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Abstract

Despite intense interest in expanding chemical space, libraries of hundreds-of-millions to billions 

of diverse molecules have remained inaccessible. Here, we investigate structure-based docking of 

170 million make-on-demand compounds from 130 well-characterized reactions. The resulting 

library is diverse, representing over 10.7 million scaffolds otherwise unavailable. The library was 

docked against AmpC β-lactamase and the D4 dopamine receptor. From the top-ranking 

molecules, 44 and 549 were synthesized and tested, respectively. This revealed an unprecedented 

phenolate inhibitor of AmpC, which was optimized to 77 nM, the most potent non-covalent AmpC 

inhibitor known. Crystal structures of this and other new AmpC inhibitors confirmed the docking 

predictions. Against D4, hit rates fell monotonically with docking score, and a hit-rate vs. score 

curve predicted 453,000 D4 ligands in the library. Of 81 new chemotypes discovered, 30 were sub-

micromolar, including a 180 pM sub-type selective agonist.

In a famous footnote, Bohacek and colleagues suggested that there are over 1063 drug-like 

molecules1. This is too many to even enumerate, and other estimates of drug-like chemical 

space have been proposed2–4. What is clear is that the number of possible drug-like 

molecules is many orders-of-magnitude higher than exists in early discovery libraries, and 

that this number grows exponentially with molecular size3. As most optimized chemical 

probes and drug candidates resemble the initial discovery hit5, there is much interest in 

expanding the number of molecules and chemotypes that can be explored in early screening.

Expanding chemical space

An early effort to enlarge chemical libraries focused on the enumeration of side chains from 

central scaffolds. Though such combinatorial libraries can be very large, efforts to produce 

and test them often foundered on problems of synthesis, assay artifacts6, and lack of 

diversity. More recently, a related strategy using DNA encoded libraries (DELs)7 has 

overcome many of these deficits8. Still, most DEL libraries are limited to several reaction 

types or core scaffolds9, reducing diversity.

In principle, structure-based docking can screen virtual libraries of great size and diversity, 

selecting only the best fitting molecules for synthesis and testing. These advantages are 

balanced by grave deficits: docking cannot calculate affinity accurately10, and the technique 

has many false-positives. Accordingly, docking of readily-available molecules is crucial. For 

virtual molecules, such accessibility has been problematic. Worse still, a large library screen 

could exacerbate latent docking problems, giving rise to new false positives. Thus, while 

Lyu et al. Page 2

Nature. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



docking screens of several million molecules have found potent ligands for multiple 

targets11–22, docking much larger virtual libraries has remained largely speculative.

To overcome the problem of compound availability in a make-on-demand library, we 

focused on molecules from 130 well-characterized reactions using 70,000 building blocks 

from Enamine (Fig. 1). The resulting reaction products are often functionally congested—

displaying multiple groups from a compact scaffold—with substantial 3-dimensionality; less 

than 3% are commercially available from another source. Addition of new reactions and 

building blocks has steadily grown the library (Fig. 1a). As of this writing there are over 350 

million make-on-demand molecules in ZINC (http://zinc15.docking.org) in the lead-like 

range23 (i.e., MWT≤350, cLogP≤3.5). Over 1.6 billion readily synthesizable molecules have 

been enumerated, and the dockable library should soon grow beyond 1 billion molecules 

(Fig. 1b orange bars). Meanwhile, diversity is retained: a new scaffold is added for every 

~20 new compounds (Fig. 1c). Naturally, a library of this size is almost entirely virtual.

Even if the make-on-demand molecules are readily accessible, inaccurate scores and a vast 

chemical space could conspire to overwhelm the true actives with docking decoys. 

Accordingly, we simulated how hit rates would vary as the library grew from tens-of-

thousands to hundreds-of-millions of molecules. In a first approach, we docked tens-to-

hundreds of known ligands mixed with thousands of property-matched decoys24 (Extended 

Data Fig. 1a & 1b). From the resulting rank distributions, we simulated the effect of varying 

the ligand-to-decoy ratio in a growing library. Performance was judged by the number of 

ligands in the top 1000 ranked molecules for any library size, a stringent criterion. When 

ligands were enriched in the smaller libraries, performance typically improved with library 

size (Extended Data Fig. 1c). Conversely, when docking performed poorly in small 

benchmarks, performance often deteriorated with library size.

In a second approach, we investigated ligand enrichment against the full make-on-demand 

library. We counted known binders as well as their close analogs in the library as ligands; the 

rest of the library were considered decoys (Methods). For targets with well-formed binding 

sites, known ligands and ligand-analogs were found among the top docking hits, even from 

libraries of over 170 million molecules (Extended Data Fig. 1d and Supplementary Table 1).

Docking 99 million molecules vs. β-lactamase

Fortified by these simulations, we turned to prospective prediction of new compounds. We 

targeted two unrelated proteins: the enzyme AmpC β-lactamase and the D4 dopamine G 

protein-coupled receptor (GPCR). Against AmpC, we docked the make-on-demand lead-like 

library, then composed of 99 million molecules. Each was fit in the enzyme active site in an 

average of 4054 orientations, and for each orientation 280 conformations were sampled. 

Each configuration was scored for energetic fit, using the physics-based DOCK3.7 scoring 

function. The top-ranked million molecules were clustered by scaffold25 and by topological 

similarity, reducing redundancy. Molecules were excluded that resembled known AmpC 

inhibitors from ChEMBL26 (ECFP4 Tanimoto coefficient (Tc) > 0.45) or that resembled any 

molecule in the 3.5 million in-stock library (ECFP4 Tc > 0.5). Thus, we sought molecules 

new to the enzyme and new to the planet.
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Fifty-one top-ranking molecules—each a different scaffold—were selected for testing, of 

which 44 (86%) were successfully synthesized (Supplementary Table 9, Supplementary 

Data 11 and 12). Five measurably inhibited AmpC, with Ki values ranging from 1.3 to 400 

μM (Extended Data Fig. 2 and Extended Data Fig. 3), an 11% hit rate. All were selective, 

competitive inhibitors, did not aggregate, nor did they inhibit counter-screening enzymes 

like trypsin and chymotrypsin (Supplementary Table 2 and 3). Notably, the 1.3 μM 

ZINC339204163 engages the crucial oxyanion hole of AmpC with a phenolate. Not only is 

‘4163 the most potent reversible AmpC inhibitor found from any type of screen, its 

phenolate warhead is unprecedented for β-lactamases and has few precedents even for other 

amidases and proteases27. To optimize the five initial hits, we chose 90 well-scoring analogs 

from within the make-on-demand library (Methods). Over half were active on testing, 

improving the affinity of each of the five hits by 3- to 17-fold (Extended Data Fig. 2 and 
Supplementary Table 2). This included the 77 nM ZINC549719643, an analog of the 

phenolate ‘4163, the most potent non-covalent inhibitor characterized for AmpC. The ability 

to optimize affinity by finding analogs within the library attests to its depth of coverage for 

many chemotypes.

Crystal structures of three of the new ligand families, and of the 77 nM ‘9643, were 

determined to a resolution ranging from 1.50 to 1.91 Å. Unambiguous electron density 

confirmed their fidelity to the docking predictions, with RMSDs varying from 0.98 to 1.52 Å 

(Fig. 2, Extended Data Table 1 and Extended Data Fig. 4). The RMSD rises to 1.98 Å for 

ZINC275579920, but this largely reflects a rotation of the terminal ring, which makes no 

polar interactions with the enzyme in either conformation. For the central core of ‘9920, the 

RMSD is 1.20 Å and all five hydrogen bonds predicted by docking are found 

crystallographically (Fig. 2b). Such polar interactions corresponded well between docked 

and crystallographic poses in all four structures, including that of the phenolate of ‘9643, 

which forms the three docking-predicted hydrogen bonds with AmpC’s oxyanion-hole (Fig. 

2e).

Docking 138 million molecules vs. the D4

The prospective screen against the D4 dopamine receptor (D4) had two goals. The first was 

to see if we could discover new receptor chemotypes, as with most docking campaigns. A 

second goal was to investigate something largely unexplored in molecular docking: how 

success varies with docking rank. Accordingly, we tested 549 make-on-demand molecules 

drawn from not only high-ranking molecules, but also mid- and low-ranked ones (Fig. 3a).

Seeking new chemotypes28,29, the now over 138 million library molecules were docked 

against the structure of D4 dopamine receptor14. About 70 trillion complexes were sampled 

in the orthosteric site, requiring 43,563 core hours or about 1.2 calendar days on 1500 cores. 

Here again, the ranked library was clustered by topology and by scaffold,25 reducing 

redundancy. To increase novelty, molecules found in the 3.5 million in-stock library, or that 

resembled the ~28,000 dopaminergic, serotonergic, or adrenergic ligands in ChEMBL (Tc ≥ 

0.35 by ECFP4 fingerprints), were excluded. Of the 589 molecules selected, 549 (93%) were 

successfully synthesized (Supplementary Table 10, Supplementary Data 11 and 13). From 

the top 1000-ranking clusters, 124 molecules were selected by visual inspection for 
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favorable and diverse interactions with the D4 site, and for lack of internal strain30; another 

444 were selected automatically, by docking score alone, across the rank-ordered list (19 

were in both lists). At 10 μM, 122 of the 549 molecules displaced more than 50% [3H]-N-

methylspiperone specific D4 binding (Fig. 3a). Dose response curves for 81 compounds 

revealed Ki values ranging from 18.4 nM to 8.3 μM (Fig. 3b, Extended Data Table 2 and 
Supplementary Table 4).

Many of the highly ranked molecules were functionally congested, and often docked to 

interact with residues that are rarely simultaneously engaged (Fig. 3c, Extended Data Fig. 5). 

Most filled the pocket defined by helix 5 and 6 residues such as S1965.42, F4106.51 and 

F4116.52, and ion-paired with D1153.32, both common interactions among dopaminergic 

ligands (Fig. 3c, superscripts use Ballesteros-Weinstein and GPCRdb nomenclature31,32). 

Less common among previously known ligands, but frequently observed here, was 

engagement of the D4 selectivity pocket, defined by F912.61 and L1113.28, which 

distinguishes this subtype from the D2 and D3 dopamine receptors (Fig. 3c). This may 

explain the 30- to 500-fold subtype selectivity of many of the hits (Extended Data Table 2). 

Finally, some compounds docked to further hydrogen-bond with backbone atoms in extra-

cellular loop 2 (Fig. 3c), which is thought to influence signaling bias33.

In functional assays, several of the high-ranking molecules were potent. For instance, 

ZINC621433143 appeared to be a 2.3 nM full agonist (see below), ZINC465129598 and 

ZINC270269326 were 24 and 17 nM full agonists, respectively, while ZINC464771011 was 

a 10 nM partial agonist (Fig. 3d and Extended Data Table 2). Two antagonists were also 

found: ZINC413570733 (IC50 5.9 μM) and ZINC130532671 (IC50 10.8 μM) (Extended Data 

Table 2 and Extended Data Fig. 5). All six lacked detectable activity at the D2 or D3 

subtypes (Extended Data Table 2). Meanwhile, ZINC615622500 had no detectable Gi 

activity but was a 3 μM β-arrestin-biased agonist (Extended Data Table 2 and Extended 

Data Fig. 5).

Intriguingly, the potent agonist ‘3143 (above) was tested as a diastereomeric mixture. 

Several of its diastereomers, each independently docked, also scored well—an example is 

ZINC621433144, which differs from ‘3143 by adopting the (3R,4S) rather than the (3S,4S) 

stereoisomer around the tetrahydropyrrole; the two stereoisomers superpose well in their D4 

docked poses (Fig. 3c). Accordingly, the four diastereomers were independently synthesized 

and tested. Compound ‘3144 is a 180 pM full agonist, with 2,500-fold sub-type selectivity, 

making it among the most potent, selective full agonists characterized for the D4 receptor. 

‘3144 was also functionally selective, with a 17-fold bias towards Gi signaling versus β-

arrestin recruitment, versus the characteristic agonist quinpirole (Fig. 3e). Two of the other 

diastereomers, ‘1264 and ‘1265 had Gi biases of 26 and 11, respectively, and the third 

(‘3143) had a β-arrestin bias of 7 (Extended Data Table 2); here stereoisomerization at a 

single center flips the bias of a potent agonist.

The make-on-demand library will soon exceed one billion lead-like molecules (Fig. 1b), and 

it is tempting to dock only cluster representatives, rather than every single molecule. Indeed, 

doing so reduced docking time 22-fold. Unfortunately, the best cluster representative for a 

protein is unknowable without docking all cluster members. We found that only docking a 
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single cluster representative, chosen by multiple criteria (Methods), substantially worsened 

the docking scores, especially for the best ranked molecules (Fig. 3f and Extended Data Fig. 

6a). This had a devastating effect on experimentally-active scaffold families. For instance, 

the 47 confirmed actives among the top 3000 ranked molecules were replaced with different 

cluster representatives, and these fell in rank by an average of 1,121,443; only two of the 

original active scaffolds remained (Supplementary Table 7). Similar effects were observed 

for β-lactamase (Extended Data Fig. 6b and Supplementary Table 8). Screening the entire 

library was essential for the discovery of the compounds reported here.

Docking hit rates vary regularly with score

A longstanding question in docking is how well rank predicts binding likelihood. In most 

docking screens, only tens of molecules are tested, and then only from among the top-ranks. 

With the great expansion of the library, it seemed interesting to sample also from lower 

ranks, with enough molecules to be statistically meaningful. Accordingly, we modeled 

potential “hit-rate” curves as a function of docking score. Using distributions of prior 

probabilities from Bayesian statistics, we developed ranges of docking scores over which we 

should test molecules to experimentally define the curve (Fig. 4). From these simulations, 

the 549 make-on-demand molecules were spread among 12 scoring bins covering the 

highest-ranking (−75 to −63 kcal/mol), mid-ranking (−61 to −46 kcal/mol), and low-ranking 

scores where most molecules had unconvincing receptor interactions (−43 to −35 kcal/mol). 

Typically, 35 to 40 molecules were tested per bin, with more in the highest scoring bins to 

maximize the number of actives found. Overall, 444 molecules were picked automatically 

while 124 were picked by visual inspection (above). All molecules were tested in vitro using 

the same protocol.

Intriguingly, hit-rates fell almost monotonically with score, after a plateau defined by the 

highest-ranking molecules. Among these, hit rates ranged from 22 to 26%, but past scores of 

−65 kcal/mol they fell steadily, to 12% by a docking score of −54 kcal/mol, and by scores of 

−43 kcal/mol the hit rate reached zero, where it remained at the next two (worse) scoring 

bins. We fit a response curve to these observations, with a top hit rate at 24%, a bottom hit 

rate at 0%, a mid-point at −54 kcal/mol, and a mid-point hit-rate slope of −1.7%/(kcal/mol). 

The regularity of this curve suggests that, at least for the D4 dopamine receptor, ligand 

activity is well-predicted by docking score, notwithstanding a high false-positive rate and an 

inevitable false negative rate.

From this curve we can model the total number of D4 actives in the library. Assuming that 

all molecules in a scoring range have the same hit-rates, we can multiply the total number of 

library molecules in any such range by the observed hit rate in that range, and sum (Fig. 4). 

Among the 138 million molecule library there are calculated to be over 453,000 D4 active 

molecules, in over 72,600 scaffolds, with estimated Ki values of 10 μM or better (Fig. 4a and 

4c). The number of actives drops to 158,000 at a more stringent 1 μM cutoff (Fig. 4b and 

4d). Admittedly, these predictions have uncertainties, with 95% confidence ranging from 

188,000 to 1,035,000 actives molecules and from 38,000 to 129,000 active scaffolds. Still, in 

some ways the estimates are conservative—for instance, we assume a 0% rate of compound 

discovery below a docking score of −40 kcal/mol (Fig. 4a and 4b). Had we assumed a higher 
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random hit-rate, the number of discoverable compounds would have risen, as most of the 

library scored worse than −35 kcal/mol (Fig. 4). Finally, we note that this unusually large set 

of 549 confirmed actives and inactives, all with docking poses34, may be a useful benchmark 

for the field (Supplementary Table 4).

Human vs. machine.

We wondered whether molecules prioritized by docking and human visual evaluation would 

perform better than those prioritized by docking alone. From among the top 1000 ranked 

molecules, we selected 124 that, on inspection, had favorable interactions, and deprioritized 

those with strained internal energies (above)30. Another 114 high-ranking molecules were 

selected by docking score alone, from the same ranks. Unexpectedly, the hit rates were about 

the same at around 24% (Extended Data Fig. 7a). However, the human prioritized molecules 

typically had better affinities: 44% of these were sub-μM, which was true of only 27% of 

those prioritized by docking score alone. Correspondingly, a disproportionate number of the 

most potent agonists, such as the 180 pM ‘3144 and the 14 nM ‘1011, were human-

prioritized (Extended Data Fig. 7b–c).

The docking results here may be compared to those from earlier high-throughput screening 

(HTS) and docking campaigns. For AmpC, the direct docking active ‘4163 is over 20-times 

more potent than any earlier non-covalent inhibitor35–37, and its optimized analog ‘9643 is 

the most potent non-covalent AmpC inhibitor yet characterized. Partly this reflects the 

simple absence of phenolates from the much smaller libraries previously screened. Similarly, 

the low and mid-nanomolar agonists ‘9598, ‘9326 and ‘1011 are 10-fold more potent than 

any D4 screening hits of which we are aware, even from campaigns biased toward 

dopaminergic chemotypes38, and also more selective. Meanwhile, the 180 pM ‘3144 is 

among the most potent selective agonists reported for this target39–41. Comparing this study 

to a recent docking screen of 600,000 “in-stock” compounds against the D4 dopamine 

receptor14, the initial lead from the smaller library was a 260 nM agonist, and even after 

three rounds of optimization this series only reached an EC50 of 4 nM. Here again, there is 

no compound topologically similar to ‘3144 in the smaller, “in stock” library. It is the great 

expansion of the make-on-demand library, both in compounds and chemotypes, that has 

enabled discovery of the new ligands.

Certain caveats bear airing. The variation of hit-rate with docking score, while sigmoidal, 

was not fully monotonic, with variability among the top-ranking tranches. Naturally, the 

estimation of actives is valid only for the D4 dopamine receptor; it has wide error margins 

(Fig. 4). Whereas molecules were docked as pure stereoisomers and diastereomers, they 

were often tested as stereochemical mixtures. Finally, the longstanding challenges of 

sampling and scoring in molecular docking screens remain42. Whereas the hit rate vs. 

docking score curve (Fig. 4) supports an ability to prioritize actives, our raw docking scores 

remain off-set from true binding energies, and we cannot confidently even rank-order 

molecules for activity. Finally, docking undoubtedly continues to suffer from false negatives.

These caveats should not obscure our principal observations. First, docking rank predicts the 

likelihood that a molecule will bind to the D4 dopamine receptor (Fig. 4). This suggests that 
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docking methods43–50, at least for well-formed binding sites, can efficiently prioritize new 

molecules from a large chemical space. Second, the discovery of novel and potent 

chemotypes for both targets suggests that the ultra-large libraries contain molecules better 

suited to a given receptor structure than found within the smaller “in-stock” libraries, and 

that docking can recognize them. Third, the well-behaved hit-rate vs. score curve (Fig. 4) 

allows one to predict the total number of expected actives for a target within a library, 

including those unrelated to known ligands. Integrating under this curve predicts that there 

are an astonishing 453,000 D4 ligands in over 72,000 scaffold families in the make-on-

demand library. As daunting as these numbers are, we expect them to grow, with the library 

itself anticipated to exceed one billion lead-like molecules by 2020. This represents a great 

challenge but also a great opportunity: a 1000-fold expansion of the molecules and 

chemotypes readily available to chemical biology and to drug discovery, openly accessible 

to the community (http://zinc15.docking.org).

Online Methods

Database generation.

Dockable ligand databases are downloadable from ZINC (http://zinc15.docking.org), and 

protonation states and tautomers (Jchem v15.11.23.0, www.chemaxon.com), 3D structures 

(Corina v3.6.0026, www.molecularnetworks.com), conformational ensembles (omega 

v2.5.1.4, www.eyesopen.com)51, atomic charges52 and desolvation energies53,54 are 

calculated as described55. For both the AmpC and D4 campaigns, library molecules were 

protonated according to experimental testing near neutral pH, using pKa values calculated 

according to Jchem. Whereas AmpC is known to prefer anionic molecules, and the 

dopamine receptors are known to prefer cations, there is precedent for uncharged molecules 

binding to both56,57. Accordingly, the full library, unfiltered for charge state except by lead-

like characteristics, was docked against both targets. The full list of library molecules 

docked, by ZINC number, SMILES, and docking scores, are deposited in FigShare58,59; 

from this, full charge and structural representation may be found in http://

zinc15.docking.org.

Toy model for database growth.

We constructed a model of ligand enrichment with library size, using the distribution of 

ligand and decoy docking scores. Except for the D4 receptor, the ligands and decoys are 

drawn from the DUD-E benchmark; for the D4 receptor, 48 ligands were downloaded from 

IUPHAR (http://www.guidetopharmacology.org) and the corresponding decoys were 

generated by the DUD-E web server (http://dude.docking.org/generate). Inputs to the model 

are ligand-to-decoy ratio and number of molecules in databases. From these two parameters, 

the distributions are sampled. We generated distributions by fitting the skewed-normal 

distribution to that observed for the DUD-E ligands and decoys from docking, using the 

statistical library in SciPy (Extended Data Fig. 1a–c and Supplementary Table 1).

Simulating hit rates from full-library docking.

We docked the full make-on-demand library to investigate the ranking of ligands vs. decoys. 

All known ligands for each target were drawn from ChEMBL26. Their analogs in the make-
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on-demand library were defined by ECFP4 Tc similarity ≥ 0.5, 0.6 or 0.7 for each target 

(Extended Data Fig. 1d). Together, the known actives and their analogs were defined as 

ligands while the rest of the docked molecules were defined as decoys. The full library was 

then docked. To investigate the effect of library size on the ability to enrich “ligands” among 

the top 1000 ranked compounds, 105, 3*105, 106, 3*106, 107, 3*107 and 108 sets of 

molecules were randomly selected from the full docking-ranked list and the number of 

ligands among the 1000 was counted. Each set was pulled twenty times with random 

selection from the larger library.

Bemis-Murcko scaffold analysis.

The SMILES of all the make-on-demand lead-like molecules in ZINC were downloaded 

from http://zinc15.docking.org/tranches/home/ on February 28, 2018. The program mitools 

(www.molinspiration.com) calculated scaffolds for all 233 million lead-like molecules using 

the Bemis and Murcko method.25

Large-scale-docking.

The AmpC campaign used the structure in PDB 1L2S, while the D4 campaign used PDB 

5WIU. In each, 45 matching spheres were calculated around and including the ligand atoms

—a 26 μM thiophene carboxylate for AmpC and nemonapride for D4 structures were 

prepared and AMBER united atom charges assigned14. The magnitude of the partial atomic 

charges for five residues in AmpC were increased without changing the net residue charge56. 

For both targets, the low protein dielectric was extended into the binding site using pseudo-

atom positions representing possible ligand docking sites, the radius was 1.0 Å and 2.0 Å for 

D4 and AmpC respectively14,54,60. For the D4 dopamine receptor, the desolvation volume of 

the site was also increased by similar atom positions, using a radius of 0.3 Å. This improved 

ligand charge-balance in benchmarking calculations, reducing the number of high-ranking 

dications. Energy grids representing the AMBER van der Waals potential61, Poisson-

Boltzmann electrostatic potentials using QNIFFT62,63, and ligand desolvation from the 

occluded volume of the target for different ligand orientations54 were calculated. Using 

DOCK3.7.264, over 99 million and over 138 million library molecules were docked against 

AmpC and the D4 dopamine receptor, respectively. Each library molecule was sampled in 

about 4054 and 3300 orientations and, on average, 280 and 479 conformations for AmpC 

and D4, respectively, and were rigid-body minimized with a simplex minimizer. The 

throughput averaged 1 second per library compound.

Clustering.

To increase novelty, the high-ranking molecules from both screens were filtered for 

similarity to previously known ligands, and for similarity to the molecules in the 3.5 million 

in-stock library (we have deposited tools to do this at https://github.com/docking-org/

ChemInfTools). To increase diversity, the docking-ranked molecules were clustered into 

related families of compounds. For the AmpC screen, the top 1 million ranked molecules 

were best-first clustered using an ChemAxon ECFP4 Tc of 0.5 for cluster inclusion (using 

the Tc_c_tool that we have deposited in https://github.com/docking-org/ChemInfTools). For 

the D4 screen, we wanted to sample through the docking scoring range, and thus used a 

hybrid clustering approach to treat many more molecules. To cluster the 53,588,665 
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molecules with DOCK scores better than −30 kcal/mol against the D4 dopamine receptor, 

we used best-first clustering on the first 2 million molecules (DOCK score to −49.38 kcal/

mol). This resulted in 126,287 clusters. Bemis-Murcko scaffolds were calculated for the full 

53,588,665 molecules, resulting in 4,893,388 scaffold-based clusters. The ECFP4-based 

clusters and the scaffold-based clusters were combined, and ECFP4 best-score first 

clustering was run on the best scoring members of each cluster, again using a 0.5 Tc cutoff. 

This left 423,656 hybrid clusters, each represented by its top-scoring member.

Analysis of full library docking vs. pre-clustering library docking.

The scaffold analysis of all docked molecules against AmpC and against D4 dopamine 

receptor used Bemis-Murcko scaffolds, as above. For the full library docking, the best-

scoring member was selected to represent the scaffold. To investigate the impact of only 

docking cluster representatives, rather than docking the full library, scaffold representatives 

were picked by four different methods: 1) the closest member to the centroid by molecular 

weight and cLogP; 2) the closest member to the centroid of molecular weight alone; 3) the 

member with the largest molecular weight and 4) the member with the smallest molecular 

weight. The molecular weight values are calculated and the cLogP values are predicted by 

Rdkit (http://www.rdkit.org).

Analoging within the library.

The 90 AmpC analogs from within the make-on-demand library were selected based on 

topological similarity to the primary docking hits: each had an ECFP4-based Tc values ≥ 

0.5, or shared the same substructure as the initial hit. All prioritized analogs also had 

favorable docking scores to the enzyme.

Make-on-demand synthesis.

Compounds were synthesized using 70,000 qualified in stock building blocks and 130 well-

characterized, two component reactions at Enamine. Historically, molecules have been 

synthesized in three to four weeks with an 85% fulfilment rate; in this project delivery time 

was six weeks, but with a 93% fulfilment rate. Each reaction is well tested for conditions 

including temperatures, completion time, and mixing, as described65. Typically, compounds 

are made in parallel by combining reagents and solvents in a single vial in the appropriate 

conditions to allow the reaction to proceed to completion. The product-containing vial is 

filtered by centrifugation into a second vial to remove precipitate and the solvent is 

evaporated under reduced pressure; the product is then purified by HPLC. Identity and 

purity is assessed by LC/MS and, when necessary, 1H NMR. All compounds were shipped 

90% pure or better (Supplementary Table 9 and 10, Supplementary Data 11–14).

AmpC β-lactamase crystallography.

All four inhibitors, ‘3290, ‘9920, ‘4163, and ‘9643, were co-crystalized from 1.7 M 

potassium phosphate with microseeding at pH values that varied for 8.7 to 8.9, as 

described66. Crystals were cryo-cooled in a solution containing a reservoir solution and 25% 

sucrose. Reflections were measured at beamline 8.3.1 of the Advanced Light Source 

(Berkeley, CA) with wavelength of 1.11583 nm at a temperature of 100K. Complexes with 
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‘3290, ‘9920, ‘4163 and ‘9643 were measured to a resolution of 1.50 Å, 1.91 Å, 1.90 Å and 

1.79 Å, respectively (Extended Data Table 1). All four complexes crystalized in the C2 

space group with two molecules in the asymmetric unit66. The datasets were processed, 

scaled, and merged using XDS and AIMLESS67. MOLREP was used for molecular 

replacement using the protein model from PDB 1KE4, giving unbiased electron density for 

the inhibitor in initial electron density maps. Initial model fitting and water addition was 

done in COOT68 followed by refinement in REFMAC69. Geometry restraints of inhibitor 

molecules were created in eLBOW-PHENIX. Following inhibitor modeling in COOT, 

refinement was carried out using PHENIX70. For each structure, geometry was assessed 

using MolProbity. The final models of ‘3290, ‘9920, ‘4163 and ‘9643 in complex with 

AmpC were refined to Rwork and Rfree values of 19.1 and 22.3%, 19.4 and 23.2%, 17.1 and 

20.3%; and 18.6 and 22%, respectively. Coordinates have been deposited with PDB 

identifiers 6DPZ, 6DPY, 6DPX and 6DPT, respectively. Model quality was confirmed using 

PROCHECK. The total number of residues located in the most favorable and allowed region 

of the Ramachandran plot for the complexes with ‘3290, ‘9920, ‘4163, and ‘9643 were 

97.89% and 2.11%, 98.03% and 1.97%, 98.31% and 1.69%, and 98.03% and 1.97%, 

respectively. The data measurement and refinement statistics are summarized in Extended 

Data Table 1.

AmpC β-lactamase enzymology.

All candidate inhibitors were dissolved in DMSO at 30 mM, and more dilute DMSO stocks 

were prepared as necessary so that DMSO concentration was held constant at 1% v/v in 

50mM sodium cacodylate buffer, pH 6.5. AmpC activity and inhibition was monitored 

spectrophotometrically using either CENTA or nitrocephin as substrates71. All assays 

included 0.01% Triton-X-100 to reduce compound aggregation artifacts72. Active 

compounds were further investigated for aggregation by dynamic light scattering and by 

inhibition of three counter-screening enzymes: trypsin, chymotrypsin, and malate 

dehydrogenase37; unless otherwise stated, no active compound was found to form 

aggregates nor did they inhibit any of the three counter-screening enzymes (Supplementary 

Table 2 and 3). IC50 values reflect percent inhibition fit to a dose response equation in 

GraphPad Prism (GraphPad Software Inc.), while Ki values were calculated directly from 

Lineweaver-Burk plots for all compounds except for ‘1339, ‘1516, ‘0178, and ‘3290, where 

the Cheng-Prusoff equation was used.

D4 Dopamine Receptor radioligand binding assay.

Binding was measured using HEK293T membrane preparations transiently expressing 

human D2 (D2 long receptor), D3, and D4 (D4.4 variant). HEK293T cells (ATCC 

CRL-11268; 59587035; mycoplasma free) were transfected and membrane preparation and 

radioligand binding assays were set up in 96-well plates in the standard binding buffer (50 

mM Tris, 10 mM MgCl2, 0.1 mM EDTA, 0.1% BSA, pH 7.4)14. For primary screening, 10 

μM compounds were incubated with membrane and radioligands (0.8–1.0 nM [3H]-N-

methylspiperone) (PerkinElmer). For displacement experiments, test compounds with 

increasing concentrations were incubated with membrane and radioligands (0.8–1.0 nM 

[3H]-N-methylspiperone). Reactions, either primary screening or displacement experiments, 

were incubated for 2 h at room temperature in the dark and terminated by rapid vacuum 
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filtration onto chilled 0.3% PEI-soaked GF/A filters followed by three quick washes with 

cold washing buffer (50 mM Tris HCl, pH 7.4) and quantified as described previously73. 

Results (with or without normalization) were analyzed using GraphPad Prism 5.0 using one-

site shift models where indicated.

cAMP inhibition assay.

To measure D4 Gαi/o-mediated cAMP inhibition, HEK 293T (ATCC CRL-11268; 

59587035; mycoplasma free) cells were co-transfected with human D4 (D4.4 variant) along 

with a luciferase-based cAMP biosensor (GloSensor; Promega) and assays were performed 

as described14. After 16 h, transfected cells were seeded in poly-L-lysine coated 384-well 

white clear bottom cell culture plates (Greiner; 10,000 cells/well, 40 μL/well) in DMEM 

containing 1% dialyzed FBS. The next day, ligand solutions were prepared in fresh buffer 

[20 mM HEPES, 1X HBSS, 0.3% bovine serum album (BSA), pH 7.4] at 3X drug 

concentration. Plates were decanted and received 20 μl per well of ligand buffer followed by 

addition of 10 μl of ligand solution (3 wells per condition) for 15 min in the dark at room 

temperature. To measure agonist activity for Gαi/o-coupled receptors, 10 μL luciferin (4 mM 

final concentration) supplemented with isoproterenol (400 nM final concentration was added 

to activate Gs via endogenous β2-adrenergic receptors) and luminescence intensity was 

quantified 10 min later. Data were analyzed using “log(agonist) vs. response” in GraphPad 

Prism 5.0.

Bioluminescence Resonance Energy Transfer (BRET) assay—To measure D4-

mediated G protein activation, HEK293T cells were co-transfected with human D4, Gαi1 

containing C-terminal Renilla luciferase (RLuc8), Gβ and Gγ containing a C-terminal GFP 

(at mass ratio 1 : 0.3 : 2 : 2, respectively). To measure D4-mediated arrestin recruitment, 

HEK293T cells were co-transfected with human D4 containing C-terminal Renilla luciferase 

(RLuc8), and β-arrestin2 containing a N-terminal YFP at ratio 1:3. After at least 16 hours, 

transfected cells were plated in poly-lysine coated 96-well white clear bottom cell culture 

plates in plating media (DMEM + 1% dialyzed FBS) at a density of 40,000–50,000 cells in 

200 μl per well and incubated overnight. The next day, media was decanted and cells were 

washed twice with 60 μL of drug buffer (20 mM HEPES, 1X HBSS, pH 7.4), then 60 μL of 

the RLuc substrate, coelenterazine 400a for G protein assay, and coelenterazine h for β-

arrestin2 assay (Promega, 5 μM final concentration in drug buffer), was added per well, 

incubated an additional 5 minutes to allow for substrate diffusion. Afterwards, 30 μL of drug 

(3X) in drug buffer (20 mM HEPES, 1X HBSS, 0.1% BSA, pH 7.4) was added per well and 

incubated for another 5 minutes. Plates were immediately read for luminescence at 400 nm 

and GFP fluorescent emission at 515 nm (G protein assay); 485 nm and fluorescent eYFP 

emission at 530 nm (β-arrestin2 assay) for 1 second per well using a Mithras LB940 

multimode microplate reader. The ratio of GFP/RLuc or eYFP/RLuc was calculated per well 

and the net BRET ratio was calculated by subtracting the GFP/RLuc or eYFP/RLuc from the 

same ratio in wells without GFP or eYFP present. The net BRET ratio was plotted as a 

function of drug concentration using Graphpad Prism 5 (Graphpad Software Inc., San 

Diego, CA).
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Hit-rate curve prediction and estimation of maximum number of hits.

To define the docking scoring ranges from which molecules would be picked for 

experimental testing, we used distributions of prior probabilities from Bayesian statistics for 

highest, mid-point, and random hit-rates, and for the slope of the curve. To advance the 

argument, we conjectured that docking hit-rates would behave like a dose response curve as 

a function of docking energy, ei:

hitpercent ei = Top − Bottom

1 − e
−S ei − Dock50

+ Bottom

This function is defined by four parameters: (1) Top is the maximum hit-percent; (2) Dock50 

is the dock energy in kcal/mol at Top/2; (3) S = Slope * 4/Top where slope is the change in 

hit-percent at Dock50 in hit-percent/(kcal/mol); and (4) Bottom is the minimum hit-rate that 

we fixed at zero. To define the prior probability distribution, four authors graded 440 

compounds across 11 energy slices (Extended Data Fig. 8e), from which we chose 

independent Bayesian prior probabilities for each parameter, p(Top) = Beta(α = 20, β = 80), 

p(Dock50) = Normal(μ = −60, σ = 15), p(S) = Normal(μ = −0.2, σ = 0.1) (Extended Data 

Fig. 8b–d). To sample curves from the posterior distribution given the prior distribution and 

given the results of testing the 549 compounds, we used Hamiltonian Monte Carlo with No-

U-Turn Sampling with Stan74 (4 chains of 50,000 warm-up and 50,000 sampling steps each 

and adapt_delta = 0.99, and max_treedepth = 12 control parameters) (Fig. 4a and Extended 

Data Fig. 8b–d, Red). To select the most informative compounds to test, we evaluated the 

Shannon Information Gain of six candidate designs, defined as the expected difference in 

posterior minus prior entropy over the prior-predictive distribution, by nested Monte 

Carlo75,76. We selected Design 5 favoring higher information gain over number of active 

compounds (Extended Data Fig. 8f). To estimate the number of active compounds (Fig. 4b) 

and scaffolds (Extended Data Fig. 8g), the energies of the compounds and scaffold cluster 

heads were integrated over the uncertainty in the posterior hit-rate model (Extended Data 

Fig. 8h and 8i).
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Extended Data

Extended Data Fig. 1 |. Simulating the effect of library size on ligand enrichment among the top 
1,000 docked molecules.
The energy distribution of a. ligands and b. decoys from docking enrichment calculations 

against AmpC β-lactamase. The skewed normal fitting curves are plotted in red lines. The 

fitting parameters (α, loc and scale values) are shown. c. Heatmaps of number of active 

molecules in the top 1,000 docked molecules for six targets. The number of ligands in the 

top 1,000 docked molecules for a given library size and the ratio of ligands/decoys is colored 

in a log10 scale from 1 (blue) to 1,000 (red). Cells with zero ligands are colored white. d. 

Large-library docking screens of AmpC (top, N=99 million molecules) and D4 (bottom, 

N=138 million molecules). Known binders and close analogs are treated as ligands and the 

rest of the molecules are treated as decoys. Panel on the left: the energy distributions of 

decoys (grey), ligands defined by ECFP4 Tc similarity ≥ 0.5 (blue), 0.6 (green) and 0.7 
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(orange) to ligands from ChEMBL. Middle Panel: heatmaps of number of ligands in the top 

1000 docked molecules based on fit on full-library docking with the ligands (AmpC, Tc ≥ 

0.5, green; D4, Tc ≥ 0.6, orange) and decoys (grey) distributions. Right panel: number of 

ligands in the top 1,000 docked molecules as the library grows based on actual distributions 

plotted in left most panel. The data are the mean ± SD from 20 samples (See Supplementary 

Table 1 for retrospective performance on three more targets).

Extended Data Fig. 2 |. Initial hits and selected analogs against AmpC β-lactamase.
5 initial hits are shown in the first column. For each compound, the first row is the ZINC ID; 

the second row is the cluster rank (position in cluster head list sorted by DOCK score) with 

global rank (position in unclustered hit list sorted by DOCK score) in the brackets; the third 

row is the Tc value (Tanimoto coefficient to known AmpC inhibitors in ChEMBL); the 

fourth row is the Ki value. Five selected analogs for the corresponding hits are shown in the 
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second column. For each compound, the first row is the ZINC ID; the second row is the Tc 

value; the third row is the Ki value.

Extended Data Fig. 3 |. Lineweaver-Burk plot and Ki analysis for analogs of each of the five 
series of AmpC inhibitors.
(a-f) Lineweaver-Burk plots for ‘6291 (a), ‘9920 (b), ‘2532 (c), ‘6987 (d), ‘4163 (e), and 

‘9643 (f) indicating competitive inhibition. IC50 values were determined by non-linear 

regression fit in GraphPad Prism, and Ki values calculated by a replot of the slope of each 

Lineweaver-Burk plot versus the corresponding inhibitor concentration.
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Extended Data Fig. 4 |. Electron density maps for AmpC/inhibitor complexes.
The initial Fo-Fc electron density map contoured at 2.5σ around the inhibitor (density in 

cyan) with refined 2Fo-Fc electron density contoured at 1σ for enzyme residues for the 

complexes with compounds a. ‘3290, b. ‘9920, c. ‘4163 and d. ‘9643. Inhibitor carbons in 

cyan and enzyme carbons in grey, oxygens red, nitrogens blue, sulfurs yellow and chlorides 

green.
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Extended Data Fig. 5 |. Selected D4 hits from docking 138 million make-on-demand molecules.
Six ligands with docked poses (first column), cAMP Gαi/o activities (second column), 

Tango β-arrestin activities (third column) and [3H]-N-methylspiperone displacement and 

chemical drawing (fourth column) are shown. The receptor structure is in grey and ligand 

carbons are in teal. Ballesteros-Weinstein residue numbering in superscript. Functional 

assays represent normalized concentration-response curves of the ligands in cloned human 

D4-mediated activation of Gαi/o and β-arrestin translocation. The data are the mean ± SEM 

from three assays. The first row shows an example of an antagonist identified among the D4 

hits. Both agonist (teal curve) and antagonist (purple curve) modes are shown for 

ZINC000130532671 in the third panel; the concentration of Quinpirole in the antagonist 

mode was 100 nM.
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Extended Data Fig. 6 |. Pre-clustering the docking library yields much worse scores of scaffold 
representatives compared to full library docking.
Comparison of energy distributions of scaffold representatives between full library docking 

(orange) and pre-clustered library docking for a) D4 and b) AmpC using four strategies: the 

closest member to the centroid of molecular weights and clogP (blue), the closest member to 

the centroid of molecular weights (pink), the member with the largest molecular weights 

(magenta) and the member with the smallest molecular weights (green). The inset shows the 

ratio of the number of molecules at a given docking score for full library docking divided by 

the number at that score when only cluster representatives are docked (colored by clustering 

method). For each target, two examples illustrate the effect on our experimentally active 

scaffold families. c) D4, d) AmpC. The scaffold for each molecule is highlighted in red. The 

ZINC ID, post-cluster rank and pre-cluster rank are labelled for each pair. The arrow color is 

as for the pre-clustering methods in panels a and b
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Extended Data Fig. 7 |. Comparison of hit rates achieved by combined docking score and human 
prioritization vs. by docking score alone.
a) The hit rates from selecting compounds at different scoring ranges by each strategy: 

human prioritization and docking score (orange), docking score alone (blue). Hit rate is 

actives/tested; the raw numbers appear at the top of each bar. b) Binding affinity level 

distribution among the hits from panel a. There are 32 hits from human prioritization and 

docking score, and 26 from docking score alone. These are divided into three affinity ranges: 

< 100 nM (pale blue); 100 nM - 1 μM (blue); 3) 1 – 10 μM (dark blue). c) Functional 

activity distribution among the hits from panel b. There are 22 molecules from human 

prioritization and docking score, and 7 molecules from docking score alone. These are 

divided in five activity ranges: < 10 nM (pale green); 10 nM - 1 μM (light green); 1 μM - 10 

μM (olive); 10 μM - 50 μM (forest green); 5) not determined (dark green).
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Extended Data Fig. 8 |. Bayesian Prior modeling for balancing information gain and ligand 
discovery in molecule-selection design and error estimation.
a) Sigmoid functional form for the hit-rate model. b-d) Marginal Bayesian prior (teal) and 

posterior (red) distributions (n=200,000) for each model parameter b) Top, c) Dock50 and d) 

Slope. e) Estimated hit-rate based on evaluation by the authors of the docked poses before 
any molecules were tested (brown: mean (n compound = 200, 220, 230, 230, 285, 235, 210, 

230, 200) ± stddev. (n experts = 5,4,4,4,4,4,4,4,4)), the prior mean (green), and samples 

(n=200) from the prior (blue). f) Candidate (blue) and chosen (orange) experimental designs 

(Inset Designs 1–6), with expected number of hits and information gain for each. g) 

Expected number of active scaffolds (orange: mean, gray: posterior draws n=200,000) 

superimposed on the total number of scaffold cluster heads (black). h-i) Marginal 

distribution of the number of active compounds (h) and scaffolds (i) over the posterior 

distributions (n=200,000).
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Extended Data Table 1 |

Data collection and refinement statistics of β-lactamase AmpC inhibitors.

ZINC547933290 ZINC275579920 ZINC339204163 ZINC549719643

Data collection

Space group C2 C2 C2 C2

Cell dimensions

a, b, c (Å) 97.70, 77.73, 115.68 97.44, 77.56, 118.41 98.02, 77.7, 115.94 98.17, 77.56, 115.51

 a, b, g (°) 90.00, 113.26, 90.00 90.00, 116.05, 90.00 90.00, 113.35, 90.00 90.00, 113.04, 90.00

Resolution (Å) 62.75−1.50 (1.53−1.50)* 62.67−1.91 (1.95−1.91) 62.76−1.90 (1.94−1.90) 87.87−1.79 (1.83−1.79)

Rsym or Rmerge 5.6(17.1) 14(20.7) 5.3 (35) 6.9(10.9)

I/s/ 13.6(1.0) 10(1.1) 19.6 (4.3) 13.5(1.7)

Completeness (%) 99.5 (98.6) 97.4 (96) 96.4 (71.1) 99.8 (99.6)

Redundancy 6.6 (6.4) 6.9 (7.1) 6.4 (5.0) 6.6 (6.0)

Refinement

Resolution (Å) 62.7−1.5 58.64−1.91 45.8−1.90 58.46−1.79

No. reflections 126186 59879 60717 74953

Rwork / Rfree 19.2/22.3 19.5/23.2 17.2/20.2 18.8/21.9

No. atoms

 Protein 5499 5483 5513 5499

 Ligand/ion 40 50 44 50

 Water 593 237 326 269

B-factors

 Protein 29.34 33.09 29.76 34.57

 Ligand/ion 35.14 38.60 36.59 42.63

 Water 37.86 35.87 34.59 38.55

R.m.s. deviations

 Bond lengths (Å) 0.007 0.007 0.008 0.007

 Bond angles (°) 0.86 0.84 0.86 0.85

(One crystal for each structure)
*
Values in parentheses are for highest-resolution shell.
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Fig. 1 |. Make-on-demand compounds are diverse and have increased exponentially.
a. Characteristic reagents, reactions, and products in the make-on-demand library. b. The 

expansion of the make-on-demand library; orange bars represent projected growth. c. The 

distribution of compounds among the 10.7 million scaffolds in the library.

Lyu et al. Page 29

Nature. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Structural fidelity between docked-predicted and crystallographically-determined poses 
of the new β-lactamase inhibitors.
Crystal structures of the inhibitors (carbons in cyan) overlaid with their docking predictions 

(magenta). AmpC carbon atoms in grey, oxygens in red, nitrogens in blue, sulfurs in yellow, 

chlorides in green, fluorides in light blue. Hydrogen bonds are shown as black dashed lines. 

The AmpC complexes with a. ‘3290 (PDB 6DPZ, RMSD 1.3 Å); b. ‘9920 (PDB 6DPY, 

RMSD 1.2 Å for the warhead); c. The 1.3 μM inhibitor ‘4163 (PDB 6DPX; RMSD 0.98 Å) 

and d. its 77 nM analog ‘9643 (PDB 6DPT, RMSD 1.52 Å). e. Close up of the ‘9643 
phenolate in the oxyanion hole. Extended Fig. 4 shows electron density.

Lyu et al. Page 30

Nature. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 |. Testing 549 molecules at different docking ranks against the D4 dopamine receptor.
a. Displacement of the antagonist 3H-N-methylspiperone by each of the 549 molecules 

tested at 10 μM (mean ± SEM of three assays). The molecules are colored by their docking 

score. The number of binders (<50% remaining radio-ligand—below the dashed line) 

diminish with docking score. b. Six actives, each a different scaffold. c. Docked poses of 

‘2964 (left panel), ‘8888 (middle panel), and superposed ‘3143 and ‘3144 (right panel). The 

receptor helices are shown in ribbon, the conserved D1153.32 is shown in stick, interacting 

residues within 4Å of the docked molecules are shown as lines. Ballesteros-Weinstein 

residue numbering in superscript. Modeled hydrogen bonds are in dashed lines. d. cAMP 

functional assays of the 180 pM full agonist ‘3144 (orange) and the 10 nM partial agonist 

‘1011 (blue, agonist mode, purple, antagonist mode (‘1011+100 nM Quinpirole)). The data 

are the mean ± SEM from three assays. e. Gαi/o BRET and arrestin BRET functional assays 

of the 180 pM full agonist ‘3144 (Gαi/o, orange; arrestin, red) and the unbiased ligand 

Quinpirole (Gαi/o, black; arrestin, blue). The data are the mean ± SEM from three assays. f. 
The effect of pre-clustering on docking scores: the orange curve is the distribution of the 

best-scoring scaffold representative, the blue curve is the score distribution from pre-

clustering and choosing only single cluster representatives to dock.
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Fig. 4 |. Estimating the number of active D4 dopamine receptor ligands in the 138 million 
compound library.
Top row). Left y-axis, the hit-rate of 549 tested compounds, right y-axis, distribution of 

library compounds by docking energy (black curve). a. Modeling the number of library 

compounds with Ki values ≤ 10 μM. Top = 24%; Bottom = 0%; Dock50 = −54 kcal/mol; and 

Slope50 = −1.7 % / (kcal/mol). Cyan points represent the hit-rate means and standard errors 

at each docking energy bin, with 47,121, 51, 38, 37, 40, 38, 36, 35, 36, 35, 35 compounds 

tested in each bin, from best to worst scoring. The gold curve gives the mode and the gray 

curves give the draws (n=500) from the Bayesian posterior distribution (i.e., the envelope of 

possible distributions). b. Modeling the number of library compounds with Ki values ≤ 1 

μM. Top = 11%; Bottom = 0%; Dock50 = −56 kcal/mol; and Slope = −2.8 % / (kcal/mol). 

Magenta points represent the hit-rate means and standard errors at each docking energy bin. 

The green curve gives the mode and the gray curves give the draws from the Bayesian 

posterior distribution. Bottom row). c. Predicted number of actives by docking energy under 

the hit-rate model for the 10 μM model and d. the 1 μM model, with the mode (gold; green) 

and draws (gray; brown) from the respective posterior distributions. Expected total actives 

for the 10 μM model = 453,000 (188,000–1,035,000, 95% inter-quantile range) and for the 1 

μM model = 158,000 (38,000–489,000, 95% inter-quantile range).
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