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ABSTRACT OF THE DISSERTATION

Designing Worldwide Clinical Trials with Multiple Objectives using Nature-Inspired

Metaheuristic Algorithms

by

Mitchell Aaron Schepps

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2023

Professor Weng Kee Wong, Chair

Problems in healthcare and medicine are worldwide and multifaceted. This dissertation ex-

plores optimal and efficient designs in global and other important clinical trials with nature-

inspired metaheuristic algorithms. The primary objective of this research is to showcase novel

uses of metaheuristics in two real world applications: first, we collaborate with physicians and

help patients with bipolar disorder by designing optimal sampling times for sustained-release

lithium, a vital medication using pharmacokinetics/pharmacodynamics nonlinear mixed ef-

fects models and second, to optimize worldwide clinical trial patient recruitment plans within

tight, real world complex regulatory and budgetary constraints. We determine interesting

optimal designs using metaheuristics in both single and multiple objective situations with

complex constraints. We show systematic analyses which can be used to solve and enhance

the implementation and interpretability of the discussed real life clinical trial designs. The

results from this dissertation are implemented in current software and offer novel insights

into the design of experiments and patient recruitment strategies, contributing to the ad-

vancement of medical treatments and healthcare practices.
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PREAMBLE

Biostatistics is a field of study with far reaching impact and implications for medicine and

public health. This dissertation focuses on the innovative use of metaheuristic algorithms

to optimally design worldwide clinical trials with multiple objectives subject to a set of

user-specified complex constraints. Real life clinical trials are involved in multiple countries

and sites simultaneously, and they are a taxing endeavor on patients and organizations. We

present here, difficult optimization problems with computationally challenging nonlinear con-

straints and multiple objectives. Metaheuristic algorithms are flexible, easy to understand,

and strong optimization algorithms because they solve problems traditional techniques can-

not. These algortihms are often based on nature and fathomable equations. The use of

metaheuristics opens up new avenues for improving the efficiency and effectiveness of clini-

cal trials; thereby potentially accelerating the development of new and more effective medical

treatments. This preamble sets the stage to uncover the myriad of ways that metaheuristics

can revolutionize experimentation for clinical trials, and beyond to other areas of biostatis-

tics.
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CHAPTER 1

Introduction

1.1 Aims

The main aim of this work is to show the power of metaheuristic algorithms to solve multiple

objective worldwide clinical trial design issues. Metaheuristics are often strategies employed

when traditional techniques cannot. As the term metaheuristics implies, they are not de-

veloped to solve specific problems, but give approximate answers to problems with difficult

assumptions. They are often related to equations seen in nature which gives them an ad-

vantage in multiple objective solutions. There are appropriate metaheuristic algorithms for

our study to solve the optimization problem or select a more appropriate metaheuristic

algorithm. Alternatively, the metaheuristic algorithm can be tuned and used appropriately.

We also provide tools to help clinical trial developers design efficiently for real life con-

straints. We demonstrate how clinical trial designs can benefit from use of nature-inspired

metaheuristics with two real life clinical trial design problems. The first clinical trial concerns

selection of optimal sampling times to ascertain the effects of lithium in a longitudinal study

for a complicated pharmacokinetics/pharmacodynamics (PK/PD) nonlinear mixed effects

model (NLMEM). The second demonstration is to develop cost-effective recruitment plans

for a worldwide clinical trial when there may be multiple objectives in the trial and several

types of constraints imposed. As we delve into the specific experimentation and overarching

goals of this work, we set the stage for the implementation of metaheuristic algorithms for

finding efficient recruitment plans and designs for various types of clinical trials.

2



Interestingly, metaheuristics are only used sparingly in biostatistical research. We hope

our work will inform clinical trial researchers of the usefulness of metaheuristics for opti-

mization purposes and stimulate further research in metaheuristics.

1.2 Outline of the dissertation

The outline of the dissertation is as follows. Section 1.3 introduces metaheuristic algorithms,

and Sections 1.4 and 1.5 motivate the use of metaheuristics for designing two clinical trials.

Chapter 2 discusses metaheuristics in greater detail with examples. We explain their allure

in various fields and give examples on how they function. In Chapter 3, we demonstrate

the utility of single and multiple objective metaheuristics to guide physicians on measuring

lithium levels in patients with bipolar disorder. Lithium is often the first line treatment to aid

in reducing the suicide potential seen in bipolar patients. It requires recurrent therapeutic

drug monitoring due to a narrow therapeutic window with potential toxicities (Yacobi and

Ornoy 2008, Grof 2010, Gitlin 2016). We use metaheuristics to design a longitudinal study to

optimally estimate parameters in a complicated PK/PD NLMEM under multiple physician

specified constraints. To this end, we use and enhance advanced, specialized PK/PD software

now in an R package (Couffignal et al. 2019).

In Chapter 4, we apply metaheuristics innovatively to find an optimal recruitment plan

for a worldwide clinical trial to meet pre-specified targets under a set of complex constraints.

This is an important problem because frequently, recruiting enough patients in a timely

manner is crucial; otherwise, the study is under-powered and results become unreliable.

In extreme cases, the trials may be cancelled due to gross under enrollment (Senn 1997,

Sully et al. 2013, Walters et al. 2017). In addition, there are many time-sensitive statistical

complexities to be considered when planning a trial, including the number, location, and

demographics of recruitment sites (Senn 1997). Chapter 5 summarizes the work and discusses

limitations of our work.
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1.3 What are metaheuristics?

Metaheuristics are optimization problem solving techniques capable to solve literally any

optimization problem whether the objective function or constraints are linear, nonlinear,

discontinuous, non-differentiable, multi-modal or high dimensional, etc. (Ezugwu et al.

2021). In complex problems, standard assumptions do not hold; for instance, the lasso

penalty is non-differentiable (Lange et al. 2014). Exact or traditional optimization methods

often rely on exploitation of these particular assumptions, such as linear or gradient based

methods (Lange 2013, Sallan et al. 2015). Metaheuristics completely relax these assumptions

and are able to solve problems only knowing the input and output (Blum et al. 2012).

This means that the objective we only need to know knowledge of the objective function

and constraints. Metaheuristics are often referred to as nature-inspired algorithms with

mathematical equations built on metaphors seen in the natural environment, similar to

sophisticated hunting or mating patterns of animals (Yang 2020). Two examples of such

algorithms are inspired by evolutionary reproductive principles and the hunting patterns of

birds or fish: the Genetic Algorithm (GA) (Holland 1992a) and Particle Swarm Optimization

(PSO) (Kennedy and Eberhart 1995).

Metaheuristics have been increasingly growing over the last few decades in industry and

academia (Whitacre 2011a,b). Dedicated journals to metaheuristics include the IEEE Trans-

actions on Evolutionary Computation, Evolutionary Computation, Journal of Heuristics,

Handbook of Evolutionary Computation and the International Journal of Metaheuristics, as

well as conferences like the IEEE Congress on Evolutionary Computation and the Genetic

and Evolutionary Computation Conference. Despite their versatility and proven success in

various fields like engineering and finance, the application of metaheuristics in medicine and

public health remains underutilized (Ezugwu et al. 2021). The potential of metaheuristics

to optimize healthcare presents a compelling case for their increased integration into medi-

cal and health-related research (Ghaheri et al. 2015, Katoch et al. 2021). Throughout this
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dissertation, we will combine novel use of metaheuristic algorithms to best answer pressing

needs in clinical trials.

1.4 Optimal designs to help patients with bipolar disorder

Optimal designs in PK/PD are recommended for new drug applications because they help

drive efficacy and safety (Barrow and Lindsley 2023). PK/PD studies have used NLMEMs

for decades to understand the variability in drug response across individuals or populations

(Sheiner et al. 1977, Nyberg et al. 2015, Comets and Mentré 2021). This requires specialized

software with advanced, developing methodologies (Comets and Mentré 2021). In Chapter

3, we develop efficient optimal designs enhancing this software to better understand PK/PD

studies using an application of sustained-release lithium for patients with bipolar disorder.

Patients with bipolar disorder are at a 15-fold increase for completed suicide (American Psy-

chiatric Association et al. 2013). Lithium has been a successful mood stabilizer for decades,

and is often attributed to a reduction in suicide (Schulze et al. 2010). Oftentimes, there

are ”excellent lithium responders” who attribute their lives saved to lithium administration,

and there may be a genetic link (Grof 2010). Unfortunately, even though lithium is ex-

tremely effective, it has a narrow safe therapeutic window and differences in bioavailability

can be life-threatening (McKnight et al. 2012). With the future of precision medicine on the

horizon, we can all benefit from efficient designs.

We provide guidance on the optimal sampling times to maximize the information gained

from blood samples with multiple physician-specified constraints that include (a) a pre-

specified number of sampling time points, (b) a pre-specified time window for measurement,

and (c) a pre-specified number of groups in the study. We propose alternative designs which

can enable a more holistic understanding of the exact statistical model. By employing meta-

heuristic algorithms, which are not yet standard in PK/PD software, this study endeavors

to improve our understanding of the PK/PD of sustained-release lithium, particularly in the

5



presence of potential genetic links in patients with bipolar disorder.

1.5 Optimal designs for global clinical trial recruitment

Global clinical trials are increasingly common and are used to recruit a diverse set of patients

to ensure the medications work across a broad population. Decision makers must plan for

timely recruitment of thousands of patients and pre-register sites used in trials, and come

up with a design to recruit patients in the most cost-efficient way and subject to real world

constraints (Senn 1997). Most commonly, the main target in the trial is to recruit a pre-

specified number of patients by a certain time, but this target is often not met and results in

a cancelled or failed trial (Bogin 2022, Sully et al. 2013, Walters et al. 2017). To prevent this

costly failure, pharmaceutical companies often use statistical models to predict and forecast

recruitment rates (Barnard et al. 2010, Anisimov 2016, Gkioni et al. 2019). The Poisson-

gamma (PG) model has emerged to be particularly effective in modeling recruitment rates

(Anisimov and Fedorov 2007a,b, Anisimov 2011, Anisimov and Austin 2023). The PG model

can be used to formulate an optimization problem with multiple nonlinear objectives and

constraints, necessitating the use of metaheuristics (Anisimov and Austin 2023).

In Chapter 4, we showcase the flexibility and usefulness of metaheuristics to generate

efficient large scale recruitment plan for thousands of patients spread over hundreds of sites

in potentially dozens of countries. Such design problems are very under-researched and there

is a pressing need to properly design for such studies. This dissertation provide some answers

to such real large scale design problems. We close this chapter by providing a real example

of such a trial using the recent COVID-19 vaccine trials which used multiple countries to

recruit a diverse patient population at a rapid speed. Table 1.1 shows the recruitment plan

of the Moderna Phase III clinical trial which recruited 30,420 patients in 99 clinical trial

sites in the United States, the Pfizer Phase III trial which recruited 43,548 patients in 152

sites in six countries, and the Johnson & Johnson Phase III trial which recruited 44,325 in
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217 sites in eight countries (Polack et al. 2020, Baden et al. 2021, Sadoff et al. 2021). It

is not clear if they used the PG model with these designs to ensure adequate recruitment,

but the information is available publicly at https://clinicaltrials.gov/study/NCT04368728,

https://clinicaltrials.gov/study/NCT04470427, and https://clinicaltrials.gov/study/NCT04505722.

Table 1.1. Recruitment plans used in the Phase III clinical trials for the COVID-19 vaccine.

Country Moderna Pfizer Johnson & Johnson

United States 99 130 117

South Africa - 4 25

Turkey - 9 -

Germany - 6 -

Brazil - 2 27

Argentina - 1 12

Colombia - - 13

Peru - - 9

Chile - - 6

Mexico - - 8

Number of sites 99 152 217

Number of countries 1 6 8

Number of patients 30,420 43,548 44,325

Time for recruitment Jul - Oct ’20 Jul - Nov ’20 Sep ’20 - Jan ’21
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CHAPTER 2

Nature-inspired metaheuristic algorithms

Metaheuristics are versatile and robust algorithms capable to solve all classes of optimiza-

tion problems because they do not need any mathematical assumptions like convex, linear,

or gradient programming methods (Yang 2020). The world of finance, operations research,

and engineering are making use of this innovative line of thinking, but the application of

metaheuristics to medicine and public health presents many applications yet to be explored

(Alam 2016, Ezugwu et al. 2021). This chapter describes properties, examples, and applica-

tions of metaheuristics and draws from many available reviews and books on metaheuristics

further discussed within, for instance see Bianchi et al. (2009), Boussäıd et al. (2013), Gogna

and Tayal (2013), Zavala et al. (2014), Xiong et al. (2015), Soler-Dominguez et al. (2017),

Abdel-Basset et al. (2018), Almufti (2019), Dokeroglu et al. (2019), Hussain et al. (2019),

Maier et al. (2019) or Ezugwu et al. (2021).

2.1 What are metaheuristics?

Traditional methods, like gradient descent or linear programming, often require detailed

information about the problem structure to perform the optimization and guarantee con-

vergence (Bonnans et al. 2006, Khan et al. 2015). In contrast, metaheuristics does not rely

on assumptions and can be used in any class of optimization problem no matter how com-

plex the objective function or constraints become (Ezugwu et al. 2021). Metaheuristics are

approximate algorithms, which do not guarantee convergence, but (a) can be used in situa-

tions where traditional methods cannot and (b) can still perform well in traditional problems
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(Hussain et al. 2019). Metaheuristic algorithms are sets of instructions used to solve com-

plex optimization problems. A ”heuristic” is a systematic strategy to either minimize or

maximize a value of a particular problem (Romanycia and Pelletier 1985). ”Meta” meaning

higher, refers to the search of gaining experience with heuristics over time (Sörensen and

Glover 2013).

Metaheuristic algorithms are usually defined by simple mathematical equations built from

metaphors seen in nature (Yang 2020). The taxonomy for categorizing metaheuristics draws

from biological, physical, and even mythological sources (Molina et al. 2020, Ezugwu et al.

2021). This variety in algorithmic foundations means each algorithm can have distinct search

characteristics and frequently produce different answers (Rajwar et al. 2023). The No Free

Lunch theorem applies to metaheuristics, and each unique problem and scenario may benefit

from a different algorithm (Wolpert and Macready 1997, Yang 2012). While much discussion

surrounds the origins of algorithmic inspirations, a pivotal distinction in categorizing meta-

heuristics lies between single-solution based and population-based algorithms (Talbi 2009).

Single-solution based algorithms, which focus on iterative improvement of a single candidate

solution, are particularly effective at exploiting locally optimal areas (Molina et al. 2020). In

contrast, population-based algorithms evolve a group of candidate solutions through com-

munication of social processes and are adept at exploring vast and rugged landscapes. The

diversity of the population can cover more area, hence provide a better chance of escaping

local optima (Yang 2020). These population-based algorithms generate an initial population

of a pre-specified size and during each iteration, the fitness of each candidate is evaluated,

and the algorithm selects promising candidates. Subsequently, the algorithm generates new

solutions using these promising candidates, gradually bringing the population closer to the

optimum over time.

There are many evolutionary or nature-inspired algorithms, but real-life settings can use

only a limited number of algorithms effectively. Who is to know which algorithm will yield a

higher quality solution and at what computation speed (Silberholz and Golden 2010)? Fur-
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thermore, most metaheuristics are stochastic and can vary from one simulation to another;

hence, conducting multiple simulations is recommended (Derrac et al. 2011). The choice

of which metaheuristic to use can be problem specific (Osaba et al. 2021). For instance,

the planning of the optimal design of a large road system can allow for weeks or months of

computation, while an air traffic controller needs an answer immediately. Typically before

implementation, a few preliminary simulations of each algorithm are run for the problem

at hand and then compared according to outcomes like convergence speed, solution qual-

ity, robustness, and computational cost (Derrac et al. 2011). Whenever a new algorithm

is proposed, it must show improvements in these metrics compared to others Derrac et al.

(2011), Carrasco et al. (2020) and (Osaba et al. 2021). Statistical inference methods can be

used like the ANOVA or a non-parametric such as the Friedman’s F-test, and the Pairwise

Wilcoxon Rank Sum can then be used to determine if there are pairwise differences (Carrasco

et al. 2020, Osaba et al. 2021). With each focused problem, we will conduct simulations and

employ novel analysis techniques to determine the most informative metaheuristic for the

distinct clinical scenarios to be discussed.

Oftentimes these algorithms are analyzed for their performance on benchmark problems

with known solutions. This often justifies the use of them, however, real life problems may

be entirely different. In the next subsection, we will discuss different application areas with

a specific focus on statistics and biostatistics.

2.1.1 Where are they used?

The versatile metaheuristics have been found to be useful across various fields including

supply chain optimization (Abualigah et al. 2023), finance (Soler-Dominguez et al. 2017,

De Almeida-Filho et al. 2021), and engineering (Zavala et al. 2014, Xiong et al. 2015).

Metaheuristics are also commonly used in scheduling problems like the vehicle routing or

traveling salesman problems routinely used by services like Uber and Amazon delivery drivers

(El-Sherbeny 2010, Osaba et al. 2020). Scheduling problems can also be used in applications
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such as batch processing in cloud computing (Singh et al. 2021) and airplane trafficking (Er-

dem et al. 2021). The algorithms’ adaptability and efficiency in handling complex problems

make them an invaluable tool in the researcher’s arsenal, especially when dealing with real-

world problems where complexities render traditional optimization techniques insufficient

(Blum et al. 2008a).

Throughout this work, we will be applying metaheuristics to complex models with clinical

trial applications. However, metaheuristics have only sparingly been used in statistics and

biostatistics (Ali and Hassanien 2015, Ghaheri et al. 2015, Kim et al. 2021). This is surprising

given metaheuristics ability to solve for noisy and large, complex landscapes (Kononova

et al. 2008, Blum et al. 2012). Early optimization methods centered around least squares

or maximum likelihood, but the emergence of intricate, nonstandard models, constraints

and objective functions has necessitated the use of metaheuristics in some biological settings

(Behnamian and Ghomi 2010, Sun et al. 2011, Rahman 2013). For instance, metaheuristics

have been used to escape local optima seen during parameter estimation of complicated

genetic networks and metabolite models (Gilman and Ross 1995, Tominaga et al. 2000,

Higashi and Iba 2003). Metaheuristics have proven useful in feature selection for health

prediction (Xue et al. 2015, Vivekanandan and Iyengar 2017, Liu and Wang 2019, Agrawal

et al. 2021, Dokeroglu et al. 2022) and cluster analysis (José-Garćıa and Gómez-Flores 2016).

They have been used in various clinical settings without widespread usage (Ghaheri et al.

2015).

Metaheuristics and machine learning can benefit from each other (Talbi 2021, Akay et al.

2022). Neural networks have historically relied on back propagation with stochastic gradient

descent for optimization, but metaheuristic algorithms have recently been proven to improve

the accuracy of neural networks and are undergoing implementation in popular software

systems such as TensorFlow (Muñoz-Ordóñez et al. 2018, Santoso et al. 2023). Further,

metaheuristics can determine the proper framework or hyperparameters of a neural network,

e.g. how many layers are optimal (Mohakud and Dash 2022).
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2.1.2 How are they used?

An algorithm’s performance can largely be based on its implementation like the language

it is programmed in and potential parallelization capabilities (Gmys et al. 2020). Some

metaheuristic algorithms are so easy to use and understand, that short YouTube videos or

large language models like ChatGPT can create functional understandable code. There are

numerous classes and educational websites like Udemy, Coursera, and Manning Publications

covering metaheuristics. Most commonly, metaheuristics are implemented and maintained

in open-source packages in programming languages (Tian et al. 2017, Van Thieu and Mir-

jalili 2023). One can imagine the YouTube coding metaheuristic may be outperformed by a

continuously maintained package in a high-performing language (Gmys et al. 2020). There

are a variety of different packages for the same baseline metaheuristic, each coded differ-

ently. For instance, in R, there are multiple packages of GA which come with different

capabilities. The GA package (Scrucca 2013) can handle discrete and continuous functions

with an option for parallelization, gafit (Tendys 2016) is for one dimensional problems

only, rgenoud (Mebane Jr. and Sekhon 2011) can use derivative information if given, and

metaheuristicOpt (Septem Riza et al. 2019) has a GA as well as a variety of other different

algorithms. Many can handle multiple objectives like mco ecr. Similarly, Python, Java, Ju-

lia, and MATLAB have a variety of libraries for metaheuristics listed in Table 2.1. The user

must decide which one to implement. These population based metaheuristics Researchers

have developed metaheuristic toolboxes and frameworks which allow for comparison of al-

gorithms on benchmark problems (Egea et al. 2014, Hansen et al. 2021). Metaheuristic

algorithms are flexible, but still need careful planning in how you use them. In this work,

we will discuss strategies to best use these packages.
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2.2 Examples of metaheuristics

In this section, we will describe GA and PSO and a few other metaheuristics that we use

throughout this work: the Grey Wolf Optimizer (GWO) (Mirjalili et al. 2014), Harmony

Search (HS) (Geem et al. 2001b), and Moth-Flame Optimizer (MFO) (Mirjalili 2015b). Each

of these algorithms has more detailed descriptions including pseudocodes readily available

elsewhere (Holland 1992b, Kennedy and Eberhart 1995, Geem et al. 2001a, Mirjalili et al.

2014, Mirjalili 2015c). Other nature-inspired population-based algorithms used briefly in this

work are the Ant Lion Optimizer (ALO) based on doodlebugs eating ants (Mirjalili 2015a),

Bat Algorithm (BA) inspired by echolocation and varying pulse rates (Yang 2010), Clonal

Selection Algorithm (CSA) imitating an immune system (De Castro and Von Zuben 2000),

Differential Evolution (DE) (Das and Suganthan 2010), Dragonfly Algorithm based on how

they avoid predators (Mirjalili 2016a), Shuffled Frog-Leaping Algorithm (SFL) (Eusuff and

Lansey 2003, Eusuff et al. 2006), sine cosine algorithm (Mirjalili 2016b, Abualigah and Diabat

2021), and the whale optimization algorithm based on humpback whales (WOA) (Mirjalili

and Lewis 2016, Nadimi-Shahraki et al. 2023). These are by no means the only metaheuristic

algorithms available. Others worth noting are the Ant Colony Optimization (ACO) (Dorigo

et al. 2006) and Artificial Bee Colony (ABC) (Karaboga 2010). A few locations provide lists

of metaheuristics like Fister Jr et al. (2013), Ma et al. (2023) and Wikipedia.

Here, we describe in detail how popular metaheuristics work.

2.2.1 The Genetic Algorithm (GA)

The GA is one of if not the most popular metaheuristics which strategically searches for a

solution based on survival of the fittest principles (Katoch et al. 2021). Each parameter in

the model is considered a gene, and the entire set of parameters is encoded into a string

called a chromosome (Holland 1992b). Each chromosome is evaluated for its objective value,

and iteratively, the best chromosomes survive and reproduce until the stopping criteria
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is reached. The iterative strategic search process creates offspring chromosomes from the

best parent chromosomes through processes known as selection, crossover, and mutation

(Goldberg 1989).

Selection, or natural selection, is the choice of parent chromosomes to ”mate” to generate

the next population (Holland 1992b). This could be a deterministic strategy where the top

individuals are selected to mate, or a probabilistic ”roulette wheel” strategy places emphasis

on those with higher fitness values while still introducing randomness to the search (Zhong

et al. 2005). A balanced selection strategy between deterministic and probabilistic is the

tournament selection strategy which picks the best out of a randomly selected handful of

chromosomes to move onto the next generation (Miller et al. 1995).

Crossover represents a fundamental genetic operator in genetic algorithms, akin to the bi-

ological process of recombination, where segments of genetic material are exchanged between

paired chromosomes (Goldberg 1989). The strategy and extent of crossover are variable and

can be tailored to the problem at hand (Umbarkar and Sheth 2015). In certain scenarios,

only a single gene may be interchanged between two chromosomes, while in others, a more

complex shuffling may occur. Notably, uniform crossover is a method where genes are ex-

changed between parent chromosomes at each position with a fixed probability, resulting

in offspring that is a mix of both parents’ traits (Syswerda et al. 1989). This process can

be visualized in Figure 2.1, which depicts the exchange of three genes between two parent

chromosomes, leading to the creation of new chromosomes for the subsequent generation.

Post-crossover, the fitness of the new generation is assessed and compared to that of its

predecessors, ensuring the propagation of advantageous traits and the continuous evolution

of the solution.

Mutation is a genetic operator used to maintain genetic diversity within a population of

chromosomes in genetic algorithms (Lambora et al. 2019). It represents the spontaneous and

random changes to gene values, occurring independently of the crossover process. By altering

the genetic information of chromosomes at random, mutation introduces new traits into the
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Figure 2.1. An example of genetic algorithm’s uniform crossover.

population, some of which may have never been present in the parent chromosomes. This

increase in variability is crucial for exploring previously uncharted regions of the search space

and prevents the population from becoming too homogeneous, which can lead to premature

convergence on suboptimal solutions.

Now, we have described the fundamental principles of how the GA works. Here, we use

the terms described above to present a brief description for the generic GA.

1. Encode an initial population.

2. Evaluate each member of the population.

3. Select the chromosomes to mate.

4. Crossover between mates.

5. Mutate some of the offspring genes.

6. Repeat steps 2, 3, 4, and 5 until convergence.

In what is to follow, we present brief descriptions of other algorithms used throughout

this work.

2.2.2 The Particle Swarm Optimization (PSO)

The PSO algorithm is inspired by the social behavior of birds flocking or fish schooling

(Kennedy and Eberhart 1995). It optimizes a problem by iteratively trying to improve a
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candidate solution with regard to a given measure of quality. The algorithm shares informa-

tion among individual solutions, referred to as particles, to guide their search in the solution

space. The velocity is the speed or search length each particle uses to justify its position in

the search space and changes based on the search. Each particle has tuning parameters to

adjust based on its own experience, c1, and the experience of neighboring particles, c2.

1. Initialize a swarm of N particles with certain or random positions and velocities.

2. Update individual and global best positions based on the velocity, c1 and c2.

3. Adjust the velocity and position of each particle, and information about the distance

from the particle’s best position and the global best position.

4. Continue Steps 2-3 until convergence or a maximum number of iterations is reached.

2.2.3 The Grey Wolf Optimizer (GWO)

The GWO algorithm is based on the α, β, δ, and ω hunting hierarchy within packs of

grey wolves (Mirjalili et al. 2014). Wolves search for better prey iteratively from these initial

hunting patterns based on the hierarchy. When the wolves search, there are scale parameters

for obstacles in nature, C, and whether the wolf is converging or diverging from the hierarchy,

A.

1. Initialize a hunting position for each of the N wolves.

2. Navigate a new hunting position based on A, C, and wolf hierarchy parameters.

3. Update the α, β, δ wolves.

4. Continue Steps 2-3 until convergence.
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2.2.4 The Harmony Search (HS)

The HS algorithm is inspired by the underlying principles of musicians improvisation of

harmony (Geem et al. 2001a). The search for the perfect harmony involves trying various

possible combinations of the music pitches stored in memory. The HS algorithm begins

with a randomly generated Harmony Memory (HM), representing potential solutions. The

algorithm generates new music using parameters like the Harmony Memory Considering

Rate (HMCR) and the Pitch Adjusting Rate (PAR).

1. Initialize a HM of N harmonies.

2. Improvise a new harmony from HM using the HMCR and PAR.

3. If the new harmony is better than worst harmony in HM, include the new harmony in

HM.

4. Continue Steps 2-3 until convergence.

2.2.5 The Moth Flame Optimizer (MFO)

The MFO algorithm draws inspiration from the nocturnal behavior of moths. In nature,

moths are naturally attracted to the moon and get distracted by closer light sources, and this

behavior forms the basis of the MFO algorithm (Mirjalili 2015c). It operates by simulating

the interaction between moths and artificial flames, where the flame represents the optimal

solution in the search space. Moths are attracted to the flame in a logarithmic spiral (scale

parameter b), and as they attempt to minimize their distance from the flames, they adjust

their positions exploring with parameter t and converging based on parameter r.

1. Initialize N moths and select the best moth to become the flame.

2. Move based on a logarithmic spiral pattern with parameters: b, r, and t.
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3. Update the best position to become the new flame in the next iteration.

4. Continue Steps 2-3 until convergence.

2.3 Advanced topics in metaheuristics

In this section, we will mention enhancements to baseline metaheuristics. Many variants of

each algorithm exist, each attempting to improve some aspect of the baseline metaheuristic.

For instance, there are multiple versions of PSO with different search characteristics (Imran

et al. 2013, Kumar et al. 2016, Jain et al. 2022). As research progresses, the focus will most

likely shift from the creation of new algorithms to best using the already existing algorithms

(Kavita and Shinde 2023). Future research other than application is on topics like constraint

handling techniques, multiple objective optimization, and hybrid tuned, automatically con-

structing metaheuristics (Blum et al. 2008b, Singh et al. 2017, Coello 2022).

2.3.1 Constraint handling techniques

In the realm of metaheuristic optimization, handling constraints is a critical challenge to

properly adjust for the problem (Smith et al. 1997a, Coello 2022). The penalty functions

are the most common methods of constraint handling techniques and repair functions which

attempt to salvage infeasible solutions are the second most popular (Rahimi et al. 2023,

Lagaros et al. 2023). The various types or penalties including death, static, adaptive, and

dynamic are popular because of their ease and effectiveness in managing constraint violations

(Smith et al. 1997b).

The death penalty method, known for its simplicity, imposes a severely high cost on

any solution that violates the constraints, effectively eliminating it from the pool of feasible

solutions. This approach is straightforward to implement but can be overly rigid, as it does

not distinguish between degrees of constraint violation. Consequently, it may prematurely

18



discard potentially valuable solutions that only marginally violate constraints, potentially

leading to suboptimal exploration of the solution space because it loses previous information

(Kulkarni et al. 2021). A less drastic penalty, the static method assigns a fixed penalty to

constraint violations, similar to the death penalty, but not as extreme (Smith et al. 1997a).

Unlike the death penalty, the static penalty allows solutions that violate constraints to

remain in the pool of potential solutions, albeit with a reduced fitness score. This approach

provides a bit more flexibility compared to the death penalty. It enables the exploration

of solutions that are near the boundary of feasibility, potentially leading to better overall

search performance in the optimization process.

In contrast, the adaptive penalty method offers a more nuanced approach and adjusts

the severity of the penalty based on the extent of the constraint violation (Tessema and

Yen 2009). By doing so, the adaptive penalty allows for a gradual steering of the search

process towards feasible regions of the solution space, without harshly excluding solutions

that are near the boundary of feasibility (Rahimi et al. 2023). The dynamic penalty starts

with a lower penalty and as the optimization progresses, the penalty increases over iteration,

thereby shifting from exploration to exploitation (Smith et al. 1997a). This can be useful in

emphasizing the search at different stages of the search process.

Throughout this dissertation, we will be using different methods of penalization. The

choice between which method to use depends on the specific characteristics of the optimiza-

tion problem at hand.

2.3.2 Multiple objective optimization

Real life problems are seldom one-dimensional; rather, they are multifaceted, with different

goals that need to be achieved simultaneously. Multiple objectives are often conflicting; an

improvement in one usually causes a decrease in the other. For instance, a pharmaceutical

company could have two simultaneous objectives: minimizing the cost of trial design and

maximizing the number of countries to promote diversity. In such problems, optimization
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with respect to one objective usually reduces optimality with respect to other objectives.

These objectives conflict because the minimal costing solution would probably not involve

using every country possible, and, vice versa, the design with the fewest countries may be

more expensive.

In multiple objective optimization, compromises are found and are characterized into

optimal and suboptimal trade-offs, otherwise known as non-dominated and dominated solu-

tions. A fundamental principle of multiple objective optimization is that there is not a single

optimal solution but rather a set of solutions exists, each with its own trade-offs (Edgeworth

1881). The Pareto optimal solutions are the set of non-dominating solutions, when no so-

lution is better in all objectives simultaneously (Pareto 1896). To envision the definitions

of dominance and non-dominance, see Figure 2.2 below for two objectives. The green dots

represent the Pareto optimal solutions and form the Pareto front. The blue dots represent

the dominated solution set which are not optimal in at least one objective and are infe-

rior trade-offs. At its core, non-dominating solutions help us understand how one solution

compares to another. By leveraging the Pareto front, we offer a robust choice of solutions

that allows for a nuanced balance between objectives. Multiple objective metaheuristics are

the most popular way to construct a Pareto front with many different algorithms available

(Coello 2006). There is a curated repository of references and software for multiple objec-

tive metaheuristics found at https://delta.cs.cinvestav.mx/ ccoello/EMOO/. In the rest of

this subsection, we describe how to quantify Pareto fronts and then introduce some of the

most commonly used methods to find the Pareto optimal solutions including some multiple

objective metaheuristic algorithms.

Visualizing the Pareto front is a helpful way of presenting the solutions to the decision

maker. The two- or three-dimensional Pareto fronts are straightforward to visualize, however

it gets more challenging with increasing dimension (Coello Coello et al. 2020). A Pareto

front need not be continuous and may have gaps which can represent high trade-off solutions

(Braun et al. 2015). There have been attempts to visualize the desired aspects of high-
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Figure 2.2. An example of a Pareto front and dominated and non-dominated solutions.

dimensional Pareto fronts like boundary points, isolated points, and points with large-trade-

offs (Talukder and Deb 2020). Other visualization attempts map one objective at a time

(Blasco et al. 2008). There have also been attempts to approximate the high-dimensional

front in lower dimensions (Qian and Yu 2017).

The hypervolume is an effective way to measure the value of a Pareto front and is one

of if not the most used metric to quantify Pareto fronts (Zitzler and Thiele 1998). The

hypervolume metric offers a comprehensive assessment of a Pareto front’s performance by

measuring both its diversity and quality. This is essential in distinguishing the most dom-

inant Pareto front among multiple options, as a Pareto front that dominates another will

exhibit a strictly greater hypervolume (Zitzler et al. 2007). In two-dimensions, the hypervol-

ume is calculated as the sum of different rectangles created from each point on the Pareto

front to a reference point, typically, the worst case scenario (Zitzler and Thiele 1998). For

more than two-dimensions this value is the sum of the volumes of the hypercubes. Each
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individual point on the Pareto front contributes to the overall hypervolume, which takes

into account overlapping points (Auger et al. 2012).

In addition to the hypervolume metric, several other multiple objective measurements

are widely used in evaluating the quality of Pareto fronts. This list includes the Haussdorff

distance, related to the generational distance and inverted generational distance performance

metrics, and which measure the average distance from points on the true Pareto front to the

nearest points on the approximated Pareto front (Schutze et al. 2012, Bezerra et al. 2017).

These metrics are often used when there is knowledge of true non-dominated solutions, which

is often only known in benchmark problems and not real life problems or a fake Pareto front

can be used for comparison (Bossek 2018). The crowding distance measures diversity among

the solutions on the Pareto front, which is essential for a comprehensive exploration of the

trade-off coverage in multiple objective optimization problems (Raquel and Naval Jr 2005).

Now that we understand how to compute the value or goodness of a Pareto front, we

must discuss the various ways to create Pareto fronts. Multiple objective population based

metaheuristics are the most common way to search for the set of solutions found on Pareto

fronts due to their population based nature yielding multiple solutions in one simulation

(Coello 2007). They benefit over mathematical programming techniques which have difficulty

finding any type of Pareto front in any complexity or irregularity of problem like non-

convex fronts or discontinuous problems (Miettinen 1999, Coello 2006). There has been

much work around multiple objective metaheuristics centered around the core concepts of

the GA and how multiple objective evolutionary algorithms approach the Pareto optimal

solutions (Konak et al. 2006, Coello Coello et al. 2020). Some base their search process on

finding optimal ranks of solutions, and others are indicator-based meaning they are guided by

improving metrics such as hypervolume (Deb et al. 2002, Jiang et al. 2014, Falcón-Cardona

and Coello 2020). While much emphasis has been around the evolutionary algorithms based

on a GA for multiple objective optimization, some metaheuristics have a multiple objective

parallel like PSO (Moore and Chapman 2003, Nebro et al. 2009, Valencia-Rodŕıguez and
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Coello 2023).

The naive, yet most traditional way to solve multiple objective optimization algorithms is

to weigh the objectives and optimize the weighted solution as a single-objective optimization

problem (Marler and Arora 2010). The weights on each objective signify the importance

of the objective and are difficult to interpret and properly choose. Each objective must

be normalized for the weighting to be non-biased. However, this method has limitations,

such as difficulty in identifying solutions in non-convex regions, thus providing an incomplete

picture of the Pareto optimal set (Gkiotsalitis 2023). The epsilon constraint method similarly

converts multiple objective problems into a series of single-objective optimization problems

(Laumanns et al. 2005). One objective function is chosen as the primary objective and

is optimized with a single objective optimizer, while the remaining objective functions are

converted into constraints with a specified tolerance level denoted by epsilon (Yang et al.

2014). We will see a potential drawback to this method is the necessitated choice of epsilon

and need for multiple runs, which can significantly affect the efficiency and diversity of the

obtained Pareto-optimal solutions (Laumanns et al. 2005).

The original Non-dominated Sorting Genetic Algorithm (NSGA) was one of the earliest

attempts to tackle multiple objective optimization problems using GAs where solutions were

grouped based on Pareto dominance levels (Srinivas and Deb 1994). NSGA-II improved

upon the computational efficiency of this approach and has quickly become an effective and

popular algorithm in multiple objective optimization (Verma et al. 2021). NSGA-III then

was modified slightly to best handle problems with more than three objectives (Deb and

Jain 2013, Jain and Deb 2013). Generally, the algorithms first generate an initial random

population. They then categorize the population into different layers of Pareto fronts, where

the true Pareto optimal solutions are given a rank of 1, then the next best Pareto front is given

a rank of 2, etc., with each individual assigned a crowding distance to gauge its proximity to

others, thus maintaining diversity. Selection for the next generation is performed through a

binary tournament based on non-domination and crowding distance. Offspring are produced
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via genetic operators of crossover and mutation, and subsequently, the parent and offspring

groups are merged. The best candidates from this combined group are then chosen to form a

new, stable-sized population. This process iterates until a predefined termination condition

as discussed prior. Here, we present a brief description for the NSGA-II algorithm.

1. Encode an initial population.

2. Evaluate each member of the population.

3. Assign rank based on the Pareto front ordering

4. Select the chromosomes to mate.

5. Crossover between mates.

6. Mutate some of the offspring genes.

7. Assign ranks based on the Pareto front ordering

8. Determine crowding distance

9. Select the best individuals based on crowding and ranking distance

10. Repeat steps 2 through 9 until convergence.

2.3.3 Tuning metaheuristics

Metaheuristics have various search strategies parameters, such as population size, iteration

count, and algorithm-specific settings, which can be adjusted and significantly impact the

effectiveness and efficiency of the algorithm (Birattari and Kacprzyk 2009a, Huang et al.

2019). The ideal settings for these parameters are unknown prior to optimization, with

defaults usually set according to the best performance for some benchmark functions. Proper

tuning and usage ensures that the algorithm operates at its optimal capacity, tailored to

the specific nuances of the problem at hand (Birattari and Kacprzyk 2009a). This section

delves into various tuning methods, highlighting their strengths and limitations, providing a

comprehensive guide to effectively using metaheuristics.

Parameters in metaheuristics could be categorical or numerical. For instance, the muta-
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tion and crossover rates in the GA can range from 0 to 1, the iteration length can matter,

while the choice of selection strategy can be categorical like the roulette-wheel and tourna-

ment strategies (Holland 1992c). Each of these choices can affect performance. A smaller

population size requires less computation than a larger one but then may also result in a

poorer solution. Tuning is therefore itself an optimization problem, in which the objective

function measures an algorithm’s performance across potentially conflicting criteria, such

as solution accuracy, computation time, and resource consumption (Birattari and Kacprzyk

2009a). Several methods have been developed for tuning metaheuristics, each with unique

strengths and limitations.

Further, tuning of algorithm parameters is not unique to metaheuristics. Neural net-

works, random forests, and support vector machines also benefit from proper selection of

tuning parameters and hyperparameters (Becherer et al. 2019, Mantovani et al. 2015, Probst

et al. 2019). Metaheuristics themselves have been used to tune other metaheuristics and

other algorithms (Calvez and Hutzler 2005, Grefenstette 1986, Wang 1997). This technique

is known as ”meta-optimization” (Huang et al. 2019, Mercer and Sampson 1978). Appli-

cation of meta-optimization has included the use of GAs to tune other GAs (Calvez and

Hutzler 2005, Grefenstette 1986, Wang 1997). Many metaheuristics have tuned convolu-

tional neural network hyperparameters like number of layers and nodes (Mohakud and Dash

2021, Dobslaw 2010, Nematzadeh et al. 2022). In the rest of this subsection, we discuss

systematic tuning methods applicable to configuring metaheuristics and other algorithms.

Manual tuning can be performed to adjust the algorithm parameters based on experience

or trial and error. This allows for immediate adjustments, but can be time consuming, subject

to user error and is unscalable. A systematic approach rather, automated tuning, is preferred

for many reasons including its reproducibility, consistency, and efficiency. Grid search is the

brute-force method that involves testing every possible combination of parameter values to

identify the most effective setup. Although this will lead to the optimal tuning parameters, it

is often computationally intractable due to the high dimension of the parameter space. A less
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computationally intensive procedure is pure random search of parameter combinations, where

a random subset of the grid is selected for comparison, and while this is less computationally

intense, this is still not an optimal tuning strategy (Probst et al. 2019).

The racing algorithm represents the de factor method to tuning metaheuristics, where

different parameter configurations are pitted against each other in a competitive framework

(López-Ibáñez et al. 2016). The racing algorithm was first described in 2002 (Birattari et al.

2002) and then extensively studied in a textbook in 2009 (Birattari and Kacprzyk 2009b).

The most recently developed racing algorithm ,”irace”, stands for iterated racing”. The

’irace’ R package was developed in 2016, comes with a user-guide, and includes paralleliza-

tion capability to increase speed (López-Ibáñez et al. 2016, López-Ibáñez et al. 2016). In

the racing algorithm, tuning parameter combinations compete against one another (López-

Ibáñez et al. 2016). This method aims to efficiently identify the most effective parameter

settings for a given optimization problem. Rather than testing a few select parameter set-

tings, the irace procedure globally searches for the best parameters. The process starts with

a large set of randomly generated candidate configurations defined within bounds specified

by the user for each parameter. The core idea is to iteratively evaluate and eliminate less

promising configurations, thus concentrating computational resources on exploring the most

promising areas of the parameter space. Only the configurations that perform well enough

compared to the others are ”survivors” and continue to be evaluated on more instances.

The means and standard deviations of the objective function corresponding to all tuning

combinations are recorded. After a number of steps, the means and standard deviations are

compared using either a t-test or Friedman’s non-parametric two-way ANOVA. Those signif-

icantly worse than any one configuration are removed from the set under consideration. In

the racing algorithm, tuning parameter combinations compete against one another. Those

significantly worse than any one configuration are removed from the set. The race continues

with the remaining configurations until either a set time expires, a set number of iterations

occur, or no other comparisons are possible. To avoid premature convergence, the package
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implements a restart strategy to validate previous races. This elitist racing procedure can

handle both numeric and categorical parameters. The racing procedure continues until a

termination criterion is met, which could be a fixed number of iterations, a time budget, or

a convergence criterion.

Effective tuning of metaheuristics is both an art and a science, requiring a deep under-

standing of the algorithm, the problem, and the interaction between various parameters. By

carefully selecting and applying the appropriate tuning methods and considering practical

constraints, one can significantly enhance the performance of metaheuristic algorithms, mak-

ing them powerful tools for solving a wide range of complex optimization problems. Hybrid

metaheuristics combine metaheuristics like a GA within a PSO or one following the other

(Talbi 2002, Blum et al. 2008b, Talbi et al. 2013). They can be also used in combination

with exact algorithms known as matheuristics (Puchinger and Raidl 2005, Fischetti et al.

2018). Future research involves the automatic design of a well-performing algorithm (Bez-

erra et al. 2015, 2020). This involves the use of irace to test different strategies including

constraint handling techniques, population initiation, and how to best combine particular

parts of metaheuristics (Zhang et al. 2022).
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Table 2.1. A list of metaheuristic packages and their coding languages.

Package Name Language

jMetal Java

MOEA Framework Java

Metaheursitics.jl Julia

Evolutionary.jl Julia

GeneticAlgorithms.jl Julia

ABCoptim R

DEoptim R

metaheuristicOpt R

ppso R

hydroPSO R

rgenoud R

GA R

gafit R

microbats R

EmiR R

ecr R

mco R

Global Optimization Toolbox MATLAB

PlatEMO MATLAB

Pyswarms Python

Opytimizer Python

Hive Python

NeverGrad Python

Pyomo Python

ParadisEO C++

EO C++
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CHAPTER 3

Project 1: Optimal sampling times for

sustained-release lithium used by patients with bipolar

disorder

In this chapter, we will present various types of efficient designs using metaheuristics and a

recently proposed PK/PD NLMEM for sustained-release lithium, one of the most popular

drugs prescribed for bipolar disorder (Couffignal et al. 2019). Lithium levels are measured

routinely to make sure the levels stay within a narrow therapeutic window and hence prevent

toxicity (McKnight et al. 2012). This work is part of a broader research grant funded by the

French Ministry of Health as part of an ancillary study focusing on the genetics of bipolar

disorder and lithium administration.

3.1 Background

Lithium is a successful mood stabilizer, but toxicity must be monitored often because it is

easy to overdose due to the narrow therapeutic window (Sheikh et al. 2022). Too high a

concentration could cause a range of side effects, including gastrointestinal issues, kidney

disorders, hyperthyroidism, and it was once thought to be teratogenic causing a rare birth

abnormality named Ebstein’s anomaly if taken during the first trimester (Yacobi and Ornoy

2008, Gitlin 2016). In the age of precision medicine, identifying good or poor responders

to medication can save lives. Lithium toxicity was unknown during the late 19th and early

20th centuries. Lithium-rich mineral waters were popular as health tonics in Europe and the
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United States (Shorter 2009). Lithium was used in the production of the soft drink 7Up,

marketed as a mood-enhancing ingredient, similar to cocaine in Coca-Cola (Brown 2019).

However, this practice was discontinued in the 1950s due to changing regulations and safety

concerns (Marmol 2008). There is also call for increased scrutiny on the direct relation of

suicide reduction and lithium because some governments have proposed to add lithium to

the drinking water (Memon et al. 2020, Miller and Black 2020).

NLMEMs are a widely used tool to help make informed decisions in the drug development

process (Comets and Mentré 2021). The ability to model fixed and random effects enables

measurement of the variability in drug response across individuals or populations. Specialized

software is often used to handle the complicated optimization of parameters and designs in

PK/PD NLMEM studies and could benefit from using metaheuristics (Duffull et al. 2002,

Nyberg et al. 2015, Gadkar et al. 2016). In what is to follow, we construct designs to estimate,

as accurately as possible, all or some parameters of a recently developed PK/PD NLMEM

for sustained-release lithium developed from patients with bipolar disorder who were good

responders to the drug for at least 2 years using metaheuristics (Couffignal et al. 2019).

3.2 Optimal designs in PK/PD

Fisher Information Matrix (FIM) based designs measure the worth of the design and designs

that optimize the FIM provide the most accurate statistical inference for a given cost (Atkin-

son et al. 2007). The FIM is the negative of the expectation of the second derivatives of the

total log likelihood function with respect to the vector of parameters (Fedorov and Leonov

2014). Its inverse provides a lower bound of the variance-covariance matrix of any unbiased

estimated parameters, according to the Cramer-Rao inequality (Rao 1992). This theoretical

background underscores the FIM’s pivotal role in assessing the reliability and accuracy of

parameter estimates (Pukelsheim 2006).

A mapping of the FIM to a scalar is compared to evaluate the worth of different designs
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(Nyberg et al. 2012). The most popular scalar method is known as the D-optimal design,

which focuses on maximizing the determinant of the FIM, which is a measure of the overall

information and volume of the parameter space, ensuring that the design is efficient in terms

of the information it extracts about all the parameters collectively (Atkinson et al. 2007).

However, some parameters are of more interest than the others. Ds-optimal designs are used

when some parameters of the model are of more interest than the others, where the subscript

s stands for subset. These two stand out among other criteria, such as A-optimality which

focuses on minimizing the average variance of the estimates or E-optimality to maximize the

minimum eigenvalue of the FIM (Atkinson et al. 2007).

If the goal is to estimate all model parameters as accurately as possible and Ψ is the

vector of nominal values for the parameters, we seek a locally D-optimal design, ΞD, that

satisfies:

ΞD = argmax
Ξ∈Ξ∗

{(|M(Ψ,Ξ)|)1/p}, (3.1)

where Ξ∗ is the set of all feasible population designs on the given design space, |M | is the

determinant of the FIM M and p = dim(Ψ) is the number of parameters in the model.

The normalized FIM determinant is the D-criterion value, and the larger this value is, the

more efficient and precise is the design for making inference on the model parameters. We

optimize for the criterion and the resulting optimal designs are termed locally optimal designs

(Chernoff 1972).

To compare two designs Ξ1 and Ξ2, we use their relative D-efficiency ratio:

D-efficiency =
{ |M(Ψ,Ξ1)|
|M(Ψ,Ξ2)|

}
. (3.2)

As an example, if the ratio is 0.5, Ξ1 needs to be replicated twice to do as well as the design

Ξ2 for estimating the model parameters. If Ξ2 is a D-optimal design, the above ratio is the

D-efficiency of Ξ1.

The method for finding the Ds−optimal subset designs parallels that for D-optimality,

except we minimize the generalized variance of the estimated parameters of interest only.
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Design monographs such as Fedorov (1972) and Silvey (1980) provide details and illustra-

tions on how to partition the full covariance matrix appropriately before maximizing the

determinant of the properly partitioned submatrix Mk corresponding to the k parameters of

interest. The locally Ds-optimal design focusing on k parameters satisfies:

ΞDs = argmax
Ξ∈Ξ∗

{(|Mk(Ψ,Ξ)|)1/k}, (3.3)

Ds-efficiency follows similarly to that of D-efficiency.

The Ds-optimal design will presumably favor the selected parameters in exchange for

less information on the other parameters. We propose multiple objective optimal designs

to quantify efficiency trade-offs between potentially conflicting objectives. This will enable

us to estimate the more interesting parameters with higher efficiency while doing as best

as possible to estimate the remaining, less important parameters in the model. We propose

to do this by separating the preferred and non-preferred parameters into two separate Ds-

optimal designs and attempt to simultaneously maximize both objective functions. The

optimal multiple objective design, ΞDmulti
, satisfies the following equation:

ΞDmulti
=argmax

Ξ∈Ξ∗
{f1(Ψ,Ξ), f2(Ψ,Ξ)} (3.4)

f1 = {(|Mk(Ψ,Ξ)|)1/k}

f2 = {(|Mp−k(Ψ,Ξ)|)1/p−k}

where Mk and Mp−k represent the properly partitioned submatrices for the k parameters of

interest and remaining p − k parameters respectively. Then, weighted normalization scores

can be used to determine the optimal efficiencies. Such designs have been found in Cook

and Wong (1994) and Zhu and Wong (2001), but their method is inapplicable to our design

problem because we will have multiple real-world physician placed constraints which make

our problem a non-convex optimization problem. We resort to constructing a Pareto front

and ultimately choose a solution based on evaluating efficiency trade-offs.
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3.2.1 A nonlinear mixed effect model for lithium

This subsection describes the recently proposed PK/PD NLMEM for a once-a-day adminis-

tration of sustained-release lithium (Couffignal et al. 2019). The two-compartmental model

(erythrocyte and serum) seen in Equation (3.5) has 5 parameters represented in vector θ:

θT = (ka, VS, CL,CLSE, CLES). The absorption process is modeled using a first-order rate

constant (ka), and the other parameters are VS, the distribution volume in the serum, CL,

the total elimination clearance from the serum, CLSE, the clearance from the serum to the

erythrocyte, and CLES, the clearance from the erythrocyte to the serum. After a dose d of

lithium is administered to bipolar patients, the mean response f that describes the steady

state pharmacokinetics in the serum at time t is given by:

f(θ, d, t) = d× ka
VS

(
kSE − ka

((B + A)/2− ka)× ((B − A)/2− ka)
× exp(−ka × t)

1− exp(−ka × τ)

+
kSE − (B + A)/2

(ka − (B + A)/2)× ((B − A)/2− (B + A)/2)
× exp(−(B + A)/2× t)

1− exp(−(B + A)/2× τ)

+
kSE − (B − A)/2

(ka − (B − A)/2)× ((B + A)/2− (B − A)/2)
× exp(−(B − A)/2× t)

1− exp(−(B − A)/2× τ)
),

(3.5)

with kSE = CLSE/VS, k = CL/VS, kES = CLES/57.5, B = k + kSE + kES, and A =
√
B2 − 4× k × kSE. The pharmacokinetics was assumed to be at steady state and the

dosing regimen was 36 mEq (1Eq = 36.8g) per day (interval between two doses τ is 24h).

We assume an additive heteroscedastic error: σ × f(θ, d, t) × ε where ε ∼ N (0, 1). The

between-subject variability of the parameters is modeled using an exponential model for

the random effects bi with bi ∼ N (0,Ω), and Ω is the diagonal variance-covariance matrix

i.e. log-normal distribution of the parameters. Let λ be the vector of variance parameters

containing all unique and nonzero elements of Ω and σ. We investigated designs with and

without a genetic covariate effect, βCL, in the model. The genetic covariate effect is included

as follows: log(CLi) = log(µCL) + βCL + bCLi
, with µCL the fixed effect of CL and bCLi

the

random effect of CL for the individual i.
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Let Ψ = (µT , βT , λT )T be the vector of all population parameters to be estimated. Over-

all, the model has 11 or 10 nonzero parameters depending upon the inclusion of the genetic

covariate. Table 3.1 presents the nominal values for the the fixed effects, µ, and the variance

components, ω, used in Equation (3.5) obtained earlier from the study by Couffignal et al.

(2019) for the parameters ka, VS, CL, CLSE, CLES, βCL, and σ2. This data was measured

from lithium concentrations retrieved for 17 patients who had at least 2 years of success-

ful sustained-release lithium treatment. For the measurements, patients were instructed to

switch from an evening dose to a morning dose for the 15 days prior to studying. Adherence

to this switch was high, with only two patients missing one dose each. Blood samples were

collected at the hours 0, 1, 4, and 8. Further details and justifications for the model and its

assumptions are available in Couffignal et al. (2019).

Table 3.1. Parameter settings of the model describing the lithium pharmacokinetics.

Parameter Distribution µ ω σ2

ka (h−1) log-normal 0.93 0.72 -

VS (L) log-normal 22.3 0.3 -

CL (L/h) log-normal 1.24 0.2 -

CLSE (L/h) - 4.15 - -

CLES (L/h) log-normal 11.1 0.27 -

βCL - 0.32 - -

σ2 - - - 0.137

In the context of mixed effects models, the likelihood L of the vector of individual obser-

vations (yi) for parameters Ψ is given by

L(Ψ, yi) =

∫
bi

p(yi|bi,Ψ)p(bi|Ψ) dbi, (3.6)

where p(Ψ, yi|bi) is the probability density function of yi given random effects bi, and p(bi|Ψ)

is the probability density function of the random effects. The FIM for a NLMEM has no
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closed form, and it has been shown that FIM evaluation for NLMEM by first-order (FO)

linearization is adequate, with expected standard errors of parameters close to empirical stan-

dard errors obtained by simulations (Bazzoli et al. 2009, Nyberg et al. 2015). This method

is used in popular PK/PD software, including PFIM, NONMEM, and PopED (Nyberg et al.

2015, Dumont et al. 2018, Bauer et al. 2021). We therefore use this method to evaluate the

FIM in this work and consider it sufficient. Details for the calculation of the FIM by FO,

using an additive or an exponential random effects model, are given in the publication and

user manual of the R software PFIM (Dumont et al. 2018).

3.3 The proposed designs

Physician given designs and constraints representative of the real world. We search for a

D-optimal design with five time points to place for measurement within an 8 hour window.

The time window and the specific number of blood draws are practical constraints put

in place to minimize patient and staff workload. Specifically, we set to improve from the

naive equispaced design of time points at hours 0, 2, 4, 6, and 8. We will compare three,

four, five, six, and seven time points, but with three or four time points, the FIM is often

noninvertible, and the scenarios with more than five blood draws are unrealistic due to the

increased workload and burden put on staff and patients. Further, there are 3 parameters the

physicians have particular interest in: the fixed and random effects corresponding to overall

clearance, µCL and ˙
¯
CL, and the genetic covariate, βCL. To focus on and best estimate

the clearance and genetic parameters, we search for what we will call Ds3-optimal designs

corresponding to the 3 parameters of interest. We also consider designs when the genetic

covariate is not included in the model and ascertain whether there is a difference in designs.

In the scenario without the genetic covariate, we search for Ds2−optimal designs that only

focus on estimating µCL and bCL. We compare all designs to the locally D- and Ds-optimal

designs found by the metaheuristic algorithms and evaluate their D- and Ds-efficiencies
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respective to the best design found.

Additionally, at the request of physicians, we investigate these D- and Ds3- or Ds2-optimal

designs in two groups and four time points. When we explored the one group design with four

time points, the relative standard errors for the estimates were unreliable and even resulted

in noninvertible matrices. Here, with potentially different time points in each group, the two

group scenario can provide sufficient information. We seek to optimize the optimal sampling

times and the number of patients in each group. For example, if there were N = 100 patients,

and the proportions were split into two groups at 55% and 45%, then the physicians would

assign 55 patients to the first group and 45 patients to the second group, and the two groups

may have different sampling time points.

We also find designs which maximize the information for the remaining, less important

8 parameters, called Ds8−optimality. As this is a secondary goal, we will search for multiple

objective optimal designs to simultaneously maximize the information from the interesting

parameters using Ds3-optimality and the less important parameters using Ds8-optimality.

We will analyze the Pareto front fo optimal efficiency tradeoffs.

3.3.1 R programs

Nonlinear mixed effects models (NLMEMs) are a widely used tool to help make informed

decisions in the drug development process (Comets and Mentré 2021). The ability to model

fixed and random effects enables measurement of the variability in drug response across

individuals or populations. Specialized software is often used to handle the complicated

optimization of parameters and designs in PK/PD NLMEM studies (Nyberg et al. 2015).

PFIM is an exemplary, continuously maintained open-source software package in R used to

evaluate and optimize designs in NLMEMs (http://www.pfim.biostat.fr) (Dumont et al.

2018). PFIM currently only computes D-optimal designs to best estimate all parameters

in a model using either the Nelder-Mead simplex (Nelder and Mead 1965) or a modified

version of the Fedorov-Wynn algorithm (Retout et al. 2007). The developers of PFIM were
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interested in having additional or alternative tools to solve more complex design problems

under different criteria, and have algorithms more capable of extracting itself out from a

local minima (Duffull et al. 2002, Dumont et al. 2018).

To focus on maximizing the information found from specific parameters of interest, we

implemented Ds-optimal and multiple objective optimal designs. The algorithms we use

to optimize these designs are (a) the PFIM simplex algorithm implemented in R, (b) the

optim pso() function in the ppso R package and (c) the ecr() function in the ecr R

package. In our implementation, we leave most inputs to these algorithms as the default

in the packages because we saw convergent solutions. We set the initial population for

each algorithm to begin their search at the equispaced design and to have lower and upper

bounds at 0 and 8 respectively. For optim pso(), we set the population size to 40 and

number of iterations to 20 for a total of 800 function calls. From our preliminary testing,

this was sufficient from both an objective function and a computation time standpoint. The

R package ecr has a function stopOnMaxTime() so the algorithm will stop after a certain

number of seconds. This enabled us to manually set the search time for ecr to be similar to

the other two algorithms which do not have the capability to designate a time limit.

3.4 Optimal sampling times for lithium

Here we present results for the proposed designs using the physician guided designs with a

PK/PD model for sustained-release lithium.

3.4.1 Number of sampling points

The number of sampling points was pre-specified by the physicians to be five. Table 3.2

presents D-optimal designs consisting of three, four, five, six, and seven time points computed

by the PFIM simplex. Each of these designs has time points at the beginning and end of

the time window (hours 0 and 8). The three and four time point designs often resulted in
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noninvertible matrices. Looking only at the five, six, and seven time point designs, each

had points at the first half hour (0.4 or 0.5), between the second and third hour (2.0 to

2.7), and near hour 5 (5.0 to 5.4). The measure at the first half hour could be to best

estimate the absorption process and then the follow-up points measure the descent from the

peak concentration. The six time point design has the same time points as the five time

point design with a redundancy at hour 8. This duplicated time point can be interpreted

such that the information at hour 8 is important and can possibly be worth weighting in

future analyses. The five point design, which the physicians constricted us to, has good

performance compared to the seven time point design being 85% as efficient. The seven

point design has a similar design to the five and six point designs with an additional time

point at hour 3.7 again presumably to measure the descent from the peak. This confirms

that the physician placed constraints are feasible and in fact somewhat optimal given the

duplicated time points and marginal efficiency gain that comes with increased blood draws.

Table 3.2. A comparison of a different number of design points for D-optimal designs and

efficiencies.

Time Points Design D-efficiency

3 0, 4.9, 8 6%

4 0, 0.5, 2.7, 8 51%

5 0, 0.4, 2.3, 5.1, 8 85%

6 0, 0.4, 2.3, 5.0, 8, 8 93%

7 0, 0.4, 2.0, 3.7, 5.4, 8, 8 100%
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3.4.2 Convergence results of PSO

We analyze the convergence trajectory of each design point for the five time points showcasing

one long simulation of 100 iterations from the optim pso() function. The function has a

built in logging capability to track the search path of each individual in the population

(Francke 2020). We use the history of each individual in the population to plot out how

each of the five design points converges to their final solution starting from the equispaced

design.

Figure 3.1 presents the convergence trajectory of the optim_pso() search for each design

point after 100 iterations. The gray dots represent each individual particle with 40 particles

per iteration. The black line represents the particle which has the highest D-optimal criterion

value at each iteration, and thus the final design point at the end of the search. The five

design points initially started off at hours 0, 2, 4, 6, and 8 respectively. They finished at

time points of 0, 0.5, 2.2, 5.0, and 8. However, where the PSO search started had little to

do with where the design points finished. For instance, the time point which originated at

hour 6 ended up at time 0, and the original time 0 converged to hour 5.1. The algorithms

quickly converged to the best solution sometimes within 10 - 15 iterations as signified by the

black line. This justifies our use of 20 iterations to compute the designs found in the Tables

3.3 and 3.4.

3.4.3 D- and Ds-optimal designs

Table 3.3 presents the D- and Ds3-optimal time points for the one and two group designs from

the simplex, optim_pso(), and ecr() optimizations. Each row represents an algorithm’s

optimal design, as well as, the D- and Ds3-efficiencies relative to the local optima found and

the computation time in seconds. Each algorithm found a more efficient D-optimal design

than the equispaced design in under 30 seconds. The naive equispaced design points of 0,

2, 4, 6 and 8 hours had a D-efficiency of 74% when compared with the locally D-optimal
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Figure 3.1. Iterative convergence trajectory plots of each individual design point highlighting

the optimal solution.

designs found by the simplex and PSO algorithms. The D-optimal sampling time points

at hours 0, 0.5, 2.2, 5.0, and 8 may appeal to the physician because they provide the most

accurate estimates for all parameters in the model. The Ds3-optimal design points give

more preference to the clearance and genetic covariate parameters and the time points and

efficiencies should be compared with the D-optimal designs. When focused on the clearance

and genetic parameters, the Ds3−optimal five point design was found by PSO and has time

points at hours 0, 0.9, 6.8, 8, and 8. Instead, the Ds3-optimal designs focus on the later

stage of the drug. Again, we see two time points at hour 8, this time at the expense of

the 2nd hour measurement. However, these Ds3-optimal designs do not perform well under

D-optimality. For instance, the Ds3-optimal design just mentioned has a D-efficiency of 59%.

The D-optimal designs, however, have a high Ds3-efficiency at 97% signifying the D-optimal

design will estimate the 3 parameters of interest very well.

The designs with two groups have similar if not the same time points as the one group

design, e.g. 0, 0.4, 2.2, 8h, but sometimes there is a group whose last time point does not

end at the 8h mark. The proportion of patients assigned to each group is displayed next to

the design in Table 3.3. Even though we specified to have two groups, there are scenarios

when the proportion of patients assigned to each group is so low that it does not make

40



Table 3.3. D- and Ds3-optimal designs and efficiencies for the model with the genetic covari-

ate. PSO stands for the optim_pso() function and ECR stands for the ecr() function.

Algorithm Design Proportion D-efficiency Ds3-efficiency CPU (s)

One group five design points D-optimal

Equispaced 0, 2, 4, 6, 8 - 74% 94% -

Simplex 0, 0.4, 2.3, 5.1, 8 - 100% 97% 27

PSO 0, 0.5, 2.2, 5.0, 8 - 100% 97% 27

ECR 0, 0.4, 2.4, 5.0, 8 - 99% 97% 30

One group five design points Ds3−optimal

PSO 0, 0.1, 6.8, 8, 8 - 59% 100% 123

ECR 0, 1.0, 5.8, 8, 8 - 67% 100% 120

Two group four design points D-optimal

Simplex
0, 0.8, 4.7, 8

0, 0.4, 2.2, 5.9

59%

41%
93% 94% 123

PSO
0, 0.7, 4.4, 8

0, 0.4, 2.2, 5.8

59%

41%
93% 94% 106

ECR
0, 2.4, 5.3, 8

0, 0.8, 2.3, 7.3

54%

46%
85% 94% 120

Two group four design points Ds3−optimal

PSO
0, 1.4, 8, 8

0, 2.5, 8, 8

100%

0%
28% 99% 110

ECR
0, 1.9, 3.7, 7.8

0, 0, 2.9, 8

91%

9%
57% 98% 120
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Table 3.4. D- and Ds2-optimal designs and efficiencies for the model without the genetic

covariate. PSO stands for the optim_pso() function and ECR stands for the ecr() function.

Algorithm Design Proportion D-efficiency Ds2-efficiency CPU (s)

One group five design points D-optimal

Equispaced 0, 2, 4, 6, 8 - 71% 25.5 -

Simplex 0, 0.4, 2.3, 5.1, 8 - 100% 96% 20

PSO 0, 0.4, 2.1, 5.2, 8 - 100% 96% 30

ECR 0, 0.6, 2.3, 5.1, 8 - 99% 95% 30

One group five design points Ds2−optimal

PSO 0, 1.2, 8, 8, 8 - 0% 100% 23

ECR 0, 1.2, 7.8, 8, 8 - 0% 100% 30

Two group four design points D-optimal

Simplex
0, 1.2, 5.1, 8

0, 0.4, 2.3, 8

54%

46%
78.5% 93% 90

PSO
0, 0.4, 4.3, 8

0, 0.5, 2.0, 5.7

51%

49%
79% 91% 41

ECR
0, 0.7, 5.1, 8

0, 0.4, 1.7, 5.6

58%

42%
78% 91% 60

Two group four design points Ds2−optimal

PSO
0, 2.9, 6, 8

0, 1.3, 7.0, 8

100%

0%
2% 93% 41

ECR
0, 0.6, 2.3, 6

0, 1.1, 4.5, 8

54%

46%
74% 86% 60
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sense to have a multigroup scenario. For instance, the two group Ds3-optimal designs have

groups of 0% and 9% respectively. Despite the fact that we have one less sampling time per

individual compared to the one group five time point D-optimal design, the two group and

four sampling times are sufficiently informative to identify and estimate parameters with

acceptable precision and perhaps interesting designs with a D-efficiency between 85 - 93%

and a Ds3-efficiency of 94%. The efficiency of the multigroup design is expected to be lower

because there will be fewer samples taken overall, i.e. 400 observations for this multigroup

design compared to 500 with the five point one group design if 100 patients are measured.

The CPU times are consistently longer for computing Ds3−optimal designs than D-

optimal designs and two group designs take longer to compute than one group, but each

design ran in under 2.5 minutes which is manageable in practice.

Table 3.4 displays the designs when the genetic covariate is not included in the model. In

this table, we present results for D- and Ds2-optimal designs focusing on the fixed and random

clearance parameters. We can compare the design points between Table 3.3 and 3.4, but

the D- and Ds-optimality and efficiency values should not be compared due to partitioning

and dimensionality. The one group five time point D-optimal design did not differ between

Table 3.3 and Table 3.4 and took about the same amount of time to compute. The one group

Ds2-optimal designs again had two time points at hour 8. The two group Ds2-optimal designs

also did not differ practically from that of the Ds3-optimal designs potentially suggesting the

design does not differ whether the genetic covariate is included in the model or not.

The physician has to make a decision whether to choose the D-optimal design to estimate

all parameters well or the Ds-optimal design which tends to focus on the later time points to

best estimate the parameters of interest. We next present multiple objective results to help

make a balanced, calculated decision on which design points are best for sustained-release

lithium monitoring in the 8 hour window.
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3.4.4 Robust designs

We restrict our analysis to find and discuss locally optimal designs using nominal values

physicians believe are reliable, and the values seen in Table 3.1 were the only values the

physicians were willing to use. We have a single set of nominal values from the earlier lithium

study with 17 patients (Couffignal et al. 2019) and there were no other sets of nominal values

available. In our case, physicians were also not willing to use other sets of nominal values.

However, our methodology is general and applies to any set of nominal values. Additionally,

we discuss pseudo-bayesian designs, which are robust to misspecifications in the nominal

values in Table 3.2.

If additional nominal values were available, we would have constructed designs robust

to misspecifications in the original values given to use. They include minimax types of

designs and fully Bayesian optimal designs. Minimax types of optimal designs allow the

user to specify a range of plausible values for each model parameter, and they minimize the

maximal inefficiency across all possible nominal values (Chen et al. 2015, 2017). The design

problem is harder to find because the design criterion is non-differentiable and has at least 2

nested optimization problems to solve. Alternatively, one may use a Bayesian paradigm and

find Bayesian optima designs to estimate model parameters; see Chen et al. (2015, 2017)

and Masoudi et al. (2019) who also used metaheuristics and found Bayesian optimal designs

for a variety of models.

A simpler method is to implement a hypercube D-optimal design (HCD-optimal design)

that optimises a pseudo-Bayesian robust criterion (Foo and Duffull 2010). To find such a

design, we used the bootstrapped confidence intervals in Couffignal et al. (2019) for each

parameter as prior information. The criterion uses every combination of the 2.5th and

97.5th percentiles from the intervals and the HCD-optimal design maximizes the sum of the

log-determinants of the information matrices for each set of parameter combinations; with

5 fixed effects, there are 25 = 32 summands. We optimized the criterion and found that
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the HCD-optimal design is similar to our locally D-optimal designs, suggesting that for our

problem, the designs are relatively robust to misspecifications in the nominal values. Figure

3.2 shows the D-optimal design time points from each of the 32 individual designs. At each

design point, there are 32 points signifying each optimal answer. The spread of each design

point is relatively small, signifying there would not be a drastic change in designs if the

nominal values were different.

Figure 3.2. Different design points seen with the hypercube D-optimal designs.
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3.4.5 Multiple objective results

We compare the efficiency trade-offs when the two objectives Ds3−optimality and Ds8-

optimality are optimized simultaneously. The Pareto front in Figure 3.3 was created from

50 simulations of the ecr() function in R. Each point on the plot represents a unique design

found in the simulations. The black circles represent the Pareto front and are the designs

the physician should be interested in. In contrast, the gray circles represent designs with

dominated solutions, and so they are inferior or sub-optimal solutions.

Figure 3.3. Pareto front plot for a dual-objective design that balances the efficiencies for

estimating the clearance and genetic parameters (Ds3-optimality) and the remaining eight

parameters (Ds8-optimality).

There are three separate clusters of solutions with a discontinuity in between each. Dis-

continuities in Pareto fronts are possible, and may present good candidates or high trade-off

points to analyze further (Rachmawati and Srinivasan 2009). From visual inspection, the

left-cluster maximizes the remaining 8 parameters best while the right-cluster maximizes the

3 parameters of interest best. If we are only interested in the 3 parameters, we may be more
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inclined to select black dots from the right cluster which estimate the parameters of interest

at 99.5 - 100% efficiency, but have a simultaneous trade-off of between 27.5 - 60% efficiency

for estimating the remaining 8 parameters. The top point of the right-cluster is preferred

because for less than a 1% trade-off in Ds3-efficiency, we gain 32.5% in Ds8-efficiency. The

middle cluster does not gain too much Ds8-efficiency at the expense of about 1% loss in Ds3-

efficiency. A potentially better trade-off can be to choose the left-cluster’s black dots because

these selected points are designs with about 97% efficiency for estimating the 3 parameters

of interest while achieving near maximum efficiency for the remaining 8 parameters as well.

There may be distinctions in designs between each cluster.

Further inspection into the time points in each cluster can help the physician make a

more informed decision. The right-cluster has time points similar to those found in the

Ds-optimal designs where every design in the right cluster has two of the five time points

at 8h. The designs in the left-cluster find 97% efficiency for the 3 parameters of interest

and simultaneously 100% efficiency for the remaining 8 parameters and are actually like the

D-optimal designs found in Table 3.3, e.g. 0, 0.4, 2.1, 5.1, and 8h. This same efficiency

calculation happened to be performed in Table 3.3, and the multiple objective optimization

confirmed it to be a good decision for the physician to choose the the D-optimal design

because it best estimates all parameters simultaneously and only loses 3% of information

from the parameters of interest.

Ultimately, the physicians need to make a decision on which time points to measure

patients with bipolar disorder who are taking lithium. We provide design efficiencies based

on optimizing the estimated parameters of a complicated PK/PD NLMEM model by using

designs and metaheuristic algorithms not seen in current softwares. Our results show the

time points of 0, 0.4, 2.1, 5.1, and 8h may provide the best trade-off between optimizing the

parameters of interest and the remaining, less important parameters. This multiple objective

efficiency method helped quantify the value of each design to particular parameters and is

generalizable to any PK/PD model with any amount of objectives.
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CHAPTER 4

Project 2: Optimal global clinical trial recruitment

plans

In this chapter, we show the importance, capability and utility of metaheuristics to optimize

complex recruitment designs for global clinical trials using the PG model as an exemplary

model. The PG model for patient recruitment assumes that the patients arrive at differ-

ent sites according to doubly stochastic Poisson processes with rates that are gamma dis-

tributed random variables (Anisimov and Fedorov 2007a, Anisimov 2011, 2020). The model

is the industry standard and has been adopted by multiple large pharmaceutical companies

(Anisimov and Austin 2023). For example, Best et al. (2022) used the PG model to predict

COVID-19 pandemic impact on clinical trial recruitment, and Perperoglou et al. (2022) used

the PG model to model time-varying recruitment rates in multi-center clinical trials. The

PG model not only can forecast patient recruitment, it can also be extended for centralized

statistical monitoring of clinical site’s recruitment performance, drug supply chain modeling,

and predicting events in event-driven trials (Anisimov and Austin 2020, Anisimov et al. 2021,

2022).

As we will discuss, the model can be used to formulate an optimization problem with the

goal of minimizing the total monetary cost ($ millions) for a global recruitment plan. For a

small scale clinical trial (< 10 countries), there are so few potential recruitment plans that

it is possible to computationally evaluate each possible design and choose the lowest costing

recruitment plan. A linear version of the problem used the optimization technique developed

in Anisimov and Austin (2023) for large clinical trials, a step-wise linear approximation at
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each step and the traditional linear simplex. Anisimov and Austin (2023) updated the model

to include non-linear constraints and alluded to the use of evolutionary algorithms and other

biologically inspired metaheuristic algorithms to handle the non-linear functions, which the

simplex and other conventional methods are not designed to handle, hence the motivation for

this work. We extend this analysis to multiple-objective clinical trials using metaheuristics

for a complete view on clinical trial recruitment plans.

4.1 Background

The National Institute of Health Research Health Technology Assessment Programme (HTA)

calculated that between 2002 - 2016, only 55% of their clinical trials reached their original

target sample size (Sully et al. 2013, Walters et al. 2017). Trials that do not recruit well

have reduced power and may give misleading conclusions (Harrison 2016, Sun et al. 2022).

A new drug in 2023 can cost roughly between $40 millions and about $5 billions, so there is

little room for error once the drug gets to the clinical stage (Schlander et al. 2021). Clinical

trial organizers and decision makers plan for recruitment and must incorporate factors like

incidence rates of diseases in the various countries, healthcare infrastructure, regulatory

environments, as well as, marketing availability and drug distribution systems (Senn 1997).

To address the complicated issues in recruitment planning, decision makers use statistical

models and often employ Mixed Poisson types of models to forecast patient recruitment in

large and small clinical trials taking into account potential variations (Barnard et al. 2010,

Anisimov 2016, Gkioni et al. 2019).

While the PG model is the industry standard adopted by large pharmaceutical compa-

nies, there have been other models developed and used, each with different capabilities and

limitations. We briefly mention them here. For a full discussion on recruitment models,

please see recent review Barnard et al. (2010), Anisimov (2016), Gkioni et al. (2019). Sim-

ple, deterministic methods for patient recruitment do not account for real-world variability

49



(Carter 2004, Carter et al. 2005, Comfort 2013). Mixed Poisson types of models are widely

used to estimate the expected number of patients recruited over time (Barnard et al. 2010,

Anisimov 2016, Gkioni et al. 2019). Williford et al. (1987) proposed a Poisson process with

a gamma distributed rate to model the overall recruitment for a trial without considering

specific sites. Several other papers fix the Poisson recruitment rate, λ, often as the aver-

age of all sites (Senn 1997, 1998, Carter et al. 2005). In multi-center clinical trials, a fixed

rate is often an oversimplification, as sites vary in recruitment capabilities. Each site within

each country has a different recruitment base and varied costs. For multi-center trials, these

numbers are aggregated in hopes of reaching the necessary sample size calculated in the

statistical analysis plan.

The Bayesian paradigm incorporates all prior information into the design and analysis

and is useful at the interim analysis of a trial. Two other examples of Bayesian approaches

for recruiting patients into a global or multi-center trial are (i) Gajewski et al. (2008) was

interested in global recruitment, but not at individual sites, and Jiang et al. (2016) imple-

mented the method in the R package ’accrual’, and (ii) Liu et al. (2020) proposed a Bayesian

model to predict recruitment rates for a multi-center trial with varying site activation times.

These methods are interesting but may be unsuitable at or near the start of a trial when

there is a limited number of active sites and patients recruited.

4.2 Poisson-gamma patient recruitment model

This section focuses on the PG model, originally developed by Anisimov and Fedorov (2007a)

and further developed by Anisimov (2011) and Anisimov and Austin (2023).

The Poisson recruitment model assumes that an individual site i recruits patients at a

rate λi, i.e. the probability that there are k patients recruited in site i at time t if the site

is initiated at time 0 is defined by the Poisson distribution:

P (Πλ(t) = k) =
e−λit(λit)

k

k!
, k = 0, 1, ... (4.1)
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where Πλ(t) is an ordinary Poisson process with rate λ. Denote also by Π(λ) a Poisson

random variable with parameter λ.

The rate of recruitment in the PG model is the gamma distributed parameter used to

represent real life variability between sites and countries. This means λi is viewed as a

random variable which has a gamma distribution with probability density function:

λi
D−→ Γ(α, β) =

e−βxβαxα−1

Γ(α)
(4.2)

where Γ(α) =
∫∞
0

e−xxα−1dx is a gamma function.

Assume now that the recruitment rate λ has a gamma distribution with parameters (α, β)

and introduce a mixed (doubly stochastic) Poisson process Πλ(t). According to Bernardo

and Smith (2004), Πλ(t) is a Poisson-gamma (PG) process with parameters (t, α, β) and

P (Πλ(t) = k) =
Γ(α + k)

k! Γ(α)

tkβα

(β + t)α+k
, k = 0, 1, .. (4.3)

For convenience also denote PG(t, α, β) as a PG random variable that has the same distribu-

tion as Πλ(t). For t = 1, Πλ(1) has the same distribution as Π(λ) (mixed Poisson variable).

In this case, for simplicity, we use the notation PG(α, β) instead of PG(1, α, β).

According to Johnson et al. (2005), the distribution of Πλ(t) in (4.3) for any t > 0, can

be also described as a negative binomial distribution with

P (Πλ(t) = k) = P (NB(α,
β

β + t
) = k), k = 0, 1, ... (4.4)

Here, NB(α, p) is a random variable which has a negative binomial distribution with pa-

rameters α and probability p. In the standard R programming environment (R Core Team

2021), there are functions ’dnbinom’ and ’pnbinom’ to facilitate the calculation of the PDF

and CDF of the negative binomial distribution.
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4.2.1 Modeling unrestricted recruitment

In this section we consider first unrestricted and competitive recruitment, that means, each

site continues to recruit patients until the total sample size (overall planned number of

patients) is reached. Each site i is recruiting with the rate λi. However, the amount each

site can recruit depends on the time of site initiation and duration of recruitment.

The start date of each clinical site is not the same. Denote ui as the time of initiation

of site i. Then, the duration of active recruitment up to a given interim time t for a site

activated at time ui can be defined by the function x(t, ui) = max(0, t−ui). Correspondingly,

the cumulative recruitment rate in time interval [0, t] has the form

Λi(ui, t) = λix(t, ui) (4.5)

Note that in Anisimov et al. (2007), the model was considered where the start dates of

each site have a uniform distribution within some interval [ai, bi]. Other types of distributions

for ui (gamma and beta) were considered in Anisimov (2020). However, in this paper we

restrict our attention to the case where the times of site initiation are given deterministic

values that are provided at the time of recruitment planning based on historical data and

expert knowledge.

An entire country’s cumulative recruitment rate is the summation of each site’s rate, i.e.

for an indicator set of sites Is for the number of sites in country s, Ns:

Λ(Is, t) =
∑
i∈Is

λix(t, ui) (4.6)

It follows that the recruitment process, how many patients will be recruited by time t in

country s, can be modelled as a mixed Poisson process with the country cumulative rate

Λ(Is, t).

Let N̄ represent the vector of the number of sites in each country that defines the global

recruitment plan, i.e. N̄ = (N1, ..., Ns), and it is assumed that the times for initiation of
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these sites are known, e.g. for country s, (us
1, ..., u

s
Ns
). The global cumulative recruitment

rate at time t is a sum of each country’s recruitment rates, i.e.

Λ(t, N̄) =
S∑

s=1

∑
i∈Is

λix(t, ui) (4.7)

Correspondingly, the global recruitment process, n(t), as the sum of country processes

n(Is, t), can be represented as a mixed Poisson process with the global cumulative rate

Λ(t, N̄). The global rate is represented as a sum of gamma distributed variables with different

parameters and in general it does not have a gamma distribution. Therefore, the global

recruitment process in general is not a PG process.

Thus, to calculate different predictive characteristics for the global recruitment process

n(t), we can consider first a normal approximation. For this purpose, we need to calculate

the mean and the variance of the global rate and use the following property of a mixed

Poisson distribution: if λ is a random variable, then

E[Π(λ)] = E[λ] and V ar[Π(λ)] = E[λ] + V ar[λ]. (4.8)

Let mi = E[λi] and let σ2
i = V ar[λi] be, respectively, the mean and the variance of

the recruitment rate λi for site i. There is a simple relation between the parameters of a

gamma distribution and the mean and the variance: mi = αi/βi and σ2
i = αi/β

2
i . Assume

for simplicity that the mean and the variance of the recruitment rates are the same for all

sites in each country and denote for country s,

m(s) = mi, σ2(s) = σ2
i , i ∈ Is.

The mean and the variance of the cumulative country rates at time t are, respectively,

E(Is, t) = m(s)
∑
i∈Is

x(t, ui) (4.9)

and

S2(Is, t) = σ2(s)
∑
i∈Is

x2(t, ui). (4.10)
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Consequently, the mean and variance of the global cumulative rate are calculated as the sum

of each country’s mean and variance, i.e.

E(t, N̄) =
S∑

s=1

E(Is, t) (4.11)

and

S2(t, N̄) =
S∑

s=1

S2(Is, t). (4.12)

This implies that by (4.8), for any t > 0,

E[n(t)] = E(t, N̄) and V ar[n(t)] = E(t, N̄) + S2(t, N̄) (4.13)

However, to obtain a good accuracy of the approximation, it is recommended to apply

the normal approximation to trials with at least 15− 20 countries.

Anisimov (2020) and Anisimov and Austin (2023) showed that the country recruitment

process could be well-approximated by a PG process with some aggregated parameters.

This approximation works well for any number of sites and can be used to create predictions

of the recruitment process with mean and predictive bounds using the quantiles of a PG

distribution. Correspondingly, we can also use a PG approximation of the global process

using approximative PG processes in the individual countries.

4.2.2 Probability of success

The likelihood of recruiting the target number of patients by the pre-specified time frame is

what we call the probability of success (PoS). The PoS of a recruitment plan is a defining fea-

ture and when a recruitment plan’s PoS is less than satisfactory, the PoS can be recalculated

after more sites are included.

Let τ(n) be the time the target number of patients n is reached. We denote the PoS of

reaching n patients by time T as P (τ(n) ≤ T ). For global recruitment process n(t)

P (τ(n) ≤ T ) = P (n(T ) ≥ n). (4.14)
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Using a normal approximation and relation (4.14), it is straightforward to prove that the

clinical trial with recruitment plan N̄ will complete recruitment up to time T with probability

P if the following condition is satisfied:

E(T, N̄)− n√
E(T, N̄) + S2(T, N̄)

≥ zP (4.15)

where zP is the P -quantile of a normal distribution.

If we use a PG approximation, then PoS can be derived using relation (4.14) and a CDF

of a corresponding PG process approximating the global recruitment process n(T ).

4.2.3 Restricted recruitment with caps on each country’s number of patients

In global clinical trials, restrictions are variously imposed on countries by regulatory agen-

cies and may include the patient sample size and recruitment duration in each country or

even requiring a reasonable diversity in the patient population. Modeling recruitment with

restrictions at the country level was investigated in Anisimov and Austin (2022, 2023). Such

restrictions, among others, lead to constraints where there are upper bound restrictions on

the recruitment process, e.g. in country s, the recruitment in this country is stopped when

the number of patients recruited reaches a defined cap L(s). For countries with few sites to

recruit, we will use a PG approximation of the country recruitment processes.

Let the sites in country s be indexed by Is. Using notation (4.9) and (4.10), let us

introduce the variables for country s:

A(Is, t) = E2(Is, t)/S
2(Is, t) and B(Is, t) = E(Is, t)/S

2(Is, t). (4.16)

The following lemma was proved in Anisimov and Austin (2023): The distribution of the

unrestricted recruitment process n(Is, t) can be well approximated by the distribution of a

PG random variable

PG(A(Is, t), B(Is, t)) (4.17)

.

55



According to the above Lemma, the distribution of the unrestricted recruitment pro-

cess n(Is, t) in country s can be approximated by the PG distribution with parameters

(1, A(Is, t), B(Is, t)). This means that, in (4.3) we designate α = A(Is, t), β = B(Is, t), and t =

1. For computational purposes we can use the negative binomial distribution in (4.4) and

put α = A(Is, t), β = B(Is, t), and t = 1.

Define now in country s with restricted cap L(s) the capped restricted recruitment process

nL(s)(Is, t) by

nL(s)(Is, t) =

 n(Is, t) as n(Is, t) < L(s)

L(s) as n(Is, t) ≥ L(s).
(4.18)

Then the distribution of the restricted process nL(s)(Is, t) can be calculated directly via

the distribution of the unrestricted process n(Is, t):

P (nL(s)(Is, t) = k) =


P (n(Is, t) = k) as 0 ≤ k < L(s)

1−
∑L−1

k=0 P (n(Is, t) = k) as k = L(s)

0 otherwise.

(4.19)

Thus, we can use (4.4) with α = A(Is, t), β = B(Is, t), and t = 1 to calculate the distribu-

tion of the restricted recruitment process in country s.

To calculate the distribution of the global recruitment process with restrictions, we use

a distributional approach. The distribution of the global restricted recruitment process is

a convolution of the distributions of countries’ restricted processes and can be calculated

numerically in R using the function convolve() which uses a discrete Fourier transform (R

Core Team 2021).

The PoS can be derived using relation (4.14) and the distribution of the global recruitment

process with restrictions n(T, L(1), .., L(S)). Alternatively, PoS can be calculated using a

normal approximation. Anisimov and Austin (2022, 2023) derived closed form expressions
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for the mean and the variance of the restricted process in each country:

E[nL(s)(Is, t)] = E(Is, t)P ((A(Is, t)+1, B(Is, t)) ≤ L(s)−2)+L(s)
(
1−P ((A(Is, t), B(Is, t)) ≤ L(s)−1)

)
(4.20)

E[(nL(s)(Is, t))
2] = (E2(Is, t)+S2(Is, t))P (PG(A(Is, t)+2, B(Is, t)) ≤ L(s)−3)+E(Is, t)P (PG(A(Is, t)+1, B(Is, t)) ≤ L(s)−2)+L2(s)

(
1−P (PG(A(Is, t), B(Is, t)) ≤ L(s)−1)

)
(4.21)

V ar[nL(s)(Is, t)] = E[(nL(s)(Is, t))
2]− (E[nL(s)(Is, t)])

2 (4.22)

The relation (4.14) is also valid for the restricted process and so the same condition

(4.15) should be satisfied to complete recruitment up to time T with probability P where

the mean and the variance are calcuated using the sums of the means and variances of

restricted processes in the countries defined in (4.20) - (4.22). This computational approach

is simpler and takes much less time to complete the calculations. The only restriction is

that, as normal approximation is used here and at the country level, it is recommended that

this approach be used for trials with at least 15− 20 countries.

4.2.4 Optimal trial design

This subsection defines additional notation for factors like monetary costs and practical con-

straints. Following Anisimov and Austin (2023), suppose that n patients are to be recruited

into a global clinical trial. There are up to S given countries to include in the trial plan. Let

the vectors H̄ = (H1, .., HS) and Ū = (U1, .., US) be, respectively, the given lower and upper

bounds for the number of sites allowed in each country. The number of sites within each

country must fit within minimal and maximal bounds (H̄ and Ū). Let T = Tplan be the fixed

target recruitment timeline. Let the PoS to recruit n patients by time T using recruitment

plan N̄ be denoted as P (n, T, N̄). Assume, for simplicity, that the mean and the variance

(m(s), σ2(s)) of the recruitment rates in any country s are the same for all sites in this

country. Further, suppose that all sites are planned to be activated before the target time

T , and for any given country s with sites indexed by set Is, let the corresponding number of
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sites be labeled as Ns. Let the vector of site activation times for country s be (us
1, .., u

s
Ns
).

These site activation times may be generated from a uniform grid on some interval [as, bs]

or on a piece-wise uniform grid.

There are many cost components in the study and they include

1. the vector of costs per one site in each country, C̄ = (Cs, s = 1, .., S);

2. the vector of costs per one recruited patient in each country, c̄ = (cs, s = 1, .., S);

3. the vector of costs per including country s with a non-zero number of sites, Q̄ =

(Qs, s = 1, .., S);

Let C(T, N̄, C̄, c̄, Q̄) be the total mean cost of the trial for the time period [0, T ] for the

above setup. This cost is

C(T, N̄, C̄, c̄, Q̄) =
S∑

s=1

csE[nL(s)(Is, T )] +
S∑

s=1

CsNs +
S∑

s=1

QsI(Ns > 0) (4.23)

where the expression E[nL(s)(Is, T )] is defined in (4.20) and shows the mean number of

patients recruited in country s up to time T for the restricted process.

4.2.5 Objective functions for an optimal recruitment plan

The decision makers ultimately need to choose one recruitment plan to rollout for the Phase

III trial. The above discussion suggests that we want to find a recruitment plan for a clinical

trial that (a) minimizes the overall cost and (b) stays within certain real-life constraints. The

recruitment plan must not use more or less sites than the upper and lower bounds in each

country (Hs, Us), must stop recruiting when the patient cap limit per country Ls is reached,

and the PoS constraint must be satisfied. This PoS constraint can be set at any nominal

value, sometimes 90% to nearly guarantee success, but also 50% to provide a cost-benefit

trade-off analysis. The optimal recruitment plan discussed above is one that abides by the

following conditions:
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minimize: C(T, N̄, C̄, c̄, Q̄) Total Cost (4.24)

subject to: P (n, T, N̄) ≥ P

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, T ) ≤ L(s) s = 1, 2, .., S

In the setting of the optimization problem, the expressions for the mean number of pa-

tients recruited in country s up to time T , E[nL(s)(Is, T )], defined in (4.20), are essentially

non-linear subject to the vector of main variables N̄, and the expression for PoS, P (n, T, N̄),

is also essentially non-linear and can be calculated via the distribution of the global re-

cruitment process at time T using either a convolution of restricted country processes as

described in Section 4.2.3, or using a normal approximation by using relations (4.20) - (4.22)

for the mean and the variance of restricted country processes. Therefore, we may expect

the objective function to have many local minimums subject to non-linear constraints, and

conventional methods may not work properly or may not converge to the point of the global

minimum. This motivates the use of metaheuristics to solve the above optimization problem,

(4.24).

Further, the flexibility of metaheuristics allows for the construction of similar, alternative

optimization problems without difficult adjustments in how the algorithms are used. Instead

of minimizing the total cost of the trial, decision makers can plan to minimize the overall

number of sites used or the overall number of countries used, shown by Equations (4.25) and

(4.26) respectively subject to the same constraints. We also present (4.27), an optimization

problem focused on maximizing the PoS given some upper bound cost constraint. Meta-

heuristics can handle each of these optimization problems with little to no adjustments. In

what is to follow, we will use these objective functions to holistically inform the design of a

clinical trial’s recruitment plan.
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minimize:
S∑

s=1

I(Ns > 0) Number of Countries (4.25)

subject to: P (n, T, N̄) ≥ P

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, T ) ≤ L(s) s = 1, 2, .., S

minimize:
S∑

s=1

Ns Number of Sites (4.26)

subject to: P (n, T, N̄) ≥ P

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, T ) ≤ L(s) s = 1, 2, .., S

maximize: P (n, T, N̄) Probability of Success (4.27)

subject to: C(T, N̄, C̄, c̄, Q̄) ≤ $

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, T ) ≤ L(s) s = 1, 2, .., S

4.3 Algorithm selection and implementation

The PG model used throughout this work is implemented in a proprietary R package created

by the Amgen Center for Design and Analysis, consisting of a team of software engineers,
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statisticians, and business experts. It is used in a business setting where output could allow

for some time delay because the planning stage is so paramount and takes place months

in advance. In deciding which metaheuristic to implement, it made sense to measure the

quality and speed of different metaheuristic packages in R to maintain consistency with the

package which implements the PG model.

4.3.1 Case study

First, we will provide an illustrative example of data from an earlier large-scale Phase III

clinical trial recruitment plan. Suppose a global trial needs to recruit 5000 patients spanning

up to 49 countries in 24 months with a budget of $73 millions. The large scale and resource-

intensiveness of the trial underscore the necessity to find cost-effective recruitment plans that

will result in a full and timely recruitment.

The dataset used includes information for each country estimated for each trial, some-

times based on historical data or expert knowledge. This includes a country’s minimum

and maximum number of allowable sites, recruitment rates, schedule of site initiation times,

costs, and limits on patients. Four countries (China, Japan, United Kingdom, and United

States) are required to be in the recruitment plan and the remaining 45 countries may or

may not be included in the trial, depending on the optimal plan. The maximum number of

sites for each country ranges from 5-200. The average recruitment rate for each country’s

sites ranges between 0.3 - 2.5 patients recruited per month. The cost per patient for each

country ranges from $500 to $7000.

4.3.2 Speeds and qualities of different R packages

The best metaheuristic we seek to install (a) is available, (b) performs well in solution

quality and (c) is quick in computation time. First, we decided to analyze different R

packages to optimize the model. There are a number of optimization packages available at

61



https://cran.r-project.org/web/views/Optimization.html. The data science team previously

used multiple packages, specifically, DEoptim, GA, and rgenoud. We further tested ppso and

metaheuristicOpt and found the package metaheuristicOpt to outperform the rest. In

the rest of this subsection, we present preliminary results for this conclusion, which then led

us to further inspect this package.

First, we compared the different packages at default settings to see their performance in

optimizing (4.24) at a 90% PoS constraint. Figure 4.1 graphs each shape which represent

different packages against the solution quality and time to compute. Each package either

took longer to perform or performed strictly worse than the metaheuristicOpt or both.

In any usage case, this motivates our choice of furthering experimentation into the package

containing 21 metaheuristic algorithms, metaheuristicOpt (Septem et al. 2019).

Figure 4.1. Total cost ($ millions) by time to compute for 20 simulations from different R

packages.

The R package metaheuristicOpt has 21 diverse metaheuristic algorithms all of which
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could result in a different answer, and it may or may not be worthwhile to run them all

(Septem Riza et al. 2019). The package originally came with 11 algorithms and was later

extended to have 10 more. Only certain algorithms were functional for solving optimiza-

tion problem (4.24), mostly from the original 11 algorithms in the package. In Table 4.1,

we present computational speeds for one simulation of each algorithm solving optimization

problem (4.24) for a different number of iterations: 250, 500 (default), 1000, and 2000. We

see the majority of the algorithms solve the problem quickly with 2000 iterations in under a

minute and a half. The Shuffled Frog Leaping algorithm (SFL), Ant Lion Optimizer (ALO),

and PSO algorithms all took significantly longer than the others and were not worth further

investigation.

Table 4.1. A time comparison of one run of metaheuristics in the metaheuristicOpt R

package on minimizing total cost ($ millions).

Number of iterations

Algorithm 250 500 1000 2000

Whale Optimization Algorithm 4 8 10 19

Moth Flame Optimizer 3 7 11 22

Sine Cosine Algorithm 5 10 18 35

Harmony Search 6 12 23 45

Clonal Selection 7 15 28 54

Grey Wolf Optimizer 8 15 29 56

Bat Algorithm 10 21 37 73

Dragonfly Algorithm 12 23 45 92

Shuffled-Frog Leaping 76 157 292 601

Ant Lion Optimizer 16 46 167 629

Particle Swarm Optimizer 88 182 351 680
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Figure 4.2 then presents a boxplot of 20 simulations of each algorithm at default settings

for the problem and the resulting cost when minimizing (4.24). The MFO, GWO, and

HS algorithms were the best three performers, and hence were then selected for further

experimentation and implementation. The Dragonfly algorithm (DA) and Bat algorithm

(BA) performed quite poorly in comparison.

Figure 4.2. Total cost ($ millions) on 20 simulations for each algorithm in metaheuristicOpt.

The cumulative simulations, tables and figures helped us decide which algorithms to use

going forward and which ones to drop. In particular, we work with the best algorithms

based on solution quality and their computing time. The GWO, HS, and MFO algorithms

performed well in 2000 iterations which took under 45 seconds for each. The package not

only performs well but is open-source and editable too. We were able to manipulate the

package through its central function metaOpt and each algortihm’s ”engine”. We manually

edited items in the package so that the user can designate a starting population, log previous

search positions, and provide a convergence criterion (Septem Riza et al. 2019). The modified

package is now found in our publicly available updated version in our GitHub repository

at https://github.com/maschepps/metaheuristicOpt. In the next subsection, we explore
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further the performance properties of these algorithms.

4.3.3 Convergence criteria

How many iterations is worthwhile? In the preliminary simulations we just showed, the

algorithms searched for up to a set number of iterations, and then stopped the search process

at, at most, 2000 iterations. However, there was no quantification nor guarantee that this

number of iterations was complete and not a premature stoppage point. While the algorithms

iteratively update and search for better and better solutions, the population can potentially

hover around the current best value for some time, unable to find anything better. This

period of stagnation can be calculated by counting the number of iterations each algorithm

takes to improve from one solution to the next. To do this, we used the manually edited

metaheuristic package on GitHub to track the trajectory of an empirically long search, 50,000

iterations for each algorithm. This search took 24 minutes for the MFO algorithm, 47 minutes

for the GWO algorithm, and 72 minutes for the HS algorithm. These 20 trajectories for each

algorithm are shown in Figure 4.3. The y-axis is the total cost ($ millions), to be minimized,

and the highlighted line shows the convergence trajectory of the particular simulation which

found the optimal recruitment plan per algorithm. Once the trajectory was captured, we

used the rle() function in the data.table package to count the length of stagnation in

each algorithm’s search history. The percentiles of each stagnation length are presented in

Figure 4.4 to enable an informed decision making process on a stagnation length stoppage

rule.

Figure 4.4 is a quantile plot comparing the length of stagnation seen in the 50,0000 it-

erations across the 20 simulations each of the three different metaheuristic algorithmsGrey

Wolf Optimizer (GWO), Harmony Search (HS), and Moth Flame Optimization (MFO). For

instance, each of the MFO simulations found their local optimal solution within 1000 it-

erations, rendering the remaining 49,000+ iterations useless and time consuming. Once a

proper convergence criteria is implemented, computation time lost from unnecessary itera-

65



tions can be saved. As we saw in the initial speed comparisons of each algorithm, Table 4.1,

2000 iterations took at most 45 seconds, and in Figure 4.4, the horizontal line represents

a stagnation length of 2000 iterations which covered 90% of possible searches. This level

is chosen as a balance between allowing the algorithms enough time to potentially find a

better solution and not letting the search process run excessively long. We observe that a

stagnation length criteria of 5,000 will cover 95% of the stagnations, but we decided the

extra 5% garnered was not worth the additional computation time and does not significantly

increase the percentage of finding the best optimum. In the current decision to implement

a 2,000 run stagnation stopping rule, we will overcompute for MFO as it did not stagnate

for more than 1,000 iterations, but only at the expense of at most 30 seconds (Table 4.1).

Further, we decided to implement an upper bound of 50,000 iterations as each simulation

found their optimal value before iteration 48,000.

Figure 4.3. Convergence analysis of 20 simulations at 50,000 iterations for each algorithm

when minimizing for total cost ($ millions) with a 90% PoS constraint highlighting the

optimal trajectory.
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Figure 4.4. Quantile plot of repeated value stagnation in the metaheuristic search process

for GWO in minimizing total cost in the large clinical trial.

4.4 The global clinical trial case study and the results

Now that we have introduced the case study and chosen metaheuristics to solve our opti-

mization problems based on preliminary analyses, we will use the selected metaheuristics to

solve the above complicated and multifaceted optimization problems. The resulting outcome

will present the best possible plan or plans to the clinical trial recruitment organizers and

decision makers. We compare performances of the various algorithms and solutions obtained

from all simulations by using summary statistics, graphical analyses and non-parametric

tests, such as the Kruskal-Wallis test and posthoc Wilcoxon rank-sum test (Kruskal and

Wallis 1952, Wilcoxon 1945).

4.4.1 The trade-off between probability and cost

The PoS is an important variable used to quantify the value of a recruitment plan. A

prespecified PoS constraint can be set at different values such as 50%, 60%, 70%, 80%,
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and 90% PoS to see a cost-benefit trade-off. This will require a unique simulation for each

PoS. Because the algorithms are stochastic, and we had ample time to compute, we ran

the optimization problem to minimize the total cost ($ millions), (4.24), 100 times per each

PoS on each of the three separate algorithms across 20 parallelized CPUs. Here, we present

results of these optimizations in Figure 4.5 and Tables 4.2 - 4.5.

Figure 4.5 presents a scatter plot that shows results of all 300 simulations. We compare

the PoS to the associated total cost ($ millions) of the 300× 5 = 1500 local optima created

using a unique simulation for the five different probabilities. Across all algorithms, there

is an observable trend where the solutions with a higher PoS are generally associated with

a higher cost. The costs range approximately from $18.5 million to over $23 million as

the PoS grows from 50% to 90%. The majority of solutions are close to, sometimes within

three decimal places, to the prespecified percentage border with only a few venturing past,

e.g. 50% vs 50.1% vs 55%. We, in fact, see many inferior solutions. For instance, in the

90% PoS cluster, locally optimal solutions can vary from just above $13 millions to just

under $17 millions. The less expensive recruitment plan is objectively more desirable as it

provides the same PoS benefit as the $4 millions reduction in spending. To look at these

plans more exactly, we present the lowest cost solution found at the 90% PoS constraint for

each algorithm for comparison in Table 4.2.

Table 4.2 displays the lowest cost recruitment plan found from the 100 simulations per

each algorithm for the 90% PoS constraint. This enables the trial planners to analyze the

impact of using different algorithms. Table 4.2 presents a comparative analysis of the perfor-

mance of metaheuristic optimization techniques in the context of clinical trial site allocation.

The data is organized to show the number of clinical trial sites allocated in each country

under the 90% PoS threshold for each algorithm. Each row in Tables 4.2 - 4.5 represents

country-by-country information. The first six columns are inputs and constants for each

country, such as the maximal number of sites or patients allowed, estimated average recruit-

ment rate, and cost per patient. The columns in Table 4.2 under the ”GWO”, ”HS”, and
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Figure 4.5. Scatterplot results of metaheuristic simulations analyzing the relationship of

probability of success to total cost ($ millions).

”MFO” headings represent the respective optimal recruitment plans. Thus, the table offers a

concrete plan for decision makers. Each algorithm allocates a different recommended number

of countries and sites within those countries. All three algorithms (GWO, HS, and MFO)

demonstrate similar total cost ($ million), with GWO and HS both at $13.2 million and

MFO marginally lower at $13.1 million. All three algorithms achieve very similar realized

PoS, hovering around the 90% PoS target. The GWO plan used the least amount of sites

and countries compared to the other two algorithms signifying less global spread for a similar

total cost ($ millions) (372 sites in 13 countries vs 466 sites in 16 countries vs 466 sites in 14

countries). This indicates that despite different strategies in site and patient allocation, the

overall effectiveness in achieving the trial’s success criteria is comparable across algorithms.

The patient cap per country L(s) is approached and recruitment is maximized by all algo-

rithms for countries Hungary, Sweden, Romania, Argentina, Colombia, and Iceland. The

GWO recruitment plan nearly maximizes recruitment in Brazil, reaching near the cap of

900 patients and well short of the maximum sites, using 36 of the 60, signifying recruitment
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was stopped here near the patient cap. The HS and MFO plan use sites in Norway when

the GWO did not. Other differences include the HS plan using the maximum number of

sites in Malaysia when no other algorithm recommends recruiting there, and the MFO plan

recruits more patients from Latvia. Table 4.2 demonstrates the potential for each algorithm

to optimize Equation 4.24 at the 90% PoS. Each algorithm found a nearby solution with a

different set of sites and countries.

The 90% PoS constraint is focused on because of the practical near-guarantee it applies

to the important and expensive problem of clinical trial recruitment optimization. We do

present the cost-benefit PoS trade-off in Tables 4.3 - 4.5, each table separate for each al-

gorithm because, as you have seen, each algorithm with their diverse search strategy found

similar costs and different recruitment plans. However, there are some consistencies between

Tables 4.3 - 4.5. As the required PoS increases from 50% to 90%, there’s a noticeable trend

in an increased cost and the total number of patients recruited. The total cost associated

with the recruitment plans also increased with the PoS constraint, ranging from $12.4 mil-

lion at 50% PoS to $13.2 million at 90% PoS. This increase reflects the additional resources

required to achieve higher success rates. The same goes for country-by-country differences.

In Table 4.3, we see the country of Brazil is increasingly used at each increasing PoS, indi-

cating a more aggressive recruitment strategy in this country would ensure higher success

probabilities. Similarly, in Table 4.5, Latvia is used in the 70, 80, and 90% PoS plans, but

not the lesser two. However, the relationship between sites, countries, cost, and PoS is not

monotonic. The 70% GWO plan uses less sites and less countries than the 60% plan for a

slightly greater cost (12.8 vs 12.7 $ millions). This presumably means the 70% plan uses the

more expensive sites with good recruitment rates.

We presented here, the optimal solutions found for given scenarios. Next, we will look

into the long-term performance of each algorithm. This is important because in most real-life

scenarios, there may not be 100 CPU’s available for parallel computation. If only a select

number of simulations are allowed, it will be crucial to know how robust each algorithm is.
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Table 4.2. Country and site specific recruitment plans for each algorithm’s lowest cost

simulation for a 90% PoS constraint.

Constants Algorithms

Country

Min

Sites

H̄s

Max

Sites

Ūs

Max

Patients

L(s)

Recruitment

Rate

m(s)

Cost per

Patient

c̄

GWO HS MFO

Sites Patients Sites Patients Sites Patients

Hungary - 60 1100 1.4 121 60 1073 59 1068 60 1073

Sweden - 50 600 0.8 162 50 584 49 580 49 580

Romania - 50 300 0.5 135 50 282 46 270 50 282

Argentina - 55 400 0.7 43 44 384 44 384 48 393

Colombia - 50 500 1.4 182 37 438 44 478 50 493

Malaysia - 40 200 0.3 112 - - 40 158 - -

Norway - 40 200 0.4 106 - - 33 179 35 185

Turkey - 45 300 0.8 178 2 21 30 275 31 279

Lithuania - 35 300 0.7 180 28 236 26 279 30 292

United States 25 230 3100 1.5 700 25 626 25 626 25 626

Latvia - 40 300 0.5 190 - - 19 163 40 290

China 15 85 1100 2.5 313 15 397 16 424 15 397

Iceland - 35 200 1.5 106 14 198 12 193 13 196

Japan 10 105 600 0.4 900 10 69 10 69 10 69

United Kingdom 10 115 1600 0.9 633 10 155 10 155 10 155

India - 55 400 0.8 236 - - 3 32 - -

Brazil - 60 900 2.5 227 36 885 - - - -

... - - - - - - - - - - -

Total 60 1015 - - - 372 5340 466 5333 466 5310

Total cost ($ millions) - - - - - 13.2 13.2 13.1

Number of countries 4 49 - - - 13 16 14

Realized PoS - - - - - 90.6 90.6 90.0
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Table 4.3. Low cost country and site specific recruitment plans found by the GWO algorithm

under five different scenarios.

Constants Probability of success constraints

Country

Min

Sites

H̄s

Max

Sites

Ūs

Max

Patients

L(s)

Recruitment

Rate

m(s)

Cost per

Patient

c̄

50% 60% 70% 80% 90%

Sites Patients Sites Patients Sites Patients Sites Patients Sites Patients

Hungary - 60 1100 1.4 121 60 1073 60 1073 60 1073 60 1073 60 1073

Sweden - 50 600 0.8 162 39 513 46 567 42 540 50 584 50 584

Romania - 50 300 0.5 135 36 222 50 282 32 199 47 273 50 282

Argentina - 55 400 0.7 43 45 387 44 384 46 389 40 369 44 384

Colombia - 50 500 1.4 182 34 412 30 371 35 422 43 474 37 438

Brazil - 60 900 2.5 227 17 546 27 798 30 841 32 861 36 885

United States 25 230 3100 1.5 700 25 626 25 626 25 626 25 626 25 626

Lithuania - 35 300 0.7 180 24 268 - - 21 246 - - 19 228

China 15 85 1100 2.5 313 15 397 15 397 15 397 15 397 15 397

Iceland - 35 200 1.5 106 11 190 13 196 12 193 13 196 14 198

Japan 10 105 600 0.4 900 10 69 10 69 10 69 10 69 10 69

United Kingdom 10 115 1600 0.9 633 10 155 10 155 10 155 10 155 10 155

Turkey - 45 300 0.8 178 - - - - - - - - 2 21

Norway - 40 200 0.4 106 25 144 27 155 - - 25 144 - 0

... - - - - - - - - - - -

Total 60 1015 - - - 351 5002 357 5073 338 5171 370 5242 372 5340

Total cost ($ millions) - - - - - 12.4 12.6 12.8 13 13.2

Number of countries - 49 - - - 13 13 12 12 12

Realized PoS - - - - - 50.3 60.0 70.4 80.4 90.6
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Table 4.4. Low cost country and site specific recruitment plans found by the HS algorithm

under five different scenarios.

Constants Probability of success constraints

Country

Min

Sites

H̄s

Max

Sites

Ūs

Max

Patients

L(s)

Recruitment

Rate

m(s)

Cost per

Patient

c̄

50% 60% 70% 80% 90%

Sites Patients Sites Patients Sites Patients Sites Patients Sites Patients

Hungary - 60 1100 1.4 121 59 1068 57 1056 60 1073 60 1073 59 1068

Sweden - 50 600 0.8 162 32 432 43 547 47 572 43 547 49 580

Romania - 50 300 0.5 135 42 253 44 262 46 270 42 253 46 270

Argentina - 55 400 0.7 43 43 381 44 384 45 387 44 384 44 384

Colombia - 50 500 1.4 182 34 412 33 403 40 459 39 453 44 478

Malaysia - 40 200 0.3 112 - - 17 68 31 124 22 88 40 158

Norway - 40 200 0.4 106 26 150 34 182 34 182 32 176 33 179

Turkey - 45 300 0.8 178 24 238 26 253 33 286 23 230 30 275

Lithuania - 35 300 0.7 180 24 268 25 274 26 279 30 292 26 279

United States 25 230 3100 1.5 700 25 626 25 626 25 626 25 626 25 626

Latvia - 40 300 0.5 190 23 197 8 69 - - 28 236 19 163

China 15 85 1100 2.5 313 17 450 16 424 15 397 15 397 16 424

Iceland - 35 200 1.5 106 12 193 12 193 12 193 12 193 12 193

Japan 10 105 600 0.4 900 10 69 10 69 10 69 10 69 10 69

United Kingdom 10 115 1600 0.9 633 10 155 10 155 10 155 10 155 10 155

India - 55 400 0.8 236 - - - - 2 22 2 22 3 32

Brazil - 60 900 2.5 227 3 97 - - - - 1 32 - 0

France - 65 500 0.5 254 - - - - 5 40 - - - 0

Poland - 90 1100 1.7 269 - - 3 82 - - - - - 0

South Africa - 65 1100 1.1 324 1 12 1 12 - - - - - 0

Bulgaria - 45 500 0.9 395 - - 1 13 - - - - - 0

... - - - - - - - - - - -

Total 60 1015 - - - 385 5001 409 5072 441 5134 438 5226 466 5333

Total cost ($ millions) - - - - - 12.5 12.7 12.8 12.9 13.2

Number of countries - 49 - - - 16 18 16 17 16

Realized PoS - - - - - 50.3 60.0 70.4 80.4 90.6

73



Table 4.5. Low cost country and site specific recruitment plans found by the MFO algorithm

under five different scenarios.

Constants Probability of success constraints

Country

Min

Sites

H̄s

Max

Sites

Ūs

Max

Patients

L(s)

Recruitment

Rate

m(s)

Cost per

Patient

c̄

50% 60% 70% 80% 90%

Sites Patients Sites Patients Sites Patients Sites Patients Sites Patients

Hungary - 60 1100 1.4 121 60 1073 60 1073 60 1073 60 1073 60 1073

Romania - 50 300 0.5 135 50 282 43 258 46 270 50 282 50 282

Colombia - 50 500 1.4 182 50 493 40 459 41 465 42 470 50 493

Sweden - 50 600 0.8 162 47 572 44 554 46 567 50 584 49 580

Argentina - 55 400 0.7 43 46 389 55 399 55 399 55 399 48 393

Latvia - 40 300 0.5 190 - - - - 29 243 32 261 40 290

Norway - 40 200 0.4 106 34 182 29 164 28 159 40 194 35 185

Turkey - 45 300 0.8 178 29 270 23 230 27 259 18 185 31 279

Lithuania - 35 300 0.7 180 26 279 26 279 23 262 26 279 30 292

United States 25 230 3100 1.5 700 25 626 25 626 25 626 25 626 25 626

China 15 85 1100 2.5 313 15 397 15 397 15 397 15 397 15 397

Iceland - 35 200 1.5 106 13 196 11 190 12 193 11 190 13 196

Japan 10 105 600 0.4 900 10 69 10 69 10 69 10 69 10 69

United Kingdom 10 115 1600 0.9 633 10 155 10 155 10 155 10 155 10 155

Poland - 90 1100 1.7 269 - - 8 217 - - 2 54 - 0

Taiwan - 40 300 0.6 241 2 16 - - - - - - - 0

... - - - - - - - - - - -

Total 60 1015 - - - 417 4999 399 5070 427 5137 446 5218 466 5310

Total cost ($ millions) - - - - - 12.4 12.6 12.7 12.9 13.1

Number of countries - 49 - - - 14 14 14 15 14

Realized PoS - - - - - 50.0 60.0 70.0 80.0 90.0
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4.4.2 The performance evaluation of other metrics

In this subsection, we detail the comprehensive simulation analysis of the selected meta-

heuristic algorithms, focusing on their search capabilities and robustness. The analysis aims

to provide insights into various critical metrics such as trial cost, geographical spread, site

utilization, and computational efficiency derived from the 100 simulations performed by each

algorithm in optimization problem (4.24) at the 90% PoS constraint.

Table 4.6 displays the summary statistics for the 100 simulations of each algorithm,

emphasizing key metrics like trial cost, number of countries and sites used, and computation

speed. Notably, the MFO algorithm found the lowest cost solution at $13.10 million and the

GWO algorithm had the highest cost at $15.60 million. Statistical analysis using the Kruskal-

Wallis test revealed no significant differences in the cost medians between the algorithms

(p-value = 0.20).

Table 4.6. Summary statistics of one hundred simulations of each algorithm when minimizing

for total cost ($ millions).

GWO HS MFO

Metrics Min - Max Mean (SD) Min - Max Mean (SD) Min - Max Mean (SD)

Total cost ($ millions) 13.23 - 15.60 13.80 (0.462) 13.20 - 14.10 13.50 (0.160) 13.10 - 15.20 13.70 (0.470)

Number of countries 9 - 14 11.9 (1.14) 16 - 28 20.5 (2.14) 10 - 16 14.0 (1.26)

Number of sites 282 - 470 386 (41.8) 408 - 473 442 (12.0) 340 - 532 458 (40.3)

Computation speed 206 - 904s 415s (156) 242 - 1328s 657s (235) 27 - 89s 60s (11.2)

Interestingly, despite the minor cost differences among the algorithms, HS exhibited the

most stable worst-case scenario, with costs ranging from $13.20 to $14.10 million. In terms

of geographical spread, as shown in both Table 4.6 and Figure 4.6, the HS algorithm rec-

ommended the broadest global reach, using on average 20.5 countries. This contrasts with

the more localized approaches of GWO and MFO, which averaged 11.9 and 14.0 countries,

respectively. HS’s plans consistently involved at least 16 countries, while GWO and MFO’s
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Figure 4.6. Global spread of 100 simulations for each algorithm when minimizing for total

cost ($ millions).

plans ranged from 9 to 14 and 10 to 16 countries, respectively, suggesting a narrower geo-

graphic focus. We observe the GWO is the sole algorithm to offer quality plans using 10 or

less countries.

The computational speed of the algorithms also varied, with MFO demonstrating the

fastest convergence, often completing simulations in under a minute (27 to 89 seconds).

Figure 4.7 illustrates the convergence behavior of each algorithm, highlighting that the best

solutions did not always correlate with the number of iterations. Only one out of 100 searches

reached the global optima. We do not have access to the time between each iteration, only

the total amount of time the search required, and provide Figure 4.8 to show the linear

relationship between convergence iteration and computation time for each algorithm.

In summary, while GWO generally found the most cost-effective solutions, HS provided
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Figure 4.7. Convergence analysis of each of the 100 simulations for each algorithm when

minimizing for total cost ($ millions) with a 90% PoS constraint highlighting the optimal

trajectory.

more diverse recruitment plans with a wider geographic reach, and MFO excelled in rapid

computation. Given their respective strengths and the practical runtime of at most 23

minutes for each algorithm, we recommend using multiple simulations of all three algorithms

for comprehensive decision-making. This approach offers decision-makers a diverse range of

options to choose from, tailored to specific trial requirements.

4.4.3 Minimizing the global spread of a recruitment plan

As mentioned, the lowest cost recruitment plan at the 90% PoS cost $13.10 millions found

by MFO, and may be the one to enact. This plan has the lowest total cost ($ millions) out

of the 300 simulations and used 466 clinical trial sites. However, a similar cost plan with

90% PoS plan was found by GWO at $13.23 millions with 385 sites, and 81 fewer. This begs

the question, which recruitment plan is the one to implement: which trade-off is worth it, 80

sites versus an extra of $0.13 millions. In this subsection, we analyze this trade-off further
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Figure 4.8. The relationship between overall computed time in minutes versus the stop

iteration.
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and compare the number of sites, number of countries, and total cost ($ millions) using the

three different optimization problems, Equations (4.24) - (4.26).

Figure 4.9 quantifies the total cost in millions of dollars on the vertical axis and enu-

merates the number of involved sites on the horizontal axis. The asterisk-marked solutions

optimize (4.24), the square solutions optimize (4.25), and the open-circle solutions indicate

an emphasis on minimizing the number of sites (4.26). When we seek to minimize the num-

ber of sites, plans were found with under 250 sites used, but they cost more compared to the

asterisk shaped solutions ranging from $16 to $25 millions (Figure 4.9). If minimizing sites

escalates costs, a decision must be made whether to choose the plan with less global roll out

or favor a slightly increased number of sites for an overall total cost ($ millions) reduction.

Similarly, Figure 4.10 quantifies the cost on the vertical axis and the number of countries

on the horizontal axis. We observe that plans that minimize the total number of countries

required cost significantly more, but there exists plans that could also use a minimal spread

of only 4 countries. Consequently, metaheuristics provide several design options for the user.

Figure 4.9. Difference between optimizing for number of sites or total cost ($ millions).
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Figure 4.10. Difference between optimizing for number of countries ($ millions).

4.4.4 Clusters of solutions

Our results demonstrated that metaheuristics can tackle complex optimization problems and

find optimal recruitment plans for the global clinical trial recruitment plan that meet the

strict constraints, well under the budget; however, the optimal plans or designs can have

noticeably different numbers of countries and varying numbers of sites within each country.

Such a finding can be advantageous because it provides not one but several options to the

pharmaceutical company or companies conducting the trials. This included presenting a cost-

benefit analysis at a different PoS and also an analysis of the global spread of the solutions.

Some of these recruitment plans were very similar, differing in only a few countries. In

this subsection, we analyze clusters of solutions. This first involves determining the proper

clustering method and then the optimal number of clusters. Once we have identified the

optimal number of clusters using these methods, we can proceed to select the recruitment

plan that has the lowest cost. This plan represents the most cost-effective strategy within

each cluster. By presenting these selected plans from each cluster, the decision-making team
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will have a diverse set of cost-effective options that cover different scenarios or strategies

in the global recruitment context. This approach ensures a comprehensive and efficient

exploration of the solution space, providing valuable insights for strategic planning.

The popular clustering method, k-means, is not suitable for our problem (Swarndeep Saket

and Pandya 2016). This is because the mean of various recruitment plans does not work

well. For instance, if one plan used 20 sites in China and 0 sites in Lithuania, and we com-

pare it to a plan that used 0 sites in China and 20 sites in Lithuania, it is not guaranteed

that a plan with 10 sites in China and 10 sites in Lithuania will still be an acceptable re-

cruitment plan. Instead, we decide to use PAM which stands for partition around medoids

and searches for the plans located in the center of different clusters (Reynolds et al. 2006,

Schubert and Rousseeuw 2019). We use the version of PAM implemented in the cluster R

package (Maechler et al. 2022).

Now that we know our clustering method, we have to make a decision on the optimal

number of clusters. One effective approach is to utilize the silhouette method which as-

sesses how similar each recruitment plan is to its own cluster compared to other clusters

(Rousseeuw 1987). By calculating the silhouette score for a range of cluster numbers, we

can identify the number of clusters that maximizes the average silhouette score, indicating

a good balance between and within clusters (Shahapure and Nicholas 2020). We used the

R package factoextra which calculates the silhouette scores using the PAM method for a

range of total number of clusters (Kassambara and Mundt 2017). When applied to our data

set, the silhouette method recommended using two clusters, which is good because it will

hopefully give a clear distinction between clusters of recruitment plans and also should not

overwhelm the clinical trial decision making team.

We present the lowest cost solution found from the two clusters in Table 4.7. The two

lowest cost solutions from each cluster were from the GWO and MFO algorithms respec-

tively. We observe many similarities between the plans, with the main difference being only

5 countries differed significantly. This may signify the overlapping countries between the

81



two clusters’ best plans are vital to the recruitment plan. The non-overlapping countries of

Latvia, Norway, Turkey, Lithiuana, and Poland come at a tradeoff. It appears that Poland

can account for recruitment in all four of these countries, and may be worthwhile to use

Cluster 1’s plan despite the $200,000 increase in total cost. Table 4.8 showcases the separa-

tion of algorithms’ solutions into different clusters. When we analyze two clusters, the HS

algorithm only has solutions in one, and MFO mostly in one. The GWO algorithm provides

solutions in both clusters, and may be another reason to use multiple algorithms during the

search process. Similarly, the HS algorithm does not give solutions to many clusters like

Cluster 4 in the second scenario and Clusters 5-8 in the third clustering scenario using 8

clusters (Figure 4.8).

4.5 Multiple objective optimal global designs

In practice, clinical trials likely have several objectives, and there may not be equally im-

portant. In this section, we discuss how to design a global clinical trial a trial when there

are multiple objectives in the study. We consider, as examples, three primary objectives: (1)

minimize the total cost ($ millions) of the clinical trial, (2) minimize the number of countries

involved, and (3) minimize the number of clinical trial sites. This multiple objective mini-

mization problem can be formulated as in Equation 4.28 below. If objective 2, the number

of countries is to be maximized rather than minimized, it can be represented as f2 × −1.

In this section, we will compare different computational methods to construct Pareto fronts

and use metrics, like hypervolume to select and implement a multiple objective metaheuristic

algorithm to find an optimal clinical trial recruitment plan.
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minimize: (f1, f2, f3) (4.28)

subject to: P (n, T, N̄) ≥ 90% PoS‘

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, t) ≤ L(s) s = 1, 2, .., S

where: f1(Ns) = C(T, N̄ , C̄, c̄, Q̄) Total cost

f2(Ns) = ΣS
s=1(Ns > 0) Number of countries

f3(Ns) = ΣS
s=1(Ns) Number of sites

(4.29)

4.5.1 Weighted sum

Our initial exploration to create the Pareto front is with the weighted sum method. We

transform the multiple objective problem into a single objective by assigning a weight to

each objective function and optimizing for the sum of these weighted objectives. We then

use the same single objective metaheuristics we used in Section 4.2.5. The weights assigned

to the objectives are w1, w2, and w3, respectively, and they represent the relative importance

of each of the objectives in the optimization problem. For example, w1 = 50% for preference

in total cost ($ millions), w2 = 40% for preference in minimizing the number of countries,

and w3 = 10% for preference in minimizing the number of sites. By systematically varying

the weights for the different objectives, we were able to explore a wide range of solutions

corresponding to a Pareto front for the multiple objective optimization problem effectively

using the hypervolume values.

First, we considered the two dimensional weighted sum optimization problem, (4.30) op-

timizing for f1, total cost ($ millions), and f2, number of countries, only. We operationalized

this method across a spectrum of fifty different weight combinations, ranging from 0 to 1
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in increments of 0.02. This narrow sampling allowed us to obtain a birds eye view of the

weighted sum approach and its consequent impact on the Pareto front. Subsequent single-

objective optimizations were performed to procure the optimal solutions for each weight

set. Ultimately this created a set of solutions from which we can derive the Pareto front

represented by the connected line in Figure 4.12. The solution set demonstrated a notable

level of effectiveness, as indicated by its normalized hypervolume value of 0.925. This high

score suggests comprehensive coverage of the solution space and is evidenced by our previ-

ous analyses. The value with the largest individual hypervolume had a value of 0.845 and

represented a design costing $18.3 millions using 6 countries and 281 sites, signified by the

larger sized point in Figure 4.30.

minimize: w1 ∗ f1 + w2 ∗ f2 (4.30)

subject to: P (n, T, N̄) ≥ 90% PoS‘

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, t) ≤ L(s) s = 1, 2, .., S

where: f1(Ns) = C(T, N̄ , C̄, c̄, Q̄) Total cost

f2(Ns) = ΣS
s=1(Ns > 0) Number of countries

We then ran the procedure for three dimensions and solved the weighted sum problem

in (4.31, which) now additionally include the number of sites, f3. This time, we used a step

size of 0.1 between weight combinations for a total of 121 combinations. The solution set

demonstrated a notable level of effectiveness, as indicated by its normalized hypervolume

value of 0.871. The decrease in the hypervolume value when moving from two to three

dimensions can be attributed to the increased complexity of the solution space. With an

additional objective (number of sites), the optimization problem becomes more challenging,

and it’s harder to find solutions that perform exceptionally well across all objectives. This

large normalized hypervolume still suggests comprehensive coverage of the solution space.
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Figure 4.11. Weighted sum results to minimize the total cost ($ millions) and number of

countries.

The value with the largest individual hypervolume had a value of 0.781 and represented a

design that would cost $16.8 millions, used 7 countries, and used 250 sites.

minimize: w1 ∗ f1 + w2 ∗ f2 + w3 ∗ f3 (4.31)

subject to: P (n, T, N̄) ≥ 90% PoS‘

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, t) ≤ L(s) s = 1, 2, .., S

where: f1(Ns) = C(T, N̄ , C̄, c̄, Q̄) Total cost

f2(Ns) = ΣS
s=1(Ns > 0) Number of countries

f3(Ns) = ΣS
s=1(Ns) Number of sites
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Figure 4.12. Weighted sum results to minimize three objectives: total cost ($ millions),

number of countries, and number of sites.

4.5.2 Epsilon constraint

We next used the epsilon constraint method to create a Pareto front. This method minimizes

one objective while constraining the rest. Again, we first considered two objectives, minimize

f1, total cost ($ millions) and constrain only f2, the number of countries. The metaheuristic

search process begins at the upper bound using all 49 countries. When minimizing for f1,

we first implemented a strict constraint on the number of countries. We attempted to search

for the optimal cost plan for each individual number of countries i.e. f2 = s, s = 4,5,.., 49,

totaling 45 separate optimization functions. We first implemented the death penalty for a
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constraint violation at a value of 1e24, much higher than either the total cost ($ millions)

and number of countries, so the penalty has no affect on the search other than rendering

a solution useless and not worthwhile. With this implementation, the metaheuristics had

difficulty finding a feasible solution. For this reason, we constructed an adaptive penalty

as discussed in Section 2.3.1 to guide the recruitment plan towards the desired number of

countries. The infeasible recruitment plans are penalized according to the absolute value of

the difference between the countries currently in use and the specific constraint. We used

a penalty of magnitudes smaller than the death penalty, but still larger than the objective

values, 1e18, multiplied by the absolute difference. For instance, say we are constraining all

designs to be for 10 countries. The infeasible recruitment plan which uses 12 countries will

be penalized 2 × 1e15 and the infeasible recruitment plan which uses 18 countries will be

penalized 8× 1e15. Doing so guide to a solution with 10 countries. The adaptive penalty is

smaller than the death penalty, and the objective function is still able to be guided towards

feasible solutions. Using this method to optimize (4.32), the overall hypervolume from the

Pareto front seen in Figure 4.13 is 0.925, signifying again good coverage. The maximum

individual normalized hypervolume had a value of 0.745 and was very similar to the maximum

individual in the optimization for the two objective problem constructed by the weighted

sum and used $18.3 millions and 6 countries and 289 sites.
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minimize: f1 (4.32)

subject to: P (n, T, N̄) ≥ 90% PoS‘

f2 = s s = 4, 5, ..., 49

f3 ≤ ϵ2

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, t) ≤ L(s) s = 1, 2, .., S

where: f1(Ns) = C(T, N̄ , C̄, c̄, Q̄) Total cost

f2(Ns) = ΣS
s=1(Ns > 0) Number of countries

f3(Ns) = ΣS
s=1(Ns) Number of sites

Figure 4.13. Epsilon constrained 2d with an adaptive penalty to search for the optimal

recruitment plan for the exact number of countries. ($ millions).

We set up a similar epsilon constrained method for three dimensions seen in (4.33). Here,

we relaxed the restriction on f2, the number of countries, to be less than 9, and looked for
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solutions with under 275 sites. We applied the same penalty to f2, 1e18, and then a penalty

of smaller magnitude for any violation of f3, 1e15, again multiplied by the absolute difference

between the value currently used and the specified constraint. Figure 4.14 shows the values

found from this search and the three dimensional Pareto front marked by the X’s. Many

solutions violated the constraint. The normalized hypervolume found by the Pareto front

here was 0.84 with a maximum individual value of 0.774 which represented a plan which

used $14.8 millions, 8 countries, and 264 sites.

minimize: f1 (4.33)

subject to: P (n, T, N̄) ≥ 90% PoS‘

f2 ≤ 9

f3 ≤ 275

Hs ≤ Ns ≤ Us s = 1, 2, .., S

n(Is, t) ≤ L(s) s = 1, 2, .., S

where: f1(Ns) = C(T, N̄ , C̄, c̄, Q̄) Total cost

f2(Ns) = ΣS
s=1(Ns > 0) Number of countries

f3(Ns) = ΣS
s=1(Ns) Number of sites

4.5.3 Multiple objective metaheuristics

We then used the popular NSGA-II algorithm implemented in the mco R package to opti-

mize the original multiple objective optimization problem, (4.28) and also its two-dimensional

equivalent only minimizing total cost ($ millions) and the number of countries. We acknowl-

edge, just like the single objective optimization problem, there are many other multiple

objective R packages which can have varying results and require further testing including

caRamel, ecr, mopsocd, and rmoo.
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Figure 4.14. Epsilon constrained 3d with an adaptive penalty to search for the optimal

recruitment plan for the exact number of countries. ($ millions).

4.5.3.1 Convergence properties

Similar to section 4.3, we preliminarily analyze the convergence stagnation properties in order

to make sure we run the metaheuristics in an optimal way without using worthless iterations

and extra computation time. The convergence stagnation analysis enables us to decide when

an algorithm is finished or near finished. In single objective optimization, we analyzed the

iterative improvement in the single outcome and quantified it by percentiles of the length

of stagnation. Rather in multiple objective optimization, we can measure the generative
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improvement in hypervolume between each generation’s Pareto front. The mco R package

has an input for the mco::nsga2() function that allows storage of previous populations,

e.g. setting generations to 1:50 will save each generation’s population. In Figure 4.15,

we analyzed the generational improvement of every 100 generations over 50,000 computed

from 20 parallel simulations optimizing the three-dimensional problem at otherwise default

settings in the mco R package. Each simulation took around 15 minutes and quickly reached

a near peak hypervolume before the 10,000th generation. We do still see improvement up to

the 45,000th generation, and the computation time is not infeasible, so we elect to perform

100 simulations at 50,000 generations.

Figure 4.15. Multiple objective results for the Pareto front and history of 50,000 generations

for the three-dimensional problem of the nsga2 in the mco R package.

4.5.3.2 Pareto front results and history

We present in Figure 4.16 the results from the two-dimensional optimization. Interestingly,

the population converged to only two solutions, namely 11 countries costing $13.4 millions
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using 377 sites and a solution using 12 countries costing $13.2 million and 365 sites. This

has a hypervolume of 0.788, less than the previous two methods. Further, we present in

Figure 4.17, the historical trajectory of the NSGA-II search from the mco package. We plot

the solutions from generation 1 to 50,000, and the Pareto front is represented by the orange

dots. The normalized hypervolume of this Pareto front was 0.816. The individual with the

largest normalized hypervolume had a value of 0.788 and was the plan which spent $16.0

millions, used 7 countries and 246 sites.

Figure 4.16. Two-dimensional multiple objective results for the Pareto front after 50,000

generations for the two-dimensional problem of the nsga2 in the mco R package.

4.5.4 Final Pareto front

So far, in this section, we have used three methods to construct two- and three-dimensional

Pareto fronts. Each gave normalized hypervolumes close to 1, signifying good coverage of
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Figure 4.17. Multiple objective results for the Pareto front and history of 50,000 generations

for the three-dimensional problem of the nsga2 in the mco R package.

the solution space, and each gave different results when looking at the point with the largest

hypervolume. We close by mentioning how we have presented many different methods to

create a Pareto front. The tools we have used to find optimal results are robust to more

than three objectives, like the stagnation calculations, Pareto front, and the hypervolume.

To select the ”optimal point” one ultimately has to make a decision. We combine each result

created from the multiple objective optimization to perform a complete Pareto front analysis

and include all of our single objective optimization results too. This resulted in 2,222 unique

solutions out of 2,379. The overall hypervolume of the combined Pareto front is 0.873, larger
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than any of the individual methods. The individual with the largest normalized hypervolume

was the best from the mco multiple objective optimization. However, we have shown that

this does not necessarily make it the best solution to implement. Other factors must be

taken into account which real life decision makers can benefit from using the robust amount

of recruitment plans created by the population-based metaheuristics. The usage of these

algorithms are powerful for interpretability and require a skilled user behind them to extract

the best data available. Multiple objective optimization is increasingly growing with many

areas for future research (Coello Coello et al. 2020). We recognize the solutions created

in this chapter are currently used to design worldwide clinical trial designs with multiple

objectives and metaheuristics using the PG model for patient recruitment.
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Table 4.7. Recruitment plans for separate clusters found by partitioning around medoids.

Constants Clusters

Country

Min

Sites

H̄

Max

Sites

Ū

Max

Patients

L(s)

Recruitment

Rate

m(s)

Cost per

Patient

c̄

Cluster 1 Cluster 2

Sites Patients Sites Patients

Hungary 0 60 1100 1.4 121 60 1073 60 1073

Romania 0 50 300 0.5 135 50 282 50 282

Colombia 0 50 500 1.4 182 39 453 50 493

Sweden 0 50 600 0.8 162 50 584 49 580

Argentina 0 55 400 0.7 43 52 397 48 393

United States 25 230 3100 1.5 700 25 626 25 626

China 15 85 1100 2.5 313 15 397 15 397

Iceland 0 35 200 1.5 106 12 193 13 196

Japan 10 105 600 0.4 900 10 69 10 69

United Kingdom 10 115 1600 0.9 633 10 155 10 155

Latvia 0 40 300 0.5 190 - - 40 290

Norway 0 40 200 0.4 106 - - 35 185

Turkey 0 45 300 0.8 178 - - 31 279

Lithuania 0 35 300 0.7 180 - - 30 292

Poland 0 90 1100 1.7 269 53 1093 - -

... - - - - - - - - -

- -

Total 60 1015 - - - 376 5322 466 5310

Total cost ($ millions) - - - - - 13.3 13.1

Number of countries 4 49 - - - 11 14

Realized PoS - - - - - 90.6 90.0

Algorithm - - - - - GWO MFO
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Table 4.8. Separation of metaheuristic algorithms into 2, 4, and 8 recruitment plan clusters.

GWO HS MFO GWO HS MFO GWO HS MFO

Cluster 1 62 100 92 Cluster 1 33 12 26 Cluster 1 10 10 17

Cluster 2 38 0 8 Cluster 2 28 54 22 Cluster 2 10 50 16

Cluster 3 6 34 40 Cluster 3 6 28 37

Cluster 4 33 0 12 Cluster 4 16 12 20

Cluster 5 24 0 4

Cluster 6 17 0 2

Cluster 7 9 0 8

Cluster 8 8 0 6
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CHAPTER 5

Conclusions

In this dissertation, we proposed metaheuristics to solve large scale complex optimization

problems in clinical trials. We demonstrated the flexible techniques using two real trials. The

first was to find different types of optimal sampling times for a longitudinal PKPD study

under various user-specified constraints to ascertain effectiveness of lithium to treat bipo-

lar patients. The second application was to develop efficient recruitment multiple-objective

plans for a worldwide clinical trial subject to a set of different types of user-specified con-

straints. The algorithms were able to solve such complex problems with two-, three-, and

four objectives using a robust metric. We also showed a method to determine the time and

amount of stagnation in the algorithms when solving a single and multiple objective problem.

We provided justifications for the convergence properties of the algorithms, so time can be

implemented as a user-defined limit when computation is performed.

The next steps are to integrate this knowledge into software and explore other statistical

models and optimization methods. PFIM has recently included GA and PSO into the R

software package, but it still lacks the ability for finding Ds−optimal and multi-objective

optimal designs (Mentré et al. 2023). The current recruitment planning software package

uses certain performance metrics from this work and functions from metaheuristicOpt. In

practice, how metaheuristics are implemented depends on the computing power allotted.

In turn, the computing time determines the length of the search time and the number of

simulations, before the decision on which algorithm(s) to use is made.

There are a few closing remarks and cautionary notes. First, there are many metaheuristic
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algorithms and clearly we did not even attempt to use and compare performances with many

of them. This implies that there is no guarantee the algorithms and the implementations

we used offered the best solutions or computation time. However, they did provide solutions

that meet or nearly meet all the constraints. The best algorithm should be the one that has

been well tested for solving many complex optimization problems and came up consistently

top or near the top.

Second, this work is developed for large clinical trials, and it is unclear if and whether

the results will hold up for other types of trials or trials with small sample sizes. However,

because metaheuristic algorithms are fast, such questions can be answered via simulations.

Running a single metaheuristic algorithm repeatedly to ascertain the optimum can be risky

business since different metaheuristic algorithms can produce different optimum. Hence

several different types of algorithms should be run to ensure the optimum found by each

algorithm are about the same. We also remind the reader that the tuning parameters in

various metaheuristic algorithms can usually be tuned for better performance if the algorithm

is not performing well. The irace R package has a focus on automatic tuning of parameters

in certain metaheuristics. irace can be used to automatically create metaheuristics by using

particular elements from various ones (Bezerra et al. 2015). The potential of these advanced

approaches is substantial and warrants further study.

In conclusion, our study has provided substantial evidence supporting the use of meta-

heuristic algorithms for tackling complex real world optimization problems. Even though

we used metaheuristics for designing global trials and pkpd studies, they are clearly not

limited to such applications. They also have been used to solve other statistical problems,

like estimating model parameters or best subset variables selection. Metaheuristics are now

widely used in medical diagnosis, predicting disease progression, and in the manufacture

industry, with no end in sight. We hope that our work will stimulate greater interest in ap-

plying nature-inspired metaheuristics to solving challenging problems in public health and

the world herein is a useful starting point for further research in metaheuristic and how they
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can be usefully applied to solve challenging optimization problems in biostatistics.
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Valencia-Rodŕıguez, D. C. and C. A. C. Coello (2023). Influence of the number of connections

between particles in the performance of a multi-objective particle swarm optimizer. Swarm

and Evolutionary Computation 77, 101231.

Van Thieu, N. and S. Mirjalili (2023). MEALPY: an open-source library for latest meta-heuristic

algorithms in Python. Journal of Systems Architecture 139, 102871.

Verma, S., M. Pant, and V. Snasel (2021). A comprehensive review on NSGA-II for multi-objective

combinatorial optimization problems. IEEE Access 9, 57757–57791.

Vivekanandan, T. and N. C. S. N. Iyengar (2017). Optimal feature selection using a modified

differential evolution algorithm and its effectiveness for prediction of heart disease. Computers

in biology and medicine 90, 125–136.

120



Walters, S. J., I. Bonacho dos Anjos Henriques-Cadby, O. Bortolami, L. Flight, D. Hind, R. M.

Jacques, C. Knox, B. Nadin, J. Rothwell, M. Surtees, et al. (2017). Recruitment and retention

of participants in randomised controlled trials: a review of trials funded and published by the

United Kingdom Health Technology Assessment Programme. BMJ Open 7, e015276.

Wang, Q. (1997). Using genetic algorithms to optimise model parameters. Environmental Modelling

& Software 12 (1), 27–34.

Whitacre, J. M. (2011a). Recent trends indicate rapid growth of nature-inspired optimization in

academia and industry. Computing 93, 121–133.

Whitacre, J. M. (2011b). Survival of the flexible: explaining the recent dominance of nature-inspired

optimization within a rapidly evolving world. Computing 93, 135–146.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1 (6), 80–83.

Williford, W. O., S. F. Bingham, D. G. Weiss, J. F. Collins, K. T. Rains, and W. F. Krol (1987). The

“constant intake rate” assumption in interim recruitment goal methodology for multicenter

clinical trials. Journal of Chronic Diseases 40 (4), 297–307.

Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation 1 (1), 67–82.

Xiong, N., D. Molina, M. L. Ortiz, and F. Herrera (2015). A walk into metaheuristics for engineering

optimization: principles, methods and recent trends. International Journal of Computational

Intelligence Systems 8 (4), 606–636.

Xue, B., M. Zhang, W. N. Browne, and X. Yao (2015). A survey on evolutionary computation

approaches to feature selection. IEEE Transactions on Evolutionary Computation 20 (4), 606–

626.

Yacobi, S. and A. Ornoy (2008). Is lithium a real teratogen? What can we conclude from the

prospective versus retrospective studies? A review. Israel Journal of Psychiatry and Related

Sciences 45 (2), 95.

Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In J. R. Gonzalez, D. A. Pelta,

C. Cruz, G. Terrazas, and N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010), Volume 284. Springer.

121



Yang, X.-S. (2012). Swarm-based metaheuristic algorithms and no-free-lunch theorems. Theory and

New Applications of Swarm Intelligence.

Yang, X. S. (2020). Nature-Inspired Optimization Algorithms. Academic Press.

Yang, Z., X. Cai, and Z. Fan (2014). Epsilon constrained method for constrained multiobjective

optimization problems: some preliminary results. In Proceedings of the companion publication

of the 2014 annual conference on genetic and evolutionary computation, pp. 1181–1186.

Zavala, G. R., A. J. Nebro, F. Luna, and C. A. Coello Coello (2014). A survey of multi-objective

metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimiza-

tion 49, 537–558.

Zhang, B., Q.-k. Pan, L.-l. Meng, C. Lu, J.-h. Mou, and J.-q. Li (2022). An automatic multi-

objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent

sublots. Knowledge-Based Systems 238, 107819.

Zhong, J., X. Hu, J. Zhang, and M. Gu (2005). Comparison of performance between different

selection strategies on simple genetic algorithms. In International conference on computational

intelligence for modelling, control and automation and international conference on intelligent

agents, web technologies and internet commerce (CIMCA-IAWTIC’06), Volume 2, pp. 1115–

1121. IEEE.

Zhu, W. and W. K. Wong (2001). Bayesian optimal designs for estimating a set of symmetric

quantiles. Statistics in Medicine 20, 123–137.

Zitzler, E., D. Brockhoff, and L. Thiele (2007). The hypervolume indicator revisited: On the

design of pareto-compliant indicators via weighted integration. In Evolutionary Multi-Criterion

Optimization: 4th International Conference, EMO 2007, Matsushima, Japan, March 5-8,

2007. Proceedings 4, pp. 862–876. Springer.

Zitzler, E. and L. Thiele (1998). Multiobjective optimization using evolutionary algorithmsa com-

parative case study. In International Conference on Parallel Problem Solving from Nature,

pp. 292–301. Springer.

122


	Preamble
	Introduction
	Aims
	Outline of the dissertation
	What are metaheuristics?
	Optimal designs to help patients with bipolar disorder
	Optimal designs for global clinical trial recruitment

	Nature-inspired metaheuristic algorithms
	What are metaheuristics?
	Where are they used?
	How are they used?

	Examples of metaheuristics
	The Genetic Algorithm (GA)
	The Particle Swarm Optimization (PSO)
	The Grey Wolf Optimizer (GWO)
	The Harmony Search (HS)
	The Moth Flame Optimizer (MFO)

	Advanced topics in metaheuristics
	Constraint handling techniques
	Multiple objective optimization
	Tuning metaheuristics


	Project 1: Optimal sampling times for sustained-release lithium used by patients with bipolar disorder
	Background
	Optimal designs in PK/PD
	A nonlinear mixed effect model for lithium

	The proposed designs
	R programs

	Optimal sampling times for lithium
	Number of sampling points
	Convergence results of PSO
	D- and D_s-optimal designs
	Robust designs
	Multiple objective results


	Project 2: Optimal global clinical trial recruitment plans
	Background
	Poisson-gamma patient recruitment model
	Modeling unrestricted recruitment 
	Probability of success
	Restricted recruitment with caps on each country's number of patients
	Optimal trial design
	Objective functions for an optimal recruitment plan

	Algorithm selection and implementation
	Case study
	Speeds and qualities of different R packages
	Convergence criteria

	The global clinical trial case study and the results
	The trade-off between probability and cost
	The performance evaluation of other metrics
	Minimizing the global spread of a recruitment plan
	Clusters of solutions

	Multiple objective optimal global designs
	Weighted sum
	Epsilon constraint
	Multiple objective metaheuristics
	Final Pareto front


	Conclusions



