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our models can deal with situations in which the observations are ordered in some clearly
defined way (time and space are merely the most obvious examples), and in which we have
reason to suppose that close observations influence each other.

As we shall point out below, our models are quite close to the models studied in
mathematical systems theory (Kalman, Falb and Arbib, 1969). The connections of such linear
dynamical systems with the theory of covariance structure modelling have been discussed
recently by Oud, Van den Bercken and Essers (1986), Otter (1986), MacCallum and Ashby
(1986). We shall discuss, in a later section, the similarities and differences of the two fields
from a different perspective, mainly because we have a somewhat different approach to models
of this kind. It seems to us that the differences between these two approaches to data analysis
are much more important than their similarities. But first we need to mention some general
principles of data analysis that are relevant here.

In fitting models to data there are three kinds of errors that we have to take into account.
The first error is approximation error. This occurs because models are never true, and are at
best approximations. The second kind of error is replication error or sampling error, this
is the kind of error studied in statistics. It occurs because we sample from a population. It is
often expedient also to discuss measurement error, which occurs because of limited
precision or other disturbing circumstances. In survey research the measurement errors are
often discussed as non-sampling errors. Observe that we assume that even if there are no
sampling errors and no measurement €rrors, then there will still be approximation errors. This
is because models are not exactly true, by definition. For further discussion of these points we
refer to Guttman (1985), Kalman (1983), De Leeuw (1984). In this paper we will not model
sampling errors and measurement errors explicitly. Not because this is not feasible, in fact in
subsequent publications we intend to include both types of errors in our modelling process. It
seems preferable, however, to start with the relatively simple case in which we merely
approximate complicated multivariate data structures by simpler ones. This is, in fact, the usual
way in which regression and component analysis are applied in multivariate data analysis.

State space models in probabilistic terms

For vectors we write q;, for matrices Q. We study the conditional distribution of the
output Yy, = {¥15---¥T} UP 10 time T, given the input Xy, = {Xy»eoXy} UPp to time T. We use
a somewhat informal notation, which can either refer to discrete probability distribution or to
densities. The purpose of statistical analysis in this context is to see if we can describe this
conditional distribution in simple terms. We use a type of simplification that can be introduced
by using concepts borrowed from factor analysis. In factor analysis we observe m variables y,
and these variables are correlated. We assume that there exist p unobserved variables or



factors z which 'explain' the association between the observed variables, in the sense that the
observed variables are independent given the factors. Compare Figure 1.

Figurel. Geometric representation of the factor analysis model.

In our informal notation we assume that

p(ylz) = [T, p(y,z), o
and thus

p(y) = | TH2; p(yjlz) p(2)dz. ¥)

If we translate this to the (cross-sectional) regression context, following De Leeuw and Bijleveld
(1987), the model becomes

p(yix) = [ TIZ, p(y;lz) pzix)dz. | 3)

Writing the conditional distribution of y in this way, the dependency of the output y on the
input x is decomposed into dependency of the output y on the latent factor z, and dependency
of the latent factor z on the input X. The dependency of y on x is thus 'explained’ through the
latent variables z. A diagram of this situation is drawn in Figure 2.
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Figure 2. Geometric representation of the model (3).

In the dynamic case there are unobserved state variables z,.1 to mediate the influence of
the input x onto the time-dependent y. This dependency of the output variables is accomodated
by assuming that all influence of the past on the present is mediated by the present state. This
first and basic assumption renders the model Markdvian. Figure 3 illustrates this clearly.

Figure 3. Geometric representation of the dynamic version of model (3).



This means that

P(Y1: 17X A Zo1) = POYTIY1T-1 A X15T A ZoymP(Y1:T-11X 1T A Z0,T)- 4)
But according to the model y1 depends on the past only through zr, so that

P10, A Zo:p) = PYTIZDP(Y11-1 X151 A Z0,7)- ()
Repeating this for all y; to Y we find

P(Y:rXpT A Zor) = {TIL P(YIZ)}pXyer A Zg,7)- (6)
We now reduce the second factor on the right hand side of (6). This gives first

P(X1;T A Zo;1) = P(Z1lZ0:T-1 A X1;1)P(ZoT-1 A X057)- (7

But z only depends on the input at time T and the state at time T-1.Thus

P(X1;T A Zo;1) = P(ZriZr.1 A XD)P(Zo:T-1 A X1;T)- ®
If we repeat this we obtain
p(xy;r A Zo;p) = (TLL; P#Z, g A X)}P(Z0 A Xy7)- )

The second assumption is that the state at time O is independent of the input. If we combine (6)
and (9) we have the basic result

p(Y1:1x1T A Zo) = (T p(ylz) HIIL, p(zlzey A X0} EOP(X1:7)- (10)
This implies
p(yprxyn) = [T pGZHILL, p(ziz, 1 A x)}p(2o) T odz,. (11)

Two important special cases of (11) have been studied in detail. If both output and input assume
only a finite number of values, and if the state variable is discrete as well, model (11) defines a
dynamic version of the latent class model. In particular, if there is not input, we recover the
. latent Markov chain model of Lazarsfeld and Henry (1968), which was studied recently by Van



der Pol and De Leeuw (1986). They used the EM algorithm to compute maximum likelihood
estimates. It is useful to remember the interpretation of (11) as a latent Markov chain with input.
The other special case assumes that all distributions involved are multivariate normal. It is then
again possible to apply the EM-algorithm to compute maximum likelihood estimates. This is not
what we shall do, however. The maximum likelihood methods, both in the discrete and in the
continuous (multinormal) case, approximate the complete distribution of the series as closely as
possible. In this paper we shall try to approximate merely the expected value structure,

assuming linear regressions.

Expected values for state space models

Now assume that the regressions are linear. If we translate the general idea that the present
only depends on the past through the current state to expected values, we find the model

E(zlzg, A X1, =Fz, ) + GX,, (12a)
E(y,zy, A X1,) = Hz,. (12b)

This means that we best predict z, by using (12a) and y, by using (12b). Looking at all
predictions simultaneously gives the equations

Z =BZF '+ XG', (132)
Y = ZH', (13b)

with BZ = (Zb, Z'l, cery ZT'_I).
There is a special case of (13) which occurs quite often. If there is no input the model becomes

Z =BZF', (14a)
Y =ZH" (14b)

Models without measured input are sometimes called dynamic factor analysis models
(Molenaar, 1981, Immink, 1986). Because we do not explicitly model errors, and consequently
do not distinguish common and unique factors, it is more appropropriate to call (14) a
dynamic component model. Also the special case of (13) with F = 0 is the (cross-sectional)



reduced-rank regression models studied earlier with similar techniques by De Leeuw and
Bijleveld (1987).

Defining the loss function

The techniques presented in this paper choose the unknowns Z and (F,G,H) in such a way that
the sum of the squares of the prediction errors is as small as possible. In later sections we shall
also consider the case in which the input X and the output Y are partially unknown (for
instance, known only up to monotone transformations). The computational problem we
consequently discuss is the minimization of

6,F.GH,Z) = o)szQ(Z -BZF' - XG") + SSQ(Y - ZH") (15)
over all its arguments.

The weight @ can be used to adjust for the relative importance of predicting the output. f @ =0
then the first term in (15) becomes irrelevant, and minimizing (15) degenerates to the principal
component analysis of the output. The limiting case with ® — e is more interesting. In order
to study it properly we observe that the first part of the loss function can always be made equal
to zero (even if F and G are fixed at known values). We merely need to choose z arbitrarily,
and then recursively compute z; = Fz;_; + Gx. Thus z; = Fzy + Gxy, zp = F2z0 +FGx; +
Gx,, and so on. Let us fix zj, to make things simple. This makes Z a function of F and G,
which we write as Z(F,G). Define

0..(F,G,H) =SSQ(Y - Z(F,G)H"), (16)

and 6 (*,*,*) is the minimum of (16). Write F,, G, H,, for the mininizers. We see that
minimizing (16) amounts to a principal component analysis of the output, with restrictions z; =
Fz; 1 + Gx, on the component scores. We now invoke the general theory of penalty functions
(Fiacco and MacCormick, 1968), which immediately gives us the following result, where 6(w)
is the minimum and F(w), G(®), H(w), and Z(w) are the minimizers of (15).

Theorem 1. If ® — o then o(®) — o (*,*,*), F(®w) = F_,, G(®) — G,,, H®w) > H_, and
Z(w) — Z(F,,G.o).

If 0 < < oo the situation becomes a bit more complicated. The main reason for these
complications is that unconstrained minimization of (15) over G, H, and Z is not useful. This



follows from Theorem 2 below. We first discuss an auxilary result. Define 6« = min SSQ(Y -
ZH'). We can find o from the singular value decomposition of the output.

Theorem 2. inf o(F,G,H,Z) = 6*, and the infimum is only attained in very special cases.

Proof. It is clear that o(F,G,H,Z) = o*. Now take F and G arbitrary, Z¢ and H, from the

singular value decomposition of the output, and define (GH,Z) = (mGO,(o'lHo,coZO). Then
cF,GH,Z) = O)ZSSQ(ZO - BZgF} - XG{) + 0*, and letting ® — 0 makes o(F,GH,Z) —»
6*. The minimum is attained if and only if we can choose F and G such that SSQ(Z, - BZF" -
XG') = 0, which is possible if and only if Zy is in the space spanned by the columns of BZ
and X. QED.

Thus unrestricted minimization of (15) is not a good idea, because iterative procedures will
produce a trivial solution with a very large H proportional to Hy, a very small Z proportional to
Z(, and an arbitrary, but also very small, value of G. Thus we impose the normalization
restrictions Z'Z = I. Minimization of (15) will be carried out by alternating least squares, as
usual. Thus we alternate the solution to two types of problems: first we minimize (15) with
respect to F, G, and H for given fixed Z, then we minimize over Z for fixed current F, G, and
H, under the restriction that Z'Z = I. Then we go back to the first type of problem, and so on.
The general theory of alternating least squares shows that this process is convergent. Itis clear
that the subproblem of the first type, solving for F, G, and H for given Z, is a linear problem
which is easy to solve. The subproblem of the second type is much more complicated,

however, and we shall discuss it in a separate section.

Majorization

Consider the problem of minimizing (15) over Z, with Z'Z =1, and with the parameters
F, G, and H (temporarily) regarded as known constants. Write Z = Z 4 + A, with Z4 the
current best solution, and define A = Z - Z ;4. Now o(F,G,H,Z) equals

SSQ ©{(Zyyq - BZyigF' - XG') + (A - BAF)) + SSQ((Y - ZggH) - AH').  (17)

Let Py = Z 4 - BZoF' - XG' and P, = Y - Z;,;H' be the two matrices of residuals for the

previous solution. Then



o(F,GH,Z) = o(F,GH,Z,, - 207 tr A'BPF-P)) -2t AP,H+
+ SSQ (A - BAF) + SSQ(AH"). (18)
Now suppose we have a bound of the form

SSQ o(A - BAF') + SSQ(AH") =
SSQ A (od-B®F) // I®H) )<ySSQ), (19)

where // stands for vertical concatenation and Y depends on B, F and H. Also define

S =71 @?B'PF + P,H - 0’P)). (20)
Then

o(Z,F,G H) < 6(Zy4,F,G,H) + YSSQ(A - S) - YSSQ(S). (21)
But SSQ(A - S) =SSQ(Z - (Z, 4 + S)). An iteration step of our majorization algorithm
consists of minimizing SSQ(Z - (Z,4 + S)) over Z satisfying Z'Z = I. This is a simple
(weighted) Procrustus problem (Cliff, 1969), whose solution is well known. If Z ;4 + S =
KAL' is a singular value decomposition, then Z .., = KL' is the solution of the minimization

problem. After computing Z,,.,, we set Zq = Z,.,,» and we repeat the computations.

Theorem 3. The algorithm Zg.,, = KL', with (Z,q4 +S) = KAL' and S given by (20),
converges to a stationary point, i.e. to a point satisfying Zyew = Zg1g-

Proof. The convergence proof of the procedure is based on the chain
0 (Zpew -¥,G.H) = min{c(Zy;4,F,G,H) + YSSQ(Z - (Zy)q +8S)) - ¥SSQES | Z'Z =1} <
S 0(Zoig,F.G.H) + ¥8SQ(Zg1d - (Zoig + S) - 18SQ(S) = 6(Zo1g,F,.G.H).  (22)
Thus the transformation Zy — Z,,, decreases the loss function. Because the transformation is

generally continuous (excluding the degenerate case of zero singular values) it follows from
Zangwill (1967, chapter 4) that we have convergence to at least a stationary point. QED.



After convergence of the iterative procedure for computing the optimal Z we compute a
new F,G,H by simple least squares. An alternative (which may be better in terms of overall
speed of convergence) is to alternate a single Z ;4 — Z.., step with a single (F,G,H) step.
Now consider what happens if we do not use Z_.,, but Z.,M, with M an arbitrary rotation
matrix. Denoting arguments over which we have minimized by stars, it follows that
O(Z oo, *,%) = O(Z ey ML*,*,*). Thus the decrease of the loss function as a result of the two
substeps taken together will be the same, and is independent of M. It follows that we can also
compute an update (much more cheaply) by setting Z, ., = GRAM(Z 4 + S), with GRAM(.)
the Gram-Schmidt orthogonalization. This situation is analogous to the situation in other
alternating least squares methods (Gifi, 1981, chapter 3).

There is one step in the actual implementation of the algorithm which is still unclear. This

the choice of yin (19). Write A,,4(A) for the largest singular value of a matrix A.
Theorem 4. If y2 X%ax{(m(I—BC@F'))//(I@H)} then (19) is true.

Proof. Define 8 = vec(A) and A as the matrix (0(I-B®F"))//(I®H). Then (19) can be
written as 8'A'AJ , wherewith SSQ (8'A'Ad) £ SSQ (8'd) ?»I%ax(A). QED.

By using the results on Theorem 4, in combination with the earlier results, we obtain a
convergent algorithm to minimize (15) over F, G, and H, and all Z such that Z'Z = 1. This
does not guarantee, of course, that convergence is fast enough for practical purposes, and
ceratinly not that the solutions found by the algorithm will be satisfactory. This will have to be
studied by extensive numerical studies, and by the analysis of practical examples.

Example 1: Eigen analysis of the American states data.

We analyze an example, merely for illustrative purposes, which shows what the effect in
practice of our theorems is. For this purpose we take data on the fifty states of the USA,
analyzed earlier by many people. We have used a version of these data taken from Meulman
(1986, p. 48-54), in which there is a total of twelve variables. The first seven variables are to be
considered as input variables. They are, respectively, percentage of blacks, percentage of
hispanos, ratio of urban to rural, per capita income in dollars, life expectancy in years, homicide
rate, and unemployment rate. The last five variables are output variables, having to do with
educational achievement in the fifty states. They are: percentage high school graduates,
percentage public school enrollment, pupil to teacher ratio, illiteracy rate, and failure rate on
selective service mental ability test.



In order to illustrate the theorems we have first standardized all variables (sum equal to
zero, sum of squares equal to one). Next we set X = GRAM((X), and we performed the eigen-
analysis of 0)2)_()_(' +YY' for o equal to 0, 1, and 10. Table 1 shows the ordered eigenvalues,
with the first seven eigenvalues corrected by subtracting ®2. Theorem 1 tells us that the first
seven eigenvectors, with o2 substracted, converge to Q, the eigenvalues of X'YY'X. This
happens fairly rapidly. Table 1 gives the eigenvalues for various values of ; the last five
eigenvalues converge to the largest eigenvalues of X' YY'X_, with X_ a basis for the
orthogonal complement of the column space of X.

Table 1: Eigenvalues for various values of ®

w: 0 1 10 100
01 2674 2543 2245 2237
02 1.331 685 267 265
03 526 223 .166 165
04 323 .076 .050 050
05 146 036 028 028
06 .000 .000 .000 .000
07 .000 .000 .000 000
08 .000 703 1166 1.169
09 .000 385 528 533
10 .000 182 .269 272
11 .000 .108 209 210
12 .000 .058 071 on

Table 2a: Loadings for ® =0

black 852 041 -132 010 -281
hispa 065 219 177 462 .369
urban -057  -.176 299 J11 -153
incom 520 211 354 214 -242
lifex -704  -219 079 -.012 241

homic 723 257 045 172 -.042
unemp 269 -.047 301 -076  -.156

highs -.894 154 295 400 .086
publi -259 .844  -460 086  -.047
pupil 411 769 458  -175 002
illit 917  -028 059 320 -230

failn 936 063  -.118 150 .289




Table 2b: Loadings form =1

black 892 -116 -049 -056 -201
hispa .074 403 547 -538 284
urban -068  -305 537 158 073
incom -552 -270 608  -013  -359
lifex -742 -231 007 -.153 531

homic .763 307 279 026 -179
unemp 277 -152 471 682 .109

highs -.839 193 352 -104 0 -071
publi -.186 802 -.281 -118 042
pupil 438 655 218 233 -014
illit 900  -.002 186 -.165 118
failu 947 -.041 006 -060 -160

Table 2c: Loadings for @ = 10

black 933 -267 029 -.087 -.140
hispa .085 .642 519 -414 242
urban -08  -333 .586 170 .145
incom -591 -.250 655  -013  -303
lifex -786  -.156 002 -.165 .561

homic .806 325 274 093 -210
unemp 279 -221 470 719 135

highs -.768 139 284  -064 -053
publi -.050 376 -224 -079  -.038
pupil 433 278 105 167 -.020
illit .806 136 A50  -.098 .094
failu 908  -.116 045 -051  -120

Tables 2a, 2b, and 2c show the correlations between Z,; to Zs, the eigenvectors corresponding
with the five largest eigenvalues, and the input and output variables X and Y. For o =0 these
gigenvectors are the principal components of the output, if ® increases they become related
more and more to the input, and for large ® they are in the space of the input variables. We see
that especially the first one is still strongly related with the output, but the second component is
no longer strongly related to anything. On the basis of this analysis it seems that the first
dimension can be interpreted as a general poverty dimension, and moreover it can be chosen
almost completely in the space of the input variables. A more detailed interpretation of these
results will be given below.



Example 2: The American states data analyzed with ALS.

The same data were analyzed with the alternating least squares algorithm described above.
For performing this analysis we wrote a program we named DYNAMALS, which is an
acronym of linear DYNAMical systems analysis by Alternating Least Squares.

We performed the analysis for @ =0, 1 and 10. The fit of the respective ALS-solutions
was: 1, .856 and .996. In each case the results conformed closely t0 the eigen solution
described above; the ALS-computed correlations of the input and output variables with the state
variables Z, to Zs were approximately the same as those computed by the eigen-analysis. For
the first dimension of the state Z; no differences were found between the eigen- and ALS-
solutions; from Z, towards higher and less important dimensions of the state differences
appeared, with the Jargest absolute difference found .005. Thus, the interpretations of the ALS
solutions are identical to those of the eigen solutions. To summarize what we have said about
the influence of the weight ®, we have drawn a picture of the development of the correlations of
the input and output variables with the states for @ is 0, 1 and 10.

® 1.0
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correlations with the 1st dimension of the state

Figure 4. Correlations of the variables with the state for © = 0, 1, 10.

Figure 4 shows that the correlations of the seven input variables increase for increasing o; the
correlations of the five output variables decrease. The correlations of the variables with the
second dimension of the state change most; this second dimension is less stable than the first

dimension.



Optimal Scaling

The alternating least squares techniques discussed in this paper can be combined easily
with optimal scaling of the variables. This is illustrated, for example, in De Leeuw (1987b). In
stead of two substeps in a main iteration, one for updating G and H for given Z and one for
updating Z for given G and H, we now have three substeps. In the third substep the scaling of
the variables in X and Y is updated, for given Z, G, and H.

If we take a look at loss function (15) we see that for given Z, G, and H the only part
which depends on variable y; is of the form ssq(y; - ¥ where ¥; = Zh;. It follows that the
update of variable y; is of the form y; ¢ norm(proj(y;), with proj denoting the projection on
the cone of admissible transformations. We use ssq and norm in lower case, because they are
now applied to vectors and not to matrices. The admissible transformations can be the cone of
monotone transformations, the subspace of nominal transformations, a subspace of spline
transformations, and so on. For details we refer to the optimal scaling literature mentioned
above.

For updating variable x; the situation is a bit more complicated. We can write the relevant
part of the loss function as SSQZ - X;G) - x;g;). Here X;G; contains the contributions of
the input variables except X;. Let %, = (Z - XiG)gi/ssq(gy)- Then we have to minimize ssq(X; -

X;), giving X; < norm(proj(Xy). Cycling over the variables, changing them one at a time
gives the third alternating least squares substep.

Of course there are many variations of this algorithm possible. We can cycle over the
scaling of X and Y various times before we update Z and G and H. We can iterate the updating
of Z and G and H until convergence before computing a new scaling of the variables. The
general experience so far is that not too much work in each substep leads to simple
computations and reasonable overall convergence, but we have no formal proof for this general
statement.

Example 3: The American states data treated ordinally in the ALS-analysis.

The American states data were again analyzed with the ALS algorithm; this time the seven
input variables were treated ordinally. The fit improved to 948 with ordinal treatment of the
variables.

A picture of the American states' scores on the first two state variables, together with the
correlations of the input and output variables with these state variables is in Figure 5.



2nd dimension

1st dimension

Figure 5. Correlations of the variables and scores of the American states.

From the picture we see that on the first dimension the vectors of ILLIT, BLACK, FAILU and
HOMIC point in approximately the same direction; in the opposite direction point INCOME,
LIFEX and HIGHS. On the second dimension PUPIL and PUBLI load positively. The
correlations of HISPA and UNEMP with either dimensions were low, so they will not be
considered in the interpretation. The first dimension may be interpreted as a poverty dimension;
states with high scores on this dimension have high percentages of blacks, illiteracy, failure on
the Selective Service mental ability test, high homicide rate, amall percentage of high school
graduates, low life expectancy and low income. The vectors for HOMIC and INCOM/LIFEX
are at almost opposite angles. The second dimension may be interpreted as an education
dimension; while PUBLI and PUPIL are the variables that load on this dimension, they are at
an angle of approximately 50 degrees. States with low scores on this dimension like North
Dakota, Nebraska and Arkansas on the left side, and Rhode Island, New Jersey and New York
on the right side have low pupil to teacher ratio's and small public school enrollment. States
with high scores on this dimension like Nevada and Utah are marked by high public scholl
enrollment.

The results may be summarized as follows. Southern states like Missouri, South Carolina,
Louisiana, Alabama and Georgia that are situated in the right part of the picture are poor states;



rich states are Wyoming, lowa, Washington, Nebraska, Kansas, Oregon and Colorado. States
with high educational achievements are Nevada, Utah, Washington, Colorado and California;
on the opposite end are Rhode Island, New York, North Dakota and New Jersey.

Example 4: Analysis of time-dependent blood pressure data.

We will now analyze the relation between medication and blood pressure from data
obtained for a 57-year old white male under medical treatment for hypertension. For 113 days
this patient recorded every morning his diastolic and systolic blood pressure. Added to this
were two series of data. The first set, which we will call 'medication’, marks the phases in the
recording period; these phases may be marked by changes in medicines taken or by otherwise
important changes. The other series, which we will call 'weekday’, consisted of the day of the
week on which blood pressure was measured. As blood pressure can be influenced by stress
and other factors, we expected that blood pressure might be generally lower in the weekends
and higher during the working-week. The mean diastolic and systolic blood pressure data in
mm mercury for the various periods are:

diastolic blood systolic blood

pressure pressure
meto 400 mg 104.19 160.16
meter 101.53 149.65
sota 240 mg 97.18 137.55
+ diureticum 98.75 131.25
sota 160 mg 84.89 125.70
visit 97.20 138.20

First the patient took 400 mg a day of metoprololtartraat, which we abbreviated as 'meto’; tthen
he patient switched to sotalolhydrochloride, abbreviated as 'sota’, of which 240 mg and later
160 mg a day were taken respectively. ‘Meter' refers to the patient starting to use a new blood
sphygmomanometer, at '+ diureticum' the patient took one diureticum, and during "visit" the
patient visited a relative on another continent. Medication and weekday were thus the input

“variables; as no ordering is apparent for either of the two, we treated them on a nominal level.
The diastolic and systolic blood pressures served as the output variables, they were treated
numerically. A number of blood pressure measurements was missing; these were substituted by
least squares optimal estimates. As medication does not take effect immediately, and these were
morning blood pressure estimates, we used a lag of one day for the medication variable. The
algorithm converged in 9 iterations to a fit of .864.



The correlations of input variables and blood pressure data with the one-dimensional state
are in Table 3.

Table 3. Correlations of input and output variables with the state

state Z

medication 885
weekday 004
diastolic blood pressure -.927
systolic blood pressure -.923

Weekday correlates barely with the states, but medication does. To evaluate the effects of the
various "medicines", the category quantifications of the categories of medication and the actual
average diastolic and systolic blood pressure for those periods are presented below:

category

quantifications
meto 200 mg -.116
meter -.008
sota 240 mg -.039
+ diureticum 057
sota 160 mg 129
visit .038

As the blood pressures have negative correlations and medication has a positive correlation with
the state, blood pressure is highest for the medication period with the lowest quantification.
Thus, in especially the first period, when metoprololtartraat was used, blood pressure was
high. The new sphygmomanometer gives a considerable improvement, but the first
sotalolhydrochloride period has a lower quantification again, indicating that this medicine did in
fact increase blood pressure. The diureticum constitutes a sudden improvement and blood
pressure is comparably improved when the change from 240 mg to 160 mg of
sotalolhydrochloride a day is made. The visit to the relative reverses this trend, and blood

pressure rises in this period.
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