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Simultaneous observation of auroral 
substorm onset in Polar satellite global images 
and ground-based all-sky images
Akimasa Ieda1* , Kirsti Kauristie2, Yukitoshi Nishimura3,4, Yukinaga Miyashita5, Harald U. Frey6 , Liisa Juusola2, 
Daniel Whiter7, Masahito Nosé8, Matthew O. Fillingim6, Farideh Honary9, Neil C. Rogers9 , Yoshizumi Miyoshi1, 
Tsubasa Miura1, Takahiro Kawashima1 and Shinobu Machida1

Abstract 

Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial 
brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images 
(ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images 
(GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately 
poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study 
for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was 
operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible 
two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Fin-
land. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs 
revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the 
AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may 
be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results 
for the definition of substorm onset are discussed herein.

Keywords: Substorm, Auroral breakup, Aurora, Substorm onset, Global images, All-sky images

© The Author(s) 2018, corrected publication 2019. This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and 
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Introduction
A substorm refers to the explosive release of stored 
energy in the magnetotail (e.g., Akasofu 1977). It is nec-
essary to identify substorm onsets with an accuracy of at 
least a few minutes to determine the triggering mecha-
nism of the substorm, such as magnetic reconnection 
in the magnetotail. Substorm onsets have often been 
identified with a sudden auroral brightening in both 
satellite-based global images (GIs) and ground-based all-
sky images (ASIs). Thus, this sudden brightening should 
exhibit similar features in both GIs and ASIs. However, 

the shape of the observed sudden brightening actually 
differs between the two image types.

The substorm concept is a comprehensive understand-
ing of the auroral breakup phenomenon. Auroral breakup 
is used to refer to a sudden and intense increase in the 
brightness and motion of an aurora in the polar iono-
sphere (e.g., Elvey 1957; Akasofu 1963). Akasofu (1964) 
captured auroral breakup images using widely distributed 
ground all-sky cameras with a time resolution of 1 min. 
He found breakup-associated new features and termed 
them collectively as a substorm. In particular, he identi-
fied the stage in which the sudden auroral brightenings 
are wide in longitude as initial brightening (IB; Fig. 1). It 
should be noted that the IB is recognized as wide when 
considered on a timescale of a few minutes. On much 
shorter timescales, the same IB may appear localized 
at the very beginning and expand quickly in longitude 

Open Access

*Correspondence:  ieda@nagoya-u.jp 
1 Institute for Space-Earth Environmental Research, Nagoya University, 
Nagoya, Aichi, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2385-1217
http://orcid.org/0000-0001-8955-3282
http://orcid.org/0000-0002-8423-6306
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-018-0843-3&domain=pdf


Page 2 of 18Ieda et al. Earth, Planets and Space           (2018) 70:73 

(e.g., Akasofu 2012). The auroral bead phenomenon (e.g., 
Liang et al. 2008) is presumably one such type of detailed 
feature of this wide brightening.

The IB does not merely imply the “first” observed 
brightening; it also describes the time of the substorm 
onset (e.g., Akasofu et al. 2010). We refer to this phenom-
enon as Akasofu IB (AIB) in the present study to avoid 
confusion. Accordingly, when a substorm onset is specifi-
cally identified on the basis of AIB, this type is referred 
to as “Akasofu substorm onset.” The AIB is followed by 
poleward expansion of the aurora a few minutes later 
in the original substorm model (Akasofu 1964). That is, 
Akasofu (1964) found that the auroral breakup phenom-
enon (e.g., Akasofu 1963) begins with a two-stage devel-
opment. The term “auroral breakup” has been used in 
various contexts. In the present study, we define auroral 
breakup as an auroral brightening immediately followed 
by poleward expansion. In this context, auroral breakup 
is delayed as compared with the Akasofu substorm onset.

In contrast to Akasofu (1964), the substorm onset is 
not recognized as being elongated along longitudes but 
is instead localized in statistical studies of GIs as fol-
lows. Frey et  al. (2004); Frey and Mende (2006) identi-
fied substorm onsets by “a clear local brightening of the 
aurora” within GIs observed by the far ultraviolet imager 
(FUV) onboard the Imager for Magnetopause-to-Aurora 
Global Exploration (IMAGE) satellite. Liou (2010) iden-
tified substorm onsets by “a sudden brightening of the 
aurora” within GIs observed by the ultraviolet imager 
(UVI) onboard the Polar satellite. Practically, Liou (2010) 
first identified an auroral bulge and then traced it back in 
time to identify its original instance and location. Thus, 
the sudden brightening appears to have been recognized 
as relatively localized and immediately followed by pole-
ward expansion.

This localized onset in GIs may be confused as corre-
sponding to the localized brightening observed in high 
time resolution ASIs of a few seconds. However, the lon-
gitudinally localized brightening in such ASIs expands 
quickly in the east–west direction (e.g., Liang et al. 2008) 
to form a longitudinally extended brighter aurora (i.e., 
AIB) before the poleward expansion. Because even such a 
longitudinally extended aurora is not mentioned in these 
onset identifications made with GIs, the initially less 
intense localized brightening in ASIs is not likely evident 
in GIs. In summary, substorm onsets in GIs are not likely 
to correspond directly to the Akasofu substorm onsets in 
ASIs.

Because GIs have limited sensitivities compared with 
ASIs, small or weak signatures are not evident in them. 
This widely established caveat implies that the time of the 
observed first brightening is expected to be delayed in 
GIs compared with that in ASIs. In contrast, the possible 

delay of GI onsets with respect to ASI onsets has been 
expected to be small, at less than ∼ 1 min (e.g., Liou 
2010). Moreover, substorm onsets in GIs are simultane-
ous or even earlier than Pi2 pulsations (Liou et al. 1999). 
Thus, the impact of the caveat on the identification of 
substorm onset time in GIs may not be significant.

This possible delay should be clarified by using simul-
taneous ASI and GI observations. The onsets often begin 
outside ASI field of view (e.g., Shiokawa et al. 2005; Yago 
et  al. 2007). Three fortunate cases with onsets inside 
the ASI field of view have been reported (Tagirov et  al. 
1998; Bristow et  al. 2003; Donovan et  al. 2006). Tagirov 
et al. (1998) and Bristow et al. (2003) recognized that the 
onsets are simultaneous between ASIs and GIs on a time-
scale of 1  min. In contrast, Donovan et  al. (2006) sug-
gested that a GI onset is delayed by a few minutes. This 
delay is comparable to the time resolution (2 min) of the 
IMAGE satellite FUV images and thus is not conclusive.

Because the Polar/UVI usually changes filters (e.g., 
Tagirov et  al. 1998; Bristow et  al. 2003), detailed com-
parisons with ASIs within 3  min are generally difficult. 
However, the Polar/UVI is sometimes operated under 
the fixed-filter mode. This mode enabled us to compare 
simultaneous GIs and ASIs with a practical time resolu-
tion of less than 1 min for the first time.

The purpose of the present study is to clarify the dif-
ference in the observed substorm onset between ASIs 
and GIs. Compared with GIs, the regional images from 
the Reimei satellite provide more consistent timing infor-
mation with ASIs (Frey et  al. 2010; Zou et  al. 2010). In 
the present study, “GIs” specifically refer to images with 
a practical spatial resolution of ∼ 50 km or slightly worse, 
such as Polar/UVI or IMAGE/FUV images. These GIs 
were used to construct extensive substorm onset lists 
(Frey and Mende 2006; Liou 2010) that are publically 
available. Thus, substorm onsets identified in these GIs 
are practically standard references and have been fur-
ther compared widely with other signatures, particularly 
with tail reconnection (e.g., Baker et al. 2002; Kepko et al. 
2004; Miyashita et  al. 2009). New results on substorm 
onsets with ASIs should be compared with past results 
with GIs to gain a comprehensive understanding. Thus, it 
is critical to clarify the difference between ASIs and GIs. 
In particular, we aim to understand the absence of the 
two-stage development in GIs.

Accordingly, we suggest that substorm onsets that are 
identified using solely GIs do not necessarily correspond 
to the Akasofu substorm onset in ASIs; rather, they cor-
respond to the subsequent poleward expansion. We will 
also show that traditional geomagnetic bays and mid-
latitude Pi2 pulsations correspond to poleward expan-
sion rather than Akasofu substorm onset. These results 
require an update of the interpretation of the time 
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difference between the substorm onset and reconnection 
signatures reported in previous studies.

Data set
Polar satellite global images
The Polar satellite ultraviolet imager (UVI) (Torr et  al. 
1995) provides global imaging of auroras. UVI GIs are 
captured in the N2 Lyman–Birge–Hopfield long (LBHL, 
∼ 170 nm ) and short (LBHS, ∼ 150 nm ) wavelengths 
and the OI ∼ 130.4 and ∼ 135.6 nm wavelengths. In 
particular, the LBHL images monitor the energy flux of 
precipitating keV-range electrons (e.g., Lummerzheim 
et  al. 1997) and thus can be compared with green-line 
(557.7  nm) ASIs during substorms. The LBHS images 
are less useful for this purpose because LBHS emissions 
are absorbed by the atmosphere en route to the imager, 
and this absorption depends on the average energy of 
precipitating auroral electrons. The UVI captures four or 
five images in each 184-s cycle. The filter and the expo-
sure period usually vary during this 3-min cycle; thus, the 
practical time resolution is usually 3 min for the same fil-
ter and exposure.

In the present study, the UVI captured images with a 
fixed wavelength (LBHL) and exposure mode at 36.8  s, 
which enabled a higher practical time resolution of 36.8 s 
than the usual 3  min. This 37-s resolution is expected 
to be marginally sufficient for resolving the two stages 
of the substorm onset sequence, which are presumably 
separated by a few minutes. The spatial resolution (i.e., 1 
pixel) of images ( 200× 228 pixels ) is ∼ 37× 31 km when 
viewed vertically from the Polar satellite with its apogee 
of 9RE . Practically, UVI images are smeared by approxi-
mately ± 5 pixels owing to satellite-spin-associated wob-
bling (e.g., Germany et al. 1998; Frank et al. 2001a). The 
emission altitude was assumed to be 120  km from the 
ground. Slant path brightness enhancements were cor-
rected by using an empirical model similar to a cosine 
curve (e.g., Germany et  al. 1998). The emission bright-
ness was converted to the energy flux of the precipitating 
electrons that cause auroras by using 130 R per mW m−2 , 
referring to the results of Galand and Lummerzheim 
(2004).

Figure 2a1 shows an example of the UVI image in the 
raw charged couple device (CCD) coordinates with an 

Original substorm onset (Akasofu 1964; 2010)

Time < 0
Before onset
Quiet arc

T = 0 ~ 5 min
Expansion phase stage 1
Initial brightening
T = 0: Substorm onset

T = 5 ~ 10 min
Expansion phase stage 2
Poleward expansion
(Auroral breakup)

a cb

Fig. 1 Original illustrations and figure captions of the Akasofu substorm onset (Akasofu 1964). Reprinted with permission from Elsevier. 
Clarifications are added on the bottom of the figure. The illustrated time sequence was proposed on the basis of 1-min resolution ground all-sky 
images (ASIs). Auroral emissions in the polar ionosphere above 60◦ magnetic latitude are illustrated. T = 0 min represents the time of the Akasofu 
substorm onset. a T < 0 : Quiet time. Quiet-time auroral arcs are shown. b T = 0 ~ 5 min: Akasofu initial brightening (AIB; i.e., Akasofu substorm 
onset), starting at T = 0 . Also called Stage 1 of the substorm expansion phase. This brightening is wide in longitude without poleward expansion. c 
T = 5 ∼ 10 min: Poleward expansion, starting at T = 5 . Also called Stage 2 of the substorm expansion phase. The two-stage development has also 
been illustrated in later studies (e.g., Akasofu et al. 2010) and is essential in this Akasofu substorm onset
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overlaid geographical map. The magnetic coordinates 
(Fig. 2a2) have often been used to show GIs in previous 
substorm studies. We calculated the magnetic latitude 
(MLAT) and longitude (MLON) in degrees and the mag-
netic local time (MLT) in hours of the modified magnetic 
apex coordinates (Richmond 1995) for a reference alti-
tude of 110 km using the IGRF-12 (Thebault et al. 2015) 
model.

All‑sky images at Muonio (65 MLAT)
The satellite images were compared with ASIs observed 
at Muonio (MUO: 64.6 MLAT, 105.2 MLON, 68.02◦N , 
23.53◦E ) in Lapland, Finland (e.g., Fig. 2b1 and b2). The 
red circle in Fig. 2b2 and a1 with a diameter of ∼ 1000 km 
roughly indicates the field of view of the imager. This 
intensified CCD all-sky camera is maintained by the 
Finnish Meteorological Institute (e.g., Syrjäsuo et  al. 
1998; Sangalli et al. 2011; Partamies et al. 2015).

We used the green-line (557.7  nm) images captured 
every 20  s with an exposure time of 1  s. Figure  2b1 
shows an example image in raw (CCD) coordinates. The 
512× 512 pixel images correspond to ∼ 1 km resolution 
overhead at an assumed emission altitude of 110 km. The 
geodetic coordinates (Fig.  2b2) have often been used to 
show ASIs in previous substorm studies.

Observations
Satellite‑based global images
Figure 3a shows the time sequence of Polar/UVI images 
in the MLT–MLAT polar coordinates. An auroral bright-
ening was first observed in the panel labeled in red at 
2128:07 UT, which is midpoint of the 36.8-s exposure 
time. The brightening was located around [23.2 MLT, 
64.6 MLAT] as indicated by the red circle. The time of 
the previous image was 2127:30 UT, just prior to the 
brightening event. We consider the average of these two 
times, 2127:49 UT, as the beginning of the auroral bright-
ening event.

This brightening appears to be localized at the begin-
ning of the event and was immediately followed by 
poleward expansion, as shown in later panels. These are 
typical signatures of auroral breakup, or substorm onset, 
in GIs (e.g., Liou et al. 2000; Frey et al. 2004). This result 
is also shown in the auroral keogram (Fig. 3b), where the 
onset at 2127:49 UT is marked by a solid vertical line. 
No other brightenings were evident before the onset, 
as also indicated by the average of the keogram data 
between 62 and 70 MLAT (Fig. 3c), particularly around 
3 min (dashed vertical line) before the onset. Because the 
possible two-stage development was not identified, it is 
unclear solely from the GIs whether this substorm onset 
is the Akasofu substorm onset.

Ground‑based all‑sky images
In contrast, AIB was observed in the ground ASIs (Figs. 4 
and 5) captured at the MUO station. Figure  4 shows 
the time sequence of full-time 20-s resolution images. 
Figure  5a shows three selected images that represent 
moments during the quiet time, initial brightening, and 
poleward expansion. A brightened auroral arc is evident 
in the 2126:20 UT image in Figs. 4 and 5a, but it is sub-
jective to determine precisely when it began. Tracing this 
arc back in time starting at 2126:20 UT, we determined 
that the arc brightening began at the 2125:00 UT image 
in Fig. 4. This detailed selection of the start time is mod-
erately supported by the auroral keogram (Fig. 5b) and by 
the auroral brightness near the onset location (Fig.  5c), 
which shows a small enhancement in its increase rate.

However, faint spots appear before 2125:00 UT in 
Fig.  4. In particular, a spot at (23.18 MLT, 64.6 MLAT) 
near the onset MLT in the 2124:00 UT panel may be 
another possible candidate for the start of the brighten-
ing. Thus, the selection of the 2125:00 UT image as the 
first brightening is subjective for approximately 1 min. 
The auroras show faint azimuthally separated structures 
near the onset MLT, e.g., 2124:40 UT and 2126:20 UT 
panels. These structures are presumably consistent with 
auroral beading (e.g., Donovan et  al. 2006; Liang et  al. 
2008), although their signals are weak in this particular 
event.

The first brightening identified above was centered at 
[23.2 MLT, 64.6 MLAT] in the 2125:00 UT image and 
spanned approximately between 22.8 and 23.6 MLT in 
the 2126:00 UT image. Because this brightening occurred 
simultaneously within a few minutes across a wide longi-
tude, it can be interpreted to be the AIB that was used to 
define the substorm onset by Akasofu (1964). It should be 
noted that we do not specifically require the AIB to be as 
wide as those illustrated in Akasofu (1964) and Akasofu 
et al. (2010), which span 4–6 h in MLT and would be typ-
ically too wide before the poleward expansion. Because 
the original images were captured at 20-s intervals, we 
assumed that the AIB began at 2124:50 UT, 10  s before 
2125:00 UT.

The brightened arc shows a small split at 23.1 MLT in 
the 2127:40 UT image, but the poleward expansion has 
not yet started in this image and in the keogram. The 
poleward expansion actually begins in the next image, 
at 2128:00 UT, when the bright part (22.8–23.5 MLT) of 
the auroral arc began to split in the northern direction. 
The resultant poleward arc expanded further poleward, 
as shown in the 2129:00 UT panel. We assumed that this 
poleward expansion began at 2127:50 UT, 10-s before 
2128:00 UT. An associated auroral brightening occurred 
simultaneously or in the previous image at 2127:40 UT, 
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depending on the subjectivity. Because this second 
brightening was followed immediately by the poleward 
expansion, it is considered in the present study to be an 
auroral breakup.

In summary, the AIB was identified at 2124:50 UT 
with a subjectivity of approximately 1 min. Mende et al. 
(2009) also reported that AIB can be too gradual to iden-
tify within ∼ 10-s accuracy. The increasing rate of auro-
ral brightness was approximately constant during the 
AIB (Fig.  5c). The poleward expansion was identified at 
2127:50 UT, which is delayed from the AIB by at least 
2 min and most likely 3 min. Thus, the two-stage devel-
opment was evident in the ASIs.

Comparisons of ground and satellite images
Figure 6 shows simultaneous comparisons of ground and 
satellite images. Figure 6a shows ground ASIs observed at 
MUO, projected in the geodetic coordinates. These ASIs 
were selected with 40–180 s separations to represent the 
observed instances (a1) before onset, (a2) at the start of 
the AIB, (a3 and a4) during the AIB, (a5) at the start of 
the poleward expansion, and (a6) during the poleward 
expansion.

Figure  6b shows the corresponding Polar UVI images 
for the same fixed area as that in Fig.  6a. Each image 
was selected to correspond to an ASI (Fig.  6a) within 
7 s. A comparison of Fig. 6a and b reveals the poleward 

a2 Satellite (Magnetic Coord.)

mW/m2

6

0

12

Polar/UVI
LBHL

19991207
2129:21

0 MLT
50 

MLAT

MUO
2129:205577

19991207

62 MLAT

68 MLAT

0 MLT

23 MLT

23.2
 MLT

20 120 220
Count

MUO
5577

19991207
2129:20

68.02
GLAT

MUO

23.53 GLON

20 120 220
Count

a1 Satellite (CCD Coord.)                                  b1 Ground (CCD Coord.)
Polar/UVI
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19991207
2129:21 UT

50 GLAT

b2 Ground (Geodetic Coord.)

FMI

10 deg elev.

Fig. 2 Example of simultaneous satellite-based global images and ground-based all-sky images. These images were observed at 2129 UT 
on December 7, 1999. a1 Polar satellite global image in the raw (CCD) coordinates with an overlaid geographical map. Auroral emission at 
ultraviolet 170 nm (LBHL) is shown. a2 The same satellite image as (a1) but in the magnetic coordinates (i.e., the modified APEX coordinates). b1 
Ground-based all-sky image observed at Muonio (MUO, 64.6 MLAT, 105.2 MLON, 68.02◦N , 23.53◦E ) in Lapland, Finland, in the raw (CCD) coordinates. 
Auroral emission at 557.7 nm (green-line) is shown. b2 The same ground image as (b1) but in the geodetic coordinates (the azimuthal equidistant 
projection), trimmed at the elevation angle of 5◦ . The dashed white lines indicate MLT and MLAT reference lines. The red line indicates the substorm 
onset MLT (23.2 h), from where auroral keograms were made later. The red circles in a1 and b2 indicate the field of view of the ground images for 
the elevation angle of 10◦ , corresponding to a diameter of ∼ 1000 km ( ∼ 9

◦ along latitudes) to the assumed emission altitude of 110 km
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expansion in the ASIs (a5 and a6) was simultaneously 
observed in the GIs (b5 and b6), although the GIs appear 
smeared by satellite-spin-associated wobbling. In con-
trast, the AIB in the ASIs (a2, a3, and a4) was not evident 
in the corresponding GIs (b2, b3, and b4).

These characteristics were also observed in the keo-
grams (Fig.  7), where slices of images at 23.2 MLT 
between 62 and 68 MLAT are shown. Again, poleward 
expansion was observed at about 2127:50 UT both in the 
(a) ASIs and (b) GIs. In contrast, the AIB (i.e., Akasofu 
substorm onset), which was observed at 2124:50 UT in 
the ASIs, was not evident in the GIs until the poleward 
expansion began.

In summary, the counterpart of the AIB was not evi-
dent in the GIs. Consequently, the observed first bright-
ening in the GIs corresponded to the second brightening 
in the ASIs (i.e., poleward expansion). Therefore, we sug-
gest that the substorm onsets in the GIs and ASIs rep-
resent different stages of substorms, particularly when 
these onsets are identified independently (e.g., Figs. 3 and 
4).

Solar wind and geomagnetic indices
Figure  8 shows the solar wind and geomagnetic indices 
obtained from the Operating Missions as Nodes on the 
Internet (OMNI) (King and Papitashvili 2005) 1-min res-
olution data. The north–south component of the inter-
planetary magnetic field (IMF) was weakly southward 
between 0 and −  3 nT from 2054 UT, or about 30  min 
prior to the AIB, to 2145 UT. The dawn–dusk component 
and the magnitude of IMF were relatively strong during 
this interval, at 6 nT duskward. The solar wind speed was 
relatively high at 600  km/s, although the plasma den-
sity was relatively low at 2/cm3 , resulting in a normal 
dynamic pressure at 2 nPa.

The geomagnetic condition was moderately disturbed 
during the 2-h period, as shown by the Kp index (3+ to 3) 
and SYM-H indices ( ∼ − 30nT ). This disturbed interval 
belonged to a co-rotation interaction region-type weak 
(peak ∼ − 40nT ) magnetic storm that began four days 
prior at around 9 UT on December 3, 1999 (not shown). 
The AL index began to develop at 2129 UT (Fig.  8), 1 
min after the poleward expansion, and 4  min after the 
Akasofu substorm onset in the ground ASIs (Fig.  7). 
The AL was − 127, − 128, and − 245 nT at 2127, 2128, 
and 2129 UT, respectively, and reached its peak value of 
− 355 nT at 2134 UT.

Negative bays in the ground magnetic field
Substorm onsets are also traditionally identified by using 
negative bays, positive bays, and Pi2 pulsations in ground 
magnetic field data. Figure 9 shows the negative bays with 
the 10-s resolution ground magnetic field data obtained 

from the International Monitor for Auroral Geomagnetic 
Effects (IMAGE) project (e.g., Viljanen et  al. 1995; Tan-
skanen 2009). Figure  9a shows the northward (X), east-
ward (Y), and downward (Z) components of all available 
data in the geomagnetic coordinates. The Kiruna station 
(KIR: 64.6 MLAT, 102.7 MLON) was located at 23.4 MLT 
at the time of the AIB (2124:50 UT, the first red line). This 
location was close (Fig. 9d) to the AIB centered at [23.2 
MLT, 64.6 MLAT]. However, no significant magnetic var-
iations were detected at KIR and at other stations at the 
time of the AIB.

In contrast, the poleward expansion (Figs. 4 and 5) that 
began at 2127:50 UT (the second red line) was accom-
panied by decreases up to ∼ 400 nT in the X compo-
nent. The negative bays began around 2128 UT at the 
KIR and MUO stations near the onset MLAT, where 
the bays weakened temporarily after 2129 UT, presum-
ably because the current center had moved poleward. 
The negative bay was more clearly observed just north 
( 65.2◦−65.8◦ : ABK and KIL) of the onset MLAT ( 64.6◦ ). 
Stations at higher latitudes ( 66.3◦−66.5◦ : AND and TRO) 
detected sharp negative bays 1 min later at 2129 UT, and 
detected the largest decrease ( ∼ 400 nT ) among all sta-
tions at 2130 UT.

These magnetic field data were used to infer the equiv-
alent electric current at an altitude of 110  km by using 
the method described in Juusola et  al. (2016). We first 
derived the two-dimensional maps (not shown) of the 
equivalent current and then focused on the KIR station 
meridian at 103◦ magnetic longitude, which was typically 
0.2 h east of the auroral onset MLT center at 23.2 h. Fig-
ure 9b shows the time evolution of the inferred equiva-
lent current intensity at this longitude. The equivalent 
current intensified around the time of the auroral pole-
ward expansion, at 2127:50  UT. This intensification 
began around the auroral onset MLAT, at 64.6◦ , and then 
expanded poleward; these results are consistent with the 
latitudinal dependences of the observed magnetic varia-
tions shown in Fig. 9a.

The major negative bay of ∼ 400 nT beginning at 2128 
UT in Fig. 9a is considered to be a traditional substorm 
onset signature in the present study. However, it should 
be noted that much smaller variations are visible when 
the vertical scale is changed (Fig.  9c). Decreases in X 
began at 2124 UT near the onset latitude, ∼ 15 nT at 
KIR and ∼ 20 nT at MUO, corresponding to the weak 
enhancement in the equivalent current intensity at 2124 
UT (Fig.  9b). These may be associated with the AIB 
(2124:50 UT about ± 1 min ), although it would be too 
weak to be identified conventionally as a substorm onset.



Page 8 of 18Ieda et al. Earth, Planets and Space           (2018) 70:73 

Positive bays and Pi2 pulsations
Figure 10 shows the 1-s resolution ground magnetic field 
data obtained through the Sub-Auroral Magnetometer 
Network (SAMNET) project (e.g., Yeoman et  al. 1990), 
where stations below 60 MLAT were selected. Positive 
bays in the X component were evident at HAN, NUR, and 
KVI stations near the onset MLT, at 23.2 h. These posi-
tive bays started at about 2128:50 UT, which is ∼ 1 min 
later than the poleward expansion but 4  min later than 
the Akasofu substorm onset.

Simultaneously, magnetic pulsations began at these sta-
tions. The peak-to-peak amplitude was approximately 3 nT 
with a periodicity of ∼ 50 s inside the Pi2 range, at 40–150 s. 
Thus, the midlatitude Pi2 pulsations were observed in asso-
ciation with the poleward expansion. Associated Pi2 pul-
sations were observed at other stations (GML, BOR, and 
YOR), although their beginnings were less clear.

It should be noted that we concentrated on Pi2 pul-
sations at midlatitudes, where no aurora was observed 
in the GIs (Fig.  3a). Such Pi2s represent global mag-
netic variations and thus have been traditionally used 
as a substorm onset indicator. At auroral latitudes, Pi2-
range variations may be observed at the time of the IB 
if the observatory is coincidentally located at the right 
place. However, the temporal and spatial variations of 
such auroral-latitude Pi2s are well correlated with local 
auroras (e.g., Rae et  al. 2009). Thus, the implications of 
such auroral-latitude Pi2s differ from the lower-latitude 
Pi2s. Although the global variation component may be 
included in the Pi2-range variation at auroral latitudes, 
its extraction is difficult in the presence of auroras.

In summary, the geomagnetic signatures of the substorm 
onset were observed, including the start of development 
in AL, negative bay, positive bay, and midlatitude Pi2 pul-
sation. Such signatures began at about 2128–2129 UT, 
which is 0–1 min after the poleward expansion at 2127:50 
UT but 3–4 min after the AIB at 2124:50 UT. Thus, these 
signatures do not likely correspond to the AIB; rather, they 
are more likely to be poleward expansion. The absence of 
significant geomagnetic responses to the AIB was also 
reported by Nishimura et  al. (2012), Lyons et  al. (2013), 
and Ieda et al. (2016). Lyons et al. (2013) further concluded 
that significant geomagnetic variations correspond to 
post-onset streamers from the poleward boundary of the 
auroral bulge. This detailed correspondence was difficult 
to confirm in this particular event, with the limited time 
resolution. Therefore, we conclude simply that significant 
geomagnetic variations correspond to poleward expansion.

Discussion
In the present case study, two distinct auroral bright-
enings were observed in ground ASIs, as expected: 
the AIB and the following poleward expansion a few 

During
AIB

AIB

Possible
brightening

Quiet

During
PEX

PEX

MUO

23 MLT 23.2
0 MLT

Muonio station / 5577        19991207

90                    MLON (deg)            114

65
64 MLAT

Fig. 4 Ground-based all-sky images (ASIs) near the substorm onset 
location on December 7, 1999. Auroral brightness at a wavelength 
of 557.7 nm (green-line) observed at Muonio (MUO) in Finland is 
shown. Time sequence of full-time-resolution (20-s) images from top 
to bottom in MLON–MLAT coordinates between 64 and 65 MLAT. The 
red circle indicates the location of MUO. The red line indicates 23.2 
MLT, the approximate location of the initiation of the Akasofu initial 
brightening (AIB) and the poleward expansion



Page 9 of 18Ieda et al. Earth, Planets and Space           (2018) 70:73 

minutes later. This two-stage development is consistent 
with the classic Akasofu substorm onset (Akasofu 1964) 
and presumably corresponds to two different physical 
mechanisms.

In contrast, the AIB, which was observed in the ASIs, 
was not evident in the GIs, as illustrated in Fig. 11. Con-
sequently, the identified first brightening in the GIs cor-
responded to the second brightenings in the ASIs (i.e., 
the poleward expansion). In this section, we discuss 
these differences between ASIs and GIs, including time 
delay, causes, implications for the onset definitions, and 
impacts on the reconnection timing.

Time delay of substorm onsets between ground 
and satellite images
In the present study, the substorm onset identified by 
using GIs was delayed from the ASI data by 3 min. This 
delay corresponds to the time difference between the AIB 
and the poleward expansion and thus corresponds to 
the duration of the first stage (Fig.  1b) of the substorm 
expansion phase in Akasofu (1964) of a few minutes. This 
Stage 1 often includes auroral rays (Akasofu 1964). We 
believe that auroral rays and auroral beads are different 
views of the same auroral structure and that both can be 

recognized as detailed features of a longitudinally wide 
brightening (i.e., AIB in Fig. 11).

The duration of the AIB in the ASIs was 2.5 min (Rae 
et al. 2009), a few minutes (Mende et al. 2009), and 7 min 
(Motoba et al. 2014) in previous case studies. The dura-
tion was 1–2  min on average and extended to 7  min in 
a statistical study (Nishimura et  al. 2016). Thus, large 
diversity occurs in the identified delays/durations 
( ∼ 1−7 min ). In the present discussion, we assumed that 
the time delay is typically a few minutes.

It is currently difficult to comprehensively under-
stand this diversity, although a clue may be that the AIB 
tends to have a short duration when it intensifies rapidly 
(Nishimura et  al. 2016). Practically, precursor brighten-
ings are often observed prior to the AIB (e.g., Ieda et al. 
2016). It is sometimes difficult to determine whether 
such a brightening is the AIB or a precursor, particularly 
when it does not decay significantly, leading to subjec-
tivity in the duration of the AIB. Substorm onsets with 
a delay/duration shorter than the time resolutions of the 
GIs would appear to be simultaneous between the ASIs 
and GIs. Even in such cases, the implications of observed 
onsets are presumably different between the ASIs and 
GIs.
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The delay of GI onsets from ASI onsets has been 
assumed to be small, at less than ∼ 1 min (e.g., Liou 
2010), without direct comparison of GIs and ASIs. Pi2s 
have been classical substorm onset signatures (e.g., Ros-
toker et al. 1980; Olson 1999; Nosé et al. 2012). GI onsets 
have been observed ∼ 1 min prior to Pi2s (Liou et  al. 
2000). This correspondence may verify that the delays of 
GI onsets from ASI onsets are small. However, the pre-
sent study and Ieda et al. (2016) suggest that major Pi2s 
are not likely associated with the Akasofu substorm 
onset, but rather with the poleward expansion later in 
the ASIs. Thus, the correspondence of GI onsets (i.e., 
poleward expansion) to Pi2s does not necessarily imply 
that the delays of GI onsets from ASI onsets are small. 
Rather, it suggests that the substorm onsets in the GIs 
are delayed with respect to the AIB in ASIs by more than 
that expected, depending on the duration of the AIB.

Causes of differences between ground and satellite images
Poleward expansion was observed in both ASIs and GIs. 
This sudden change appeared to be even more evident in 
the GIs (Figs. 6b and 7b) than in the ASIs (Figs. 6a and 
7a), indicating that the practical sensitivity of the GIs is 
sufficient to identify poleward expansion. In contrast, the 
AIB was not evident in the GIs, indicating that the sen-
sitivity of GIs is considerably less than that of ASIs for 
identifying the AIB.

These results suggest that the different responses 
between ASIs and GIs may depend on the latitudinal 
thickness of the auroras. Our interpretation is that the 
brightness of the aurora is underemphasized when the 
target is thinner than the spatial resolution of images. 
This underemphasis is attributed to the averaging of an 
area that includes both the thin aurora and the adjacent 
dark region. The AIB is less evident in GIs, presumably 
because it is thin in terms of the latitude range, particu-
larly at the beginning, compared with the spatial reso-
lution of GIs. Thus, its brightness would be reduced 
significantly by area averaging. In contrast, the poleward 
expansion includes a thickening of the bright aurora; 
thus, its brightness would be reduced at the begin-
ning but would not be reduced after the expansion has 
reached the spatial resolution of GIs. That is, the increase 
in brightness would be overemphasized in GIs when 
it begins to detect poleward expansion (i.e., auroral 
breakup).

Another possibility is that these different responses 
in ASIs and GIs may be attributed to the difference in 
wavelengths used to observe the auroras. The difference 
in wavelength did not result in significant differences in 
the brightness of the poleward expansion. However, it 
may contribute to difference in the brightness of the AIB. 
Both satellite (170 nm) and ground (557.7 nm) images are 
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Fig. 6 Comparison of a ground-based and b satellite-based auroral 
images on December 7, 1999. The time sequence of selected auroral 
images is shown from top to bottom. All images are projected to the 
same area in geodetic coordinates. a Ground-based all-sky images 
(ASIs; 557.7 nm) at the Muonio station (MUO) in Finland. These ASIs 
were selected to show the observed instances a1 during the quiet 
interval, a2 at the start of Akasofu initial brightening (AIB), a3–a4 
during AIB, a5 at the start of poleward expansion, and a6 during 
poleward expansion. b Global images (170 nm) taken by the Polar 
satellite ultraviolet imager (UVI). Each image was selected to form 
a pair with an ASI in a within 7 s. A comparison of a and b reveals 
that the longitudinally extended brightening (AIB) can be marginally 
observed in a2 and is evident in a3–a4 but not in b2–b4. In contrast, 
the brightening a5 that corresponds to the beginning of the 
poleward expansion was simultaneously observed in b5 
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expected to be sensitive to precipitating electrons in the 
keV range. Thus, the difference in wavelength likely did 
not contribute significantly to the difference in observed 
auroras if the onset was dominated by keV-range elec-
trons. However, precipitating electrons may belong to 
other energy ranges for the AIB. In such cases, the dif-
ference in wavelength may contribute to the different 
responses.

The AIB was not evident in the GIs in the present case; 
in other cases, the AIB may be sometimes visible in GIs 
depending on the conditions of auroras and cameras. 
However, the wide brightening is not explicitly included 
in identifications of substorm onset in GIs (e.g., Frey et al. 
2004; Liou 2010), although it is not explicitly excluded. 
Thus, the AIB has not been typically recognized in GIs 
thus far. The AIB would be difficult to recognize as a 
substorm onset (i.e., sudden brightening) in GIs, not 
only because its brightness is underemphasized, but also 
because the increase in brightness of the following pole-
ward expansion is overemphasized. With these assump-
tions, it may be sometimes possible to recognize a weak 
brightening in GIs as belonging to the AIB a few minutes 
prior to the major brightening (i.e., poleward expansion).

Clarifications of substorm onset definitions
We have inferred that the traditionally identified onset 
brightening in satellite GIs does not necessarily corre-
spond to the Akasofu substorm onset. Instead, it tends to 
represent the poleward expansion that follows a few min-
utes later (Fig. 11). Below, we discuss the reason why this 
interpretation has not been widely recognized.

Confusion regarding two different localized brightenings
Substorm onsets in GIs are traditionally identified by a 
localized brightening, which is labeled as auroral breakup 
(e.g., Frey et  al. 2004; Liou 2010). Note that the two-
stage development of the Akasofu model has not been 
required in these identifications, presumably because of 
the limited sensitivity of GIs. In contrast, this localized 
brightening in GIs is sometimes (e.g., Frank et al. 2001b; 
Morioka et al. 2014) specifically labeled as the (Akasofu) 
IB instead.

This confusion arises likely because it is not often rec-
ognized that the AIB (Akasofu 1964) is elongated along 
longitudes instead when considered on a timescale 
of a few minutes. This wide AIB may appear as local-
ized ( ≪ 1 MLT hour ) at the very beginning ( ∼ 10 s ) in 
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the ASIs (e.g., Liang et al. 2008) (Fig. 11). However, this 
weak aurora at the very beginning can be marginally rec-
ognized only on detailed inspection of ASIs; thus, it is 
expected to be barely detectable by GIs owing to the lim-
ited sensitivity and time resolution.

Moreover, such localized brightenings expand quickly 
in longitude, and the resultant wide aurora, sometimes 
including auroral beads, should be more evident than 
localized auroras. It is unlikely that the localized aurora 
at the very beginning was observed without observing 
the following brighter wide aurora. Thus, the observed 
localized brightening in GIs is unlikely to correspond to 
the localized brightening at the very beginning of the AIB 
in ASIs, at least in most cases.

As discussed above, the localized first brightenings in 
ASIs and GIs are not likely to represent the same phe-
nomenon. This difference has not been often appreci-
ated, likely also because both brightenings are referred 
to as “localized.” The first brightening in the GIs appears 
to be localized in wide-area images such as the 2128:07 
UT panel of Fig.  3, but the same brightening does not 
appears to be localized in expanded images such as that 
in Figs. 6b and 5. Thus, the term “localized” has different 
implications between ASIs and GIs (Fig.  11) depending 
on the size of the displayed area.

Confusion regarding expansion onset and expansion phase 
onset
As discussed above, localized brightening in GIs is some-
times confused as corresponding to the Akasofu sub-
storm onset. The same confusion arises likely because 
“expansion phase onset” sounds like the start of poleward 
expansion. One such example is a statement of (McPher-
ron 2016): “The instant at which the aurora begins to 
expand poleward is called the onset of the expansion 
phase of the auroral substorm (Akasofu 1964).” This rec-
ognition is inconsistent with Akasofu (1964), as explained 
below.

A substorm is traditionally divided into three phases: 
the growth phase, the expansion phase, and the recov-
ery phase. Substorm onsets refer to the beginning of the 
expansion phase (e.g., Baumjohann and Treumann 2012). 
The term “substorm onset” may be confused with the 
start of the growth phase and is often explicitly referred 
to as the “substorm expansion phase onset,” which is 
the beginning of the expansion phase, as this term itself 
defines.

The expansion phase is defined in Akasofu (1964) to 
begin with Stage 1 (AIB, i.e., without poleward expan-
sion), followed by Stage 2 (poleward expansion) a few 
minutes later (Fig.  1). Thus, confusingly, there is no 
poleward expansion at the beginning of the expansion 
“phase” onset in the Akasofu substorm model. That is, 
“the instant at which the aurora begins to expand pole-
ward” does not correspond to the expansion “phase” 
onset by definition.

Initial brightening or poleward expansion as a substorm 
onset
The two-stage development in the original definition of 
substorm onset has not been emphasized in later studies. 
For example, Rostoker et al. (1980) summarized various 
signatures to identify substorm onsets to include auroral 
arc brightenings, negative bays, positive bays, and Pi2s. 
Meng and Liou (2004) identified substorm onset as an 
auroral breakup, which they defined as a sudden bright-
ening followed by poleward expansion. Such studies did 
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not discuss these signatures in the context of the two-
stage development; rather, they implicitly assumed only 
one stage.

In contrast, different stages have been used to define 
substorm onsets in recent studies. The AIB (i.e., the origi-
nal definition, Stage 1) is sometimes adopted to identify 
substorm onsets (e.g., Donovan et  al. 2008). Poleward 
expansion (i.e., Stage 2) is instead adopted with (e.g., 
Mende et  al. 2009) or without (e.g., McPherron 2016) 
the recognition that this and the original definition dif-
fer. Substorm onsets in GIs are usually identified by the 
sudden brightening (e.g., Frey et al. 2004; Liou 2010). In 
contrast, Morioka et al. (2014) recognized in GIs that the 
sudden brightening is followed by another brightening a 
few minutes later; they identified the substorm expansion 
phase onset by this second brightening in GIs.

As summarized above, the definition of a substorm 
onset (i.e., substorm expansion phase onset) is currently 
diverging and is sometimes confused. To avoid such con-
fusion, individual studies that include discussions within 
a few minutes of accuracy are recommended to state the 
definition of substorm onsets explicitly in the context of 
two-stage development. Two major possible definitions, 
AIB and poleward expansion, are discussed below.

If the substorm onset is defined as the first signature, it 
is likely to correspond to AIB, which is the original defi-
nition of onsets. Practically, this onset can be regularly 
monitored only by using ASIs. It may include auroral 
rays or beads and is often too evident to ignore before 

the beginning of poleward expansion. The AIB may be 
a manifestation of the triggering process of substorms, 
such as near-earth instabilities or the initial stage of tail 
reconnection. Even the AIB may play an active role in 
triggering substorms, for example, by feedback processes 
with the enhancement of ionospheric conductance and 
current. However, it may also be possible that the AIB is 
not directly associated with substorm onsets and occurs 
under background conditions favorable for the occur-
rence of substorm onsets.

In contrast, if the substorm onset is defined as the 
beginning of an explosive release of energy from the tail 
to the polar ionosphere, it is likely to correspond to pole-
ward expansion. The poleward expansion presumably 
maps to dipolarization in the tail (e.g., Chu et al. 2015), 
thus manifesting the explosive energy release. Because 
the dipolarization is a drastic change in the magnetic field 
lines, it would cause major magnetic oscillations (i.e., 
major Pi2s). This onset can be identified by using various 
data sets such as GIs and geomagnetic fields in addition 
to ASIs and is thus useful at least as a working definition. 
However, it should be remembered that poleward expan-
sion is not the original definition (Akasofu 1964) to time 
the substorm onsets.

Impacts on past tail reconnection timing
Reconnection-associated fast plasma flows are often 
observed in the magnetotail near the time of a substorm 
onset identified by using Pi2s or GIs (Hones et al. 1984; 
Moldwin and Hughes 1993; Slavin et al. 2002; Ieda et al. 
2008). These fast flows have occasionally been further 
identified a few minutes prior to the substorm onset 
(Nagai et  al. 1998; Ohtani et  al. 1999; Baker et  al. 2002; 
Kepko et al. 2004; Miyashita et al. 2009).

However, such conclusions depend on the definition of 
substorm onset. Whether the identified substorm onset 
corresponds to the AIB or poleward expansion in ASIs 
has not been specified in these previous studies. In the 
present study, the onsets in Pi2s and GIs corresponded 
to poleward expansion rather than the Akasofu sub-
storm onset. This result suggests that unless the longitu-
dinally wide AIB was explicitly considered, the substorm 
onsets identified in past studies did not correspond to 
the Akasofu substorm onset but rather to poleward 
expansion.

Fast flows have always been initiated within a few min-
utes of the isolated auroral breakup in GIs (i.e., poleward 
expansion) if the satellite was located near the onset 
MLT (Ieda et  al. 2008). However, unobserved AIB may 
have occurred prior to the auroral breakup (i.e., pole-
ward expansion). Thus, these fast flows may be delayed 
from the possible AIB, as was reported in a case study 
by Ieda et al. (2016). In summary, no evidence exists for 
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reconnection-associated fast flows prior to the Akasofu 
substorm onset. Therefore, the developed reconnection 
does not likely trigger the Akasofu substorm onset.

Reconnection-associated fast flows may be associated 
with auroral streamers. Some brightenings (e.g., 2126:17 
UT panel) occurred near 73 MLAT near the onset MLT 
sector in Fig. 3a and b. Interestingly, an auroral streamer 
was formed at 72 MLAT near the onset MLT simultane-
ously with the breakup (2128:07 UT panel). This simulta-
neous occurrence may be a coincidence, or it may suggest 
that the auroral breakup (i.e., poleward expansion) and 
tail reconnection occur simultaneously.

Summary
We have emphasized that the original definition of a 
substorm onset (Akasofu substorm onset) includes two-
stage development: the AIB, which is wide in longitude, 
followed by poleward expansion a few minutes later. 
This two-stage development was originally proposed on 
the basis of ASIs. It has been unclear thus far how this 

two-stage development is observed in satellite GIs, in 
which the time resolution and sensitivity are limited.

In the present study, we directly compared optical sub-
storm onset signatures observed in GIs and ASIs for an 
event that occurred on December 7, 1999. We used ultra-
violet GIs captured by the Polar satellite during a fixed-
filter mode at 170 nm, enabling a high time resolution of 
37 s to resolve the possible two-stage development. The 
20-s resolution green-line ASIs in Finland, at 557.7 nm, 
were used for comparison. Our results and discussions 
are summarized as follows.

(1) A substorm onset was observed in the ASIs. These 
observations are consistent with the Akasofu 
substorm model, as expected, because the two-
stage development was evident: A longitudinally 
extended brightening was followed by poleward 
expansion a few minutes later. In contrast, two-
stage development was not evident in the GIs, even 
with the high time resolution of 37 s in the present 
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Fig. 11 Synthesis of three different views of auroral substorm onset observations: a original concept (Akasofu 1964) based on 1-min resolution 
ground-based all-sky images (ASIs); b high time resolution ( <∼ 10 s ) ASIs; c satellite-based global images (resolution of a few minutes). The spatial 
resolution of ASIs ( ∼ 1 km ) is much better than that of global images ( ∼ 50 km ). From top to bottom, the time sequence of auroral emissions on 
the nightside ionosphere above 60◦ magnetic latitude is illustrated. The blue, green, and red colors indicate weak, moderate, and intense recorded 
auroral emissions, respectively. The initial brightening (IB) is longitudinally extended in a. This IB may appear as localized at the beginning followed 
by rapid longitudinal expansion (auroral rays or auroral beads) in b, as indicated by green circles. Red circles indicate poleward expansion (i.e., 
auroral breakup). A substorm onset is identified by the IB in a, and practically by the poleward expansion in c. It is undecided whether the localized 
IB or the poleward expansion should be used to define the substorm onset in b. Auroral brightness is significantly underemphasized in global 
images, presumably by area averaging when the aurora is latitudinally thinner than the spatial resolution of the images
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case. Instead, the onset and poleward expansion 
occurred simultaneously in the GIs, as was the case 
in previous studies with a practical time resolution 
of a few minutes.

(2) A comparison of ASIs and GIs revealed that pole-
ward expansion occurred simultaneously, or within 
1 min; however, the AIB in the ASIs did not have a 
counterpart in the GIs. Consequently, the substorm 
onset identified by using GIs was delayed by 3 min 
from the onset identified by using ASIs. This result 
suggests that the substorm onsets in GIs represent 
the beginning of poleward expansion rather than 
the AIB.

(3) Major geomagnetic negative bays, positive bays, and 
midlatitude Pi2 pulsations were observed within 1 
min after the poleward expansion but 3–4 min after 
the Akasofu substorm onset. Thus, the classic geo-
magnetic substorm signatures represent poleward 
expansion rather than the Akasofu substorm onset. 
This result suggests that the substorm onsets identi-
fied in GIs and geomagnetic data correspond to the 
same phenomenon (i.e., poleward expansion) but 
not to the Akasofu substorm onset.

(4) We discussed that substorm onsets identified in 
past studies do not necessarily correspond to the 
Akasofu substorm onset but to subsequent pole-
ward expansions, unless the AIB in ASIs was con-
sidered. The AIB is underemphasized and the pole-
ward expansion is overemphasized in GIs because 
of the limited spatial resolution of GIs. Accordingly, 
poleward expansion tends to be identified as the 
substorm onset in GIs even when the AIB is moder-
ately visible in ASIs.

(5) Poleward expansion is useful as a working defini-
tion of substorm onset because the AIB is not reg-
ularly monitored and can be gradual. It should be 
noticed that this definition using poleward expan-
sion (i.e., Stage 2) is not the original definition (i.e., 
Stage 1) of substorm onset.

(6) We also discussed that the causality between tail 
reconnection and substorm onset depends on the 
definition of substorm onset. In past studies, recon-
nection-associated fast flows have been observed 
simultaneously or, in rare cases, prior to the sub-
storm onset. However, because these onsets were 
identified by Pi2s or GIs, they were likely to cor-
respond to subsequent poleward expansion rather 
than Akasofu substorm onsets. Thus, classical fast 
flows are associated with substorm onsets if the 
substorm onsets are defined by poleward expan-
sion, but may not be directly associated with sub-
storm onsets if the substorm onsets are defined by 
the AIB.

Conclusion
At least two different instances have been considered 
for substorm onset in previous studies: the AIB (the 
original definition) and the poleward expansion (auro-
ral breakup). It is necessary to clarify which instance is 
selected to time the substorm onset to understand the 
time history of substorms, including tail reconnection. 
For this purpose, we proposed a working model (Fig. 11) 
to synthesize the three different views of substorm onset: 
in the original Akasofu model, ASIs, and GIs. In the pre-
sent study, “GIs” specifically refer to images with a practi-
cal spatial resolution of ∼ 50 km or slightly worse, such 
as Polar/UVI or IMAGE/FUV images.

We suggest that substorm onset identified by GIs repre-
sents poleward expansion rather than the AIB. Although 
the AIB may be visible, its identification as a substorm 
onset would be less convincing in GIs. The two-stage 
development is not evident in GIs because their spatial 
resolution is limited. The practical significance of these 
inferences depends on the duration and intensity of the 
AIB, which is currently not well established.
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