
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Symbolic Quantitative Analysis for Software Testing and Security

Permalink
https://escholarship.org/uc/item/2jz316dq

Author
Saha, Seemanta

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2jz316dq
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Symbolic Quantitative Analysis for Software Testing and
Security

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Seemanta Saha

Committee in charge:

Professor Tevfik Bultan, Chair
Professor Chandra Krintz
Professor Christopher Kruegel
Professor Ben Hardekopf

September 2022

The Dissertation of Seemanta Saha is approved.

Professor Chandra Krintz

Professor Christopher Kruegel

Professor Ben Hardekopf

Professor Tevfik Bultan, Committee Chair

September 2022

Symbolic Quantitative Analysis for Software Testing and Security

Copyright © 2022

by

Seemanta Saha

iii

In memory of my beloved uncles

Nani Gopal Saha

and

Pankaj Saha

iv

Acknowledgements

I would like to express my sincere thanks to my Ph.D. advisor, Tevfik Bultan, whose sup-

port, encouragement and mentorship have been invaluable to me. Throughout the years in my

Ph.D. program and in the Verification Lab at UCSB, Tevfik has been exceptionally motivating,

supportive, generous and a great mentor with his guidance and directions. It has been a great

joy to learn about academic research, practical applications of research, leadership, mentoring

and life skills from him.

I am thankful to my committee members, Chandra Krintz, Ben Hardekpof and Christopher

Krugel, for providing me with feedback, support and encouragement to reach the milestones in

my Ph.D.

My time as a graduate student researcher at UCSB was deeply enriched by the amazing

group of researchers I collaborated with. I would especially like to thank Lucas bang, to whom

I am very much grateful to have had the opportunity to work with and learn about solving

research problems and writing papers. I would also like to thank William, Burak and Tegan for

their collaboration, communication and great insights. The perspectives, company and support

of the members of the Verification Lab: Nico, Nestan, Lucas, Tegan, William, Burak and Issac

have made my time in lab intellectually exciting. I am also very thankful to Mara, Laboni,

Shafiuzzaman, Shihua, Surendra, Ganesh, Albert, Chaofan and the ERSP students to make me

more thoughtful as a researcher.

I am deeply grateful to Ripon Saha for his mentrorship, encouragement and advice towards

me throughout the Ph.D. journey. I am also thankful to my internship manager, Mukul Prasad,

from whom I have learned a lot of research perspectives.

I would like to thank all my friends and family from the Bengali community in Santa Barbara

whose tremendous support has made my journey very smooth here in US. Some of these people

have treated me in a way that I could hardly miss my family being in US. Their guidance is

v

invaluable to me and I don’t have enough words to thank them all.

I would like to thank my wonderfully supportive family, especially my exceptionally amazing

parents, inspiring siblings and cousins, uncles, aunts, nephews, nieces and my extended new

family. Your belief, kindness and true inspiration is everything to me.

Last but not the least, I would like to express my deepest thanks to my lovely wife who has

supported me during the hard time of my last year of Ph.D. and prayed for my upmost success.

vi

Curriculum Vitæ
Seemanta Saha

Education

2022 Ph.D. in Computer Science (Expected), University of California, Santa
Barbara.

2021 M.Sc. in Computer Science, University of California, Santa Barbara.
2012 B.Sc. in Computer Science and Engineering, Khulna University of Engi-

neering & Technology.

Publications

Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran,
Tevfik Bultan. Rare Path-guided Fuzzing. (under submission)

Seemanta Saha, Surendra Ghentilya, Shihua Lu, Lucas Bang, Tevfik Bultan. Obtaining In-
formation Leakage Bounds via Approximate Model Counting. (under submission)

Seemanta Saha, Mara Downing, Tegan Brennan, Tevfik Bultan. PReach: A Heuristic for
Probabilistic Reachability to Identify Hard to Reach Statements. Proceedings of the 44th Inter-
national Conference on Software Engineering, Pittsburgh, Pennsylvania, USA (ICSE 2022).

Tegan Brennan, Seemanta Saha, Tevfik Bultan. JVM Fuzzing for JIT-Induced Side-Channel
Detection. In Proceedings of the 42nd International Conference on Software Engineering, Seoul,
South Korea (ICSE 2020).

William Eiers, Seemanta Saha, Tegan Brennan, Tevfik Bultan. Subformula Caching for Model
Counting and Quantitative Program Analysis. Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, San Diego, California, USA (ASE 2019).

Seemanta Saha, Ripon K. Saha, Mukul R. Prasad. Harnessing evolution for multi-hunk
program repair. Proceedings of the 41st International Conference on Software Engineering,
Montreal, Quebec, Canada (ICSE 2019).

Seemanta Saha, William Eiers, Ismet Burak Kadron, Lucas Bang, Tevfik Bultan. Incremental
Attack Synthesis. ACM SIGSOFT Software Engineering Notes 44 (4), 16, Proceedings of the
2019 JavaPathfinder Workshop, San Diego, California, USA, (JPF 2019).

vii

Seemanta Saha, Ismet Burak Kadron, William Eiers, Lucas Bang, Tevfik Bultan. Attack
Synthesis for Strings using Meta-Heuristics. ACM SIGSOFT Software Engineering Notes 43
(4), 56, Proceedings of the 2018 JavaPathfinder Workshop, Orlando, Florida, USA (JPF 2018).

Tegan Brennan, Seemanta Saha, Tevfik Bultan, Corina S. Pasareanu. Symbolic Path Cost
Analysis for Side Channel Detection. Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Amsterdam, The Netherlands (ISSTA 2018)
27–37.

Tegan Brennan, Seemanta Saha, Tevfik Bultan. Symbolic Path Cost Analysis for Side-Channel
Detection. Proceedings of the 40th International Conference on Software Engineering: Com-
panion Proceedings, Gothenburg, Sweden (ICSE 2018 Companion Volume Poster Track)
424–425.

viii

Abstract

Symbolic Quantitative Analysis for Software Testing and Security

by

Seemanta Saha

Quantitative program analysis is an emerging area with applications to software testing

and security. In recent years, symbolic quantitative program analysis techniques based on sym-

bolic execution and model counting constraint solvers have been applied to reliability analysis,

performance evaluation, information flow analysis, side-channel detection and attack synthesis.

In this thesis, I focus on two significant problems in software testing and security: 1) as-

sessment and guidance for testing techniques, and 2) assessment of information leakage. First,

I present symbolic quantitative analysis techniques for assessment and guidance of testing tech-

niques by identifying hard-to-reach statements and rare paths in programs, and guiding testing

techniques using these information. Then, I present symbolic quantitative analysis techniques

for quantifying the amount of information a program can leak, and synthesizing attacks to

quantify the maximum amount of information that can be obtained by an attacker.

Towards assessing testing difficulty, I develop an efficient and scalable heuristic for proba-

bilistic reachability analysis using branch model counting, dependency analysis, abstract inter-

pretation and probabilistic model checking. The technique I develop can identify hard-to-reach

program statements with high precision and accuracy compared to existing techniques based on

symbolic execution and statistical sampling.

I also develop heuristics to identify rare program paths (program paths that a testing tech-

nique is unlikely to explore by generating random inputs) using control flow analysis, dependency

analysis and branch model counting. Guiding concolic execution using the rare paths in the pro-

gram, I can generate inputs that existing coverage-guided mutation-based fuzzing tools cannot.

ix

Providing these inputs as the initial seed set to existing fuzzers increases code coverage.

Towards quantifying information leakage, I extend the existing symbolic quantitative anal-

ysis techniques by providing a framework to compute information leakage bound in presence

of approximate model counting. I also generalize the existing side-channel attack synthesis

techniques by providing support for unbounded strings using meta-heuristic search and improve

efficiency of attack synthesis by exploiting the incremental nature of attack synthesis techniques.

x

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Challenges in software testing . 2
1.2 Challenges in quantifying information leakage . 5
1.3 Summary of Contributions and Thesis Outline . 8

2 Symbolic Quantitative Program Analysis 10
2.1 Symbolic Execution . 11
2.2 Model Counting constraint Solver . 12
2.3 Probabilistic Symbolic Execution . 15
2.4 Statistical Symbolic Execution . 16
2.5 Applications of Symbolic Quantitative Program Analysis 17

3 Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements 22
3.1 Overview and Motivation . 25
3.2 A Probabilistic Reachability Heuristic . 29
3.3 Implementation . 36
3.4 Experimental Evaluation . 38

4 Rare-path Guided Fuzzing 51
4.1 Overview . 53
4.2 Program Paths . 55
4.3 Identifying Rare Paths with Path Probability Estimation 61
4.4 Input Generation for Rare Paths . 66
4.5 Implementation . 71

xi

4.6 Experimental Evaluation . 72

5 Obtaining Information Leakage Bounds via Approximate Model Counting 79
5.1 Overview . 80
5.2 Symbolic QIF Analysis . 83
5.3 Bounding Information Leakage . 86
5.4 Optimization for Bounding Leakage . 91
5.5 Implementation . 92
5.6 Experiments . 93

6 Side-Channel Attack Synthesis 101
6.1 Motivation . 103
6.2 Synthesizing Adaptive Attacks . 108
6.3 Incremental Attack Synthesis . 110
6.4 Attack Synthesis Heuristics . 114
6.5 Implementations and Experiments . 116
6.6 Case Studies . 120

7 Related Works 122

8 Conclusions 129

Bibliography 132

xii

List of Figures

2.1 Example program for symbolic quantitative analysis 11

3.1 An example based on SV-COMP benchmark . 26
3.2 Refined branch selectivity . 30
3.3 Target statement subgraph extraction and Markov chain construction for the

running example . 32

4.1 A code fragment based on the libxml file parser.c showing several nested branch
conditions that must be satisfied to achieve higher code coverage. 56

4.2 Inter-procedural control flow graph for the running example with additional edges
for II-paths (marked in dashed blue line) and control flow graphs for main,
parse_cmt and parse_att procedures (boxes a, b and c, respectively). 57

4.3 Probabilistic inter-procedural control flow graph corresponding to the inter-procedural
control graph shown in Fig. 4.2, where edges are labeled with probability scores. . 62

4.4 Coverage comparison between AFL++, rare-path guided AFL++, FairFuzz and
rare-path guided FairFuzz . 75

4.5 Coverage improvement comparison between different types of path-guided fuzzing.
II-paths can generate more number of rare inputs compared to both intra and
inter paths within a given amount of time and hence highest edge coverage is
achieved by II-path guided fuzzing. 78

5.1 Lexicographical comparison of strings in C . 80
5.2 Entropy bounds vs. model count approximation 83
5.3 Entropy bounds vs. incomplete path coverage . 83
5.4 Model counts (ci) for the 10 path constraints must sum to 60 and be between 5

and 15, upper and lower bounds as red dotted lines. Left: a solution for ci that
maximizes entropy. Right: a solution that minimizes entropy. 86

5.5 Model counts (ci) for 10 path constraints must sum to 100. All have different
upper and lower bounds (red dotted lines), sorted by lower bound. Left: a solution
for ci that maximizes entropy. Right: a solution that minimizes entropy. 86

6.1 PIN checking example. 103

xiii

6.2 String inequality example. 107
6.3 Overview of Attack Synthesis Approach . 109
6.4 Synthesis Time, M vs SA . 118
6.5 Attack Length, M vs SA/SA-I . 118
6.6 Synthesis Time, SA vs SA-I . 119
6.7 Synthesis Time, M vs SA-I . 119

xiv

List of Tables

2.1 Probabilistic symbolic execution results for the PIN checking example. 16

3.1 Effectiveness of PReach-P in terms of precision (Prec), recall (Rec) and accuracy
(Acc) scores for sv-comp benchmarks . 40

3.2 Number of programs analyzed by PReach and Probabilistic Symbolic Execution
within 1 hour timeout . 41

3.3 Probabilistic measurement differences and hard to reach statement prediction
disagreements between PReach (PR) and PSE 42

3.4 Precision, Recall and Accuracy of PReach (PR) and PSE, computed for 142
programs, program is marked easy to reach if analysis times out 44

3.5 Precision, Recall and Accuracy of PSE and PReach (PR), out of 85 programs
computed within 1 hour for jpf- and jbmc-regression benchmarks 44

3.6 Average Analysis Time for PReach (PR) and PSE, maximum average analysis
time is limited to 3600 seconds, cases with timeout are included 46

3.7 Precision, Recall and Accuracy of PReach-P (PR-P) and SSE, computed for 44
programs from jayhorn-recursive and algorithms benchmarks, program is marked
easy to reach if analysis times out(1 hour), both Monte Carlo and informed sam-
pling has same precision, recall and accuracy . 46

3.8 Average Analysis Time and statistical Confidence (δ) for PReach-P (PR-P) and
SSE Monte Carlo (MCS) and informed (IS) sampling, maximum average analysis
time is limited to 3600 seconds, cases with timeout are included, confidence is set
to 0.0 for timeout cases . 47

3.9 Case study of PReach on Apache Commons Lang and DARPA STAC Bench-
marks. PReach predicts a statement as hard to reach if reachability probability
is less than 0.001. 19 out of 24 cases are predicted correctly 49

4.1 II-paths for the extended inter-procedural control flow graph shown in Fig. 4.2. . 61
4.2 Percentages of coverage improvement for rare path-guided fuzzing over AFL++,

FairFuzz . 76
4.3 Percentages of coverage improvement for rare path-guided fuzzing over DigFuzz . 77

5.1 Probabilistic symbolic execution results and observables for the compare function. 82

xv

5.2 Channel capacity and information leakage bound using exact model counts and
approximation . 94

5.3 Channel capacity and sound information leakage bound using an approximate
model counter . 95

5.4 Comparison between channel capacity and sound information leakage bounds
using HCP for login_unsafe example from Blazer benchmarks 98

6.1 Observation constraints generated by symbolic execution of the function in Fig-
ure 6.1. 105

6.2 Attack inputs (l), uncertainty about the secret (H), and observations (o). Prefix
matches are shown in bold. 105

6.3 Observation constraints of the function in Figure 6.2 107
6.4 Non-optimal attack . 107
6.5 Optimal attack . 107
6.6 Incremental nature of constraints at each step of adaptive attack. 108
6.7 Benchmark details with the number of path constraints (|Φ|) and the number of

merged observation constraints (|Ψ|). 116
6.8 Experimental results for secure password checker (PCS). Time bound is set as

3600 seconds. 119

xvi

List of Algorithms

1 ProbabilisticSymbolicExecution(P) Symbolically executes program P , col-

lects set of path constraints, Φ and computes a set of path probabilities, p. 15

2 IP-GCE(P, tR) Takes a program P and an inter-procedural path tR in P as input

and generates an input for P to execute the path tR 68

3 IIP-GCE(P, tR) Takes a program P and a intra- or II-path tR in P as input and

generates an input for P to execute the path tR 70

4 ProbabilisticSymbolicExecution(P) . 83

5 ExtendedSymbolicExecution(P) . 84

6 SynthesizeAttack(F (h, l), Ch, h∗) This algorithm calls the GenerateCon-

straints and RunAttack functions to synthesize adaptive attacks. 109

7 GenerateConstraints(F (h, l)) Performs symbolic execution on function F

with secret string h and attacker-controlled string l. The resulting path con-

straints are combined according to indistinguishability of observations. 110

8 RunAttack(F (h, l),Ψ, Ch, h∗) Synthesizes a sequence of attack inputs, l∗, for

F (h, l), given observation constraints Ψ, initial constraints on h (Ch), and un-

known secret h∗. 110

9 ModelCountIncremental(Ch ∧ ψo ∧ l = lval) Performs incremental model

counting for constraint Ch ∧ ψo ∧ l = lval . 114

10 AttackInput-SA(Ch,Ψ) Generates a low input at each attack step via simulated annealing. . 115

xvii

Chapter 1

Introduction

Modern world is heavily dependent on software running on an increasingly large number of

computing systems surrounding us. As the amount of software in safety critical systems such

as cars, planes and medical equipments keeps increasing, assuring software quality has become

one of the most fundamental problems that we are facing in this computing dominated era.

Moreover, cyber-attacks stealing secret information from these systems are becoming immensely

dreadful to the society. One can read about dependability and security problems caused by

software vulnerabilities in the news everyday. It is extremely crucial to develop techniques that

can improve the quality of software systems both in terms of dependability and security. In this

thesis, towards advancing the development of dependable software systems, I focus on assessing

difficulty of software testing techniques and guiding these techniques for better performance.

Towards the development of secure systems, I advance the techniques for quantifying information

leakage and synthesizing attacks in software.

1

Introduction Chapter 1

1.1 Challenges in software testing

The most popular and effective approach to achieve dependability in software systems is

software testing. Abundance of software testing techniques have been developed over the last

50 years. Although there has been a surge of progress in automated software testing in the

last two decades based on random testing, fuzzing and symbolic execution, there are remaining

challenges.

Automated testing techniques. Automated testing techniques can be classically separated

as either concrete or symbolic. On one side, concrete testing techniques like fuzzing [1,2] and ran-

dom testing [3] are very much scalable, can handle complex data structures but have difficulties

in exploring hard-to-reach program statements and exercising paths guarded by magic numbers

and complex checks [4–6]. On the other side, symbolic execution based techniques [7–9] can

explore program paths guarded by complex checks by collecting and solving path constraints.

However, these techniques are not as scalable as concrete testing techniques due to the expo-

nential increase in the number of program paths in presence of loops and recursions. These

techniques also suffer from high computational complexity due to constraint solving [10].

Hybrid testing techniques [6, 11–14] combine concrete (e.g., random testing [3], fuzzing [1])

and symbolic techniques (e.g., symbolic execution [8, 9], concolic execution [15, 16]) in order to

improve testing performance and effectiveness. Typically, a strategy function for hybrid testing

decides when to apply concrete techniques and when to apply symbolic techniques to achieve

scalable and effective exploration of the program statements.

Assessment of testing difficulty. In order to choose between concrete and symbolic ap-

proaches, most existing strategies assess the difficulty of concrete testing based on the satura-

tion of random testing [11, 13] or probabilistic program analysis [6, 14]. Assessment of testing

difficulty is a significant problem. An efficient assessment of testing difficulty can provide useful

2

Introduction Chapter 1

guidance for combining different testing techniques and enable development of more efficient

testing techniques.

Existing techniques [17, 18] based on symbolic execution and statistical sampling can be

used to identify the program statements that are hard to reach. However, these techniques have

scalability and complexity issues. I discuss these techniques below.

Probabilistic symbolic execution. Probabilistic symbolic execution [19] is an extension of

symbolic execution that computes probabilities of program paths. It first uses symbolic exe-

cution [7] to collect path constraints and then use model counting constraints solvers [20] to

compute path probability. Probabilistic symbolic execution is used for probabilistic reachability

analysis, reliability analysis of software and software performance evaluation. However, proba-

bilistic symbolic execution suffers from the same limitations as symbolic execution: it can only

analyze program behaviors up to a certain fixed execution depth and the cost of symbolic ex-

ecution increases exponentially with increasing execution depth due to exponential increase in

the number of paths.

Statistical symbolic execution. Statistical symbolic execution [21] is more efficient and scal-

able compared to probabilistic symbolic execution [19]. However, it cannot compute precise

probabilities rather provides approximate reachability probabilities with statistical guarantee.

It samples over symbolic paths and provides statistical guarantee for probabilistic analysis. Sta-

tistical symbolic execution suffers from similar issues as probabilistic symbolic execution. There

are two variants of statistical symbolic execution: 1) statistical analysis based on Monte Carlo

sampling of symbolic paths, and 2) hybrid analysis combining both statistical and exact analysis

based on informed sampling. One of the drawbacks of Monte Carlo sampling is that it needs

to sample a large number of paths to achieve high statistical confidence. On the other side,

informed sampling obtains more precise results and converges faster than Monte Carlo-based

statistical analysis, however, its effectiveness suffers when the number of program paths grows

exponentially.

3

Introduction Chapter 1

Heuristic for Probabilistic Reachability. In this thesis, I develop a heuristic for probabilistic

reachability analysis [22]. The technique can determine the likelihood (or, conversely, difficulty)

of reaching a program statement if the program is being tested on randomly generated inputs.

Using the probabilistic reachability analysis, I can identify hard-to-reach program statements

for random testing techniques such as a fuzzer generating random inputs [1, 2]. From the

experimental evaluation on software verification competition benchmarks [23], Apache Commons

Lang [24] and Darpa benchmarks [25], I find that my technique achieves better precision and

accuracy compared to both probabilistic symbolic execution and statistical symbolic execution

and at the same time, more efficient. In particular, my technique 1) can model behaviors

of arbitrarily long paths, 2) does not suffer from path explosion, i.e., the cost of my analysis

increases in polynomial time with the size of the program (and does not depend on the execution

depth) [26], and finally, 3) solves branch constraints rather than path constraints, reducing the

cost of constraint solving. I will discuss this technique in detail in Chapter 3.

Guidance for testing techniques. The next step to improve automated testing techniques

is to guide these techniques based on their difficulty assessment results. For example, if we have

a technique to identify hard to reach program statements for a fuzzing technique, how can we

use this information to guide the fuzzing technique for better performance?

Existing fuzzing techniques [4, 6] identify rare branches in the program and then either use

mutation strategy [4] or symbolic execution [5, 6] to generate inputs to pass through the rare

branches. These techniques use execution samples collected during fuzzing to identify rare pro-

gram branches [4,6]. As a result, these techniques suffer from the drawbacks of sampling based

techniques, requiring large number of samples to provide statistically guarantee. Moreover,

both mutation strategies and symbolic execution has their own drawbacks. Mutation based

techniques [4] require extra instrumentation and analysis to generate input to pass through rare

branches and symbolic execution based techniques [5, 6] suffer from path explosion problem.

4

Introduction Chapter 1

Rare path-guided fuzzing. In this thesis, I develop a heuristic to identify rare program paths

to guide mutation-based fuzzers. The technique guides the fuzzer to explore paths guarded

by complex checks and magic numbers. I also develop algorithms to guide concolic execution

using these rare paths to generate inputs that can execute the identified rare paths in the

program. These inputs are provided as the initial seed set to the existing mutation-based fuzzing

techniques [1, 4]. Experimental results on a benchmark consisting programs which are heavily

dependent on structured inputs show that the generated inputs improve coverage performance

of the fuzzers compared to a random initial seed. I will discuss about rare path-guided fuzzing

in Chapter 4.

1.2 Challenges in quantifying information leakage

Trusting software systems with our sensitive and confidential information such as financial

information, personal communication, physical location, or medical records has become very

common these days. One of the most critical security issues in software systems today is to

protect users confidential and sensitive information. Hence, it is crucial for software developers

and engineers to write code in a manner that prevents leakage of sensitive data to unauthorized

users.

Quantifying information leakage. A classic approach to address the problem of informa-

tion leakage is enforcing noninterference which ensures that public output values are independent

of secret input values. However, enforcing noninterference is often not possible and practical

as software systems need to reveal some amount of information that depends on secret inputs.

Consider a password checker where, as public output, the system provides information whether

the user input matched or did not match the secret password. The public output of a pass-

word checker is dependent on the password (secret input), hence any password checker violates

5

Introduction Chapter 1

noninterference. Similarly, consider an online voting application which records secret ballots of

individuals. The public result of the voting will depend on the votes of individuals which means

that noninterference cannot be enforced. However, the privacy of each individual voter should

be protected.

Noninterference, like many other classic program analysis problems, requires a binary answer

which is not suitable for many practical scenarios as I discussed above. Recently, there has been

increasing work on quantitative program analysis techniques where the goal is not only to give

a binary “yes” or “no” answer, but also to quantify the result. For example, instead of using

the binary noninterference property, which asks is there any information leakage?, I can ask a

quantitative question: how much information is leaked?

Numerous techniques have been developed in recent years to quantify information leakage

in software either by measuring the number of tainted bits, channel capacity or Shannon en-

tropy [27–30,30–44]. A large number of works [30, 33–37] use information theoretic approaches

for quantifying information leakage. Most of these approaches use Shannon entropy-based in-

formation leakage computation [38–44] based on enumeration [38] or model counting [39–47] to

compute information leakage. In this thesis, I also take the route of Shannon entropy-based in-

formation leakage computation. I use symbolic execution to collect path constraints and model

counting to compute path probability.

Existing techniques to quantify information leakage using symbolic execution and model

counting are limited to programs and constraints generated from the programs that can be

supported using exact model counting tools [45, 46]. To support a wide range of programs and

generated constraints, these techniques need to be extended by integrating other existing model

counting techniques, for example, approximate model counting techniques supporting bitvector

and floating point constraints [48,49]. However, approximate model counting techniques do not

provide the exact model count rather a lower and an upper bound of the exact model count.

Moreover, symbolic execution often suffers from path explosion leading to partial path coverage.

6

Introduction Chapter 1

The critical question to answer here is: how to compute bounds for information leakage given

bounds for model count and partial information about the program paths.

Bounding information leakage. In this thesis, I develop symbolic quantitative program anal-

ysis techniques to quantify information leakage in presence of these two key sources of un-

soundness: 1) partial path coverage by symbolic execution and 2) approximate model counts.

I approach the problem of quantifying information leakage in presence of partial path coverage

and approximate model counts as optimization problems. Then, I use existing optimization

techniques to compute information leakage bounds. I will discuss the technique to bound infor-

mation leakage in Chapter 5.

Side-channel attack synthesis Software side-channel attacks [50–52] are a class of vulner-

abilities that leak information about secret values used in the software program. If a program

is vulnerable to side-channel, an unauthorized user can capture secret information by observing

non-functional properties of software systems such as execution time, memory space used etc.

Given a program that performs computation over secret values, unknown to an unauthorized

user, he or she can synthesize attacks to leak information about the secret values. The attacks

often consist of a sequence of public inputs that a malicious user can feed to the program to leak

information about secret values. Existing techniques to synthesize software side-channel attack

are limited to either programs with integer values and generating bit-vector constraints [53] or

string values for specific type of side channel (e.g. segment oracle attack) [39,41].

Synthesizing attacks for program using metaheuristics. In this thesis, I develop a general

approach for synthesizing attack using meta-heuristic search techniques handling constraints

on integers, unbounded strings and mixed values [43]. The technique I develop can automati-

cally synthesize side-channel attacks against string manipulating programs. I also develop an

incremental approach of attack synthesis [44] that exploits the incremental nature of constraint

solving during the meta-heuristic search phase. By synthesizing an attack, I provide a demon-

7

Introduction Chapter 1

stration of side-channel vulnerability of a program. I will discuss these techniques in detail in

Chapter 6.

1.3 Summary of Contributions and Thesis Outline

My thesis contributes the following:

• A heuristic for probabilistic reachability analysis to identify hard-to-reach program state-

ments.

• A heuristic for rare path-guided fuzzing.

• Techniques for obtaining information leakage bounds via approximate model counting.

• Techniques for side-channel attack synthesis based on meta-hueristics and incremental

analysis.

In the end, these contributions are aimed towards answering the considerations set forth in

the prior section.

Towards advancing the development of dependable software systems my contributions are

finding answers to the following questions: (1) is there a scalable and efficient approach towards

assessment of testing difficulty, (2) can we guide testing techniques based on the assessment

results.

Towards advancing the development of secure software systems my contributions are finding

answers to the following questions: (1) how can we bound the amount of information leak-

age given approximation of model counts and partial path coverage, (2) how can we develop

generalized and efficient attack synthesis techniques.

Rest of the thesis is organized as follows: I discuss about symbolic quantitative program

analysis techniques and its applications in Chapter 2. I present heuristic for probabilistic reach-

ability analysis in Chapter 3 and rare path analysis for fuzzing in Chapter 4. In Chapter 5

8

Introduction Chapter 1

and 6, I present the techniques on bounding information leakage and side-channel attack syn-

thesis respectively. I present all the related works in Chapter 7 and finally conclude my thesis

in Chapter 8.

9

Chapter 2

Symbolic Quantitative Program

Analysis

Quantitative program analysis is an emerging field with its applications to software reliability,

quantitative information flow, software performance evaluation, side-channel detection and at-

tack synthesis. Recently, symbolic quantitative program analysis techniques combining symbolic

execution and model counting constraint solvers has been applied to software to check prob-

abilistic properties, measure reliability of a software, performance analysis of software, quan-

tify information leakage and synthesize attack for programs vulnerable to side-channel. The

main concept behind symbolic quantitative program analysis is to generate constraints from

programs by applying existing static analysis techniques such as symbolic execution, symbolic

model checking, abstract interpretation etc. Once constraints are generated from the program,

the next step is to use a model counting constraints solver to count number of satisfying so-

lutions to the constraints. Then the counts is used to do probabilistic analysis such as path

probability computation, quantifying bits of information etc. In this chapter, I will discuss prob-

abilistic symbolic execution as a symbolic quantitative program analysis technique, statistical

symbolic execution as an extended version of probabilistic symbolic execution and some of the

10

Symbolic Quantitative Program Analysis Chapter 2

1 int checkPIN(int h[], int l[]) {
2 for (int i = 0; i < 4; i++)
3 if (h[i] != l[i])
4 return 0;
5 return 1;
6 }

Figure 2.1: Example program for symbolic quantitative analysis

applications of symbolic quantitative program analysis in detail.

2.1 Symbolic Execution

Symbolic execution engines are used to symbolically execute a program and collect the

path conditions. Symbolic execution represents program’s execution states symbolically. An

execution state consists of a path condition and a mapping between program variables and their

symbolic expressions over free variables and constants [19]. To reach a program point, certain

branch conditions need to evaluate to true. A path condition is a conjunctive formula encoding

all these branch conditions. Let us assume that to reach a program location, an input needs to

pass through 3 branch conditions b1, b2 and b3 where b1, b2 and negation of b3 need to be true.

Then, the path condition to reach that program point would be b1 ∧ b2 ∧ ¬b3. Symbolically

executing program P using a symbolic execution engine we can collect a set of path conditions

ϕ where ϕi represents ith path condition. Consider the PIN checking program in Figure 2.1.

Symbolically executing this program, I collect 5 execution path conditions as shown in Table 2.1.

In my thesis, I have worked with two most popular symbolic execution tools: Symbolic

Pathfinder [9] and KLEE [8] for symbolically analyzing Java and C program respectively. I use

Symbolic Pathfinder for quantifying information leakage in java programs and developing at-

tack synthesis techniques. I also use this symbolic execution tool to compare to the heuristic for

probabilistic reachability analysis, I develop, for the purpose of identifying hard-to-reach pro-

gram statements. I use KLEE and extend it for quantitative program analysis and quantifying

11

Symbolic Quantitative Program Analysis Chapter 2

information leakage for C programs.

2.2 Model Counting constraint Solver

A model counting constraint solver computes the number of solutions for a given constraint

within a given bound [46, 54–58]. Recently, model counting constraint solvers have been ap-

plied to automating quantitative software verification, analysis and security tasks. The goal in

quantitative program analysis is not to just give a “yes” or “no” answer, but to also quantify the

result. This type of analysis is crucial for many domains since “yes” or “no” answers may not

be possible. Moreover, most symbolic execution tools cannot guarantee absence of an assertion

failure in general since they search the state space up to a certain execution depth. When

combined with a model counting constraint solver, a symbolic execution tool can quantify the

likelihood of reaching an unexplored part of the state space, hence providing a probabilistic

upper bound on observing an assertion violation. In this thesis, I use automata-based con-

straint solver and model counter (ABC) [46] and an approximate model counter SearchMC [49]

to develop symbolic quantitative program analysis techniques.

Automata-Based Constraint Solving and Model Counting

Automata-Based Model Counter (ABC) is a constraint solver for string and numeric con-

straints with model counting capabilities [46]. The constraint language for ABC supports all

numeric constraints solved by off the shelf constraints solvers as well as typical string operations

such as charAt, length, indexOf, substring, begins, concat, <, =, etc. Given a constraint C,

ABC constructs a multi-track deterministic finite automaton (DFA) AC that characterizes all

solutions for the constraint C, where L(AC) corresponds to the set of solutions for C. For each

string term γ or integer term β in the constraint grammar [59], ABC implements an automata

constructor function which generates an automaton A that encodes the set of satisfying solu-

12

Symbolic Quantitative Program Analysis Chapter 2

tions for the term. Note that variables within string terms and integer terms appear in separate

automata, as separate encodings are used for each (ASCII for strings, binary encoding for inte-

gers). ABC implements specialized DFA construction algorithms for atomic string operations.

Boolean operations (∧, ∨, ¬) are handled using standard DFA operations (intersection, union,

and complement, respectively).

ABC counts the number of models (solutions) for a constraint C by first constructing the

corresponding automaton AC and using the observation that number of strings of length k in

L(AC) is equal to the number of accepting paths of length k in the DFA AC . Consequently,

ABC treats the DFA AC that results from solving C as a graph where DFA states are graph

vertices and the weight of an edge is the number of symbols that have a transition between the

source and destination vertices (states) of that edge. A dynamic programming algorithm that

computes the kth power of the adjacency matrix of the graph is used to count the number of

accepting paths in the DFA of length k (or less than or equal to k) [46].

In this thesis, I use ABC for developing techniques for difficulty assessment of testing, guid-

ing testing techniques, quantifying information leakage and attack synthesis. I extend ABC for

incremental solving of constraints [44] where ABC can store results from earlier model counting

queries and reuse the results later on to increase efficiency of model counting for synthesiz-

ing attacks. I also contribute in the development of subformula caching for automata-based

model counting [60] in ABC which increases the efficiency of model counting-based quantitative

program analysis techniques.

SearchMC, an approximate model counter

SearchMC is an approximate model counter which is developed using XOR streamlining

techniques. Input to SearchMC is either a SMT formula ot a CNF formula. It does not pro-

vide an exact model count rather a lower and an upper bound of the log base 2 of the exact

13

Symbolic Quantitative Program Analysis Chapter 2

model count. The bound of model count it provides comes with a given confidence level δ

and an approximation tolerance ϵ. XOR streamlining by adding random parity constraints is

an effective approach for approximation. But, XOR streamlining techniques for approxima-

tion require a prior hypothesis. SearchMC uses statistical estimation to continuously refine the

probabilistic estimate of the model count for a constraint formula. At each step. SearchMC

refines the estimate by adding k XOR constraints to the initial constraint formula and then

enumerates solutions, up to maximum number of c solutions. This enumeration processes is

defined as exhaust-up-to-c query. At a particular step, SearchMC chooses c and k based on

the prior estimate. Then, it uses the query results to update the estimate (posterior estimate).

SearchMC uses binomial distribution model for the estimation. If the XOR constraints are fully

independent, the distribution model would be exact. But, as the model is not exact, there is no

soundness guarantee, even probabilistically like other approximate model counter [48].

However, SearchMC provides a variant of the technique which provides probabilistic sound-

ness guarantee at the expense of more queries to reach to a specific precision. If the true model

count of a constraint formula, F is CF then the guarantee for the approximate model count c

is probabilistically sound as below:

Pr([(1 + ϵ)−1CF ≤ c ≤ (1 + ϵ)CF]) > 0.6 (2.1)

SearchMC operates on bit-vector constraints with support to floating points. In this thesis, I

use SearchMC with KLEE for quantitative information flow analysis. The version of KLEE [61]

I use for quantitative program analysis can generate integer constraints for certain classes of

program conditions. If it can generate integer constraints, I use ABC for model counting but

if it cannot generate integer constraints, I use SearchMC for model counting. As SearchMC

provides bounds of the exact count, I develop techniques to compute bounds of information

leakage given the bounds of model count.

14

Symbolic Quantitative Program Analysis Chapter 2

2.3 Probabilistic Symbolic Execution

Probabilistic symbolic execution [19] is an extension of symbolic execution that computes

probabilities of program paths. Probabilistic symbolic execution has been used to address several

quantitative program analysis problems in recent years such as software reliability analysis [62],

performance analysis [63], quantitative information flow analysis [35], and side-channel analy-

sis [64]. Probabilistic symbolic execution combines both symbolic execution engine and model

counting constraint solver to perform probabilistic analysis of software.

In probabilistic symbolic execution, after collecting the path conditions, model counting

constraint solvers are used to compute probabilities of path conditions (Algorithm 4). A model

counting constraint solver computes the number of inputs (called models) that satisfy a given

path condition. The number of satisfying inputs, ci for ith path condition is then divided by the

domain size of the inputs, D to compute execution path probability pi = ci
D .

To use a model counting constraint solver, path conditions are typically translated to SMT

formulas. Using a symbolic execution tool it is possible to generate SMT formulas. Table 2.1

shows model counts for the collected path constraints and computed path probabilities with a

domain size of 256 (considering both h and l can have binary values only) for the PIN checking

example in Figure 2.1.

Algorithm 1 ProbabilisticSymbolicExecution(P)
Symbolically executes program P , collects set of path constraints, Φ and computes a set of path
probabilities, p.
1: Φ← ∅
2: Φ← SymbolicExecution(P)
3: D ← Φ

4: for ϕi ∈ Φ do
5: ci ← ModelCount(ϕi)
6: pi =

ci
D

7: p← p ∪ {pi}
8: return p

15

Symbolic Quantitative Program Analysis Chapter 2

Table 2.1: Probabilistic symbolic execution results for the PIN checking example.

i Path Constraint Model Count Probability

1 l[0] ̸= h[0] 128 0.5000
2 l[0] = h[0] ∧ l[1] ̸= h[1] 64 0.2500
3 l[0] = h[0] ∧ l[1] = h[1] ∧ l[2] ̸= h[2] 32 0.1250
4 l[0] = h[0] ∧ l[1] = h[1] ∧ l[2] = h[2] ∧ l[3] ̸= h[3] 16 0.0625
5 l[0] = h[0] ∧ l[1] = h[1] ∧ l[2] = h[2] ∧ l[3] = h[3] 16 0.0625

Probabilistic symbolic execution in [19] supports Java programs only using symbolic execu-

tion tool Symbolic Pathfinder [9] and model counting tool LattE [45]. Later, support for model

counting string constraints [46] was added in [39]. In this thesis, I have implemented probabilistic

symbolic execution support for C programs on top of symbolic execution tool KLEE [8] using a

latest version of KLEE [61] and model counting constraint solvers ABC [46] and SearchMC [49].

The implementation supports both bit-vector and integer constraints generated from programs

and hence probabilistic symbolic execution can be applied on a wide range of programs.

2.4 Statistical Symbolic Execution

Statistical symbolic execution [21] is a better scalable technique for probabilistic analysis of

software. To address the scalability drawbacks of probabilistic symbolic execution, statistical

symbolic execution performs Monte Carlo sampling over symbolic program paths and uses the

information for hypothesis testing and Bayesian estimation for probabilistic reachability analysis.

To speed up the convergence of the sampling process, a new sampling approach named informed

sampling was introduced in statistical symbolic execution. Using informed sampling, state space

of the program that can be explored by symbolic execution is pruned from statistical analysis

and the execution for sampling is guided towards less likely paths. The informed sampling

technique combines Bayesian estimation with partial exact analysis using symbolic execution.

As a result, statistical analysis converges faster using the information from symbolic execution

16

Symbolic Quantitative Program Analysis Chapter 2

side.

Statistical symbolic execution is implemented on top of symbolic execution tool Symbolic

Pathfinder [9]. In this thesis, I use statistical symbolic execution tool as a probabilistic reach-

ability analysis technique to identify hard to reach program statements and compare to the

heuristic that I develop for probabilistic reachability analysis.

2.5 Applications of Symbolic Quantitative Program Analysis

In this section, I will discuss some of the applications of symbolic quantitative program

analysis in details.

Quantitative Assessment of Testing Difficulty

Software testing is the most popular approach for software quality assurance. Even af-

ter more than 50 years of active research in software testing, there are remaining challenges.

Assessment of difficulty of testing techniques and guidance for improved performance is a signif-

icant problem to solve. Symbolic quantitative program analysis is an effective way to perform

probabilistic analysis of software and provide quantitative results about different aspects of soft-

ware such as probabilistic reachability analysis. In this thesis, I develop symbolic quantitative

program analysis techniques for quantitative assessment of testing difficulty and then guiding

testing techniques using the results from quantitative analysis.

In order to assess testing difficulty I develop a heuristic for probabilistic reachability analysis

using a control flow analysis, model counting on branch constraints, abstract interpretation and

probabilistic model checking. I use the heuristic to identify hard-to-reach program statements.

Given a program and a target statement, the heuristic identifies if the target statement is easy

to reach or hard to reach for a random testing tool or a fuzzing technique, generating random

inputs. I will discuss this technique in detail in Chapter 3.

17

Symbolic Quantitative Program Analysis Chapter 2

Guidance for Testing Techniques

Information from the quantitative assessment of testing difficulty can be used to guide testing

techniques. For example, often in hybrid testing setup [5, 6, 11], random testing technique and

symbolic execution are combined to use the best of both. On one side, random testing techniques

are easy to run, work with complex data structures, scale for larger programs [3], often fail to

explore program paths guarded by specific program conditions (e.g. the value of a variable

should be a magic number). On the other side, symbolic execution explores path guarded by

specific program conditions by collecting the path constraints and solving using a constraint

solver [8, 9], but fails to analyze programs with exponential number of program paths and

complexity of symbolic execution increases due to path constraint solving complexity [10]. If

program paths that are hard to reach for a random testing tool can be identified beforehand

and reduce the overload for symbolic execution to solve only the identified hard to reach paths

instead of whole program, performance of both testing techniques can be maximized. In this

thesis, I develop a symbolic quantitative analysis technique to identify hard to reach program

paths for random testing technique such as coverage guided fuzzer [1] and then use symbolic

execution to generate inputs to explore these hard to reach paths. And then, I provide these

inputs as initial seed set to the fuzzer as guidance to explore hard-to-reach program paths as

early as possible and later on mutate the inputs to explore comparatively easy to reach program

paths. I will discuss this technique in detail in Chapter 4

Quantitative Information Flow Analysis

Quantitative information flow analysis of a program is done by extending probabilistic sym-

bolic execution via observable tracking, model counting path constraints and information theo-

retic analysis using Shannon entropy. By tracking observable value for each path, it is possible

to collect observation constraints. Number of observation constraints is always less than or

18

Symbolic Quantitative Program Analysis Chapter 2

equal to the number of path constraints for a program. Two or more path constraints with

indistinguishable observable values are merged together in a disjunctive manner to construct

one observation constraint. Observables can differ based on the information leakage problem in

hand. For quantifying information leakage from the main-channel of a program (i.e. information

leakage due to output values of the program), the observable can be simply the return value

of the program. For detecting and quantifying information leakage due to side channels in a

program, observable can be execution time for tracking timing side-channels, or the observable

can be the size of memory allocated for space side-channels.

Two main building components of quantitative information flow analysis techniques are

symbolic execution and model counting. Issues with existing techniques based on these two

building components are: 1) symbolic execution can not analyze programs with exponential

number of paths, hence, there can be unsoundness of information leakage quantified based on

partial path coverage and 2) exact model counting tools cannot support constraints generated

from a wide range of programs, hence, approximate model counters should be used. However,

approximate model counters provide lower and upper bounds of true model counts. I will

discuss the technique to deal with these two sources of unsoundness to quantify information

leakage bounds for programs in chapter 5.

Attack Synthesis for Side-Channel Vulnerabilities

Attack synthesis techniques generate inputs in an iterative manner which, when fed to

code that accesses the secret, reveal information about the secret based on the side-channel

observations [40, 43, 44, 65]. Probabilistic symbolic execution is used to estimate probabilities

of execution paths, and optimization techniques are used to maximize information gain based

on entropy. Consider the pin checking function in Figure 2.1. The function has a timing side-

channel and one can reveal the secret by measuring execution time. If h and l have no common

19

Symbolic Quantitative Program Analysis Chapter 2

prefix, the program will have the fastest execution since the loop body will be executed only

once; If h and l have a common prefix of one index, a longer execution will be observed since

the loop body executes twice. The case when h and l match completely, the program has the

longest execution. An attacker can choose an input and use the timing observation to determine

how much of a prefix of the input has matched the secret. Adaptive attack synthesis approach

starts by automatically generating the path constraints using symbolic execution. It then uses

these constraints to synthesize an attack which determines the value of the secret (h). Based

on Shannon entropy, the remaining uncertainty of h can be computed to measure the progress

of an attack.

Existing attack synthesis techniques can either deal with numeric program values or bounded

string values. In this thesis, I develop a generalized technique using metaheuristic techniques,

supporting unbounded string values. I will discuss my contribution to the development of side-

channel attack synthesis techniques in more details in Chapter 6.

Reliability Analysis

One measure of program reliability is the probability that the program executes successfully.

Probabilistic symbolic execution provides a means to compute program reliability. One run

of probabilistic symbolic execution gives the probability that a randomly chosen input will

execute that particular program path. By computing this probability for each complete program

path, it is possible to determine what percentage of the input space is captured by the path

constraints generated by probabilistic symbolic execution and therefore provide a lower bound

on the reliability of the program.

As an example, consider the pin checking function in Figure 2.1. One can run bounded

probabilistic symbolic execution and then compute what percentage of the input space leads to

a program path that terminates within the depth bound. This gives the percentage of input

20

Symbolic Quantitative Program Analysis Chapter 2

space that can be confidently said will execute without failure and thus provides a lower bound on

the reliability of the program. For the pin checking example, imagine we limit the search depth

so that the loop symbolically executes only 3 times. In this case, all program paths for which

the first three bits match would not complete their symbolic execution. Covered probability for

reliability analysis will be then the summation of the probability of path constrains 1, 2 and 3

from Table 2.1.

In practice, we are also often interested in guaranteeing a lower bound for program reliability.

In this case, we can perform model counting at each step of symbolic execution to determine

what percentage of input follows which paths. This would allow us to guide the symbolic

execution along the paths with higher probability in order to increase coverage most efficiently

and stop execution once a certain coverage is reached. Conversely, one could also guide symbolic

execution towards path with lower probabilities in order to test corner cases.

Performance Analysis

One of the significant software engineering tasks is to analyze performance and understand

the distribution of program execution times for potential best-case and worst-case scenarios.

Techniques based on traditional program analysis approaches collect program profiles to identify

performance bottlenecks. But, this often fail to capture the overall performance of the program.

Probabilistic symbolic execution is used to capture the probability distribution of inputs over

execution times by exploring high- and low- probability paths. Once a path is explored, a set

of test inputs can be generated and the program can be executed to model the performance of

the program paths.

21

Chapter 3

Heuristic for Probabilistic Reachability

to Identify Hard to Reach Statements

Assessing difficulty of testing techniques is crucial to make the best use of the techniques.

Although different testing strategies have been developed over the years and there has been

immense progress towards software quality assurance, there are remaining challenges. For ex-

ample, testing techniques generating inputs randomly are better scalable compared to other

testing techniques and can handle complex data structures. But, these techniques can hardly

explore program paths guarded by specific and complex program conditions.

In this chapter, I present a heuristic for probabilistic reachability analysis to identify hard to

reach program statements towards assessing the difficulty of testing techniques generating inputs

randomly [22]. There are existing techniques (e.g. probabilistic symbolic execution, statistical

symbolic execution) that can be used for probabilistic reachability analysis to identify hard to

reach program statements.

However, probabilistic symbolic execution suffers from the same limitations as symbolic

execution: 1) It can only analyze program behaviors up to a certain fixed execution depth,

hence it cannot analyze behaviors of arbitrarily large program paths. 2) Due to exponential

22

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

increase in number of paths with increasing execution depth (path explosion problem), the cost

of symbolic execution increases exponentially with increasing execution depth. 3) Although the

sizes of path constraints generated by symbolic execution increase linearly with the execution

depth, since the worst case complexity of constraint solvers is exponential, the linear increase

in path constraint sizes can lead to exponential increase in analysis cost. Hence, path explosion

combined with increasing sizes of path constraints can lead to double exponential blow up in

the cost of symbolic execution, limiting its practical applicability.

Statistical symbolic execution suffers from similar issues as probabilistic symbolic execution.

There are two variants of statistical symbolic execution: 1) statistical analysis based on Monte

Carlo sampling of symbolic paths, and 2) hybrid analysis combining both statistical and exact

analysis based on informed sampling. One of the drawbacks of pure statistical sampling is that

it needs to sample a large number of paths to achieve high statistical confidence. Informed

sampling obtains more precise results and converges faster than a purely statistical analysis,

but its effectiveness suffers when the number of program paths grows exponentially.

The heuristic I develop addresses the above shortcomings of probabilistic symbolic execu-

tion and statistical symbolic execution. In particular, 1) my approach can model behaviors of

arbitrarily long paths, 2) it does not suffer from path explosion, i.e., the cost of my analysis

increases polynomially with the size of the program (and does not depend on the execution

depth) [26], and finally, 3) it solves constraints arising from branch conditions rather than path

constraints which reduces the cost of constraint solving.

My approach, which I implemented in a tool named PReach, works as follows. In order to

compute reachability probability of statements, I introduce a concept called branch selectivity

that determines the proportion of values satisfying a given branch condition. A branch is very

selective if only a few values satisfy the branch condition. On the other hand, if a lot of values

satisfy the branch condition, then the branch is not very selective. Given a target statement

in a program, PReach identifies the input dependent branch conditions that influence the

23

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

reachability probability of that statement using dependency analysis. Then, PReach constructs

a discrete-time Markov chain model from the control flow graph of the program by computing

branch selectivity of each branch condition that influences the reachability probability of the

target statement. PReach uses abstract interpretation to determine the set of values that

reach each branch condition and model counting to compute the branch selectivity value for

each branch in the program that influences statement reachability. Finally, PReach uses a

probabilistic model checker to compute the reachability probability of the target statement

based on the constructed discrete-time Markov chain model.

One shortcoming of my approach is that it is not a sound program analysis technique and

hence, it does not provide guarantees in terms of the precision or accuracy of the reachability

probabilities it reports. On the other hand, probabilistic symbolic execution and statistical

symbolic execution are not sound either since they can only analyze program behaviors up to a

fixed execution depth.

I experimentally evaluate PReach on programs from the SV-COMP benchmark set used

in Competition on Software Verification [23] and Competition on Software Testing [66]. Each

program in this benchmark set contains an assert statement. I use these assert statements as

the target of my probabilistic reachability analysis. I evaluate the effectiveness of my tech-

nique in separating hard to reach assert statements (i.e., assert statements with low reachability

probability) from easy to reach assert statements (i.e., assert statements with high reachability

probability) using a probability threshold (i.e., if the reachability probability of a statement is

below the given threshold I classify it as hard to reach).

In order to determine the ground truth, I use a generator based random fuzzer that is based

on JQF [67] and ZEST [68]. I set a time limit for the random fuzzer, and the assert statements

that are not reached within the given timeout are marked as the hard to reach assert statements.

Of the 142 programs I used in my experiments, the random fuzzer times out on 51 programs.

PReach classifies the programs that the random fuzzer times out on as hard-to-reach, with

24

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

95.8% precision and 95.1% accuracy. In particular, my technique correctly classifies 135 out of

142 programs and generates only 2 false positives (reports hard to reach although the fuzzer

does not time out) and 5 false negatives (reports easy to reach although the fuzzer times out).

In order to further evaluate the effectiveness of my probabilistic reachability analysis, I

provide a detailed experimental comparison with the probabilistic symbolic execution (PSE) [19]

and statistical symbolic execution (SSE) [21] extensions to Symbolic Pathfinder (SPF) [69] tool.

Experimental results show that for programs with bounded execution depth, PSE achieves very

high precision and accuracy to identify hard to reach cases. However, PReach outperforms

PSE for programs with unbounded execution depth in terms of precision, accuracy and average

analysis time. For large search depths PSE is unable to analyze 38% of the target programs

demonstrating its limitations in terms of applicability and scalability, whereas PReach can

analyze 100%. I compare PReach with SSE on the set of programs that PSE performs poorly.

SSE was unable to analyze 27% of these programs and PReach outperforms SSE in terms of

precision, accuracy, and average analysis time.

Finally, I analyze 24 target statements in 18 methods from Apache Commons Lang [24]

and DARPA STAC Benchmarks [70]. PReach can classify 19 of the 24 target statements

correctly demonstrating its effectiveness on real world programs, whereas PSE and SSE Ire

able to successfully analyze and classify only one.

3.1 Overview and Motivation

I formalize probabilistic reachability analysis as follows. Given a program p, let i denote

the input for the program, and I denote the domain of inputs (i.e., i ∈ I). Note that i can be

a scalar value, a tuple, or a list of values. Given a target statement t in program p, the goal of

probabilistic reachability analysis is to determine how likely it is to reach target statement t. I

do this by determining how likely it would be to pick inputs that result in an execution that

25

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

1 public class Main {
2 public static void main(String [] args) {
3 int arg = Verifier.nondetInt ();
4 if (arg < 0)

5 return;
6 int x = arg / 5;
7 int y = arg / 5;
8 Main inst = new Main();
9 inst.test(x, y);

10 }
11 public void test(int x, int z) {
12 System.out.println("Testing ExSymExe7");
13 int y = 3;
14 z = x - y - 4;
15 if (z != 0)
16 System.out.println("branch FOO1");
17 else {
18 System.out.println("branch FOO2");
19 assert false;

20 }
21 if (y != 0)

22 System.out.println("branch BOO1");
23 else
24 System.out.println("branch BOO2");
25 }
26 }

Figure 3.1: An example based on SV-COMP benchmark

reaches t. In order to determine how likely it would be to pick such inputs, I determine the

probability of picking such inputs if inputs are chosen randomly. I define P(p, t) as:

P(p, t) denotes the probability of reaching statement s during the execution of

program p on input i if i is selected randomly from the input domain I.

I assume uniform distribution of inputs in my current implementation. However, my technique

can be easily extended to support any input distribution by integrating usage profiles [21] used

in other probabilistic analysis techniques.

It is well-known that determining reachability of a statement in a program is an uncom-

putable problem. Hence, determining P(p, t) precisely is also an uncomputable problem. In

this chapter I present a heuristic approach that approximates P(p, t). I report the reachability

26

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

probability as a real number between 0 and 1.

Branch Selectivity My heuristic approximation of P(p, t) relies on a concept I call branch

selectivity. Given a branch b, branch selectivity S(b) is proportional to the ratio of the number of

values that satisfy the branch condition b to the total number of values in the domain of branch

condition b. Formally, given a branch b, let Db denote the Cartesian product of the domains

of the variables that appear in b, and let Tb ⊆ Db denote the set of values for which branch b

evaluates to true. Let |Db| and |Tb| denote the number of elements in these sets, respectively.

Then, S(b) = |Tb|
|Db| .

So, the selectivity of a branch gets closer to 0 as the number of values that satisfy the

branch condition decreases, and it gets closer to 1 as the number of values that satisfy the

branch condition increases. If we think of branch as a sieve, when S(b) = 0 branch b does not

allow any value to pass, and when S(b) = 1 branch b allows all values to pass. Note that, if we

pick values from the domain D randomly with a uniform distribution, then |Tb|/|Db| corresponds

to the probability of picking a value that satisfies the branch condition. The branch becomes

more selective as the probability of picking a value decreases.

An Example Consider the integer-manipulating program in Figure 3.1. This program is a

modified version of an example from the jpf-regression directory of the SV-COMP benchmark

used for software verification and testing competitions [23]. The target statement is the assertion

statement in line 19. The arg variable’s value is a randomly generated integer value and it

denotes the input to this program. The question we want to answer for this program is: how

likely it is to reach the assertion statement at line 19 if we randomly generate values for the arg

variable?

The first conditional statement at line 4 ignores all the negative values. At line 15, possible

values for z can be any randomly generated positive value, divided by 5, minus 7. Now, the

27

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

assertion at line 19 is reachable when value of z is equal to 0. The likelihood of the value of z

being equal to 0 is low if the input is a random number generated from a uniform distribution.

Therefore, the probability of reaching the assert statement in this program is low.

My analysis uses branch selectivity based on model counting to successfully determine the

reachability probability of the assert statement in this program. I inspect each branch condition

leading to the assertion to determine how selective the branch is (i.e. what ratio of input values

satisfy the branch). If I assume a domain of integer values, then for the conditional statement

arg < 0, branch selectivity is calculated as half of the domain. Therefore, the possible values

reaching the assertion is reduced to half. Next, for the next conditional statement, z ̸= 0, branch

selectivity is close to 1. Most values satisfy this constraint and conversely, only 1 value of z

satisfies its negation. The assertion lies on the else branch of this condition, making it reachable

only for one value of z.

Using the branch selectivity values computed at these branches, I convert the control flow

graph of the program to a discrete time Markov chain as shown in Figure 3.3c. I use a prob-

abilistic model checker to analyze the Markov chain and obtain a probabilistic measure for

assertion reachability. For the running example, this reachability probability is computed as

0.5 × (2.32e−10). The value 0.5 arises from the branch selectivity for the branch condition

arg < 0 and 2.32e−10 arises from the branch selectivity for the branch condition z ̸= 0. The

reachability probability of the assertion statement is then reported as 1.16e−10, hence this

statement would be classified as a hard to reach statement by my analysis since it has a low

reachability probability.

To assess the success of my analysis for this example, I run a generator based random fuzzer

with a timeout of 1 hour. I find that the fuzzer cannot generate an input to reach the assertion.

The fuzzer generates 4,103,625 inputs and none of them reach the assertion, which supports the

result of my analysis.

Since my analysis does not precisely represent the original semantics of the program, I

28

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

cannot make soundness claims about the probability computed by my heuristic. In general

case, my analysis may over or under approximate the reachability probability. By integrating

abstract interpretation techniques to my analysis, I achieve better precision which I will discuss

in section 3.2.

In the following sections I discuss how I compute and use branch selectivity values together

with control flow, dependency analysis and abstract interpretation to extract a discrete-time

Markov chain and then use probabilistic model checking to compute approximations of reacha-

bility probability.

3.2 A Probabilistic Reachability Heuristic

I approximate P(p, t) using a combination of control flow, dependency analysis, abstract

interpretation, model-counting and probabilistic model checking. First, I discuss how model

counting constraint solvers and abstract domains can be used to compute branch selectivity.

Then, I use control flow and dependency analysis and branch selectivity to transform the pro-

gram’s control flow graph into a Markov chain. I form queries on this Markov chain solvable by

probabilistic model checking whose solutions approximate P(p, t). If P(p, t) is less than a given

threshold TH , target statement is predicted as hard to reach. I discuss these steps below.

Branch Selectivity

The enabling technology for computing branch selectivity is model counting. Model counting

is the problem of determining the number of satisfying solutions to a set of constraints. A model

counting constraint solver is a tool which, given a constraint and a bound, returns the number

of satisfying solutions to the constraint within the bound. For a branch condition b, recall that

S(b) = |Tb|
|Db| , where Db is the Cartesian product of the domains of the variables that appear

in b and Tb is the set of values in Db for which b evaluates to true. For a given b and Db, a

29

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

1 public void test(int x) {
2 if(x >= 0) {
3 int y = -x;
4 if (y > 0) {
5 assert false;
6 }
7 }
8 }
9

(a) Using interval analysis

1 public void test(int x,
2 int z, int r) {
3 int y = 3;
4 r = x + z;
5 z = x - y - 4;
6 if (x < z)
7 assert false;
8 }
9

(b) Using relational analysis

Figure 3.2: Refined branch selectivity

model-counting constraint solver computes |Tb|. Then, using |Tb| I compute S(b).

I use the Automata-Based Model Counter (ABC) tool, which is a constraint solver for string

and numeric constraints with model counting capabilities [46]. The constraint language for ABC

supports linear arithmetic constraints as well as typical string operations. In order to compute

S(b) I first extract the branch condition from the program and then generate a formula in the

SMT-LIB format that corresponds to the branch condition. Then, I send the formula to ABC

as model counting query.

Refined Branch Selectivity

Abstract interpretation techniques overapproximate program behaviors by interpreting pro-

grams over abstract domains. key insight here is that it is possible to use abstract interpretation

to refine and restrict the set of values that variables can take at each branch in order to better

approximate the branch selectivity. Given a branch b, using abstract interpretation I generate

a refinement condition Rb to overapproximate the set of values that the variables can take at

that branch. Rb is then conjoined with Tb and Db to compute refined branch selectivity RS(b).

For a branch condition b, refined branch selectivity is defined as RS(b) = |Tb∧Rb|
|Db∧Rb| .

To implement the refined branch selectivity, I use state-of-the-art Java numeric analysis tool

JANA [71] which supports two different abstract domains, intervals [72] and polyhedra [73],

30

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

where polyhedra domain leads to more precise results however it is less scalable. I experimented

with both of these domains to extract the refinement conditions Rb for each branch using

interval analysis and relational (using polyhedra domain) analysis. I call these implementations

PReach-I and PReach-P, respectively.

Consider the two code snippets from Fig. 3.2a and 3.2b. At line 4 in Fig. 3.2a, Tb and Db

are y > 0 and True respectively. S(b) computed by PReach is 0.25 predicting incorrectly that

the assertion is reachable. Applying either interval or relational analysis, Rb is extracted as

y < 0 (at line 4, possible reachable values of x is greater than 0 and hence possible reachable

values for y is less than 0 due to the update on variable y at line 3). Tb and Db are updated

as y > 0 ∧ y < 0 and y < 0 respectively using Rb and RS(b) computed by PReach is 0

predicting correctly that the assertion is not reachable. Similarly, at line 6 in Fig. 3.2b, Tb and

Db are x < z and True respectively. S(b) is computed as 0.5 predicting incorrectly that the

assertion is reachable. Applying an interval analysis, there will be no refinement conditions as

it is not possible to catch the relation between the variables x and z using the interval domain.

But, applying relational analysis using the polyhedra domain, Rb is extracted as x > z (possible

reachable values of z is equal to x − 7). Tb and Db are then updated as x < z ∧ x > z and

x > z respectively and RS(b) is computed as 0, correctly predicting that the assertion is not

reachable.

Target Statement Subgraph Extraction

The control flow graph of a program is a representation of all paths that may be traversed

during execution. Given a program p, a target statement t in p and the input domain I, I extract

the control flow graph of p, G(p), and mark the node of the control flow graph containing the

target statement t as the node nt.

I expedite my analysis by extracting the target statement subgraph, G(p, t) of G. G(p, t)

31

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

arg < 0

z != 0

y != 0

(a) Control flow graph

arg < 0

z != 0

y != 0

(b) Target statement sub-
graph

arg < 0

z != 0

y != 0

0.5

0.5
0.9999.. 2.32e−10

1.01.0

1.0

1.0

1.0

(c) Markov chain construction

Figure 3.3: Target statement subgraph extraction and Markov chain construction for the running
example

contains all the control flow graph information needed to perform my analysis. I define this

subgraph using standard concepts from control flow analysis. I define a branch node b in a

control flow graph to be any node with more than one outgoing edge. The corresponding merge

node m of a branch node b is its immediate post-dominator. The component C defined by b is

the union of branch node b, its merge node m and all nodes of the control flow graph reachable

from b without going through m. The maximal component of a node is the largest component

containing that node. Any non-maximal component containing this node will be contained in

this maximal component.

To extract G(p, t), I first find the maximal component of nt. If nt is not contained in any

component, then nt must lie on every path through G(p). Therefore, it is reached with certainty,

P(p, t) = 1, and my analysis can be terminated. Otherwise, the maximal component of nt is

the maximal statement subgraph.

G(p, t) is a subgraph of the maximal statement subgraph. To obtain G(p, t), I remove any

32

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

component of the maximal statement subgraph that does not contain the statement node nt.

The branch and merge nodes of these components remain in the subgraph with one outgoing

edge from the branch node to the merge node. G(p, t) results from this procedure.

Figure 3.3 shows the process of the target statement subgraph extraction on the running

example from Figure 4.1. Figure 3.3a gives the control flow graph G(p) with the statement node

nt highlighted in red. Figure 3.3b shows the target statement subgraph G(p, t) extracted from

G(p). In this example, the branch corresponding to y ̸= 0 is removed from the control flow

graph structure. The decision made at this branch does not impact the probability of reaching

the target statement node.

Note that the target statement subgraph extraction phase is a heuristic to speed up my

analysis. The subsequent stages can be performed on the entire control flow graph but this

would result in unnecessary work including extra model counting queries which would slow

down the analysis.

Markov Chain Construction

I define a weight for each edge of G(p, t). These weights transform G(p, t) into a Discrete

Time Markov Chain (DTMC), M(p, t). A DTMC is a tuple (S, s̄, P, L) where S is a finite set

of states, s̄ ∈ S is the initial state, P : S × S → [0, 1] is the transition probability matrix where∑
s′∈S P (s, s

′) = 1 for all s ∈ S. Each element P (s, s′) of the transition probability matrix gives

the probability of making a transition from state s to state s′.

I use dependency analysis in the construction of the Markov Chain as I want to identify the

branches dependent on input to set the weights of the edges accordingly.

Dependency Analysis A branch condition is input dependent if the evaluation of the con-

dition depends on the value of the program input. Given a program and its marked input, I

use static dependency analysis to identify the input dependent branches. Dependency analysis

33

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

provides an over approximation of the set of branch conditions whose evaluation depends on the

inputs. I use Janalyzer [74], an existing static analysis tool, to perform the dependency analysis.

Janalyzer is implemented on top of the WALA [75] program analysis framework.

Then, I construct the Markov chain by assigning weights to each edge of G(p, t). G(p, t) is a

directed graph: each edge begins at a source node s and ends at a destination node d. Given an

edge e : s→ d: If e is the only edge beginning at s, the weight of e is 1. Else, s is a branch node

by definition. To determine its weight I use a combination of dependency analysis and branch

selectivity. Since b is a branch node, there is a branch condition associated.

• If the branch condition is independent from the program input, I weigh edge e as follows.

Let E be the number of edges originating at s and Et ≤ E be the number of edges

originating at s which lie on a path to the target statement node nt. If Et = 0, then the

weight of e is 1/E. Otherwise, if e lies on a path to nt weight of e is 1/Et. If e does not

lie on a path to nt, weight of e is 0.

• If the branch condition is dependent on the program input, I compute the weight of

the edge e as follows. I use a model-counting constraint solver to determine the branch

selectivity of b, S(b). If e is the edge corresponding to the if condition, the weight of e is

S(b). Else, 1− S(b).

At the end of this phase, G(p, t) has been transformed into Markov chain M(p, t) where the

probability of transitioning from one state to the next is given by the edge weight.

Figure 3.3c showsM(p, t) for the running example. The transition probabilities are given as

edge weights. The two branch conditions yield the only non 1 edge weights in the graph. Both

of these branch conditions are input dependent as determined by the dependency analysis. For

each branch condition, the model-counting constraint solver ABC was used to find its branch

selectivity. This selectivity was used to compute the weight of the edge corresponding to the if

branch and its complement was used to compute the weight of the edge corresponding to the

34

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

else branch.

PCTL Query Formulation

I automatically synthesize queries over M(p, t), whose solutions yield an approximation of

P(p, t). The query I synthesize is:

• What is the probability that the target node nt is reached at least once?

The answer to this query approximates P(p, t). I use a probabilistic model checker PRISM [76],

a tool that analyzes systems that exhibit probabilistic behavior, to answer this query. I generate

a discrete time Markov chain (DTMC) model based on the syntax supported by the PRISM

tool. I can synthesize queries like what is the probability of reaching a state in the Markov chain

eventually?.

In PRISM, a PCTL formula is interpreted over the DTMC model. Two types of formulas

are supported: state formulas and path formulas where path formulas occur only when there

is a probabilistic measure that needs to be included in the specification. For my analysis, the

queries I synthesize are path formulas and are of the form P ∼ p[ϕ] which is the probabilistic

analogue of the path quantifiers of CTL. For example, the PCTL formula P=?[F ϕ] states what

is the probability of reaching state ϕ.

The complexity of PCTL query verification for DTMC is polynomial in the number of

states [26]. Since the number of states of the DTMC is linear in the size of the program, overall

complexity of PCTL query verification is polynomial of program size.

Loop Analysis In analyzing programs which contain back edges (either from loops or from

recursion), I consider two different queries for programs with loops.

• What is the probability that target node nt is reached at least once within a given loop

bound?

35

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

• What is the probability that target node nt is reached at least once?

The first query enables us to model bounded loop executions. To answer this query, I fix a loop

bound and unroll any loops in the Markov chain. If the target node nt is duplicated during this

loop unrolling process, then the query becomes

• What is the probability that any target node nt is reached at least once?

Once the loops in the Markov Chain are unrolled, the first query becomes the initial query on

the unrolled Markov chain except that there might be multiple instances of the target node.

In answering the second query, I leave the Markov chain as is including any back edges and

generate the DTMC model for PRISM as it is. PRISM calculates a steady state probability for

unbounded loop scenario. Bounding the loop and asking the bounded version of the reachability

query under approximates the unbounded case. As the loop bound increases, the solution for

the bounded case approaches that of the unbounded case and in some cases it is possible to reach

the steady state probability, i.e., to reach a fixpoint. Note that, in PRISM, I am able to compute

the steady state probability, so it is not necessary to compute the fixpoint by increasing loop

bounds. This is one of the advantages of my approach over probabilistic symbolic execution.

3.3 Implementation

I have implemented my technique in a tool called PReach (Probabilistic Reachability An-

alyzer) targeting programs written in Java programming language.

Using the static analysis tool Janalyzer [74] I first extract the control flow graph from the

given program. After marking inputs for which I want to calculate reachability probability, I

use dependency analysis for the marked inputs and identify all input-dependent branches. I

identify the target statement node and do dominator and post-dominator analysis in order to

extract the target statement subgraph.

36

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

For calculating branch selectivity of input-dependent branches I first translate the branch

conditions to SMT-LIB format constraints using Spoon [77] and then I use ABC [46] for model

counting. To compute refined branch selectivity I applied two abstract domains, interval and

polyhedra using Jana [71], a numeric analysis tool for Java. I call these implementations as

PReach-I and PReach-P respectively. I define the domain size for integers as signed 31 bit,

for strings as length of 16 with all printable ASCII characters, for char as unsigned 8 bit integers.

Once I get the model count from ABC, I calculate the branch selectivity. To compute bounded

reachability of a target statement, I look for back-edges and if there is one, I unroll the loop to

a certain bound. For unbounded cases, I compute the steady state probability.

Once I have all the branch selectivity values, I construct the discrete time Markov chain

(DTMC). Using the target statement node, I formulate the queries to calculate the reachability

probability. I use the probabilistic model checker PRISM [76] for computing the target statement

reachability probability. I convert the Markov chain to a DTMC model in PRISM syntax and

synthesize queries. Then, I execute PRISM to compute the probability. I use PRISM as it

provides features to reduce the reachability checking of a statement in a program with unbounded

loops to reachability checking of a state in DTMC. My current implementation determines

reachability probability for each target statement separately. I can extend my approach to

handle reachability of multiple statements by synthesizing slightly more complex queries.

For collecting ground truth values of hard to reach statements, I run a generator based

random fuzzer for all the programs. I use JQF [67] tool which is a feedback directed fuzz testing

platform for Java. JQF incorporates coverage-guided fuzz testing technique ZEST [68]. I use

generator-based random fuzzing option provided by ZEST. I set a timeout of one hour and if

the fuzzer fails to generate inputs to reach the target statement, I determine that the target

statement is hard to reach.

37

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

3.4 Experimental Evaluation

To evaluate PReach, I experimented on benchmark programs from the Competition on Soft-

ware Verification (SV-COMP) [23] and the Competition on Software Testing (Test-Comp) [66],

which I call the SV-COMP benchmark. Recent competition (SV-COMP 2019) used 4 direc-

tories: MinePump, jayhorn-recursive, jbmc-regression and jpf-regression from the SV-COMP

benchmark. So far, Test-Comp have only used C programs from the SV-COMP benchmark.

Among the 4 directories used in SV-COMP 2019, I do not consider Minepump as the tasks

are not dependent on the inputs. I use the other 3 directories and the algorithms directory for

evaluation.

I mark all the non-deterministic inputs in the SV-COMP benchmarks as inputs for reach-

ability analysis. I use the assert statements in these programs as target statements. I use two

criteria to select the programs from these directories for my experiments. I exclude programs if

one of the following two conditions hold:

1. Target statement reachability does not depend on the inputs: PReach is not applicable

for these programs as it assesses reachability probability with respect to inputs.

2. Verification tasks are specific to floating point arithmetic: The model-counting constraint

solver I use does not support constraints generated from such programs.

Based on the above criteria, my final dataset consists of a total of 142 programs. I modify

these programs in order to allow us to run both my analysis and the generator based random

fuzzer while keeping the program semantics unchanged. These modified programs are available

at [78].

I run experiments on a virtual box equipped with an Intel Core i7-8750H CPU at 2.20GHz

and 16 GB of RAM running Ubuntu Linux 18.04.3 LTS and the Java 8 Platform Standard

Edition, version 1.8.0_232, from OpenJDK 64-Bit Server VM.

38

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

Results for the SV-COMP benchmark

Reachability probability computed by PReach is a value between 0 and 1. In order to assess

how good PReach is to identify hard to reach statements, I classify program statements to two

groups: hard to reach and easy to reach. As ground truth, I classify the programs for which

the random fuzzer is unable to reach the target statement within the given time bound as hard

to reach. I list the number of true positives (TP: ground truth is hard to reach and PReach

predicts hard to reach); false positives (FP: ground truth is easy to reach and PReach predicts

hard to reach); true negatives (TN: ground truth is easy to reach and PReach predicts easy to

reach); false negatives (FN: ground truth is hard to reach and PReach predicts easy to reach).

A hard to reach threshold (TH) value 0.05 means statements having reachability probability less

than 0.05 are classified as hard to reach. Then, I evaluate PReach with respect to the ground

truth.

Table 3.1 shows the overall precision, recall and accuracy results of PReach-P. Precision,

recall and accuracy for different implementations of PReach is shown in Table 3.4. I demon-

strate results for multiple values of TH to analyze changes in precision, recall and accuracy

across the benchmarks. Reducing TH from 0.05 to 0.01 does not change the results at all. In-

creasing TH to 0.1 leads to interesting changes in the results: some of the true negative cases

are updated to false positives, reducing precision and accuracy. Increasing TH to 0.25 changes

the results further: the number of false positive cases are increased and number of true negative

cases are decreased. Increasing the value of TH changes the prediction of more cases from easy

to reach to hard to reach and hence, the overall precision is reduced from 95.8% to 79.3% and

the overall accuracy is reduced from 95.1% to 88.0%. The ability of using different threshold

values demonstrates the quantitative nature of my analysis rather than being a fixed binary

classification.

Accuracy of PReach-P setting TH as 0.05 or 0.01 is 95.1%. Across all the benchmarks,

39

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

accuracy is greater than or equal to 87.0%, reflecting the effectiveness of my heuristic. PReach-

P fails to identify 5 of the hard to reach program statements having a recall of 90.2%, but it is

very precise in identifying hard to reach program statements with a precision of 95.8%.

Among 142 cases, only 2 cases are false positives and 5 cases are false negatives. The

remaining 135 cases are correctly classified by PReach. The reasons behind the 2 false positive

cases and the 5 false negative cases are: 1) most of the input values generated by the fuzzer lead

to exceptions and the fuzzer cannot generate enough valid inputs, 2) the numeric analysis tool

cannot handle complex operations such as multiplication, division and modulus between more

than one variables using the abstract domains.

Experimental results show that among the 3 variations of the tools, PReach-P performs

the best with a precision, recall and accuracy of 95.8%, 90.2% and 95.1% respectively. Without

applying refined branch selectivity, PReach cannot catch two scenarios: 1) two dependent

branch conditions cancel out each other, 2) input values are updated in a way that the branch

condition becomes always true or false. Hence, the number of false negatives increases from 5 to

13. PReach-I uses interval domain for refinement analysis which is not as precise as PReach-P

using a plyhedra domain. As a result, 2 extra false negatives are introduced by PReach-I.

Table 3.1: Effectiveness of PReach-P in terms of precision (Prec), recall (Rec) and accuracy
(Acc) scores for sv-comp benchmarks

Benchmarks
Threshold (TH)

0.25 0.1 0.05/0.01
TP FP TN FN Prec Rec Acc TP FP TN FN Prec Rec Acc TP FP TN FN Prec Rec Acc

jayhorn-recursive 9 1 10 3 90.0 75.0 82.6 9 0 11 3 100.0 75.0 87.0 9 0 11 3 100.0 75.0 87.0
jpf-regression 25 7 43 2 78.1 92.6 88.3 25 2 48 2 92.6 92.6 94.8 25 2 48 2 92.6 92.6 94.8
jbmc-regression 8 1 12 0 88.8 100.0 100.0 8 0 13 0 100.0 100.0 100.0 8 0 13 0 100.0 100.0 100.0
algorithms 4 3 14 0 57.1 100.0 85.7 4 3 14 0 57.1 100.0 85.7 4 0 17 0 100.0 100.0 100.0
Total 46 12 79 5 79.3 90.2 88.0 46 5 86 5 90.2 90.2 93.0 46 2 89 5 95.8 90.2 95.1

40

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

Probabilistic Symbolic Execution (PSE)

I provide an experimental comparison of PReach with probabilistic symbolic execution

(PSE) [19]. I use SPF [69] as the symbolic execution engine for PSE. PSE is unable to analyze

some of the target programs due to unsupported constraints such as non-linear path constraints,

PReach does not face this issue as much since it only considers branch conditions. The rest

of the programs are marked as analyzable by PSE, as shown in Table 3.2. For programs where

the number of recursive calls or loop iterations depend on the input, PSE can not explore all

possible paths since it can only search programs behaviors up to a bounded execution depth

(search depth), and since the number of program paths grows exponentially. Therefore, I set a

timeout of 1 hour for PSE and evaluate for different search depths. Since PSE is unable to cover

all program paths, the probabilistic measurement computed by PSE is not exact. Increasing

the search depth allows PSE to obtain more accurate results but also increases the number

of program paths exponentially. This leads PSE to time out for some programs, as shown in

Table 3.2. This is not the case for the jpf-regression and jbmc-regression benchmarks, as there

is no input dependent recursive calls or loops.

Table 3.2: Number of programs analyzed by PReach and Probabilistic Symbolic Execution
within 1 hour timeout

Benchmarks

Number of programs analyzed

PReach
Probabilistic Symbolic Execution

Analy-
zable

Analyzable with Search Depth
10 20 30 100 500 1000 ∞

jayhorn-recursive 23 21 21 17 11 6 5 1 1
jpf-regression 77 69 69 69 69 69 69 69 69
jbmc-regression 21 16 16 16 16 16 16 16 16
algorithms 21 9 9 9 9 9 8 6 2
Total 142 115 115 111 105 100 98 92 88

I show the comparison of reachability probabilities computed by PReach and PSE in

Table 3.3. As I do not have any ground truth for the probability measurement, I calculate prob-

ability differences between these two techniques and analyze the differences in case of agreement

and disagreement for hard to reach statement assessment. PReach and PSE agree if their

41

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

Table 3.3: Probabilistic measurement differences and hard to reach statement prediction dis-
agreements between PReach (PR) and PSE

Benchmarks Search
Depth

#Cases
Analyzable Tool

Agreement Disgreement All
Cases

Average
Diff.

PSE ✓ PReach ✓

Avg.
Diff. # Avg.

Diff. # Avg.
Diff.

jayhorn-recursive 10 21
PR 16 0.086 2 1.000 3 0.420 0.270

PR-I 16 0.086 2 1.000 3 0.420 0.270
PR-P 16 0.086 2 1.000 3 0.420 0.270

jpf-regression ∞ 69
PR 58 0.050 10 0.550 1 0.250 0.083

PR-I 62 0.049 6 0.542 1 0.250 0.095
PR-P 64 0.035 4 0.625 1 0.250 0.072

jbmc-regression ∞ 16
PR 14 0.040 2 0.250 0 - 0.066

PR-I 16 0.031 0 - 0 - 0.031
PR-P 16 0.031 0 - 0 - 0.031

algorithms 100 9
PR 3 0.087 0 - 6 0.390 0.317

PR-I 3 0.087 0 - 6 0.390 0.317
PR-P 3 0.087 0 - 6 0.390 0.317

predictions match, disagree otherwise. Based on agreement and disagreement, I divide all the

cases into 3 groups: 1) agreement, 2) disagreement and PSE is correct, 3) disagreement and

PReach is correct. The average difference in probability is low for the cases of agreement. The

difference is even lower for jpf-regression and jbmc-regression benchmarks as PSE achieves very

high precision and accuracy (see Table 3.5) and PReach agrees with the predictions. For the

cases of disagreement, the difference is very high for most of the cases when PSE predicts cor-

rectly but PReach does not. One of the main reasons for this is variable updates making some

of the program paths infeasible. PSE can catch the infeasible paths whereas PReach gives an

approximate result for these cases using branch selectivity. Both PReach-I and PReach-P

can address this issue. Using refined branch selectivity, the number of agreement cases are

increased and average probability difference is reduced for jpf-regression and jbmc-regression

benchmarks. Another reason is PReach predicting a program statement as easy to reach but

the ground truth is hard to reach as fuzzer cannot reach the target statement due to recursion

stack overflow error. Average difference is also high for jayhorn-recursive and algorithms bench-

marks when PReach predicts correctly but PSE does not, as there is an exponential increase

in the number of paths and PSE poorly approximates the probability.

42

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

I now compare these two techniques in terms of hard to reach statement prediction accu-

racy and precision. To compare PReach and PSE, I set the hard to reach threshold to 0.05.

Table 3.4 shows precision, recall and accuracy for PReach and PSE with search depth 10

and 1000. I evaluate all 142 programs analyzable by PReach. The programs for which PSE

times out are marked as easy to reach as my target is to identify the hard to reach program

statements. Different search depths do not change results for jpf-regression and jbmc-regression

benchmarks as these programs are free of recursive calls and loops that depend on inputs. The

precision and accuracy values for PReach are comparable to PSE for these benchmarks. The

prediction results are improved a lot using PReach-I and PReach-P. For jpf-regression and

jbmc-regression benchmarks, precision, recall and accuracy are increased. For jbmc-regression

benchmarks, both PReach-I and PReach-P performs better than PSE and for jpf-regression

benchmarks, overall scores achieved by PReach-P are better than PReach-I and very close

to the scores achieved by PSE. For jayhorn-recursive and algorithms benchmarks, PSE can not

achieve as good results as PReach, PReach-I or PReach-P since these programs need to deal

with input dependent recursive calls and loops. For lower search depth (10), PSE can not ex-

plore all the program paths and as a result the computed probability is an under-approximation

(worse than a heuristics-based approach used in PReach). For higher search depth (1000),

most of the programs time out and hence are marked as easy to reach. As a result there are

no true-positive cases making precision and recall values 0 as well as no false-positive cases

keeping the total precision high (96.9). For the algorithms benchmark, even with search depth

10, the precision and recall is 0 as PSE can not support most of the programs (marked as easy

to reach) as array size is input dependent and marked as symbolic, which is not analyzable

by SPF. Though for programs with bounded execution depth due to the absence of loop and

recursion (jpf-regression and jbmc-regression benchmarks), PSE performs better than PReach

but PReach-P is as good as or even better in some cases than PSE.

I show precision and accuracy for the 85 programs in these two benchmarks that are ana-

43

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

lyzable by PSE in Table 3.5. The scores for PSE are not 100% due to situations like integer

arithmetic overflow that are not caught by symbolic execution. The precision (95.7) and ac-

curacy (87.1) for PReach is comparable to PSE and is impressive given that it is a scalable

heuristic approach. The precision (96.8) and accuracy (96.5) by PReach-P is very close to the

scores achieved by PSE. Moreover, PSE performs very poorly on programs with unbounded

execution depth (jayhorn-recursive and algorithms benchmarks) whereas PReach, PReach-I

and PReach-P have high precision and accuracy.

Table 3.4: Precision, Recall and Accuracy of PReach (PR) and PSE, computed for 142 pro-
grams, program is marked easy to reach if analysis times out

Benchmarks

Precision Recall Accuracy

PR PR-I PR-P

PSE with
Search
Depth PR PR-I PR-P

PSE with
Search
Depth PR PR-I PR-P

PSE with
Search
Depth

10 1000 10 1000 10 1000
jayhorn-recursive 100.0 100.0 100.0 76.9 *0.0 75.0 75.0 75.0 83.3 *0.0 87.0 87.0 87.0 78.3 47.8
jpf-regression 90.5 92.0 92.6 96.2 96.2 70.4 85.2 92.6 96.2 96.2 87.0 92.2 94.8 97.4 97.4
jbmc-regression 100.0 100.0 100.0 100.0 100.0 75.0 100.0 100.0 75.0 75.0 90.5 100.0 100.0 90.5 90.5
algorithms 100.0 100.0 100.0 *0.0 *0.0 100.0 100.0 100.0 *0.0 *0.0 100.0 100.0 100.0 52.4 61.9
Total 95.0 95.7 95.8 80.4 96.9 74.5 86.3 90.2 82.0 62.0 89.4 93.7 95.1 79.6 85.9

Table 3.5: Precision, Recall and Accuracy of PSE and PReach (PR), out of 85 programs
computed within 1 hour for jpf- and jbmc-regression benchmarks

Benchmarks Precision Recall Accuracy
PR PR-I PR-P PSE PR PR-I PR-P PSE PR PR-I PR-P PSE

jpf-regression 94.7 95.7 96.0 96.2 69.2 84.6 92.3 100.0 87.0 92.8 95.7 98.6
jbmc-regression 100.0 100.0 100.0 100.0 66.7 100.0 100.0 100.0 87.5 100.0 100.0 100.0
Total 95.7 96.6 96.8 96.9 68.8 87.5 93.8 100.0 87.1 94.1 96.5 98.8

Table 3.6 shows the average analysis time required and percentage of cases analyzed by

both of these techniques. Even for a low search depth (10) the analysis time of PSE is higher

than PReach. Note that, lower search depths in PSE poorly approximate the probability.

However, increasing the search depth increases the analysis time by orders of magnitude. For

both jayhorn-recursive and algorithms benchmarks, the average analysis time increases and

percentage of analyzed cases within the time bound decreases as the search depth is increased.

For the jayhorn-recursive benchmark, even for a search depth of 30 the average analysis time

44

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

increases by an order of magnitude. This is because the number of recursive function calls are

input dependent. The average analysis time shown in the table is less than or equal to 3600

seconds since I set the timeout to 1 hour (i.e., 3600 seconds is the maximum analysis time).

The time for jayhorn-recursive benchmarks with search depth greater than or equal to 30 would

be very high without this timeout. Average analysis time also increases for the algorithms

benchmarks when the search depth is increased as number of loop iterations depend on the

inputs. These results show that PSE is not scalable for unbounded execution depth whereas

PReach is.

PReach-I and PReach-P require more analysis time compared to PSE for jpf-regression

and jbmc-regression benchmarks. As programs in these benchmarks are loop and recursion free,

PSE runs fast whereas PReach-I and PReach-P perform abstract interpretation for branch

selectivity refinement. However, as the search depth of the programs increases, the branch

selectivity refinement analysis time becomes less significant compared to the exponential time

increase due to path constraint solving performed by PSE, reflected in the jayhorn-recursive and

algorithms benchmarks. For these benchmarks, as the search depth increases to 100, the analysis

time by PSE is orders of magnitude higher than the analysis time required by PReach-I or

PReach-P. These results clearly indicate that PReach, PReach-I and PReach-P maintain

a balanced trade off between precision and scalability for probabilistic reachability analysis and

among these three implementations, PReach-P performs the best considering its high precision

and accuracy.

Statistical Symbolic Execution (SSE)

In this section, I provide an experimental comparison of PReach-P with statistical sym-

bolic execution (SSE). Prior work has demonstrated that SSE is more precise and faster than

PSE [21]. SSE also uses SPF [69] as the symbolic execution engine. I compare PReach-P

and SSE only for the jayhorn-recursive and algorithms benchmarks from SV-COMP, as PSE

45

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

Table 3.6: Average Analysis Time for PReach (PR) and PSE, maximum average analysis time
is limited to 3600 seconds, cases with timeout are included

Benchmarks

Average Analysis time in seconds (% Cases Analyzed in 1 hour)

PR PR-I PR-P
Probabilistic Symbolic Execution

Search Depth
10 30 100 1000

jayhorn-recusrive 2.43 4.35 6.16 5.34 (91%) 2048.33 (52%) 2583.22 (29%) 3428.67 (5%)
jpf-regression 0.81 3.11 4.86 1.51 (91%) 1.51 (91%) 1.5 (91%) 1.51 (91%)
jbmc-regression 0.69 4.90 6.10 3.32 (76%) 3.32 (76%) 3.32 (76%) 3.32 (76%)
algorithms 0.99 6.38 9.69 2.25 (43%) 3.98 (43%) 79.76 (43%) 2399.94 (29%)
Total 1.08 4.08 5.97 2.51 (82%) 372.50 (75%) 475.21 (71%) 808.28 (65%)

achieves very high precision and accuracy for jpf-regression and jbmc-regression benchmarks,

and I have already compared the performance of PReach-P and PSE on those benchmarks.

SSE is unable to analyze 12 out of 44 target programs due to inability to handle non-

linear path constraints or symbolic array indexing during symbolic execution. As before, I set

a timeout of 1 hour for SSE and evaluate for different search depths. Like PSE, SSE is also

unable to explore all program paths within an hour, but it can provide statistical guarantees for

the computed probabilities with respect to accuracy (ϵ) and confidence (δ) parameters [21]. SSE

has two different sampling approaches: 1) Monte Carlo and 2) Informed sampling. I compare

PReach-P to both of these sampling techniques in SSE. In both cases, I set ϵ to be 10−5 and

target δ to be 0.99 following the experimental setup in [21]. For Monte Carlo sampling, I set

the maximum sample size (N1) as 100, 000 and for informed sampling, I set N1 as 100 and

maximum number of iterations as 100.

Table 3.7: Precision, Recall and Accuracy of PReach-P (PR-P) and SSE, computed for 44
programs from jayhorn-recursive and algorithms benchmarks, program is marked easy to reach
if analysis times out(1 hour), both Monte Carlo and informed sampling has same precision,
recall and accuracy

Benchmarks

Precision Recall Accuracy

PR-P

SSE with
Search Depth PR-P

SSE with
Search Depth PR-P

SSE with
Search Depth

10 100 ∞ 10 100 ∞ 10 100 ∞
jayhorn-recursive 100.0 100.0 100.0 100.0 75.0 75.0 75.0 58.3 87.0 87.0 87.0 78.3

algorithms 100.0 0.0* 0.0* 0.0* 100.0 0.0* 0.0* 0.0* 100.0 71.4 71.4 71.4
Total 100.0 100.0 100.0 100.0 83.3 50.0 50.0 38.9 93.2 79.5 79.5 75.0

46

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

Precision, recall and accuracy for SSE is presented in Table 3.7. SSE has better precision,

recall and accuracy compared to PSE but not compared to PReach-P. Recall and accuracy

for SSE drops with increasing search depth. For algorithms, precision and recall is 0.0 (marked

with a *), as there were no true positive cases among the analyzable programs by SSE. Similar

to the experimental setup for the comparison to PSE, I mark a program statement as easy to

reach if it times out.

Table 3.8: Average Analysis Time and statistical Confidence (δ) for PReach-P (PR-P) and SSE
Monte Carlo (MCS) and informed (IS) sampling, maximum average analysis time is limited to
3600 seconds, cases with timeout are included, confidence is set to 0.0 for timeout cases

Bench-
marks

Average Analysis Time Statistical Confidence (δ)

PR-P

SSE-MCS with
Search Depth

SSE-IS with
Search Depth

SSE-MCS with
Search Depth

SSE-IS with
Search Depth

10 100 ∞ 10 100 ∞ 10 100 ∞ 10 100 ∞
jayhorn-recursive 6.16 1495.60 2117.46 2530.45 165.71 362.36 2038.48 0.061 0.039 0.032 0.957 0.913 0.435
algorithms 9.69 2558.30 3066.67 3071.77 2004.41 2008.00 2802.04 0.016 0.016 0.016 0.444 0.444 0.222
Total 7.84 2002.91 2577.38 2786.37 1046.43 1150.83 2406.93 0.040 0.028 0.025 0.712 0.690 0.333

I do not take the reported statistical confidence into account to determine which program

statements should be marked as hard to reach or easy to reach by SSE. One could use a threshold

value for the statistical confidence, and accept only the predictions achieving a certain confi-

dence. In that case, the precision and accuracy of SSE would drop further. Instead, I present

average confidence achieved by SSE in Table 3.8 separately. Statistical confidence achieved by

SSE drops as the search depth for symbolic execution is increased and more programs time out.

Even though I set a large maximum number of samples (100,000) for Monte Carlo sampling,

SSE can not achieve a high confidence. On the other hand, informed sampling can achieve high

confidence with search depths 10 or 100 for some cases. But, with an infinite search depth, none

of the sampling techniques can achieve high confidence.

Average analysis time for SSE is presented in Table 3.8. In general, PReach-P is orders of

magnitude faster than SSE. Monte Carlo sampling is consistently slower for all the programs

compared to PReach-P. Informed sampling performs much better than Monte Carlo sampling.

47

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

Analysis time of SSE with informed sampling is close to PReach-P for some programs when

a short search depth value is used. But, irrespective of search depth, for a good number of

programs, informed sampling is also orders of magnitude slower than PReach-P, and hence its

average analysis time is significantly higher than PReach.

These results demonstrate that PReach-P is more scalable compared to SSE and achieves

better precision and accuracy, especially for programs containing large number of paths.

Case Studies

In this section, I evaluate the effectiveness of PReach to detect hard to reach program

statements in larger projects. I am particularly interested in program points where inputs need

to pass through numerous branches to reach. I selected a set of methods from Apache Commons

Lang [24] and DARPA STAC Benchmarks [70] and identified target program statements. I have

analyzed 24 program statements in 12 methods from Apache Commons Lang project and 12

program statements from 6 methods across 5 projects from DARPA STAC Benchmarks.

Table 3.9 shows PReach results for the selected 24 cases. First, I run PSE to compute

reachability probability on all these cases. Among 18 methods I analyze I find that PSE is not

able to handle 9 methods due to either variable type conversion or lack of support for some String

library functions. PSE fails on 2 other methods due to incapability to model count for non-linear

path constraints and another 4 methods due to lack of support for translation of expressions to

string path constraints. PReach does not have any of these issues as the underlying technique

is simpler than symbolically executing a program, and it can avoid dealing with non-linear

path constraints and complex string path constraints as it needs to consider individual branch

conditions only. Finally, PSE successfully runs on 3 methods but for 2 of the methods it times

out, predicting only 1 case correctly as hard to reach. These results demonstrate the limitations

and poor scalability of probabilistic symbolic execution on realistic programs. I also cannot

analyze these cases using PReach-I and PReach-P as the programs perform string operations

48

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

and the abstract interpretation tool [71] I use for computing refined branch selectivity is limited

to numeric analysis. Even without refining the branch selectivity, my results for these case

studies demonstrate that even the base technique (PReach) using branch selectivity is capable

of predicting hard to reach program statements efficiently for sizable programs.

Table 3.9: Case study of PReach on Apache Commons Lang and DARPA STAC Benchmarks.
PReach predicts a statement as hard to reach if reachability probability is less than 0.001. 19
out of 24 cases are predicted correctly

Project Class Name Method Name

Target
Statement

Line
Number

Number
of Branches
in Method

Max
#Branches
to Target
Statement

Reach
Prob

Random
Fuzzer
Ground
Truth

PReach
Pred.

Pred.
Match

apache-
commons-lang

Fraction greatest
CommonDivisor 595 11 7 0.00% Yes Yes ✓

NumberUtils createNumber 759 31 25 0.00% No Yes ✗
isCreatable 1690 25 23 0.33% No No ✓

FastDatePrinter parseToken 363 7 7 7.32% No No ✓
StrTokenizer readWithQuotes 804 8 8 0.00% Yes Yes ✓
StrSubstitutor substitute 837 17 13 0.00% Yes Yes ✓
Numeric
EntityUnescaper translate 107 9 4 0.08% No Yes ✗

ArrayUtils shift 6994 9 9 0.00% No Yes ✗
BooleanUtils toBooleanObject 650 15 15 0.00% Yes Yes ✓
RandomString
Utils random 427 16 16 0.00% Yes Yes ✓

StringUtils containsAny 1248 8 7 0.00% Yes Yes ✓
CharSequence
Utils regionMatches 377 7 7 0.00% Yes Yes ✓

calculator_3 RomanNumeral
Formatter parseObject

130
34

17 0.15% No No ✓
152 11 49.44% No No ✓
170 34 0.59% Yes No ✗

calculator_4

Arithmetizer assessParentheses 213 9 4 0.19% No No ✓
245 9 93.75% No No ✓

ImperialFormatter parseObject
70

11
4 1.37% No No ✓

96 9 24.63% No No ✓
103 11 13.99% No No ✓

emu6502 Assembler assembleLine 214 22 9 0.00% No Yes ✗
207 8 0.15% No No ✓

linear_
algebra_
platform

MatrixSerializer readMatrix
FromCSV 51 13 9 7.30% No No ✓

rsa_commander DecInputStream read 99 19 12 0.08% Yes Yes ✓

PReach can predict 19 out of 24 cases correctly with an accuracy of 79.2% setting TH as

0.001. I used the same value of TH across all domains. Different values of TH for Integer/mixed

domain (0.01) and String domain (0.001) increases the accuracy to 83.33% supporting the quan-

titative nature of my analysis. 5 of the cases that PReach can not predict correctly is due to the

49

Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements Chapter 3

similar reasons as SV-COMP benchmarks. The value of the input is updated inside the program

and as a result the following branches do not depend on the initial input value anymore.

50

Chapter 4

Rare-path Guided Fuzzing

Testing software in order to assure its dependability and security is one of the most fundamen-

tal problems in software engineering. Fuzz testing has emerged as one of the effective testing

techniques for achieving code coverage and finding bugs and vulnerabilities in software. Unfor-

tunately, existing fuzzers often fail to generate inputs for program paths guarded by restrictive

branch conditions. To pass through branch conditions most greybox fuzzers [1, 4, 79–82] focus

on input mutation strategies. On the other hand, hybrid fuzzers [6, 83] switch to symbolic exe-

cution in order to solve path constraints when fuzzing gets stuck. Identifying the likelihood of

the fuzzer getting stuck is a crucial problem for hybrid approaches, and using the fuzzer itself

for this purpose (by monitoring fuzzing behavior) requires a lot of time to explore deeper paths.

Both input mutation-based fuzzers [4] and hybrid fuzzers [6] focus on identifying rare paths

in the program to explore. They either use mutation strategies [4] or symbolic execution [6] to

generate inputs that can explore the rare paths. Both of these techniques identify rare paths

based on the inputs generated and branches covered during fuzzing (for example, AFL [1]). Note

that, it may take a long time to generate a value that triggers a branch if the branch condition

is very restrictive. It is difficult to separate infeasible paths from feasible but rare paths via

input mutation.

51

Rare-path Guided Fuzzing Chapter 4

In this paper, I propose a lightweight whitebox analysis to identify rare paths in programs

and then guide symbolic execution to generate inputs to explore these rare paths. My approach

avoids the shortcomings of mutation-based greybox fuzzers and hybrid fuzzers by generating

inputs for rare paths beforehand, and it avoids the shortcomings of whitebox fuzzers based on

symbolic execution by reducing the cost of symbolic analysis.

I present a heuristic for identifying rare paths where I use control flow analysis, dependency

analysis and model counting on branch constraints to transform a control flow graph to a prob-

abilistic control flow graph. Then, I compute path probabilities by traversing the probabilistic

control flow graph and identify the rare (low-probability) paths.

To improve the rare path analysis I introduce a new type of control flow paths (which I

call II-paths) which is a combination of intra- and inter-procedural program paths, providing a

balance between breadth first and depth first traversal of program paths.

I guide concolic execution using rare paths to generate inputs that trigger these rare be-

haviors. As the last step of my approach, I provide the set of inputs from my analysis as the

initial seed set to a fuzzer. This enables the fuzzer to explore the rare paths immediately, re-

sulting in better coverage compared to randomly generated initial seed sets. My approach can

be integrated with all existing fuzzers that rely on initial seeds.

My contributions in this paper are as follows:

• A new technique for identifying rare paths in programs using a lightweight quantitative

symbolic analysis.

• A new type of control flow paths (II-paths) to improve efficiency and effectiveness of the

rare path analysis.

• Algorithms for path-guided concolic execution.

• Rare-path guided fuzzing approach where the initial seed set for a given fuzzer is generated

52

Rare-path Guided Fuzzing Chapter 4

with rare-path analysis.

• Experimental evaluation of the proposed techniques on existing fuzzers AFL++, FairFuzz

and DigFuzz, demonstrating coverage improvement achieved by the proposed rare-path

guided fuzzing approach.

Rest of the paper is organized as follows. In section 4.1, I provide overview of my technique.

I explain program path analysis, heuristic to identify rare paths and input generation using the

rare paths on section 4.2, 4.3 and 4.4 respectively. I discuss my implementation and experimental

evaluations on section 4.5 and 4.6 respectively.

4.1 Overview

Consider the running example in Fig. 4.1 which is a shortened version of a code structure

found in libxml2. The main procedure of the program reads a string as an argument. It checks

if the first 3 characters of the string is DOC or not. If the first 3 characters of the string is DOC, it

parses the string starting from the 4th character. First, it goes inside the parse_cmt procedure

and it checks if the 4th character is < or > and skips if it is. Then, the program comes back to

the main procedure and goes inside the parse_att procedure. In the parse_att procedure, the

program looks for the character sequence ATT. If it finds this sequence, it goes deeper into the

program and executes more functionalities. To summarize, the program is trying to find two

specific sequences of characters: first DOC and then ATT and if it can find these two sequences,

it can execute more functionalities.

A mutation based fuzzer, such as AFL, starting with a random initial seed will require a lot of

mutations to get to an input containing sequences DOC and ATT. I run AFL 5 times on the running

example for an hour. 4 out of 5 times, AFL cannot generate an input containing sequences DOC

and ATT. AFL can generate inputs such as DOC, DOC<, DOC>, DOCA etc. Though coverage guided

53

Rare-path Guided Fuzzing Chapter 4

mutation helps to reach these inputs, AFL can not generate the desired sequences as it mutates

randomly and breaks already found sequences to inputs likes DAC and DOCQ etc.

Now, let us explain how rare path analysis can guide a mutation-based fuzzer to achieve more

coverage given a time budget. To perform rare path analysis on the running example program, I

first extract the control flow graph and then I collect control flow paths of the program. At this

point, I can use two well known existing techniques for control flow analysis to collect paths:

intra-procedural control flow analysis and inter-procedural control flow analysis. Control flow

graphs for the code in Fig. 4.1 are shown in Fig. 4.2.

First, I collect paths using intra-procedural control flow analysis (paths from 1 to 5 in

Table 4.1). Among these paths, I find that path 4 is the rarest one. I identify rarity of the

paths by computing path probability and I say that a path is the rarest if it has the lowest

probability. Note that, to compute path probability, one can collect the path constraints using

symbolic execution. In this paper, I do not use symbolic execution to collect path constraints.

Instead I use a heuristic to compute path probabilities (discussed in section 4.3) that focuses on

branch conditions and their selectivity.

After identifying the rare paths, I guide concolic execution (discussed in section 4.4) to

generate inputs that trigger the rare paths. For example, for path 4 in Table 4.1, concolic

execution generates the input DOC. I provide this input as the initial seed to AFL and I find

that AFL can generate the sequences DOC and ATT within 40 minutes (on average) whereas AFL

with a random seed cannot generate these sequence in an hour.

I also collect paths using inter-procedural control flow analysis (paths from 20 to 43 in

Table 4.1). Using my rare path analysis, I identify path 35 as the rarest one. Guiding concolic

execution using path 35, the input generated is DOC<ATT. Providing this input as initial seed,

fuzzer immediately explores the path covering sequences DOC and ATT.

Using inter-procedural control flow analysis, I can generate the rarest paths in the program.

However, paths based on inter-procedural analysis also traverse parse_cmt which is not neces-

54

Rare-path Guided Fuzzing Chapter 4

sary to generate the desired sequences DOC and ATT that enable us to explore deeper behaviors.

Although, for my small running example, analyzing the procedure parse_cmt will not waste too

much analysis time, for larger real world cases like libxml2, focusing only on inter-procedural

paths is likely be costly and can increase the cost of rare path analysis significantly.

To improve the effectiveness of rare path analysis (in order to generate a higher number

of rare seeds within a given time budget) I introduce a new kind of control flow path in this

paper which I call II-paths (discussed in section 4.2). II-paths subsume intra-procedural and

inter-procedural control flow paths, and include more paths that combine their characteristics.

All the paths in Table 4.1 are II-paths, where paths 1 to 5 are intra-procedural control flow

paths, and paths 20 to 43 are inter-procedural control flow paths. Furthermore, paths 6 to 19

are also II-paths. Let us assume that, given a time budget, I can generate the paths from 1 to

20 only. Then, I will identify II-path 13 as the rarest one and concolic execution can generate

the input DOCATT. As a result, I will able to generate an input containing sequences DOC and ATT

while analyzing a relatively small number of paths.

4.2 Program Paths

First step in rare-path guided fuzzing is identification of rare paths. The paths I identify

are control flow paths that are generated by traversing control flow graphs of programs.

Control Flow Graphs

I define the control flow graph (CFG) [84] Gproc for a procedure proc as follows:

Definition 1 A control flow graph for a procedure proc is a directed graph Gproc = (V,E)

where each vertex v ∈ V represents a basic block of proc, and each directed edge e ∈ E : v →

v′ represents a possible flow of control from vertex v to vertex v′ ∈ E . Control flow graph

Gproc has a unique entry vertex entry_proc ∈ V with no incoming edges and a unique exit

55

Rare-path Guided Fuzzing Chapter 4

1 char *CUR;
2 #define CMP3(s, c1, c2, c3) \
3 (((unsigned char *) s)[0] == c1 && \
4 ((unsigned char *) s)[1] == c2 && \
5 ((unsigned char *) s)[2] == c3)
6 int main(int argc , char **argv) {
7 CUR = argv [1];
8 if (CMP3(CUR , ’D’, ’O’, ’C’)) {
9 CUR = CUR + 3;

10 parse_cmt ();
11 if(parse_att ())
12 // go deeper
13 }
14 return 0;
15 }
16 void parse_cmt () {
17 if(*CUR == ’<’ || CUR == ’>’)
18 CUR ++;
19 }
20 int parse_att () {
21 if (CMP3(CUR , ’A’, ’T’, ’T’))
22 return 1;
23 return 0;
24 }

Figure 4.1: A code fragment based on the libxml file parser.c showing several nested branch
conditions that must be satisfied to achieve higher code coverage.

vertex exit_proc ∈ V with no outgoing edges. Furthermore, for each procedure call statement

C to a procedure proc’, Gproc contains a call vertex call-proc’C ∈ V and a return-site vertex

return-proc’C ∈ V , and an edge call-proc’C → return-proc’C ∈ E that represents the procedure

call.

Fig. 4.2 shows the control flow graphs for procedures shown in Fig. 4.1 in boxes a (main), b

(parse_cmt) and c (parse_att).

Since programs typically contain multiple procedures, a single control flow graph can not

represent the complete flow of control in a program. An inter-procedural control flow graph rep-

resents control flow of the whole program by combining the control flow graphs of all procedures

of the program.

Definition 2 An Inter-Procedural Control Flow Graph (IP-CFG) for a program P , G+
P =

56

Rare-path Guided Fuzzing Chapter 4

Figure 4.2: Inter-procedural control flow graph for the running example with additional edges
for II-paths (marked in dashed blue line) and control flow graphs for main, parse_cmt and
parse_att procedures (boxes a, b and c, respectively).

(V,E), contains the vertices and edges of the CFGs of all procedures in P , except the edges

that correspond to procedure calls. Instead, for each procedure call statement C to a procedure

proc in P , G+
P contains an edge from the call vertex to the entry vertex of the called procedure,

call-procC → entry_proc ∈ E, and an edge from the exit vertex of the called procedure to the

return-site vertex for the call, exit_proc → return-procC ∈ E, but it does not contain an edge

between the call vertex and the return-site vertex, call-procC → return-procC ̸∈ E. G+
P also

contains a vertex entry_global ∈ V with no incoming edges (entry point of the program) and

another vertex exit_global ∈ V with no outgoing edges (exit point of the program), and connects

them to the main procedure of the program P with edges entry_global → entry_main ∈ E and

exit_main→ exit_global ∈ E.

57

Rare-path Guided Fuzzing Chapter 4

Fig. 4.2 shows the IP-CFG for my running example from Fig. 4.1 (the dashed edges are

not part of the IP-CFG). For the call to procedure parse_cmt, there are two edges. One

edge from call vertex 5 (which corresponds to call-procC) to entry_parse_cmt and one from

exit_parse_cmt to return-site vertex 6 (which corresponds to return-procC). Similarly, for the

call to procedure parse_att, there are two edges. One from call vertex 7 to entry_parse_att and

one from exit_parse_att to return-site vertex 8. Note that, although in my running example

in Fig. 4.1 each proecedure is called once, in general there could be multiple call statements

for the same procedure and each call statement would have its own separate call-procC and

return-procC vertices and corresponding edges in the IP-CFG.

Control Flow Paths

Now, I can define intra- and inter-procedural control flow paths based on the definitions

above:

Definition 3 Given a control flow graph Gproc = (V,E) for a procedure proc, an intra-procedural

control flow path (intra-path) is a sequence of vertices (v1, v2, v3, . . . , vn) where ∀i, vi ∈ V, vi →

vi+1 ∈ E, v1 = entry_proc and vn = exit_proc.

Definition 4 Given an inter-procedural control flow graph G+
P = (V,E) for a program P , an

inter-procedural control flow path (inter-path) is a sequence of vertices (v1, v2, v3, . . . , vn) where

∀i, vi ∈ V, vi → vi+1 ∈ E, v1 = entry_global and vn = exit_global.

Paths 1 to 5 in Table 4.1 correspond to all the intra-paths for the CFG of procedure main,

and paths 20 to 43 in Table 4.1 are all the inter-paths for the IP-CFG of the whole program

based on the control flow graphs shown in Fig. 4.2 for my running example. (To save space, I

only show the vertices with numeric values in Table 4.1, named vertices that are not shown are

implied by the sequence of vertices that are shown, and can be easily added.)

58

Rare-path Guided Fuzzing Chapter 4

Intra-Inter Control Flow Paths (II-Paths)

In this paper, I introduce a new type of control flow paths by combining both intra-paths

and inter-paths. I call these paths intra-inter control flow paths (II-paths). Intuitively, for each

procedure call, inter-paths have to choose a path inside the called procedure’s CFG. On the other

hand, intra-paths do not explore the CFGs of the called procedures. When visiting a procedure

call statement, II-paths have the option to either behave like intra-paths (i.e., do not explore

the CFG of the called procedure), or behave like inter-paths (i.e., explore the CFG of the called

procedure). Hence, II-paths have the option to ignore what happens inside a called procedure.

The key insight is that, given the same length bound for inter-paths and II-paths, II-paths are

able to explore a larger set of behaviors and deeper behaviors by ignoring the behavior of some

called procedures.

In order to formally define II-paths I add back an extra edge to the IP-CFG between the

call vertex call-procC and return-site vertex return-procC for each call statement C (as I had for

the intra-procedural control flow graphs in Definition 1). I call the resulting control flow graph

Extended Inter-Procedural Control Flow Graph (EIP-CFG):

Definition 5 Let P be a program with IP-CFG G+
P = (V,E). The Extended Inter-Procedural

Control Flow Graph (EIP-CFG) for program P , denoted as G⋆P = (V ′, E′), is defined as follows.

The set of vertices for G⋆P is the same as the set of vertices for G+
P , i.e., V ′ = V , and G⋆P

contains all the edges in G+
P , i.e., E ⊆ E′. The only edges that are in E′ and not in E are:

For each procedure call statement C, a single edge between the call vertex call-procC and the

return-site vertex return-procC is included in E′, i.e., call-procC → return-procC ∈ E′ whereas

call-procC → return-procC ̸∈ E.

Fig. 4.2 shows the EIP-CFG for my running example from Fig. 4.1 where the dashed edges

are also part of the EIP-CFG. In the EIP-CFG, there are two edges from each call vertex

call-procC for a procedure call: 1) to the entry vertex of called procedure proc entry_proc,

59

Rare-path Guided Fuzzing Chapter 4

i.e., edge call-procC → entry_proc and 2) to the return-site vertex return-procC , i.e., edge

call-procC → return-procC . For example, in Fig. 4.2, the call vertex 5 has two outgoing edges

corresponding to these two cases 1) 5→ entry_parse_cmt and 2) 5→ 6. Similarly, call vertex

7 has two outgoing edges 1) 7 → entry_parse_att and 2) 7 → 8. As a result, whenever a call

vertex is reached, there are two different paths to explore: 1) path taken via edge call-procC →

entry_proc which is similar to inter-paths, and 2) path taken via edge call-procC → return-procC

which is similar to intra-paths. Intuitively, every time a procedure call vertex is reached, II-

paths can choose between considering or ignoring the control flow inside the called procedure.

Whereas, intra-paths never explore the control flow of called procedures, and inter-paths always

have to explore the control flow of the called procedures.

I define II-paths as follows:

Definition 6 Given an EIP-CFG G⋆P = (V,E) for a program P , an intra-inter control flow

path (II-path) is a sequence of vertices (v1, v2, v3, . . . , vn) where ∀i, vi ∈ V, vi → vi+1 ∈ E,

v1 = entry_global and vn = exit_global.

Again, let us consider the paths (listed in Table 4.1) of the EIP-CFG shown in Fig. 4.2 for

my running example from Fig. 4.1. As I noted before, paths 1 to 5 in Table 4.1 are all the

intra-paths for procedure main, and paths 20 to 43 in Table 4.1 are all the inter-paths for the

program. Note that, based on the II-paths definition these paths are also II-paths. Furthermore,

using the II-paths definition, in addition to II-paths from 1 to 5 and from 20 to 43, I now have

additional II-paths from 6 to 19 where paths from 6 to 13 that ignore the control flow inside

procedure parse_cmt but consider the control flow inside procedure parse_att and paths from

14 to 19 that ignore the control flow inside procedure parse_att but consider the control flow

inside procedure parse_cmt.

60

Rare-path Guided Fuzzing Chapter 4

Table 4.1: II-paths for the extended inter-procedural control flow graph shown in Fig. 4.2.

Path Probability

1 1→ 2→ 10→ 11 9.96× 10−1

2 1→ 2→ 3→ 10→ 11 3.98× 10−3

3 1→ 2→ 3→ 4→ 10→ 11 1.59× 10−5

4 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ 9→ 11 3.20× 10−8

5 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ 24 3.20× 10−8

6 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 22→ 23→ 8→ 9→ 11 3.19× 10−8

7 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 22→ 23→ 8→ 24 3.19× 10−8

8 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 9→ 11 1.27× 10−10

9 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 24 1.27× 10−10

10 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 9→ 11 5.10× 10−13

11 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 24 5.10× 10−13

12 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 9→ 11 2.05× 10−15

13 1→ 2→ 3→ 4→ 5→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 24 2.05× 10−15

14 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 8→ 9→ 11 1.28× 10−10

15 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 8→ 24 1.28× 10−10

16 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 8→ 9→ 11 1.27× 10−10

17 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 8→ 24 1.27× 10−10

18 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 8→ 9→ 11 3.17× 10−8

19 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 8→ 24 3.17× 10−8

20 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 22→ 23→ 8→ 9→ 11 1.27× 10−10

21 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 22→ 23→ 8→ 24 1.27× 10−10

22 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 9→ 11 5.10× 10−13

23 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 24 5.10× 10−13

24 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 9→ 11 2.04× 10−15

25 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 24 2.04× 10−15

26 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 9→ 11 8.19× 10−18

27 1→ 2→ 3→ 4→ 5→ 12→ 13→ 17→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 24 8.19× 10−18

28 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 22→ 23→ 8→ 9→ 11 1.27× 10−10

29 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 22→ 23→ 8→ 24 1.27× 10−10

30 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 9→ 11 5.08× 10−13

31 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 24 5.08× 10−13

32 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 9→ 11 2.03× 10−15

33 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 24 2.03× 10−15

34 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 9→ 11 8.16× 10−18

35 1→ 2→ 3→ 4→ 5→ 12→ 14→ 15→ 17→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 24 8.16× 10−18

36 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 22→ 23→ 8→ 9→ 11 3.16× 10−8

37 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 22→ 23→ 8→ 24 3.16× 10−8

38 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 9→ 11 1.26× 10−10

39 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 19→ 22→ 23→ 8→ 24 1.26× 10−10

40 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 9→ 11 5.06× 10−13

41 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 19→ 20→ 22→ 23→ 8→ 24 5.06× 10−13

42 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 9→ 11 2.03× 10−15

43 1→ 2→ 3→ 4→ 5→ 12→ 14→ 16→ 17→ 6→ 7→ 18→ 19→ 20→ 21→ 23→ 8→ 24 2.03× 10−15

4.3 Identifying Rare Paths with Path Probability Estimation

To identify rare paths in the program, I first compute the probabilities for program paths.

In this section, I explain construction of a probabilistic control flow graph to compute path

probabilities. Then, I identify the rare paths in the program based on path probabilities.

Path Probability

I formalize path probability analysis as follows. Given a program P , let i denote the input

for the program, and I denote the domain of inputs (i.e., i ∈ I). The input i for a program

61

Rare-path Guided Fuzzing Chapter 4

Figure 4.3: Probabilistic inter-procedural control flow graph corresponding to the inter-
procedural control graph shown in Fig. 4.2, where edges are labeled with probability scores.

can be either a scalar value, a tuple, or a list of values. Given a path t in program P , the goal

of path probability analysis is to determine how likely it is to execute the path t. I do this by

determining the likelihood of picking inputs that result in an execution of path t. In order to

determine the likelihood of picking such inputs, I compute the probability of picking such inputs

given that the inputs are chosen randomly. I define P(P, t) as:

Definition 7 P(P, t) denotes the probability of executing the path t of program p where the

input i of the program p is randomly selected from the input domain I of program p.

To compute path probability, I assume that inputs are uniformly distributed. However, one

can extend my technique for path probability computation by integrating usage profile [21], used

in other probabilistic analysis techniques and support any input distribution.

62

Rare-path Guided Fuzzing Chapter 4

Path probabilities can be computed using quantitative extensions of symbolic execution such

as probabilistic and statistical symbolic execution [17, 18]. However, these symbolic execution

based techniques have a high computation complexity and poor scalibility due to the cost of

path constraint solving and model counting over an exponentially increasing number of paths.

Recently, there has been a new heuristic-based technique proposed for probabilistic reachability

analysis [22]), which reduces the complexity of probabilistic reachability analysis using branch

selectivity. The heuristic in [22] focuses on computing the reachability probabilities for program

statements using a concept called branch selectivity. In this paper, I also use branch selectivity

to estimate path probabilities. Note that, my goal is not to analyze probabilistic reachability of

a target statement as in [22]. I focus on estimating path probabilities.

Probabilistic Control Flow Graph

To compute path probabilities, I construct a probabilistic control flow graph (Prob-CFG)

PG⋆P for a program P from the extended inter-procedural control flow graph (EIP-CFG) G⋆P . I

formally define the probabilistic control flow graph PG⋆P as follows:

Definition 8 Given a program P and its EIP-CFG G⋆P = (V,E), the probabilistic control flow

graph PG⋆P for program P is defined as PG⋆P = (V,E, F) where the set of vertices and edges for

PG⋆P are same as the set of vertices and edges of G⋆P , and F is a function F : E → [0, 1] that

assigns a probability score to each edge in E.

As I describe below, I use dependency analysis and branch selectivity to compute probability

scores of the edges in probabilistic control flow graphs.

Dependency Analysis A branch condition in the program is input dependent if the eval-

uation of the branch condition depends on the value of the program input. Given a program

and input(s) to the program, I use static dependency analysis to identify the input dependent

63

Rare-path Guided Fuzzing Chapter 4

branch vertices in the control flow graph. Static dependency analysis over-approximates the set

of input-dependent branch vertices. As a result, the path probability I compute is an estimation

of the actual path probability. Anyway, I use branch selectivity, a heuristic to estimate path

probability.

Branch Selectivity To compute the probability for each edge in the control flow graph, I use

branch selectivity. I use the definition of branch selectivity S(b) as in [22]:

Definition 9 Given a branch condition b, let Db denote the Cartesian product of the domains

of the variables that appear in b, and let Tb ⊆ Db denote the set of values for which branch

condition b evaluates to true. Let |Db| and |Tb| denote the number of elements in these sets,

respectively. Then, S(b) = |Tb|
|Db| and 0 ≤ S(b) ≤ 1.

I compute |Tb| using a model counting constraint solver. Branch selectivity gets closer to 0

as the number of values that satisfy the branch condition decreases and gets closer to 1 as the

number of values that satisfy the branch condition increases.

Then, I define the probability score function F for the probabilistic control flow graph

PGP = (V,E, F) using the combination of dependency analysis and branch selectivity as follows:

• If there is only one edge starting from a vertex v to u, then the probability of the edge

e : v → u is 1, i.e, F (e) = 1.

• If v is a vertex with branch condition b, there are two edges from source vertex v: e1 :

v → u1 and e2 : v → u2, where e1 is the true evaluation and e2 is the false evaluation of

branch condition b:

– If branch condition b is dependent on program input, then probability of edge e1 is

the branch selectivity, S(b) = |Tb|
|Db| and the probability of edge e2 is 1 − S(b), i.e.,

F (e1) = S(b) and F (e2) = 1− S(b).

64

Rare-path Guided Fuzzing Chapter 4

– If branch condition b is not dependent on program input, then probability of both

edges e1 and e2 is 1, i.e., F (e1) = F (e2) = 1.

• Probabilities of edges that have a call vertex as their source e1 : call-procC → entry_proc

and e2 : call-procC → return-procC are 1, i.e., F (e1) = F (e2) = 1.

By adding probabilities to all the edges in a control flow graph, I transform it to a proba-

bilistic control flow graph. Consider the EIP-CFG in Fig. 4.2. Each branch vertex is associated

with a branch condition. For example, vertex 2 is associated with branch condition CUR[0] =

D. I consider that the inputs are uniformly distributed and domain for each character in a string

has 256 values. Branch selectivity S for the branch condition at vertex 2 is 1
256 ≡ 0.004. Hence,

probability for the edges 2→ 3 is 0.004 and probability for the edge 2→ 10 is 1−0.004 = 0.996.

I add all the edge probabilities to the EIP-CFG G⋆P in Fig. 4.2 and construct the probabilistic

EIP-CFG PG⋆P , shown in Fig. 4.3.

Once I construct the probabilistic control flow graph PG⋆P , I can compute path probabilities

by traversing the graph. The path probability I compute for a path is the multiplication of the

probabilities of the edges on the path. The path probability I compute is also a real number

between 0 and 1, where a path probability close to 1 means that the path is executed by almost

every input and a path probability close to 0 means that the path is executed by very few inputs.

I compute path probability P(P, t) in PGP as follows.

Definition 10 Given a control flow path t for program P which corresponds to a sequence of

vertices {v1, v2, v3, . . . , vn} in the probabilistic control flow graph PG⋆P = (V,E, F), then path

probability P(P, t) for path t is computed as

P(P, t) =
n−1∏
i=1

F (vi, vi+1)

Path probabilities computed for the II-paths for my running example using the probabilistic

65

Rare-path Guided Fuzzing Chapter 4

control flow graph in Fig. 4.3 are shown in Table 4.1.

Rare Paths

My idea behind rare paths are that some paths in the program are executed less frequently

compared to any other paths in the program. If any input i is picked randomly from an uniformly

distributed domain of inputs I, it is less likely for a rare program path being executed by input

i compared to the execution of any other paths in the program. I define a set of rare paths Rp

as follows:

Definition 11 Given a set of n paths A = {t1, t2, t3, ..., tn} and the set of k rare paths R =

{u1, u2, u3, ..., uk} in program P , where R ⊂ A, probability for any path in R will be less than

probability for all paths in A\R, i.e., ∀t, u, t ∈ A\R ∧ u ∈ R⇒ P(P, u) ≤ P(P, t).

First, I compute probability for the set of paths At and then I sort At in an ascending order

based on the probabilities of the paths. After that, I select first k paths as the set of k rare

paths Rt.

Traversing through the probabilistic control flow graph in Fig. 4.2 I generate 43 II-paths

and compute corresponding path probabilities as shown in Table 4.1. Now, if I sort these paths

in an ascending order based on the path probability and pick the set of rare paths R for k = 3,

I identify paths 34, 35 and 26 as the paths in the rare path set R. A fuzzer that randomly

generates inputs would be very unlikely to explore these rare paths.

4.4 Input Generation for Rare Paths

The analysis I described above results in the set R of k rare paths in the program. However,

it does not identify k inputs that can trigger these rare paths in the program. The input

66

Rare-path Guided Fuzzing Chapter 4

generation process I describe in this section identifies inputs to trigger the rare paths in the set

R.

In order to generate the set of rare inputs IR for the set of rare paths R I guide concolic

execution using each rare path tR ∈ R and generate input iR for each tR (if path tR is a feasible

execution path). I add all these inputs to the set of rare inputs IR.

Note that, the rare paths I compute are based on an estimation of path probability and

some of the rare paths might not be feasible (not a real execution path in the program). But,

concolic execution captures the original program execution semantics. Hence, if a rare path is

not feasible, it will be detected in the input generation step using concolic execution.

I use path-guided concolic execution to collect path constraints for a rare path. I use a

SMT solver to solve the path constraints and generate the input that can be fed to the program

to execute the rare path. I will now discuss the mechanism in detail for path-guided concolic

execution.

In section 4.2, I have discussed three different types of control flow paths: intra-paths, inter-

paths and II-paths. Out of these three types of paths, inter-paths always represent complete

program execution paths. However, both intra-paths and II-paths represent either partial or

complete program execution paths as these two types of paths ignore procedure calls either

completely (intra-paths) or as a choice (II-paths). I provide two different algorithms for path-

guided concolic execution for input generation: 1) Inter-path guided concolic execution, 2)

Intra-path or II-path guided concolic execution.

Inter-path guided Concolic Execution (IP-GCE)

For inter-path guided concolic execution (IP-GCE), I run the program on a concrete random

input and generate the corresponding inter-path tC . In order to generate input for the rare path

tR, I compare all branches for tC and tR in the same order. If there is a mismatch between any

67

Rare-path Guided Fuzzing Chapter 4

of the branches, I negate the branch and solve it to check feasibility of the path negating the

branch. If the path is feasible, I solve the path constraint and generate the new input. I then

execute the program using the new input and update tC by the inter-path generated by the new

input. The process continues as long as there are branches left to compare both in tC and tR

or there are no branches that can lead to a feasible path. At the end of the process, the input

is the input that will either take path tR or take a path that is close to the rare path tR if tR is

not feasible.

Algorithm 2 shows the process of guiding concolic execution using rare inter-path. Execute

executes the program P first on a random input and returns the corresponding execution path

tC . The algorithm looks for the first vertex where tC and tR differ (all paths start with the

same vertex). NegatedPath(tC , index) generates a path constraint corresponding to the path

tC where the branch condition between the vertex index− 1 and index is negated. IsFeasible

checks the feasibility of a given path constraint and Solve generates an input value satisfying

the given path constraint.

Algorithm 2 IP-GCE(P, tR)
Takes a program P and an inter-procedural path tR in P as input and generates an input for
P to execute the path tR
1: input← Random()
2: tC ← Execute(P, input)
3: index← 2
4: while index < Len(tC) ∧ index < Len(tR) do
5: if tC(index) ̸= tR(index) then
6: path_cond← NegatedPath(tC , index)
7: if IsFeasible(path_cond) then
8: input← Solve(path_cond)
9: tC ← Execute(P, input)

10: else
11: return input
12: index← index + 1
13: return input

68

Rare-path Guided Fuzzing Chapter 4

II-Path Guided Concolic Execution (IIP-GCE)

In this section I discuss II-Path guided concolic execution which can also handle intra-

paths since intra-paths are also II-paths. IP-GCE algorithm I discussed in the previous section

uses branch matching and branch negation for mismatched branches, but this approach is not

sufficient for guiding the concolic execution to explore the rare II-paths since II-paths are not

guaranteed to represent complete execution path of a program.

Similar to the IP-GCE algorithm, in the IIP-GCE algorithm (Algorithm 3), I first run the

program on a concrete random input and collect the execution path tC . Note that, there may

be branches in tC that are in a procedure that is not explored in the input II-path tR. In such

situations, I compare the inputs that trigger both the branch and its negation, and see which

one creates a path that overlaps more with tR (i.e., the number of vertices that are common in

both), and then I pick the branch which results in higher overlap with tR. For branches that

appear both in tC and tR I make sure that tC and tR agree.

Lines 1-5 in Algorithm 3 generate the initial concrete path tC with a random input, and

calculate the initial overlap between tC and tR using the function Overlap.

The while loop in lines 6-19 iterates over the nodes in tC . It looks for branch nodes in tC

that differ from the corresponding branch node in tR. The function Differ returns true under

two conditions: 1) there is a branch in tR that corresponds to complement of tC(index) (i.e., tR

and tC take different branches for the same branch statement), or 2) there is no branch in tR

that corresponds to the branch tC(index) In both of these cases I negate the branch condition

at tC(index) and see if I can improve the overlap between tC and tR and update the input and

tC if the overlap can be improved. Note that if the overlap cannot be improved the input is

restored to the previous input in lines 17-18.

Algorithm 3 makes a single pass on tC without backtracking and therefore it is not guar-

anteed to find an execution that maximizes the overlap between final tC and tR. Looking for

69

Rare-path Guided Fuzzing Chapter 4

maximum overlap would require a search on all execution paths, resulting in path explosion that

I have to avoid for scalability.

Algorithm 3 IIP-GCE(P, tR)
Takes a program P and a intra- or II-path tR in P as input and generates an input for P to
execute the path tR
1: input← Random()
2: tC ← Execute(P, input)
3: max_overlap← Overlap(tC , tR)
4: max_input← input
5: index← 1
6: while index < Len(tC) do
7: if IsBranch(tC(index)) ∧Differ(tC(index), tR) then
8: path_cond← NegatedPath(tC , index)
9: if IsFeasible(path_cond) then

10: input← Solve(path_cond)
11: tC ← Execute(P, input)
12: overlap← Overlap(tC , tR)
13: if overlap > max_overlap then
14: max_overlap← overlap
15: max_input← input
16: else
17: input← max_input
18: tC ← Execute(P, input)
19: index← index + 1

20: return input

For the running example, guiding concolic execution using path 35, input generated is

DOC<ATT. whereas guiding concolic execution using path 34, I find out that path 34 is infea-

sible. Path 34 is infeasible as path up to vertex 8 in path 34, parse_att function returns 1 and

then returning back to the main function it should take the path following edge 8→ 24 whereas

it takes edge 8→ 9. Hence, path-guided concolic execution algorithms I provide does not only

generate inputs but also checks feasibility of the rare paths. Even though my techniques for

identifying rare paths in the program is a heuristic approach, infeasible rare paths will be always

filtered out in the input generation phase. The inputs I provide to the fuzzer as initial seed sets

are always valid inputs and they help fuzzer to explore deep rare program paths.

70

Rare-path Guided Fuzzing Chapter 4

4.5 Implementation

I implement my techniques for rare path analysis and path-guided concolic execution tar-

geting programs written in C programming language.

I extract branch conditions and control flow graph for a program using the concolic execution

tool CREST [15] and underlying program transformation tool CIL [85].

In order to collect branch conditions from the program, I modify the OCaml code in CIL. I

transform the branch conditions in the program to constraints in SMT-LIB format. To model

count the branch constraints, I use Automata-based Model Counter (ABC) [46].

To identify input dependent branches in the program, I do dependency analysis using Cod-

eQL [86] code analysis engine. CodeQL treats code like data and can run queries on any codebase

hosted in the GitHub. To implement dependency analysis, I use Access module of CodeQL

that provides classes for modeling accesses including variable accesses, enum constant accesses

and function accesses.

After extracting the control flow graph and model counting the input dependent branches,

I transform the control flow graph to a probabilistic control flow graph. I use a python script

to traverse the probabilistic control flow graph and collect paths. I wrote 3 different functions

in python to collect intra-paths, inter-paths and II-paths.

I guide concolic execution tool CREST [15] using the rare paths I collect from my control

flow analysis. I wrote algorithms IP-GCE and IIIP-GCE in C on top of existing concolic search

strategies in CREST.

I use existing coverage-guided fuzzers AFL++ [87] and FairFuzz [4] as it is. I could not

find implementation of DigFuzz [6]. I contacted the authors of DigFuzz but it was not publicly

available at the time of my implementation. I implement DigFuzz using AFL++ and QSym [88].

To collect edge coverage I use afl-showmap as used in [89].

71

Rare-path Guided Fuzzing Chapter 4

4.6 Experimental Evaluation

To evaluate my techniques for rare path-guided fuzzing I experiment on a set of benchmarks

(programs with many restrictive branch conditions) that have already been used in experimental

evaluation of existing fuzzing techniques. inih (parser for .ini configuration file), tinyC (parser

for tiny C codes with if-else, while, do-while structures), cJSON (parser for JSON files) have

been used for evaluating parser-directed fuzzing [90]. I also add calculator [91] (a command-line

calculator, supporting standard mathematical operations and a set of function), more complex

in terms of restrictive branch conditions. I also experiment on two well known libraries for

parsing xslt and xml files, libxslt and libxml2 respectively. libxslt has been used in [92] and

libxml2 has been used to evaluate many coverage guided fuzzing techniques [1, 4, 79].

In my experimental evaluation I focused on the following research questions:

RQ1. Can rare path analysis generate inputs that AFL++ can not?

RQ2. Can I improve fuzzing effectiveness using the seed set I generate from my rare path

analysis?

RQ3. Can I improve rare path analysis effectiveness using II-paths?

Experimental Setup

I run my experiments on a virtual box equipped with an Intel Core i7-8750H CPU at 2.20GHz

and 16 GB of RAM running Ubuntu Linux 18.04.3 LTS. I use docker for AFL++ [93] to run

all the fuzzing experiments. I run each fuzzing task with a random seed set for 24 hours. I set

the upper limit for my rare path guidance technique (branch selectivity computation, rare path

identification and seed generation) to 6 hours (25% of the total time) and use the remaining 18

hours (of 24 hour total time) fuzzing with the seed set generated by my analysis. I set path

depth limit to 60 for my rare path analysis. After collecting the rare paths, I provide all the

inputs from the feasible rare paths (filtered by path-guided concolic execution) to the fuzzer as

72

Rare-path Guided Fuzzing Chapter 4

the seed set.

Experimental Results

RQ1: Effectiveness of rare path analysis to generate rare inputs

To show the effectiveness of my rare path analysis, I run my analysis maximum for 6 hours

and AFL++ for 24 hours on each of these benchmarks. My experimental results show that I

can generate inputs in 6 hours which AFL++ cannot generate in 24 hours by mutating inputs.

My results in detail are as follows.

tinyC. I generate inputs containing if-else structure from my rare path analysis. AFL++

can generate if structure by mutating inputs but cannot generate the if-else structure.

inih. Each ini file has section names inside an opening bracket, [and a closing bracket,]

and key value pairs separated by either a colon (:) or an equal sign (=). From my rare path

analysis I can find these rare input structures within a minute. But, AFL++ can also generate

these inputs within couple of minutes as the input structure is trivial. So, for inih, I cannot

generate any new inputs.

calculator. I generate inputs containing keywords such as arcsin, arccos and arctan with

my rare path analysis. Even after running AFL++ for 24 hours, AFL++ cannot generate these

keywords.

cJSON. AFL++ can generate inputs containing basic JSON structure with left and right

braces, colon and quotations. But, using my rare path analysis, I can generate inputs containing

keywords such as false, true and null that AFL++ is unable to generate.

libxslt. To explore deeper paths in the program xslt files need to contain keywords like

stylesheet, transform, attribute-set, preserve-space, decimal-format etc. As a random

seed, I provide XSLT file containing opening and closing tag for stylesheet to AFL++. How-

ever, running AFL++ for 24 hours, it cannot generate inputs containing any other keywords. My

73

Rare-path Guided Fuzzing Chapter 4

rare path analysis can generate inputs containing keywords: attribute-set, preserve-space

and decimal-format.

libxml2. Similar to libxslt, to explore deeper paths in libxml2, a xml file needs to contain

keywords like DOCTYPE, ATTLIST, ENTITY, NOTATION etc. Running AFL++ for 24 hours, it can

generate inputs containing structures like DOCTYPE and ATTLIST. My rare path analysis can

generate inputs containing not only DOCTYPE and ATTLIST but also ENTITY and NOTATION.

Overall, I see that for 5 out 6 benchmarks, within 6 hours (25% of the time allocated to

AFL++), my rare path analysis can generate inputs that AFL++ cannot generate in 24 hours

based on input mutation.

RQ2: Effectiveness of rare path analysis to improve fuzzing effectiveness

My answer to RQ1 already shows that the rare path analysis can generate inputs that

AFL++ cannot. Now, to answer RQ2, I present experimental results evaluating the ability of

rare path analysis in improving fuzzing effectiveness in terms of coverage.

My experimental results show that (as shown in Fig. 4.4 and Table 4.2) I get coverage im-

provement over AFL++ for 5 out of 6 of the benchmarks. I do not get a lot of improvement for

calculator (1.13%) since, even though I can generate rare inputs, there are no deeper functional-

ities to execute after passing through the rare branches. I generate inputs containing functions:

arcsin, arccos, arctan using my rare path analysis. And with these additional inputs, AFL++

can mutate and generate 3 more rare inputs: asin, acos, atan. However, there are not many

functionalities to explore and code to cover after these rare branches. AFL++ with the rare path

based seed set can cover only 13 additional edges (1.33% improvement). For tinyC and cJSON,

I see improvement of 6.47% (13 additional edges) and 4.19% (25 additional edges), respectively.

For libxslt, my rare path guidance helps AFL++ to cover 162 additional edges (18.86% coverage

improvement). For libxml2, I achieve the maximum amount of coverage improvement of 1170

additional edges (20.35%). This indicates that for larger programs if restrictive branches in the

74

Rare-path Guided Fuzzing Chapter 4

Figure 4.4: Coverage comparison between AFL++, rare-path guided AFL++, FairFuzz and
rare-path guided FairFuzz

program can be passed, fuzzers can explore deeper functionalities and achieve significantly more

code coverage, and my rare path analysis can guide the fuzzers to pass the restrictive branches

in the program.

Next, I experimentally evaluate my rare path analysis using FairFuzz [4] using the same setup

that I used for AFL++. For 5 out of 6 cases, I see improvement, 0.51% for calculator 0.94% for

tinyC, 4.14% for cJSON and 18.29% for libxml2 (shown in Fig. 4.4 and Table 4.2). The results

are similar to AFL++, for larger programs, FairFuzz can explore more deeper functionalities

and achieve more code coverage. For libxslt, FairFuzz without any guidance can cover 800 edges

whereas with guidance it can cover 1055 edges (31.86% coverage improvement). For libxml2,

FairFuzz without inputs from my analysis can cover 7681 edges, whereas with guidance from

rare path analysis, it can cover 9086 edges (18.29% of coverage improvement).

Moreover, for cJSON, libxslt and libxml2, my rare path analysis can generate inputs that

FairFuzz cannot. This indicates that FairFuzz (which uses branch hit counts to identify rare

branches) can not pass some rare branches. However, I can identify and generate inputs for

these rare branches. Rare path guided FairFuzz performs best in my experimental evaluation

(1.33%, 5.36%, 7.46%, 22.82% and 58.00% more coverage than AFL++ for calculator, cJSON,

tinyC, libxslt and libxml2 respectively).

75

Rare-path Guided Fuzzing Chapter 4

Table 4.2: Percentages of coverage improvement for rare path-guided fuzzing over AFL++,
FairFuzz

Benchmarks Number of lines % coverage improvement over
AFL++ FairFuzz

tinyC 190 6.47% 0.94%
inih 243 0.00% 0.00%
calculator 1312 1.33% 0.51
cJSON 3845 4.19% 4.14%
libxslt 33371 18.86% 31.86%
libxml2 186116 20.35% 18.29%

Lastly, I evaluate my rare path analysis on top of hybrid fuzzing technique, DigFuzz [6].

DigFuzz [6] identifies the hardest paths to explore for AFL using the samples collected using

AFL and then uses symbolic execution tool angr [94] to solve constraints for the hardest paths.

However, DigFuzz is not publicly available. I contacted the authors of DigFuzz but could not get

access to the implementation. Hence, I implement the technique in DigFuzz using AFL++ and

QSym [88]. In my evaluation I use an unoptimized binary for fuzzing (to associate branch flip in

concolic execution with hitcount collected in fuzzing which is necessary for the implementation

of the DigFuzz technique). I conduct experiments on the 3 larger benchmarks, cJSON, libxslt

and libxml2. Results from my experimental evaluation (Table 4.3) show that rare path guided

DigFuzz achieves better coverage compared to DigFuzz, 66.86% improvement for cJSON, 2.18%

improvement for libxslt and 30.22% improvement for libxml2.

There are multiple reasons behind DigFuzz not being able to achieve better coverage com-

pared to AFL++ and FairFuzz: 1) building the execution tree takes hours for larger programs

like libxml2 as the tree grows exponentially over time, 2) concolic execution fails to generate

inputs for a lot of paths and hence generates very few inputs to guide AFL and 3) DigFuzz

attempts to solve branches that are not dependent on the inputs rather used for sanity check

of the program. These findings are aligned to the findings of DigFuzz for larger programs [6].

However, my experiments on DigFuzz still demonstrate that rare path guided analysis improves

the effectiveness of DigFuzz like it improves AFL++ and FairFuzz.

76

Rare-path Guided Fuzzing Chapter 4

Table 4.3: Percentages of coverage improvement for rare path-guided fuzzing over DigFuzz

Benchmarks DigFuzz Rare Path-guided
DigFuzz

% coverage
improvement

cJSON 344 574 66.86%
libxslt 719 735 2.18%
libxml2 3297 4270 30.22%

RQ3: Effectiveness of II-path to improve efficiency of rare path analysis

To answer RQ2, I guide fuzzers using my rare path analysis based on intra-paths, inter-paths

and II-paths. My claim is that II-paths based analysis can generate more rare inputs compared

to either intra-paths or inter-paths or both. My experimental results for cJSON, libxslt and

libxml2 is shown in (Fig. 4.5) respectively.

Using intra paths for cJSON, I do not see any improvements as I cannot generate any inputs.

However, using inter paths I can generate inputs and see improvements (4.19%). Using II-paths

I can also generate the same inputs and see same amount of coverage improvement.

For libxslt, using intra paths, I do not see any improvement as it can can not generate new

inputs. Using inter paths, I see coverage improvement (9.08%) as new inputs are generated

containing keywords preserve-space and decimal-format. However, using II-paths, I see the

highest improvement (17.93%) as inputs containing keyword (attribute-set) is also generated.

For libxml2, using inter paths, I do not see any improvements rather coverage is reduced as

I waste 25% of the fuzzing time analyzing the paths. Inter paths can not find any rare inputs

as it goes deep inside each and every procedure. Some of these procedures being analyzed

for rare paths do not contain any complex program checks and due to exponential increase in

the number of paths, it wastes time and cannot analyze significant procedures that contains

complex program checks. Hence, the identified rare paths based on inter-paths are not actually

rare paths for libxml2 and guiding concolic execution using these rare paths does not generate

rare inputs that can improve coverage performance.

Identifying rare paths based on intra paths for libxml2 can generate an input containing the

77

Rare-path Guided Fuzzing Chapter 4

(a) cJSON (b) libxslt (c) libxml2

Figure 4.5: Coverage improvement comparison between different types of path-guided fuzzing.
II-paths can generate more number of rare inputs compared to both intra and inter paths within
a given amount of time and hence highest edge coverage is achieved by II-path guided fuzzing.

specific values: DOCTYPE and hence, I see coverage improvement. It can generate DOCTYPE as the

branch conditions comparing to this specific value were inside the initial starting procedure. II-

paths can generate inputs containing specific values: DOCTYPE, ATTLIST, ENTITY and NOTATION.

These inputs help to achieve better coverage not only compared to AFL++ (20.35%) but also

compared to both intra rare path (5.99%) and inter rare path (23.18%) analysis.

78

Chapter 5

Obtaining Information Leakage Bounds

via Approximate Model Counting

Quantitative information flow (QIF) techniques measure information leakage in software sys-

tems [29,34,38,40,64] where the amount of information leaked is quantified using concepts such

as channel capacity [31] and Shannon entropy [29, 34, 35, 38–40, 64]. In this chapter, I focus on

symbolic quantitative information flow analysis based on symbolic execution.

Symbolic execution can be extended using model counting constraint solvers [45–47] to

compute the probability of each execution path [19]. By tracking observable values for each

execution path and computing the probability, it is possible to quantify the information leakage

about program inputs using Shannon entropy [35,39]. However, since symbolic execution cannot

explore all program paths in general, this approach cannot be used to provide sound bounds

for the information leakage. Furthermore, model counting constraint solvers may not be able

to provide a precise count for each constraint [48, 49], which can also lead to imprecision in

analysis, and loss of soundness. In this chapter, I present techniques that, under both of these

circumstances, still compute sound upper and lower bounds for the information leakage.

Below, I first provide an overview of the problem I address in this chapter (Section 5.1) and

79

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

1 int compare(char *h, char *l) {
2 int i = 0, res;
3 while(h[i] == l[i]) {
4 if(h[i] == ’\0’ && l[i] == ’\0’)
5 break;
6 i++;
7 }
8 res = h[i] - l[i];
9 if(res == 0) return 0;

10 else if(res < 0) return -1;
11 else return 1;
12 }

Figure 5.1: Lexicographical comparison of strings in C

symbolic QIF analysis (Section 5.2). Then, I present my contributions which are: i) A framework

that reduces finding sound bounds for information leakage in software to optimization problems

(Section 5.3); ii) Solving the resulting optimization problems (Section 5.4); iii) Implementation

of my approach (Section 5.5); and iv) Experimental evaluation of my approach (Section 5.6).

5.1 Overview

Consider the function for lexicographical string comparison in C (Fig. 5.1) with two inputs h

and l. Let us assume that h is a secret input (i.e., a high-security input value), and l is a public

input (i.e., a low-security input value). The comparison between h and l is done character by

character. If all the characters of the input strings match, the function returns 0. But, if there

is a mismatch, the function checks the mismatched characters to determine the lexicographical

order and returns either -1 or 1 based on the order.

Note that the number of times the while loop body in the compare function is executed

depends on the length of the matching prefix between h and l. If an attacker can differentiate

execution paths by observing their execution time, they might be able to infer the length of the

matching prefix between h and l, corresponding to a timing side-channel.

Using symbolic execution and a static cost model to track the observable values (for ex-

ample, number of instructions executed for a path as an estimation of the execution time), I

80

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

can automatically generate the path constraints with different costs and partition the execu-

tion paths based on the observable values. Let us call the disjunction of the path constraints

with equivalent (i.e., indistinguishable) observation values the observation constraint for that

observation. Observation constraints partition the domain of the secret input based on different

observable values.

For simplicity, let us assume that h and l are strings of length 4, h is symbolic and value

of l is the string "info" which results in 9 execution paths for the compare function. Based on

the observable values, and assuming that two execution paths are distinguishable if they have

observable values with a difference of at least 5 units, 9 path constraints are combined into 5

observation constraints.

In terms of quantifying information leakage, I can first note that there are 5 distinguishable

observable values that partition the secret domain. Based on this, I can compute an upper bound

for information leakage, called channel capacity, which is log2 5 = 2.32 bits. Channel capacity

provides an upper bound for Shannon entropy and hence provides a sound upper bound for

leakage.

By computing the probability of observing each observable value, and considering the par-

titioning of the input domain based on the observable values, it is possible to quantify the

information leakage in terms of Shannon entropy.

Let ψi denote the observation constraint for the ith observation, and ci denote the model

count (i.e., the number of satisfying solutions) for the observation constraint ψi. Assuming

strings of length 4, the domain size (D) for the inputs is 2564 = 4294967296 (4 characters for

h). Probability of the ith observation is computed by dividing ci by D. Table 5.1 shows path

constraints (ϕj), model counts (ci) and the observation probabilities (ci/D) corresponding to the

observation constraints (ψi) for the compare function. Using the probabilities, the information

leakage can be calculated as 0.037 bits in terms of Shannon entropy.

There are two issues that can make this analysis approach unsound. First, since, symbolic

81

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Table 5.1: Probabilistic symbolic execution results and observables for the compare function.

j Path Constraint i Obs. Model
Count Probability

1 h[0] ̸= i ∧ h[0]− i < 0 1 57 4278190080 0.996092 h[0] ̸= i ∧ h[0]− i > 0
3 h[0] = i ∧ h[1] ̸= n ∧ h[1]− n < 0 2 83 16711680 0.003894 h[0] = i ∧ h[1] ̸= n ∧ h[1]− n > 0

5 h[0] = i ∧ h[1] = n ∧ h[2] ̸= f∧
h[2]− f < 0 3 109 65280 0.00001

6 h[0] = i ∧ h[1] = n ∧ h[2] ̸= f∧
h[2]− f > 0

7 h[0] = i ∧ h[1] = n ∧ h[2] = f∧
h[3] ̸= o ∧ h[3]− o < 0 4 135 255 5.94× 10−8

8 h[0] = i ∧ h[1] = n ∧ h[2] = f∧
h[3] ̸= o ∧ h[3]− o > 0

9 h[0] = i ∧ h[1] = n ∧ h[2] = f∧
h[3] = o ∧ h[3]− o = 0

5 127 1 2.32× 10−10

execution cannot guarantee coverage of all paths, the reported leakage may not be accurate.

For example, for the compare function, assume that two of the paths, say paths 8 and 9, are

not explored during symbolic execution, can I provide a sound bound for information leakage

in such a scenario? Second, model counting constraint solvers cannot always provide a precise

count. For example, assume that for observation 2, instead of reporting a count of 16711680,

model counting constraint solver reports that the count is between 15192436 and 18382848. Can

I provide a bound for information leakage in such a scenario?

For the compare function, Figure 5.2 and 5.3 show how entropy bound (red color represent-

ing upper bound and blue color representing lower bound) changes according to approximation

tolerance of exact model count and percentage of input space unexplored, respectively. For an

approximation tolerance ϵ, the given upper bound of the model count is guaranteed to be less

than or equal to (1 + ϵ)ci and the given lower bound is guaranteed to be greater than or equal

to ci/(1 + ϵ).

My main technical contribution in this chapter is to present a framework and techniques that

compute sound upper and lower bounds for information leakage in both of these two scenarios

and their combination (i.e., the information leakage is guaranteed to be within the bounds I

compute).

82

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Figure 5.2: Entropy bounds vs. model count
approximation

Figure 5.3: Entropy bounds vs. incomplete
path coverage

5.2 Symbolic QIF Analysis

Symbolic Quantitative Information Flow (QIF) analysis has three components: 1) proba-

bilistic symbolic execution via model counting, 2) extending symbolic execution via observable

tracking, and 3) information theoretic analysis using Shannon entropy.

Algorithm 4 ProbabilisticSymbolicExecution(P)

1: Φ← ∅
2: Φ← SymbolicExecution(P)
3: D ← Φ

4: for ϕi ∈ Φ do
5: ci ← ModelCount(ϕi)
6: pi ← ci

D

7: p← p ∪ {pi}
8: return p

Probabilistic symbolic execution (Algorithm 1) is an extension of symbolic execution that

computes probabilities of program paths [19]. Symbolically executing a program P using a

symbolic execution engine I can collect a set of path conditions Φ where ϕi ∈ Φ represents the

ith path condition.

In probabilistic symbolic execution, model counting constraint solvers are used to compute

path probabilities. A model counting constraint solver computes the number of values (models)

that satisfy a given constraint. Using a model counting constraint solver, I can compute the

83

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

number of input values that satisfy a path condition. The number of satisfying inputs ci for the

ith path condition ϕi is divided by the domain size of the inputs (D) to compute the execution

path probability pi = ci
D .

Algorithm 5 ExtendedSymbolicExecution(P)

1: Ψ← ∅
2: (Φ,O, obs)← SymbolicExecution(P)
3: for o ∈ O do
4: ψo ←

∨
ϕ∈Φ:obs(ϕ)∼o ϕ

5: Ψ← Ψ ∪ {ψo}
6: return Ψ

In order to quantify the information leakage, during symbolic execution, I need to keep

track of either a main-channel observable or a side-channel observable for each path. For main-

channels, I need to keep track of the concrete returned value from a program. For timing

side-channels, I need to model the execution time of the function. This is typically done by

keeping track of the number of instructions executed [39, 40,95]. I assume that the observables

are noiseless, i.e., multiple executions of the program with the same input value will result in

the same observable value.

I extend symbolic execution (Algorithm 5) to return the set of possible observations O, and a

function obs that maps each path constraint ϕ ∈ Φ to a corresponding observation o ∈ O. Since it

is not possible to extract information from program paths that have indistinguishable observable

values, I combine observationally equivalent path constraints via disjunction (Algorithm 5, line

4), where o and o′ are in the same equivalence class (o ∼ o′) if and only if |o − o′| < δ,

i.e., the difference between them is below a given threshold. For example, path 1 and 2 in

Table 5.1 are merged as both these paths have the same observable value (57), and, therefore,

are indistinguishable. The resulting observation constraints (Ψ) characterize the information

flow channel of the program.

With the set of observation constraints Ψ, I can transform Algorithm 4, by replacing the set

84

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

of path constraints Φ by the set of observation constraints Ψ. Then, lines 4 to 8 compute the set

of observation probabilities (rather than the path probabilities) where ith observation probability

is represented as p(oi). Table 5.1 shows model counts for the collected observation constraints

and observation probabilities considering a domain size of 2564 for the string compare example

in Figure 5.1.

Information Entropy. I use Shannon entropy [29,96] to measure the amount of information

leaked about the secret input by program P from the observable values produced by P . Assum-

ing a finite input domain, uniform distribution of program inputs, and a deterministic program,

I define the Shannon entropy H of a program P as:

H(P) =
∑
oi∈O

p(oi) log2
1

p(oi)
(5.1)

where p(oi) is the probability of observing oi after executing P (from here on, all logarithms are

assumed to be base 2), and I compute these probabilities using probabilistic symbolic execution

with model counting as described above. Given observation constraints Ψ = {ψ1, ψ2, . . . , ψn},

let ci be the model count for ψi, I can plug p(oi) = ci/D into Equation (5.1) to obtain

H(P) =

n∑
i=1

ci
D

log
D

ci
(5.2)

As I discuss in the next section, the entropy computed using this approach can be inaccurate

(i.e., unsound) due to limitations of symbolic execution technique and model counting constraint

solvers. My main contribution in this chapter is to provide techniques that compute sound

bounds for information leakage by extending the basic symbolic QIF analysis approach outlined

above.

Channel Capacity. A straightforward upper bound for Shannon entropy is the channel ca-

pacity [96]. For a program P , the worst case information leakage (i.e., the highest information

leakage) occurs when all observations are equally likely: A uniform distribution. In this case

85

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

5

10

15

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

5

10

15

Figure 5.4: Model counts (ci) for the 10 path constraints must sum to 60 and be between 5 and
15, upper and lower bounds as red dotted lines. Left: a solution for ci that maximizes entropy.
Right: a solution that minimizes entropy.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

5

10

15

20

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

5

10

15

20

Figure 5.5: Model counts (ci) for 10 path constraints must sum to 100. All have different
upper and lower bounds (red dotted lines), sorted by lower bound. Left: a solution for ci that
maximizes entropy. Right: a solution that minimizes entropy.

Equation (5.2) simplifies to log |Ψ|, where |Ψ| is the number of observation constraints. Thus

I define the channel capacity of a program P to be CC(P) = log |Ψ|. By the channel capacity

theorem I know that H(P) ≤ CC(P).

5.3 Bounding Information Leakage

I now describe the analysis that take into account both reasons for potential unsoundness

in measuring information leakage: (1) incomplete program path coverage and (2) approximate

model counts. I begin with the simplest case in which coverage is complete and counts are

exact, then move on to explain how to achieve sound bounds on information leakage (where the

information leakage is guaranteed to be within the upper and lower bounds that I compute) in

spite of the two challenges to soundness.

86

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Full Path Coverage, Exact Counts

In this scenario, symbolic execution has performed an exhaustive exploration of the program

paths and all model counts are exact. Hence, assuming deterministic program behavior and

uniform distribution of program inputs, the probability of each observation is exactly known:

pi = ci/D. In this case I apply Equation (5.1) to the probability distribution on observations

induced by the model counts to compute the information leakage. This approach has been

implemented and used in several related works [29,30,34,39,40].

Full Path Coverage, Approximate Counts

Suppose symbolic execution is able to explore all paths, but the model counts are not

known precisely. For each model count ci I know upper (ui) and lower (li) bounds on the count.

Shannon entropy is still given by Equation (5.1), but now each ci varies over a constrained

range. Instantiating each ci by different values within the allowable range will result in a

different leakage value. Therefore, I find the values of ci that will maximize and minimize H by

solving two constrained optimization problems:

max
{ci}

n∑
i=1

ci
D

log
D

ci

s.t. li ≤ ci ≤ ui,∑
i

ci = D

min
{ci}

n∑
i=1

ci
D

log
D

ci

s.t. li ≤ ci ≤ ui,∑
i

ci = D

Techniques for solving these optimization problems are given in the next section. I first give

two small examples.

Example 1. Consider a program with 10 path constraints and for each constraint my ap-

proximate model counter has determined that 5 ≤ ci ≤ 15. Assume domain size D = 60. I

seek distributions that minimize and maximize the entropy. A well-known fact is that uniform

distributions maximize entropy, so any uniform distribution resulting from counts between 5

87

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

and 15 will give an entropy of H = log2(10) = 3.322 bits of information. One solution where

ci = 6 is shown in Figure 5.4 (left), but any uniform count for all path constraints would have

also maximized the entropy. To minimize the entropy, I want to find a distribution that is, in

some sense, as far from uniform as possible. In the example scenario, this happens when one

of the counts is maximized and the rest are minimized, Figure 5.4 (right), giving an entropy of

H = 3.189 bits.

Example 2. Now suppose that my approximate model counter gives different upper and lower

bounds for each path constraint (Figure 5.5, left). An entropy-maximizing distribution is one

that gets as close to uniform as possible under the constraints, resulting in H = 3.307. An

entropy-minimizing distribution is one that is as non-uniform as possible (Figure 5.5, right)

which occurs when all of the counts except one achieve either their minimum or maximum value

within their bounds. In this case H = 3.140.

Partial Path Coverage, Exact Counts

As is typical in symbolic execution, I place a bound on the exploration depth of the execution

tree, and so some feasible program paths may not be explored. Yet, I would like to still provide

sound upper and lower bounds on the expected information leakage. Here I cover this case when

model counts are exactly known.

Suppose symbolic execution has provided observation constraints Ψ = {ψ1, ψ2, . . . , ψn}

which constitute partial knowledge of the possible program observations. Given a constraint

ψin on the allowable inputs of the program, I characterize the inputs that induce the remaining

unexplored program behavior as ψrem = ψin ∧ ¬
∨
ϕi∈Ψ ϕi. I am then in a position to consider

two extreme cases.

Case 1: Sound upper bound. Information leakage will be maximized when all possible pro-

gram behaviors characterized by ψrem induce unique and previously not discovered observations,

88

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

occurring when all remaining inputs result in different observations with respect to the already

discovered observations, mapping directly to the sensitive input. Letting crem be the model

count of ψrem, I adjust Equation (5.1) by introducing a second term to account for the entropy

contribution from unexplored program behavior. A sound upper bound on information leakage

is then given by

n∑
i=1

ci
D

log
D

ci
+

crem
D

logD

This scenario will result in the largest possible information gain because the conditional

Shannon entropy of X given Y is maximized when X is uniformly distributed [96]. Thus, I

assume the widest possible uniform distribution of undiscovered observations: there are crem

possible undiscovered observations, all of which are equally likely. This gives the sound upper

bound.

Case 2: Sound lower bound. An attacker gains the least amount of information when

the yet-to-be-discovered program behaviors induce observations that are maximally redundant

with respect to the already discovered observations: that is, all possible program behaviors

characterized by ψrem induce indistinguishable observation to one of the previously discovered

observation omax, where omax is the observation that has the largest model count cmax. Given

all the model counts ci, I update the new counts c′i as c′i = ci for all i except c′max = cmax+ crem.

A lower bound for information leakage is given by Equation (5.1) using c′i in place of ci.

To see why, consider Equation (5.1) adjusted as above where c′max = cmax + crem. It is

straightforward to show that for any ci other than cmax, letting c′i = ci + crem results in higher

entropy. This claim follows from the fact that all ci ≥ 1, the monotonicty of the function

f(x) = x log x when x ≥ 1 (i.e. f(x) < f(x + δ) for δ > 0), and rote manipulation of

summations and logarithms. Note that, in this case, it is unnecessary to construct and count

ψin since crem = D −
∑

i ci. However, this construction will help us generalize to the case of

incomplete path coverage and approximate counts.

89

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Partial Path Coverage, Approximate Counts

Finally, I address the case in which symbolic execution does not perform a full exploration,

and model counts are approximated by interval ranges. I use ψrem and crem as before. Again,

there are two extreme cases to be analyzed that correspond to the sound upper and lower bounds

on information leakage.

Case 1: Sound upper bound. Here I need to maximize over all possible feasible values of

model counts ci that are within the model counting lower and upper bounds, while also taking

into consideration the number of observations corresponding to possible behaviors that have not

been explored by symbolic execution. Each input with crem may induce one of the behaviors

already observed, or it may induce new behavior. Therefore, I define new variables c′i, where c′i is

the number of inputs associated with crem that induce behavior i. Further, crem is approximate.

Therefore, the following problem optimizes over all values of ci, c′i, and crem. The first sum

is for entropy contribution of observables already observed, the second sum is for the entropy

contributions from new observations that could be induced from the inputs associated with crem,

with a maximum of crem new observations.

max
{ci, crem, c′i}

n∑
i=1

ci + c′i
D

log
D

ci + c′i
+

n+crem∑
i=n+1

c′i
D

log
D

c′i

s.t. li ≤ ci ≤ ui, lrem ≤ crem ≤ urem,∑
i

ci + crem = D,
∑
i

c′i = crem

Case 2: Sound lower bound. The optimization problem corresponding to minimizing the

entropy is the the corresponding minimization problem to the first optimization problem from

case 1.

90

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

min
{ci, crem, c′i}

n∑
i=1

ci + c′i
D

log
D

ci + c′i
+

n+crem∑
i=n+1

c′i
D

log
D

c′i

s.t. li ≤ ci ≤ ui, lrem ≤ crem ≤ urem,∑
i

ci + crem = D,
∑
i

c′i = crem

5.4 Optimization for Bounding Leakage

I show how to solve the constrained optimizations problems for bounding information leakage

using standard techniques and novel algorithms. I generally only present solutions to optimiza-

tion problems corresponding to the case of approximate counts and full path coverage as I

have shown that all other optimization problems reduce to those. I first apply the standard

techniques of hill climbing and polyhedron vertex enumeration to solve the maximization and

minimization problems respectively. Then, I present a greedy approach to the maximization

problem and a branch and bound approach to the minimization problem. Finally, I present one

set of algorithms that achieve non-tight bounds in O(n) time in the case of unexplored paths

and approximate counts.

Upper bound computation using Hill Climbing. Shannon entropy is a concave function

with respect to event probabilities [97, 98]. There is only one local maximum for a concave

function and hence, I use hill-climbing algorithm to find the maximum entropy value. The

algorithm is guaranteed to find the maximum entropy when it converges. I start with a set

of counts that satisfies the constraint li ≤ ci ≤ ui and the constraint
∑n

i=1 ci = D. Entropy

is maximized when the probability distribution is balanced and this heuristic helps us to find

the initial set of counts. Then, I repeatedly find the neighbors to the current set of counts and

advance to the neighbor that yields the maximum entropy.

91

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Convex polyhedron for lower bound computation Observe that the linear constraints on

the counts, li ≤ ci ≤ ui and
∑

i ci = D, define a convex polyhedron. It has been demonstrated

that the minimum of a concave function whose feasible region is a convex polyhedron always

occurs at one of the extreme points of the polyhedron [99]. Hence, searching through the extreme

points of the polyhedron enables us to find a sound lower bound for information leakage. I use

Parma Polyhedra Library [100] to get the extreme points of the polyhedron defined by the

above constraints and search through all the extreme points of the polyhedron to find the point

that yields the lowest Shannon entropy, which provides the sound lower bound for information

leakage.

I call the techniques to compute entropy bounds HCP (Hill climbing algorithm to compute

upper bound and Convex Polyhedron to compute lower bound of information leakage.

5.5 Implementation

I have implemented I techniques using symbolic execution tool KLEE [101], Automata-Based

Model Counting constraint solver (ABC) [46], and an approximate model counter SearchMC [49].

ABC supports constraints in linear integer arithmetic and string theory. ABC computes

exact model counts for linear integer arithmetic constraints and a subset of string constraints,

and it provides upper bounds for combinations of string and integer constraints. By default,

symbolic constraints generated in KLEE are in bit-vector theory. I adopted an extension of

KLEE [61] which generates linear integer arithmetic constraints instead of bit-vector constraints.

In this work, I use ABC only on linear integer arithmetic constraints generated using the integer

extension of KLEE. Hence, for the programs that integer extension of KLEE can handle, when

model count is computed using ABC, I get the exact model count, and the information leakage

computed for the programs are exact if all the program paths are explored using symbolic

execution. However, the integer extension of KLEE can not generate linear integer arithmetic

92

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

constraints for all programs in general. For programs whose path constraints can only be

represented using bit-vector theory, I use SearchMC to get an approximate count, a lower and

an upper bound of the model count. SearchMC is an approximate model counter and it usually

provides a lower and an upper bound of the log of the exact count. In specific cases, it provides

an exact count. It can also provide probabilistically sound lower and upper bounds of the count

if specific conditions are satisfied in the algorithm. I have integrated both ABC and SearchMC

model counting tools in KLEE. Hence, I technique is capable of supporting all programs that

can be analyzed by KLEE.

In addition to generating path constraints using KLEE, I track the number of bytecode

instructions executed as observable in order to collect observation constraints.

Optimization techniques for sound symbolic QIF are implemented using a Python script

which takes as input observation constraints collected using KLEE, and uses ABC and SearchMC

for model counting. I use Parma Polyhedra Library [100] and its python interface PyParma [102]

to get the extreme points of the polyhedron.

5.6 Experiments

Benchmarks I experimentally evaluate My techniques on 3 different sets of benchmarks

collected from 3 earlier research works related to QIF analysis. The first set of benchmarks

have been used in evaluating techniques to synthesize attacks for programs vulnerable to side-

channels [43] (from Password Checker Insecure to Edit Distance in Table 5.2). The second set of

benchmarks have been used to evaluate techniques to prove absence of timing side-channels [103].

The third set of benchmarks have been used for evaluating techniques to measure channel capac-

ity [28]. This set of benchmarks consists of 8 programs representing information flow through

the main channel (input to output) of the program. Note that, programs from the former two

set of benchmarks are originally written in Java. For My evaluation, I convert all these programs

93

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Table 5.2: Channel capacity and information leakage bound using exact model counts and
approximation

Benchmarks
Secret
(high)
inputs

Secret
Dom-
ain

(bits)

Public
(low)
inputs

No. of
Path

Const–
raints

No. of
Obs.

Constr-
aints

Channel
Capa
-city

Leakage
Exact
Count

Leakage Approximate Count
ϵ = 0.05 ϵ = 0.10 ϵ = 0.25

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Pass Check Insec h 128
l = "JYgxYAHjiuJ3v3xi" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
l = "L34T6FLs4EUmEbQR" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
l = "9bViPfBFNZe799kx" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045

Pass Check Sec h 32
l = "aj3n" 16 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
l = "WO14" 16 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
l = "wH24" 16 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

String Equals h 128
l = "5dRb2Q8tDKehCfR6" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
l = "8PkRLio390Pur5Ey" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
l = "1SQKw52ZMXy8nsrh" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045

Char Inequality h 4
l = ’a’ 2 2 1.000 0.960 0.945 0.970 0.932 0.980 0.887 0.998
l = ’m’ 2 2 1.000 0.986 0.974 0.993 0.962 0.998 0.928 1.000
l = ’z’ 2 2 1.000 0.999 0.995 1.000 0.987 1.000 0.960 1.000

String Char Inequality h 64
l = "abcdefgh" 17 17 4.087 0.995 0.980 1.009 0.964 1.021 0.917 1.043
l = "mmmmmmmm" 17 17 4.087 1.022 1.010 1.031 0.998 1.038 0.957 1.045
l = "wxyzwxyz" 17 17 4.087 0.999 0.995 1.000 0.987 1.000 0.960 1.000

IndexOf h 64
l = "g" 9 9 3.170 0.291 0.279 0.303 0.268 0.315 0.241 0.351
l = "5" 9 9 3.170 0.291 0.279 0.303 0.268 0.315 0.241 0.351
l = "H" 9 9 3.170 0.291 0.279 0.303 0.268 0.315 0.241 0.351

Compress h 32
l = "ti9P" 18 18 4.170 0.037 0.036 0.039 0.034 0.040 0.031 0.045
l = "Z3lr" 18 18 4.170 0.037 0.036 0.039 0.034 0.040 0.031 0.045
l = "ET4P" 18 18 4.170 0.037 0.036 0.039 0.034 0.040 0.031 0.045

Edit Distance h 32
l = "znmd" 497 412 8.687 0.588 - 0.613 - 0.637 - 0.710
l = "fee" 187 150 7.229 0.441 - 0.460 - 0.478 - 0.533
l = "na" 42 33 5.044 0.286 - 0.298 - 0.310 - 0.345

sanity_notaint_unsafe sec 8 - 128 128 7.000 4.467 - 4.467 - 4.467 - 4.467
sanity_straightline_unsafe a,b 64 - 3 2 1.000 0.811 0.792 0.830 0.773 0.849 0.722 0.896
sanity_unsafe a,b 16 - 130 129 7.011 2.561 - 2.661 - 2.760 - 3.084
moresanity_arr_unsafe taint 32 - 2 2 1.000 1.000 0.998 1.000 0.994 1.000 0.970 1.000
moresanity_lb_unsafe taint 8 a = 10 3 3 1.585 1.313 1.296 1.326 1.276 1.337 1.220 1.364

a = 126 3 3 1.585 1.313 1.296 1.326 1.276 1.337 1.220 1.364
a = -56 3 3 1.585 1.313 1.296 1.326 1.276 1.337 1.220 1.364

login_unsafe
real_
pass-
word

128
gs = "7CoFDeeua8ybpDCO" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
gs = "v8u7P3mKW2dxcJLj" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
gs = "D1gZ7GeWEPmp4Flv" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045

timing_login_unsafe u 32
p = "BrT9" 21 17 4.087 0.147 0.141 0.153 0.135 0.159 0.121 0.177
p = "ASfd" 21 17 4.087 0.147 0.141 0.153 0.135 0.159 0.121 0.177
p = "pPKG" 21 17 4.087 0.147 0.141 0.153 0.135 0.159 0.121 0.177

user_pwequal_unsafe a 128
b = "8KWoIGaFRtUjGGtE" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
b = "8DverO09XIBsk5zF" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045
b = "lVDDySiw1Cb001qw" 17 17 4.087 0.037 0.036 0.039 0.034 0.040 0.031 0.045

copy h 8 - 256 256 8.000 8.000 - 8.000 - 8.000 - 8.000
implicit h 8 - 8 8 3.000 0.221 0.000 0.221 0.000 0.221 0.000 0.221

to C as My current implementation supports programs written in C only. I implement neces-

sary functions from different Java classes in C. These modifications neither provide additional

benefit to the proposed technique nor affect the evaluation results. I select these benchmarks

as I believe that these programs represent a wide variety of scenarios for QIF analysis. My

evaluation results for the 3 sets of benchmarks are shown in Tables 5.2 and 5.3.

Experimental Setup For all the experiments, I use a desktop machine with an Intel Core

i5-2400S 2.50 GHz CPU and 32 GB of DDR3 RAM running Ubuntu 18.04 LTS, with a Linux

94

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Table 5.3: Channel capacity and sound information leakage bound using an approximate model
counter

Bench-
marks

Secret
Inputs

Secret
Domain
(bits)

Public
Inputs

No. of
Path
Cons.

No. of
Obs.
Cons.

Channel
Capa-
city

Information
Leakage

Lower
Bound

Upper
Bound

modPow1_unsafe expo-
nent 16

base = 4378,
mod = 10000 18 18 4.170 1.855 2.119

base = 43780,
mod = 50000 18 18 4.170 1.848 2.127

base = 8796,
mod = 328765 18 18 4.170 1.856 2.198

modPow2_unsafe expo-
nent 16

base = 54,
mod = 4000 18 18 4.170 1.855 2.122

base = 4378,
mod = 10000 18 18 4.170 1.859 2.117

base = 287,
mod = 6098 18 18 4.170 1.861 2.114

gpt14_unsafe b 10
a = 54, c = 4000 1024 236 7.883 7.509 7.509
a = 34, c = 100 1024 124 6.954 6.394 6.394

a = 2345,
c = 78350 1024 63 5.977 4.854 4.854

k96_unsafe x 12

y = 5836,
n = 3268 4096 51 5.672 4.342 4.342

y = 6736928,
n = 1073741824 4096 51 5.672 4.342 4.342

y = 47, n = 3789 4096 51 5.672 4.342 4.342
masked_copy h 32 - 16 16 4.000 4.000 4.000
checked_copy h 32 - 17 16 4.000 1.1E-7 1.1E-7
pop_count h 32 - 33 33 5.044 - 3.656
mix_copy h 8 - 256 256 8.000 8.000 8.000
div_2 h 8 - 128 128 7.000 7.000 7.000
mul_2 h 8 - 256 256 8.000 8.000 8.000

4.15.0-20 64-bit kernel.

Experimental Results I now discuss My experimental results from the perspectives of

bounding the information leakage given approximation of model count and incomplete path

coverage. I compare the efficiency and precision of multiple algorithms in computing the lower

and upper bound of the information leakage.

First, I experimentally compare the precision of channel capacity and Shannon entropy in

quantifying information leakage. Next, I show results for lower and upper bound using the

Shannon entropy based measure and considering full path coverage and approximation of model

count. I also show results to compare the time required by different algorithms to compute

the entropy bounds. Then, I show results from different perspectives (entropy bound, model

95

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

counting time, entropy bound computation time) considering both approximation of model

counting and incomplete path coverage (percentage of input space unexplored).

Channel capacity vs Shannon entropy

Channel capacity makes worst case assumptions about the probability distributions of the

inputs. One of the recent works [31] argues channel capacity as the measure for precise com-

putation of information leakage and provides an automatic and scalable manner for computing

it. My experimental results show that Shannon entropy provides a more precise assessment

of information leakage for analyzing quantitative information flow of a program compared to

channel capacity.

For majority of the programs across 3 benchmarks as show in Tables 5.2 and 5.3), Shannon

entropy based information leakage provides a significantly tighter bound compared to the channel

capacity even when approximate counts are used. Out of 28 programs in total, the upper

bound for information leakage computed using Shannon entropy is less than or a tighter bound

compared to the channel capacity for 20 programs. For 10 out of these 28 programs, Shannon

entropy based leakage is an order of magnitude lower than the channel capacity. Channel

capacity and Shannon entropy computes same bits of information leakage for some programs

in the benchmarks. This is because all the observations equally partition the input domain.

For examples where Shannon entropy based leakage is order of magnitude lower than channel

capacity is due to the fact that channel capacity considers only the number of observations

whereas actually what happens is among all the observations one of the particular observation

covers most of the input cases and hence distributes the domain in a very imbalanced manner.

Though, channel capacity identifies these programs as very leaky, in reality, these programs are

leaking very small amount of information. This demonstrates that, using channel capacity some

programs could be marked as vulnerable to information leakage based on a given threshold,

even though the leakage may be below the threshold if one computes the leakage in terms of

96

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

Shannon entropy.

Computing channel capacity is easier compared to Shannon entropy as it does not need

to compute individual observation probabilities, rather it is sufficient to compute the number

of observations and report the logarithm of the number of observations. On the other side,

Shannon entropy based analysis provides expected information gain about the input and needs

to compute each and every observation probabilities. Hence, Shannon entropy measure for

information leakage computation is computationally expensive compared to channel capacity.

Leakage computation and low inputs

In addition to high (secret) inputs, programs can also have low (public) inputs. I now discuss

different scenarios with respect to low inputs in the program (as demonstrated by the programs

I use in My experiments):

No low inputs: Program does not have any low inputs and leakage depends only on the

high inputs. For example, sanity_notaint_unsafe in Table 5.2 and masked_copy in Table 5.3.

Leakage is independent of low inputs: Program has low inputs but observation proba-

bility distribution does not depend on the low inputs. As a result, same amount of information

is leaked for any low input provided to the program. For example, Pass Check Insecure in

Table 5.2 and k96_unsafe in Table 5.3.

Leakage depends on low inputs: Program has low inputs and observation probability

distribution is different for different low inputs. Hence, depending on the low inputs provided

to the program, different amount of information is leaked. For example, Char Inequality in

Table 5.2 and modpow1_unsafe in Table 5.3. Looking into the Char Inequality program, I see

that setting the high input as symbolic and symbolically executing the program for different low

inputs, two observation constraints are generated. But, for different low inputs, the constraints

are different. For example, setting l (low input) as character ’a’, two observation constraints

are h > a and h ≤ a. For a domain size of 256 for h, model count for the two constraints are 98

97

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

and 158 respectively and hence observation probability distribution is [0.38, 0.62] and hence the

amount of leakage is 0.960. Similarly, for low input ’m’, probability distribution is [0.43, 0.57]

and amount of leakage is 0.986 and for low input ’z’, probability distribution is [0.48, 0.52] and

leakage is 0.999.

Finding a low input value that maximizes information leakage is called attack synthesis. It is

possible to combine attack synthesis techniques with the techniques I present in this chapter to

find the low inputs. By maximizing and minimizing the leakage lower and and upper bounds of

leakage can be obtained for low dependent programs. Attack synthesis based on parameterized

model counting and numerical optimization has been developed in [104]. I have developed an

attack synthesis technique based on metaheuristic search [43] which I will discuss in detail in

chapter 6.

Table 5.4: Comparison between channel capacity and sound information leakage bounds using
HCP for login_unsafe example from Blazer benchmarks

HCPunexp.
input
space (%)

ϵ Lower
Bound

Upper
Bound

Channel
Capacity

0.05 0.036 0.039 123.608
0.10 0.034 0.040 124.5419.09× 10−11

0.25 0.031 0.045 125.678
0.05 0.036 0.039 123.608
0.10 0.034 0.040 124.5415.96× 10−6

0.25 0.031 0.045 125.678
0.05 0.000 0.531 123.716
0.10 0.000 0.556 124.5963.91× 10−1

0.25 0.000 0.632 125.700

Full Path Coverage, Approximate Count

Here, I provide results to show the changes in lower and upper bound of the information

leakage based on different approximation tolerance (ϵ) values. In Table 5.2, I show exact in-

formation leakage given exact model counts that I get using ABC [46]. Then, given an exact

count (c) of an observation constraint, I use different values of approximation tolerance (ϵ) to

98

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

generate approximate counts using formulas (1 + ϵ)ci and ci/(1 + ϵ) and compute upper and

lower bounds for information leakage using these approximate counts. As I expect, I find that

increasing the value of ϵ decreases the lower bound I compute for information leakage and in-

creases the upper bound I compute for information leakage, overall computing looser bounds

of the exact information leakage. For all programs, the computed information leakage bounds

contain the exact information leakage as expected.

For 10 out of the 28 programs, it is not possible to compute exact information leakage

using exact model counting since ABC can not handle non-linear constraints generated from

these programs. I use the approximate model counter SearchMC [49] for these programs and

show results in Table 5.3. Note that, lower and upper bounds of the model count computed by

SearchMC are probabilistically sound. I use confidence level of 0.95 and threshold value of 0.5

for SearchMC to collect the counts. I ran each program 5 times using SearchMC and report the

average value.

Incomplete path coverage, approximate count

Till now, I have shown results for computing sound bounds of information leakage given

lower and upper bounds of the model count considering complete path coverage by symbolic

execution. I now present and discuss results for computing sound lower and upper bounds of

information leakage considering path coverage is incomplete and hence all of the input space is

not explored. From the results, I find that as percentage of unexplored input space increases,

leakage bounds get looser and looser, similar to case with the increasing approximation tolerance

(ϵ). This pattern of result (increase in the range of entropy bound depending on both model

count approximation and incomplete path coverage) exists across all programs as I expect.

Below I discuss the results for the login_unsafe example from the Blazer benchmark.

In Table 5.4, I also present entropy bounding comparison between HCP and channel ca-

pacity. The results clearly indicate that the information leakage bounds I compute is orders of

99

Obtaining Information Leakage Bounds via Approximate Model Counting Chapter 5

magnitude lower compared to information leakage computed by channel capacity even though

the complete input space is not explored and the model count is an approximation of the exact

model count.

Overall, experimental results show that the techniques I developed can deal with different

scenarios arising for sound analysis of quantitative information flow and these techniques can

be used to trade off between tightness of information leakage bound.

100

Chapter 6

Side-Channel Attack Synthesis

In this chapter, I focus on the problem of assessing side-channel vulnerabilities in software

in a quantitative manner. By synthesizing an attack based on quantification of information

leakage, I provide an exploit demonstrating the side-channel vulnerability of the function. The

synthesized attack consists of a sequence of public inputs that a malicious user can use in an

adaptive manner to leak information completely or partially about a secret in the program by

observing side-channel behavior.

Given a function that performs computation over secret values unknown to users, I synthesize

a side-channel attack against that function. Failure of the approach to find an attack increases

the confidence that the function is safe against side-channel attacks. The approach uses symbolic

execution to extract constraints that characterize the relationship between the secret values in

the program, attacker controlled inputs, and side-channel observations.

My technique can automatically synthesize side-channel attacks for programs that manipu-

late both unbounded string and numeric values [43]. I demonstrate an approach that maximizes

the information gain about the secret in each attack step and use meta-heuristics for searching

the input space during attack synthesis, resulting in a generalized attack synthesis approach.

To improve efficiency of the attack synthesis technique, I also present an incremental attack

101

Side-Channel Attack Synthesis Chapter 6

synthesis approach [44] based on incremental automata-based model counting that reuses the

results from prior attack steps in order to improve the efficiency of attack synthesis. I implement

the attack synthesis approach for Java programs using symbolic execution tool SPF and ABC

model counter and present experiments demonstrating realistic attack scenarios.

My approach consists of following two phases:

(1) Static Analysis Phase: In this phase, I perform symbolic execution on a program marking

the secret input and the attacker controlled input as symbolic. I keep track of a side-channel

observation for each path of the program, assuming that the observable values are noiseless.

Augmenting symbolic execution to a return function, I map a path constraint to an observation.

Then, I merge the path constraints with indistinguishable observation values via disjunction to

collect the observation constraints.

(1) Attack Synthesis Phase: In this phase, I fix a value for the secret, unknown to the

attacker, which I will try to reveal completely or partially at the end of the attack. I main-

tain a constraint on the secret value which is initially TRUE, representing it can be anything

from a defined finite domain. The constraint is then iteratively updated based on observation

constraints and maximization of information gain at each attack step. To compute informa-

tion gain Shannon entropy formula from information theory is used. I investigate and compare

several methods for selecting the input at each step based on meta-heuristics for maximizing

the amount of information gained and automata-based techniques for constraint solving and

model counting. My attack synthesis approach is adaptive, taking into account the information

learned about the secret in previous steps while choosing the attacker controlled input for the

next attack step; and it is incremental, re-using the results from prior iterations in order to

improve the performance of each attack synthesis step. Moreover, my attack synthesis approach

can handle unbounded string constraints in addition to linear arithmetic constraints.

After a motivating example, I will explain phases of my analysis in order, followed with

experimental evaluations and related work on quantification of information leakage, side-channel

102

Side-Channel Attack Synthesis Chapter 6

1 public Boolean checkPIN(String h, String l){
2 for (int i = 0; i < 4; i++)
3 if (h.charAt(i) != l.charAt(i))
4 return false;
5 return true;
6 }

Figure 6.1: PIN checking example.

analysis and automated synthesis of attacks.

6.1 Motivation

Motivating Example 1. Consider a PIN-based authentication function (Fig. 6.1) with inputs: 1)

a secret PIN h, and 2) a user input, l. Both h and l are strings of digit characters (“0”–“9”) of

length 4. I have adopted the nomenclature used in security literature where h denotes the high-

security value (the secret PIN) and l denotes the low-security input value, (the input that the

function compares with the PIN). The function compares the PIN and the user input character

by character and returns false as soon as it finds a mismatch. Otherwise it returns true.

This function has a timing side-channel and one can infer information about the secret h by

measuring the execution time. In this implementation of checkPIN each length of the common

prefix of h and l, the number of bytecode instructions that will be executed will differ which

may cause an observable difference in execution time. Notice that if h and l have no common

prefix, then checkPIN will have the shortest execution since the loop body will be executed

only once; this corresponds to execution of 63 Java bytecode instructions. If h and l have a

common prefix of one character, I see a longer execution since the loop body executes twice (78

instructions). In the case that h and l match completely, checkPIN has the longest execution

(123 instructions).

If I assume that differences in the number of bytecode instructions are observable by mea-

suring the execution time, then there are 5 observable values since there are 5 execution paths

103

Side-Channel Attack Synthesis Chapter 6

with different lengths, proportional to the length of the common prefix of h and l. In general,

using the number of executed bytecode instructions as a measurable observation can result in

observations that are indistinguishable in practice. Thus, I combine observations into indistin-

guishability intervals o ± δ using an observability threshold δ. For this example assume that

differences among execution path lengths are above this threshold.

Given this side-channel, an attacker can choose an input and use the timing observation

to determine how much of a prefix of the input has matched the secret. In order to automate

this process, My approach starts with automatically generating the path constraints and corre-

sponding execution costs (in terms of number of executed bytecode instructions) using symbolic

execution (Table 6.1). It merges path constraints based on the observability threshold, result-

ing in a set of observability constraints. It then uses these constraints to synthesize an attack

which determines the value of the secret PIN. I make use of an uncertainty function, based on

Shannon entropy, to measure the progress of an attack (Section 6.3). Intuitively, the attacker’s

uncertainty, H starts off at some positive value corresponding to the initial uncertainty of the

sercret, and decreases during the attack. When H = 0, the attacker has fully learned the secret

(Table 6.2).

104

Side-Channel Attack Synthesis Chapter 6

Table 6.1: Observation constraints
generated by symbolic execution of the
function in Figure 6.1.

i Observation Constraint, ψi o

1 charat(l, 0) ̸= charat(h, 0) 63

2 charat(l, 0) = charat(h, 0)∧ 78

charat(l, 1) ̸= charat(h, 1)

3 charat(l, 0) = charat(h, 0)∧ 93

charat(l, 1) = charat(h, 1)∧

charat(l, 2) ̸= charat(h, 2)

4 charat(l, 0) = charat(h, 0)∧ 108

charat(l, 1) = charat(h, 1)∧

charat(l, 2) = charat(h, 2)∧

charat(l, 3) ̸= charat(h, 3)

5 charat(l, 0) = charat(h, 0)∧ 123

charat(l, 1) = charat(h, 1)∧

charat(l, 2) = charat(h, 2)∧

charat(l, 3) = charat(h, 3)

Table 6.2: Attack inputs (l), uncertainty about the
secret (H), and observations (o). Prefix matches are
shown in bold.

Step H l o Step H l o

1 13.13 “8299” 63 15 5.906 “1392” 93

2 12.96 “0002” 63 16 5.643 “1316” 93

3 9.813 “1058” 78 17 5.321 “1308” 93

4 9.643 “1477” 78 18 4.906 “1362” 93

5 9.451 “1583” 78 19 4.321 “1378” 93

6 9.228 “1164” 78 20 3.169 “1338” 108

7 8.965 “1950” 78 21 3.000 “1332” 108

8 8.643 “1220” 78 22 2.807 “1334” 108

9 8.228 “1786” 78 23 2.584 “1333” 108

10 7.643 “1817” 78 24 2.321 “1330” 108

11 6.643 “1664” 78 25 2.000 “1335” 108

12 6.491 “1342” 93 26 1.584 “1336” 108

13 6.321 “1328” 93 27 0.000 “1337” 123

14 6.129 “1386” 93

Suppose that the secret is “1337”. The initial uncertainty is log2 10
4 = 13.13 bits of in-

formation (assuming uniform distribution). My attack synthesizer generates input “8229” at

the first step and makes an observation with cost 63, which corresponds to ψ1. This indicates

that charat(h, 0) ̸= 8. Similarly, a second synthesized input, “0002”, implies charat(h, 0) ̸= 0

and the uncertainty is again reduced. At the third step the synthesized input “1058” yields an

observation of cost 78. Hence, ψ2 is the correct path constraint to update My constraints on h,

which becomes

charat(h, 0) ̸= 8 ∧ charat(h, 0) ̸= 0 ∧ charat(h, 0) = 1 ∧ charat(h, 1) ̸= 0

I continue synthesizing inputs and updating the constraints on h, which tell us more infor-

mation about h, until the secret is known after 27 steps. At the final step, I make an observation

which corresponds to ψ5 indicating a full match and the remaining uncertainty is 0. As in this

example, the goal of My search for attack inputs is to drive the entropy that characterizes the

remaining uncertainty about the secret to 0. Thus, I propose entropy optimization techniques.

105

Side-Channel Attack Synthesis Chapter 6

This particular type of attack is called a segment attack which is known to be a serious sMy

ce of security flaws [39, 105–108], and it is exponentially shorter than a brute-force attack. My

approach automatically synthesizes a segment attack.

Motivating Example 2. Consider another example (Figure 6.2). If secret value h is lexico-

graphically smaller than user input l, the execution time of stringInequality corresponds to 47

instructions, and 62 otherwise. Symbolically executing the stringInequality method (note that,

I do not symbolically execute the compareTo method from Java’s string library but capture it

as a string constraint directly), two path constraints are inferred with distinguishable observa-

tions shown in Table 6.3. For simplicity, consider the secret domain to be from “AA" to “ZZ"

(262 = 676 strings), the secret value is “LL" and the first attack input is “AA". In Table 6.4 I

show an attack that recovers the secret in 20 attack steps.

I can generate an attack like the one shown in Table 6.4 by finding a satisfying solution (i.e.,

model) to the constraints on the low variable that is consistent with the observations about the

secret I have accumulated so far. I call this the Model-based (M) approach (see section 6.4),

and this approach does generate optimal segment attacks as I discussed above for the example

shown in Fig. 6.1. However, for the example shown in Figure 6.2 the Model-based approach

cannot generate an optimal attack.

The attack shown in Table 6.4 recovers the secret but it is not optimal in terms of the length

of the attack. In order to generate an optimal attack I have to choose an input that maximizes

the amount of information leaked in each attack step. Then, I can generate the attack shown

in Table 6.5 which is optimal and requires only 9 steps. This corresponds to a binary search,

finding the middle point to divide the domain of secret value in a balanced way. For My example,

the domain size d is 262 and taking log2 d, I get ⌈9.40⌉ = 10 attack steps in the worst case. In

order to generate the optimal attack automatically, I need to construct an objective function

(see section 6.3) characterizing the information gain for each attack step and use optimization

106

Side-Channel Attack Synthesis Chapter 6

1 public static void stringInequality(String h, String l) {
2 if(h.compareTo(l) <= 0) {
3 for (int i = 1; i > 0 ; i--);
4 } else {
5 for (int i = 5; i > 0 ; i--);
6 }
7 }

Figure 6.2: String inequality example.

techniques (see section 6.4) to maximize the objective function.

Let us have a look at the constraints on secret value h at each attack step for the optimal

attack from Table 6.6. At each attack step I gain new information about the secret value h

and a new constraint is added to the already existing constraint Ch. The constraint Ch grows

and becomes more complex in each attack step. Constraint solving and model counting are the

most expensive parts of My approach. So, if I can reuse prior solutions to constraint solving and

model counting to take advantage of the incremental nature of attack synthesis, I can increase

the efficiency of My approach. I call this approach incremental attack synthesis (see section 6.3)

and demonstrate that it improves the efficiency of attack synthesis significantly (see section 6.5).

Table 6.3: Observation constraints of the function in Figure 6.2

i ψi o

1 h ≤ l 42

2 h > l 67

Table 6.4: Non-optimal attack

Step H l o Step H l o

1 9.40 “AC" 67 11 7.56 “PJ" 42

2 9.39 “AE" 67 12 6.82 “PI" 42

3 9.39 “JZ" 67 13 6.80 “NA" 42

4 8.70 “XE" 42 14 5.70 “LZ" 42

5 8.41 “XB" 42 15 4.64 “LI" 67

6 8.40 “KQ" 67 16 4.00 “LR" 42

7 8.33 “XA" 42 17 3.00 “LK" 67

8 8.32 “KU" 67 18 2.58 “LO" 42

9 8.30 “SI" 42 19 1.58 “LM" 42

10 7.60 “KZ" 67 20 0.00 “LL" 42

Table 6.5: Optimal attack

Step H l o

1 8.40 “MZ" 42

2 7.40 “GM" 67

3 6.40 “JS" 67

4 5.43 “LI" 67

5 4.39 “MD" 42

6 3.32 “LS" 67

7 2.32 “LN" 67

8 1.00 “LK" 67

9 0.00 “LL" 42

107

Side-Channel Attack Synthesis Chapter 6

Table 6.6: Incremental nature of constraints at each step of adaptive attack.

Attack step Attack input Constraint on secret value, Ch

1 “MZ" h <= “MZ”

2 “GM" h <= “MZ” ∧ h > “GM”

3 “JS" h <= “MZ” ∧ h > “GM” ∧ h > “JS”

...

9 “LL"

h <= “MZ” ∧ h > “GM” ∧ h > “JS”∧

h > “LI” ∧ h <= “MD” ∧ h <= “LS”∧

h > “LN” ∧ h > “LK” ∧ h <= “LL”

6.2 Synthesizing Adaptive Attacks

I use a two-phase attack synthesis approach as shown in Fig. 6.3 and Algorithm 6. I consider

a function F that takes as input a secret h ∈ H and an attacker-controlled input l ∈ L and that

generates side-channel observations o ∈ O.

Static Analysis Phase. In the first phase I generate observation constraints from F as shown

in Algorithm 7. First, I perform symbolic execution on F with the secret (h) and the attacker

controlled input (l) marked as symbolic [109,110]. Symbolic execution runs F on symbolic rather

than concrete inputs resulting in a set of path constraints Φ. Each ϕ ∈ Φ is a logical formula

that characterizes the set of inputs that execute some path in F . During symbolic execution,

I keep track of a side-channel observation for each path. For timing side-channels, as in other

works in this area, I model the execution time of the function by the number of instructions

executed [39,95,104]. I assume that the observable values are noiseless, i.e., multiple executions

of the program with the same input value will result in the same observable value. I augmented

symbolic execution to return a function that maps a path constraint ϕ to an observation o.

Since an attacker cannot extract information from program paths that have indistinguishable

side-channel observations, I combine observationally similar path constraints via disjunction

(Algorithm 7, line 4), where I say that o and o′ are in the same equivalence class (o ∼ o′) if

and only if |o− o′| < δ. The resulting observation constraints (denoted ψo and Ψ) characterize

108

Side-Channel Attack Synthesis Chapter 6

Figure 6.3: Overview of Attack Synthesis Approach

the relationship between the secret (h) the attacker input (l) and indistinguishable side-channel

observations (o).

Algorithm 6 SynthesizeAttack(F (h, l), Ch, h∗)
This algorithm calls the GenerateConstraints and RunAttack functions to synthesize
adaptive attacks.
1: Ψ← GenerateConstraints(F (h, l))
2: RunAttack(F (h, l),Ψ, Ch, h

∗)

Attack Synthesis Phase. The second phase synthesizes a sequence of inputs that allow an attacker

to adaptively learn the secret (Algorithm 8). During this phase, I fix a secret h∗, unknown to the

attacker. I maintain a constraint Ch on the possible values of the secret h. Initially, Ch merely

specifies the domain of the secret. I call algorithm AttackInput-SA, which uses the simulated

annealing technique to maximize information gain about the secret expressed as entropy (as

discussed in section 6.4), to determine the input value l∗ for the current attack step. Then, the

observation o that corresponds to running the program under attack with h∗ and l∗ is revealed

by running the function using the public input l∗. I update Ch to reflect the new constraint

on h implied by the attack input and observation—I instantiate the corresponding observation

constraint, ψo[l 7→ l∗], and conjoin it with the current Ch (line 5). Based on Ch, I compute an

uncertainty measure for h at every step using Shannon entropy [96,111], denotedH (Section 6.3).

The goal is to generate inputs which drive H as close as possible to zero, in which case there is

no uncertainty left about the secret and the secret is fully known. This attack synthesis phase

109

Side-Channel Attack Synthesis Chapter 6

is repeated until it is not possible to reduce the uncertainty, H, any further.

Algorithm 7 GenerateConstraints(F (h, l))
Performs symbolic execution on function F with secret string h and attacker-controlled string l.
The resulting path constraints are combined according to indistinguishability of observations.
1: Ψ← ∅
2: (Φ,O, obs)← SymbolicExecution(F (h, l))
3: for o ∈ O do
4: ψo ←

∨
ϕ∈Φ:obs(ϕ)∼o ϕ

5: Ψ← Ψ ∪ {ψo}
6: return Ψ

Algorithm 8 RunAttack(F (h, l),Ψ, Ch, h∗)
Synthesizes a sequence of attack inputs, l∗, for F (h, l), given observation constraints Ψ, initial
constraints on h (Ch), and unknown secret h∗.

1: H ← Entropy(Ch)
2: while H > 0 do
3: l∗ ← AttackInput-SA(Ch,Ψ)

4: o← F (h∗, l∗)

5: Ch ← Ch ∧ ψo[l 7→ l∗]

6: H ← Entropy(Ch)

6.3 Incremental Attack Synthesis

In this section, I first describe the objective function I use to guide the synthesis of each

attack step. Then, I discuss the use of automata-based model counting for computing the

objective function. Finally, I describe My incremental approach to attack synthesis that reuses

results of model counting queries from prior steps for improving efficiency.

Objective Function for Information Gain

Here I derive an objective function to measure the amount of information an attacker expects

to gain by choosing an input value lval to be used in the attack search heuristics discussed

110

Side-Channel Attack Synthesis Chapter 6

in section 6.4. In the following discussion, H, L, and O are random variables representing high-

security input, low-security input, and side-channel observation, respectively. I use entropy-

based metrics from the theory of quantitative information flow [29]. Given probability function

p(h), the information entropy of H, denoted H(H), which I interpret as the initial uncertainty

about the secret, is

H(H) = −
∑
h∈H

p(h) log2 p(h) (6.1)

Given conditional distributions p(h|o, l), and p(o|l), I quantify the attacker’s expected updated

uncertainty about h, given a candidate choice of L = lval , with the expectation taken over all

possible observations, o ∈ O. I compute the conditional entropy of H given O with L = lval as

H(H|O,L = lval) = −
∑
o∈O

p(o|lval)
∑
h∈H

p(h|o, lval) log2 p(h|o, lval) (6.2)

Now I can compute the expected amount of information gained about h by observing o after

running the function F with a specific input lval . The mutual information between H and O,

given L = lval denoted I(H;O|L = lval) is the difference between the initial entropy of H and

the conditional entropy of H given O when L = lval :

I(H;O|L = lval) = H(H)−H(H|O,L = lval) (6.3)

Equation (6.3) serves as My objective function. Providing input lval = l∗ which maximizes

I(H;O|L = lval) maximizes information gained about h. Equations (6.1) and (6.2) rely on

p(h), p(o|l), and p(h|o, l), which may change at every step of the attack. Recall that during the

attack, I maintain a constraint on the secret, Ch. Assuming that all secrets that are consistent

with Ch are equally likely, at each step, I can compute the required probabilities using model

counting. Given a formula f , performing model counting on f gives the number of satisfying

solutions for F , which I denote #f . Thus, I observe that p(h) = 1/#Ch if h satisfies Ch and is

0 otherwise. Hence, Equation 6.1 reduces to H(H) = log2(#Ch).

111

Side-Channel Attack Synthesis Chapter 6

Algorithm 7 gives us side-channel observations O = {o1, . . . , on} and constraints over h and

l corresponding to each oi, Ψ = {ψ1, . . . , ψn}. The probability that the secret has a particular

value, constrained by a particular ψi, for a given lval can be computed by instantiating ψi

with lval and then model counting. Thus, p(h|oi, lval) = 1/#(Ch ∧ ψi)[l 7→ lval]. Similarly,

p(oi|lval) = #(Ch ∧ ψi)[l 7→ lval]/#Ch[l 7→ lval].

In this chapter, the Entropy (Equation (6.1)) and MutualInfo (Equation (6.3)) functions

refer to the appropriate entropy-based computation just described, where p(h), p(o|l), and

p(h|o, l) are computed using the ModelCount algorithm described in the next section. Using

MutualInfo, an attacker can optimize the information gain by trying many different lval values

and computing the corresponding MutualInfo. Observe that this process involves model

counting for instantiating constraints for many values of lval. In the next section I describe how

to perform this model counting step efficiently.

Incremental Constraint Solving and Model Counting

As mentioned above, I compute entropy, which is used in the objective function for infor-

mation gain, using model counting. For this purpose, I use and extend the Automata-Based

Model Counter (ABC) tool, which is a constraint solver for string and numeric constraints with

model counting capabilities [46]. Attack synthesis requires solving and model counting the con-

straint on the secret, Ch, and updating it with the current instantiated observation constraint,

ψo[l 7→ lval] (Algorithm 8, line 5). This results in a new constraint, Ch ∧ ψo[l 7→ lval], which I

then compute the entropy for (Algorithm 8, line 6). As this process is executed many times,

multiple calls to ABC are required, often with similar constraints. In each iteration ABC starts

from scratch re-solving each sub-constraint again and constructing a DFA for each of them,

then combining them using DFA intersection. Note that, during attack synthesis, Ch can be-

come a complex combination of constraints that represent what I learned over the course of the

112

Side-Channel Attack Synthesis Chapter 6

attack. Then ABC would be unnecessarily re-solving the subconstraints of Ch in each attack

step. To summarize, I observe that, during attack synthesis 1) the constraint that characterizes

the set of secrets that are consistent with the observations and low inputs (Ch) is constructed

incrementally, and 2) computing entropy using incremental constraint solving can improve the

performance by exploiting the incremental nature of attack synthesis.

I implemented incremental constraint solving and model counting by extending ABC so

that it retains state over successive calls. Given a constraint, ABC constructs the automaton

representing the set of solutions to the constraint, which is then stored for use in later calls.

The steps of attack synthesis involve two types of model counting for Ch and ψo[l 7→ lval]:

during MutualInfo when an attacker optimizes the attack by trying many different lval , and

in Entropy, during computation of the remaining uncertainty. In both situations, model

counting is required on many different constraints, and most of the sub-constraints come from

previous iterations. I augmented ABC with an interface so that, given Ch ∧ ψo[l 7→ lval], I can

check if an automaton has already been constructed for either Ch or ψo[l 7→ lval], and if so, to get

the already constructed automata for them, rather than re-solving each constraint. Note that for

the purposes of model counting, ψo[l 7→ lval] can be represented as ψo∧ l = lval . My incremental

model counting approach is outlined in Algorithm 9. Given the constraint Ch ∧ ψo ∧ l = lval ,

GetDFA retrieves the previously constructed automaton for Ch, ACh
. Algorithm 9 is called

with a new observation constraint ψo in each attack step, for which the automaton must first be

constructed. Subsequent calls with the same ψo use the previously constructed automaton. A

new Al=lval must be constructed for each model counting query (as each query involves a different

lval). The final automaton A is constructed using automata product from ACh
, Aψo , Al=lval .

A is exactly the same automaton constructed from Ch ∧ ψo ∧ l = lval , but it is constructed

incrementally, thus allowing re-use of previously constructed automata.

113

Side-Channel Attack Synthesis Chapter 6

Algorithm 9 ModelCountIncremental(Ch ∧ ψo ∧ l = lval)
Performs incremental model counting for constraint Ch ∧ ψo ∧ l = lval .
1: ACh

← GetDFA(Ch)

2: if IsConstructed(ψo) then
3: Aψo ← GetDFA(ψo)

4: else
5: Aψo ← Construct(ψo)

6: Al=lval ← Construct(l = lval)

7: A← ACh
∩Aψo ∩Al=lval

8: return ModelCount(A)

6.4 Attack Synthesis Heuristics

At every attack step the attacker’s goal is to choose a low input l∗ that reveals information

about h∗. Here I will describe techniques based on constraint solving and meta heuristics for

synthesizing attack inputs l∗. Meta heuristic approaches explore a subset of the possible low

inputs. In order to search the space efficiently, I first observe that I need to restrict the search

to those l that are consistent with Ch, which I now discuss.

Constraint-based Model Generation of Low Inputs. The first l value can be chosen arbitrarily

since initially I do not have any information about the secret h. After the first step, My attack

synthesis algorithm maintains a constraint Ch which captures all h values that are consistent

with the observations so far (Algorithm 8, line 5). Using the observation constraints Ψ (which

identify the relation among the secret h, public input l and the observation o), I project Ch to

a constraint on the input l, which I call Cl, and I restrict My search on l to the set of values

allowed by Cl. I.e., I only look for l values that are consistent with what I know about h (which is

characterized by Ch) with respect to Ψ. This approach is implemented in GetNeighborInput

function which returns an lval by mutating the previous lval .

Searching via Random Model Generation. As a base-line search heuristic, I make use of the

approach described above for generating low values that are consistent with Ch. The simplest

approach is to generate a single random model from Cl and use it as the next attack input. I call

114

Side-Channel Attack Synthesis Chapter 6

Algorithm 10 AttackInput-SA(Ch,Ψ)
Generates a low input at each attack step via simulated annealing.

1: t← t0, lval ← GetInput(Ψ, Ch), I ← MutualInfo(Ψ, Ch, lval)
2: while t ≥ tmin do
3: lval ← GetNeighborInput(lval ,Ψ, Ch)
4: Inew ← MutualInfo(Ψ, Ch, lval)
5: if (Inew > I) ∨

(
e(Inew−I)/t > RandomReal(0, 1)

)
then

6: I ← Inew , l∗ ← lval
7: t← t− (t× k)
8: return l∗

this approach Model-based (M). A slightly more sophisticated approach is to generate random

samples using Cl, compute the expected information gain for each of them using Equation (6.3)

(i.e., objective function is evaluated using the automata-based entropy computation) and then

choose the best one. [43] evaluates different meta heuristic techniques : genetic algorithm (GA)

and simulated annealing (SA) to maximize information leakage and shows that SA performs

better than GA. The reason is GA applies mutation and crossover to generate candidate low

values. To restrict the search to l values that are consistent with Cl, would require implementing

mutation and crossover operations with respect to Cl. I am not aware of a general approach

for doing this, so during GA-based search, mutation and crossover operations can generate

low values that are inconsistent with Cl (and hence Ch). Note that, such values will have no

information gain and will be ignored during search, but they can slow down the search increasing

the search space and hence, I may end up having a higher number of attack steps compared to

SA. So, the SA ends up being a more effective meta-heuristic for attack synthesis.

Simulated Annealing. Simulated annealing (SA) is a meta-heuristic for optimizing an objective

function g(s) [112]. SA is initialized with a candidate solution s0. At step i, SA chooses a

neighbor, si, of candidate si−1. If si is an improvement, i.e., g(si) > g(si−1), then si is used

as the candidate for the next iteration. If si is not an improvement, i.e. g(si) ≤ g(si−1), then

si is still used as the candidate for the next iteration, but with a small probability p. Intu-

itively, SA is a controlled random search that allows a search path to escape from local optima

115

Side-Channel Attack Synthesis Chapter 6

by permitting the search to sometimes accept worse solutions. The acceptance probability p

decreases exponentially over time, which is modeled using a search “temperature” which “cools

off” and converges to a steady state. My use of SA that incorporates automata-based entropy

computation is given in Algorithm 10 where I use GetNeighborInput function to get new

candidates.

6.5 Implementations and Experiments

Implementation. The implementation of my approach consists of two primary components,

corresponding to the two main phases described in section 6.2. I implement Algorithm 7 using

Symbolic Path Finder (SPF) [110]. I implement Algorithm 8 as a Java program that takes the

observation constraints generated by Algorithm 7 as input, along with Ch, h∗. AttackInput-

SA from section 6.4 is implemented directly in Java as well. I implement GetNeighborIn-

put, ModelCount, and ModelCountIncremental by extending the existing string model

counting tool ABC as described in section 6.3. I add these features directly into the C++ source

code of ABC along with corresponding Java APIs.

Table 6.7: Benchmark details with the number of path constraints (|Φ|) and the number of
merged observation constraints (|Ψ|).

Benchmark ID Operations Low
Length

High
Length |Φ| |Ψ|

passCheckInsec PCI charAt,length 4 4 5 5
passCheckSec PCS charAt,length 4 4 16 1
stringEquals SE charAt,length 4 4 9 9
stringInequality SI <,≥ 4 4 2 2
stringConcatInequality SCOI concat,<,≥ 4 4 2 2
stringCharInequality SCI charAt,length,<,≥ 4 4 80 2
indexOf IO charAt,length 1 8 9 9
compress CO begins,substring,length 4 4 5 5
editDistance ED charAt,length 4 4 2170 22

Benchmark Details. To evaluate the effectiveness of My attack synthesis techniques, I ex-

perimented on a benchmark of 9 Java canonical programs utilizing various logical and string

manipulation operations, setting different sizes and lengths to define the domain of secret value

116

Side-Channel Attack Synthesis Chapter 6

(Table 6.7). The functions PCI and PCS are password checking implementations. Both compare

a user input and secret password but early termination optimization (as described in chapter 6)

induces a timing side channel for the first one and the latter is a constant-time implementation.

I analyzed the SE method from the Java String library which is known to contain a timing side

channel [113]. I discovered a similar timing side channel in the IO method from the Java String

library. Function ED is an implementation of the standard dynamic programming algorithm to

calculate minimum edit distance of two strings. Function CO is a basic compression algorithm

which collapses repeated substrings within two strings. SI, SCOI and SCI functions check lexico-

graphic inequality (<,≥) of two strings whereas first one directly compares the strings, second

one includes concat operation with inequality and third one compares characters in the strings.

Experimental Setup. For all experiments, I use a desktop machine with an Intel Core i5-

2400S 2.50 GHz CPU and 32 GB of DDR3 RAM running Ubuntu 16.04, with a Linux 4.4.0-81

64-bit kernel. I used the OpenJDK 64-bit Java VM, build 1.8.0 171. I ran each experiment for

5 randomly chosen secrets. I present the mean values of the results in Table 6.8. For SA, I set

the temperature range (t to tmin) from 10 to 0.001 and cooling rate k as 0.1.

Results. In this discussion, I describe the quality of a synthesized attack according to these

metrics: attack synthesis time, attack length, and overall change in uncertainty about the secret

measured as entropy from Hinit to Hfinal and efficiency of incremental attack synthesis in terms

of time. Attacks that do not reduce the final entropy to zero are called incomplete. Incomplete

attacks are mainly due to one of two reasons: the program is not vulnerable to side-channels (for

example PCS) or the observation constraints are very complex, combining lots of path constraints

which slows progress too much so that not enough information is leaked within the given time

bound (for example ED and SCI). For the purpose of direct comparison, in My experiments, I

set a bound of 5 hours for SA (slowest technique) on ED and SCI and computed a bound for

Hfinal of 17.28 and 14.48, respectively, while all other examples reduced Hfinal to 0.0.These

examples are marked with ∗. Note that, M and SA-I techniques can reduce Hfinal for ED and

117

Side-Channel Attack Synthesis Chapter 6

SCI to 14.34 and 12.28, respectively, after one hour.

Attack Synthesis Time Comparison. I observe that the model-based technique (M), which

only uses Cl to restrict the search space is faster than other techniques, as it greedily uses a

random model generated by ABC as the next attack input, with no time required to evaluate

the objective function. M quickly generates attacks for most of the functions. I examined those

functions and determined that their objective functions are “flat” with respect to l. Any lval

that is a model for Cl at the current step yields the same expected information gain. Figure 6.4

shows how M can synthesize attacks faster compared to SA (in seconds).

Figure 6.4: Synthesis Time, M vs SA Figure 6.5: Attack Length, M vs SA/SA-I

Attack Length Comparison. Although M is fast in synthesizing attacks and generates attacks

for each benchmark, experimental results show that it requires more attack steps (in terms of

information gain) compared to the attacks generated by meta-heuristic techniques that optimize

the objective function. As the experimental results show for the SI, SCOI and SCI, a meta-

heuristic technique can reduce Hfinal further but with fewer attack steps compared to the model-

based approach (M). And, this case would be true for any example where different inputs at a

specific attack step have different information gain. If attacker is aware of the “flat" objective

function phenomenon, they can proceed with M. In general, M is not efficient to generate an

attack with reduced number of attack steps and hence, meta heuristics like SA approach are

required. Figure 6.5 shows how SA is better than M in terms of length of the generated attacks.

Note that, I say M vs SA/SA-I as incremental version will make difference in attack synthesis

118

Side-Channel Attack Synthesis Chapter 6

time, not attack length.

Efficiency of Incremental Attack Synthesis. On one hand, I can synthesize attacks faster

using M but attacks synthesized by M require more attack steps in general. On the other hand,

I can synthesize attacks with minimal number of attack steps using SA, but attack synthesis

process is slower for SA. My experiments demonstrate that incremental attack synthesis using

SA gives us fast attack synthesis without increasing the attack length. I compare incremental

version of SA (SA-I) against SA. Figure 6.6 shows SA-I is an order of magnitude faster than SA

for all the examples from the benchmark. I also compare SA-I against M and Figure 6.7 shows

that SA-I is comparable to M in terms of attack synthesis time (in seconds).

Figure 6.6: Synthesis Time, SA vs SA-I Figure 6.7: Synthesis Time, M vs SA-I

Table 6.8: Experimental results for secure password checker (PCS). Time bound is set as 3600
seconds.

ID Hinit Metrics M SA SA-I

PCS 18.8 Steps 108 14 99
Hfinal 18.8 18.8 18.8

Vulnerability to Side-Channels. Finally, I observe that some of My selected benchmarks

are more secure against My attack synthesizer than others. In particular, PCS, a constant-time

implementation of password checking, did not leak any information through the side channel.

One of the examples from the benchmark, ED also did not succumb to My approach easily, due

119

Side-Channel Attack Synthesis Chapter 6

to the relatively large number of generated constraints (2170), indicating a much more complex

relationship between the inputs and observations. To summarize, My experiments indicate that

My attack synthesis approach is able to construct side-channel attacks, providing evidence of

vulnerability (e.g. PCI). Further, when attack synthesizer fails to generate attacks (PCS), or is

only able to extract a relatively small information after many steps of significant computation

time (ED), it provides evidence that the function under test is comparatively safer against side-

channel attacks. Table 6.8 shows results for PCS, hardly reducing Hfinal even after running for

1 hour for M, SA and SA-I.

6.6 Case Studies

My experimental results show that synthesizing attacks face scalability issues for programs

leading to large numbers of complex observation constraints. Note that, this limitation depends

on the limitations of the building blocks: constraint solvers and model counters. The more

powerful these tools become, more powerful attack synthesis will be. I now present two case

studies.

CRIME Attack. The “Compression Ratio Info-leak Made Easy” (CRIME) attack [105] allows

an attacker to learn fields of encrypted web session headers by injecting extraneous text (l) into

a procedure that compresses and encrypts the header (h). Despite the encryption, an attacker

can infer how much of the injected text matched the unknown header by observing the number

of bytes in the compressed result [39, 105]. My approach automatically synthesizes this attack.

Symbolic execution of the compression function (LZ77T) for a secret of length 3 and alphabet

size 4 yields 187 path constraints and 4 observations, leading to 4 observation constraints. M

synthesizes an attack in 6.8 steps within 468.5 seconds. SA-I could generate the attack in 7.8

steps within 757.4 seconds. SA-I does not improve over M due to “flat” objective function. Note

that [39] performs leakage quantification for this example but does not synthesize attacks.

120

Side-Channel Attack Synthesis Chapter 6

Law Enforcement Database. The Law Enforcement Employment Database Server is a network

service application included as a part of the DARPA STAC program [25,114]. This application

provides access to records about law enforcement personnel. Employee information is deter-

mined by an employee ID number. The database contains restricted and unrestricted employee

information. Users can search ranges of employee IDs. If an ID query range contains one or more

restricted IDs, the returned data will not contain the restricted IDs. I decompiled the appli-

cation and then symbolically executed the channelRead0 method from the UDPServerHandler

class which performs the database search operation. I limited the domain of ids to 1024, added

30 unrestricted IDs and 1 restricted ID. Symbolic execution gives us 1669 path constraints with

162 distinguishable observations (δ = 10 instructions). M generates attack with an attack length

of 8.2 in 270.1 seconds whereas SA-I generates an attack with length of 6.5 in 810.7 seconds.

SA-I requires less attack length as the objective function is not “flat”.

121

Chapter 7

Related Works

There has been a large number of works on the development of automated testing techniques

and quantitative information flow analysis. In this chapter, I discuss all the existing works,

related to the contributions I provide in this thesis.

Symbolic Quantitative Software Analysis.

There has been an increasing amount of research on quantitative program analysis techniques

based on model counting constraint solvers, and there has been a surge of progress in model

counting constraint solvers [46, 55–58, 115]. Model counting constraint solvers have been used

in a variety of quantitative program analysis tasks such as probabilistic analysis [19, 21, 116],

reliability analysis [62], estimating performance distribution [117], s quantitative information

flow [30, 34, 39, 118, 119], and side-channel attack synthesis [40, 44, 65]. Branch selectivity and

probabilistic reachability heuristic I introduce in this thesis are fundamental quantitative pro-

gram analysis techniques and rely on the recent developments in model counting constraint

solvers.

Probabilistic symbolic execution [19] and statistical symbolic execution [21] can be used

for probabilistic reachability analysis problem I approach in this thesis. However probabilis-

122

Related Works Chapter 7

tic symbolic execution suffers from path explosion [10] and increasing size of path constraints

with increasing execution depth, which can lead to double exponential blow up. Moreover,

probabilistic symbolic execution can only analyze program behaviors up to a fixed execution

depth. Statistical symbolic execution [21] is more efficient compared to probabilistic symbolic

execution but still suffers with increasing execution depth. The approach for probabilistic reach-

ability analysis I present in this thesis using branch selectivity addresses these issues since it

does not suffer from path explosion and it analyzes branch conditions instead of path constraints

modeling behaviors of arbitrarily long paths.

Fuzz Testing

Mutation-based coverage guided Fuzzers. AFl [1] is the vanilla mutation-based coverage

guided fuzzer. AFL++ [87] is the latest version of AFL with more speed, better mutation

techniques, better instrumentation and support from custom modules. In this work, I use

default version of AFL++ which uses power schedule of AFLFast [79]. There are a lot of

mutation-based coverage guided fuzzers focusing on advanced mutation strategies. MOPT [82]

focuses on mutation scheduling by providing different probabilities to the mutation operators.

LAF-INTEL [120] focuses on bypassing hard multibyte comparisons, by splitting them into

multiple single-byte comparison. REDQUEEN [80] focuses on bypassing Input-To-State (I2S)

defined comparisons. I2S is a type of comparison having a direct dependency with the input in

at least one of its operand. Steelix [121] performs static analysis and extra instrumentation to

produce inputs satisfying multi-byte comparisons. VUzzer [81] identifies input positions used in

the comparison and immediate values using a Markov Chain model and decides which parts of

the program should be targeted. FairFuzz [4] identifies the rare branches in the program based

on the hitcounts of branches. If a rare branch is identified by FairFuzz, it applies input mutation

masking to keep the input part for the rare branches fixed and modify later parts of inputs to

123

Related Works Chapter 7

explore more deeper branches. In this thesis, I focus on rare program paths, not rare branches.

I neither use a fuzzer to identify rare branches nor modify mutation strategies inside the fuzzer.

I do not make any changes to the fuzzing technique. I generate a set of rare inputs for fuzzer

using a lightweight static analysis technique.

Hybrid Testing. Hybrid testing techniques [6, 11–14] combine concrete and symbolic tech-

niques in order to improve effectiveness of testing. Strategy function for hybrid testing need

to decide when to apply concrete techniques and when to apply symbolic. Existing techniques

assess the difficulty of concrete testing to do make the decision based on the saturation of ran-

dom testing [11,13] or using a predefined configuration of time to run for concrete and symbolic

techniques [12] or probabilistic program analysis [6, 14]. Markov decision process construction

extracting control flow graph and putting probabilities as edge weight has been used to find op-

timal strategy for concolic testing [14]. Probabilistic path prioritization is used in [6] to decide

when to invoke symbolic execution in hybrid fuzzing. My approach focuses on identifying hard

to reach statements based on probabilistic reachability heuristic.

Symbolic execution guided fuzzers. Fuzzing techniques [6,11–14] use symbolic execution and

constraint solvers to generate inputs to pass complex checks in the program. Driller [83] uses

selected symbolic execution when fuzzer can not cover new branches for a long period of time.

DigFuzz [6] uses the fuzzer itself to statistically identify hardest paths for the fuzzer to explore

and then uses symbolic execution to solve path constraints for the hardest paths. Every time

it identifies that a branch is hard to pass, invokes symbolic execution. DeepFuzzer [122] uses

lightweight symbolic execution to pass initial complex checks and then depend on seed selection

and mutation techniques. In this work, I do not use the path samples from fuzzer to identify rare

paths rather statically analyze programs. Moreover, I do not symbolically execute the whole

program rather guide it using the rare paths I identify.

124

Related Works Chapter 7

Grammar-based Fuzzers Grammar-based fuzzing techniques generate well-formed inputs

based on a user provided grammar [123, 124]. These fuzzing techniques mutate inputs using

the derivative rules in the grammar. As a result, the mutated input is also guaranteed to be

well-formed [125]. Grammar-based fuzzers are very effective to fuzz programs that are heavily

dependent on structured inputs [123,126]. However, grammar-based fuzzers require application

specific knowledge of the program under test. There are several fuzzers [90,92,127–129] focusing

specifically on structured inputs such as fuzzing network protocols, compilers, parser for json,

xml, xslt files etc. Compared to grammar based fuzzing, the technique I provide is general,

it does not require any knowledge about the program under test and it is fully automated. I

neither need to provide an input grammar, nor feed inputs to the parser [90,126] or collect large

data samples [92] like techniques that specialize on structured inputs.

Seed generation for fuzzers. There are fuzzing techniques that focuses on seed selection

and seed prioritization to improve fuzzing efficiency [130–132]. SpotFuzz [130] identifies invalid

execution and time consuming edges as hot spots based on hitcounts of different inputs on

the edges and proposes a fuzzing solution to reduce energy waste. SLF [131] is a technique

which focuses on valid seed input generation. It starts with a very short random input for

fuzzing and then performs sophisticated input mutation to get through the validity checks. [132]

systematically investigates and evaluates the affect of seed selection on fuzzer’s ability to find

bugs and demonstrates that fuzzing outcomes vary depending on the initial seeds used. In this

work, I also demonstrate that rare inputs as initial seeds bootstrap the fuzzer. However, instead

of focusing on corpus minimization techniques or generating valid inputs [131] or seed selection

algorithms [130] I focus on generating seeds that can execute rare paths. Static program analysis

for fuzzing. A huge number of fuzzing techniques [80, 81, 90, 121, 133, 134] use static program

analysis techniques to guide fuzzers. Most of these techniques use either control flow analysis or

taint analysis. In this work, I also use control flow analysis and dependency analysis to identify

rare paths. I introduce a new kind of control flow paths (II-paths) for rare path analysis. My

125

Related Works Chapter 7

concept behind II-paths are inspired from the control flow directed concolic search techniques

provided in [15].

Quantitative Information Flow Analysis

Quantitative measurement of information leakage has been an active area of research. Early

work [27] measured the number of tainted bits which provides a coarse approximation of in-

formation leakage. Channel capacity has been used to quantify information leakage in pro-

grams [28–32]. Channel capacity makes worst case assumptions about the probability distri-

butions of the inputs. It has been used in [28] to measure influence of the inputs to correctly

distinguish false positives by taint analysis from the real attacks. A recent work [31] uses channel

capacity to quantify information leakage and provides an automated and scalable approach for

computing it. In this thesis, I show that Shannon entropy-based measure of information leakage

provides a more precise and informative measure. Channel capacity have also been used for

computing information leakage in concurrent probabilistic programs [32]. In this thesis I focus

on deterministic programs only.

A large number of works [30, 33–37] use information theoretic approaches for quantifying

information leakage. There are previous works that use Shannon entropy-based information

leakage computation [38–44]. The technique in [38] is based on an enumeration algorithm.

Other works [39–44] use model counting techniques [45–47] to compute information leakage.

Constraints that are supported in these techniques are linear arithmetic constraints. The ap-

proach in [40] also relies on generation of a closed form objective function that represents the

information leakage, and uses model counting techniques that specialize on linear integer arith-

metic to construct such a function. None of these techniques support non-linear constraints. I

support both linear and non-linear constraints using ABC [46] and SearchMC [49]. Moreover,

all these model counting tools provide exact count and hence their technique for quantifying

126

Related Works Chapter 7

information leakage is straight-forward. In this thesis, I use an approximate model counting

tool [49] to support model counting for bit-vector constraints and hence can cover quantitative

analysis for programs with wide range of computations and generated constraints.

LeakWatch [135] estimates leakage in Java programs by sampling program executions on

concrete inputs. An earlier work [42] applies sampling of symbolic paths and provide anytime

bound under- and over-approximating the exact leakage to make their technique scalable. This

work measures precise leakage for probabilistic programs considering noise and randomness in

program execution and observations and provides techniques to compute anytime leakage con-

sidering incomplete path coverage by symbolic execution. But, they do not use any approximate

model counter. In this thesis, I provide techniques to compute exact or sound bound on leakage

with exact and approximate model counting considering full or incomplete path coverage by a

symbolic execution tool.

Side-Channel Attack Synthesis

There are two previous results that are most closely related to my work on attack syn-

thesis [39, 104]. The first focuses on quantifying information leakage through side channels for

programs manipulating strings [39]. This work assumes that the given program has a seg-

ment oracle side-channel vulnerability and then quantifies the amount of information leakage

for that vulnerability. Other recent work synthesizes side-channel attacks using either entropy-

based or SAT-based objective functions, but works only for linear arithmetic and bit-vector

constraints [104], using model counters and constraint solvers for those theories [136]. This

earlier approach also relies on generation of a closed form objective function that represents the

information leakage, and uses model counting techniques that specialize on linear integer arith-

metic to construct such a function. In contrast, My approach is more general and can handle

any program with numeric, string and mixed constraints. Furthermore, My approach does not

127

Related Works Chapter 7

require a closed form solution for the objective function as I use meta heuristics to search for

input values that leak maximum information. Both of these earlier approaches use constraint

solving and model counting queries to quantify the information leakage, but they do not use an

incremental approach and, therefore, re-compute many sub-queries.

There are many works on analyzing side-channels in various settings [39, 95, 137–140]. A

few recent works address either synthesizing attacks or quantifying information leakage under a

model where the attacker can make multiple invocations of the system [38,39,65,95,139]. Single-

run analysis is addressed in [141] where bounded model checking is used over the k-composition

of a program to determine if it can yield k different outputs. Further, LeakWatch [135] estimates

leakage in Java programs based on sampling program executions on concrete inputs. There has

been work on multi-run analysis using enumerative techniques [38]. None of these earlier results

present a symbolic and incremental approach to adaptive attack synthesis as I present in this

thesis.

Due to the importance of model counting in quantitative program analyses, model counting

constraint solvers are gaining increasing attention [46,55,142]. ABC is the only one that supports

string, numeric and mixed constraints. I extended ABC to perform incremental model counting

for my attack synthesis approach. Other work in quantifying information leakage [65,95,104,143]

have used symbolic execution and model-counting techniques for linear integer arithmetic.

128

Chapter 8

Conclusions

Building dependable and secure computing systems is one of the major concerns for software

development. Even after the surge of developments focusing on software quality assurance and

security, there are remaining challenges. Most well-known and effective approach of assuring

software quality is automated testing. It is crucial to develop techniques that can cope up

with the existing challenges of automated testing. In this thesis, I focus on the challenges of

automated testing by analyzing software programs in a quantitative manner. To be specific, I

develop symbolic quantitative program analysis techniques, focusing on the assessment of testing

difficulty and guidance for the testing techniques.

Moreover, software systems that leak private and sensitive information have become a threat

in recent years. Software systems vulnerable to side-channels leak information, hence, unau-

thorized users can gain access to secret information. It is crucial to quantify the amount of

information that is leaked in order to measure the threat. In this thesis, I focus on developing

symbolic quantitative program analysis techniques to quantify how much information a software

system can leak. I also develop techniques to synthesize side-channel attacks, demonstrating

vulnerability of a software to side-channel.

Towards assessing testing difficulty, I present a novel heuristic for probabilistic reachability

129

Conclusions Chapter 8

analysis to identify hard to reach program statements given that the program is being tested

on random inputs. I use dependency analysis, model counting, abstract interpretation, and

probabilistic model checking to compute probability of reaching a program statement. I exper-

imentally evaluate the technique on a set of benchmark programs and results show that the

approach can identify hard to reach statements with high precision and accuracy. I provide

detailed comparison of the technique against probabilistic symbolic execution and statistical

symbolic execution (existing other techniques that can be used to identify hard to reach state-

ments), demonstrating efficiency of the the heuristic approach I develop.

To guide software testing, I provide heuristic to identify rare program paths that are difficult

for a fuzzing technique to explore generating random inputs. To identify the rare paths, I

use lightweight static analysis based on control flow analysis, dependency analysis and branch

model counting. Then, I use the identified rare paths to guide a concolic execution tool to

generate inputs that can execute these rare paths. Finally, I provide these inputs as the initial

seed set to the fuzzer. From the experimental evaluation on a set of benchmarks, heavily

dependent on structured inputs, I find that it is possible to generate inputs that a fuzzer cannot

generate mutating inputs given a time budget. These inputs also guide the fuzzer to achieve

better coverage compared to initial random seed. To speed up the rare path analysis, I also

introduced a new type of control flow paths (II-paths) in this chapter. Experimental evaluation

demonstrates that II-paths are more efficient to generate inputs exploring rare paths compared

to intra-procedural paths and inter-procedural paths given a time budget.

Towards quantifying information leakage, I build techniques on top of existing quantitative

program analysis techniques for computing sound information leakage bounds for software. My

approach is based on symbolic execution and model counting, and there are two causes of

unsoundness in this context: 1) symbolic execution cannot achieve complete path coverage and

2) model counting tools cannot always compute exact count. I present techniques that provide

lower and upper bounds for information leakage considering these two sources of unsoundness.

130

Experimental results show that it is feasible to compute sound bounds for information leakage.

Towards synthesizing side-channel attacks, I generalize the techniques for synthesizing attack

using metaheuristic search techniques. The techniques I develop can synthesize attack not only

for integers but also for string manipulating programs. I also provide incremental analysis

to exploit the inherent iterative nature of the technique. Experimental evaluation shows the

effectiveness of the attack synthesis approach on several library functions. Experimental results

also demonstrate that the incremental approach improves the efficiency of the technique.

Overall, in this thesis, I focus on symbolic quantitative analysis approaches towards ad-

vancing the development of automated testing techniques and quantitative information flow

analysis. The techniques I present show promising results, and I believe that the impact of

symbolic quantitative analysis techniques in improving dependability and security of software

systems will continue to grow in the future.

131

Bibliography

[1] Michał Zalewski, “American Fuzzy Lop.” http://lcamtuf.coredump.cx/afl/, 2014.

[2] R. Padhye, C. Lemieux, and K. Sen, Jqf: Coverage-guided property-based testing in java,
in Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2019, (New York, NY, USA), p. 398–401, Association for
Computing Machinery, 2019.

[3] C. Pacheco and M. D. Ernst, Randoop: feedback-directed random testing for Java, in
OOPSLA 2007 Companion, Montreal, Canada, ACM, Oct., 2007.

[4] C. Lemieux and K. Sen, Fairfuzz: a targeted mutation strategy for increasing greybox fuzz
testing coverage, pp. 475–485, 09, 2018.

[5] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Krugel, and G. Vigna, Driller: Augmenting fuzzing through selective symbolic
execution, in NDSS, 2016.

[6] L. Zhao, Y. Duan, H. Yin, and J. Xuan, Send hardest problems my way: Probabilistic
path prioritization for hybrid fuzzing., in NDSS, 2019.

[7] J. C. King, Symbolic execution and program testing, Communications of the ACM 19
(1976), no. 7 385–394.

[8] C. Cadar, D. Dunbar, and D. R. Engler, KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs, in 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San
Diego, California, USA, Proceedings, pp. 209–224, 2008.

[9] S. Anand, C. Păsăreanu, and W. Visser, Jpf–se: A symbolic execution extension to java
pathfinder, Tools and Algorithms for the Construction and Analysis of Systems (2007)
134–138.

[10] C. Cadar and K. Sen, Symbolic execution for software testing: three decades later,
Communications of the ACM 56 (2013), no. 2 82–90.

[11] R. Majumdar and K. Sen, Hybrid concolic testing, in 29th International Conference on
Software Engineering (ICSE’07), pp. 416–426, IEEE, 2007.

132

http://lcamtuf.coredump.cx/afl/

[12] M. Dimjašević, F. Howar, K. Luckow, and Z. Rakamarić, Study of integrating random
and symbolic testing for object-oriented software, in International Conference on
Integrated Formal Methods, pp. 89–109, Springer, 2018.

[13] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, Driller: Augmenting fuzzing through selective symbolic
execution, in 23rd Annual Network and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016, 2016.

[14] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin, Towards optimal concolic
testing, in Proceedings of the 40th International Conference on Software Engineering,
pp. 291–302, 2018.

[15] J. Burnim and K. Sen, Heuristics for scalable dynamic test generation, in 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, pp. 443–446,
IEEE, 2008.

[16] K. Sen, D. Marinov, and G. Agha, CUTE: a concolic unit testing engine for C, in
Proceedings of the 10th European Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2005, Lisbon, Portugal, September 5-9, 2005, pp. 263–272, 2005.

[17] J. Geldenhuys, M. B. Dwyer, and W. Visser, Probabilistic symbolic execution, in
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis,
MN, USA, July 15-20, 2012, pp. 166–176, 2012.

[18] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys, Statistical symbolic execution
with informed sampling, in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, (New York, NY, USA),
p. 437–448, Association for Computing Machinery, 2014.

[19] J. Geldenhuys, M. B. Dwyer, and W. Visser, Probabilistic symbolic execution, in
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis,
MN, USA, July 15-20, 2012, pp. 166–176, 2012.

[20] C. P. Gomes, A. Sabharwal, and B. Selman, Model counting, in Handbook of
satisfiability, pp. 993–1014. IOS press, 2021.

[21] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys, Statistical symbolic execution
with informed sampling, in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, (New York, NY, USA),
p. 437–448, Association for Computing Machinery, 2014.

[22] S. Saha, M. Downing, T. Brennan, and T. Bultan, PREACH: A heuristic for
probabilistic reachability to identify hard to reach statements, in 44th IEEE/ACM 44th

133

International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022, pp. 1706–1717, ACM, 2022.

[23] Competition on Software Verification, “SV-COMP.”
https://sv-comp.sosy-lab.org/2020/, 2020.

[24] Apache Commons Lang. https://commons.apache.org/proper/commons-lang/, 2020.

[25] “Space/time analysis for cybersecurity (stac).”
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity.

[26] M. Kwiatkowska, G. Norman, and D. Parker, Stochastic model checking, in International
School on Formal Methods for the Design of Computer, Communication and Software
Systems, pp. 220–270, Springer, 2007.

[27] S. McCamant and M. D. Ernst, Quantitative information flow as network flow capacity,
in Proceedings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’08, (New York, NY, USA), pp. 193–205, ACM, 2008.

[28] J. Newsome, S. McCamant, and D. Song, Measuring channel capacity to distinguish
undue influence, in Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security, pp. 73–85, 2009.

[29] G. Smith, On the foundations of quantitative information flow, in Proceedings of the 12th
International Conference on Foundations of Software Science and Computational
Structures (FOSSACS), pp. 288–302, 2009.

[30] Q. Phan, P. Malacaria, C. S. Pasareanu, and M. d’Amorim, Quantifying information
leaks using reliability analysis, in Proceedings of the International Symposium on Model
Checking of Software, SPIN 2014, San Jose, CA, USA, pp. 105–108, 2014.

[31] C. G. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J. Hu, Precisely measuring
quantitative information flow: 10k lines of code and beyond, in 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 31–46, IEEE, 2016.

[32] K. Salehi, J. Karimpour, H. Izadkhah, and A. Isazadeh, Channel capacity of concurrent
probabilistic programs, Entropy 21 (2019), no. 9 885.

[33] D. Clark, S. Hunt, and P. Malacaria, A static analysis for quantifying information flow
in a simple imperative language, J. Comput. Secur. 15 (Aug., 2007) 321–371.

[34] M. Backes, B. Köpf, and A. Rybalchenko, Automatic discovery and quantification of
information leaks, in 30th IEEE Symposium on Security and Privacy (S&P 2009), 17-20
May 2009, Oakland, California, USA, pp. 141–153, 2009.

[35] Q. Phan, P. Malacaria, O. Tkachuk, and C. S. Pasareanu, Symbolic quantitative
information flow, ACM SIGSOFT Software Engineering Notes 37 (2012), no. 6 1–5.

134

https://sv-comp.sosy-lab.org/2020/
https://commons.apache.org/proper/commons-lang/
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

[36] V. Klebanov, N. Manthey, and C. Muise, SAT-Based Analysis and Quantification of
Information Flow in Programs, in Quantitative Evaluation of Systems, vol. 8054 of
Lecture Notes in Computer Science, pp. 177–192. Springer Berlin Heidelberg, 2013.

[37] Q.-S. Phan and P. Malacaria, Abstract Model Counting: A Novel Approach for
Quantification of Information Leaks, in Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’14, (New York, NY,
USA), pp. 283–292, ACM, 2014.

[38] B. Köpf and D. A. Basin, An information-theoretic model for adaptive side-channel
attacks, in Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007 (P. Ning, S. D. C.
di Vimercati, and P. F. Syverson, eds.), pp. 286–296, ACM, 2007.

[39] L. Bang, A. Aydin, Q.-S. Phan, C. S. Pasareanu, and T. Bultan, String analysis for side
channels with segmented oracles, in Proceedings of the 24th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, 2016.

[40] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan, Synthesis of adaptive
side-channel attacks, in 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, CA, USA, August 21-25, 2017, pp. 328–342, 2017.

[41] L. Bang, N. Rosner, and T. Bultan, Online synthesis of adaptive side-channel attacks
based on noisy observations, in 2018 IEEE European Symposium on Security and
Privacy (EuroS P), pp. 307–322, April, 2018.

[42] P. Malacaria, M. Khouzani, C. S. Pasareanu, Q.-S. Phan, and K. Luckow, Symbolic
side-channel analysis for probabilistic programs, in 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), pp. 313–327, IEEE, 2018.

[43] S. Saha, I. B. Kadron, W. Eiers, L. Bang, and T. Bultan, Attack synthesis for strings
using meta-heuristics, SIGSOFT Softw. Eng. Notes 43 (Jan., 2019) 56–56.

[44] S. Saha, W. Eiers, I. B. Kadron, L. Bang, and T. Bultan, Incremental attack synthesis,
ACM SIGSOFT Software Engineering Notes 44 (2019), no. 4 16–16.

[45] V. Baldoni, N. Berline, J. D. Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto,
M. Vergne, and J. Wu, “Latte integrale v1.7.2.” http://www.math.ucdavis.edu/ latte/,
2004.

[46] A. Aydin, L. Bang, and T. Bultan, Automata-based model counting for string constraints,
in Proceedings of the 27th International Conference on Computer Aided Verification
(CAV), pp. 255–272, 2015.

[47] A. I. Barvinok, A Polynomial Time Algorithm for Counting Integral Points in Polyhedra
When the Dimension is Fixed, Math. Oper. Res. 19 (1994), no. 4 769–779.

135

[48] S. Chakraborty, K. S. Meel, and M. Y. Vardi, A scalable approximate model counter, in
International Conference on Principles and Practice of Constraint Programming,
pp. 200–216, Springer, 2013.

[49] S. Kim and S. McCamant, Bit-vector model counting using statistical estimation, in
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 133–151, Springer, 2018.

[50] R. Hund, C. Willems, and T. Holz, Practical timing side channel attacks against kernel
space aslr, in Security and Privacy (SP), 2013 IEEE Symposium on, pp. 191–205, IEEE,
2013.

[51] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, Cacheaudit: A tool for the static
analysis of cache side channels, ACM Transactions on Information and System Security
(TISSEC) 18 (2015), no. 1 4.

[52] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, Side channel cryptanalysis of product
ciphers, in European Symposium on Research in Computer Security, pp. 97–110,
Springer, 1998.

[53] Q.-S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan, Synthesis of
adaptive side-channel attacks., IACR Cryptology ePrint Archive 2017 (2017) 401.

[54] V. Baldoni, N. Berline, J. Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne,
and J. Wu, Latte integrale v1. 7.2, 2004.

[55] L. Luu, S. Shinde, P. Saxena, and B. Demsky, A model counter for constraints over
unbounded strings, in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), p. 57, 2014.

[56] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi,
Distribution-aware sampling and weighted model counting for SAT, in Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1722–1730, 2014.

[57] S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi, Approximate probabilistic
inference via word-level counting, in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pp. 3218–3224, 2016.

[58] M. Borges, Q. Phan, A. Filieri, and C. S. Pasareanu, Model-counting approaches for
nonlinear numerical constraints, in NASA Formal Methods - 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings
(C. Barrett, M. Davies, and T. Kahsai, eds.), vol. 10227 of Lecture Notes in Computer
Science, pp. 131–138, 2017.

136

[59] A. Aydin, W. Eiers, L. Bang, T. Brennan, M. Gavrilov, T. Bultan, and F. Yu,
Parameterized model counting for string and numeric constraints, in Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 400–410, ACM, 2018.

[60] W. Eiers, S. Saha, T. Brennan, and T. Bultan, Subformula caching for model counting
and quantitative program analysis, in Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2019, San Diego, USA,
November 10-15, 2019, 2019.

[61] T. Kapus, M. Nowack, and C. Cadar, Constraints in dynamic symbolic execution:
Bitvectors or integers?, in International Conference on Tests and Proofs, pp. 41–54,
Springer, 2019.

[62] A. Filieri, C. S. Pasareanu, and W. Visser, Reliability analysis in symbolic pathfinder, in
35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, pp. 622–631, 2013.

[63] Y.-T. S. Li and S. Malik, Performance analysis of embedded software using implicit path
enumeration, in ACM SIGPLAN Notices, vol. 30, pp. 88–98, ACM, 1995.

[64] T. Bultan, Quantifying information leakage using model counting constraint solvers, in
Verified Software. Theories, Tools, and Experiments - 11th International Conference,
VSTTE 2019, New York City, NY, USA, July 13-14, 2019, Revised Selected Papers,
pp. 30–35, 2019.

[65] L. Bang, N. Rosner, and T. Bultan, Online synthesis of adaptive side-channel attacks
based on noisy observations, in Proceedings of the IEEE European Symposium on
Security and Privacy, 2018.

[66] Competition on Software Testing, “Test-COMP.”
https://test-comp.sosy-lab.org/2020/, 2020.

[67] R. Padhye, C. Lemieux, and K. Sen, Jqf: Coverage-guided property-based testing in java,
in Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’19). https://doi. org/10.1145/3293882.3339002, 2019.

[68] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, Semantic fuzzing with
zest, in Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, (New York, NY, USA), p. 329–340, Association for
Computing Machinery, 2019.

[69] C. S. Păsăreanu and N. Rungta, Symbolic pathfinder: symbolic execution of java
bytecode, in Proceedings of the IEEE/ACM international conference on Automated
software engineering, pp. 179–180, ACM, 2010.

137

https://test-comp.sosy-lab.org/2020/

[70] D. Balasubramanian, K. Luckow, C. Pasareanu, A. Aydin, L. Bang, T. Bultan,
M. Gavrilov, T. Kahsai, R. Kersten, D. Kostyuchenko, Q.-S. Phan, Z. Zhang, and
G. Karsai, ISSTAC: Integrated Symbolic Execution for Space-Time Analysis of Code, in
submission, 2017.

[71] S. Wei, P. Mardziel, A. Ruef, J. S. Foster, and M. Hicks, Evaluating design tradeoffs in
numeric static analysis for java, in European Symposium on Programming, pp. 653–682,
Springer, Cham, 2018.

[72] B. Jeannet and A. Miné, Apron: A library of numerical abstract domains for static
analysis, in International Conference on Computer Aided Verification, pp. 661–667,
Springer, 2009.

[73] G. Singh, M. Püschel, and M. Vechev, Fast polyhedra abstract domain, in Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
pp. 46–59, 2017.

[74] D. Balasubramanian, Z. Zhang, D. McDermet, and G. Karsai, Janalyzer: A static
analysis tool for java bytecode, ISIS 17 (2017) 104.

[75] I. Watson, Watson libraries for analysis. wala. sourceforge. net/wiki/index. php, Main
Page (2006).

[76] M. Kwiatkowska, G. Norman, and D. Parker, Probabilistic symbolic model checking with
prism: A hybrid approach, International Journal on Software Tools for Technology
Transfer 6 (2004), no. 2 128–142.

[77] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, Spoon: A library
for implementing analyses and transformations of java source code, Software: Practice
and Experience 46 (2016), no. 9 1155–1179.

[78] Anonymous, “Sv-comp selected benchmarks.”
https://anonymous.4open.science/r/185db610-ab95-4f46-8fd5-09e7c1ae662a/,
2020.

[79] M. Böhme, V.-T. Pham, and A. Roychoudhury, Coverage-based greybox fuzzing as
markov chain, IEEE Transactions on Software Engineering 45 (2017), no. 5 489–506.

[80] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, Redqueen: Fuzzing
with input-to-state correspondence., in NDSS, vol. 19, pp. 1–15, 2019.

[81] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, Vuzzer:
Application-aware evolutionary fuzzing., in NDSS, vol. 17, pp. 1–14, 2017.

[82] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah, {MOPT}: Optimized
mutation scheduling for fuzzers, in 28th USENIX Security Symposium (USENIX Security
19), pp. 1949–1966, 2019.

138

https://anonymous.4open.science/r/185db610-ab95-4f46-8fd5-09e7c1ae662a/

[83] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, Driller: Augmenting fuzzing through selective symbolic
execution, in 23rd Annual Network and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016, 2016.

[84] F. E. Allen, Control flow analysis, ACM Sigplan Notices 5 (1970), no. 7 1–19.

[85] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, Cil: Intermediate language and
tools for analysis and transformation of c programs, in International Conference on
Compiler Construction, pp. 213–228, Springer, 2002.

[86] “Codeql.” https://codeql.github.com.

[87] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, {AFL++}: Combining incremental
steps of fuzzing research, in 14th USENIX Workshop on Offensive Technologies (WOOT
20), 2020.

[88] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, {QSYM}: A practical concolic execution
engine tailored for hybrid fuzzing, in 27th USENIX Security Symposium (USENIX
Security 18), pp. 745–761, 2018.

[89] M. Wu, L. Jiang, J. Xiang, Y. Zhang, G. Yang, H. Ma, S. Nie, S. Wu, H. Cui, and
L. Zhang, Evaluating and improving neural program-smoothing-based fuzzing, .

[90] B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele, and A. Zeller,
Parser-directed fuzzing, in Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 548–560, 2019.

[91] “Calculator.” https://github.com/btmills/calculator.

[92] J. Wang, B. Chen, L. Wei, and Y. Liu, Skyfire: Data-driven seed generation for fuzzing,
in 2017 IEEE Symposium on Security and Privacy (SP), pp. 579–594, IEEE, 2017.

[93] “Docker for afl++.” https://hub.docker.com/r/aflplusplus/aflplusplus.

[94] F. Wang and Y. Shoshitaishvili, Angr-the next generation of binary analysis, in 2017
IEEE Cybersecurity Development (SecDev), pp. 8–9, IEEE, 2017.

[95] C. S. Păsăreanu, Q.-S. Phan, and P. Malacaria, Multi-run side-channel analysis using
Symbolic Execution and Max-SMT, in Proceedings of the 2016 IEEE 29th Computer
Security Foundations Symposium, CSF ’16, (Washington, DC, USA), IEEE Computer
Society, 2016.

[96] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

139

https://codeql.github.com
https://github.com/btmills/calculator
https://hub.docker.com/r/aflplusplus/aflplusplus

[97] S. Guiasu and A. Shenitzer, The principle of maximum entropy, The mathematical
intelligencer 7 (1985), no. 1 42–48.

[98] B. F. Albanna, C. Hillar, J. Sohl-Dickstein, and M. R. DeWeese, Minimum and
maximum entropy distributions for binary systems with known means and pairwise
correlations, Entropy 19 (2017), no. 8 427.

[99] K. L. Hoffman, A method for globally minimizing concave functions over convex sets,
Mathematical Programming 20 (Dec, 1981) 22–32.

[100] R. Bagnara, P. M. Hill, and E. Zaffanella, The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and
software systems, Science of Computer Programming 72 (2008), no. 1–2 3–21.

[101] C. Cadar, D. Dunbar, D. R. Engler, et. al., Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs., in OSDI, vol. 8, pp. 209–224, 2008.

[102] “PyParma.” https://github.com/haudren/pyparma, 2015.

[103] T. Antopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei,
Decomposition instead of self-composition for k-safety, .

[104] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan, Synthesis of adaptive
side-channel attacks, in 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, CA, USA, 2017.

[105] J. Rizzo and T. Duong, The crime attack, Ekoparty Security Conference, 2012.

[106] J. Kelsey, Compression and information leakage of plaintext, in Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6,
2002, Revised Papers, pp. 263–276, 2002.

[107] N. Lawson, “Timing attack in google keyczar library.” https:
//rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/, 2009.

[108] T. Nelson, “Widespread timing vulnerabilities in openid implementations.”
http://lists.openid.net/pipermail/openid-security/2010-July/001156.html,
2010.

[109] J. C. King, Symbolic execution and program testing, Commun. ACM 19 (July, 1976)
385–394.

[110] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and N. Rungta,
Symbolic PathFinder: integrating symbolic execution with model checking for Java
bytecode analysis, Automated Software Engineering (2013) 1–35.

140

https://github.com/haudren/pyparma
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
http://lists.openid.net/pipermail/openid-security/2010-July/001156.html

[111] C. Shannon, A mathematical theory of communication, Bell System Technical Journal 27
(July, October, 1948) 379–423, 623–656.

[112] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,
science 220 (1983), no. 4598 671–680.

[113] J. S. Daniel Mayer, “Time trial: Racing towards practical remote timing attacks.”
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/
TimeTrial.pdf, 2014.

[114] https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges.

[115] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective lattice point counting
in rational convex polytopes, Journal of Symbolic Computation 38 (2004), no. 4 1273 –
1302.

[116] M. Borges, A. Filieri, M. d’Amorim, and C. S. Pasareanu, Iterative distribution-aware
sampling for probabilistic symbolic execution, in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015, pp. 866–877, 2015.

[117] B. Chen, Y. Liu, and W. Le, Generating performance distributions via probabilistic
symbolic execution, in Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pp. 49–60, 2016.

[118] Q. Phan, P. Malacaria, O. Tkachuk, and C. S. Pasareanu, Symbolic quantitative
information flow, ACM SIGSOFT Software Engineering Notes 37 (2012), no. 6 1–5.

[119] D. J. Fremont and S. A. Seshia, Speeding up smt-based quantitative program analysis, in
In 12th International Workshop on Satisfiability Modulo Theories (SMT), July, 2014.

[120] “laf-intel.” https://lafintel.wordpress.com/. Accessed: 2018-08-21, 2006.

[121] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, Steelix:
program-state based binary fuzzing, in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pp. 627–637, 2017.

[122] J. Liang, Y. Jiang, M. Wang, X. Jiao, Y. Chen, H. Song, and K.-K. R. Choo,
Deepfuzzer: Accelerated deep greybox fuzzing, IEEE Transactions on Dependable and
Secure Computing 18 (2019), no. 6 2675–2688.

[123] P. Godefroid, A. Kiezun, and M. Y. Levin, Grammar-based whitebox fuzzing, in
Proceedings of the 29th ACM SIGPLAN conference on programming language design and
implementation, pp. 206–215, 2008.

141

https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/TimeTrial.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/TimeTrial.pdf
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges
https://lafintel.wordpress.com/

[124] H. Yoo and T. Shon, Grammar-based adaptive fuzzing: Evaluation on scada modbus
protocol, in 2016 IEEE International conference on smart grid communications
(SmartGridComm), pp. 557–563, IEEE, 2016.

[125] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, Fuzzing: State of the art, IEEE
Transactions on Reliability 67 (2018), no. 3 1199–1218.

[126] J. Yan, Y. Zhang, and D. Yang, Structurized grammar-based fuzz testing for programs
with highly structured inputs, Security and Communication Networks 6 (2013), no. 11
1319–1330.

[127] S. Bratus, A. Hansen, and A. Shubina, Lzfuzz: a fast compression-based fuzzer for poorly
documented protocols, .

[128] X. Yang, Y. Chen, E. Eide, and J. Regehr, Finding and understanding bugs in c
compilers, in Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, pp. 283–294, 2011.

[129] C. Holler, K. Herzig, and A. Zeller, Fuzzing with code fragments, in 21st USENIX
Security Symposium (USENIX Security 12), pp. 445–458, 2012.

[130] H. Pang, J. Jian, Y. Zhuang, Y. Ye, and Z. Li, Spotfuzz: Fuzzing based on program
hot-spots, Electronics 10 (2021), no. 24 3142.

[131] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang, Slf: Fuzzing without valid seed
inputs, in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 712–723, IEEE, 2019.

[132] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer, and A. L. Hosking, Seed
selection for successful fuzzing, in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 230–243, 2021.

[133] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen, {GREYONE}: Data
flow sensitive fuzzing, in 29th USENIX Security Symposium (USENIX Security 20),
pp. 2577–2594, 2020.

[134] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, A taint based approach for smart fuzzing,
in 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, pp. 818–825, IEEE, 2012.

[135] T. Chothia, Y. Kawamoto, and C. Novakovic, Leakwatch: Estimating information
leakage from java programs, in Computer Security - ESORICS 2014 - 19th European
Symposium on Research in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part II (M. Kutylowski and J. Vaidya, eds.), vol. 8713 of Lecture Notes in
Computer Science, pp. 219–236, Springer, 2014.

142

[136] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective lattice point counting
in rational convex polytopes, Journal of Symbolic Computation 38 (2004), no. 4 1273 –
1302. Symbolic Computation in Algebra and Geometry.

[137] D. Brumley and D. Boneh, Remote Timing Attacks Are Practical, in Proceedings of the
12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, (Berkeley,
CA, USA), pp. 1–1, USENIX Association, 2003.

[138] S. Chen, R. Wang, X. Wang, and K. Zhang, Side-channel leaks in web applications: A
reality today, a challenge tomorrow, in Proceedings of the 2010 IEEE Symposium on
Security and Privacy, SP ’10, (Washington, DC, USA), pp. 191–206, IEEE Computer
Society, 2010.

[139] P. Mardziel, M. S. Alvim, M. W. Hicks, and M. R. Clarkson, Quantifying information
flow for dynamic secrets, in 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014, pp. 540–555, 2014.

[140] Q. H. Do, R. Bubel, and R. Hähnle, Exploit Generation for Information Flow Leaks in
Object-Oriented Programs, in ICT Systems Security and Privacy Protection: 30th IFIP
TC 11 International Conference, SEC 2015, Hamburg, Germany, May 26-28, 2015,
Proceedings, (Cham), pp. 401–415, Springer International Publishing, 2015.

[141] J. Heusser and P. Malacaria, Quantifying information leaks in software, in Proceedings of
the 26th Annual Computer Security Applications Conference, ACSAC ’10, (New York,
NY, USA), pp. 261–269, ACM, 2010.

[142] M.-T. Trinh, D.-H. Chu, and J. Jaffar, Model counting for recursively-defined strings, in
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, Proceedings, Part II, pp. 399–418, 2017.

[143] Q.-S. Phan, P. Malacaria, C. S. Păsăreanu, and M. d’Amorim, Quantifying Information
Leaks Using Reliability Analysis, in Proceedings of the 2014 International SPIN
Symposium on Model Checking of Software, SPIN 2014, (New York, NY, USA),
pp. 105–108, ACM, 2014.

143

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Challenges in software testing
	Challenges in quantifying information leakage
	Summary of Contributions and Thesis Outline

	Symbolic Quantitative Program Analysis
	Symbolic Execution
	Model Counting constraint Solver
	Probabilistic Symbolic Execution
	Statistical Symbolic Execution
	Applications of Symbolic Quantitative Program Analysis

	Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements
	Overview and Motivation
	A Probabilistic Reachability Heuristic
	Implementation
	Experimental Evaluation

	Rare-path Guided Fuzzing
	Overview
	Program Paths
	Identifying Rare Paths with Path Probability Estimation
	Input Generation for Rare Paths
	Implementation
	Experimental Evaluation

	Obtaining Information Leakage Bounds via Approximate Model Counting
	Overview
	Symbolic QIF Analysis
	Bounding Information Leakage
	Optimization for Bounding Leakage
	Implementation
	Experiments

	Side-Channel Attack Synthesis
	Motivation
	Synthesizing Adaptive Attacks
	Incremental Attack Synthesis
	Attack Synthesis Heuristics
	Implementations and Experiments
	Case Studies

	Related Works
	Conclusions
	Bibliography

