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Abstract

Molecular simulations have been extensively employed to accelerate biocatalytic discoveries. 

Enzyme functional descriptors derived from molecular simulations have been leveraged to guide 

the search for beneficial enzyme mutants. However, the ideal active-site region size for computing 

the descriptors over multiple enzyme variants remains untested. Here, we conducted convergence 

tests for dynamics-derived and electrostatic descriptors on 18 Kemp eliminase variants across six 

active-site regions with various boundary distances to the substrate. The tested descriptors include 

the root-mean-square deviation of the active-site region, the solvent accessible surface area ratio 

between the substrate and active site, and the projection of the electric field (EF) on the breaking 

C–H bond. All descriptors were evaluated using molecular mechanics methods. To understand the 

effects of electronic structure, the EF was also evaluated using quantum mechanics/molecular 

mechanics methods. The descriptor values were computed for 18 Kemp eliminase variants. 

Spearman correlation matrices were used to determine the region size condition under which 

further expansion of the region boundary does not substantially change the ranking of descriptor 

values. We observed that protein dynamics-derived descriptors, including RMSDactive_site and 

SASAratio, converge at a distance cutoff of 5 Å from the substrate. The electrostatic descriptor, 

EFC–H, converges at 6 Å using molecular mechanics methods with truncated enzyme models and 

4 Å using quantum mechanics/molecular mechanics methods with whole enzyme model. This 

study serves as a future reference to determine descriptors for predictive modeling of enzyme 

engineering.
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1. Introduction

Enzymes have been widely used as biocatalysts for chemical synthesis [1–3], biomass 

conversion [4–7], polymer upcycling [8–11], drug functionalization [12–15], and food 

allergy treatment [16–18]. Wild-type enzymes usually exhibit low specificity for converting 

non-native substrate and feeble activity for catalyzing new-to-nature reactions. Experimental 

strategies of enzyme engineering, such as random mutagenesis [19–21], gene shuffling/

recombination [22, 23], CASTing [24, 25], and directed evolution [26–29], have been 

leveraged to optimize enzymes’ capability for accommodating non-native substrates or 

catalyzing new-to-nature reactions. These strategies require extensive efforts for screening 

and selecting mutants to achieve desired functions. To accelerate biocatalytic discovery, 

molecular simulations [30–34] have been augmented with the campaign of biocatalytic 

discovery. The catalytic actions of enzyme catalysis can be elucidated and quantified using 

descriptors, including folding stability [35], binding affinity [36–38], activation barriers [39, 

40], protein dynamics and correlated motions [41–49], electric field (EF) [50–55], charge 

transfer [54, 56], and more. These descriptors, derived from quantum mechanical (QM) or 

molecular mechanical (MM) simulations, have guided the search for beneficial mutants [57, 

58]. They also serve as critical features for data-driven enzyme engineering.

For example, protein dynamics-derived descriptors and EFs have been extensively 

studied, because they were found to correlate with enzyme catalytic efficiency [50, 

58–60]. Additionally, their computation is more efficient than that of activation 

barriers, whose convergence requires intensive conformational sampling and electronic 

structure calculations. A common descriptor for protein dynamics is the root-mean-

square deviation of the active-site region (RMSDactive_site). RMSDactive_site quantifies the 

structural fluctuation of protein backbones or sidechains relative to a reference structure. 

The fluctuation is associated with the B-factor of protein structure determined from 

crystallography. In an analysis of catalytic residues in 178 enzyme active sites [59], 

Bartlett et al showed that the active-site residues of efficient enzymes generally have a 

lower B-factor. As such, a lower RMSDactive_site should be expected for efficient mutant 

enzymes and designer enzymes in catalysis, albeit the catalytic efficiency may drop under 

very low RMSDactive_siterange [61]. Besides RMSDactive_site, our group identified a new 

descriptor to evaluate the overall impact of protein dynamics on substrate positioning [58]. 

The descriptor, defined as solvent accessible surface area ratio of substrate to active-site 

residues (SASAratio), can be obtained from molecular dynamics (MD) simulations. Using 

lactonase as a model system, our previous work shows that SASAratio can guide the search 

of optimal enzyme mutants with enhanced specificity for non-native substrates. Besides 

protein dynamics, the role of electrostatic environments was reported as a critical factor in 

mediating enzyme catalysis [62]. Linear correlation was observed between the magnitude 

of EF in the reaction center and the free energy barrier in ketosteroid isomerase and serine 

protease [50].
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Despite the broad applications of simulation-derived descriptors in guiding enzyme 

engineering, converging the computation of descriptors in QM and MM simulations is a 

non-trivial task. Failure of achieving convergence hampers reproducibility of computational 

outcomes and may misguide experimental designs. This issue is particularly significant 

for QM-based calculations due to their high computational cost. Benchmarks have been 

performed to investigate the selection of QM regions that converge the computation of 

electronic structure descriptors (e.g. partial charge [63–67], charge transfer [67], charge 

density [66], bond valence [67], and electrostatic potential), energetic properties (e.g. 

energy barrier, reaction energy, and free energy) [64, 65, 67–75], geometries [64, 73, 

74], and nuclear magnetic resonance (NMR) shielding [76, 77] in various model enzymes 

(peroxidase, methyltransferases, cytochrome P450, and deacetylase) [67]. Rational QM 

region selection approaches have also been developed, including charge shift analysis [78], 

Fukui shift analysis [78], and point charge variation analysis [79].

The benchmark studies on descriptors have been mostly performed on wild-type enzymes 

[72]. However, to understand or predict mutation effects, it is essential to perform 

convergence tests over multiple enzyme variants. Ideally, the selected active-site region 

for computing QM or MM properties should be large enough so that further expanding 

the region size does not substantially change the order of descriptor values across different 

enzyme variants. In this work, using 18 variants of Kemp eliminase [80], we investigated 

whether the ranking of descriptor values across enzyme variants approaches convergence 

as the increase of active-site region sizes used in descriptor computation. We first sampled 

conformational ensembles for 18 variants using classical molecular dynamics. Based on 

the sampled conformers, protein dynamics-derived descriptors (i.e. RMSDactive_site and 

SASAratio) and electronic structure-derived descriptors (i.e. EF along the breaking C–H 

bond) were evaluated using different sizes of active-site region based on MM or QM 

methods. For each descriptor, the Spearman correlation matrix was computed to examine the 

trend of convergence. The study informs the conditions under which different descriptors 

can be calculated with high fidelity for predicting the impact of mutations on catalytic 

functions. In addition, as the interplay between protein dynamics and electronic structures 

emerges as a new direction of study [81, 82], the convergence trend investigated in the 

current study might inspire the development of new strategies to predict computationally 

demanding QM properties using MM-derived properties.

2. Computational methods

Protein Structure and Preparation

The crystal structure of KE07-R7-2 was obtained from the Protein Data Bank (PDB ID: 

5D38) [56]. All the crystallizing water molecules were removed. To make the amino acid 

sequence consistent with the original KE07 design [30], the N-terminal alanine was changed 

to methionine and the residues following Leu253 on the C-terminal were removed. The 

crystal structure [30] of KE07 in complex with the substrate 5-nitrobenzisoxazole was 

aligned relative to the KE07-R7-2 crystal structure using PyMol [83]. The coordinates of 

the substrate were used to construct the KE07-R7-2-substrate complex. The complex was 

then prepared with the AMBER 18 tleap [84] utility for MD simulations. AMBER ff14SB 
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force field was used for the protein [85]. Parameters for the substrate were obtained using 

the generalized AMBER force field [86, 87]. The substrate structure was downloaded from 

PDB under the H5J entry (5-nitro-1,2-benzoxazole). The atomic charges were determined by 

the AM1-BCC model [88]. The missing atoms were also complemented with tleap.

Molecular Dynamics Simulations

MD simulations for each of the 18 variant-substrate complexes were conducted with a high 

throughput enzyme modeling platform, EnzyHTP [89]. The 18 variants include one KE07-

R7-2 as the ‘wild-type’ and 17 of its mutants, including S48N, H201A, H201K, K222A, 

R16Q, N25S, I52A, M62A, H84Y, K132N, I199S, I199F, I199A, K132M, K162A, L170A, 

E185A (supporting information, table S1 and .zip file). Specifically, EnzyHTP automatically 

generates the structures of enzyme mutants based on the original structure and performs 

MD simulations using AMBER 18 [84]. The SHAKE algorithm was applied to constrain 

all the hydrogen-containing bonds [90]. To sample the near transition state conformations 

throughout the simulations, geometric restraints between the substrate and key amino acid 

residues were applied from minimization to production runs (supporting information, figure 

S1). The enzyme complexes were then solvated in a periodic octahedron box with a 10 Å 

buffer of TIP3P water and were neutralized with Na+ counterions. For each variant complex, 

the whole solvent box was first relaxed using steepest descent method for 10 000 steps 

followed by conjugate gradient method for another 10 000 steps. After minimization, each 

box was heated from 0 to 293.15 K within 36 ps with constant volume, equilibrated for 4 

ps under constant volume at 293.15 K, and further equilibrated at 293.15 K and 1 atm for 

1 ns. In addition to the geometric restraints mentioned above, the backbone Cα, C and N of 

the amide group were also restrained with a 2 kcal mol−1 Å−2 weight from the minimization 

to equilibration. After equilibration, we carried out production runs for 110 ns and output 

the trajectories every 100 ps. The snapshots derived from the last 100 ns of the production 

run were used for analyses. This yields a total of 1000 snapshots for each production run. 

All simulations were performed with a time step of 2 fs. The Langevin thermostat [91] 

and Berendsen barostat [92] were used throughout the simulations. For each of the 18 

variant-substrate complexes, five parallel MD runs were conducted with different random 

seeds, yielding a total sampling time of 500 ns and 5000 snapshots.

QM/MM Calculations

We conducted QM/MM single-point electronic structure calculations for 500 snapshots 

sampled from MD production runs with a 1 ns interval. Each snapshot resulted from MD 

sampling was converted to an image in which the enzyme-substrate complex occupies 

the center of the box using autoimage function of AMBER cpptraj utility [93]. QM/MM 

single-point energies were calculated using TeraChem [94, 95]. The electrostatic interactions 

between the QM and MM region were treated with the electrostatic embedding method 

[62]. The QM/MM boundaries cut the backbone C–N bond of the amide group. To cap 

the unbonded atoms in the QM region, explicit H atoms were placed along the bond 

vector connecting the QM and MM atoms, and the resulting N–H and C–H bond lengths 

were set to be 1.09 Å. At the same time, the point charges originally belonging to the 

QM-region-bonded amide C and N atoms in the MM region were removed, and their 

charges were redistributed evenly on the remaining MM atoms except for those covalently 
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bonded to the deleted MM amide C and N atoms. The electronic structures were described 

using the range-separated exchange-correlation functional ωPBEh [96] (ω = 0.2 bohr−1) 

with 6–31 G(d) [97]. This combination of method and basis set has been validated in the 

study of large-scale electronic structure effects in catechol O-methyltransferase, cytochrome 

P450cam, lysozyme, and DNA methyltransferase [65, 67]. The restrained electrostatic 

potential (RESP) point charges [98] of each snapshot were calculated for QM residue EF 

analyses.

Descriptor Calculations and Analyses

We selected six active-site regions whose boundary’s distance to the substrate surface 

ranges from 3 to 8 Å with a 1 Å interval. For all 18 variants, the active-site regions 

were classified based on the averaged MD structure of KE07-R7-2. A residue is selected 

in the region if any one of its heavy atoms is within the distance cutoff from its nearest 

substrate heavy atom. Based on each of the active-site region, we calculated the enzyme 

functional descriptors, including mass weighted root-mean-square deviation of an active-site 

region (RMSDactive_site, in Å), solvent accessible surface area ratio between substrate and 

active-site residues (SASAratio, in Å2), and EF along the breaking C–H bond (EFC–H, in 

MV cm−1). The values of each descriptor were first evaluated on individual conformational 

snapshots, and then averaged over sampled classical MD or QM/MM snapshots (supporting 

information, tables S2–S5).

For RMSDactive_site, we included all the heavy atoms of the amino acid residues. The 

reference structure was averaged from sampled MD snapshots. The SASAratio was 

calculated based on the ratio of SASAsub (substrate’s SASA) to SASAprotein (protein 

residues’ SASA). SASA was quantified using the Shrake and Rupley algorithm [99] 

embedded in the python library MDTraj [100]. The probe radius was 1.4 Å and the 

surface of each atom was represented by 5000 grid points. EFC–H was calculated to 

be the projected EF strength at the middle point of the breaking C–H bond of the 

substrate 5-nitrobenzisoxazole. The bond vector direction points from C to H. We separately 

computed EFC–H based on RESP charges either derived from molecular mechanics force 

field or single-point electronic structure calculation. For MM-derived EFC–H, the EFC–H was 

summed over from all atoms in the selected active-site region based on the RESP charges 

used in the classical force field. For QM/MM-derived EFC–H, the EFC–H was summed over 

from all atoms in the QM and MM region. The EF contributions from the capping H atoms 

were not included.

For each active-site region, the averaged descriptor values were computed and then ranked 

across 18 enzyme variants from 1 to 18. The Spearman correlation coefficient ρ was 

calculated as 1 − 6∑di
2

n n2 − 1
 where di is the rank difference for the ith enzyme variant and n = 

18 is the total number of enzyme variants. Spearman correlation matrix for each descriptor 

was computed that contains the correlation coefficients for each pair of the active-site 

regions.
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3. Results and discussion

3.1. Kemp eliminase variants as the model system

As the first known de novo-designed enzyme, Kemp eliminase catalyzes the conversion of 

benzisoxazole to cyanophenol via C–H deprotonation followed by ring opening (figure 1 

top right) [30]. Multiple generations of Kemp eliminase have been reported [30, 42, 51, 52, 

56, 80, 101–103]. Some well-known examples include the KE family designed using the 

‘inside-out’ protocol by Baker, Houk, Tawfik, and co-workers [30], the HG family using 

iterative protocol by Hilvert, Houk, Mayo and co-workers [31], and the AlleyCat family 

using the minimalist approach by Korendovych, Degrado, and coworkers [32, 103]. From 

their initial reports, the most efficient enzyme variants were identified to be KE07-R7-2 

(kcat/KM 2590 M−1 s−1), HG-3 (kcat/KM 430 M−1 s−1), and AlleyCat (i.e. kcat/KM = 128.4 

M−1 s−1). All three families of Kemp eliminase involve a general acid-base mechanism, in 

which the substrate 5-nitrobenzisoxazole is deprotonated by a nearby carboxylate (side chain 

of Glu or Asp) to form 2-hydroxy-5-nitrobenzonitrile via one single transition state (figure 

1, top-right). Nonetheless, they involve a different set of active site residues for substrate 

deprotonation and binding.

We chose the model system to be a member of the KE family, KE07-R7-2 [30, 56], 

and 17 of its variants with single amino acid substitution reported by Head-Gordon and 

coworkers [80]. KE07-R7-2 was derived from seven rounds of directed evolution based 

on a computationally designed enzyme scaffold KE07. In KE07-R7-2 and its variants, the 

carboxylic sidechain of Glu101 serves as the catalytic base (figure 1, bottom-right). These 

variants were selected in the benchmark for three reasons. First, the mutational spots of 

the variants span over a wide range of spatial proximity to the substrate (i.e. 3–23 Å, 

figure 1, left and supporting information, table S1). Both close and distal mutations are thus 

considered in the study. Second, although modeling has been performed for KE07-R7-2 to 

infer mutational hotspots based on correlated residue motion [80], protein dynamics and 

electronic structures for the 17 variants of KE07-R7-2 have not been investigated. Third, 

the kinetic parameters (i.e. kcat or KM) for these variants are known experimentally [80]. 

This implies that the mutation does not abolish the structural and catalytic integrity of Kemp 

eliminase. The crystal structure for KE07-R7-2 can be used as a scaffold for mimicking 

the mutant structures. Notably, although Kemp eliminase is the only model enzyme used in 

the current study, the general acid-base mechanism of Kemp eliminase represents a general 

mechanistic scheme shared by hydrolases, isomerases, and many other types of enzymes. As 

such, the convergence trend identified here can be potentially applied to other cases.

For KE07-R7-2 and its variants, the greater enzyme active site region entails 32 residues, 

including 6 polar, 20 non-polar, and 6 charged residues (figure 1, bottom-right and 

supporting information, table S6). By design, Glu101, Lys222 and Trp50 directly participate 

in the reaction or stabilize the transition state [30]. Glu101 is the general base that 

deprotonates the substrate. Lys222 is the H-bond donor to stabilize the phenoxide 

intermediate. Trp50 is the π-stacking residue to stabilize the substrate binding and charge-

separated transition state. Four polar residues are observed within 5 Å of the substrate, 

including Tyr128, Ser48, His201, and Arg202. They likely stabilize the substrate binding or 
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transition state with electrostatic or polar interactions. In addition, a total of eight polar (i.e. 

Glu101, Lys222, Tyr128, Ser48, His201, Arg202, Asp224, Asn103) and four charged (i.e. 

Glu101, Lys222, Arg202, Asp224) residues are found within 5.5 Å from the substrate. These 

residues mediate the EF environment exerted on the breaking CℓH bond. Besides dispersion 

interactions, the nonpolar residues likely contribute to the active site dynamics as described 

by RMSDactive_site and SASAratio.

3.2. Region selection for descriptor calculation

To calculate simulation-derived descriptors, an active-site region should be defined first. In 

this study, the calculations of RMSDactive_site, SASAratio, and MM-derived EFC–H involve 

only the residues classified within a defined active-site region. The calculation of QM/

MM-derived EFC–H involves treatment of the active-site region residues using quantum 

mechanics and the rest of the enzyme residues using molecular mechanics.

To benchmark the region size effect, the active-site regions were defined based on the 

residues’ spatial proximity to the substrate (see section 2, Descriptor Calculations and 

Analyses). We selected six active-site regions whose boundaries to the substrate range from 

3 to 8 Å (with 1 Å interval)—they are named C3–C8, respectively (figure 2). The residues 

were consistently selected by referencing KE07-R7-2. For C3, only Glu101 is included. 

Glu101 serves as the catalytic base to deprotonate the residue. Notably, throughout the 

MD simulations, a distance constraint was applied between Glu101 and the substrate to 

maintain their favorable catalytic pose. Compared to C3, C4 involves an expansion of seven 

additional residues. Among these residues, Lys222 and Trp50 appear in the original design 

of theozyme [30]. These two residues, cooperating with His201, Tyr128, and Ser48, likely 

facilitate proton transfer needed for the general acid-base mechanism. Unlike C3 which 

bears a −1 charge, C4 is charge neutral due to the addition of Lys222. In C5, only one 

additional residue Arg202 is included. This indicates that the catalytic core of KE involves 

a relatively compact inner cluster of residues surrounding the substrate. The positive charge 

introduced by Arg202 in C5 is neutralized by Asp224 in the C6 region. Notably, among the 

newly added residues in C6, three (i.e. Leu10, Phe49, and Val169) out of five are non-polar. 

This trend is also observed in C7 and C8. For the new additions, only two residues (i.e. 

Ser144 and Thr78) out of eight are polar in C7; two (i.e. Asp7 and Asp51) out of ten are 

polar in C8. The excessive number of non-polar residues in the greater active-site region 

contribute to the stability of Kemp eliminase.

The total number of atoms ranges from 31 in C3 to 495 in C8 (table 1). The region 

size tested here is comparable to or greater than the optimal region sizes determined 

from previous benchmark studies, including DNA methyltransferase by Solt et al [68]. 

(300 atoms), histone deacetylase by Morgenstern et al [66]. (200 atoms), and catechol 

O-methyltransferase by Kulik et al [64]. (500–600 atoms) and Jindal and Warshel [72]. 

(60 atoms). Notably, the size effect mentioned above was determined to be optimal for 

QM-derived quantities, including charge transfer, electron density, reaction enthalpy, and so 

on. In contrast, the size effects investigated in this study emphasize both MM-derived and 

QM/MM-derived features.
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For each of the six active-site regions, we computed the average descriptor values for the 

18 KE07-R7-2 variants based on their conformational ensembles (supporting information, 

tables S3–S6). We investigated how the ranking of descriptor values across the 18 variants 

varies with the increase of region size. Instead of benchmarking a certain molecular property 

against its reference value, this study intends to identify a condition of region size under 

which further expanding the region boundary minimally changes the ranking of descriptor 

values across enzyme variants. Notably, the region size condition for a converged trend 

does not guarantee the convergence of individual property values. Nonetheless, the mutation 

effect can be reasonably inferred under this condition to guide enzyme engineering.

3.3. Descriptor of protein dynamics: RMSDactive_site and SASAratio

We first investigated the dynamics-derived descriptors, RMSDactive_site and SASAratio. They 

represent different aspects of protein dynamics. RMSDactive_site informs the conformational 

fluctuation of active site residues, while SASAratio informs the dynamic positioning and 

fitness of substrate in the active site.

Figure 3 shows the Spearman correlation matrix for RMSDactive_site (left) and SASAratio 

(right). Each element of the matrix represents a Spearman correlation coefficient (i.e. ρ) 

between descriptor values derived from two regions with a distinct size. For RMSDactive_site, 

a high ρ value (i.e. ⩾0.70) is observed for almost all pairs of regions except those that 

involve C3. The moderate ρ values between C3 and C5–C8 (i.e. 0.4–0.6) are caused by the 

small size of C3 that involves only one residue in the region (i.e. Glu101). The correlation 

coefficients tend to be higher for regions that are close in size (e.g. ρ > 0.9 for C5–C6, 

C6–C7, and C7–C8) and lower for regions with a larger size gap (e.g. ρ = 0.40 for C3–C8 

and 0.73 for C4–C8). Notably, it is unexpected that the correlation coefficient is still as high 

as 0.40 between C3 and C8 because their numbers of residues differ by 31 and of atoms 

by 464. This indicates that the RMSDactive_site ranking calculated from C3 can still partially 

inform the ranking of dynamic fluctuation exhibited by larger-sized regions. This is likely 

caused by the collective motions of residues in the enzyme active site, where all residues are 

somewhat interconnected in a complex, dynamic network.

Unlike RMSDactive_site, which emphasizes protein dynamics, SASAratio represents the 

interplay of dynamic motion between substrate and its surrounding active-site residues. The 

Spearman correlation matrix of SASAratio shows a similar trend to that of RMSDactive_site 

(figure 3, right). For each pair of regions, the Spearman correlation coefficient of SASAratio 

is generally greater than that of RMSDactive_site. The ρ values are greater for correlations 

between larger regions that are closer in size (e.g. ρ = 0.96, 0.96, and 0.93 for C5–C6, 

C6–C7, and C7–C8, respectively). Notably, the SASAratio is computed by the SASA ratio 

of substrate to active-site residues. For different active-site regions, the SASA value of the 

substrate always remains constant. This helps dampen the perturbation of expanding region 

size on the ranking of descriptor values across variants.

To determine a convergence cutoff for computing dynamics-derived descriptors, we 

investigated the change of Spearman correlation coefficients between adjacent active-site 

regions versus the increase of region size (figure 4). For both RMSDactive_site and SASAratio, 

the correlation coefficient appears greater than 0.90 after C5 (i.e. 5.0 Å from the substrate). 
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With a Spearman ρ value greater than 0.90, the ranking of descriptor values computed from 

one active-site region is largely preserved in another. As such, the convergence cutoff for 

dynamics-derived descriptors is determined to be 5.0 Å. Notably, from C5 to C8, the atomic 

charge varies from 1 (C5), to 0 (C6 and C7), then to −2 (i.e. C8). The correlation coefficients 

remain high even between regions of different charges. This observation confirms that the 

dynamics-derived descriptors used here are approximately independent from electrostatic 

effects—they are insensitive to electrostatic perturbation in the protein environment.

3.4. Descriptor of electrostatic environment: EF along breaking C–H bond

Next, we investigated the descriptor for enzyme electrostatics, EFC–H, the EF along the 

breaking C–H bond. The interior EF in Kemp eliminase has been proposed as a factor 

to stabilize the developing dipole moment along the C–H bond [52]. Optimizing the EF 

through mutagenesis has also been demonstrated as an effective strategy to improve enzyme 

catalytic efficiency [52, 104].

Figure 5 shows the Spearman correlation matrix for EFC–H that were separately computed 

using MM (left) and QM/MM (right) method. MM-derived EFC–H involves only the local 

residues that are classified in the active-site region. This approach is similar to the distance 

cutoff method used in Rosetta score functions for computing electrostatic interactions [105]. 

QM/MM-derived EFC–H employs QM to treat residues in the active-site region and MM 

for residues in the rest of the enzyme. This approach incorporates the effects of long-range 

electrostatics. Notably, to ensure a consistent comparison, the same set of MD-derived 

snapshots was used in the calculations for both MM- and QM/MM-derived EFC–H values. In 

our test cases, the QM/MM optimization consistently increases the resulting EFC–H values 

by a few tens of MV cm−1 (supporting information, table S7).

Unlike dynamics-derived descriptors, low correlation coefficients are more frequently 

observed between active-site regions of different sizes, especially between regions with a 

larger size gap. For example, the Spearman ρ values for C3–C6 (i.e. differ by 13 residues), 

C3–C7 (i.e. differ by 21 residues), and C3–C8 (i.e. differ by 31 residues) are 0.07, 0.07, 

and 0.05, respectively, for MM-derived EFC–H (figure 5, left). The low correlation strength 

indicates that the ranking of EFC–H values derived from a smaller active-site region cannot 

be used to infer the ranking from a larger active-site region. Different from dynamics-

derived descriptors, the EF depends more sensitively on the active-site regions used in the 

calculation. From C3 to larger active-site regions, individual residues added to the active site 

region, especially polar and charged residues, can significantly affect the representation of 

mutation effects on interior enzyme electrostatics.

Similar to dynamics-derived descriptors, the Spearman ρ values are greater for correlations 

of EFC–H rankings between larger regions that are closer in size. The ρ values for C4–C5, 

C6–C7, and C7–C8 are 0.99, 0.99, and 0.98, respectively, for MM-derived EFC–H (figure 

5, left); and are 0.99, 0.89, and 0.94, respectively, for QM/MM-derived EFC–H (figure 5, 

right). Interestingly, the rankings derived from C4 to C5 are highly consistent, albeit their 

difference in the total charge of active-site residues by −1. The charge difference is caused 

by the addition of Arg202 in C5. Despite having a +1 charge, Arg202 has a trivial influence 

on EFC–H due to it being perpendicular to the breaking C–H bond vector. For C6–C7 and 
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C7–C8, the newly added residues are mostly nonpolar and are distant from the breaking 

C–H bond in the substrate (i.e. >6.3 Å). As EF strength is inversely proportional to the 

square of the distance, the impact of remote residues dies off quickly. As such, a consistent 

ranking of EFC–H values is observed between regions beyond C6. For MM-derived EFC–H, 

the Spearman ρ value for C5–C6 (i.e. 0.54) is significantly lower than that for C4–C5 or 

C6–C7 (figure 5, left). This is because the newly added charged residue in C6, Asp224, 

is positioned along the direction of the breaking C–H bond vector. As such, the impact 

of Asp224 on the ranking of EFC–H values is substantial. Notably, the drop of Spearman 

ρ value for C5–C6 was also observed for Mulliken charge-based QM/MM-derived EFC–H 

values (supporting information, table S8 and figure S2), albeit the correlation coefficients 

remain consistently high (i.e. >0.90) for larger QM regions.

By comparing the Spearman ρ values for C4–C5, C5–C6, and C7–C8, the results show 

that for both MM-and QM/MM-derived EFC–H values, the ranking is dependent more on 

the spatial distribution of charged residues relative to the breaking C–H bond than on the 

total atomic charge in the active-site regions. This finding can potentially help rational 

identification of residues for tuning interior enzyme EFs for selective bond activation. To 

determine a convergence cutoff for computing electrostatic descriptors (i.e. for MM- and 

QM/MM-derived EFC–H), we investigated the change of Spearman correlation coefficients 

between adjacent active-site regions versus the increase of region size (figure 6). Consistent 

with the dynamics-derived descriptors, we adopted a Spearman ρ value of 0.90 as the 

criterion for determining the convergence cutoff. For MM-derived EFC–H with truncated 

enzyme models, the convergence occurs at 6 Å. For QM/MM-derived EFC–H with whole 

enzyme models, the correlation coefficients are consistently high even at minimal QM 

region C3/C4 (figure 6, right). This indicates that MM charges are sufficiently accurate and 

can even replace QM-derived RESP charges in describing the ranking of EF values across 

different mutants (supporting information, figure S3). The results are likely caused by the 

fact that the reactant state of Kemp eliminase does not involve longer-range charge transfer 

with residues in the greater protein environment. The trend of correlation likely changes 

when the deprotonation transition state is bound to the active site.

However, we should note that the computed EF values are still dependent on the QM region 

selection. As such, we investigated the trend of convergence for absolute QM/MM-derived 

EFC–H values under different QM region sizes (supporting information, figure S4). The 

distribution of EF values systematically drops as the QM region enlarges from C3 to C4 and 

becomes steady until the QM region size hits C7 where the distribution bumps up due to 

reorganization of active site residues (i.e. Ala9, Thr78, Gly80, and Asp224). Combining the 

region size benchmark of correlation matrix and absolute EF values, we determine C4 as 

the convergence cutoff. To examine the influence of MM region, we calculated the C4-based 

QM/MM-derived EFC–H values under different MM region sizes (supporting information, 

table S9 and figure S5). The ρ values for C4–C5, C6–C7, C7–C8, and C8-whole enzyme 

are 0.93, 0.98, 0.99, and 0.95, respectively. This result shows that the ranking of EF values 

across mutants is not sensitive to MM region sizes.

To pinpoint the origin of the difference between MM- and QM/MM-derived EFC–H values 

at the QM region of C4, we calculated the atomic RESP charges derived from both MM 
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and QM methods based on the KE07-R7-2 wild-type. The atoms with the top ten largest 

deviations are backbone atoms residing on the QM/MM boundary (supporting information, 

table S10). Although the QM/MM boundary effects do not appear to influence the ranking 

of EF values across mutants, larger QM region should be used when the actual values of 

physical properties are of interest to the research.

Considering the low computational cost of MM-derived EFC–H values, we would 

recommend a hybrid approach for future practice of computational enzyme engineering. 

This hybrid approach involves using MM-derived EFC–H values (of the whole enzyme) for 

pre-screening of a large number of mutants, followed by assessment of QM/MM-derived 

EFC–H values to identify mutants for experimental tests. For reactions with stronger 

polarization and charge transfer, a larger QM region may be used, but the region size could 

potentially be reduced by using rational QM determination approaches such as charge shift 

analysis [78], Fukui shift analysis [78], and point charge variation analysis [79].

4. Conclusions

In this work, we investigated how large an active-site region should be to converge 

the description of mutation effects on enzyme dynamics and electrostatics. For 18 KE07-

R7-2 variants, dynamics-derived descriptors (RMSDactive_site and SASAratio, both derived 

from classical MD) and electrostatic descriptors (MM- and QM/MM-derived EFC–H were 

computed across six active-site regions with various boundary distances (i.e. 3–8 Å) to the 

substrate. For each descriptor, we employed the Spearman correlation matrix to determine 

the region size condition under which further expansion of the region boundary does not 

substantially change the ranking of descriptor values.

Using a Spearman ρ value of 0.9 as a criterion for convergence, we observed that the 

ranking for RMSDactive_site and SASAratio converges at 5 Å; MM- and QM/MM-derived 

EFC–H converge at 6.0 and 4.0 Å, respectively. The ranking of EFC–H values derived from 

MM charges (i.e. including all atoms in the enzyme) is predictive to that from QM/MM 

charges, albeit the absolute EF values still exhibit dependence on the QM region sizes. 

As such, we recommend a hybrid approach for future practice of computational enzyme 

engineering, which involves a pre-screening of a large number of mutants based on MM-

derived EFC–H values, followed by an assessment of QM/MM-derived EFC–H values on a 

smaller number of pre-screened mutants. Notably, the convergence of rankings does not 

ensure the convergence of measured descriptor values. Nonetheless, the ranking is most 

useful to guide experimental selection of function-enhancing enzyme mutants. Additionally, 

the current study emphasizes a designer enzyme, Kemp eliminase. Future studies should 

entail more types of enzymes with various catalytic actions.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mutation spots, catalyzed reaction, and active site residues of Kemp eliminase KE07-R7-2. 

(Left) Spatial distribution of mutation spots. The Cα atom of each site is shown in purple 

sphere, and the substrate is shown in green sticks. (Top-right) Catalyzed Kemp elimination 

reaction. The single transition state involves the deprotonation of a carbon atom. The 

transition state is stabilized by a general base from an amino acid side chain. The partial 

negative charge on the oxygen atom is stabilized by a hydrogen bond donor, which can be 

an amino acid side chain or a solvent water molecule. (Bottom-right) Active site residues are 

shown in stick. The substrate is shown in green, and the rest of the residues are shown in 

gray. The catalytic base is labeled in red. The residues that are within 5 Å from the substrate 

are labeled in black. The residues that are between 6 and 8 Å from the substrate are labeled 

in darker blue.
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Figure 2. 
Six active-site regions with various boundary distances to the substrate. The distances used 

here range from 3 to 8 Å; the regions are named C3–C8, respectively. For each region, the 

selected residues are shown in stick. Compared to an adjacent region with a smaller size, 

the newly-added residues shown in red stick and labeled with a residue name; the existing 

residues are shown in gray stick.
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Figure 3. 
Spearman correlation matrices for protein dynamics-derived descriptors, RMSDactive_site 

(left) and SASAratio (right). Each matrix element represents a Spearman correlation 

coefficient for a pair of active-site regions with a distinct size. The magnitude of the 

correlation is coded by a gradient color bar that ranges from 0 (white) to 1 (red).
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Figure 4. 
Spearman correlation coefficients for the dynamics-derived descriptors, RMSDactive_site 

(left) and SASAratio (right) between regions that are close in size. The red dashed line 

indicates the convergence cutoff of 0.90.
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Figure 5. 
Spearman correlation matrix for MM-derived EFC–H (left) and QM/MM-derived EFC–H 

(right). Each matrix element represents a Spearman correlation coefficient for a pair of 

active-site regions with different region sizes. The magnitude of the correlation is coded by a 

gradient color bar that ranges from 0 (white) to 1 (red).
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Figure 6. 
Spearman correlation coefficients for the dynamics-derived descriptors, MM-derived EFC–H 

(left) and QM/MM-derived EFC–H (right) between regions that are close in size. The red 

dashed line indicates the convergence cutoff of 0.90.
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Table 1.

Number of residues, number of atoms, and net charge for the six active-site regions of KE07-R7-2 with 

different region sizes. Substrate atoms are counted in the number of atoms.

Cutoff (Å) Number of residues Number of atoms Net Charge

3 1 31 −1

4 8 155 0

5 9 179 1

6 14 260 0

7 22 336 0

8 32 495 −2
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