. 23. Evolution over time t of the interface for the compressible single-mode RTI. Here z is computed using the multiscale algorithm on a mesh with 
8 × 32 cells and an interface discretized with N = 64. The blue curve is the computed z(α, t), and the dashed black curve is the reference solution.

Fig. 24. Plots of the quantities σb(t) and σs(t) for the solution computed using the multiscale algorithm applied to the compressible single-mode RTI on a 
mesh with 8 × 32 cells and an interface with N = 64.

the reference solution, but the error is still relatively small; at the final time t = 8.5, the error is ≈ 2.5% of the height of the 
computational domain.

Finally, we turn to the issue of the runtimes of the computations. The reference solution computation had a runtime of 
TCPU ≈ 2906 s, whereas the multiscale algorithm runtime was only TCPU ≈ 14 s, which gives a speed-up of approximately 
203 times. We are thus able to infer both large-scale (amplitude growth rates) as well as small-scale (roll-up region struc-
ture) information by use of the multiscale model and algorithm, while drastically reducing the computational burden and 
runtime when compared with the reference solution computation.

6.2.2. Comparing the mutliscale solution with both the low resolution simulation and the incompressible z-model
To demonstrate the efficacy of our multiscale model, we compare the multiscale solution with the low resolution solution 

as well as with the incompressible and irrotational z-model.
In Fig. 25, the results from these simulations are compared with the simulations performed using the multiscale al-

gorithm. We see that the solutions are drastically different; the low resolution density ρ has no roll-up of the contact 
discontinuity, while the interface z computed using the incompressible z-model has completely incorrect bubble and spike 
positions. On the other hand, the use of the multiscale model allows the coarse grid calculation to “correct” the interface 
position z, while the fine resolution computation on the interface z similarly “corrects” for the lack of roll-up of the coarse 
grid solution.

6.2.3. Basic mesh refinement study
Next, we perform a basic mesh refinement study to analyze the behavior of our multiscale algorithm as both the under-

lying mesh, as well as the interface discretization, is refined. More precisely, we shall consider grids with 8 × 32, or 10 × 40
or 12 × 48 cells, and the interface discretized with either N = 64 or N = 128 or N = 256. We shall keep the artificial vis-
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Fig. 25. Comparison of the solutions to the compressible single-mode RTI test of Liska and Wendroff [62]. Figs. 25(a) and 25(c) are plots of the interface 
z and density ρ , respectively, computed using the multiscale algorithm. Fig. 25(b) is the interface z computed using the incompressible and z-model. 
Fig. 25(d) is the low resolution density ρ computed using the C -method. All the relevant parameters are fixed across the simulations.

cosity parameters β and δ̃ fixed, with β = 5 and δ̃ = 1.5. The time-step δt and artificial viscosity parameter μ are allowed 
to vary as both the underlying mesh resolution, as well as the interface resolution, are varied. The exact choices for these 
parameters, as well as the corresponding runtimes TCPU and speed-up factors � compared to the high resolution reference 
solution calculation, are presented in Table 3 in Appendix A, but we note here that the values of μ are almost the same 
(μ ≈ 0.001) for all of the runs.

The results for the mesh refinement study are shown in Fig. 34 in Appendix A. As N increases with the number of cells 
fixed, the computed interface positions are roughly the same, except in the KHI roll-up regions, in which the interfaces 
computed with larger N show significantly more roll-up (compare, for instance, Fig. 34(a) with Fig. 34(c)). This is in line 
with the observations in Section 4.3 for numerical simulations using the incompressible and irrotational z-model, and is 
due to the scaling of the parameter δ̃.

On the other hand, if the number of cells contained in the underlying coarse mesh is increased with N held fixed, the 
resulting solutions for the interface do not have more roll-up, but instead appear to converge to the reference solution away 
from the roll-up region (compare, for instance, Fig. 34(b) with Fig. 34(h)). This “convergence” is particularly noticeable in 
the “pits” of the mushroom shape.

6.3. A single-mode RMI problem

We next consider the single-mode RMI with the following problem setup. The domain is (x1, x2) ∈ [−1/6, +1/6] ×
[−1, 1], the gravitational constant is g = 0.5, and the initial data is given by⎡⎣ ρ0

(ρu)0
E0

⎤⎦=
⎡⎣ 1

0
f /(γ − 1)

⎤⎦1[−1,η0)(x2)+
⎡⎣ 2

0
f /(γ − 1)

⎤⎦1[η0,0.8)(x2)+
⎡⎣ 4.857143

0
36.6666 + f /(γ − 1)

⎤⎦1[0.8,1](x2) , (54)

where the initial interface �0 is parameterized by (x1, η0(x1)) with η0(x1) = 0.5 + 0.1 cos(6πx1), and f is the function 
defined as

f (x1, x2) =
{

2.4 + g (η0(x1) − x2) + 2g (1 − η0(x1)) , if x2 < η0(x1)

2.4 + 2g (1 − x2) , if x2 ≥ η0(x1)
.

Periodic conditions are applied in the horizontal direction x1, while free-flow and solid-wall conditions are applied at the 
bottom and top boundaries, respectively.

A high resolution reference solution is computed using the C-method on a fine grid with 50 × 400 cells. The time-step 
is fixed as δt = 0.0001, which results in CFL ∈ (0.14, 0.2). Again, we have found that this relatively small CFL number is 
required to prevent the occurrence of high-frequency noise in the computed solution.

6.3.1. The multiscale algorithm applied to the RMI
We apply the multiscale algorithm to the RMI problem (54) with the following parameter choices: the coarse mesh for v

contains 10 × 80 cells, the fine mesh for w uses N = 64, and the time-step is δt = 0.00125, which yields CFL ∈ (0.30, 0.45). 
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Fig. 26. Results for the multiscale algorithm applied to single-mode RMI test, with the underlying grid containing 10 × 80 cells and the interface discretized 
with N = 64. Shown are (a) computed interface parametrization z, (b) benchmark interface position, and (c) the computed interface z (blue) overlaying the 
benchmark solution (dashed black) at the final time t = 1.6.

The artificial viscosity parameters in (59) are set as β = 1, βs = 1, while δ̃ = 1.25 and μ = 0.005. The Atwood number is set 
as A = 1/3, and the initial data is given by (54) (with u replaced by v), together with

z1(α,0) = α ,

z2(α,0) = 0.5 + 0.1 cos(6πα) ,

�(α,0) = 0 .

We present results for the computed interface parametrization at the final time t = 1.6 in Fig. 26(a). Plots showing the 
evolution of the interface over time are shown in Fig. 27. The computed interface position z agrees well with the reference 
solution for the duration of simulation, and both interfaces display similar amounts of roll-up at the final time.The positions 
of the bubbles coincide for the two solution, while the spike tip positions are also in good agreement. We also note that in 
the high resolution reference solution there is slight “kink” in the “stem” of the mushroom; this “kink” is also displayed in 
the interface computed using the multiscale algorithm.

The approximate runtime of the reference solution calculation is TCPU ≈ 1653 s, whereas our multiscale algorithm com-
putation had a runtime of only TCPU ≈ 15 s, yielding a speed-up factor of almost 110 times. As with the multiscale algorithm 
applied to the RTI, we are able to accurately predict large scale quantities and small scale structure with minimal computa-
tional expense.

6.3.2. The effects of the baroclinic term
In this section, we briefly discuss the importance of including the baroclinic term in the modified � -equation (47b). 

This term is crucial in ensuring that the interface z is advected by the correct velocity. Without this term, information 
about the baroclinic deposition of vorticity by the shock on the interface is not transmitted to the incompressible portion 
of the multiscale algorithm. We show in Fig. 28 the evolution of a multiscale solution, computed without the inclusion 
of the baroclinic term, but otherwise identical to the RMI multiscale algorithm. This solution (displayed as a red curve) is 
compared against the solution obtained using the actual RMI multiscale algorithm (displayed as a blue curve), as well as the 
high resolution reference solution (displayed as a dashed black curve). It is clear that the omission of the baroclinic term 
leads to a solution with an incorrect interface position, and with significantly less KH roll-up.

In the absence of this baroclinic term, while the coarse scale shock velocity v still advects the interface upon shock-
contact collision, the computed amplitude of vorticity � (shown in Fig. 29 as a red curve) has the wrong sign after the 
shock-contact collision at t ≈ 0.12, which yields an incorrect calculation of the fine scale velocity w , and subsequently an 
incorrect interface position z.

We compare this incorrect � with the amplitude of vorticity � computed using the complete RMI multiscale algorithm 
(shown in Fig. 29 as a blue curve); without the baroclinic term, � has the wrong sign until time t = 0.70, at which point 
the advection of the interface by the coarse scale velocity v forces � to have the correct sign. This is in contrast to our 
RMI multiscale algorithm, in which the baroclinic term forces � to switch sign after the shock-contact interaction, which 
results in the correct computation of the fine grid velocity w and, consequently, the correct interface position.
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Fig. 27. Evolution over time t of the interface for the single-mode RMI. Here z is computed using the multiscale algorithm on a mesh with 10 × 80 cells 
and an interface discretized with N = 64. The blue curve is the computed z(α, t), and the dashed black curve is the reference solution.

Fig. 28. Evolution over time t of the interface for the single-mode RMI. Here, the red curve is z computed using the multiscale algorithm, but without the 
use of the baroclinic term in the � -equation, on a mesh with 10 × 80 cells and an interface discretized with N = 64. The blue curve is z computed using 
the complete multiscale algorithm, while dashed black curve is the reference solution.

Fig. 29. Evolution over time t of the amplitude of vorticity �(α, t) versus α for the single-mode RMI. Here, the red curve is � computed using the 
multiscale algorithm, but without the use of the baroclinic term in the � -equation, on a mesh with 10 × 80 cells and an interface discretized with N = 64. 
The blue curve is � computed using the complete multiscale algorithm.
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Fig. 30. The density profile at time t = 8.0 for the RMI test of Nourgaliev et al. [75]. This high-resolution solution is computed using the C -method on a 
mesh with 100 × 800 cells.

6.4. The RMI test of Nourgaliev et al.

We next consider the RMI problem introduced in [75], and later considered in [97,74,105]. A heavy fluid of density 
ρ+ = 5.04 lies below a light fluid of density ρ− = 1, and a planar Mach 1.24 shock travels vertically downwards through 
the light fluid and eventually collides with the interface separating the two fluids, resulting in a transmitted shock and a 
reflected shock. The instability is generated by the subsequent acceleration of the light fluid into the heavy fluid. The domain 
is (x1, x2) ∈ [−0.5, 0.5] × [0, 4], the adiabatic constant is γ = 1.276, gravity is assumed to be negligible (i.e. g = 0), and the 
initial data is defined as follows. The initial interface �0 is parametrized by (x1, η0(x1)), with η0(x1) = 2.9 + 0.1 cos(2πx1), 
and the initial shock position is at x2 = 3.2. The initial horizontal velocity vanishes u1(x, 0) = 0, and the initial vertical 
velocity satisfies u2(x, 0) = −0.550368 · 1x2≥3.2(x). The initial pressure is p0(x) = 1x2<3.2(x) + 1.628 · 1x2≥3.2(x). As in the 
numerical experiments in Section 6.1, the initial density is smoothed over a length scale h using a tanh profile:

ρ0(x1, x2) = ρ− + ρ+ − ρ−

2

[
1 + tanh

(
ψ(x1) − x2

h

)]
. (55)

For our high resolution reference solution computed using the C-method on a fine mesh, we use h = 0.005. Periodic bound-
ary conditions are applied in the x1-direction, and free-flow conditions are imposed in the x2-direction.

Our high resolution reference solution is computed on a mesh with 100 × 800 cells and a time-step of δt = 6.25 × 10−4, 
which gives CFL ≈ 0.4. The computed density is shown in Fig. 30 at the final time t = 8, and can be compared with Figs. 
10, 11, 23, and 23 in [75], [97], [74], and [105], respectively.

6.4.1. The multiscale algorithm applied to the RMI
Next, we apply the multiscale RMI algorithm to the problem described above. The relevant parameters are chosen as 

follows. The coarse mesh for v contains 10 × 80 cells, the fine mesh for w uses N = 128, and the time-step is set as 
δt = 6.25 × 10−3, giving CFL ≈ 0.4. The initial velocities are v1(x, 0) = 0 and v2(x, 0) = −0.550368 · 1x2≥3.2(x), and the 
initial pressure is p0(x) = 1x2<3.2(x) + 1.628 · 1x2≥3.2(x). The initial density is smoothed using (55) with h = 0.02. The 
Atwood number is A ≈ 0.67, and the initial data for the interface calculation is

z1(α,0) = α ,

z2(α,0) = 2.9 + 0.1 cos(2πα) ,

�(α,0) = 0 .

The artificial viscosity parameters are set as β = 1, βs = 0, δ̃ = 1, and � = 1 × 10−4.
The computed interface is shown in Fig. 31(a), the high resolution reference solution is shown in Fig. 31(b), and a 

comparison of the two solutions is made in Fig. 31(c). The multiscale algorithm is able to simulate both the transport of 
the contact as well as the KHI roll up; moreover, Fig. 31(c) shows that the bubble tip and spike tip positions compare well 
with the high resolution reference solution. The runtime for the high resolution simulation was TCPU ≈ 6298 s, whereas the 
runtime for the multiscale simulation was only TCPU ≈ 24 s, giving a speed up factor of approximately 260 times.

Next, we double the resolution of both the coarse mesh for v as well as the fine mesh for w i.e. the grid now contains 
20 × 160 cells and N = 256. The time-step is halved, δt = 3.125 × 10−3, so that the CFL number is still approximately 
0.4. All the other parameters from the previous run are kept fixed, and we employ the multiscale algorithm; the resulting 
solution is shown in Fig. 32(a). We see that there is more roll-up of the vortex sheet, and that the “cap” of the mushroom 
is “flattened”, which is in qualitative agreement with the reference solution. The runtime for this simulation is TCPU ≈ 265
s, giving a speed up factor of approximately 24 times over the high resolution simulation.
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Fig. 31. Results for the multiscale algorithm applied to single-mode RMI test of Nourgaliev et al. [75], with the underlying grid containing 10 × 80 cells 
and the interface discretized with N = 128. Shown are (a) computed interface parametrization z, (b) benchmark interface position, and (c) the computed 
interface z (blue) overlaying the benchmark solution (dashed black) at the final time t = 8.0.

Fig. 32. Results for the multiscale algorithm applied to single-mode RMI test of Nourgaliev et al. [75], with the underlying grid containing 20 × 160 cells 
and the interface discretized with N = 256. Shown are (a) computed interface parametrization z, (b) benchmark interface position, and (c) the computed 
interface z (blue) overlaying the benchmark solution (dashed black) at the final time t = 8.0.

6.4.2. The effects of the Taylor hypothesis
We now briefly discuss the effects of the Taylor “frozen turbulence” hypothesis in our multiscale RMI algorithm. We 

recall that the hypothesis asserts that the fine grid velocity w is transported by the coarse grid velocity v (over small time 
intervals). The primary effect of the Taylor hypothesis is that the dynamics of the coarse grid compressible velocity v are 
evolved using (28b’) in place of (28b). Without the use of the hypothesis, the additional terms in (28b) lead to an incorrect 
calculation of the velocity field v , which in turn leads to an incorrect update of the interface position z (i.e. Steps 1(e), 1(f)
and 4(b), 4(c) of the RMI algorithm).

We demonstrate this in Fig. 33, in which we show results of a simulation performed using a modified version of the 
RMI multiscale algorithm in which the Taylor hypothesis is not employed, but is otherwise identical to the RMI multiscale 
algorithm in Section 5.3. The solution is computed using the same parameters as those used for the simulation presented 
in Fig. 31(a).

The shock collides with the interface at time t = 0.15, shown in Fig. 33(a); at this time, vorticity is deposited on the 
interface by the shock. The interface is transported with reasonable accuracy for t < 1.0 (as demonstrated in Fig. 33(b)), 
because the velocity w is very small at early times, and thus does not have a noticeable effect on the interface evolution; 
for early times, the evolution of the interface is mainly due to the “transport” coarse grid velocity v . However, as the 
magnitude of the vorticity on the interface grows with time, w is no longer negligible, and affects the evolution of the 
interface. The extra terms appearing on the right-hand side of (28b) (which do not appear in (28b’)) lead to an incorrect 
calculation of the coarse scale velocity v . Since the fine grid velocity w is not being transported by v , the coarse scale 
compression and vorticity information is not correctly conveyed to the interfacial algorithm, which leads to a deceleration 
of the interface (shown in Fig. 33(c)). The solution then quickly degrades, with the interface position completely incorrect by 
time t = 2.0, as shown in Fig. 33(d). For problems in which an unstable interface is transported as the instability develops, 
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Fig. 33. Results for the modified multiscale algorithm without the Taylor “frozen turbulence” hypothesis applied to single-mode RMI test of Nourgaliev 
et al. [75], with all relevant parameters unchanged from the simulation presented in Fig. 31. Shown are the computed interface z (blue) and reference 
solution (dashed black) at various times t .

the use of the Taylor hypothesis ensures that coarse scale information is accurately conveyed to the small scale calculations, 
thereby producing accurate solutions with correct interface positions.

7. Concluding remarks

This paper introduces a novel multiscale model describing the evolution of contact discontinuities in compressible fluid 
flow. The multiscale model is based on a decomposition of the velocity field u = v + w . While the velocity w is discon-
tinuous, it is also incompressible and irrotational, and can be solved efficiently on fine meshes using a new asymptotic 
(high-order) z-model to approximate the full Birkhoff-Rott system of singular integral equations. The velocity v is com-
pressible and rotational, but is smooth near the contact discontinuity and can thus be computed efficiently on relatively 
coarse meshes.

We have proposed an extremely simple numerical implementation of the incompressible z-model, and have presented 
numerical results for the z-model which simulate classical RTI experiments. These results show excellent qualitative and 
quantitative agreement of our computed solutions with both experimental predictions, as well as “reference” solution cal-
culations performed using the complete Birkhoff-Rott system. In the latter case, we have demonstrated that our z-model 
algorithm is at least 75 times faster than a standard numerical algorithm for the Birkhoff-Rott system. We have additionally 
compared our simple numerical implementation with more sophisticated methods using higher order regularizations, and 
found good agreement (as in previous numerical studies [8,93]) between all three methods in predicting both the bubble 
and spike tip locations, as well as the radii and location of the spiral roll up structures. While our simple numerical method 
leads to a fast-running algorithm, in the future, more sophisticated numerical implementations of the z-model will be 
considered, including implementations of a fast summation method [45], a point-insertion procedure [57], non-oscillatory 
shock-capturing, and space-time smooth artificial viscosity [77].

We have also developed multiscale models and algorithms for compressible flows with vorticity undergoing RTI and RMI. 
Our algorithms couple the fine scale velocity w , which controls the small scale structure of the interface, with the coarse 
grid velocity v , which controls the bulk compression and vorticity of the fluid. The RMI multiscale algorithm includes 
the effects of vorticity deposition on the interface during shock-contact interaction, and also enforces a version of Taylor’s 
frozen turbulence hypothesis, which asserts that small scale velocity fluctuations are transported by the mean flow. We 
have presented numerical results for both the RTI and RMI, and demonstrated that the computed solutions are in good 
agreement, both qualitatively and quantitively, with high order gas dynamics simulations, while having computational run 
times that are at least two orders of magnitude smaller. In particular, the multiscale solutions exhibit KHI roll up regions 
of the contact discontinuity that are in good agreement with the roll up regions observed in solutions obtained from high 
resolution calculations. Such roll up of the contact is in general not observed in low resolution Euler simulations; however, 
the coupling of the fine scale velocity w to the coarse scale velocity v through our multiscale model leads to simulations 
(on coarse meshes) which exhibit roll-up regions similar to those in high-resolution simulations.

In future work, we shall generalize our models to three space dimensions, and consider its applications to the numer-
ical simulation of other physical problems, such as RTI and RMI with multimode initial perturbations, rising bubbles, and 
shock-bubble interaction. The mathematical analysis of the z-model and the multiscale models will also be considered in 

132



40 R. Ramani, S. Shkoller / Journal of Computational Physics 405 (2020) 109177

Table 3
Time-step δt and artificial viscosity parameter μ choices for the compressible 
single-mode RTI mesh refinement study described in Section 6.2.3. Shown also 
are the runtimes TCPU and speed-up factors �.

Cells
N

64 128 256

8 × 32 δt = 2.5 × 10−3 δt = 2.5 × 10−3 δt = 6.25 × 10−4

μ = 1 × 10−3 μ = 9 × 10−4 μ = 8.75 × 10−4

TCPU = 14 s TCPU = 28 s TCPU = 244 s
� = 203 � = 105 � = 12

10 × 40 δt = 2.5 × 10−3 δt = 2.5 × 10−3 δt = 6.25 × 10−4

μ = 1 × 10−3 μ = 8.75 × 10−4 μ = 9 × 10−4

TCPU = 19 s TCPU = 37 s TCPU = 304 s
� = 149 � = 78 � = 10

12 × 48 δt = 1.67 × 10−3 δt = 1.67 × 10−3 δt = 4.55 × 10−4

μ = 1.5 × 10−3 μ = 1.25 × 10−3 μ = 1.1 × 10−3

TCPU = 38 s TCPU = 69 s TCPU = 578 s
� = 76 � = 42 � = 5

future work. In particular, we shall consider a detailed theoretical and numerical study of the convergence behavior of our 
multiscale solutions, as the interfacial and planar meshes are refined, and artificial viscosity parameters converge to zero.
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Appendix A. Mesh refinement for the multiscale algorithm applied to the RTI

In this section, we present the results for the mesh refinement study of the multiscale algorithm applied to the single-
mode compressible RTI test of Liska & Wendroff (see Section 6.2.3). Table 3 contains a list of the choices for the parameters 
δt and μ, as well as the runtimes TCPU and relative speed up factors � for the RTI mesh refinement study. The results 
from this study are presented in Fig. 34, which show the reference solution (dashed black curve) overlaid by the computed 
interface parametrization z (red curve).

Appendix B. The C -method for space-time smooth artificial viscosity

The presence of jump discontinuities in the solution U to (10) poses a significant challenge for numerical schemes at-
tempting to approximate such solutions, due to the occurrence of small-scale oscillations (or Gibbs phenomenon). A variety 
of high-order discretization techniques have been developed to combat this issue, such as MUSCL [101,24,52], PPM [25], 
WENO [64,53,86], and its predecessor, ENO [49,87,88]. These methods rely on a careful reconstruction of the numerical 
flux; centered numerical fluxes, such as the Lax-Friedrichs flux [60], add dissipation implicitly to preserve stability and 
monotonicity, while upwinding methods based upon exact or approximate Riemann solvers tend to be complex and com-
putationally costly. We refer the reader to [77] and the references therein for further details.

Explicit artificial viscosity methods provide a simple way to stabilize shock fronts and contact discontinuities. These 
methods regularize solutions by introducing diffusion terms to the equations of motion; discontinuities are smeared over 
a small region in space, which stabilize the solution and prevent the occurrence of spurious oscillations, while high-order 
accuracy is maintained in smooth regions of the flow. We next describe a method for adding localized, space-time smooth 
artificial viscosity to the system (10), which we call the C-method [80,77,78].

The C-method is a variant of the original classical artificial viscosity method of Von Neumann and Richtmyer [103], and 
couples the Euler equations (10) to a set of scalar reaction-diffusion equations, whose solutions act as space-time smooth 
artificial viscosity indicators. The C-method tracks the geometry of the evolving fronts, which allows for the implementation 
of both directionally isotropic and anisotropic artificial viscosity schemes. The latter is important for the capture of the 
roll-up of vortex sheets subject to the Kelvin-Helmholtz instability.

We introduce the following Euler-C-Ĉ system:

∂tρ + ∇ · (ρu) = 0 , (56a)
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Fig. 34. Plots of the interface computed using the multiscale algorithm applied to the single-mode compressible RTI test of Liska and Wendroff [62] for 
different grid and interface resolutions. The red curve is the computed interface, and the dashed black curve is the reference solution.

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p + ρge2 = ∂xi

(
β̃ρ ĈCτi Cτ j ∂x j u

)
+ ∇ · (β̃sρC∇u) , (56b)

∂t E + ∇ · (u(E + p)) + ρgu2 = 0 , (56c)

∂t C − L[C ;ε,κ] = S(u)

ε|δx| Gρ , (56d)

∂t Ĉ − L[Ĉ ;ε,κ] = S(u)

ε|δx| Ĝρ , (56e)

∂t Cτi − L[Cτi ;ε,κ] = S(u)

ε|δx| τ̂i , for i = 1,2 . (56f)
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Here, the operator L is defined by

L[C ;ε,κ] = − S(u)

ε|δx| C + κ S(u)�C , (57)

where ε and κ are parameters controlling the support and smoothness of the function C , respectively, δx = (δx1 , δx2) is the 
grid spacing, and � = ∂2

x1
+ ∂2

x2
is the Laplacian operator. The forcing functions to the C-equations are

Gρ = 1(−∞,0)(∇ · u)[1 − 1(∞,0)(∂nρ∂ne)]|∇ρ| , (58a)

Ĝρ = 1(−∞,0)(∂nρ∂ne)|∇ρ| , (58b)

τ̂1 = −1(−∞,0)(∂nρ∂ne)∂yρ , (58c)

τ̂2 = 1(−∞,0)(∂nρ∂ne)∂xρ , (58d)

where ∂n = n ·∇ is the normal derivative operator and the function 1(−∞,0)(ξ) is a compression or expansion switch defined 
by

1(−∞,0)(ξ) =
{

1 , if ξ < 0 ,

0 , if ξ ≥ 0 .

The artificial viscosity parameters β̃ and α̃ are defined by

β̃ = |δx|2 · maxx |∇u|
μ2 maxx Ĉ

β and β̃s = |δx|2 · maxx |∇u|
maxx C

βs , (59)

with μ = maxx
{|Cτ1 | , |Cτ2 |} a normalization constant, and β and α constant positive numbers.

In writing the system (56), we have utilized the summation convention which specifies that a repeated free index in the 
same term implies summation over all values of that index.

The two artificial viscosity terms in (56) are

∂xi

(
β̃ρ ĈCτi Cτ j ∂x j u

)
, (60a)

∇ · (β̃sρC∇u) . (60b)

(60a) is an anisotropic artificial viscosity term that adds dissipation only in directions tangential to the front. This artificial 
viscosity term is localized to the vortex sheet through the use of the C-functions; the expansion switch 1(−∞,0)(∂ne∂nρ)

in the forcing functions Ĝρ and τ̂i vanishes at shock fronts, but is active at contact discontinuities. The isotropic artificial 
viscosity operator (60b), on the other hand, adds dissipation in all directions; this artificial viscosity term is localized to the 
shock fronts through the compression switch 1(−∞,0)(∇ · u) in the forcing function Gρ . For the vortex sheet, it is important 
that dissipation is added only in directions tangential to the sheet; therefore, the switch 1 −1(−∞,0)(∂ne∂nρ) “turns off” the 
isotropic dissipation in the regions where a shock front intersects with a vortex sheet.

Remark 3. If there are no shock fronts present in a solution, as is the case for the classical Rayleigh-Taylor problems, then 
the isotropic diffusion term (60b) in (56) is omitted, and consequently so is equation (56d) for the C-function localized to 
shock waves.

Remark 4. For problems which are symmetric about x1 = 0, we compute the solution only for x1 ≥ 0 and then use reflection 
to obtain the solution for x1 < 0. A similar reflection procedure is used in the numerical implementation of the z-model.

For the purposes of brevity, we have omitted some of the details and refer the reader to [78] for further discussion of 
the C-method in 2-D .
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We develop a fast-running smooth adaptive meshing (SAM) algorithm for dynamic 
curvilinear mesh generation, which is based on a fast solution strategy of the time-
dependent Monge-Ampère (MA) equation, det∇ψ(x, t) = G ◦ ψ(x, t). The novelty of our 
approach is a new so-called perturbation formulation of MA, which constructs the solution 
map ψ via composition of a sequence of near-identity deformations of a reference mesh. 
Then, we formulate a new version of the deformation method [21] that results in a simple, 
fast, and high-order accurate numerical scheme and a dynamic SAM algorithm that is 
of optimal complexity when applied to time-dependent mesh generation for solutions to 
hyperbolic systems such as the Euler equations of gas dynamics. We perform a series of 
challenging 2D and 3D mesh generation experiments for grids with large deformations, 
and demonstrate that SAM is able to produce smooth meshes comparable to state-of-the-
art solvers [22,18], while running approximately 200 times faster. The SAM algorithm is 
then coupled to a simple Arbitrary Lagrangian Eulerian (ALE) scheme for 2D gas dynamics. 
Specifically, we implement the C-method [64,65] and develop a new ALE interface tracking 
algorithm for contact discontinuities. We perform numerical experiments for both the 
Noh implosion problem as well as a classical Rayleigh-Taylor instability problem. Results 
confirm that low-resolution simulations using our SAM-ALE algorithm compare favorably 
with high-resolution uniform mesh runs.
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1. Introduction

The efficiency of smooth moving-mesh methods for numerical simulations of gas dynamics1 and related systems has 
been investigated in recent years [3,85,35,36,62,58,25,49,26]; however, to the best of our knowledge, compelling evidence 
of the gain in efficiency relative to fixed uniform-mesh simulations in multiple space dimensions has rarely been provided. 
In a recent result [49], the authors demonstrate that low-resolution adaptive simulations are roughly 2-6 times faster than 
high-resolution uniform simulations of comparable quality; most results in this area focus on novel solution methodologies 
but not on the ultimate speed-up that may be gained by the algorithms that they produce. The papers cited above focus on 
one half of the moving-mesh methodology, namely, the numerical discretization of the physical PDEs. They develop state-of-
the-art high-resolution shock-capturing techniques, but use well-established and somewhat standard meshing algorithms. 
Our point-of-view is that it is essential to simultaneously develop both numerical methods for hyperbolic systems (for 
discontinuous solutions) as well as novel meshing strategies.2

Herein, we propose a novel and fast3 Smooth Adaptive Meshing (SAM) algorithm for multi-D simulations requiring 
mesh adaptivity. We present adaptive-simulation speed-up results for two classical but extremely challenging gas dynamic 
problems: the Noh shock implosion, and the (highly unstable) Rayleigh-Taylor (RT) test. For the Noh problem, our adaptive 
simulations are free of the numerical anomalies that are present in almost all reported results, while running approximately 
6 times faster than a comparable uniform-mesh simulation. The ten-fold speed-up provided by SAM for the RT problem is, 
to the best of our knowledge, the first of its kind.4

1 Moving-mesh simulations are often referred to as adaptive simulations and we shall use this terminology herein.
2 This philosophy is in agreement with [62], in which the authors state that the main obstacle in their moving-mesh simulations is the lack of a simple, 

robust, and efficient algorithm for dynamic and smooth adaptive mesh generation, particularly in 3D geometries, and for multi-phase flows with unstable 
interfaces.

3 We will demonstrate that our SAM algorithm is the first to be able to solve classical Rayleigh-Taylor problems on coarse, but adaptive, grids faster than 
simulations on uniform grids.

4 Most attempts at using moving-mesh adaptivity to numerically simulate the RT instability result in runs that prematurely blow-up due to mesh 
tangling, meaning that those algorithms are not sufficiently stable to provide a competitive speed-up factor. Recent papers [57,4] instead focus on novel 
and sophisticated meshing techniques with the goal of simply simulating the RT instability until the final simulation time without the code crashing; 
however, these meshing algorithms are currently too expensive to provide speed-up over uniform-mesh simulations.
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1.1. Mesh refinement for multi-D gas dynamics

It is by now well-known that static uniform meshes are both inaccurate and inefficient at representing the dynamically 
evolving and interacting small-scale structures that appear in solutions to nonlinear conservation laws in multiple space 
dimensions. Adaptive mesh refinement (AMR) via h-adaptivity is the most well-developed refinement technique and is 
used in many commercial codes [70,10,29,30]. However, the dyadic refinement at the heart of AMR schemes results in an 
artificially discontinuous transition from coarse-scale to fine-scale representation of numerical solutions on AMR meshes. 
Several theoretical and numerical studies [5,78,56] have demonstrated the spurious reflection, refraction, and scattering of 
waves that propagate across discontinuously refined grids. Many problems in gas dynamics, such as strong blast waves, 
self-similar implosions, and unstable contact discontinuities are extremely sensitive to small perturbations; spurious wave 
reflections produce corrupted numerical solutions, with the anomalies persisting, or even worsening, as the AMR mesh is 
globally refined [29,76].

On the other hand, Lagrangian-type schemes are well-known to produce highly distorted or tangled meshes i.e. some 
cells in the grid are non-convex or have folded over, at which point the simulation breaks down. Arbitrary Lagrangian 
Eulerian (ALE) methods aim to mitigate the problem of mesh tangling. Indirect ALE methods are somewhat ad hoc, and 
current rezoning strategies are heuristic in nature [46,57]. In this work, we consider the direct ALE approach, in which an 
adaptive mesh is generated directly without any initial Lagrangian phase or subsequent mesh rezoning.

1.1.1. Adaptive mesh redistribution
Our SAM scheme falls under the category of r-refinement schemes, or adaptive mesh redistribution methods. In con-

trast to Lagrangian-rezone methods, a grid is generated via a user-prescribed monitor function which determines the grid 
size and orientation. High-resolution representation of numerical solutions is obtained by defining the monitor function 
appropriately, e.g., using solution derivatives. Moreover, the adaptive grids can be generated to align with the geometry of 
evolving fronts [39], and to naturally capture self-similar dynamics or scale-invariant structures [13,11].

Historically, the first r-refinement methods were based on the variational approach, examples of which include the 
equipotential [82], variable diffusion [83], cost function [6], and harmonic mapping [27] methods. The variational approach 
also currently appears to be the method of choice for use in direct ALE schemes, several of which employ the popular 
MMPDE framework [40,47]. These variational methods, however, require the accurate numerical solution of a coupled set of 
d complicated nonlinear auxiliary PDEs in Rd , for which simple, fast, and accurate algorithms are in general not available. 
For these reasons, among others, r-refinement methods have yet to become incorporated into large scale established hydro-
dynamics codes. See, for example, [41,14,22,18] and the references therein for thorough reviews of r-adaptive methods and 
their associated difficulties.

1.1.2. Prescribing the Jacobian determinant
The fundamental guiding principle for smooth adaptive mesh generation is control of the local cell volume of the adaptive 

grid. In the time-dependent multi-D setting, we assume that we have a given smooth positive target Jacobian function G(y, t)
describing the size of the cells in the moving target adaptive mesh. We then seek to construct a diffeomorphism ψ(x, t)
mapping a fixed reference mesh to the target mesh by requiring that det∇ψ(x, t) = G(ψ(x, t), t). A semi-discretization in 
time t = tk , where k is the time-index, yields a sequence of nonlinear elliptic equations of Monge-Ampère (MA) type

det ∇ψk(x) = Gk(ψk(x)) , (1)

where each Gk is again a given positive target Jacobian function.
Solutions to the MA equation are unique in 1D . For dimension d ≥ 2, however, the single scalar MA equation is insuf-

ficient to uniquely determine ψ . The question then becomes how to choose a particular solution ψ that is in some sense 
optimal. One such choice that has received a great deal of attention in recent years is the Monge-Kantorovich (MK) for-
mulation based on optimal transport, in which a map ψ is (uniquely [8,16]) constructed to minimize the L2 displacement 
||ψ(x) −x||L2 . This is attractive from a numerical perspective, since smaller grid velocities can reduce interpolation and other 
numerical errors [48].

On the other hand, the MK formulation results in a fully nonlinear second order elliptic equation, whose numerical 
solution is difficult to obtain. One approach is to consider a parabolized formulation by introducing an artificial time variable 
τ then iterating until a steady state is reached [72,9,59,81]. In this case, the Jacobian constraint is only satisfied in the 
asymptotic limit τ → ∞, and many iterations may be required to obtain a sufficiently accurate solution, particularly for 
target meshes with large deformations. An alternative, fully nonlinear approach using preconditioned Newton-Krylov solvers 
is designed in [22,18], leading to a robust, scalable algorithm that is, to the best of our knowledge, the state-of-the-art 
in the field (see also the recent papers [12,15]). However, the Newton-Krylov iterative approach is still relatively slow for 
our ultimate goal of efficient adaptive gas dynamics simulations; specifically, its implementation in our ALE scheme (to 
be described below) leads to adaptive mesh simulations with computational runtimes greater than would otherwise be

3
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obtained with a uniformly high-resolution mesh, thereby defeating the purpose of using an adaptive meshing scheme in the 
first place.

1.2. Fast smooth adaptive meshing

In contrast to the MK approach, we construct a map ψk satisfying (1) with the aim of optimizing for the efficiency of 
the resulting numerical algorithm, which we refer to as SAM. The key to our fast SAM algorithm is a new perturbation 
formulation of (1) along with a new formulation and implementation of the deformation method [21].

Specifically, the perturbation formulation constructs each map ψk+1 as the image of the map ψk acting on a near identity 
deformation δψk+1 ≈ id of a fixed reference mesh �ref . The formulation on �ref is crucial, since it enables the use of, at each 
time-step tk , the same numerical solvers for the mesh PDEs.5 This, in turn, produces a code with a simple modular structure 
so that the basic mesh redistribution procedure is developed entirely in the static setting on �ref, then “bootstrapped” to 
form a dynamic scheme. The same principle also yields an algorithm for efficiently generating smooth meshes with very 
large zoom-in factors, which allows us to obtain high-resolution representation of small-scale structures with few total 
number of mesh points.

The mesh redistribution algorithm we propose is a new version of the deformation method [50,54,51], which constructs 
a solution to the nonlinear Monge-Ampère equation via a single elliptic solve for a linear Poisson problem, along with the 
solution of a system of transport equations for a flowmap η(x, τ ) between pseudo-time τ = 0 and τ = 1. There are at least 
two advantages of this new deformation method: the first is that the algorithm can be made fully automated with no user-
prescribed parameters; the second is that costly and often complicated interpolation procedures are not required. We design 
a simple, fast, stable, and high-order accurate method using an efficient spectral solver with boundary smoothing for the 
Poisson equation, and standard RK4 time integration with high-order linear upwind differencing for the transport equations. 
A key implication of our numerical design choices is a consistency between the stability conditions for the transport problem 
in SAM and the physical time-step in an ALE gas dynamics simulation. As we shall demonstrate, this consistency results in 
a dynamic SAM algorithm with optimal complexity for hyperbolic systems.

Our SAM algorithm is approximately 200 times faster than the MK nonlinear solvers [22,18], and the computed numer-
ical solutions exhibit both higher accuracy as well as better convergence rates under global mesh refinement. We perform 
a number of challenging mesh generation experiments designed to replicate flows with high vorticity and large deforma-
tions, and demonstrate that the meshes produced with our dynamic SAM scheme are smooth and accurate. For example, 
we are able to generate smooth moving meshes that resolve around a complex 3D swirling helical-type curve at 2563

resolution with only a serial implementation on a laptop computer and without any specific and sophisticated algorithmic 
optimizations (see Section 5.5).

1.3. Application to ALE gas dynamics

To demonstrate the efficacy of our SAM scheme in practical applications, we formulate a simple coupled SAM-ALE 
method for 2D gas dynamics. Several moving-mesh methods for the 2D Euler system have been developed based on the 
MMPDE approach and finite volume (FV) and finite element (FE) methods [73,74]. A formulation on smooth tensor prod-
uct meshes enables the use of finite difference (FD) methods, which are both simpler and more efficient than FV and FE 
methods,6 and have been investigated in several recent papers [60,45,49]. In this work, we further develop the C-method 
[64,65], a simplified WENO-based solver with space-time smooth nonlinear artificial viscosity and explicit tracking of mate-
rial interfaces.

Special care is given to the so-called geometric conservation law (GCL), and we show that our nonlinear WENO reconstruc-
tion procedure respects the free-stream preservation property on adaptive meshes. The C-method dynamically tracks the 
location and geometry of evolving fronts, and is used to add both directionally isotropic and anisotropic artificial viscosity 
to shocks and contacts. Herein, we implement the C-method in the ALE context and introduce a new ALE front-tracking 
algorithm for contact discontinuities, which we subsequently use to construct suitable target Jacobian functions for SAM. 
Previous studies have mainly investigated target Jacobian functions constructed based on interpolation errors [42,39], or 
weighted combinations of solution gradient estimates [77], which sometimes fail to capture small scale vortical structures 
[73]. Our simple ALE front-tracking algorithm allows us to generate smooth adaptive meshes that capture small scale Kelvin-
Helmholtz roll-up zones in unstable RT problems. We apply our coupled SAM-ALE scheme to two challenging test problems, 
namely the Noh implosion and RT instability. For the Noh problem, we find that the 50 × 50 SAM-ALE solution is more 
accurate than the 200 × 200 uniform solution, while running approximately 6 times faster. Moreover, the SAM-ALE solution 
is completely free of spurious numerical anomalies, such as lack of symmetry, unphysical oscillations, and wall-heating. 
For the RT problem, we find that the 64 × 128 SAM-ALE solution is comparable to the 256 × 512 uniform solution, while 
running 10 times faster.

5 This is in contrast with other methods [67,32] which require finite-element solvers with costly recalculation (at each time-step of a dynamic simulation) 
of the mass and stiffness matrices, as well as complicated interpolation procedures.

6 FV schemes are 4 times more expensive than FD schemes in 2D , and 9 times more expensive in 3D [80].
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y2

Tref ⊂ �ref T ⊂ �

Fig. 1. The uniform m × n mesh Tref and the adaptive m × n mesh T = ψ(Tref).

1.4. Outline

Section 2 introduces notation and definitions that will be used throughout the paper. In Section 3, we develop the basic 
SAM algorithm for static mesh generation, upon which we shall build our dynamic scheme. We show that our scheme 
is high-order accurate and benchmark the algorithm against the MK scheme. In Section 4, we consider dynamic mesh 
generation and introduce the perturbation formulation of the MA system. We then perform, in Section 5, a series of chal-
lenging mesh generation experiments to demonstrate the capabilities of the scheme. In Section 6, we formulate a simple 
coupled SAM-ALE scheme for the 2D compressible Euler system, and describe some aspects of our numerical method. In 
Section 7, we apply SAM-ALE to the Noh and RT test problems and compare the results with low-resolution and high-
resolution uniform solutions. Finally, in Section 8, we provide some brief concluding remarks. Three sections are included in 
the Appendices: the first concerns the C-method regularization for the 2D ALE-Euler system, the second describes a simple 
boundary smoothing technique, and the third provides a machine comparison test for the purposes of benchmarking our 
SAM algorithm.

2. Preliminaries

2.1. Domains, meshes, and mappings

The focus of this work is mesh adaptation on 2D rectangles and we provide the mathematical formulation and numerical 
implementation details of our mesh adaptation strategy in this setting. However, all of our meshing algorithms can be ex-
tended to 3D cuboids,7 and we show in Section 5.5 results from a mesh generation experiment modeling three-dimensional 
swirling flow.

Let �ref ⊂ R2 be a reference domain with coordinates x = (x1, x2) ∈ �ref, and given explicitly by the rectangle �ref =
(x1

min , x1
max) × (x2

min , x2
max). The outward pointing unit normal vector to the boundary ∂�ref is defined everywhere on ∂�ref, 

except at the four corners, and is denoted by ν . The domain �ref is also sometimes referred to in the literature as the logical
or computational domain, and in the context of ALE gas dynamics, the ALE domain.

We denote by � ⊂R2 the physical or Eulerian domain, with coordinates y = (y1 , y2) ∈ � and boundary ∂�. We assume 
that �ref and � represent the same mathematical domain i.e. �ref = �. The purpose of using the different notations �ref and 
� is to clearly distinguish between functions defined on each of these domains, as we shall explain in the next subsection. 
We let id : �ref → � denote the identity map, i.e. id(x) = x.

We discretize �ref and � with m + 1 nodes in the horizontal direction, and n + 1 nodes in the vertical direction, and
denote by Tref and T the grids (or meshes) on each of these domains. Each of these meshes contains N = m × n cells. The 
domain �ref is discretized uniformly, and we refer to Tref as the reference or uniform mesh. The physical or adaptive mesh 
T is a priori unknown and will be generated through a meshing scheme. The mesh T is not assumed to be uniform, but 
contains the same number of cells and retains the same mesh connectivity structure as the uniform mesh Tref cf. Fig. 1. The 
fixed uniform mesh spacing is denoted by 	x = (	x1 , 	x2).

The physical domain � can also be discretized uniformly with a uniform mesh U . Since �ref = �, the meshes U and Tref
are identical. We stress, however, that functions defined on each of these meshes are very different.

7 In fact, our algorithms can also be applied in arbitrary complex geometry (see Fig. 19 for a preliminary result), though their numerical implementations 
are more involved.
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The mesh T will be the image of Tref under the action of a suitable map ψ : �ref → �. The map ψ is bijective, contin-
uously differentiable, and has a continuously differentiable inverse ψ−1 : � → �ref i.e. ψ is a smooth diffeomorphism. Our 
SAM scheme solves for the map ψ by prescribing its Jacobian determinant, as we shall explain in Sections 3 and 4. Nodes 
in T on the boundary ∂� will be allowed to move tangential to the boundary, with the exception of the four nodes at the 
corners of �, which must remain fixed.

In the dynamic setting, we consider ψ to be a time-dependent map ψ : �ref × [0, T ] → � where, for each t ∈ [0, T ], the 
map ψ(·, t) : �ref → � is a smooth diffeomorphism with prescribed Jacobian cf. Fig. 3.

2.2. Eulerian and ALE variables

A physical or Eulerian function (scalar, vector-valued, or tensor) is defined on � and denoted with the upright mathe-
matical font f : � →Rk . For a time-dependent function f : � × [0, T ] →Rk we shall write f(y, t).

Since ψ maps �ref to �, we write y = ψ(x, t) for (x, t) ∈ �ref × [0, T ]. Given an Eulerian variable f : � →Rk , we define 
its computational or ALE counterpart f : �ref × [0, T ] →Rk by

f (x, t) = [f ◦ ψ] (x, t) = f(ψ(x, t), t) , ∀(x, t) ∈ �ref × [0, T ] . (2)

We shall also denote the function composition in (2) by f ◦ ψ . When there is no confusion, we omit the function arguments 
and write f or f .

In the discrete setting, computational variables are defined at the nodal points of the uniform reference mesh Tref . 
Physical/Eulerian variables, on the other hand, can be defined on either the adaptive mesh T (t) or the uniform mesh U on 
�.

2.3. Derivatives and important geometric quantities

We denote spatial derivatives on �ref and � by

∂i = ∂

∂xi
and Di = ∂

∂ yi
,

respectively. Higher order derivatives are then denoted in the standard fashion, e.g. ∂i j = ∂i∂ j . We use the notation ∇ =
(∂1 , ∂2)

T and D = (D1 , D2)
T for the gradient operators with respect to x and y coordinates, respectively. The Laplacian 

operator on �ref is 	 = (∂2
1 + ∂2

2 ). The operator 	 should not be confused with the discrete uniform mesh spacing 	xi .
The time derivative of a function f is written as ∂t f , or sometimes with the subscript notation ft . Throughout, we shall 

use Einstein’s summation convention wherein a repeated index in the same term indicates summation over all values of 
that index. We shall also use the standard Kronecker delta symbol δi

j .
We now introduce the following important geometric quantities, all defined on �ref × [0, T ]:

A = [∇ψ]−1 (inverse of the deformation tensor) , (3a)

J = det∇ψ (Jacobian determinant) , (3b)

a = J A (cofactor matrix of the deformation tensor) . (3c)

We assume that there exists ε > 0 such that

J (x, t) ≥ ε > 0 , for every (x, t) ∈ �ref × [0, T ] .
Thus, the Jacobian determinant in 2D reads

J (x, t) = ∂1ψ
1 ∂2ψ

2 − ∂1ψ
2 ∂2ψ

1 .

For a matrix M = (M j
i ), the subscript i indexes the columns of M , while the superscript j indexes the rows.

By explicit computation, we can verify the so-called Piola identity, which states that the columns of the cofactor matrix 
are divergence-free:

∂ ja
j
i = 0 , for i = 1,2 . (4)

Given an Eulerian variable f(y, t) and its ALE counterpart f (x, t), we use the chain rule to compute

Di f(y, t) = 1

J (x, t)
a j

i (x, t) ∂ j f (x, t) = 1

J ∂ j(a
j
i f ) , (5)
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where we have used the Piola identity (4) in the second equality. Using (5) and the chain rule again, we have that

∂t f(y, t) = ∂t f − 1

J a j
i ψ

i
t ∂ j f , (6)

where ψt(x, t) ≡ ∂tψ(x, t) is the mesh velocity.

2.4. Computational platform and code optimization

All of the algorithms in this work were coded in Fortran90, and all of the numerical simulations performed were run on 
a Macbook Pro laptop with an Apple M1 pro processor and 32 GB of RAM. The operating system is macOS Ventura 13.1, and 
the gfortran compiler is used. The codes for the numerical methods described in the paper are implemented in the same 
programming framework, but are not otherwise specially optimized, apart from specific calculations described in the paper. 
The same input, output, and timing routines are used in all of the codes. This consistency allows for a reliable comparison 
of the different algorithms and their associated imposed computational burdens.

3. Fast static adaptive meshing

3.1. Mathematical formulation of static mesh generation

We construct an adaptive mesh T as the image of the uniform mesh Tref under the action of a suitable smooth dif-
feomorphism ψ : �ref → � cf. Fig. 1. Our objective is to compute the map ψ by prescribing its Jacobian determinant 
J (x) = det ∇ψ(x). Specifically, given a strictly positive target Jacobian function G : � → R+ , the map ψ is found as a solu-
tion to the following nonlinear nonlocal Monge-Ampère (MA) equation{

det∇ψ(x) = G ◦ ψ(x) , x ∈ �ref (a)
ψ(x) · ν = x · ν , x ∈ ∂�ref (b)

(7)

with ν the unit outward normal to the boundary ∂�ref .
The function G is a user prescribed or constructed function that compresses the mesh in regions where G is small, and 

expands the mesh in regions where G is large. Note that G is a physical target Jacobian function defined on the physical 
domain �. Assuming that a map ψ satisfying (7) is found, the function G then describes the size of the cells in T . Let V
denote a cell in T , and Vref = ψ−1(V) the uniform cell in Tref mapped to V by ψ . If G is sufficiently smooth, a Taylor series 
argument shows that

|V| :=
∫
V

dy =
∫

Vref

det∇ψ(x)dx = |Vref| · G(ψ(xc)) + O(|	x|2) ,

where xc denotes the cell center of Vref. Thus, the value of G in V is a scaling factor that scales the uniform cell volume 
|Vref| = 	x1	x2 to the volume |V|, up to some spatially fixed constant of order O(|	x|).

It is convenient to formulate the problem for the inverse map φ = ψ−1, which is found as a solution to{
detDφ(y) = 1

G(y)
, y ∈ � (a)

φ(y) · ν = y · ν , y ∈ ∂� . (b)
(8)

For a solution to exist for (7), the function G is required to satisfy the solvability condition∫
�

1

G(y)
dy =

∫
�ref

det∇ψ(x)

G ◦ ψ(x)
dx = |�ref| = |�| . (9)

If (9) holds, then the system (7) admits an infinitude of solutions. The question then becomes how to construct a solution 
ψ that is in some sense optimal. Our primary concern in this work is the development of a fast-running algorithm that can 
be easily implemented within an ALE framework for hydrodynamics simulations. We next describe a simple and efficient 
procedure for constructing a solution to (7).

3.2. The basic mesh generation procedure

The key to our fast-running algorithm is the reduction of the nonlinear equation (7) to a simple linear Pois-
son solve and transport equation solve. Our approach is motivated, as in [50,54,31], by the deformation method of 
Dacorogna and Moser [21]. Specifically, a solution to (7) is obtained by the five step construction provided in Algorithm 1. 
We refer to this algorithm as SAM or, in the context of time-dependent meshing, static SAM.

7

146



R. Ramani and S. Shkoller Journal of Computational Physics 490 (2023) 112280

Algorithm 1 static SAM.
Step 1: Assume that the physical target Jacobian function G : � →R+ is given and satisfies the solvability condition∫

�

1

G(y)
dy = |�| , (10)

and let F(y) = 1/G(y). In practice, we are usually given an auxiliary target Jacobian function Ḡ : � →R+ that does not satisfy (10), and we define 
G and F by the following normalization procedure:

F̄(y) = 1

Ḡ(y)
−→ F(y) = |�| F̄(y)∫

�
F̄(y) dy

−→ G(y) = 1

F(y)
.

Step 2: Solve the following linear Poisson equation with homogeneous Neumann boundary conditions for the potential � : �ref →R{
	�(x) = F ◦ id(x) − 1 , x ∈ �ref (a)
∇�(x) · ν = 0 , x ∈ ∂�ref (b)

(11)

Step 3: Define the velocity w : �ref →R2 as

w(x) = ∇�(x) . (12)

Step 4: Solve the following system of transport equations for the flowmap η : �ref × [0, 1] → �{
∂τ η + w · ∇η = 0 , x ∈ �ref and 0 < τ ≤ 1 (a)
η(x,0) = x , x ∈ �ref and τ = 0 (b)

(13)

where the transport velocity w : �ref × [0, 1] →R2 is defined as

w(x, τ ) = w(x)

τ + (1 − τ )F ◦ id(x)
. (14)

Step 5: Define ψ(x) := η(x, 1). Then ψ solves (7).

3.2.1. Validity of construction
The proof that the map ψ constructed according to Algorithm 1 satisfies (7) proceeds as follows. Define the back-to-labels 

map ξ : � × [0, 1] → �ref by ξ(y, τ ) = η−1(y, τ ). The Eulerian transport equation for η is transformed into a Lagrangian 
advection equation for ξ :{

∂τ ξ(y, τ ) = w ◦ ξ(y, τ ) , y ∈ � and 0 < τ ≤ 1 (a)
ξ(y,0) = y , y ∈ � and τ = 0 . (b)

(15)

Note that ξ |τ=1 = η−1|τ=1 = ψ−1 = φ.
Next, define the quantity

R(y, τ ) = J (y, τ ) [τ + (1 − τ )F ] ◦ ξ(y, τ ) ,

where J (y, τ ) = det Dξ(y, τ ) and F = F ◦ id. We compute

∂τ R = ∂τ J [τ + (1 − τ )F ] ◦ ξ + J [1 − F ] ◦ ξ + J (1 − τ )∂τ (F ◦ ξ) .

We recall Euler’s lemma, which states that J (y, τ ) evolves according to ∂τ J = J div w ◦ ξ . Using (11)(a) and (12), we 
calculate

div w = div w

τ + (1 − τ )F
− (1 − τ )w · ∇ F

[τ + (1 − τ )F ]2
= F − 1 − (1 − τ )w · ∇ F

τ + (1 − τ )F
,

so that

∂τ J [τ + (1 − τ )F ] ◦ ξ = J [F − 1 − (1 − τ )w · ∇ F ] ◦ ξ .

Next, we have that

∂τ (F ◦ ξ) = ∂τ ξ · ∇ F ◦ ξ = [w · ∇ F ] ◦ ξ ,

where we have used equation (15)(a).
Using the two formulae above, we find that ∂τ R = 0, so that F(y) = R(y, 0) = R(y, 1) = detDφ(y) and thus φ satisfies 

(8)(a), which is in turn equivalent to (7)(a). The condition w(x, τ ) · ν = 0 for every x ∈ ∂�ref and 0 ≤ τ ≤ 1 ensures that 
(7)(b) is satisfied. �

8
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3.2.2. Discussion
The first numerical implementation of the deformation method [50] utilized the no slip boundary conditions ψ(x) = x, 

∀x ∈ ∂�ref, rather than the no penetration boundary conditions (7)(b) which permit tangential motion of boundary nodes. 
The method of proof in the original paper of [21], which includes an analysis of the Poisson problem (11), requires the 
domain �ref to have smooth boundary ∂�ref and so is not valid for the rectangular domains we consider in this work. A 
modified method, which avoids the use of the Poisson problem (11) via a direct construction of the deformation velocity 
field, is provided in [50], but the resulting numerical implementation yields poor quality grids with high levels of distortion 
[22]. On the other hand, as we shall demonstrate in our numerical experiments, the use of the Poisson equation (11)
together with the slip boundary conditions (7)(b) produces smooth grids. Moreover, the arguments in [21] can be modified 
with the help of elliptic estimates on polygonal domains [33] to show that the procedure outlined in Algorithm 1 yields 
existence of a solution to (7).

The basic mesh generation scheme Algorithm 1 differs from other deformation methods in the literature, e.g. [54,31], in 
both its formulation and numerical implementation. Specifically, the use of the transport system (13) avoids costly inter-
polation procedures required for the solution of the Lagrangian advection equations in other deformation methods, which 
results in an order of magnitude speed-up. Moreover, our numerical algorithm produces solutions that converge with high-
order accuracy, in contrast to other methods which only yield second-order accurate solutions, at best. In the following 
subsection, we describe in detail the two main steps of Algorithm 1, namely the Poisson solve in Step 2, and the transport 
equation solve in Step 4.

3.3. Numerical implementation details

3.3.1. FFT-based elliptic solve for �
The Poisson problem (11) is solved in frequency space using the Fast Fourier Transform (FFT). The solvability condition 

(10) is enforced by the normalization procedure described in Algorithm 1 with trapezoidal integration to compute integrals. 
The RHS of (11)(a) then has zero mean, and a (non-unique) solution to (11) exists. We choose a unique solution � with 
zero mean, enforced in spectral space by zeroing out the first frequency component. The use of FFT requires the forcing G to 
be periodic; we periodize the problem by doubling the size of the domain in each direction and extending G symmetrically 
to the extended domain.8 In Step 3, the velocity w is also computed via FFT.

3.3.2. Boundary conditions and order of convergence
Solutions to the Poisson problem (11) in general have limited regularity due to the presence of corner singularities in 

the domain, unless the function G satisfies certain compatibility conditions [37]. In this work, we shall assume the stronger 
Neumann condition DG(y) · ν = 0 for y ∈ ∂� to ensure high-order convergence of the numerical solution ψ in the limit of 
zero mesh size. If DG(y) · ν �= 0, then the symmetric extension of G is not differentiable on the boundary ∂� and is only 
Lipschitz continuous. In this case, the potential �, velocity w , and solution ψ all converge with 2nd order accuracy, but the 
convergence rate of the Jacobian determinant J (x) and cofactor matrix a(x) is only 1.5.

On the other hand, if the function G does satisfy the Neumann condition DG(y) · ν = 0 for y ∈ ∂�, then the symmetric 
extension of G is at least twice continuously differentiable, and the quantities ψ(x), J (x), and a(x) all converge with (at 
least) 4th order accuracy. We confirm this high order convergence with a numerical example in Section 3.4.2.

For most of the problems we consider in this work, the function G does indeed satisfy the Neumann condition. However, 
even if the Neumann condition is not satisfied, the errors in the numerical solution are localized to the boundary, and the 
meshes produced are still of high accuracy and quality. Additionally, boundary smoothing techniques [2,28] can be applied 
to obtain high order convergence. We implement a simplified version of this technique in Section 3.4.3 and demonstrate 
that the quantity J (x) converges with 2nd order accuracy. The details of this boundary smoothing technique are provided 
in Appendix B.

3.3.3. Numerical solution of the transport equations
The solution η to the transport equations (13) is smooth, and we shall therefore utilize the simple 5th order linear 

upwind scheme to compute derivatives, with the upwind direction in the r-th coordinate determined based on the sign of 
wr . For instance, if w1

i, j ≥ 0, then we approximate the derivative ∂1 f of a function f by

[∂1 f ]i, j = −2 f i−3, j + 15 f i−2, j − 60 f i−1, j + 20 f i, j + 30 f i+1, j − 3 f i+2, j

60	x1 + O(|	x|5) .

For time-integration, we utilize the standard explicit RK4 scheme, which has the associated stability condition

CFLτ = 	τ

( ||w1||∞
	x1 + ||w2||∞

	x2

)
≤ C . (16)

8 An alternative implementation with the discrete cosine transform can also be used.
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Table 1
Jacobian errors E2 demonstrating high order convergence of SAM solutions for the circular target Jacobian function (19).

Scheme
Cells

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

SAM
Error 2.85 × 10−2 5.10 × 10−3 5.96 × 10−4 3.73 × 10−5 1.87 × 10−6 9.89 × 10−8

Order – 2.5 3.1 4.0 4.3 4.2

Accordingly, the adaptive time-step 	τ is chosen via

CFLτ = 	τ

τ + (1−τ )
||G||∞

(
||w1||∞

	x1 + ||w2||∞
	x2

)
. (17)

Our numerical experiments have shown that CFLτ = 2 is sufficient for a stable scheme.

3.4. High-order accuracy and a benchmark computation

3.4.1. Jacobian error metric
Assessing the accuracy and convergence behavior of the numerical solutions ψ produced with SAM requires an error 

metric. Since the exact solution ψexact to the scheme described in Algorithm 1 is not known, we shall instead use the L2

Jacobian error, defined as

E2 := ||J (x) − G ◦ ψ(x)||L2 . (18)

We use bicubic interpolation to compute the composition G ◦ ψ in (18) and trapezoidal integration to compute the L2

integral norm.

3.4.2. High order convergence of solutions
To demonstrate the high order convergence of numerical solutions computed with SAM, we perform a mesh generation 

experiment on � = [0, 1]2 for the circular target Jacobian function

Ḡ(y) = 1 − δ exp

{
−
∣∣∣σ ((y1 − 0.5)2 + (y2 − 0.5)2 − r2

)∣∣∣2} , (19)

which forces the mesh to resolve in an annular region containing the circle of radius r centered at (0.5 , 0.5). The parameters 
δ and σ control the smallest cell-size and width of the resolving region, respectively. We choose δ = 0.75, σ = 64, and 
r = 0.2. See Fig. 5 for the meshes associated with a time-dependent version of (19).

We generate a sequence of meshes using SAM for cell resolutions N = 322 up to N = 10242. We compute the Jacobian 
errors E2 given by (18), with the Jacobian determinant J approximated using 4th order central differencing (CD4). The 
errors provided in Table 1 show that SAM solutions exhibit the expected 4th order accuracy. We note that, to the best of 
our knowledge, all other grid generation schemes are at best 2nd order accurate.

3.4.3. Benchmarking against the MK mesh generation scheme
Now, we perform a numerical experiment to benchmark SAM against the MK mesh generation scheme [22], a brief 

description of which is provided in Appendix C. The test problem [22] we consider is as follows: the domain is � = [0, 1]2, 
and the target Jacobian function is

Ḡ(y) = 2 + cos (8πr) , (20)

where r =√(y1 − 0.5)2 + (y2 − 0.5)2 is the radial coordinate.
We compute a sequence of meshes for N = 162 up to N = 2562 using SAM, and calculate the L2 Jacobian errors E2. For 

the purposes of consistency with [22], we use a slightly different formula to compute E2 (see equations (46)-(52) in [22]). 
In particular, 2nd-order differencing is used to calculate the Jacobian and, as such, we expect only 2nd order convergence 
of the errors E2. Consequently, we instead use the 3rd order linear upwind scheme for the transport equation solve. The 
pseudo-time step is set according to (17) with CFLτ = 8.

The errors are listed in Table 2, along with the errors for the MK scheme obtained from [22]. The function Ḡ is radially 
symmetric, and consequently does not satisfy the Neumann condition DG · ν �= 0. As such, the resulting solutions computed 
with SAM do not display 2nd order accuracy in the limit N → ∞, though, as shown in Table 2, the order of convergence 
only degrades to approximately 1.75 for the resolutions considered.

Nonetheless, we shall additionally consider a modified version of this test problem in which the function Ḡ(y) in (20) is 
replaced by the function Ḡ∗(y), where Ḡ∗(y) is such that DḠ∗ · ν = 0 on ∂�. The function Ḡ∗ is equal to Ḡ in the interior 
of �, but is mollified with an appropriate cut-off function in a small region near the boundary ∂� to enforce the Neumann 
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Table 2
Comparison of L2 Jacobian errors and convergence rates for the MK and SAM schemes applied to (20). The 
data for the MK scheme is taken from Table 1 of [22].

Scheme
Cells

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MK
Error 9.64 × 10−2 2.80 × 10−2 5.78 × 10−3 1.46 × 10−3 3.67 × 10−4

Order – 1.78 2.28 1.99 1.99

SAM with Ḡ
Error 6.54 × 10−2 2.05 × 10−2 7.82 × 10−3 2.00 × 10−3 5.96 × 10−4

Order – 1.68 1.39 1.96 1.75

SAM with Ḡ∗ Error 2.30 × 10−2 1.44 × 10−2 5.46 × 10−3 1.25 × 10−3 3.25 × 10−4

Order – 0.68 1.40 2.12 1.94

Fig. 2. SAM algorithm with boundary smoothing for the radial sinusoidal target function (20). Figure (a) is the 32 × 32 cell mesh T ∗ produced for the 
modified target Jacobian Ḡ∗ , and Figure (b) is a comparison of the mesh T without boundary smoothing for the target Jacobian Ḡ (black solid), and the 
mesh T ∗ for Ḡ∗ (red dashed). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 3
CPU runtimes for the MK scheme vs the SAM scheme. The results for the MK scheme are taken 
from Table 1 of [22] then divided by 2.2 to account for machine difference.

Scheme
Cells

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MK TCPU 0.045 0.182 0.591 2.227 8.636

SAM
TCPU 0.0012 0.0017 0.004 0.013 0.042
speed-up factor 47 131 160 174 190

condition (see Appendix B for further details). The mesh T ∗ produced using SAM with Ḡ∗ is shown in Fig. 2(a), and a 
comparison with the mesh T for Ḡ is shown in Fig. 2(b), from which it can be seen that the two meshes are very similar: 
they are nearly identical in the interior, with small differences near the boundary. While the solutions for Ḡ do not attain 
the full 2nd order accuracy, the solutions for Ḡ∗ do. The SAM solutions for Ḡ∗ have smaller errors than MK across all the 
resolutions considered. Moreover, the SAM solutions for Ḡ∗ display 2nd order accuracy as N increases.9 We also find that 
the L2 mesh displacement ||ψ(x) − x||L2 ≈ 0.0178 is comparable to the value of 0.0174 for MK reported in Table 1 of [22].

Next, we benchmark the computational efficiency of our SAM scheme against the MK scheme. We list in Table 3 the 
CPU runtimes for the MK scheme and the SAM scheme, where the MK runtimes are taken from Table 1 of [22]. To account 
for the different machines on which the MK and SAM schemes were run on, we divide the MK runtimes by 2.2, where 
the factor of 2.2 is determined from a machine comparison experiment, the details of which are provided in Appendix C. 
We then list the speed-up factor of the SAM scheme over the MK scheme in the final row of Table 3. We find that our 
SAM scheme is almost 200 times faster than the MK scheme at N = 2562 cell resolution. We also note that the CPU times 
reported in [22] do not include the cost of an interpolation call, which is non-negligible at high resolutions.

9 We have verified this up to N = 20482 but for brevity do not show the results here.
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4. Fast dynamic adaptive meshing

4.1. Dynamic formulation

Given a time interval t ∈ [0, T ], we seek to construct a time dependent diffeomorphism ψ : �ref × [0, T ] → �. We 
denote the time-dependent mesh on � by T (t), which will be found as the image of Tref under the action of ψ(·, t). The 
time-dependent map ψ : �ref × [0, T ] → � is constructed by prescribing, for each t ∈ [0, T ], its Jacobian determinant. Let 
G : � × [0, T ] →R+ denote a given time-dependent (physical) target Jacobian function. Then ψ satisfies{

det∇ψ(x, t) = G ◦ ψ(x, t) , (x, t) ∈ �ref × [0, T ] (a)
ψ(x, t) · ν = x · ν , (x, t) ∈ ∂�ref × [0, T ] (b)

(21)

The target Jacobian function G must satisfy, for each t ∈ [0, T ], the following integral constraint to ensure that (21) has 
a solution:∫

�

1

G(y, t)
dy =

∫
�ref

det∇ψ(x, t)

G ◦ ψ(x, t)
dx = |�| . (22)

4.1.1. Temporal discretization
We uniformly discretize the time domain [0, T ] into K intervals of length 	t and set tk = k	t for k = 0, 1, . . . , K . Denote 

Gk := G(·, tk), ψk := ψ(·, tk), and Tk = T (tk). Then each ψk : �ref → � is a diffeomorphism satisfying{
det∇ψk(x) = Gk ◦ ψk(x) , x ∈ �ref (a)
ψk(x) · ν = x · ν , x ∈ ∂�ref (b)

(23)

with each target Jacobian function Gk : � →R+ satisfying the integral constraint∫
�

1

Gk(y)
dy =

∫
�ref

det∇ψk(x)

Gk ◦ ψk(x)
dx = |�| . (24)

4.1.2. Algorithmic complexity
The simplest possible strategy for (23) is to compute each map ψk using static SAM. Our numerical experiments indicate 

that static SAM is highly efficient for a single mesh generation call. However, for unsteady fluids simulations which require 
dynamic meshing at every time-step, the use of static SAM can be expensive at high resolutions due to the computational 
bottleneck in the transport equation solve stage.

Specifically, suppose that the target Jacobian function has large deviation from the identity i.e. ||1/G − 1||L∞ � 1. Then 
the associated potential � solving (11) has large gradients, and the flowmap velocity (14) will therefore be large in mag-
nitude. Consequently, many pseudo-time steps will be required in the transport equation solve to preserve stability and 
accuracy of the computed numerical solution for η(x, τ ). In particular, the stability condition (16) forces the pseudo-time 
step to decay like O

(
N−1/2

)
, so that the overall complexity of the SAM algorithm is O

(
N3/2

)
. For large N , this can become 

prohibitively computationally expensive. In the next section, we resolve this issue via a novel reformulation of (23).

4.2. Reformulation in terms of near-identity maps

4.2.1. The perturbation formulation
Assume that we are given the map ψk and the target Jacobian functions Gk and Gk+1, and suppose that we wish to 

compute the map ψk+1. Rather than computing the map ψk+1 directly by solving (23), we instead solve for the perturbation 
map δψk+1 : �ref → �ref defined implictly by

ψk+1(x) = ψk ◦ δψk+1(x) . (25)

That is, we suppose that the map ψk+1 can be found as the image of ψk acting on a near-identity transformation δψk+1 on 
the reference domain �ref (see Fig. 3).

By the chain rule and inverse function theorem, we find that δψk+1 satisfies{
det∇δψk+1(x) = Pk+1 ◦ δψk+1(x) , x ∈ �ref (a)
δψk+1(x) · ν = x · ν , x ∈ ∂�ref (b)

(26)

with the function Pk+1 : �ref →R+ defined as

Pk+1(x) =
(

Gk+1

Gk

)
◦ ψk(x) . (27)
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ψk

x1

x2

y1
k

y2
k

Tref ⊂ �ref Tk ⊂ �

y1
k+1

y2
k+1

Tk+1 ⊂ �

δψ1
k+1(x)

δψ2
k+1(x)

δψk+1(Tref) ⊂ �ref

ψk

δψk+1

ψk+1

Fig. 3. Schematic of the meshes, and the maps between them, for dynamic mesh generation.

The system (26) is of exactly the same form as (7), and the identical solution procedure described in Section 3.2 for static 
mesh generation can therefore be used to find the solution δψk+1. Then ψk+1 is computed according to (25). A complete 
description of the dynamic SAM scheme is provided in Algorithm 2.

Algorithm 2 dynamic SAM.
Step 1: Set t = 0. Given an initial target Jacobian function G0 : � → R+ , compute the initial diffeomorphism ψ0 according to the static solution scheme 

from Section 3.2.
Step 2: For t = tk+1, assume that we are given the following: the map ψk and target Jacobian function Gk : � → R+ , both from the previous time step 

t = tk , and the target Jacobian function Gk+1 : � →R+ at the current time level.
Define Pk+1 : �ref →R+ by (27), and assume that it satisfies the solvability condition∫

�ref

1

Pk+1(x)
dx =

∫
�ref

(
Gk

Gk+1

)
◦ ψk(x) dx = |�ref| , (28)

In general, we will be given target Jacobian functions Ḡk and Ḡk+1 such that the corresponding P̄k+1 = (Ḡk+1/Ḡk) ◦ψk does not satisfy (28). In this 
case, we define Pk+1 according to the following normalization procedure:

Q̄ k+1(x) = 1

P̄k+1(x)
−→ Q k+1(x) = |�| Q̄ k+1(x)∫

�ref
Q̄ k+1(x) dx

−→ Pk+1(x) = 1

Q k+1(x)
.

Step 3: Solve (26) for the perturbation map δψk+1 : �ref → �ref using the solution procedure in Section 3.2.
Step 4: Define ψk+1 : �ref → � by (25). If tk+1 = T , then stop; otherwise, set t = tk+2, and return to Step 2.

4.2.2. Discussion
The key to the efficiency of dynamic SAM is the reformulation in terms of the perturbation map δψk+1 satisfying (26). 

Specifically, while it may be that both Gk and Gk+1 have large deviation from 1 i.e. ||1/Gk − 1||L∞ � 1 and ||1/Gk+1 −
1||L∞ � 1, we may nonetheless have that ||1/Pk+1 − 1||L∞ � 1. Indeed, this is the case in ALE simulations, which are 
naturally constrained by a CFL condition that limits the evolution of the numerical solution over a single time-step.
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More precisely, the usual stability condition for the physical time step 	t in an (Eulerian) simulation forces the time step 
	t to decay like 	t ∼ 1/

√
N as N → ∞, which is a constraint of exactly the same form as the condition (16) on 	τ . A 

Taylor series argument shows that

1 − 1

Pk+1(x)
= 	t · ∂tG(ψ(x, tk), tk)

G(ψ(x, tk), tk)
+ O(	t2)

=⇒ ||1 − 1/P (·, t)||L∞ = O(	t) = O(1/
√

N) , (29)

since ∂tG ∼ O(1). Since the stability condition for the pseudo-time step 	τ scales according to (16), and ||w||L∞ =
O(1/

√
N) by (29), we see that 	τ = O(1) i.e. the pseudo-time step 	τ can be kept fixed across resolutions N , resulting 

in a dynamic SAM algorithm with optimal complexity.
We emphasize here that our perturbation formulation (26) differs from the methods considered in [67,32] in an impor-

tant way. In particular, our perturbation map δψk+1 is a near identity transformation of the uniform reference domain �ref, 
whereas the schemes in [67,32] define a perturbation map via ψk+1 = δψk+1 ◦ ψk , rather than through (25). This means 
that the ψk solutions in [67,32] are different from our ψk SAM solutions. Moreover, the equation for δψk+1 is posed on 
the deformed mesh Tk; this means that the solvers for the Poisson problem and transport equation must be appropriately 
modified at each time-step tk , requiring, for example, the costly recalculation of the stiffness and mass matrices. Conse-
quently, SAM is simpler, faster, and more accurate than the schemes in [67,32]. For instance, the scheme in [32] has order 
of accuracy 1.5, whereas our dynamic SAM solutions converge with 4th order accuracy if the data is sufficiently smooth. 
Additionally, the interpolation routine in [32] requires O(N1.5) grid searching on deformed grids, in contrast to our O(N)

SAM algorithm.

4.3. Restarted dynamic mesh generation

The perturbation formulation (26), by design, follows the time history of ψ(x, t). That is to say, the solution ψ(x, t) at 
time t = tk depends upon the solution for all t < tk . As such, numerical solutions to (26) are susceptible to increasing grid 
distortion and mesh tangling, a common ailment of Lagrangian-type methods. To mitigate this issue, we can periodically 
restart the dynamic mesh generation by computing at time t = tk the map ψk directly with static SAM, rather than with 
dynamic SAM. In this way, the greater efficiency of dynamic SAM is utilized, while grid distortion errors are controlled with 
the use of static SAM, thereby preventing mesh tangling. The restarting criterion is chosen as λk > �λref, where λk is the 
L1 grid distortion at time step tk , λref is a “reference” grid distortion (defined in Algorithm 3), and � is a user prescribed 
parameter. A description of our restarted dynamic SAM scheme is provided in Algorithm 3.

Algorithm 3 restarted dynamic SAM.
Step 0: Choose the maximum grid distortion parameter � > 1.
Step 1: Set t = 0. Given an initial target Jacobian function G0 : � → R+ , compute the initial diffeomorphism ψ0 according to the static solution scheme 

from Section 3.2. Let λref be the (reference) L1 grid distortion of the adaptive mesh T0, computed according to (30).
Step 2: For t = tk+1 > 0, compute the average grid distortion of the map ψk

λk :=
∥∥∥∥ 1

2
Tr
(
∇ψk∇ψT

k

)∥∥∥∥
L1

. (30)

Step 3: If λk > �λref , then compute the map ψk+1 using static SAM Algorithm 1 and recalculate λref according to (30). Otherwise, compute ψk+1 using 
dynamic SAM Algorithm 2. If tk+1 = T , then stop; otherwise, set t = tk+2, and return to Step 2.

5. Dynamic mesh generation experiments

In this section, we present and discuss the results of several dynamic mesh generation experiments conducted with the 
static, dynamic, and restarted SAM algorithms. Unless otherwise stated, all experiments are conducted on the unit square 
� = [0, 1]2 with an equal number of cells in the horizontal and vertical directions m = n = √

N .

5.1. Static mesh with large zoom-in factor

This static test problem demonstrates the ability of dynamic SAM to generate smooth meshes with large zoom-in factors 
which, in practical applications, can be used to track very small scale structures with only a few total number of cells. On 
the other hand, when the target function G has large gradients (as is the case for large zoom-in meshes), numerical errors 
in the Poisson solve often lead to poor quality grids containing non-convex elements [22,32].

As an example, consider the circular target Jacobian function Gδ(y) given by (19) with σ = 64, r = 0.2, and δ ∈ [0, 1). 
More generally, we have a family of target functions {Gδ(y)}0≤δ<1 parametrized by δ, with each such Gδ forcing the mesh to 
resolve around some given curve (see equation (59)). The zoom-in parameter δ determines the zoom-in factor ϒ = 1/ min J
of the adaptive mesh T , and thus the smallest scales that can be represented on T . When δ = 0 (uniform mesh) we have 
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Fig. 4. Test Problem 5.1 demonstrating smooth large zoom-in meshing using dynamic SAM. Shown are the 642 cell meshes with large zoom-in parameter δ
for the circular target Jacobian function (19). Figure (a) is the poor quality mesh containing non-convex elements produced with static SAM with δ = 0.97, 
and (b) is a zoom-in of (a) near the refining region. Figure (c) is the smooth large zoom-in mesh produced with dynamic SAM with δ = 0.996 and with 
smallest cell 100 times smaller than a uniform cell, and (d) is a zoom-in.

ϒ = 1. As δ increases, so does ϒ, with smaller and smaller scales captured on T . As δ → 1, ϒ → ∞ and the mapping is 
degenerate at δ = 1. From the point of view of efficiency, we would like to have ϒ large since we then require few total 
number of grid points. Moreover, for unstable RT problems that have evolving interfaces with large curvature, it is essential 
that we construct adaptive meshes with large enough ϒ such that they can capture the small-scale vortical structures of 
the flow. As such, we often want to choose δ ≈ 1, and refer to the associated meshes as “large zoom-in” meshes.

While the continuous mapping ψ is non-degenerate for all 0 ≤ δ < 1, in practice numerical errors in static SAM will 
produce folded grids if δ is sufficiently close to 1. That is, for each N , there exists a corresponding δmax such that the grids 
produced with static SAM for δ > δmax contain non-convex elements. An example of such a grid is shown for N = 642 and 
δ = 0.97 in Figs. 4(a) and 4(b). The function Gδ is such that ||1 − 1/Gδ ||L∞ ≈ 1

1−δ
→ ∞ as δ → 1. When δ ≈ 1, large errors 

in the numerical solution of the Poisson problem lead to grids with non-convex elements.
Dynamic SAM provides a simple method for producing smooth grids with δ ≈ 1. We define the time-dependent function

G(y, s) = (1 − s) + sGδ(y) . (31)

Then (31) linearly interpolates between 1 at s = 0 and Gδ at s = 1, and applying dynamic SAM with sufficiently many time 
steps 	s yields smooth grids with no non-convex elements. As an example, we set 	s = 0.05 and construct a 642 cell 
mesh using Algorithm 2 with δ = 0.996 in (19). The resulting grid, shown in Figs. 4(c) and 4(d), is smooth with ϒ ≈ 100. In 
Section 7, we consider large zoom-in meshing for the more complicated Rayleigh-Taylor test.
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Fig. 5. Test Problem 5.2: tracking a propagating circular front modeling a shock wave. Shown are the 642 cell meshes produced using dynamic SAM for the 
circular target Jacobian function (32). The top row shows the adaptive meshes T (t), while the bottom row shows the corresponding “perturbation meshes” 
δψk(Tref).

5.2. Propagating circular front

5.2.1. Problem description
Our first dynamic mesh generation experiment tracks a circular front propagating radially outwards with radial velocity 

1. The time-dependent target Jacobian function is defined as

Ḡ(y, t) = 1 − δ exp

{
−
∣∣∣σ [(y1 − 0.5)2 + (y2 − 0.5)2 − r(t)2

]∣∣∣2} . (32)

The parameters are chosen as δ = 0.75, σ = 64, and the radius is r(t) = 0.2 + t . We generate a sequence of meshes for 
0 ≤ t ≤ 0.1.

The choice of time step 	t depends upon N as

	t = 0.64

2
√

N
. (33)

This choice of scaling for 	t is motivated by the CFL condition. Since the radial velocity of the propagating front is 1, we 
can estimate that the CFL number associated with (33) is 0.64.

5.2.2. Results
The 642 cell adaptive meshes T (t) for (32) are shown in the top row of Fig. 5 at various times t . The computed meshes 

Tk are smooth and are correctly resolved around the evolving circular front. The meshes δψk(Tref) are shown at the same 
times in the bottom row of Fig. 5; from these figures, it is clear that δψk(Tref) is a near-identity transformation of the 
uniform mesh Tref. For this problem, the function G is such that ||1 − 1/G(·, t)||L∞ ≈ 2.43, whereas the perturbation density 
P is such that ||1 − 1/P (·, t)||L∞ ≈ 0.3.

5.2.3. Comparison with static SAM
Next, we conduct a grid resolution study with N ranging from N = 322 to N = 5122, and compare the results of dynamic 

SAM with those of static SAM. The Jacobian errors E2 at the final time t = 0.1 are shown in Table 4. Both schemes exhibit 
4th order accuracy, as expected, but the dynamic SAM solutions have smaller errors. This is due to the higher accuracy of 
the Poisson solve in the dynamic method vs the static method.
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Table 4
Test Problem 5.2: tracking a propagating circular front. We list the L2 Jacobian errors E2 at t = 0.1, convergence rates, and total CPU 
runtimes for static and dynamic SAM. The results confirm that dynamic SAM produces high order accurate solutions and is of optimal 
complexity.

Scheme
Cells

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Static SAM
E2 4.23 × 10−2 1.15 × 10−2 1.22 × 10−3 9.29 × 10−5 4.98 × 10−6 2.65 × 10−7

Order – 1.9 3.2 3.7 4.2 4.2

TCPU (sec) 0.006 0.049 0.59 7.26 112.8 1663

Dynamic SAM

E2 4.05 × 10−2 6.66 × 10−3 6.18 × 10−4 4.00 × 10−5 2.23 × 10−6 1.33 × 10−7

Order – 2.6 3.4 3.9 4.2 4.1

TCPU (sec) 0.017 0.101 0.869 7.31 65.2 582
speed-up factor 0.33 0.48 0.68 0.99 1.73 2.86

At low resolutions, the dynamic SAM runtimes are greater than those for static SAM. This is due to the interpolation 
required in the dynamic SAM algorithm. On the other hand, static SAM is of complexity O

(
N3/2/	t

) = O
(
N2
)
, whereas 

dynamic SAM is of optimal complexity O (N/	t) = O
(
N3/2

)
. For this test, dynamic SAM becomes more efficient than static 

SAM at N = 2562.

5.3. Uniformly rotating patch

5.3.1. Problem description
Our next mesh generation experiment assesses the performance of SAM for target Jacobian functions of the form

Ḡ(y, t) = 1

1 + M exp

{
−
(
σ
∣∣∣[(y1 − 0.5 − r cos(2πt))2 + (y2 − 0.5 − r sin(2πt))2 − R2

]∣∣∣)2
} . (34)

Equation (34) forces the mesh to concentrate nodes within a uniformly rotating (with angular velocity ω = 2π ) circular 
patch of radius R > 0, whose center is a distance r ≥ 0 from (0.5, 0.5). The constant M ≥ 0 determines the zoom-in factor, 
and σ controls the width of the transition region from fine to coarse scale of the mesh.

5.3.2. Comparison with the schemes in [71]
The case M = 5, σ = 50, r = 0.25, and R = 0.1 in (34) corresponds to a test problem from [71]. Therein, the authors 

compare four different mesh generation methods and conclude that the so-called Parabolic Monge-Kantorovich method 
(PMKP) is the best method among the four for (34), both in terms of accuracy as well as efficiency. The PMKP method 
is similar to the MK scheme, but replaces the nonlinear Newton-Krylov solver in MK with a parabolization (in pseudo-
time τ ) and time-stepping until a steady state is reached. The solution in PMKP is only found in the asymptotic limit 
τ → ∞, whereas the SAM solution is computed at pseudo-time τ = 1. Moreover, the explicit integration of the parabolic 
PDE requires that the pseudo-time step scales like 	τ ∼ 1

N to ensure 2nd order convergence. In contrast, static SAM requires 
only that 	τ ∼ 1√

N
, while for dynamic SAM we can keep 	τ = O(1).

We set N = 402, 	t = 0.01, and generate a sequence of meshes for 0 ≤ t ≤ 1. The adaptive meshes generated with static, 
dynamic, and restarted SAM are shown in Fig. 6 at various times t . The Jacobian errors, mean grid distortion, and cumulative 
simulation runtimes are provided in Table 5. For the purposes of comparison with [71], we also provide the mesh fidelity 
measure Ê2, defined by

Ê2 :=
∣∣∣||J (·, t)/G ◦ ψ(·, t)||L2 − 1

∣∣∣ . (35)

The superior accuracy of SAM produces fidelity measures Ê2 that are an order of magnitude smaller than those produced 
with the PMKP method (see Tables 6 and 7 in [71]). Moreover, the SAM runtimes are more than two orders of magnitude 
smaller than the PMKP runtimes provided in [71] e.g. 0.179 sec vs 75 sec for static SAM vs PMKP.

Since static SAM constructs the map ψ directly from the uniform mesh, the meshes at t = 0.25, 0.5, 0.75, 1.0 are simply 
rotated versions of the initial grid. This is confirmed in Table 5, which shows that static SAM produces grids with identical 
grid quality metrics at these times. Dynamic SAM, on the other hand, necessarily tracks the history of the simulation, and 
the rotating target Jacobian produces grids with increasing levels of distortion. The Jacobian errors of dynamic SAM are 
smaller than static SAM for t = 0.25 and t = 0.5 due to the high accuracy with which the Poisson problem is solved for in 
the perturbation formulation. For t > 0.6, however, grid distortion errors outweigh the improved accuracy for the Poisson 
solve, and dynamic SAM errors become larger than static SAM errors. The restart criterion parameter in restarted SAM is 
set as � = 1.01. The mesh restarting controls the grid distortion errors, which in turn prevents the Jacobian errors from 
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Fig. 6. Test Problem 5.3: tracking a uniformly rotating patch with target function (34). Shown are plots of the 402 cell adaptive meshes at various times 
t . The meshes are produced using static SAM (top), dynamic SAM (middle), and restarted SAM (bottom). Restarted SAM removes the grid distortion errors 
associated with Lagrangian methods.

growing. As shown in the bottom row of Fig. 6, and confirmed in Table 5, restarted SAM grids are of comparable accuracy 
and smoothness to static SAM grids

At this low resolution, dynamic SAM is actually slower than the static algorithm. For higher resolutions, however, dy-
namic SAM is much more efficient than static SAM. To demonstrate this, we repeat the above experiment with N = 4002

cells. For brevity, we do not report the Jacobian errors or L1 distortion, since the conclusions are similar to the N = 402 case. 
The computational runtimes, however, are very different: 1414 sec for static SAM vs 184 sec for dynamic SAM, and 194 sec 
for restarted SAM. We thus see that restarted SAM combines the best aspects of static and dynamic SAM i.e. smoothness 
and efficiency, respectively.

5.4. Differential rotation with small scales

5.4.1. Problem description
This dynamic mesh generation test models a Gaussian “blob” deforming under a rotating flow in which the angular 

velocity is dependent upon the distance from the center of the blob [18]. The time-dependent target Jacobian function is 
defined as

Ḡ(y, t) = 1

1 + 4 exp
[
−r(y)2

(
cos2 θ0(y,t)

σ1
+ sin2 θ0(y,t)

σ2

)] , (36)

18

157



R. Ramani and S. Shkoller Journal of Computational Physics 490 (2023) 112280

Table 5
Test Problem 5.3: tracking a uniformly rotating patch. We provide the mesh fidelity measure Ê2, L2 Jacobian error 
E2, L1 distortion λ, and cumulative CPU runtime TCPU at various times t for the static, dynamic, and restarted SAM 
schemes. The mesh fidelity measures Ê2 of SAM solutions are an order of magnitude smaller than those provided 
in [71]. Additionally, static SAM is more than 400 times faster than the schemes in [71].

Scheme
Time

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1.0

Static SAM

Ê2 3.86 × 10−3 3.86 × 10−3 3.86 × 10−3 3.86 × 10−3 3.86 × 10−3

E2 3.79 × 10−2 3.79 × 10−2 3.79 × 10−2 3.79 × 10−2 3.79 × 10−2

λ 1.251 1.251 1.251 1.251 1.251

TCPU (sec) 0.003 0.048 0.091 0.134 0.179

Dynamic SAM

Ê2 3.86 × 10−3 1.13 × 10−3 1.13 × 10−3 1.49 × 10−3 6.65 × 10−3

E2 3.79 × 10−2 3.28 × 10−2 3.49 × 10−2 4.79 × 10−2 6.31 × 10−2

λ 1.251 1.328 1.544 1.877 2.311

TCPU (sec) 0.003 0.049 0.094 0.139 0.185

Restarted SAM

Ê2 3.86 × 10−3 2.85 × 10−3 1.18 × 10−3 3.86 × 10−3 2.85 × 10−3

E2 3.79 × 10−2 3.05 × 10−2 2.15 × 10−2 3.79 × 10−2 3.05 × 10−2

λ 1.251 1.252 1.259 1.251 1.252

TCPU (sec) 0.003 0.048 0.093 0.138 0.183

Fig. 7. Test Problem 5.4: tracking small scale vortical structures in flows with differential rotation using (36). Shown are zoomed in plots of the 1282 cell 
adaptive meshes at t = 90. SAM produces smooth meshes without the grid distortion errors associated with Lagrangian-type schemes.

where r(y) = |y − 0.5| is the radial coordinate, θ0(y, t) = θ(y) + ω(r)t , and θ(y) = arctan
(

y2−0.5
y1−0.5

)
. The parameters σ1 and 

σ2 control the aspect ratio of the blob, while ω(r) is the angular velocity. As in [18], we set σ1 = 0.05, σ2 = 0.001, and

ω(r) = 1.6 max [(0.5 − r)r,0] .

The function (36) describes the evolution of an initially smooth Gaussian blob Ḡ(y, 0) advected by an incompressible ve-
locity field V = (Vr , V θ ) = (0, rω(r)), where Vr and V θ are the velocity components in the r and θ directions, respectively. 
The initial blob is smooth but will develop arbitrarily small scales for t > 0 due to the radial dependence of the angular 
velocity. As in [18], we set the grid resolution at N = 1282, the time-step as 	t = 1, and generate a sequence of meshes for 
0 ≤ t ≤ 90.

5.4.2. Comparison of static, dynamic, and restarted SAM
The results of static, dynamic, and restarted SAM simulations are provided in Fig. 7, which shows zoomed-in plots of the 

meshes near (0.5, 0.5) at the final time t = 90. All three schemes produce grids that are untangled, but while static SAM 
grids are smooth, the dynamic SAM grids contain more distorted elements. This is confirmed in Fig. 8, which provides plots 
of the time history of the L2 Jacobian error (18) and L1 distortion (30). As with the rotating patch problem, the distorted 
dynamic SAM grids are still more accurate than the static SAM grids, though the Jacobian errors are roughly comparable.

For restarted SAM, the restart criterion λk > �λref, with � = 1.01, forces the grid to reset 2 times during the simulation. 
As shown in Fig. 8 and in the final row of Fig. 7, the restarted SAM grids are smooth and comparable to static SAM grids, 
and are almost as accurate as the dynamic SAM grids. A comparison of Fig. 8 with Figure 10 in [18] shows that static and 
restarted SAM grids are of similar quality to the MK grids.
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Fig. 8. Test Problem 5.4: tracking small scale vortical structures in flows with differential rotation using (36). Shown are (a) L2 Jacobian error E2 and (b) L1

grid distortion history of the grids produced using static, dynamic, and restarted SAM. The errors are comparable to those provided in [18], and restarted 
SAM controls the grid distortion associated with Lagrangian-type schemes.

5.5. 3D swirling flow

5.5.1. Problem description
Our final experiment is a 3D dynamic version of the test in [9]. The domain is � = [0, 1]3, the time interval is 0 ≤ t ≤ 1, 

and the target Jacobian function is given by

Ḡ(y1, y2, y3, t) = 1

1 + 5e−36(y3− 1
2 )2

exp
(−ω1 R(y1, y2, y3, t)

) , (37)

with

R(y1, y2, y3, t) =
(

y1 − 1

2
− ω2 cos(4π(y3 − t/4)

)2

+
(

y2 − 1

2
− ω2 sin(4π(y3 − t/4)

)2

,

and ω1 = 100 and ω2 = 0.25. As discussed in [9], the target function (37) describes a complex 3D helical surface and poses 
a major challenge for mesh generation algorithms since it leads to highly non-uniform and twisted meshes. See Fig. 9 for 
plots of the target function and (a portion of) the associated mesh at t = 1 and at N = 1283 cell resolution. In Fig. 10, 
we provide plots of ψ(P ), where P ⊂ Tref is some planar subset (lying in either the x1x2-, x2x3-, or x1x3-planes) of the 
reference mesh.

We generate a sequence of meshes starting with N = 323 resolution and doubling in each direction until N = 2563. The 
time-step 	t depends on N according to the CFL scaling and is set as 	t = 2

3√N
. It is straightforward to adapt the 2D

numerical scheme described in Section 3.3 to the 3D setting, and for brevity we omit the details.

5.5.2. N = 1283 simulations using static, dynamic, and restarted SAM
Plots of the time-history of the Jacobian errors E2 and L1 distortion at N = 1283 are shown in Fig. 11. For 0 ≤ t ≤ 0.5, 

dynamic SAM produces the smallest errors, due to the greater accuracy with which the Poisson and transport problems are 
solved. As expected, dynamic SAM meshes exhibit increasing grid distortion, which causes growth of the Jacobian error. The 
restart criterion in restarted SAM forces the mesh to reset two times during the simulation, which controls the growth of 
both the mesh distortion as well as the Jacobian error; for this example, � = 1.003.

5.5.3. Resolution study
Next, we provide in Fig. 12 plots (as a function of the resolution N) of the Jacobian error, L1 distortion, and CPU runtime 

at t = 1. Fig. 12(a) shows that restarted SAM produces grids with the smallest Jacobian errors, but the errors for the 
various schemes are comparable for all the resolutions considered; as expected, we observe 4th order convergence for all 
the schemes. Fig. 12(b) shows that the L1 distortion for both static and dynamic SAM is consistent across resolutions, 
with the grid distortion for restarted SAM bounded between the two. Finally, Fig. 12(c) shows that, while static SAM is of 
complexity O(N · N1/3/	t) = O(N5/3), both dynamic and restarted SAM are of optimal complexity O(N/	t) = O(N4/3). 
Based on this, we can estimate that, for this test, restarted SAM becomes more efficient than static SAM for N > 7353.
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Fig. 9. Test Problem 5.5: 3D swirling flow with the helical target function (37). Fig. 9(a) shows isosurfaces of the target function G and Fig. 9(b) shows a 
portion of the corresponding mesh.

6. SAM-ALE scheme for gas dynamics

We next couple our SAM scheme to a very simple FD WENO-based ALE scheme. The purpose of this section is to 
demonstrate the ability of SAM-ALE to reproduce high-resolution uniform runs using fewer cells and less total CPU time. 
The numerical method for the ALE system of equations we use is highly simplified and not meant to be representative of 
the full class of ALE solvers. Nonetheless, even for the two very difficult test problems presented in Section 7, the highly 
simplified scheme performs remarkably well.

For the notation used in this section, we refer the reader to Section 2.

6.1. The 2D ALE-Euler system

6.1.1. Equations in Eulerian coordinates
The 2D compressible Euler system in Eulerian coordinates y = (y1, y2) ∈ � can be written in the following compact 

conservation-law form

∂tQ + DiF
i(Q) = 0, (y, t) ∈ � × (0, T ), (38a)

Q(y,0) = Q0(y), (y, t) ∈ � × {0}. (38b)

Here, Q is the vector of conserved variables, and F1(Q) and F2(Q) are the flux functions, defined as

Q =

⎛
⎜⎜⎝

ρ

ρu1

ρu2

E

⎞
⎟⎟⎠ and Fi(Q) =

⎛
⎜⎜⎜⎝

ρui

ρu1ui + δi
1p

ρu2ui + δi
2p

ui(E + p)

⎞
⎟⎟⎟⎠ . (39)

The velocity vector is u = (u1 , u2) with horizontal component u1 and vertical component u2, ρ > 0 is the fluid density 
(assumed strictly positive), E denotes the energy, and p is the pressure defined by the ideal gas law,

p = (γ − 1)

(
E − 1

2
ρ|u|2

)
, (40)

where γ is the adiabatic constant, which we will assume takes the value γ = 1.4, unless otherwise stated.
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Fig. 10. Test Problem 5.5: 3D swirling flow with the helical target function (37). Shown are plots of the images of various planes P ⊂ Tref under the map 
ψ .

6.1.2. Equations in ALE coordinates
Let �ref be the fixed reference domain with coordinates (x1, x2), and assume that we have, for each t ≥ 0, a smooth ALE 

map ψ(·, t) : �ref → �. Denote by the regular font f the ALE counterpart to the Eulerian variable written with upright font 
f i.e. f (x, t) = f ◦ ψ(x, t). The 2D ALE-Euler system can then be written in conservation law form as

∂t Q + ∂ j F j(Q ) = 0, (x, t) ∈ �ref × (0, T ), (41a)

Q (x,0) = Q 0(x), (x, t) ∈ �ref × {0}, (41b)

where the conserved ALE variables Q and flux functions F j(Q ) are given as

Q =

⎛
⎜⎜⎝

J ρ

J ρu1

J ρu2

J E

⎞
⎟⎟⎠ and F j(Q ) =

⎛
⎜⎜⎜⎜⎝

ρa j
i (ui − ψ i

t )

ρu1a j
i (ui − ψ i

t ) + a j
1 p

ρu2a j
i (ui − ψ i

t ) + a j
2 p

Ea j
i (ui − ψ i

t ) + pa j
i ui

⎞
⎟⎟⎟⎟⎠ . (42)

Here, a j
i denotes the components of the cofactor matrix defined by (3), and ψ i

t is the ith component of the mesh velocity. It 
is also convenient to introduce the ALE transport velocity v(x, t) with jth component v j := 1

J a j
i (ui − ψ i

t ). The 2D ALE-Euler 

22

161



R. Ramani and S. Shkoller Journal of Computational Physics 490 (2023) 112280

Fig. 11. Test Problem 5.5: 3D swirling flow with the helical target function (37). Shown are (a) L2 Jacobian error E2 and (b) L1 grid distortion history of the 
grids produced using static, dynamic, and restarted SAM at N = 1283. Restarted SAM controls the grid distortion associated with Lagrangian-type schemes.

Fig. 12. Test Problem 5.5: 3D swirling flow with the helical target function (37). Shown are (a) log log plots of L2 Jacobian error E2 vs 	x, (b) L1 grid 
distortion vs 	x, and (c) log log plots of total runtime TCPU vs N of the grids produced using static, dynamic, and restarted SAM for N = 323, . . . , 2563.

system (41) is hyperbolic in the sense that each of ∇Q F j(Q ) is diagonalizable with real eigenvalues (or wave speeds), which 
are given explicitly by

λ j,± = 1

J (v j ± c) and λ j,0 = 1

J v j (repeated) , (43)

with c = √
γ p/ρ the sound speed.

6.1.3. Geometric conservation law and free-stream preservation
An explicit computation shows that the Jacobian determinant J (x, t) satisfies the geometric conservation law (GCL) [75]

∂tJ − ∂ j(a
j
i ψ

i
t ) = 0 . (44)

For (41), an equivalent property to the GCL is the free-stream preservation property, which states that an initially uniform 
flow (i.e. Q0 ≡ constant) is preserved under evolution by (41a) i.e. Q ≡ constant for every t > 0. Numerical schemes that fail 
to preserve the free-stream produce unacceptably large errors that corrupt small-scale vortical structures [38,79,17,60,45].

Finite difference schemes on static uniform meshes preserve the free-stream. On dynamic adaptive meshes, however, 
this is no longer a given, and indeed many standard schemes (including WENO [43]) fail to preserve the free-stream. As 
such, we design our numerical scheme to ensure free-stream preservation by explicitly incorporating (44) into the system of 
conservation laws to be solved [38,84]. Specifically, we append to (41) the equation (44) and consider the modified system
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∂t Q̃ + ∂ j F̃ j(Q̃ ) = 0, (x, t) ∈ �ref × (0, T ), (45a)

Q̃ (x,0) = Q̃ 0(x), (x, t) ∈ �ref × {0}, (45b)

with

Q̃ =

⎛
⎜⎜⎜⎜⎜⎝

J ρ

J ρu1

J ρu2

J E
J

⎞
⎟⎟⎟⎟⎟⎠ and F̃ j(Q̃ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

J ρv j

J ρu1 v j + a j
1 p

J ρu2 v j + a j
2 p

J E v j + pa j
i ui

−a j
i ψ

i
t

⎞
⎟⎟⎟⎟⎟⎟⎠

. (46)

We emphasize that, while the cofactor matrix a j
i is computed directly from the map ψ according to (3), the Jacobian 

determinant J is computed (using the same numerical method used for the other equations in (45)) via (44) and not by 
the usual determinant formula J = ∂1ψ

1 ∂2ψ
2 − ∂1ψ

2 ∂2ψ
1 except at the initial time t = 0.

6.2. The C-method for 2D ALE-Euler

Next, we describe some aspects of our numerical framework for solving (45). Specifically, we adapt the C-method, intro-
duced in the Eulerian setting in [64,65], to the ALE setting. One of the key features of the C-method is space-time smooth 
tracking of shock/contact fronts and their geometries via so-called C-functions. The C-functions are space-time smoothed 
versions of localized solution gradients, and are found as the solutions to auxiliary scalar reaction-diffusion equations. These 
C-functions in turn allow us to implement both directionally isotropic (for shock stabilization) and anisotropic (for contact 
stabilization) artificial viscosity schemes. In particular, the C-method is a PDE-level modification of (45). Consequently, the 
methods developed in [64,65] can be implemented in the ALE context in a straightforward manner. For the purposes of 
brevity, we omit some of the details here and refer the reader to [65] and Appendix A.

6.2.1. WENO-type reconstruction and computation of a j
i

We discretize the uniform mesh and index the nodes by xr,s = (x1
r , x2

s ). At each xr,s we construct numerical flux functions 
F̂ 1

r+ 1
2 ,s

and F̂ 2
r,s+ 1

2
that will be used to approximate the derivatives ∂1 F̃ 1(Q̃ )|xr,s and ∂2 F̃ 2(Q̃ )|xr,s , respectively. We describe 

the procedure for F̂ 1
r+ 1

2 ,s
. For ease of notation, we drop the superscript 1 and let F̃ 1 ≡ F̃ . Decompose F̃ = F̃ v + F̃ p + F̃ E + F̃ J

with

F̃ v =

⎛
⎜⎜⎜⎜⎜⎝

J ρv j

J ρu1 v j

J ρu2 v j

J E v j

0

⎞
⎟⎟⎟⎟⎟⎠ , F̃ p =

⎛
⎜⎜⎜⎜⎜⎝

0

a j
1 p

a j
2 p
0
0

⎞
⎟⎟⎟⎟⎟⎠ , F̃ E =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

pa j
i ui

0

⎞
⎟⎟⎟⎟⎟⎠ , F̃ J =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0

−a j
i ψ

i
t

⎞
⎟⎟⎟⎟⎟⎠ . (47)

Each component of the advection term F̃ v is approximated at the half-point xr+ 1
2 ,s as

F̂ v
r+ 1

2 ,s
= WENO

(
q,J v j

)
:= qr+ 1

2 ,s(J v j)r+ 1
2 ,s , (48)

where q denotes one of the variables q ∈ {ρ,ρu1,ρu2, E
}

and qr+ 1
2 ,s is computed using a standard 5th order WENO recon-

struction [68] of q with upwinding based on the sign of (J v j)r+ 1
2 ,s . The velocity (J v j)r+ 1

2 ,s is computed according to the 
4th order average

(w)r+ 1
2 ,s := −wr−1,s + 7wr,s + 7wr+1,s − wr+2,s

12
. (49)

The additional advection terms F̂ E
r+ 1

2 ,s
= WENO(p, a j

i ui) and F̂ J
r+ 1

2 ,s
= WENO(1, −a j

i ψ
i
t ) can be approximated in a similar 

fashion to (48). The pressure term F̂ p

r+ 1
2 ,s

is approximated by the 4th order average (49). Finally, the total flux is given by 

the sum F̂r+ 1
2 ,s = F̂ v

r+ 1
2 ,s

+ F̂ p

r+ 1
2 ,s

+ F̂ E
r+ 1

2 ,s
+ F̂ J

r+ 1
2 ,s

. The semi-discrete scheme for (45) then reads

∂t Q̃ r,s +
F̂ 1

r+ 1
2 ,s

− F̂ 1
r− 1

2 ,s

	x1 +
F̂ 2

r,s+ 1
2

− F̂ 2
r,s− 1

2

	x2
= 0 . (50)
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For free-stream flows, we have that qr,s ≡ constant and the scheme becomes linear, due to the linear averaging (49). 
In particular, it is easy to verify that the free-stream is preserved, provided the components of the cofactor matrix a j

i are 
computed by 4th order central differencing of the map ψ as

[
∂1ψ

j
]

r,s
= ψ

j
r−2,s − 8ψ

j
r−1,s + 8ψ

j
r+1,s − ψ

j
r+2,s

12	x1 , (51)

and similarly for 
[
∂2ψ

j
]

r,s .
To confirm this, we perform a free-stream test on the 50 × 50 time-dependent moving-mesh defined by⎧⎨
⎩

ψ1(x1, x2, t) = x1 + 0.4 sin
(

3πt
T

)
sin
(

3π
8 (x2 + 8)

)
(a)

ψ2(x1, x2, t) = x2 + 0.8 sin
(

3πt
T

)
sin
(

3π
8 (x1 + 8)

)
(b)

(52)

for (x1, x2) ∈ [−8 , +8]2 and 0 ≤ t ≤ T = 80. The initial data is uniform U0 ≡ 1 and we employ periodic boundary conditions. 
The magnitude of the density error at the final time t = T is ||ρ(·, T ) − 1||L∞ = 9.10 × 10−14 i.e. the scheme maintains free 
stream flows to machine precision.

For non-smooth problems with shocks or contacts, it is necessary to add an artificial viscosity term to the right-hand side 
of (45a), and the semi-discrete scheme (50) must be modified appropriately. The details of the particular form of artificial 
viscosity we use are provided in Appendix A.

Remark 1. The simplified WENO-type reconstruction procedure outlined above is similar in some respects to the WENO 
schemes based on the so-called alternative flux formulation, first introduced in [69] and explored extensively in several recent 
papers [44,45,61,19,55]. In particular, both schemes define the flux F̂r+ 1

2 ,s by first reconstructing the variables qr+ 1
2 ,s . On the 

other hand, the alternative flux formulation WENO schemes utilize characteristic decompositions and (exact or approximate) 
Riemann solvers. The resulting algorithms are more expensive but also more robust. Nonetheless, for simple problems, both 
the simplified WENO and alternative flux WENO schemes produce similar results [64,65]. For more challenging problems, 
the simplified WENO scheme produces oscillatory solutions; these oscillations can be suppressed with C-method artificial 
viscosity.

6.2.2. Explicit interface tracking
The C-method utilizes a simple method for tracking of contact discontinuities which we first describe in the Eulerian 

setting i.e. for the system (38). Let z : I × [0, T ] → � be a parametrization of the material interface with parameter α ∈
I ⊂R, and with components z = (z1 , z2). In many simulations, the contact discontinuity is a closed or periodic curve, and 
in this case we take I = [−π , π ]. Given an initial parametrization z0 of the contact discontinuity, the interface z(α, t) is 
found as the solution to{

∂tz(α, t) = ū ◦ z(α, t) , α ∈ I and 0 < t ≤ T (a)
z(α,0) = z0(α) , α ∈ I and t = 0 (b)

(53)

Here, the velocity ū is defined as the average ū = 1
2 (u+ + u−), with u± denoting the fluid velocity on either side of the 

interface. In a numerical implementation, the average ū is approximated by bilinear interpolation of u onto z.
The ALE analog of the (Lagrangian) interface tracking algorithm described above can be derived by defining the ALE 

interface parametrization z : I × [0, T ] as the image of z under the action of the inverse ALE map ψ−1 : � × [0, T ] → �ref

i.e.

z(α, t) = ψ−1 ◦ z(α, t) .

If the map ψ resolves mesh points around z, then the ALE interface z represents a “zoomed-in” version of z that magnifies 
small scale structures cf. Fig. 17(d).

A chain rule computation shows that z is the solution to{
∂t z(α, t) = v̄ ◦ z(α, t) , α ∈ I and 0 < t ≤ T (a)
z(α,0) = z0(α) , α ∈ I and t = 0 (b)

(54)

where v̄ = 1
2

(
v+ + v−). The initial interface z0 is defined by

z0(α) = ψ−1 ◦ z(α,0) . (55)

In a numerical implementation, the initial ALE interface z can be computed as the roots of ψ0(z0) = z0 using e.g. Newton’s 
method.
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Algorithm 4 coupled SAM-ALE.
Step 0: Initialization t = 0.

(a) Define the initial Eulerian data Q0 on the uniform mesh U ⊂ � and the initial interface parametrization z0(α).
(b) Define the initial target Jacobian function G0 on U . Compute the initial ALE map ψ0 : �ref → � and adaptive mesh T0 = ψ0(Tref) ⊂ � using 

static SAM Algorithm 1.
(c) Define the initial ALE data Q 0. Compute the initial ALE interface z0 using Newton’s method.

Step 1: Time-stepping t = tk ≥ 0. Assume that we are given all quantities at t = tk .
(a) Define the target Jacobian function Gk+1 and compute the map ψk+1 and adaptive mesh Tk+1 according to restarted dynamic SAM Algorithm 3.

(b) Compute the cofactor matrix a j
i using (51). Define the mesh velocity ∂tψk+1 = ψk+1−ψk

	t .

(c) Compute the ALE variables Q̃ k+1 and zk+1 using the C -method and RK4 time-stepping. The mesh, cofactor matrix, and mesh velocity are kept 
fixed over the time step.

(d) Compute the interface zk+1 = ψk+1 ◦ zk+1.
(e) If tk+1 = T , then stop; else, set t = tk+1 and return to Step 1(a).

6.3. Coupled SAM-ALE algorithm

Our SAM algorithm is coupled to the ALE C-method by defining an appropriate target Jacobian function Gk . In this work, 
for simplicity, we shall assume that Gk is explicitly defined, either by some particular formula (as in the Noh test), or 
via the interface zk (for the RT test). Future work will investigate coupling of SAM-ALE by means of balanced monitoring of 
solution gradients [77]. In the case of RT instability, it is important to use the interface z to control adaptation since it allows 
high mesh concentration in KH roll up zones, in contrast to the balanced monitoring approach in which the magnitudes of 
solution gradients decrease in KH zones due to mixing [73].

The complete SAM-ALE algorithm is provided in Algorithm 4.

7. SAM-ALE simulations of gas dynamics

7.1. Noh implosion

The first test is the 2D Noh implosion: an initially cold gas is directed towards the origin with speed 1 and instanta-
neously implodes at the origin, resulting in a radially symmetric infinite strength shock propagating outwards with speed 
1/3. This is an extremely difficult test problem and almost all codes report errors in the form of wall heating, lack of sym-
metry, incorrect shock speeds, or even failure to run [53]. This is the case for both Lagrangian-type codes with artificial 
viscosity [52,7,20], as well as AMR codes such as RAGE [30]. Extensive numerical testing in [76] showed that catastrophic 
anomalies occur in AMR solutions, with the anomalies persisting, or even worsening as the grid is refined. These anomalies 
occur due to spurious wave reflections on discontinuous grids [78,29].

7.1.1. Problem description
The domain as � = [0, 1]2, the adiabatic constant is γ = 5/3, and the initial data is⎡
⎢⎢⎣

ρ0

(ρu1)0

(ρu2)0
E0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
− cos(θ)

− sin(θ)

0.5 + 10−6/(γ − 1)

⎤
⎥⎥⎦χr>0 +

⎡
⎢⎢⎣

1
0
0

0.5 + 10−6/(γ − 1)

⎤
⎥⎥⎦χr=0 , (56)

where r = |y| is the radial coordinate, θ ∈ [0, π2 ) is the polar angle, and χA is the indicator function on the set A. We 
employ reflecting boundary conditions on the left and bottom boundaries and use the exact solution to impose the boundary 
conditions at the top and right boundaries. The problem is run until the final time T = 2.

7.1.2. Uniform mesh simulations
We apply the C-method as described in [65] on 50 × 50, 100 × 100, and 200 × 200 meshes with time step 	t set so that 

CFL ≈ 0.2. The C-method artificial viscosity coefficients in (65) are fixed as βu = 0.35, βE = 2.5, and μ = 0. The scatter plots 
of density vs r in Fig. 13 show that the C-method produces stable non-oscillatory solutions that maintain radial symmetry. 
Moreover, the smooth artificial viscosity almost entirely removes the wall-heating error in the higher resolution runs.

7.1.3. SAM-ALE simulations
Next, we apply SAM-ALE on a 50 × 50 dynamic adaptive mesh. For simplicity, we choose a specially designed forcing 

function G for the mesh generation, defined as

Cψ(y1, y2, t) = exp
[
−400

(
r2 − t2/9

)]
,

Ḡ(y, t) = 1

1 + κ
1−κ

Cψ(y,t)∫
� Cψ(y,t) dy

. (57)
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Fig. 13. Uniform mesh runs for the 2D Noh problem. Shown are the density scatter plots vs radial coordinate r. The black curve in each subfigure is the 
exact solution. The shock fronts are sharp and the solutions free of the spurious asymmetry, wall-heating, oscillation, and shock-racing errors associated 
with the majority of numerical methods for this test.

Fig. 14. SAM-ALE simulations of the Noh implosion. Shown are (a) adaptive mesh T , (b) density scatter plot, and (c) comparison of uniform vs SAM-ALE 
density zoom-in at the shock. The smooth concentration and alignment of the mesh in the vicinity of the shock front allows for a sharp shock representation 
in the SAM-ALE solution, comparable to the high-resolution 200 × 200 uniform mesh solution.

This forcing function is designed, using the known analytical solution, to track the moving shock. In the future, a shock-
tracking scheme analogous to the z-type advection (53) for contract tracking will be employed to define Ḡ. The z-type 
advection can track the shock with high accuracy, and the resulting Ḡ is almost exactly the same as (57). As such, for 
simplicity we use the specially designed function (57) in this work, with the understanding that similar results can be 
obtained when z-type shock tracking is used instead. The particular normalization used to define Ḡ is motivated by the 
balanced monitoring method [77]. We set κ = 0.3 and the time-step as 	t = 5 × 10−4, which yields CFL ≈ 0.2, and choose 
artificial viscosity parameters βu = 0.1, βE = 0.7, and μ = 0.

The results are shown in Fig. 14. The shock front is sharp, the wall-heating error is very small, and solution symmetry 
is well preserved. The latter is a consequence of both C-method artificial viscosity as well as grid alignment with the 
shock front. The density cross sections ρ(y1, 0, t) along the y1-axis for the various simulations are shown in Fig. 14(c), 
which clearly shows that the 50 × 50 adaptive simulation outperforms the low-res and mid-res uniform simulations, and 
is comparable to the high-res uniform simulation. The wall heating error is smallest for the adaptive simulation, and the 
sharpness of the shock fronts for the 200 × 200 uniform and 50 × 50 adaptive simulations is comparable. As shown in 
Table 6, the adaptive mesh simulation produces the solution with the smallest L2 error in the density. Moreover, the adaptive 
simulation is approximately 6 times faster than the high-res uniform simulation, and requires roughly the same amount of 
memory as the lowest-resolution uniform run.

7.2. Rayleigh-Taylor instability

Our second test problem is the classical RT instability. This test poses a huge challenge for Lagrangian and ALE methods 
due to the complex geometry of the evolving unstable interface. As such, limited RT ALE simulations are available in the 
literature (but see [85,57,24,34] for some examples). In fact, the RT problem is so challenging for ALE codes that very often 

27

166



R. Ramani and S. Shkoller Journal of Computational Physics 490 (2023) 112280

Table 6
Comparison of simulation statistics for the uniform and adaptive mesh C -method simu-
lations for the Noh problem. The low-res SAM-ALE simulation is more accurate than the 
high-res uniform simulation, while running 6 times faster and requiring only 18% as much 
memory.

Simulation
Simulation statistic

L2 density error CPU time (secs) Memory usage (MBs)

50 × 50 uniform 1.019 × 100 4.3 7.5
100 × 100 uniform 6.917 × 10−1 35.3 14.6
200 × 200 uniform 5.406 × 10−1 289 43.7
50 × 50 adaptive 4.897 × 10−1 45.6 7.8

Fig. 15. Uniform mesh simulations of RT instability with sharper fronts and more small scale structure in the KH zone as the resolution increases.

the goal is simply to perform a simulation that runs until the final time without excessive mesh tangling, at which point 
the simulation breaks down [57,4].

7.2.1. Problem description
We add the source term S̃(x, t) = (0, 0, −J ρg, −J ρgu2, 0, 0)T to the right-hand side of (45a). The domain is � =

[−0.25, 0.25] × [0, 1] and we apply periodic and free-flow conditions in the y1 and y2 directions [63]. The initial data is 
u0 = 0, and

p0 =
{

5 − ρ−gy2 , if y2 < 0.5

5 − 0.5ρ−g − ρ+g(y2 − 0.5) , if y2 ≥ 0.5
, (58a)

ρ0(y1, y2) = ρ− + ρ+ − ρ−

2

[
1 + tanh

(
y2 − η0(y1)

h

)]
, (58b)

where ρ+ = 2 and ρ− = 1, η0(y1) = 0.5 − 0.01 cos(4π y1), h = 0.005, and g = 1. The problem is run until the final time 
T = 2.5.

7.2.2. Uniform mesh simulations
We compute a sequence of uniform mesh simulations for resolutions N = 64 × 128 through N = 512 × 1024 with CFL ≈

0.45. The artificial viscosity parameters are set as μ = 7.5 × 10−4 and βu = βE = 0, and we show heatmap plots of the 
density in Fig. 15. As the resolution is increased, more small-scale structure can be seen in the main KH roll up region. The 
artificial viscosity term suppresses further secondary instabilities that usually occur with other dimensionally split numerical 
methods [53,1].
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Fig. 16. 64 × 128 adaptive mesh simulations of RT with large zoom-in factor. Figure (a) is a zoom-in of the mesh computed with restarted SAM and 
δ = 0.85. The interface z is shown as the blue curve, and the non-convex elements are indicated by red crosses. Figure (b) is a zoom-in of the density with 
δ = 0.92. The non-convex elements cause spurious instabilities along the interface. Figure (c) shows the mesh computed with the large zoom-in algorithm; 
all the elements are convex and the mesh is smooth.

Table 7
Total CPU runtime for uniform and adaptive simulations of RT instability.

Runtime (sec)
Cells

64 × 128 128 × 256 256 × 512 512 × 1024 64 × 128 SAM-ALE

TCPU 2.21 × 101 1.67 × 102 1.37 × 103 1.21 × 104 1.38 × 102

7.2.3. Mesh generation with large zoom-in factor
Next, we aim to produce a 64 × 128 adaptive mesh with large zoom-in factor that resolves around the material interface 

z and define a target Jacobian function as

Gδ(y, t) = 1 − δ exp

(
−
∣∣∣σ min

α
|y − z(α, t)|

∣∣∣2) , (59)

with σ = 25. For this resolution, the meshes produced with dynamic SAM contain non-convex elements for δ larger than 
approximately 0.85, as shown in Fig. 16(a). These non-convex elements arise due to a strong cusp-type flow in the region 
between the “stem” of the mushroom and the roll up region. The choice δ = 0.85 produces a mesh with smallest cell size 
only approximately 3.8 times smaller than a uniform mesh cell. Increasing the value of δ further produces a mesh with more 
non-convex elements, which in turn causes spurious errors in the computed numerical solution as shown in Fig. 16(b).

A simple technique to resolve this issue is to use the large zoom-in algorithm described in Section 5.1. Specifically, 
we use the large zoom-in algorithm (with 25 sub time steps) in combination with restarted dynamic SAM. The 64 × 128
adaptive mesh with δ = 0.97 is shown in Fig. 16(c), from which it can be seen that the mesh is smooth and all elements 
are convex. The smallest cell size in the mesh is approximately 13 times smaller than a uniform cell. The large zoom-in 
algorithm is applied only when the mesh resets, and the increase in CPU runtime is therefore negligible.

7.2.4. Comparison of adaptive and uniform simulations
We perform a 64 × 128 cell SAM-ALE simulation with zoom-in parameter δ = 0.97 and 	t = 1.5625 × 10−4. Plots of the 

adaptive mesh and density heatmap are provided in Fig. 17(a) and Fig. 17(b), and we refer to Fig. 16(c) for the mesh zoom-
in. A comparison with the uniform mesh simulations in Fig. 15 shows that the 64 × 128 SAM-ALE simulation has a much 
sharper interface and exhibits more small-scale roll-up than the 64 × 128 uniform simulation, and is roughly comparable 
to the N = 256 × 512 simulation. However, some of the small-scale structure is not observed in the SAM-ALE density. 
Interestingly, this roll up is captured by the interface z, shown in Fig. 17(c). This suggests that a more robust ALE solver (e.g. 
WENO with alternative flux formulation) may produce improved results.10 The ALE interface z is shown in Fig. 17(d) and is 
clearly a zoomed-in version of z, with the small scale KH zones magnified and represented over a much larger region.

The CPU runtimes of the various simulations are provided in Table 7, from which we see that the SAM-ALE simulation 
is approximately 10 times and 88 times faster than the 256 × 512 and 512 × 1024 uniform runs, respectively. For this 
problem, the CPU time spent on mesh generation is roughly the same as the time spent on ALE calculations. Since SAM is 

10 See also [77] for a comparison of Lax-Friedrichs vs low dissipation HLLC flux reconstruction in the FV framework.
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Fig. 17. 64 × 128 SAM-ALE simulation of RT instability with δ = 0.97.

Fig. 18. Time history of the L2 and L∞ norms of the vorticity for uniform and adaptive mesh simulations of RT instability.

roughly 100-200 times faster than MK mesh generation, it is clear that an MK-ALE scheme cannot provide a speed-up over 
uniform mesh simulations. On the other hand, the use of a more robust ALE solver can only improve the relative efficiency 
of SAM-ALE, since the main computational expense will be the ALE calculations rather than mesh generation.

The time histories of the L2 and L∞ norms of the vorticity ω for the uniform and adaptive mesh simulations are shown 
in Fig. 18. These figures confirm that the 64 × 128 SAM-ALE run is comparable to the 256 × 512 uniform run. In fact, for 
t ≤ 1.75, when the mesh zoom-in factor is approximately 20 times, the 64 × 128 SAM-ALE run closely approximates the 
512 × 1024 uniform run. For t > 1.75, the mesh zoom-in factor decreases due to the stretching of the interface and the 
adaptive mesh is no longer able to capture the smallest scales that are present in the 512 × 1024 run. The decrease in the 
mesh zoom-in factor is a consequence of the fact that the number of cells in the mesh are fixed. So-called h-r adaptive 
mesh methods [23] are a way to overcome this issue; the simplicity of our algorithmic framework suggests that a dynamic 
h-r method based on SAM can be readily formulated and implemented, and this will be investigated in future work.
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Fig. 19. Unstructured mesh modeling compressible flow past an airfoil. The mesh is constructed using (a preliminary version of) unstructured SAM in the 
Firedrake framework [66].

8. Concluding remarks

In this work, we developed a new Smooth Adaptive Meshing (SAM) algorithm based on a new perturbation formulation 
and implementation of the deformation method. The resulting numerical algorithm is simple, stable, automated, high-order 
accurate, and able to generate smooth and untangled meshes resolving around complex multi-D flows. We coupled SAM 
to a simple ALE scheme for gas dynamics and presented adaptive-simulation speed-up results for the challenging Noh and 
Rayleigh-Taylor problems.

Several aspects of our SAM formulation and algorithm require further investigation and improvement. As discussed in 
Section 7.2, we are interested in developing an h-r-refinement scheme based on SAM and, more generally, a dynamic SAM 
algorithm on general unstructured meshes. The numerical implementation of unstructured SAM is obviously more delicate 
than the simple uniform-mesh scheme presented in the current paper, and will be thoroughly investigated in future work. 
Nonetheless, we provide in Fig. 19 a preliminary result showing an unstructured SAM mesh that models compressible 
flow past an airfoil. This mesh was produced11 within the finite-element based Firedrake code [66]. In the future, we will 
investigate the theoretical properties of SAM solutions on general domains, and their connections to the regularity of the 
discrete mesh T .
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Appendix A. The C -method for 2D ALE-Euler

We provide a brief review of the C-method for adding space-time smooth artificial viscosity to shocks and contacts 
[65]. The most important feature of the C-method is smooth tracking of shock/contact fronts and their geometries via 
so-called C-functions. The C-functions are space-time smoothed versions of localized solution gradients, and are found as 
the solutions to auxiliary scalar reaction-diffusion equations. Specifically, we use C to denote a smoothed shock tracking 
function, and τ to denote the vector-valued function τ = (τ 1 , τ 2). The function �τ is a smoothed version of the tangent 
vector to an evolving contact discontinuity. These C-functions allow us to implement both directionally isotropic (for shock 
stabilization) and anisotropic (for contact stabilization) artificial viscosity schemes.

To summarize the method, it is convenient to introduce advection, artificial viscosity, and C-equation operators as fol-
lows.

A.0.1. ALE advection operator
For a scalar function Q : �ref →R, and a vector-valued function v : �ref →R2, define

A [Q ; v] := ∂k

(
Q ak

l vl
)

. (60)

A.0.2. ALE isotropic artificial viscosity operator
For a scalar function Q : �ref →R, define

D [Q ;β] := ∂k

(
β̃ρC ak

i al
i ∂l Q

)
, (61)

with

β̃ = |	x|2
max C

β .

The constant β is an isotropic artificial viscosity parameter for shock stabilization.

A.0.3. ALE anisotropic artificial viscosity operator
For a scalar function Q : �ref →R, we define

Dτ [Q ;μ] := ∂k

[
μ̃ρ τ iτ jak

i al
j ∂l Q

]
, (62)

with

μ̃ = |	x|2
α2

μ. (63)

Here, μ is the anisotropic artificial viscosity parameter for contact discontinuity stabilization and α = maxx{|τ 1| , |τ 2|}.

A.0.4. ALE C-equation operator
For a scalar function H : �ref →R and scalar forcing function Q : �ref →R, let

L [H ; Q ] := S
ε|	x| (Q − H) + κS|	x|	H . (64)

A.0.5. The complete ALE-Euler-C system
Now, we can write the full ALE-Euler-C system as

∂t(J ρ) + A [ρ ; u − ψt] = 0 , (65a)

∂t(J ρur) + A
[
ρur ; u − ψt

]= Dτ [ur ;μ] + D[ur ;βu] − ∂ j(a
j
r p) , for r = 1,2, (65b)

∂t(J E) + A [E ; u − ψt] + A [p ; u] = D[E/ρ ;βE ] , (65c)

∂tJ − A [1 ;ψt] = 0 , (65d)

∂t C − L [C ; F ] = 0 , (65e)

∂tτ
r − L

[
τ r ; F r]= 0 , for r = 1,2. (65f)
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The forcing functions for (65e) and (65f) are defined as follows. The shock C forcing function is given by

F̂ = | 1
J a j

i ∂ jρ|
max | 1

J a j
i ∂ jρ|

, (66)

while the components of the forcing to the contact tangent vector τ equations are defined by

F 1 = − 1

J a j
2∂ jρ and F 2 = 1

J a j
1∂ jρ . (67)

The initial conditions for C and τ are defined by solving the time-independent versions of (65e) and (65f).

Appendix B. Boundary smoothing for non-Neumann functions

Herein, we describe a simple boundary smoothing technique for non-Neumann functions. Let xr
mid = 1

2

(
xr

min + xr
max

)
, for 

r = 1, 2. Define smooth cutoff functions

φ1(ξ) = 1

2

[
tanh

(
ξ − (x1

min + d1)

ε

)
− tanh

(
ξ − (x1

max − d1)

ε

)]
,

φ2(η) = 1

2

[
tanh

(
η − (x2

min + d2)

ε

)
− tanh

(
η − (x2

max − d2)

ε

)]
,

where ε is a smoothing parameter, which we choose as ε = 0.02. The function φ1 is equal to 1 in the interior of the domain, 
then smoothly decreases to 0 at a distance d1 near the left and right boundaries. The function φ2 behaves similarly. We set 
dr = 0.05(xr

max − xr
min).

Given a non-Neumann function G, we first compute the derivatives D1G, D2G, and D12G. We then compute

I(1)(y1) =
y1∫

x1
mid

φ1(ξ)D1G(ξ, x2
mid)dξ ,

I(2)(y2) =
y2∫

x2
mid

φ2(η)D2G(x1
mid, η)dη ,

I(3)(y1, y2) =
y2∫

x2
mid

y1∫
x1

mid

φ1(ξ)D12G(ξ,η)dξdη ,

and define

G∗(y1, y2) := G(x1
mid, x2

mid) + I(1)(y1) + I(2)(y2) + I(3)(y1, y2) .

The function G∗ then satisfies DG∗ · ν = 0 on ∂�.

Appendix C. The MK scheme

The MK scheme solves for the unique [8,16] diffeomorphism ψ satisfying (7) that minimizes the L2 displacement 
||ψ(x) − x||L2 . The MK formulation is developed by writing ψ = x + ∇�, where � is a scalar potential. The equation gov-
erning � is found by minimizing a functional consisting of the L2 displacement and a local Lagrange multiplier, where the 
latter is used to enforce the Jacobian constraint (7). The resulting equation for � is fully nonlinear, and the MK scheme uses 
an iterative Newton-Krylov solver with multigrid preconditioning to find an approximation to the solution �, within some 
error tolerance ε .

C.1. Machine comparison

To reliably compare the runtimes of our static SAM Algorithm 1 with the MK scheme as listed in [22], we need to 
account for the different machines on which these codes were run. Therefore, we perform the following machine comparison 
experiment. In [22], the authors also report the CPU runtimes for a deformation method of Liao and Anderson [50], whose 
description is provided in the Appendix of [22]. We coded a numerical implementation of this method, which we refer to 
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Table 8
CPU runtimes for the LA scheme on the machine from [22] and the LA scheme on our machine. The data 
for the LA scheme in the top row is taken from Table 3 of [22].

Scheme
Cells

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

LA on [22] machine TCPU 0.2 0.9 3.4 13.6 55.0

LA on our machine
TCPU 0.12 0.41 1.53 6.22 24.16
speed-up factor 1.7 2.2 2.2 2.2 2.3

as LA, and ran the numerical experiments from [22] on our machine. The runtimes for LA on our machine, along with the 
LA runtimes from Table 3 of [22], are shown in Table 8. These data show that our machine runs approximately 2.2 times 
faster than the machine on which the MK simulations in [22] were performed.
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