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chemostratigraphic correlations 
across the first major trilobite 
extinction and faunal turnovers 
between Laurentia and South China
Jih-pai Lin  1*, frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & thomas Wotte5

During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and 
three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle 
Cambrian boundary in Laurentia was based on the first major trilobite extinction event that is known as 
the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian 
Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision 
of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of 
Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides 
detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this 
critical boundary interval based on eight sections in North America and South China. Our results show 
robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 
3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and 
the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon 
excursion, the first appearance datum of Oryctocephalus indicus is currently the best horizon to achieve 
correlation between the two regions.

The international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difficult 
primarily due to apparent diachroniety of the datum species used to define the boundary reflecting the endemic 
faunas. Traditionally, this boundary has been marked by the first appearance datum (FAD) of Paradoxides (and 
other paradoxidid trilobites) in western Gondwana, Baltica, and Siberia1–5, the last appearance datum (LAD) 
of Redlichia (and other redlichiid trilobites) in South China6,7, and the LAD of Olenellus (and other olenellid 
trilobites) in Laurentia8,9. However, it has become apparent that the FAD of Paradoxides is not synchronous in 
Gondwana10–14, and this boundary is earlier than either the LADs of Redlichia or Olenellus15. In addition, the pre-
sumed synchronicity of the LADs of Redlichia or Olenellus also appears to be questionable15–17. The three major 
trilobite faunas discussed here are: olenellids, redlichiids, and paradoxidids. Olenellids include taxa in the fam-
ilies Olenellidae and Biceratopsidae and are confined to the paleo-continent Laurentia. Redlichiids used herein 
include members in the subfamily Redlichiinae, and they are found in eastern Gondwana, North China, and 
South China. These two trilobite stocks are separated from each other by the paradoxidids, including all species 
within the genus Paradoxides, which occur in West Gondwana, Avalonia, Siberia, and Baltica.

In an attempt to provide an accurate correlation near the traditional lower–middle Cambrian boundary, 
the IUGS has recently approved the Global Boundary Stratotype Section and Point (GSSP) for the Miaolingian 
Series and Wuliuan Stage, with their bases replacing the traditional boundary18. The base of the Wuliuan Stage is 
based on the FAD of Oryctocephalus indicus19 in the Kaili Formation, Wuliu-Zengjiayan section, Jianhe County, 
Guizhou Province, China18,20–24. This base coincides with the base of Miaolingian Series. Sundberg et al.25 doc-
umented the abrupt faunal turnover at the GSSP section. While this datum is useful for correlating strata in 
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South China, India, North Korea, Siberia, and Laurentia, it does not occur in western Gondwana, Baltica, and 
Avalonia15,26.

The goals of this paper are to provide an accurate correlation of the base of the Miaolingian Series and to 
evaluate whether the redlichiids and olenellids became extinct synchronously. A high-resolution biostratigraph-
ically constrained carbon isotope chemostratigraphy compiled from eight stratigraphic successions spanning 
the extinctions of the olenellids, redlichiids and the FAD of O. indicus across the paleo-shelf of Nevada (Fig. 1A), 
USA and Guizhou, South China is presented here. Montañez et al.27 first reported a prominent negative carbon 
excursion at or close to the base of the traditional lower–middle Cambrian boundary in Laurentia, and this 
excursion has been designated as the Redlichiid-Olenellid Extinction Carbon isotope Excursion (ROECE)28,29. 
By comparing the western U.S. record to a compilation of new and previously reported data from Guizhou, South 
China (Fig. 1B), our goal is to construct a global carbon chemostratigraphy by integration of the chemo- and 
biostratigraphic data from the two regions. The new chemostratigraphic correlation presented here should per-
mit correlation of this critical interval to other regions that lack O. indicus and associated faunas (e.g., Europe, 
Morocco, Australia). Our study represents the most comprehensive chemostratigraphy and biostratigraphy across 
the Cambrian Series 2–Miaolingian boundary interval from Nevada and South China for testing the synchronic-
ity of the olenellid extinction in Laurentia and redlichiid extinction in Gondwana.

Geologic Settings
The detailed lithostratigraphic and biostratigraphic correlations across the Cambrian shelf from previous stud-
ies (Figs 1, 2, 3)16,17,21,30–35 provide a context for defining carbon isotope excursions in the Miaolingian Series, 
Wuliuan Stage boundary interval in Nevada. Five sections distributed in eastern (Oak Spring Summit, Hidden 
Valley, and Lyndon Gulch) and central (Groom Range) Nevada as well as the uppermost Mule Spring and lower 
Emigrant formations of western Nevada (Split Mountain) were sampled for carbonate (δ13Ccarb) and organic car-
bon (δ13Corg) isotope analysis, with targeted intervals being the Combined Metals, Comet Shale, Susan Duster 
Limestone, Log Cabin, and Grassy Springs members of the Pioche Formation (Fig. 2).

Figure 1. Location map of sections sampled for carbon isotopes in (A) Nevada and the fence panel linking 
these sections in Fig. 3 and Supplementary Fig. 9 and (B) reported localities47 of the Kaili Formation and Kaili-
equivalent units in South China. 1 – Wuliu-Zengjiayan, 2 – Miaobanpo, and 3 – Jianshan sections.
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Webster34,35 and McCollum & McCollum33 have subdivided the uppermost Dyeran to Delamaran strata of 
the western Laurentian margins into nine sequences (Fig. 3). Webster34 has identified four sequences within the 
lower portion of the Pioche Formation. Sequence I is represented by the Delamar Member, Pioche Formation, in 
the middle and inner shelf region and the upper Harkless Formation and the Mule Spring Limestone in the outer 
shelf region. This sequence consists of the Arcuolenellus arcuatus Biozone to lowermost Bolbolenellus euryparia 
Biozone. Sequence II is represented by the lower portion of the Combined Metals Member and the upper part 
of the Mule Spring Limestone, and is within the Bolbolenellus euryparia Biozone. Sequence III is represented by 
the upper portion of the Combined Metals Member and occurs within the upper Bolbolenellus euryparia and 
Nephrolenellus multinodus biozones. Sequence IV is represented by the uppermost portion of the Combined 
Metals Member and is within the upper Nephrolenellus multinodus Biozone. This sequence is thin, approximately 
0.5 to 1.0 m, occurring between the last “ribbon” limestone with olenellids and the first “ribbon” limestone con-
taining faunas from the Eokochaspis nodosa Biozone (“boundary limestone”), and contains the last olenellid trilo-
bites in the region. Sequences III and IV cannot be differentiated in the Split Mountain section.

McCollum & McCollum33 separate the sequences based on abrupt facies changes, unconformities, and trans-
gressive packages (Fig. 3). Sequence DMS 1 begins at the base of the Comet Shale Member and the Eokochaspis 
nodosa Biozone. McCollum & McCollum33 have suggested this sequence lies on top of a disconformity based on 
different lithologies of the Combined Metals Member under the “boundary limestone” that is at the base of DSM 
1. Webster34 provides an alternative interpretation, suggesting that the persistence of sequence IV underneath the 
“boundary limestone” argues against a large unconformity at the traditional Laurentian lower–middle Cambrian 
boundary. Trilobite occurrences36,37 also indicate a conformable boundary. Sequence DMS 2 begins at the base 
of the limestone, 9 m above the base of the Emigrant Formation and at the beginning of the Amecephalus arrojo-
sensis Biozone at the Split Mountain section (Fig. 3). This sequence has been greatly reduced in the middle and 

Figure 2. Correlation chart of sections sampled for δ13Ccarb, δ18Ocarb, and δ13Corg in Nevada and in South China. 
Light gray strip = δ13Ccarb and δ18Ocarb sample range; darker gray strip = both δ13Ccarb and δ13Corg sample range. 
SM = Split Mountain section; GR = Groom Range section; LG = Lyndon Gulch section; HV = Hidden Valley 
section; OSS = Oak Spring Summit section; SDL = Susan Duster Limestone member; Mule Springs = Mule 
Springs Limestone; WZ = Wuliu-Zengjiayan section; M = Miaobanpo section; J = Jianshan section.
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inner shelf due to the disconformity at the base of the Susan Duster Limestone. Sequence DMS 3 begins at the 
base of the Susan Duster Limestone and the upper A. arrojosensis Biozone. This sequence consists of the Susan 
Duster Limestone and Log Cabin members and contains the uppermost A. arrojosensis, O. indicus, and P. dentic-
ulata biozones. DMS 4 begins at the base of the Grassy Springs Member, Pioche Formation and the M. mexicana 
Biozone. This sequence was only sampled for isotope analyses in the Hidden Valley and Lyndon Gulch sections. 
DMS 3 and 4 cannot be separated in the Split Mountain section. DMS 5 was only sampled in the Split Mountain 
section covering the limestones containing the P. praecurrens/G. walcotti biozones.

The biostratigraphic framework used in this study (Figs 2 and 3) is derived from the detailed work of 
Webster34, McCollum & Sundberg38, and Sundberg21,39. Webster34 recognized six olenellid biozones for the upper 
Dyeran Stage (traditional upper lower Cambrian), of which two are present in this study: the upper B. euryparia 
and N. multinodus biozones. Sundberg21,39 recognized six biozones for the Delamaran Stage (traditional lower–
middle Cambrian), of which the E. nodosa, A. arrojosensis, P. denticulata, and M. mexicana biozones are present 
in the middle to inner shelf sections. In the outer shelf, the O. indicus Biozone overlies the A. arrojosensis Biozone 
and is equivalent in age to the P. denticulata and probably most of the M. mexicana biozones. Overlying the O. 
indicus Biozone are the P. praecurrens/G. walcotti biozones39. These biozones provide a more refined framework 
than that presented by Palmer & Halley40 that was used by previous isotopic studies27,41,42. Based on trilobite spe-
cies and genera, the base of the Miaolingian Series and Wuliuan Stage is the base of the O. indicus Biozone and its 
correlative P. denticulata Biozone.

The studied stratigraphic sections in eastern Guizhou Province, South China contain the upper Tsinghsutung 
(also known as Qingxudong), Kaili, and lower Jialao formations (Figs 1B and 2). Three sections were sampled, 
in a southwest to northeast direction, the Wuliu-Zengjiayan43,44, the Miaobanpo45, and the Jianshan44 sections. 
The Wuliu-Zengjiayan section of the Kaili Formation has been selected as the GSSP of the Miaolingian Series and 
Wuliuan Stage18. The Kaili Formation is dominated by shales with abundant micritic beds in its upper portion46. 
Similar micritic beds in the lower portion of the formation contain possibly post-depositional carbonate cements 

Figure 3. Stratigraphic sections in Nevada sampled for carbon isotopes with biostratigraphic (color bands), 
sequence (thin orange lines; data from refs32,34) and lithostratigraphic (thicker black lines) correlations. Sections 
are hung on the base of the Oryctocephalus indicus Biozone and its correlative base of the Poliella denticulata 
Biozone, which marks the base of the Wuliuan Stage and Miaolingian Series. DMS 1–5: Delamaran sequence 
1 to 5 (ref.32); I–IV: Dyeran sequence I to IV (ref.34). Revised age estimate for the base of Wuliuan Stage in 
Laurentia is based on the recent work by Karlstrom et al. (ref.92).
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and concretions formed in mudstones. The Kaili Formation was deposited below storm wave base on the Jiangnan 
Slope47 with features indicative of gravity sliding25, where suspended mud settled down from the water column46. 
The underlying Tsinghsutung and overlying Jialao formations are predominantly dolostones.

The biostratigraphic scheme for the three formations (Fig.  2) is based on (in ascending order): 
Protoryctocephalus wuxunensis, Bathynotus kueichouensis-Ovatoryctocara sinensis, Oryctocephalus indicus, and 
Peronopsis taijiangensis biozones20,22–24,48,49. The latter two zones are defined by the FAD of the named taxa. 
Trilobites have not been reported from the upper dolostones of the Tsinghsutung Formation, however, they have 
been assigned to the P. wuxunensis Biozone49,50. Trilobites from the middle portion of the Jialao Formation consist 
of Solenopleuropsis, Jialaopsis, Kootenia, and Parafuchouia (19 m to 72 m above the base51); these taxa overlap with 
the Sunaspis-Sunaspidella Biozone of the middle Hsuchuangian Regional Stage52.

Results
Trilobite faunas. Trilobite evolutionary faunas, known as biomeres, define most of the Laurentian Cambrian 
series and stage boundaries53. Based on the current concepts for the nomenclature for Cambrian stages of 
Laurentia, the Dyeran Stage coincides with the Olenellid Biomere and the Delamaran Stage is referred as the 
interval of the Corynexochid Biomere. The Dyeran–Delamaran stage boundary coincides with the Olenellid-
Corynexochid faunal turnover and carbon isotope anomalies. The Laurentian olenellid extinction event is 
difficult to correlate with other paleo-continents due to a lack of olenellids in other cratons (Supplementary 
Fig. S11B–D). Alternatively, the extinction of redlichiid trilobites (Supplementary Fig. S11V,W) in South China 
has been interpreted as synchronous with the olenellid extinction event in Laurentia54. Recently, the GSSP for 
both the Stage 5 (now Wuliuan Stage) and Series 3 (Miaolingian Series) has been defined and is based on the FAD 
of Oryctocephalus indicus (Fig. 2 and Supplementary Fig. S11E–G)18. This datum is immediately above the extinc-
tion event of redlichiid trilobites in South China. In Laurentia, however, as exemplified by the Nevada sections 
studied here, there are two biostratigraphic units: the E. nodosa Biozone and the A. arrojosensis Biozone above the 
olenellid extinction and below the FAD of O. indicus (Figs 4 and 5). Those two biozones seem to be regional. In 
particular, the A. arrojosensis Biozone is often truncated among strata in eastern Nevada due to the occurrence of 
a disconformity (Fig. 3), but this biozone is also present in California, Mexico, and Argentina30,55,56.

Carbonate carbon and oxygen isotopes. Figure 4 and Supplementary Figs S2–S6 illustrate the 
distribution of δ13Ccarb values for the five sections sampled across the Cambrian Nevadan shelf in this study. 

Figure 4. The δ13Ccarb results from the five sections in Nevada (Oak Spring Summit data from ref.42 and uses 
their measured section). Red line is the LOESS curve for each section. Sections are hung on the base of the 
Oryctocephalus indicus Biozone and its correlative base of the Poliella denticulata Biozone, which marks the base 
of the Miaolingian Series, Wuliuan Stage. The Split Mountain section is presented at twice the vertical scale of 
the other sections.
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The data are mostly limited to carbonate beds, which are unevenly distributed in the shale-dominated inter-
vals. Biostratigraphic (blue lines in Fig. 4 and Supplementary Figs S2–S6) and lithostratigraphic correlations 
(Fig. 3) provide the control for the regional correlation of δ13Ccarb excursions. In the Split Mountain section 
(Supplementary Fig. S2), for instance, δ13Ccarb values of the upper Mule Spring Limestone to lowermost Emigrant 
Formation decrease upward from approximately −1.0‰ to −2.5‰ and maintain around −2.7‰ through the 
base of the A. arrojosensis Biozone. An increase in δ13Ccarb occurs at the top of the A. arrojosensis Biozone with 
values of approximately −1.0‰. From the P. praecurrens/G. walcotti Biozone to the lower Ehmaniella Biozone, 
δ13Ccarb values begin around −4.1‰, increase to −1.1‰ half way through the strata, and subsequently decrease 
to −3.8‰.

In South China, the new δ13Ccarb data for the Wuliu-Zengjiayan section include samples in the upper and lower 
portions of the Kaili and adjacent formations (Supplementary Fig. S8). This new dataset is in general agreement 
with that provided by Guo et al.44 with discrepancies seen in the upper carbonate layers of the Kaili Formation. 

Figure 5. The δ13Corg results from the Split Mountain, Groom Range, and Oak Spring Summit sections in 
Nevada. Red line is the LOESS curve generated using 0.1 curvature. Sections are hung on the base of the 
Oryctocephalus indicus Biozone and its correlative base of the Poliella denticulata Biozone, which marks the 
base of the Miaolingian Series, Wuliuan Stage. The measured section for Oak Spring Summit is based on 
measurements from Webster35 and L.B. & M. McCollum (personal communications).The Split Mountain 
section is presented at twice the vertical scale of the other sections.
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Guo et al.44 had few data points in this portion of the section and the δ13Ccarb values are generally between +1.0‰ 
and +2.0‰. The new data for this portion of the section range from −1.0‰ to +1.0‰. In the Wuliu-Zengjiayan 
section, δ13Ccarb values of the uppermost Tsinghsutung Formation decrease from +2.1‰ to −0.7‰. This decreas-
ing trend of δ13Ccarb values continues stratigraphically upward until the base of the Kaili Formation (−1.9‰), 
and then it shifts toward positive and increases abruptly to +3.1‰ in the lowermost 5 m of the Kaili Formation. 
From this level, δ13Ccarb values decrease to −3.6‰ around the B. kueichouensis-O. sinensis/O. indicus boundary 
and vary between −2.4‰ and 2.0‰ (mean = −0.3‰) for the remaining portion of the Kaili Formation. The 
Wuliu-Zengjiayan section has δ18Ocarb values from −9.9‰ to −3.6‰. A decreasing trend from −6.1‰ to −9.9‰ 
is present from the uppermost Tsinghsutung Formation to the B. kueichouensis-O. sinensis/O. indicus boundary. 
After some fluctuations between −9.9‰ and −7.1‰ around the boundary, δ18Ocarb values are mostly in the range 
of −8‰ to −6‰, with a few higher values between −5.8‰ and −3.6‰. Overall, there is no correlation between 
δ13Ccarb and δ18Ocarb (Supplementary Fig. S1F).

In the Miaobanpo section (Supplementary Fig. S9A), δ13Ccarb values from a 5-m-thick interval below the 
FAD of O. indicus initially increase from −3.1‰ to −0.5‰ and then decrease to minimum values of −7.8‰ 
to −6.1‰. At the same interval, δ18Ocarb values increase from −8.6‰ to −6.2‰. In the Jianshan section 
(Supplementary Fig. S9B) (replotted from Guo et al.44), δ13Ccarb values show a positive shift with highest values up 
to +3.1‰ in the lowermost 10 m of the Kaili Formation, followed by a negative shift with minimum values down 
to −6.9‰ across the B. kueichouensis-O. sinensis/O. indicus boundary. The δ18Ocarb values vary from −9.9‰ to 
−2.5‰, showing a positive shift corresponding to the negative δ13Ccarb shift across the B. kueichouensis-O. sinen-
sis/O. indicus boundary. There is no general δ13Ccarb –δ18Ocarb co-variation in the Miaobanpo and Jianshan sections 
(Supplementary Fig. S1G,H).

Organic carbon isotopes. In the Split Mountain section, organic carbon isotope values vary between 
−27.1‰ and −23.7‰ throughout the lower portion of the section, showing frequent 3–4‰ shifts at the inter-
val from the E. nodosa Biozone to O. indicus Biozone (Supplementary Fig. S2). There is no apparent correlation 
between δ13Ccarb and δ13Corg for the sampled interval, except for the positive shift near the boundary of A. arro-
josensis and O. indicus biozones. Given the general lack of carbonates in this portion of the section there may be 
more δ13Ccarb variations that were not documented.

In the Groom Range section (Supplementary Fig. S3), organic carbon isotope values vary between −28.3‰ 
and −21.4‰ throughout the lower half of the section. The Combined Metals Member illustrates an increase in 
δ13Corg from −28.3‰ to −23.3‰ approximately five meters below the contact between the Combined Metals 
Member and Comet Shale Member and the N. multinodus/E. nodosa biozone boundary. Above this interval, 
the δ13Corg values decrease towards −26.0‰ at the N. multinodus/E. nodosa boundary and then vary between 
−23.3‰ and −25.5‰ to the base of the A. arrojosensis Biozone. The δ13Ccarb and δ13Corg seem to show opposite 
trends, but again the lack of paired δ13Ccarb and δ13Corg data prevents a precise, one-to-one correlation of the 
δ13Ccarb and δ13Corg shifts.

Figure 5 illustrates the distribution of δ13Corg data from the three sections sampled across the Cambrian 
Laurentian shelf in this study. Due to the lack of paired carbonate and organic carbon isotope data, it is difficult 
to correlate every positive and negative shift in δ13Ccarb and δ13Corg. However, the negative shift in δ13Ccarb at the 
N. multinodus/E. nodosa boundary (N2 in Fig. 6) is accompanied with lower δ13Corg values in both Groom Range 
and Oak Spring Summit sections. Such a correlation in the Split Mountain section is less obvious due to the lack 
of δ13Corg data below this interval.

In the South China data represented by the Wuliu-Zengjiayan section, δ13Corg values show an increasing trend 
from −32.0‰ to −24.5‰ from the basal Kaili Formation to the B. kueichouensis-O. sinensis/O. indicus bound-
ary. This contrasts with the decreasing trend of δ13Ccarb at the same stratigraphic interval. The middle portion of 
the Kaili Formation lacks δ13Corg data, and the upper portion shows a weak decreasing trend from −26.1‰ to 
−27.1‰, which is also not present in δ13Ccarb. In the Miaobanpo section (Supplementary Fig. S9A), δ13Corg val-
ues increase from −29.5‰ to −27.1‰. The magnitude of δ13Corg change (<2.5‰) is much smaller than that of 
δ13Ccarb (up to 10‰) and they show opposite temporal trends.

In summary, three sections from Laurentian δ13Corg profiles are provided here: Split Mountain, Groom Range, 
and Oak Spring Summit sections. Their values range between −28‰ to −20‰, and define a small negative 
δ13Corg shift across the olenellid extinction event (the boundary between N. multinodus and E. nodosa biozones) 
(Fig. 5). In South China, δ13Corg values from Wuliu-Zengjiayan and Miaobanpo sections range between −32‰ 
and −24‰. In both sections, there is a general trend toward less negative values (from −32‰ to −26‰ in 
Wuliu-Zengjiayan section; from −29.5‰ to −27‰ in Miaobanpo section) (Supplementary Figs S8 and S9A).

Chemostratigraphy. Secular variations in carbon isotopic values occur in both the Laurentian and South 
China sections. Most δ13Ccarb values from the Laurentian sections are negative (Supplementary Figs S1–S6). Thus, 
only robust negative excursions are considered as having chemostratigraphic significance. The first δ13Ccarb excur-
sion (N1) in the studied sections is a negative shift (−5‰ to −3.5‰) in Laurentia (Fig. 6). The second robust 
negative excursion (N2) (down to −5‰) occurs near the LAD of olenellid trilobites and this excursion is present 
in all five sections (Figs 4, 6; Supplementary Figs S2–S6). The third excursion (N3) has minimum δ13Ccarb values 
down to −4‰ and occurs within the E. nodosa Biozone (Fig. 6). The fourth excursion (N4) occurs in the middle 
P. denticulata Biozone. The fifth one (N5) occurs in the lower part of the P. praecurrens Biozone and the sixth 
δ13Ccarb excursion (N6) occurs in the Ehmaniella Biozone (Fig. 6).

In the N. multinodus Biozone, there are two δ13Ccarb shifts that can be identified (N1 and N2 (Fig. 6). The 
adjustment of the shifts is based on adding or subtracting the number of units that best align the two shifts from 
one section to another (e.g., Hidden Valley data was assigned to units 10–23 due to an incomplete sampling of 
the biozone). Alignment of data between N3 and N4 in the lower P. denticulata Biozone of the Susan Duster 
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Limestone was also performed to determine the unit depth of data for the portion of P. denticulata and A. arro-
josensis zones below and above this excursion. This was done by either adding or subtracting units from the 
matched excursion and readjusting the number of units back to the originally assigned number of units in the 
biozones.

The lack of some of these shifts in one or more sections is primarily due to the lack of data from a portion 
of a section; for example, N1 is not apparent at the Split Mountain, Groom Range, and Hidden Valley sections 
probably due to the incomplete sampling of the basal parts of the Combined Metals Member and the Mule Spring 
Limestone. The absence of suitable carbonate to sample may also explain the absence of shifts or the full devel-
opment of shifts in some sections. For example, N2 is well presented in the Lyndon Gulch, Hidden Valley, and 
Oak Spring Summit sections as a complete, 3–4‰ negative δ13Ccarb excursion, but in the Split Mountain and 
Groom Range sections negative δ13Ccarb values do not return back to higher values at the basal Eokochaspis nodosa 
Biozone.

In sections from South China, in contrast, only two negative shifts, N1 (−2.0‰) and N2 (close to −8.0‰), 
have been identified from the uppermost Tsinghsutung and lower Kaili formations (Fig. 7). The upper Kaili and 
lower Jialao formations do not show any significant change in δ13Ccarb, with most values between −1.0‰ and 
+1.0‰. Figure 7 illustrates δ13Ccarb profiles for the Wuliu-Zengjiayan, Miaobanpo, and Jianshan sections. High 

Figure 6. The δ13Ccarb and δ13Corg summary curves based on the Nevada sections. ROECE* and red outlined 
area represents the expanded version of the Redlichiid-Olenellid Extinction Carbon isotope Excursion28,29. 
Vertical scale is based on relative biozone thicknesses.
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resolution sampling of δ13Ccarb across the traditional lower–middle Cambrian boundary interval among the three 
sections mentioned above provide additional constrains for intra-cratonic correlation (Supplementary Fig. S10). 
In the Miaobanpo section, a strong negative δ13Ccarb excursion of −7.8‰ is present ~1.5 m below the FAD of 
O. indicus. This is consistent with the negative δ13Ccarb excursion of −6.9‰ from the equivalent interval in the 
Jianshan section44,45. However, the δ13Ccarb change from the GSSP section (Wuliu-Zengjiayan section) is only 
half of the magnitude, with the lowest value of −3.4‰ below the FAD of O. indicus (Supplementary Fig. S10). In 
summary, the second negative carbon excursion (N2) is robust and exhibited in all three studied sections (Fig. 7;  
Supplementary Figs S8–S10) and is in close proximity with the extinction of redlichiid trilobites. Although strata 
from the Miaobanpo section (Supplementary Fig. S9A) were only sampled over five meters due to the lack of suit-
able carbonate-rich layers exposed in this section, it records a robust negative carbon excursion (down to −7.8‰) 
and represents the critical interval in between the FAD of O. indicus and the extinction of redlichiid trilobites45.

Discussion and conclusions
Diagenetic effect. Many researchers57–61 have addressed the potential effects of  post-depositional fluid-rock 
interaction in Precambrian and Paleozoic strata, and some data reported from Cambrian section indeed show 
strong meteoric diagenesis62. Bishop et al.63 studied rock samples from the Permian Capitan backreef and found 
that samples underwent meteoric diagenesis show the inverted J curve in an δ18Ocarb–δ13Ccarb plot. For our samples 
there are no obvious linear trends among the data (Supplementary Fig. S1A–H). While the δ18Ocarb values may 
be altered due to increasing burial temperatures in Paleozoic and older sedimentary strata, δ13Ccarb values are 
thought to be temperature independent61,64,65. The decoupled δ18Ocarb and δ13Ccarb values and more importantly, 
the regionally persistent δ13Ccarb shifts within bio- and lithostratigraphically controlled intervals suggest at least 
partial preservation of the marine carbon isotope record of chemostratigraphic significance.

Carbonate and organic carbon isotopes. Positive correlations between δ13Ccarb and δ13Corg values have 
been interpreted as evidence for changes in carbon cycling in the oceans64,66 in the geological record. Coupling 
of carbonate carbon and organic carbon isotopes has been reported for the positive carbon isotope excursion in 
the upper Cambrian known as the SPICE near the base of Furongian Series67. The coupling of δ13Ccarb and δ13Corg 
data, however, are not evident in our sections, which are stratigraphically lower than the SPICE. Maloof et al.68 
show that positive correlations between organic and inorganic carbon are likely to be associated with stratigraphic 
intervals indicating positive δ13Ccarb excursions, whereas, they are decoupled in strata showing negative δ13Ccarb 
excursions. Our results show that organic carbon and inorganic carbon isotopes are decoupled, similar to those 
across negative δ13Ccarb excursions reported from lower Cambrian sections68. The origin of decoupled δ13Ccarb and 

Figure 7 . Stratigraphic sections in South China sampled for δ13Ccarb with biostratigraphic (blue lines) 
correlations. Red line is the LOESS curve generated using 0.1 curvature. Sections are hung on the base of the 
Oryctocephalus indicus Biozone, which marks the base of the Miaolingian Series, Wuliuan Stage.
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δ13Corg remains unresolved; possible causes may include contribution of dissolved organic carbon in the ocean69, 
recycled organic matter70, and/or detrital organic carbon71.

Correlation between Laurentia and South China. Montañez et al.27 stated that “Our secular C iso-
tope curve defines a previously undocumented, rapid (~100 k.y.), large-magnitude shift (≥4‰) to negative 
δ13C values in the terminal Early Cambrian. This negative C isotope excursion begins just prior to the oldest 
known mass extinction of trilobites…”. The trilobites referred to are the olenellids and this extinction marks 
the traditional boundary of the Laurentian lower–middle Cambrian. Dilliard et al.41 also recognized the onset 
of a negative δ13Ccarb shift of probably similar magnitude in the Mackenzie Mountains, Northwest Territories, 
Canada, but that was based on only one sample associated with a flooding event, and several samples strati-
graphically below. Chemostratigraphic correlations between Nevada and South China are compiled and inter-
preted in this study (Fig. 8). The well-defined negative shift N2 at the upper Nephrolenellus multinodus to 
basal Eokochaspis nodosa biozones in Nevada appears to correlate with the negative shift N2 in the uppermost 
Bathynotus kueichouensis-Ovatoryctocara sinensis Biozone, stratigraphically just below the FAD of O. indicus 
(Fig. 8) in South China. This is further supported by the strong shift toward less negative values that occur in the 
lower N. multinodus Biozone in Nevada and the shift toward positive values in the lower B. kueichouensis-O. sin-
ensis Biozone (Fig. 8) in South China. Zhu et al.28 named this carbon excursion as “ROECE” based on Cambrian 
sections from China and interpreted that it is also associated with the redlichiid trilobite extinction in South 
China. This study questions the definition of “ROECE” based on the following reason. There are at least two neg-
ative shifts (N2 and N3) in between the LAD of olenellids and FAD of O. indicus recorded in Nevadan sections 
(ROECE* in Fig. 6 and Supplementary Fig. S7), and both of them correlate to the negative δ13Ccarb shift in South 
China. Thus, the “ROECE” might not represent a single carbon excursion event as previously hypothesized28.

Figure 8. Correlation of summary δ13Ccarb curves for Nevada and South China and their potential correlation 
based on the chemostratigraphy and trilobite biostratigraphy. Included are the stratigraphic ranges of key 
trilobite taxa occurring in the Miaolingian Series. Images of key trilobites are included in Supplementary 
Fig. S11.
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Correlation of the aforementioned negative δ13Ccarb excursions from the two regions is in conflict with the taxa 
ranges from these sections (Fig. 8) for two reasons. First, the FAD of O. indicus occurs much higher in the sec-
tion than the major N2 excursion in Nevada. As a partial solution to this mismatch, Zhao et al.18 have suggested 
that Oryctocephalus americanus16 (Supplementary Fig. S11H–J) is synonymous to O. indicus (Supplementary 
Fig. S11E–G) (also see the discussion in the Electronic Supplementary Material), thus lowering the FAD of 
O. indicus in Laurentia to the base of the A. arrojosensis Biozone (dashed line, Fig. 8). This slight adjustment, 
however, does not imply synchronicity of the two major δ13Ccarb excursions. Second, the trilobites from the A. 
arrojosensis and/or E. nodosa biozones in Nevada include Paraantagmus latus72 (Supplementary Fig. S11U) and 
representatives of Oryctocarella (Supplementary Fig. S11Q,R) and Ovatoryctocara (Supplementary Fig. S11M–P). 
American specimens of Ovatoryctocara are closely related to Ovatoryctocara sinensis from China (Supplementary 
Fig. S11S,T). Paraantagmus latus occurs with the youngest redlichiids in South China73. Ovatoryctocara was orig-
inally reported from Nevada by Sundberg & McCollum17 and subsequent discoveries have verified the occurrence 
of the genus as well as the Oryctocarella in the A. arrojosensis Biozone (ref.39, Fig. 4). Both genera occur below 
the FAD of O. indicus in South China15,20,22,23,25,49,74. In addition, Euarthricocephalus (Supplementary Fig. S11K,L) 
occurs with O. indicus in both Nevada and South China. Bathynotus (Supplementary Fig. S11A,X) occurs with 
olenellids and redlichiids in both Nevada and South China.

Traditional lower–middle Cambrian boundaries. Recognition of the traditional lower–middle 
Cambrian boundary in Laurentia and China has a long history. In Laurentia, Walcott75 assumed that Olenellus 
and related taxa were originally middle Cambrian (=Georgia or Olenellus Fauna), present above the occurrence 
of Paradoxides Fauna (St. John Series in Newfoundland and Braintree Member in eastern Massachusetts). In 
1890, Walcott76 recognized that the Olenellus Fauna was lower Cambrian and occurred below the Paradoxides 
Fauna. However, the nature of the boundary between the lower and middle Cambrian was obscure. Burling8 
recognized the extinction of the olenellids marked the “Lower-Middle” Cambrian boundary9. The abruptness of 
the extinction led Cambrian workers53,77,78 to recognize this extinction event as the Olenellid Biomere boundary. 
Later, Palmer79 used the boundary to define the base of the Laurentian Delamaran Stage, Lincolnian Series.

In China, the occurrence of Redlichia was used to define the lower Cambrian, although not initially. Walcott 
(ref.80, p. 253) suggested that Redlichia was a direct descent of Olenellus and was upper lower or middle Cambrian 
in age. Walcott mentioned the similarity of Redlichia to Zacanthoides and the latter occurs above the Olenellus 
Fauna in western Utah and Nevada, further implying a middle Cambrian age. Walcott (ref.81, p. 2) discussed that 
Dames82 compared the fauna containing Dorypyge richthofeni82 as probably coeval with that of the Quebec Group, 
based on similarity of species from Utah. Walcott (ref.83, p. 4) also placed the boundary between the lower and 
middle Cambrian at the base of the Man To (Manto) Formation based on the occurrence of Redlichia because 
the genus “is more closely related to Olenellus than to the trilobites of the Middle Cambrian fauna.” Walcott81 
assigned R. finalis to the middle Cambrian, but later he83 assigned the occurrence of Redlichia in China to the 
lower Cambrian based on the occurrence of the overlying trilobite assemblages. Walcott (ref.83, p. 2) stated that 
“another important discovery was the occurrence in the Middle Cambrian of China of a fauna comparable with that 
of the Middle Cambrian of Mount Stephen, British Columbia, and the southern extension of the same fauna in the 
Middle Cambrian of Idaho, Utah, and Nevada in the United States.” These middle Cambrian assemblages contain 
taxa with large pygidia, of which Walcott (ref.83, p. 53) considered important. Eventually, Redlichia was used to 
define the lower Cambrian in China because of its similarity to olenellids in Laurentia and the middle Cambrian 
was defined based on trilobite assemblages above Redlichia that had large pygidia similar to the trilobites found 
above the Olenellus Biozone in Laurentia.

During the 1960s and 1970s many trilobite workers were involved in geological mapping projects in China, 
and the concept that the extinctions of the olenellid and redlichiid faunas were synchronous began with Lu et 
al.7. Lu and others7 developed the bio-environmental control hypothesis and applied it to the Cambrian biostrati-
graphic correlation across the major cratons. Due to the lack of olenellid faunas in China, they suggested that the 
extinctions of the olenellid and redlichiid faunas were approximately synchronous. Thus, the traditional lower–
middle Cambrian boundary in China was defined at the LAD of redlichiid trilobites (see Lu et al.7; see also the 
stratigraphic columns in ref.6). Chang (ref.84, p. 148; also see ref.85, p. 418) in his correlation of the Chinese and 
North American faunas and biozones stated that “redlichiid and olenellid trilobites […] disappeared simulta-
neously toward the end of the Early Cambrian”. This concept was further verified by the recognition of a strong 
δ13Ccarb excursion in Laurentia and later in China. Strong shifts in δ13Ccarb of the Cambrian oceans have been 
interpreted to be associated with extinction events28,86,87, thus, the extinctions of the olenellids and redlichiids 
have been linked27,28,42,88–90.

A paradox with the synchronous extinction idea was initially pointed out by Sundberg & McCollum (ref.17, 
p. 951). If the FAD of O. indicus is synchronous, then the extinction of the olenellids of Laurentia was prior to 
the extinctions of redlichiids in Gondwana. Alternatively, if extinctions of both olenellids and redlichiids are 
synchronous, the FAD of O. indicus may not be synchronous (as implied in ref.18, Fig. 2). Although the negative 
carbon shift (N2) is clearly associated with extinctions of both olenellids and redlichiids in both Laurentia and 
South China, both LADs of olenellids and redlichiids and associated carbon excursions show regional variations. 
Thus, this study supports the hypothesis that the FAD of O. indicus is the best marker to correlate the Laurentian 
sections to the base of the Wuliuan Stage and Miaolingian Series as defined at the GSSP in South China18.

In summary, Montañez et al.27 developed a δ13Ccarb curve for the uppermost lower Cambrian to lower upper 
Cambrian (lower Furongian) of Laurentia using multiple stratigraphic successions from the Great Basin (Nevada 
and eastern California) and the southern Canadian Rockies. Since then, subsequent studies41,42,60 have been 
improving and refining the Cambrian chemostratigraphy for international correlation. Our study presents the 
most updated data for chemostratigraphy across the traditional lower–middle Cambrian boundary interval. 
Important highlights of this study are summarized below.
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 (1) Based on trilobite biostratigraphy, our study indicates that the Cambrian Series 2–Miaolingian boundary 
coincides with the traditional lower–middle Cambrian boundary in South China and is very close to the 
traditional one in Laurentia.

 (2) The refined δ13Ccarb record of Laurentia presented here (Supplementary Fig. S7) is consistent with that 
of Montañez et al.27 despite substantial differences in temporal resolution of the data sets and the older 
biostratigraphy derived from Palmer & Halley40 used by Montañez et al.27. The new data derived from the 
Miaobanpo section, in combination with previously published data, also support the presence of a neg-
ative carbon isotope excursion associated with the redlichiid extinction in South China (Supplementary 
Fig. S10).

 (3) In contrast to interpretations18 based on the GSSP section in South China indicating that both the gradual 
extinction of redlichiids and FAD of O. indicus (the current base datum for Wuliuan Stage) are linked to-
gether and they represent a single event, this study shows that the upper Olenellid Biomere boundary and 
FAD of O. indicus in Laurentia are two events separated by two trilobite biozones (Fig. 8), and the FAD of 
O. indicus is the best horizon to achieve correlation between the two regions.

 (4) The absence of a negative δ13Ccarb excursion (N3 in Fig. 8) below the FAD of O. indicus in South China may 
imply stratigraphic condensation, a hiatus, and/or environmental changes in the South China sections that 
warrant further investigation.

Materials and Methods
Rock samples. Samples for carbonate (δ13Ccarb) and organic (δ13Corg) carbon isotope analysis were collected 
over a series of years by the co-authors and analyzed at several laboratories. Samples from Nevada were col-
lected from the N. multinodus to P. denticulata biozones in a platform-to-basin transect (Figs 1–3). This transect 
includes the outer shelf deposits at Split Mountain, middle shelf deposits at the Groom Range, and the inner shelf 
deposits at the Hidden Valley, Oak Spring Summit (δ13Ccarb data from Faggetter et al.42), and Lyndon Gulch. These 
samples were originally collected to determine changes across the traditional lower–middle Cambrian boundary 
(the mutual Nephrolenellus multinodus Biozone and Eokochaspis nodosa Biozone boundary; Laurentian Dyeran 
Stage, Waucoban Series and Delamaran Stage, Lincolnian Series boundary).

Samples for δ13Ccarb from South China were collected from the Bathynotus kueichouensis-Ovatoryctocara 
sinensis to Peronopsis taijiangensis biozones mainly from the Kaili Formation (Fig. 2). In China, three sections 
were studied: 1) Wuliu-Zengjiayan (ref.44; additional new samples), which is the GSSP of the Wuliuan Stage and 
Miaolingian Series; 2) Jianshan (ref.44); and 3) Miaobanpo. For the Miaobanpo section, samples cover only the 
five-meter interval below the FAD of O. indicus. Samples for δ13Corg were collected from the five-meter interval 
below the FAD of O. indicus at the Miaobanpo section and from the Kaili Formation at the Wuliu-Zengjiayan sec-
tion. In an attempt to verify the results of Guo et al.44, we analyzed additional samples from the Wuliu-Zengjiayan 
section, specifically from the upper and lower portion of the Kaili Formation, base of the Jialao Formation, upper-
most Tsinghsutung Formation and the interval around the FAD of O. indicus in 2010 to 2013. In addition, samples 
from the Miaobanpo section were analyzed to determine whether the strong negative δ13Ccarb excursion near the 
FAD of O. indicus seen at the Jianshan section (ref.44) is present near the Wuliu-Zengjiayan section. Both δ13Ccarb 
and δ18Ocarb from all studied sections are plotted (Supplementary Fig. S1). Analytical procedures for carbonate 
stable isotope and organic carbon isotope analyses are included in the Electronic Supplementary Material.

Compilation of chemostratigraphic profiles. The composite δ13Ccarb and δ13Corg profiles were generated 
by recalculating the relative position of each data point in each biozone, which was rescaled based on the relative 
thicknesses and stratigraphic level (Figs 4–7; Supplementary Figs S2–S10). A LOESS analysis of the data using a 
0.1 smoothing was used to generate the δ13Ccarb and δ13Corg curves with 95% confidence bands for each section 
and consensus curve (ref.91). One problem encountered in using LOESS is that, if the section contains too few 
data points that are spread out stratigraphically, the 95% confidence levels cannot be accurately determined. In 
some cases (e.g., the δ13Ccarb of the Groom Range section), increasing the smoothing factor to 0.2 provides some 
confidence intervals. However, in other cases (e.g., the δ13Corg of the Miaobanpo section) increasing the smooth-
ing factor does not generate confidence levels. Therefore, those sections are illustrated only with a line connecting 
the data points (Supplementary Figs S9A and S10).

The Nevada stratigraphic successions vary in thickness reflecting differences in depositional environment. A 
multi-step method was used to construct the δ13Ccarb and δ13Corg consensus curves. First, the data were divided 
into biozones to establish their relative position in the biozone. Second, each biozone was given a standard thick-
ness in arbitrary units based on their relative thickness in individual sections. For example, the N. multinodus 
biozone was assigned to have 25 units and the overlying E. nodosa biozone was assigned to have 20 units. Third, 
the stratigraphic level of the carbon isotope data from each biozone for each section was recalculated based on 
the unit thickness of the biozone. These data were then stacked, so the top of the N. multinodus Biozone was at 25 
units and the top of the E. nodosa Biozone was at 45 units. Fourth, the unit level of excursion events was adjusted 
according to incomplete sampling of a biozone (N. multinodus Biozone) and the presence of an unconformity 
within a biozone (e.g., A. arrojosensis Biozone, base of Susan Duster Limestone). On the other hand, the construc-
tion of the δ13Corg consensus curve for Nevada differs only in the last step where no distinctive pattern of shifts 
could be identified. The adjustment of stratigraphic positions from aligning excursions in the δ13Ccarb curves were 
applied to the δ13Corg data.

The construction of the δ13Ccarb summary curve for China differs only in the limited number of horizons 
that can be correlated in the sections studied. Key horizons used for correlation include the base of the Kaili 
Formation, O. indicus Biozone, and Jialao Formation. Only the lower half of the Kaili Formation was sampled in 
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the Jianshan section. A composite δ13Ccarb curve was generated for the three sections in this study (Fig. 7). The 
stratigraphic level of each data point was recalculated based on the biozone thicknesses at the Wuliu-Zengjiayan 
section. In addition, excursions were realigned to more closely match each other in the Bathynotus 
kueichouensis-Ovatoryctocara sinensis Biozone and the FAD of O. indicus.
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