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Modeling	the	Compton	Camera	Response	for	Extended	
Voxel	Sources	

by		

Donald	L.	Gunter,	Ross	Barnowski,	Andrew	Haefner,	Daniel	Hellfeld,	Kalie	Knecht,	Lucian	
Michailescu,	Mark	Bandstra,	Victor	Negut,	Emily	Frame,	Ryan	Pavlovski,	Tenzing	Joshi,	

Jayson	Vavrek,	Brian	Quiter,	Kai	Vetter	

The	analysis	and	interpretation	of	coincidence	events	in	a	Compton	camera	requires	
the	 comparison	 of	 the	 expected	 rates	 of	 observed	 events	 from	 sources	 with	 various	
emission	rates,	energy	spectra	and	spatial	distributions.		Radioactive	source	distributions	
are	 often	 represented	 by	 the	 activity	 distributed	 among	 numerous	 voxels;	 each	 voxel	
having	uniform	internal	activity	and	spectra	within	a	cube.		In	this	paper	a	mathematical	
model	is	constructed	that	predicts	the	expected	rate	of	coincident	Compton	events	from	
the	rate	of	emissions	from	a	single	voxel	source.			This	detailed	model	incorporates	(1)	the	
finite	 voxel	 size,	 (2)	 the	 blurring	 of	 the	 “Compton	 cone”	 by	 the	 limitations	 of	 energy	
resolution	in	the	detectors	and	(3)	the	uncertainty	in	the	Compton	cone-axis	due	to	the	
limited	spatial	resolution	and	‘lever-arm’	separation	between	the	coincident	interactions.		
The	 resultant	 rates	 can	 be	 used	 to	 generate	 the	 system	 response	 matrix	 for	 source	
reconstruction	 and,	 therefore,	 are	 directly	 applicable	 in	 list-mode	 MLEM	 source	
reconstruction	algorithms.	
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I.	Introduction	
The	primary	result	of	 this	paper	 is	a	calculation	of	 the	expected	rate	of	Compton	

camera	 events	 from	 the	 emission	 rate	 associated	 with	 a	 single	 voxel	 with	 specified	
location	and	 size.	 	This	 calculation	 is	based	on	a	 large	number	of	 assumptions	and	an	
idealized	mathematical	model.	 	These	 idealizations	are	 justified	by	(1)	 the	 inclusion	of	
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many	effects	heretofore	ignored,	(2)	the	utility	of	the	analytic	tools	for	rapid	calculations,	
(3)	applicability	of	the	results	in	list-mode	MLEM	reconstruction	algorithms.			

A	 Compton	 camera	 event	 consists	 of	 the	 coincident	 detection	 of	 two	 distinct	
interactions	 in	 the	 detector	 system.	 	 The	 interpretation	 of	 this	 event	 is	 that	 the	 first	
interaction	 is	 a	 Compton	 scattering	 and	 the	 second	 interaction	 is	 a	 photoelectric	
absorption.			

There	 are	 many	 competitive	 interpretations	 possible:	 for	 example,	 the	 second	
interaction	 might	 be	 another	 Compton	 scattering	 with	 subsequent	 escape	 from	 the	
detector;	or,	the	first	interaction	might	actually	be	multiple	interactions	within	a	distance	
smaller	than	the	spatial	resolution	of	the	detector.		For	the	purposes	of	this	analysis,	these	
alternative	interpretations	will	be	ignored.		A	more	serious	problem	is	that	the	sequence	
of	the	interactions	is	unknown.		If	the	two	interactions	are	labeled	‘A’	and	‘B’,	the	sequence	
of	interactions	could	be	either	‘AB’	or	‘BA’	producing	completely	different	event	rates	for	
each	possible	source.		In	this	analysis	the	interaction	sequence	will	be	assumed	known;	
that	 is	 interaction	 ‘1’	 will	 be	 assumed	 Compton	 scattering	 and	 interaction	 ‘2’	 will	 be	
assumed	 photo-absorption.	 	 The	 alternative	 interpretation	 can	 be	 evaluated	 and	
compared	by	reversing	the	order	of	the	interactions.	

The	detailed	analysis	is	presented	in	six	sections	(II-VI)	and	three	appendices	(A-C).		
In	Section	II,	 the	experimental	observations	and	input	parameters	of	 the	mathematical	
and	 physical	 model	 are	 described	 and	 our	 notation	 is	 established.	 	 In	 Section	 III,	 a	
mathematical	formalism	is	presented	that	describes	the	emission,	propagation,	scattering	
and	absorption	of	radiation.	 	In	Section	IV,	the	mathematical	formalism	of	Section	III	is	
used	for	the	prediction	of	a	very	general	(and,	in	practice,	a	very	complicated)	formula	for	
the	rate	of	observed	events	from	a	single	voxel	source.	 	The	application	of	this	general	
formula	 to	 realistic	 situations	 is	 presented	 in	 Section	 V.	 	 This	 analysis	 is	 repeated	 an	
compared	for	alternative	sequencing	of	the	interactions	Section	VI.		The	derivation	of	the	
rates	 in	 Section	 IV	 requires	 extensive	mathematical	 calculations	 that	 are	 relegated	 to	
three	appendices.		Appendix	A	provides	a	mathematical	description	of	the	uncertainty	in	
the	 direction	 of	 the	 scattered	 photon	 (i.e.,	 the	 axis	 of	 the	 Compton	 cone)	 due	 to	 the	
separation	 and	 limited	 spatial	 resolution	 of	 the	 coincident	 interactions.	 	 Appendix	 B	
describes	the	blurring	of	the	Compton	cone	due	to	the	limited	energy	resolution	of	the	
detectors.	 	 Finally	 in	 Appendix	 C	 a	 very	 complicated	 four-dimensional	 integral	 is	
performed	 using	 a	 combination	 of	 projection	 and	 properties	 of	 the	 hypergeometric	
function.		This	result	is	then	used	in	Sections	V	and	VI	for	the	calculation	of	the	desired	
rates.		In	Section	VII,	the	results	are	summarized	and	future	applications	discussed.	

Four	 additional	 Appendices	 were	 added	 pertaining	 to	 alternative	 approaches	 to	
imaging	with	Compton	cameras.		Many	problems	are	better	analyzed	in	terms	of	incident	
fluxes	of	radiation	rather	than	source	voxels.		Appendix	D	provides	a	natural	conversion	
between	the	rates	associated	with	a	specific	voxel	(as	calculated	in	this	analysis)	and	the	
rates	produced	by	an	incident	photon	flux.		The	“analytic	machinery”	of	this	paper	can	be,	
thereby,	converted	directly	to	give	the	desired	rates	associated	with	incident	fluxes.		In	
Appendix	 E,	 a	 comparison	 is	 made	 between	 the	 results	 of	 our	 calculation	 and	 the	
published	 calculations	 of	 other	 researchers.	 	 In	 particular,	 the	 work	 of	 Xu	 and	 He	 is	
selected	as	one	of	the	best	published	calculations	and	is	compared	with	our	results.	 	In	
Appendix	F,	the	application	of	our	results	is	demonstrated	in	List-Mode	MLEM	algorithm.		
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Finally,	Appendix	G	is	a	mathematical	aside	in	which	the	approximation	of	n-dimensional	
“cubic”	voxels	by	Gaussian	functions	is	demonstrated	and	justified.	

II.	Description	of	the	Experimental	Measurement	and	the	Voxel	Source	Model		
The mathematical model proposed in this analysis consists of numerous approximations 

and model parameters.  For convenience, one can divide the model into three mathematical 
components that describe: (1) the coincident detection process in the Compton camera, (2) the 
source emissions from a single voxel, and (3) the physical process of emission, propagation, 
and interaction of the radiation from source to detector.  Each component of the model requires 
a collection of assumptions and approximations; and because the reliability of the analysis 
depends on these assumptions, this section will explicitly delineate the assumptions and model 
parameters associated with the detection process and voxel source model. 

The Coincident Compton Camera Event 
A	 Compton	 camera	 event	 consists	 of	 the	 coincident	 detection	 of	 two	 distinct	

interactions	 in	 the	 detector	 system.	 	 The	 interpretation	 of	 this	 event	 is	 that	 the	 first	
interaction	(labeled	‘1’)	is	a	Compton	scattering	and	the	second	interaction	(labeled	‘2’)	is	
a	 photoelectric	 absorption.	 	 The	 method	 of	 sequencing	 the	 interactions	 will	 not	 be	
considered	 until	 Section	 VI;	 however,	 at	 this	 point	 the	 sequence	 is	 arbitrary.	 	 Each	
interaction	in	the	Compton	camera	provides	two	basic	parameters:	(1)	the	3D	location	of	
the	interaction,	and	(2)	the	energy	deposited	in	the	detector.		In	addition,	each	parameter	
must	also	have	an	associated	resolution.		Thus,	the	input	data	associated	with	each	event	
will	describe	the	two	interactions	(i=1,2)	and	be	denoted	by	

	
	 {	𝑟! 	, 𝜆! 	}	=		location	and	spatial	resolution	of	interaction	‘i’	[m]	
	 (1)	
	 {	Ei	,	ei	}		=		deposited	energy	and	resolution	of	interaction	‘i’	[keV].	
	
The	energies,	Ei,	and	their	associated	resolutions,	ei,	are	simple	scalars	(with	dimensions	
of	keV	for	this	analysis).		The	locations,	r⃗! ,	are	3-vectors	(with	dimensions	of	meters	[m]	
in	each	coordinate).	 	 	On	 the	other	hand,	 the	spatial	 resolutions,	li,	 are	assumed	to	be	
scalars	(with	dimensions	[m])	that	provide	the	isotropic	resolution	in	all	directions.		Not	
only	does	the	resolution	of	each	parameter	provide	information	about	the	accuracy	of	the	
measurement,	but	it	also	indicates	the	range	of	that	parameter.		One	cannot	define	the	rate	
associated	with	an	event	at	specific	locations	and	energies,	but	one	can	define	the	rate	of	
events	within	ranges	of	those	parameters.		One,	therefore,	expects	that	the	rate	of	observed	
events	 will	 be	 proportional	 to	 the	 resolutions	 in	 each	 of	 the	 8	 parameters	 (6	 spatial	
coordinates	and	2	energies),	i.e.	
	
	 𝑅𝑎𝑡𝑒		 ∝ 		 𝜆"	$ 		𝜆%$		𝜀"	𝜀%	.		 (2)	
	
Ironically,	an	 interaction	with	poorer	resolution,	 i.e.	 larger	li	or	ei,	will	produce	higher	
rates	associated	with	the	observed	event	because	more	interactions	might	potentially	fall	
inside	the	assigned	range.		However,	the	blurring	effects	from	loss	of	resolution	will	also	
distribute	 the	 increased	 rate	over	more	 source	voxels;	 thereby,	 reducing	 the	 response	
attributed	to	any	specific	voxel.		This	dual	role	for	the	resolutions	is	crucial	in	the	analysis;	
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an	incorrect	assignment	of	a	resolution	can	significantly	affect	the	rate	calculation.		For	
most	 of	 this	 paper,	 li	and	 ei	 are	 treated	 as	 experimental	 constants	 provided	 by	 prior	
measurements.		Nonetheless,	certain	assumptions	concerning	the	resolutions	are	implicit.		
Obviously,	all	the	resolutions	must	be	positive;	more	significantly,	relation	(2)	implies	that	
none	 of	 the	 resolutions,	 li	 or	 ei	 ,	 can	 vanish.	 	 Furthermore,	 the	 upper	 limits	 on	 the	
resolutions	may	appear	implicitly	[e.g.	inequalities	(15)]	throughout	the	analysis.		These	
upper	limits	reflect	the	practical	fact	that	events	with	extremely	poor	resolution	provide	
virtually	no	information	and	should	generally	be	excluded	from	analysis.	

The Source Voxel and Its Emissions 

The source of emissions is described mathematically by a radioactive activity distribution, 
𝐴(�⃗�, 𝐸), where 
	
	 x4⃗ 		=		position	of	the	emission,	
	
	 E		=		emission	energy	[keV]		,	 (3)	
and	
	 𝐴(�⃗�, 𝐸) = ['(!))!*+)]

[)'-][.'/][(!]
= activity	density	at	x4⃗ .	

[Although	 ‘activity’	 generally	 refers	 to	 the	decay	 rate	of	 radioactive	materials,	 in	 these	
notes	the	‘activity’	will	refer	to	the	emission	rate.		The	distinction	is	important	for	isotopes	
with	multiple	emissions/decay	or	alternative	branching	ratios.	 	However,	 in	maximum	
likelihood	calculations	(as	summarized	in	Appendix	F),	the	system	matrix	is	most	easily	
calculated	as	the	ratio	(rate	of	detections)/(rate	of	emissions).		Consequently,	these	notes	
emphasize	the	number	of	emissions.]	 	In	general,	the	function, 𝐴(𝑥, 𝐸), is	a	continuous	
function	 of	x4⃗ 	 and	E.	 	However,	 in	most	 imaging	 applications,	 the	 function, 𝐴(𝑥, 𝐸)), is	
decomposed	into	a	large	number	of	voxels	–	each	voxel	containing	constant	activity	within	
a	“small”	cubic	volume.		In	this	representation,	the	activity	distribution	of	a	single	voxel	is	
given	by	

	 𝐴0*1'2(�⃗�, 𝐸) = 𝐴(𝐸)ΛA�⃗� − 𝐶, 𝐿E	 (4)	

where	the	vector	C4⃗ 	is	the	center	of	the	voxel,	

	 𝐴(𝐸) = ['(!))!*+)]
[)'-][.'/][(!]

			within	the	voxel,	and	

	 Λ(�⃗�, 𝐿)		=		voxel	spatial	distribution	[dimensionless].	 (5)	

A	voxel	is	universally	accepted	as	a	cubic	volume	in	3D	that	has	uniform	properties;	i.e.,	
density,	composition,	etc.		Each	voxel	is	characterized	by	the	location	of	its	center	point,	
C4⃗ ,	and	length	of	its	sides,	L.		Mathematically,	a	voxel	is	characterized	by	the	function,	L.		
The	standard	cubic	voxel	that	is	oriented	along	the	x-,	y-,	and	z-axes	is	described	by	the	
function:	
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	 Λ3456(	x4⃗ 	, L	) = H			1 						if	 − 7
%
< x! <

7
%

			0 otherwise.
	 (6)	

Such	a	 voxel	 is	 generally	 associated	with	 a	3D	 lattice	of	 voxels	 that	provides	both	 the	
regular	spacing	and	the	orientation	of	the	voxel	axes.		For	our	modeling,	the	orientation	
of	a	voxel	in	space	is	not	an	important	property;	however,	the	spatial	extent	of	the	source	
is.		Indeed,	the	orientation	of	the	voxel	axes	requires	an	unnecessary	complication	in	the	
calculations	that	provides	little	increase	in	accuracy.		For	this	reason,	the	standard	cubic	
voxel	will	be	replaced	by	a	rotationally	 invariant	Gaussian	source.	 	The	Gaussian	voxel	
function	is	defined	by	

	 Λ(x4⃗ ) = P	8
9
	Q
$ %⁄

exp[	−6	|x4⃗ |% 	L%⁄ ]	 (7)	

and	is	used	throughout	this	analysis.		This	Gaussian	voxel	function	is	selected	because	it	
is	 rotationally	symmetric,	 simplifies	calculations,	and,	 furthermore,	produces	 the	same	
integral	moments	(up	to	second	order)	as	the	cubic	voxel	in	Equation	(6);	namely,	

	 ∭𝑑$x4⃗ 	Λ(x4⃗ ) = L$					; 				∭𝑑$x4⃗ 	|x4⃗ |%	Λ(x4⃗ ) = "
;
L<	 (8)	

which	 is	 the	 reason	 for	 selecting	 the	 specific	 Gaussian	 parameters	 in	 Equation	 (7).		
(Details	of	this	analysis	are	provided	in	Appendix	G.)		The	primary	limitation	imposed	by	
the	spherical	symmetry	of	a	Gaussian	voxel	 is	 that	asymmetric	voxels	are	excluded.	 	 If	
asymmetric	 voxels	 are	 required,	 one	 can	 approximate	 the	 desired	 distribution	 by	 the	
construction	of	the	asymmetric	geometry	with	numerous	smaller	spherical	voxels.		The	
“cost”	of	the	multiple	rate	calculations	is	deemed	smaller	than	the	“cost”	of	orienting	and	
calculating	the	rates	for	complicated	voxel	geometries.	

Hybrid Parameters 

The	basic	input	parameters	for	each	event	are	{r⃗=,	li}	and	{Ei,ei}	for	i=1,2;	whereas,	
the	source	voxel	is	described	by	the	parameters	C4⃗ ,	L,	and	the	function	A(E).		The	desired	
rates	of	interaction	will	be	a	function	of	these	parameters.		However,	a	number	of	hybrid	
combinations	of	these	parameters	arise	naturally	from	the	geometry	and	physics	of	the	
Compton	 interaction	process	and	appear	ubiquitously	 throughout	 the	calculation.	 	For	
convenience	and	future	reference,	these	hybrid	parameters	are	summarized	here.	

Within	the	detector,	the	two	interactions	are	separated	by	the	distance	R12,	defined	
by	

	 R"% 	≡ 	 |	r⃗% − r⃗"	|	,	 (9a)	
and	 the	 unit	 vector	 pointing	 from	 the	 first	 to	 the	 second	 interaction	 (and,	 therefore,	
approximating	the	direction	of	scattered	photon)	is	denoted	by	

	 α44⃗ 	≡ 	 (	r⃗% − r⃗"	) R"%⁄ 		.	 (9b)	
Combining	Equations	(9a)	and	(9b),	one	finds	

	 (	r44⃗ % − r⃗"	) 	= 	R"%	α44⃗ 	.	 (9c)	
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The	unit	vector,	α44⃗ ,	is	often	referred	to	as	the	‘scattering-axis’	of	the	Compton	cone,	because	
the	Compton	kinematics	dictates	that	the	source	should	lay	near	a	cone	determined	by	
this	axis	with	its	vertex	at	r⃗".	

The geometric relation between the source voxel and the detector is characterized by the 
vector Ar⃗" − C4⃗ E that connects the center of the voxel to the location of the first interaction.  The 
distance between the source and detector is defined as Rs, where 

	 R> ≡ `	r⃗" − C4⃗ 	`	 (10a)	

and	the	unit	vector	𝛽	denoting	the	direction	from	the	source	to	the	detector	is	

	 𝛽 ≡ Ar⃗" − C4⃗ E R>b 	 (10b)	

which	 indicates	 the	 approximate	 direction	 of	 an	 incident	 photon.	 	 One	 can,	 therefore,	
write	that	

	 Ar⃗" − C4⃗ E = R>�⃗�		.	 (10c)	

The	scattering	angle	of	the	Compton	interaction	as	measured	by	the	source	location	and	
interaction	locations	is	defined	by	

	 �⃗� ∙ 𝛽 ≡ 𝜈 ≡ 𝑐𝑜𝑠	𝜃?'*	 (11)	

Compton	kinematics	requires	that	the	scattering	angle	is	related	to	the	energies	deposited	
at	each	interaction	site		The	function	𝜇(𝐸", 𝐸%))	gives	the	predicted	cosine	of	the	scattering	
angle	for	deposited	energies	E1	and	E2:	

	 𝜇 ≡ 𝜇(𝐸", 𝐸%) = 𝑐𝑜𝑠	𝜃.!+ = 1 − (@"
(@"B@#)@#

	 (12)	

where	m=electron	mass	[511	keV].		(N.B.	Throughout	this	analysis	the	standard	notation	
c=1	 is	 assumed;	 so	 that,	 both	 energy	 and	momentum	 are	 given	 keV.)	 .	 	 The	 imaging	
properties	 of	 a	 Compton	 camera	 arise	 from	 a	 comparison	 of	 the	 geometric	 scattering	
angle	of	Equation	(11)	with	the	kinematic	scattering	angle.		The	reality	of	the	angle,	qkin,	
requires	that	

	
−1 ≤ 𝜇 ≤ 1 ⟹ 2𝐸%% + 2𝐸"𝐸% −𝑚𝐸" ≥ 0

	 ⟹ 𝐸% ≥
"
%
qr𝐸"% + 2𝑚𝐸" − 𝐸"s

			,	 (13)	

a	condition	that	excludes	some	interaction	sequences.		As	Inequality	(13)	indicates,	the	
value	of	𝜇,	as	defined	in	Equation	(12),	may	be	smaller	than	−1	and,	therefore,	unphysical.		
This	condition	is	often	referred	to	as	the	“backscatter	limit”	because	the	limiting	equality	
holds	for	𝜇 = −1	 (i.e.	backscattered	radiation).		One	might	assume	that	an	event	violating	
the	 backscatter	 limit	 was	 improperly	 sequenced.	 	 However,	 due	 to	 the	 errors	 (ei)	
associated	with	the	observed	energies,	this	limit	is	somewhat	blurred	and	an	event	that	
violates	 the	 backscatter	 limit	 by	 small	 energies	 (<ei)	 may	 actually	 be	 backscattered	
radiation	 with	 erroneous	 energies	 rather	 that	 unphysical	 sequencing.	 	 Consequently,	
values	of	𝜇(𝐸", 𝐸%) < −1	is	not	a	priori	prohibited.		Instead,	the	suppression	of	such	events	
might	 be	 expected	 arise	naturally	 from	 the	 interplay	 of	 the	 energy	 resolution	 and	 the	
Compton	kinematics.		[For	details,	see	Appendix	B.]	
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The	effect	of	 the	voxel	 size	on	 the	 imaging	process	arises	 from	 the	dispersion	of	
directions	 of	 radiation	 reaching	 detector.	 	 The	 crucial	 parameter	 describing	 this	
dispersion	is	the	ratio	of	the	distance	between	the	source	distance,	Rs,	and	the	“voxel”	size	
L.		In	particular,	the	ratio	

	 Σ" ≡
D

√"%F$
	 (14)	

recurs	throughout	the	calculation.			
Finally,	the	scale	of	the	various	length	parameters	can	be	ordered	hierarchically	by	

either	the	detector	design	or	physical	constraints:	

	 𝜆! < 𝑅"% < 𝐿 < 𝑅)	 (15a)	

so	 that,	 one	 expects	 S1<0.28.	 	 Similarly,	 the	 one	 expects	 the	 energy	 resolution	 to	 be	
significantly	smaller	than	the	measured	values;	that	is,	
	 5𝜀! < 𝐸! 	.	 (15b)	

The	 factor	 of	 5	 in	 Inequality	 (15b)	 is	 consistent	 with	 20%	 error	 in	 the	 energy	
measurement	(i.e.,	poorer	energy	resolution	than	any	Compton	camera	currently	used).		
Furthermore,	in	Appendix	B	where	the	blurring	effects	of	energy	resolution	are	calculated,	
the	 limits	 on	 the	 S3	 parameter	 are	 comparable	 to	 those	 on	 the	 S1	 parameter	 from	
Inequality	(15a).		The	Inequalities	(15a)	and	(15b)	will	frequently	be	invoked	to	simplify	
calculations.	
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Figure	1.		The	Basic	Geometry	is	depicted	for	a	coincident	Compton	event	

within	 the	 detector.	 	 The	 data	 for	 a	 coincident	 Compton	 event	
includes	not	only	 the	measured	 location	and	energy	deposition	at	
two	 interaction	 sites,	 but	 also	 the	 uncertainties	 in	 those	
measurements.		These	uncertainties	critically	affect	the	rate	because	
larger	volumes	imply	larger	rates.	
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Figure 2.  The Relative Geometry is shown between the source voxel and the 

interactions of the coincident Compton event.  The direction β4⃗  (shown in 
green) is approximately the direction of the incident photon; whereas, the 
direction α44⃗  (shown in red) is approximately the direction of the scattered 
photon. 



LBNL Report #2001559	 	 2	July	2024	
	

	 10	

 
Figure 3.  The imaging properties of a Compton camera are based on the back-projection 

of an event onto a Compton cone.  This diagram demonstrates the relationship 
between the α44⃗  and β4⃗  vectors and the back-projected Compton cone with opening 
angle qkin determined by the deposition energies.  The rate of events is proportional 
to the overlap of the source voxel with the cone.  Although the deposition energies 
determine a unique cone, the uncertainties in those energies blur that cone giving it 
an angular width Dq.  Three sources of blurring are analyzed in this paper and each 
source has an associated parameter.  The finite voxel size of the source blurs the 
direction of the incident radiation, β4⃗ , and is associated with the parameter S1.  
Uncertainties in the interaction positions blur the direction of α44⃗  and are associated 
the parameter S2.  Uncertainties in the deposited energies cause blurring of the angle 
qkin and are associated with the parameter S3. 
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III.  Photon Emission, Propagation, and Interactions 

The	 primary	 mathematical	 tool	 used	 in	 this	 analysis	 is	 the	 photon	 phase-space	
density,	F,	defined	by	

	 Φ(�⃗�, �⃗�) ≡ [	#HI*J*+)	]
[(!][.'/!]

= photon	phase − space	density			.	 (16)	

In	 general,	 one	 expects	 that	F	will	 be	 a	 function	 of	 time	 and	will	 satisfy	 the	 Louiville	
equation	with	the	appropriate	scattering	terms.		For	this	analysis,	however,	we	assume	
that	 the	 sources	 and	 geometry	 are	 constant	 during	 the	 period	 of	 the	 observation.		
Consequently,	the	photon	phase-space	density	is	stationary.		Because	the	scattering	of	the	
radiation	is	crucial	in	the	analysis,	one	decomposes	the	photon	phase-space	density	based	
upon	the	number	of	scattering	interactions.		One,	therefore,	defines	

	 Φ(+)(�⃗�, �⃗�) = photon	phase − space	density	following	(n)scatters	

	 	 (17)	

	 Φ(�⃗�, �⃗�) = ∑ Φ(+)(�⃗�, �⃗�)K
+LM 		

where	F(0)	corresponds	to	the	photon	density	entering	the	detector	and	F(n)	corresponds	
to	the	photon	density	following	the	nth	scatter	within	the	detector.		Thus,	radiation	that	
scatters	before	entering	the	detector	is	deemed	part	of	the	F(0)	component.		The	utility	of	
this	 F(n)	 decomposition	 is	 threefold:	 (1)	 for	 a	 Gaussian	 voxel	 source	 F(0)	 is	 easily	
computed,	(2)	F(n+1)	 is	easily	computed	from	F(n)	 in	terms	of	known	differential	cross-
sections,	and	(3)	the	rate	of	interactions	in	a	region	is	easily	computed	in	terms	of	F	and	
the	attenuation	coefficient	within	that	region.	

Emissions	from	a	Voxel	

The	 radiation	 incident	 on	 the	 detector	 is	 described	 by	F(0).	 	 In	 general,	F(0)	 can	
originate	 from	 either	 local	 or	 far-field	 sources.	 	 Far-field	 sources	 are	 essentially	
independent	of	the	detector	position	(i.e.,	there	are	no	parallax	effects	when	the	detector	
moves);	astronomical	sources	typically	fall	into	this	category.		These	far-field	sources	are	
not	of	concern	in	this	analysis.		Local	sources	generally	arise	from	the	isotropic	emissions	
of	 a	 radioactive	 source	 density	 𝐴(�⃗�, 𝐸)	 as	 described	 in	 Equations	 (3)	 and	 (4).	 	 The	
resulting	radiation	is	given	by	

	 Φ(M)(�⃗�, �⃗�) = ∭𝑑$𝑧 ∫𝑑𝐸 		𝐴(𝑧, 𝐸)		 NOO
(1⃗,R⃗,@)

;9-	|1⃗TR⃗|#
	 	𝛿$ P𝑝 − 𝐸 (1⃗TR⃗)

⌈1⃗TR⃗⌉
Q	 (18)	

where	the	(dimensionless)	attenuation	function,	Att,	gives	the	fraction	of	radiation	that	
propagates	from	𝑧	to	𝑥	without	absorption	or	scattering	and	is	defined	mathematically	in	
terms	of	a	line	integral	of	the	attenuation	coefficient	𝜇(𝑥, 𝐸),	

	 Att(𝑥, 𝑧, 𝐸) ≡ 𝑒𝑥𝑝 q	−|�⃗� − 𝑧|	∫ 𝑑𝜉		"
M 𝜇(𝜉𝑥 + (1 − 𝜉)𝑧	, 𝐸	)	s		.	 (19)	
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[Note:	 For	 this	 paper,	 the	 traditional	 symbol	 ‘𝜇'	 for	 the	 attenuation	 coefficient	 is	
underlined	 ‘𝜇’	 to	 distinguish	 it	 from	 the	 cosine	 defined	 in	 Equation	 (12).]	 	 From	 the	
standard	definitions,	one	recalls	that	

	 𝜇(�⃗�, 𝐸) ≡ 𝑛(�⃗�)	𝜎W*JX2(𝐸) = 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡	[𝑚T"]		 (20)	

where	

	 𝑛(�⃗�) = [#)-XJJ'Y!+?	-'+J'Y)	(XJ*())]
[(!]

= 𝑛𝑢𝑚𝑏𝑒𝑟	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝑠𝑐𝑎𝑡𝑡𝑒𝑟	𝑐𝑒𝑛𝑡𝑒𝑟𝑠	 (21)	
and	
	 𝜎W*JX2(𝐸) ≡ 𝑡𝑜𝑡𝑎𝑙	𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔	𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛	[𝑚%]			.	 (22)	

A	straightforward	integration	over	the	3D	delta	function	in	Equation	(18)	yields	that	

	 Φ(M)(�⃗�, �⃗�) = "
;9-	|H⃗|# ∫ 𝑑𝑟K

M 	A P�⃗� − 𝑟 H⃗
|H⃗|
, |𝑝|Q 		Att P�⃗�, �⃗� − 𝑟 H⃗

|H⃗|
, |�⃗�|Q	 (23)	

for	any	activity	distribution	A(𝑥, 𝐸).		If	one	uses	the	activity	distribution	for	a	single	voxel	
as	described	in	Equations	(4)	and	(7)	with	center	at	𝐶,	voxel	size	L,	and	assumes	negligible	
attenuation	 within	 the	 source	 voxel,	 the	 integral	 in	 Equation	 (23)	 can	 be	 evaluated	
analytically	and	gives	

	 Φ(M)A𝐶 + 𝑅Ω44⃗ , 𝐸𝜔44⃗ E = 8	N(@)D	NOOZ[⃗,[⃗BF\]]⃗ ,@^
;9#-	@#

exp �	− 8F#

D#
q	1 − AΩ44⃗ ∙ 𝜔44⃗ E

%
	s	�	

	 "
%
�	1	 + 	erf	 q	√8F

D
	AΩ44⃗ ∙ 𝜔44⃗ E	s	�	 (24)	

for	any	 location	 (𝐶+RΩ44⃗ )	and	momentum	(E𝜔44⃗ ).	 	The	 (1+erf)	 term	 in	 the	 second	 line	of	
Equation	(24)	can	be	bothersome	in	calculations.		However,	for	L<R	[as	one	expects	from	
Inequalities	(15a)],	one	can	approximate	the	second	line	by	a	Heaviside	function,	so	that	

	 Φ(M)A𝐶 + 𝑅Ω44⃗ , 𝐸𝜔44⃗ E = 8	_(@)D	NOOZ[⃗,[⃗BF\]]⃗ ,@^
;9#-	@#

exp H	−
`	"TZ\]]⃗ ∙b]]]⃗ ^

#
	c

%	d"#
	� 	ΘAΩ44⃗ ∙ 𝜔44⃗ E	 (25)	

which	is	the	form	used	henceforth	in	this	analysis.		N.B.:	There	is	no	explicit	R-2	term	in	
this	expression.		The	effect	of	source	distance	does	not	appear	explicitly	in	F(0).		Instead,	
the	effect	of	moving	further	from	the	source	is	a	narrowing	of	the	momentum	distribution	
[as	characterized	by	the	AΩ44⃗ ∙ 𝜔44⃗ E	dependence].		So	that	the	flux,	integrated	over	all	photon	
directions,	 is	 proportional	 to	 Σ"%	 and,	 therefore,	 decreases	 with	 distance	 as	 R-2.	 	 The	
ubiquitous	Σ"	term	that	was	defined	in	Equation	(14)	originates	in	Equation	(25).	

Scattering	of	Radiation	Within	the	Detector	

The	photon	phase-space	density	F(n+1)	arises	from	the	scattering	of	photons	in	the	
F(n)	photon	density.		The	explicit	relation	is	given	by	the	integral	equation		

	 Φ("#$)(𝑥, 𝑝) = ∭𝑑&𝑧∭𝑑&𝑘-⃗ 	 	Φ(")/𝑧, 𝑘-⃗ 0	'((()⃗,,⃗,|.⃗|)	"(,⃗)
|)⃗0,⃗|!

	1
"2
1".⃗

/𝑘-⃗ ⟶ 𝑝0	𝛿3 3 .⃗
|.⃗|
, )⃗0,⃗
|)⃗0,⃗|

4	 (26)	
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where	the	d2	function	on	the	2-sphere	is	defined	by	the	relation	

	 𝐹(𝜔44⃗ ) ≡ ∬e# 	𝑑
%Ω44⃗ 		𝛿%A𝜔44⃗ , Ω44⃗ E	𝐹AΩ44⃗ E	 (27)	

for	 any	 function	 F	 on	 the	 sphere.	 	 One	 can	 verify	 Equation	 (26)	 by	 considering	 the	
standard	 laboratory	 scattering	 experiment	 with	 a	 mono-energetic	 incident	 beam	
impinging	on	a	small	target	and	finding	the	predicted	flux	of	scattered	particles	in	the	far-
field.	 	 For	 our	 analysis,	 further	 notation	 concerning	 the	 differential	 cross-section	 is	
required.		In	Equation	(26)	the	differential	cross-section	includes	all	forms	of	scattering.		
While	many	 types	 of	 interaction	 are	 possible,	 only	 two	 are	 relevant	 for	 this	 analysis:	
Compton	scattering	and	photoelectric	absorption.		Because	other	forms	of	interaction	are	
possible	 [and	appear	 in	 the	total	cross-section	of	Equation	(22)],	care	 is	needed	 in	 the	
notation.		We	recall	some	standard	definitions	and	explain	our	non-standard	notations.		
For	photoelectric	absorption,	the	total	cross-section	is	defined	as	

	 𝜎f@(𝐸) ≡ 	𝑃ℎ𝑜𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛	𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛	[𝑚%]		.	 (28)	
For	Compton	scattering,	our	notation	is	

	 g!h%&'()&*

g!H⃗
A𝑘4⃗ ⟶ 𝑝E ≡ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙	𝐶𝑜𝑚𝑝𝑡𝑜𝑛	𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛	 q (

#

.'/!
s	 (29a)	

and	

	 𝜎[*(HJ*+(𝐸) ≡ 𝑇𝑜𝑡𝑎𝑙	𝐶𝑜𝑚𝑝𝑡𝑜𝑛	𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛		[𝑚%]	 (29b)	

where	

	 𝜎[*(HJ*+(𝐸) = ∭𝑑$�⃗� 		g
!h%&'()&*

g!H⃗
(𝐸𝑒$ → 𝑝)		.	 (29c)	

[N.B.	the	arbitrary	direction	of	the	incident	radiation	(𝑒$)	in	Equation	(29c)	does	not	affect	
the	calculation	because	the	integral	covers	all	directions	relative	to	that	direction.]		The	
total	 cross-section,	 sTotal,	 includes	 other	 types	 of	 interaction;	 so	 that,	 the	 total	 cross-
section	may	exceed	the	combined	Compton	and	photoelectric	cross-sections:	 	

	 𝜎f@(𝐸) + 𝜎[*(HJ*+(𝐸) ≤ 𝜎W*JX2(𝐸)		.	 (30)	

Next,	the	interaction	fractions	are	defined	by	

	 𝑓f@(𝐸) ≡
h+,(@)
h-&)./(@)

					and					𝑓[e(𝐸) ≡
h%&'()&*(@)

h-&)./(@)
		.	 (31)	

Consequently,	one	can	write	

	 g!h%&'()&*

g!H⃗
A𝐸Ω44⃗ ⟶ 𝑝E = 𝜎W*JX2(𝐸)	𝑓[e(𝐸) �

"
h%&'()&*(@)

g!h%&'()&*

g!H⃗
A𝐸Ω44⃗ ⟶ 𝑝E�	 (32)	

and,	consequently,	the	terms	appearing	in	Equation	(26)	can	be	written	as,	

	 𝑛(�⃗�)	g
!h%&'()&*

g!H⃗
A𝐸Ω44⃗ ⟶ �⃗�E = 	𝜇(�⃗�, 𝐸)	𝑓[e(𝐸)	�

"
h%&'()&*(@)

g!h%&'()&*

g!H⃗
A𝐸Ω44⃗ ⟶ �⃗�E�	.	(33)	
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The	differential	cross	section	in	Equation	(29a)	incorporates	in	a	single	expression	both	
the	Klein-Nishina	differential	 cross-section	and	 the	kinematic	 relation	between	scatter	
angle	and	energy.		One	relates	this	(3D)	differential	Compton	cross-section	of	Equation	
(29)	to	the	standard	Klein-Nishina	form	by	observing	that	the	(3D)	cross-section	must	
include	three	factors:	(1)	phase	space	weighting,	(2)	relativistic	kinematics	[i.e.,	energy	
and	momentum	 conservation],	 and	 (3)	 the	 Klein-Nishina	 cross-section	 that	 describes	
physics	of	the	scattering	process.		The	resulting	expression	for	free-electron	scattering	is	
given	by	

	 g!h%&'()&*

g!H⃗
A𝐸Ω44⃗ ⟶ 𝑝𝜔44⃗ E = "

H#
	𝛿 �	𝑝 − (@

(B@Z"T\]]⃗ ∙b]]]⃗ ^
	�	gh01

g#\
(𝐸, 𝑝)	 (34)	

[For	 Compton	 scattering	 from	 atomic	 electrons,	 one	must	 also	 include	 the	 incoherent	
atomic	 scattering	 form-factor,	 but	 that	 term	 will	 be	 ignored	 in	 this	 treatment.	 	 The	
incoherent	 form-factor,	 which	 is	 approximately	 equal	 to	 the	 atomic	 number	 Z,	 can	
significantly	 suppress	small-angle	scattering,	but	 such	events	are	seldom	significant	 in	
Compton	cameras.		Such	small-angle	events	imply	low	momentum	transfer,	i.e.,	small	E1	
values.		The	effects	of	the	incoherent	form	factor	generally	arise	for	values	of	E1	near	or	
below	 the	 noise	 thresholds	 of	 the	 cameras,	 which	 is	 the	 justification	 for	 ignoring	 the	
effects	 in	 this	 analysis.]	 	 Next,	 we	 define	 the	 [dimensionless]	 Klein-Nishina	weighting	
function	by	

	 𝑋ij(𝐸, 𝑝) ≡
"

h%&'()&*(@)
gh01
g#\

(𝐸, 𝑝)	 (35)	

so	that	

	 g!h%&'()&*

g!H⃗
A𝐸Ω44⃗ ⟶ 𝑝𝜔44⃗ E = h%&'()&*(@)

H#
		𝛿 �	𝑝 − (@

(B@Z"T\]]⃗ ∙b]]]⃗ ^
	�		𝑋ij(𝐸, 𝑝)		.	 (36)	

Applying	Equations	(33)	and	(36)	in	Equation	(26),	one	finds	the	crucial	relation	

	 Φ(+B")A�⃗�, 𝑝Ω44⃗ E = ∭𝑑$𝑧 ∫𝑑𝑘	𝑘% ∫ 𝑑%𝜔44⃗⬚
e# 	 	Φ(+)(𝑧, 𝑘𝜔44⃗ )		𝛿% PΩ44⃗ , 1⃗TR⃗|1⃗TR⃗|

Q		
NOO(1⃗,R⃗,H)	l(R⃗,.)

|1⃗TR⃗|#
		

	 	 m%2(.)
H#

	𝛿 �	𝑝 − (.
(B.Z"T\]]⃗ ∙b]]]⃗ ^

	� 		𝑋ij(𝑘, 𝑝)			.	 (37)	

Detection	of	Interactions	Within	the	Detector	

The	calculation	of	interaction	rates	within	the	detector	is	comparatively	simple.		The	
rate	of	photoelectric	absorptions	in	a	region	DR	and	within	an	energy	interval	DE	is	given	
by		

	 𝑅𝑎𝑡𝑒f@(Δ𝑅, Δ𝐸) =∭1⃗∈oF𝑑
$�⃗�∭p.]⃗ p∈o@𝑑

$𝑘4⃗ 		ΦA�⃗�, 𝑘4⃗ E	𝜇A𝑥, `𝑘4⃗ `E	𝑓f@A`𝑘4⃗ `E	𝑐			,	 (38)	

where	c	is	the	speed	of	light.		A	generalization	is	required	for	the	description	of	a	detection	
system	that	reports	 the	 interaction	position	(𝑟! , 𝜆!)	and	deposition	energy	(𝐸! , 𝜀!).	 	The	
spatial	region	associated	with	an	interaction	(𝑟! , 𝜆!)	is	described	by	a	function	Dx,	and	the	
energy	interval	associated	with	the	observation	(𝐸! , 𝜀!)	is	described	by	a	function	DE.		The	
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function	Dx	 specifies	 the	volume	 included	 in	 the	detection	 region	and	must	 satisfy	 the	
conditions	

	 0 ≤ 𝐷1(�⃗�|𝑟, 𝜆) ≤ 1	,	

	 ∭𝑑$�⃗� 	 	𝐷1(�⃗�|𝑟, 𝜆) 	= 	 (2𝜋)$ %⁄ 𝜆$ = 𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑟𝑒𝑔𝑖𝑜𝑛			,	and	 (39a)	

	 ∭𝑑$�⃗� 		 �⃗�		𝐷1(�⃗�|𝑟, 𝜆) = 	 (2𝜋)$ %⁄ 𝜆$	𝑟			.	

Likewise,	the	function	DE	describes	the	energy	window	and	must	satisfy	the	conditions	

	 0 ≤ 𝐷@(𝑘|𝐸, 𝜀) ≤ 1	,	

	 ∫𝑑𝑘 		𝐷@(𝑘|𝐸, 𝜀) 	= 	 (2𝜋)" %⁄ 𝜀 = 𝑤𝑖𝑑𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑒𝑛𝑒𝑟𝑔𝑦	𝑤𝑖𝑛𝑑𝑜𝑤	 (39b)	

	 ∫𝑑𝑘 		𝑘		𝐷@(𝑘|𝐸, 𝜀) 	= 	 (2𝜋)" %⁄ 𝜀	𝐸		.	

In	 Equations	 (39a&b),	 the	 “dummy”	 variables	 of	 integration,	 ‘x4⃗ ’	 and	 ‘k’,	 represent	 the	
actual	location	of	the	interaction	and	energy	deposited	in	the	detector;	whereas,	‘𝑟’	and	
‘E’	represent	the	reported	location	and	energy	deposition	of	the	interaction.		Furthermore,	
the	detector	may	not	report	all	interactions.		This	phenomenon	can	be	accounted	for	by	
an	 efficiency	 function	 Eff(𝑟, 𝐸),	 that	 satisfies	 0 < Eff(�⃗�, 𝐸) < 1.	 	 [The	 ‘Eff’	 function	 is	
essentially	a	“Finagle”	factor	that	allows	one	to	adjust	the	response	in	various	detector	
locations	based	on	prior	measurements.	 	For	example,	 some	solid-state	detectors	may	
have	crystal	defects	 that	 inhibit	charge	collection	 in	specific	pixels;	or	edge	pixels	may	
exhibit	reduced	collection	efficiencies.		Such	phenomena	are	device	specific	and	outside	
the	current	analysis.]		The	rate	in	Equation	(38)	is	then	generalized	by	

	 𝑅𝑎𝑡𝑒f@(𝐷) = 𝐸𝑓𝑓(𝑟, 𝐸)∭𝑑$�⃗�∭𝑑$𝑘4⃗ 		ΦA�⃗�, 𝑘4⃗ E		𝜇A𝑥, `𝑘4⃗ `E	𝑐	𝑓f@A`𝑘4⃗ `E	

	 	 𝐷1(�⃗�|𝑟, 𝜆)		𝐷@ P`𝑘4⃗ `¡ 𝐸, 𝜀Q		.	 (40)	

Two	sets	of	detector	functions	can	be	useful	in	this	analysis.		An	“ideal”	detector	can	
be	defined	by	

	 𝐷1!g'X2(�⃗�|𝑟, 𝜆) = (2𝜋)$ %⁄ 	𝜆$		𝛿$(�⃗� − 𝑟)	 	

	 𝐷@!g'X2(𝑘|𝐸, 𝜀) = (2𝜋)" %⁄ 	𝜀		𝛿(𝑘 − 𝐸)		.	 (41)	

The	ideal	detector	model	provides	the	appropriate	detector	volume	and	energy	window,	
but	ignores	the	blurring	effects	caused	by	uncertainties	in	location	and	energy.		A	more	
“realistic”	detector	is	defined	by	

	 𝐷1Y'X2(𝑥|�⃗�, 𝜆) = exp P− |1⃗TY⃗|#

%q#
Q	 	

	 𝐷@Y'X2(𝑘|𝐸, 𝜀) = exp P− (@T.)#

%r#
Q		.	 (42)	
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These	 “realistic”	 detector	 functions	 give	 the	 appropriate	 detector	 volume	 and	 energy	
window	 and	 also	 provide	 the	 appropriate	 blurring	 effects	 associated	 with	 the	
uncertainties	in	location	and	energy.			

The	 “ideal”	 detector	 is	 very	 useful	 because	multiple	 integrals	 disappear	 trivially	
when	acting	on	delta	functions.		For	example,	in	Equation	(40),	the	“ideal”	detector	yields	

	 𝑅𝑎𝑡𝑒f@!g'X2 = (2𝜋)%	𝜆$	𝜀		Eff(𝑟, 𝐸)		𝐸%𝑓f@(𝐸)	𝜇(�⃗�, 𝐸)	𝑐		

	 	 ∬e#𝑑
%Ω44⃗ 		ΦA𝑟, 𝐸Ω44⃗ E		.	 (43)	

Unfortunately,	 the	 idealized	 detector	 model	 produces	 anomalous	 results	 if	 applied	
uncritically	to	the	Compton	camera	analysis.		In	particular,	the	delta	functions	produce	a	
“perfect”	 Compton	 cone.	 	 The	 rate	 calculation	 requires	 the	 evaluation	 of	 an	 overlap	
integral	 involving	 this	 Compton	 cone	 and	 the	 activity	 distribution	 of	 a	 voxel.	 	 If	 this	
overlap	integral	is	evaluated	with	the	idealized	detector	functions,	the	rate	from	a	source	
in	the	far-field	decays	as	R-1	rather	than	R-2.		This	anomaly	arises	from	multi-dimensional	
blurring.	 	 The	 Compton	 cone	 actually	 has	 finite	 angular	 width	 that	 changes	 the	
dimensionality	 of	 the	 cone	 integral	 from	 2	 to	 3	 dimensions	 –	 with	 significant	
consequences	 for	distant	sources.	 	Earlier	versions	of	 this	calculation	started	 from	the	
idealized	 detector	 model	 and	 then	 included	 ad	 hoc	 blurring	 to	 compensate	 for	 the	
anomaly;	 so	 that,	 one	 recovered	 the	 appropriate	 R-2	 behavior.	 	 This	 ad	 hoc	 approach	
solved	the	immediate	problem,	but	failed	to	convince	the	lead	author	that	the	blurring	
was	properly	treated.		In	the	current	treatment	only	the	Dreal	functions	are	used.	

With	this	notation,	we	have	all	the	mathematical	tools	necessary	for	the	evaluation	
of	the	rate	of	coincident	Compton	camera	events.	

IV.	 General	 Theory	 of	 Coincident	 Detection	 Rates	 for	 Two-Interaction	 Compton	
Camera	Events	
A two-interaction Compton camera event consists of the simultaneous detection of two 

interactions, D1 and D2.  D1 is the initial Compton scattering interaction of an incident photon 
having momentum 𝑘4⃗ " at location �⃗�" in the detector that is observed at location 𝑟"(±𝜆") and 
deposits energy E1(±e1).  The scattered photon then propagates with momentum 𝑘4⃗ % to location 
�⃗�% where it undergoes photoelectric absorption and is reported as interaction D2 at location 
𝑟%(±𝜆%) with energy E2(±e2) deposited.   

Our analysis of this event begins with the final photoelectric absorption at D2.  According 
to Equation (40), the rate of photoelectric absorptions from previously (single) scattered 
photons that are detected with the parameters {r2±l2, E2±e2} of D2 is given by  

𝑅𝑎𝑡𝑒f@(𝐷2) = Eff(𝑟%, 𝐸%)	∭𝑑$𝑥%∭𝑑$𝑘4⃗ % 		Φ(")A�⃗�%, 𝑘4⃗ %E		𝜇A�⃗�%, `𝑘4⃗ %`E	𝑐  

 	𝑓f@ 	A`𝑘4⃗ %`E		𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷@ P`𝑘4⃗ %`¡ 𝐸%, 𝜀%Q  . (44) 

The	single-scattered	photon	density,	F(1),	arises	from	scattering	of	the	incident	radiation,	
F(0).		Based	on	Equation	(37)	one	finds	that	
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	 Φ(")A𝑥%, 𝑘4⃗ %E = ∭𝑑$�⃗�"∭𝑑$𝑘4⃗ " 		Φ(M)A𝑥", 𝑘4⃗ "E	
NOOZ1⃗",1⃗#,p.]⃗ #p^	lZ1⃗",p.]⃗ "p^

|1⃗"T1⃗#|#
 	

	 m%2Zp.]⃗ "p^	s01Zp.]⃗ "p,p.]⃗ #p^

p.]⃗ #p
# 	𝛿 £`𝑘4⃗ %` −

(p.]⃗ "p

(Bp.]⃗ "pT
344⃗ "⋅344⃗ #
7344⃗ #7

¤	𝛿% ¥ .
]⃗ #
p.]⃗ #p

, 1⃗#T1⃗"|1⃗"T1⃗#|
¦	.	 (45) 

Combining	Equations	(44)	and	(45),	one	finds	the	rate	of	D2	interactions	from	an	incident	
photon	density,	F(0),	to	be	

𝑅𝑎𝑡𝑒f@(𝐷2) = Eff(𝑟%, 𝐸%)	§𝑑$𝑥%§𝑑$𝑘4⃗ %§𝑑$�⃗�"§𝑑$𝑘4⃗ " 		Φ(M)A𝑥", 𝑘4⃗ "E	𝑐		

	 	𝜇 PA�⃗�%, `𝑘4⃗ %`EQ	𝑓f@ 	A`𝑘4⃗ %`E 	
𝑓𝐶𝑆tu𝑘]]⃗ 1uv	𝑋𝐾𝑁tu𝑘]]⃗ 1u,u𝑘]]⃗ 2uv

u𝑘]]⃗ 2u
2 	Att

t𝑥]]⃗ 1,𝑥]]⃗ 2,u𝑘]]⃗ 2uv	𝜇t𝑥]]⃗ 1,u𝑘]]⃗ 1uv

p𝑥]]⃗ 1−𝑥]]⃗ 2p
2 	

	 	𝛿 £`𝑘4⃗ %` −
(p.]⃗ "p

(Bp.]⃗ "pT
344⃗ "⋅344⃗ #
7344⃗ #7

¤	𝛿% ¥ .
]⃗ #
p.]⃗ #p

, 1⃗#T1⃗"|1⃗"T1⃗#|
¦	 (46)	

	 𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷@ P`𝑘4⃗ %`¡ 𝐸%, 𝜀%Q		.	 	

This	 rate	 includes	scattered	radiation	 from	all	 regions	of	 the	detector.	 	One,	 therefore,	
must	restrict	this	rate	to	those	initial	interactions	that	are	consistent	with	the	detection	
of	the	first	interaction	D1.		Such	restrictions	are	accomplished	very	simply	by	inserting	
the	appropriate	detector	functions	Eff,	Dx,	and	DE	for	the	D1	interaction;	thereby,	limiting	
the	ranges	of	x1	and	k1.		Consequently,	the	rate	for	(D1,D2)	coincident	events	is	given	by	

𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) = 𝑐	Eff(𝑟", 𝐸")	Eff(𝑟%, 𝐸%)	§𝑑$𝑥"§𝑑$𝑘4⃗ " 		Φ(M)A�⃗�", 𝑘4⃗ "E	

	 ∭𝑑$�⃗�%∭𝑑$𝑘4⃗ % 		𝜇 PA�⃗�%, `𝑘4⃗ %`EQ	𝑓f@ 	A`𝑘4⃗ %`E	
𝑓𝐶𝑆tu𝑘]]⃗ 1uv	𝑋𝐾𝑁tu𝑘]]⃗ 1u,u𝑘]]⃗ 2uv

u𝑘]]⃗ 2u
2 	

	 	
+,,-.⃗',.⃗(,012⃗ (03	4-.⃗',012⃗ '03

|.⃗'6.⃗(|(
	𝛿"#𝑘$⃗ 2# −

𝑚0𝑘2⃗ 10

𝑚+0𝑘2⃗ 10−
𝑘)⃗ 1⋅𝑘)⃗ 2
+𝑘)⃗ 2+

& 	𝛿2 ' 𝑘2⃗ 2
0𝑘2⃗ 20

,
�⃗�2−�⃗�1
|�⃗�1−�⃗�2|

(	 (47)	

	 𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷@ P`𝑘4⃗ %`¡ 𝐸%, 𝜀%Q		𝐷1(𝑥"|𝑟", 𝜆")		𝐷@ P`𝑘4⃗ "` − `𝑘4⃗ %`¡ 𝐸", 𝜀"Q		.	 	

Despite	 its	 awkward	 appearance	 and	 the	 12-dimensional	 integral,	 Equation	 (47)	 is	
actually	 the	 fundamental	 result	 of	 this	 paper	 –	 containing	 a	 minimum	 number	 of	
assumptions	and	not	restricted	to	any	specific	source	configuration.		The	delta	functions	
remove	3	dimensions	of	 the	 integration;	but,	 the	remaining	9	 integrals	are	non-trivial.		
The	 convergence	 of	 the	 integrals	 is	 assured	 by	 the	 asymptotic	 behavior	 of	 the	 Dreal	
functions.		Furthermore,	the	positivity	of	the	integrand	assures	that	one	can	interchange	
the	 order	 of	 integration.	 	 Nonetheless,	 the	 rate	 calculation	 in	 Equation	 (47)	 is	 not	
immediately	 useful.	 	 The	 remainder	 of	 the	 paper	 consists	 of	 simplifications	 based	 on	
various	assumptions	that	render	the	result	applicable	in	realistic	situations.			
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The	first	observation	in	our	effort	to	simply	Equation	(47)	is	that	many	terms	in	the	
integrand	are	slowly	varying	functions	that,	on	the	small	scale	of	the	detector	resolutions,	
are	effectively	constant;	and,	therefore,	can	be	removed	from	the	integrals.		The	following	
abbreviated	notation	will	be	adopted	for	these	“constant”	terms:	

	 𝜇" ≡ 𝜇(𝑟", 𝐸" + 𝐸%)	 𝐴𝑡𝑡'1J ≡ 𝐴𝑡𝑡A𝐶, �⃗�", 𝐸" + 𝐸%E	 	

	 𝜇% ≡ 𝜇(�⃗�%, 𝐸%)	 𝐴𝑡𝑡!+J ≡ 𝐴𝑡𝑡(�⃗�", 𝑟%, 𝐸%)	 	

	 𝑓[e" ≡ 𝑓[e(𝐸" + 𝐸%)	 𝐸𝑓𝑓" ≡ 𝐸𝑓𝑓(𝑟", 𝐸")	 (48)	
	 𝑓f@% ≡ 𝑓f@(𝐸%)	 𝐸𝑓𝑓% ≡ 𝐸𝑓𝑓(𝑟%, 𝐸%)	 	

	 𝑋ij"% ≡ 𝑋ij(𝐸" + 𝐸%, 𝐸%∗)		.	 	

These	functions	are	assumed	constant	over	the	effective	domains	of	the	Dreal	 functions.		
Detectors	 are	 generally	 constructed	with	 uniform	materials,	 so	 that	 very	 little	 spatial	
variation	in	the	attenuation	coefficients	𝜇! 	is	expected.		However,	in	asserting	that	the	Att	
functions	 are	 effectively	 constant	 throughout	 the	 detection	 region,	 we	 are	 implicitly	
assuming	that	the	variation	in	Att	is	small;	a	condition	that	is	true	if	and	only	if,	𝜇!𝜆! ≪ 1.		
If	 this	 condition	 is	 not	 satisfied,	 the	 mean	 value	 of	 Att	 may	 give	 misleading	 results.		
Furthermore,	the	Att	functions	depend	crucially	on	the	path	between	x1	and	x2,	so	that	
some	 sort	 of	 averaging	 may	 be	 necessary	 for	 different	 paths	 between	 the	 detection	
regions	due	 to	variations	 in	 the	absorbing	materials	encountered.	 	One	can	ameliorate	
both	of	these	problems	by	subdividing	the	detector	region.		In	the	energy	regime,	the	K-
edge	shell	produces	large	discontinuities	in	the	photoelectric	cross-sections	and	can	cause	
significant	 variations	 in	 the	 attenuation	 coefficients	 across	 small	 energy	 ranges.	 	 In	
particular,	 if	 the	second	interaction	window	(E2±e2)	straddles	such	a	discontinuity,	 the	
effect	 can	be	 large.	 	 In	 such	 a	 case,	 one	might	 consider	 splitting	 the	 analysis	 into	 two	
separate	parts;	using	two	narrow	energy	windows	on	either	side	of	 the	K-edge,	rather	
than	a	single	energy	window.		Finally,	the	energies	E1	and	E2	may	violate	the	backscatter	
limit	 [Inequality	 (13)];	 so	 that,	 the	Compton	weighting	XKN	 is	undefined.	 	As	discussed	
earlier,	 this	 situation	 generally	 arises	 from	 incorrect	 sequencing	 of	 the	 interactions.		
However,	it	can	also	arise	from	the	imprecision	in	the	energy	measurements	of	an	actual	
backscatter	 event.	 	 The	 expression	 for	 XKN	 contains	 an	 E2*	 to	 indicate	 that,	 if	 the	
backscatter	 condition	 is	 violated,	 one	 should	 calculate	 XKN	 as	 though	 the	 event	 were	
exactly	backscattered	[𝜇(𝐸", 𝐸%) = −1].	 	The	combination	of	relativistic	kinematics	and	
energy	 resolution	 should	 suppress	 the	 rate	 if	 the	backscatter	 limit	 [Inequality	 (13)]	 is	
violated	 [see	 the	 analysis	 in	 Appendix	 B].	 	 For	 the	 remainder	 of	 this	 analysis,	 the	
parameters	 listed	 in	 Equation	 (48)	 will	 be	 assumed	 constant	 and	 removed	 from	 the	
integrands;	so	that	



LBNL Report #2001559	 	 2	July	2024	
	

	 19	

𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) = 𝑐	Eff"	Eff%	𝐴𝑡𝑡!+J	𝑋ij"% 	𝑓[e"	𝑓f@%	𝜇"	𝜇%	

	 ∭𝑑$�⃗�"∭𝑑$𝑘4⃗ " 		Φ(M)A�⃗�", 𝑘4⃗ "E		∭𝑑$�⃗�%∭𝑑$𝑘4⃗ %	 		
1

u𝑘]]⃗ 2u
2 	

1
p𝑥]]⃗ 1−𝑥]]⃗ 2p

2	

	 	𝛿 £`𝑘4⃗ %` −
(p.]⃗ "p

(Bp.]⃗ "pT
344⃗ "⋅344⃗ #
7344⃗ #7

¤	𝛿% ¥ .
]⃗ #
p.]⃗ #p

, 1⃗#T1⃗"|1⃗"T1⃗#|
¦	 (49)	

	 𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷@ P`𝑘4⃗ %`¡ 𝐸%, 𝜀%Q		𝐷	1(�⃗�"|𝑟", 𝜆")		𝐷@ P`𝑘4⃗ "` − `𝑘4⃗ %`¡ 𝐸", 𝜀"Q		.		

Next,	 one	 notes	 that	 the	 incident	 radiation,	 as	 represented	 by	F(0)	 in	 Equation	 (49),	
generally	does	not	vary	significantly	as	a	function	of	 �⃗�"	within	the	detection	region	D1	
(although	it	will	vary	significantly	as	a	function	of	𝑘4⃗ ").	 	By	definition,	sources	in	the	far	
field	will	not	depend	on	x1	at	all.		For	voxel	sources	the	incident	radiation	is	described	by	
F(0)	 in	 Equation	 (25).	 	 This	 function	 is	 strongly	 dependent	 on	 𝑘4⃗ ";	 but,	 for	 l1<<Rs	 as	
expressed	 in	 the	 Inequality	 (15a),	 the	 function	F(0)	 is	 unaffected	by	 the	 location	of	 �⃗�"	
within	region	of	detection	𝑟"±l1.		Consequently,	Equation	(49)	can	be	reorganized	into	the	
form:	

𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) = 𝑐	Eff"	Eff%	𝐴𝑡𝑡!+J	𝑋ij"% 	𝑓[e"	𝑓f@%	𝜇"	𝜇%	

	 ∫ 𝑑𝑘"
K
M 𝑘"%∬ 𝑑%Ω44⃗ "

⬚
e# 			Φ(M)A𝑟", 𝑘"Ω44⃗ "E		 (50)	

	 	∫ 𝑑𝑘%
K
M ∬ 𝑑%Ω44⃗ %

⬚
e# 	𝛿 ¥𝑘% −

(."
(B."Z"T\]]⃗ "⋅\]]⃗ #^

¦		𝐷@(𝑘" − 𝑘%|𝐸", 𝜀")	𝐷@(𝑘%|𝐸%, 𝜀%)		 	

	 	∭𝑑$�⃗�" 	∭𝑑$�⃗�% 		
1

p𝑥]]⃗ 1−𝑥]]⃗ 2p
2 		𝛿% PΩ44⃗ %,

1⃗#T1⃗"
|1⃗"T1⃗#|

Q		𝐷1(�⃗�%|�⃗�%, 𝜆%)		𝐷1(𝑥"|𝑟", 𝜆")			 	

where	the	unit	vector	Ω44⃗ "	denotes	the	direction	of	the	incident	radiation	©𝑘4⃗ " ≡ 𝑘"Ω44⃗ "ª	and	
Ω44⃗ %	denotes	the	direction	of	the	scattered	radiation	©𝑘4⃗ % ≡ 𝑘%Ω44⃗ %ª.		[Note:	the	unit	vectors		
W1	and	W2	are	strongly	correlated	with	𝛽	and	�⃗�,	respectively,	but	are	not	equal!		The	unit	
vector	 �⃗�	points	from	the	center	of	the	voxel	to	first	 interaction	location	and,	therefore,	
should	 be	 approximately	 equal	 to	 Ω44⃗ ",	 the	 actual	 direction	 of	 the	 incident	 photon.		
Likewise,	the	unit	vector	�⃗�	points	from	the	first	interaction	to	the	second	and,	therefore,	
should	be	approximately	equal	to	Ω44⃗ %,	the	actual	direction	of	the	scattered	photon.]		For	a	
Gaussian	voxel,	as	defined	in	Equations	(4)	and	(7)	with	center	at	𝐶	and	size	L,	the	incident	
radiation	field,	F(0),	is	given	by	Equation	(25)	and	yields	a	more	explicit	result:	
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𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) =
6𝐿
4𝜋% 	Eff"	Eff%	𝐴𝑡𝑡'1J	𝐴𝑡𝑡!+J	𝑋ij

"% 	𝑓[e"	𝑓f@%	𝜇"	𝜇%	

	 ∬e#𝑑
%Ω44⃗ "∬e#𝑑

%Ω44⃗ % 		exp q−
"
%d"#
	P1 −	AΩ44⃗ " ⋅ �⃗�E

%
Qs 	ΘAΩ44⃗ " ⋅ 𝛽E	 (51)	

	 		∫ 𝑑𝑘"
K
M 	𝐴(𝑘")		𝐷@ ¥

."#Z"T\]]⃗ "⋅\]]⃗ #^
(B."Z"T\]]⃗ "⋅\]]⃗ #^

 𝐸", 𝜀"¦ 	𝐷@ ¥
(."

(B."Z"T\]]⃗ "⋅\]]⃗ #^
 𝐸%, 𝜀%¦	

	 				∭𝑑$�⃗�" 	∭𝑑$�⃗�% 		
1

p𝑥]]⃗ 1−𝑥]]⃗ 2p
2 		𝛿% PΩ44⃗ %,

1⃗#T1⃗"
|1⃗"T1⃗#|

Q		𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷1(�⃗�"|𝑟", 𝜆")		.	 	

Three	 terms	 in	 Equation	 (51)	 are	 “color	 coded”	 as	 representing	 the	 three	 blurring	
processes	associated	with	Compton	imaging.		The	integrals	over	Ω44⃗ "	and	Ω44⃗ %	correspond	to	
directions	of	the	incident	and	scattered	radiation,	respectively.		The	“red”	terms	represent	
the	dispersion	in	the	direction	of	the	incident	radiation,	Ω44⃗ "	due	to	the	finite	spatial	size	of	
the	 source	voxel.	 	The	 “purple”	 terms	represent	 the	blurring	of	 the	kinematic	opening	
angle,	AΩ44⃗ " ⋅ Ω44⃗ %E,	due	to	uncertainties	in	the	observed	energies,	as	represented	by	the	DE	
functions.	 	 The	 source	 activity,	 A(k1),	 appears	 among	 the	 “purple”	 terms	 because	 the	
emission	spectrum	must	be	convolved	with	the	observed	energy	depositions.		The	“blue”	
terms	represent	the	uncertainty	in	the	direction	of	the	scattered	radiation,	Ω44⃗ %,	due	to	the	
limited	spatial	resolution	of	the	detectors.			

The	evaluation	of	the	integrals	in	Equation	(51)	begins	with	the	formal	definition	of	
the	components	described	in	the	last	paragraph.		The	last	component	[the	“blue”	part	of	
Equation	(51)]	represents	the	blurring	of	the	scatter	direction	due	to	spatial	resolution	of	
the	interactions.		This	component	is	denoted	by	the	function	𝐶𝐴(𝜔44⃗ )	(CA=	“cone	axis”)	that	
characterizes	the	distribution	of	the	scatter	direction	and	is	defined	by	

		𝐶𝐴(𝜔44⃗ ) ≡ ∭𝑑$�⃗�" 	∭𝑑$�⃗�% 		
1

p𝑥]]⃗ 1−𝑥]]⃗ 2p
2 		𝛿% P𝜔44⃗ ,

1⃗#T1⃗"
|1⃗"T1⃗#|

Q		𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷1(𝑥"|𝑟", 𝜆")		.	 (52)	

The	function	CA	gives	the	distribution	of	the	cone-axis	(𝜔44⃗ )	on	the	2	sphere	and	is	peaked	
[𝐶𝐴(𝜔44⃗ )	maximum]	in	the	direction	𝜔44⃗ = �⃗�,	that	points	from	𝑟"	toward	𝑟%.		(N.B.	Despite	its	
role	as	the	distribution	of	cone-axis	directions,	the	function	CA	has	dimensions	[m]4.)		An	
analytic	approximation	of	CA	is	derived	in	Appendix	A,	where	one	finds	that	CA	is	given	
by	

	 𝐶𝐴(𝜔44⃗ ) = (%9)#q"!q#!

Zq"#Bq##^
	Θ(𝜔44⃗ ⋅ �⃗�)	exp �− "

%d##
[	1 − (𝜔44⃗ ⋅ �⃗�)%]�	 (53)	

	 = (%9)#q"!q#!

d##F"##
	Θ(𝜔44⃗ ⋅ �⃗�)	exp �− "

%d##
[	1 − (𝜔44⃗ ⋅ �⃗�)%]�	

where	 Σ% ≡
�q"#Bq##

F"#
		.	 (54)	
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According	 to	 the	 Inequality	 (15a),	 one	 assumes	𝜆! < 𝑅"%	 so	 that	Σ% < √2.	 	 In	practice,	
however,	the	only	events	with	5𝜆! < 𝑅"%	provide	reasonable	information.		This	restriction	
implies	 that	 Σ% < 0.28	 which	 is	 comparable	 (not	 coincidentally)	 with	 the	 restriction	
associated	with	S1	following	Inequality	(15a).		As	a	result	of	these	physical	constraints	on	
the	imaging	process,	one	concludes	that	1 2Σ"%⁄ > 6	and	1 2Σ%%⁄ > 6.	

The	second	component	[the	green	part]	of	Equation	(51)	represents	the	blurring	of	
the	opening	angle	of	 the	Compton	cone	associated	with	 the	energy	measurements	and	
resolution	 of	 the	 detectors.	 	 This	 component	 is	 denoted	 by	 the	 function	 OA(u)	
(OA=”opening	 angle”)	 that	 characterizes	 the	 distribution	 of	 opening	 angles	 for	 the	
Compton	cone	and	is	defined	by	

	 𝑂𝐴(𝜐) ≡ ∫ 𝑑𝑘K
M 	𝐴(𝑘)		𝐷@ P

.#("T�)
(B.("T�)

¡ 𝐸", 𝜀"Q 	𝐷@ P
(.

(B.("T�)
¡ 𝐸%, 𝜀%Q		.	 (55)	

The	function	OA	gives	the	distribution	of	cosine	of	the	opening	angle	(u)	determined	by	
the	Compton	kinematics,	energy	resolution	and	incident	spectrum.		(N.B.	The	function	OA	
has	dimensions	[counts][m]-3[sec]-1.)		The	function	OA	is	significantly	more	complicated	
than	 CA	 because	 it	 depends	 on	 the	 energy	 spectrum	 of	 the	 source.	 	 One	 expects	 the	
function	 OA	 to	 be	 peaked	 around	 𝜐 = 𝜇(𝐸", 𝐸%),	 where	 the	 function	𝜇	 is	 computed	 in	
Equation	(12)	for	Compton	scattering.		Because	OA	depends	on	the	(unknown)	spectrum	
A(E),	 alternative	 functions	 are	 required	 depending	 on	 the	 assumed	 source	 spectrum.		
Basically,	the	function	OA	samples	the	source	spectrum	A(k)	over	a	narrow	energy	band	
of	width	r𝜀"% + 𝜀%%	 near	 k=(E1+E2).	 	 In	 Appendix	 B,	we	 evaluate	𝑂𝐴(𝜐)	 for	 a	 Gaussian	
source	distribution	of	the	form	

	 𝐴(𝑘) = _∗

√%9d$
	𝑒𝑥𝑝 q− (.T@$)#

%d$#
s	 (B.2)	

which	can	be	adapted	to	represent	either	extremely	narrow	or	broad	emission	spectra.		
N.B.	The	functions	OA	and	A*	have	dimensions	[counts][m]-3[sec]-1;	whereas,	𝐸)	and	Σ)%	
have	 are	 energies	 (keV).	 	 For	 this	 analysis,	 we	 assume	 a	 narrow	 emission	 spectrum	
(𝐸) ≪ 𝜀")	and	(𝐸) ≪ 𝜀%);	so	that	Appendix	B	calculates		

	 𝑂𝐴(𝜐) = 𝐴∗𝑒𝑥𝑝 q− (�Tl)#

%	d!#
s 𝑒𝑥𝑝 �− (@$T@"T@#)#

%Zr"#Br##^
� Θ ¥2 − (

@$

�r"#@#Br##(@$T@")�
�r##@"Br"#(@$T@#)�

¦	 (56a)	

where	

	 𝜇 = 𝜇 ¥r#
#@"Br"#(@$T@#)

Zr"#Br##^
, r"
#@#Br##(@$T@")

Zr"#Br##^
¦ = 1 − (�r##@"Br"#(@$T@#)�

@$�r"#@#Br##(@$T@")�
≅ 𝜇(𝐸", 𝐸%)	 (56b)	

and	 Σ$ =
(r"r#[𝜀12+𝜀22]3 2⁄

�r"#@#Br##(@$T@")�
# ≅

r"r#

�r"#Br##

(
@##
	.	 (56c)	
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These	results	correspond	to	Equations	(B.16)	through	(B.18)	 in	Appendix	B.	 	The	 final	
Heaviside	 function	 in	 Equation	 (56a)	 arises	 from	 the	 backscatter	 cutoff	 introduced	 in	
Equation	(B.31).	

Using	the	functions	CA	and	OA	in	Equation	(51),	one	finds	that	the	desired	rate	is	
given	by	

	 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) = 8D_∗	q"!q#!

Zq"#Bq##^
	Eff"	Eff%	𝐴𝑡𝑡'1J	𝐴𝑡𝑡!+J	𝑋ij"% 	𝑓[e"	𝑓f@%	𝜇"	𝜇%		

	 	 𝑒𝑥𝑝 �− (@$T@"T@#)#

%Zr"#Br##^
�	Θ¥2 − (

@$

�r"#@#Br##(@$T@")�
�r##@"Br"#(@$T@#)�

¦	

	 ∬e#𝑑
%Ω44⃗ "	∬e#𝑑

%Ω44⃗ % 		exp �−
"
%d"#
	q	1 −	AΩ44⃗ " ⋅ 𝛽E

%
s� 	ΘAΩ44⃗ " ⋅ �⃗�E	 (57)	

	 exp �− "
%d##

q	1 − AΩ44⃗ % ⋅ �⃗�E
%
s� 	ΘAΩ44⃗ % ⋅ �⃗�E		

	 exp �− "
%d!#

©	Ω44⃗ " ⋅ Ω44⃗ % − 𝜇	ª
%
�		.	 	

The	first	line	of	Equation	(57)	is	a	product	of	numerous	physical	constants	that	describe	
the	 processes	 of	 the	 propagation,	 scattering,	 photo-absorption	 and	 detection	 of	 the	
radiation.	 	 When	 multiplied	 together,	 these	 constants	 have	 the	 desired	 physical	
dimensions	[counts/sec].		The	Gaussian	and	Heaviside	functions	in	the	second	line	assure	
that	 the	source	energy	matches	 the	detected	energies	and	 that	 the	backscatter	 limit	 is	
observed.		The	integrals	over	all	possible	directions	of	the	incident	radiation	AΩ44⃗ "E	and	the	
scattered	 radiation	 AΩ44⃗ %E	 are	 dimensionless	 but	 represent	 all	 the	 important	 imaging	
properties	of	a	Compton	detector.		[N.B.:	Ω44⃗ "and	Ω44⃗ %	represent	the	actual	directions	of	the	
incident	 photon	 and	 scattered	 photon,	 respectively;	 whereas	 �⃗�	 and	 �⃗�	 represent	 the	
measured	 estimates	 for	 the	 direction	 of	 the	 scattered	 and	 incident	 radiation,	
respectively.]	 	The	pseudo-“Gaussian”	exponential	terms	in	 lines	3	and	4	represent	the	
distribution	of	the	actual	directions	around	their	measured	values.		The	width	constants	
S1	and	S2	indicate	the	uncertainty	in	those	measured	directions.		Both	the	integrals	over	
solid	angles	and	the	pseudo-“Gaussian”	exponential	terms	are	dimensionless	weighting	
functions.		The	last	line	contains	information	about	the	Compton	kinematics	determined	
by	the	energy	depositions.		Figures	4	and	5	illustrate	the	pseudo-“Gaussian”	distributions	
of	Ω44⃗ "	and	Ω44⃗ %	on	the	spheres	and	how	their	relative	orientation	is	related	to	the	opening	
angle	qkin	predicted	by	Compton	kinematics	[𝜇 ≈ cos 𝜃.!+]	.	

The	 ungainly	 integral	 term	 in	 Equation	 (57)	 can	 be	 compartmentalized	 by	 the	
introduction	of	a	“Compton	Cone”	function,	CC,	defined	by	
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	 𝐶𝐶A�⃗� ⋅ �⃗�, 𝜇; Σ!E ≡
"

Z%9d"#^Z%9d##^
∬e#𝑑

%Ω44⃗ "	∬e#𝑑
%Ω44⃗ %		ΘAΩ44⃗ " ⋅ �⃗�E	ΘAΩ44⃗ % ⋅ �⃗�E	

	 	 		𝑒𝑥𝑝 �− "
%d"#

q1 − AΩ44⃗ " ⋅ �⃗�E
%
s − "

%d##
q1 − AΩ44⃗ % ⋅ �⃗�E

%
s�		 (58)	

	 	 𝑒𝑥𝑝 �− "
%d!#

©AΩ44⃗ " ⋅ Ω44444⃗ %E − 𝜇ª
%
�	.	

Recalling	 the	 definitions	 of	 S1	 [Equation	 (14)]	 and	 S2	 [Equation	 (54)]	 and	 using	 the	
definition	of	CC	[Equation	(58)],	one	can	rewrite	the	rate	[Equation	(57)]	as	

	 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) = (𝐿$𝐴∗)⟦𝐸𝑓𝑓"𝐸𝑓𝑓%𝐴𝑡𝑡!+J𝐴𝑡𝑡'1J⟧ �
%9#q"#q##

F$#F"##
� q𝜇"𝜆"𝜇%𝜆%𝑓[e"𝑓f@%𝑋ij"% s		

	 	 𝑒𝑥𝑝 �− (@$T@"T@#)#

%Zr"#Br##^
� Θ ¥2 − (

@$

�r"#@#Br##(@$T@")�
�r##@"Br"#(@$T@#)�

¦ 	𝐶𝐶A�⃗� ⋅ 𝛽, 𝜇; Σ!E	 (59)	

In	Equation	(59),	the	first	term,	(L3A*),	equals	the	emissions	per	second	from	within	the	
voxel.		The	[[hollow	bracketed]]	term	consists	of	dimensionless	coefficients	that	reduce	
the	observed	rate	due	to	the	detector	efficiencies	and	attenuation	between	the	emission	
and	points	of	detection.		The	{curly	bracketed}	term	is	a	dimensionless,	geometric	term	
depending	only	on	distances	Rs,	R12,	and	the	spatial	resolutions	li	that	characterizes	the	
solid	angles	viewed	by	the	associated	detector	volumes.		The	[square	bracketed]	term	is	
a	dimensionless	interaction	term	that	depends	primarily	on	the	energy	depositions	E1	and	
E2	 and	 characterizes	 the	 probabilities	 of	 the	 Compton	 and	 photoelectric	 interactions.		
Thus,	the	overall	dimensions	of	Rate(D1,D2)	are	given	by	the	(L3A*)	term;	i.e.	counts/sec.		
The	crucial	term	for	imaging	appears	in	the	CC	function.	

The	 Compton	 Cone	 function,	 CC,	 defined	 in	 Equation	 (58)	 suppresses	 rates	 for	
voxels	located	off	the	Compton	cone	and	is,	therefore,	the	most	significant	of	this	analysis.		
Unfortunately,	 the	 accurate	 evaluation	 of	 CC	 is	 difficult	 and	 requires	 complicated	
calculations.		Nonetheless,	one	important	property	can	be	immediately	deduced	from	the	
definition.		Noting	that		

	 0 ≤ exp q− "
%d!#

©AΩ44⃗ " ∙ Ω44⃗ %E − 𝜇ª
%
s ≤ 1	 (60)	

one	observes	that	

0 < 𝐶𝐶A�⃗� ∙ �⃗�, 𝜇; Σ!E ≤
1

(2𝜋Σ"%)(2𝜋Σ%%)
∬e#𝑑

%Ω44⃗ "	∬e#𝑑
%Ω44⃗ %	ΘAΩ44⃗ " ∙ 𝛽E	ΘAΩ44⃗ % ∙ �⃗�E		

	 𝑒𝑥𝑝 �− "
%d"#

q1 − AΩ44⃗ " ∙ �⃗�E
%
s − "

%d##
q1 − AΩ44⃗ % ∙ �⃗�E

%
s�	.		 (61)	

In	the	last	term	of	the	Inequalities	(61)	the	integrals	over	Ω44⃗ "	and	Ω44⃗ %		decouple	and	yield	

	 0 < 𝐶𝐶A�⃗� ∙ �⃗�, 𝜇; Σ!E ≤
"

d"#d##
𝐹" P1,

$
%
; − "

%d"#
Q"

⬚ 𝐹" P1,
$
%
; − "

%d##
Q	"

⬚
d"≪"
d#≪"

¶⎯⎯̧ 	1		 (62)	

where	 the	 1F1 functions	 in	 Equation	 (62)	 are	 the	 confluent	 hypergeometric	 functions.		
Thus,	if	the	Inequalities	(15)	are	satisfied,	one	finds	0<CC<1.			
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Figure	4.	The	distributions	of	Ω44⃗ "	and	Ω44⃗ %	are	shown	on	the	sphere.	 	The	vector	�⃗�	(often	
called	the	“axis	of	 the	Compton	cone”)	 is	 the	direction	of	 the	scattered	photon	as	
determined	by	 the	 locations	 of	 the	 two	 interactions.	 	 The	 actual	 direction	 of	 the	
scattered	radiation	Ω44⃗ %	is	characterized	by	a	distribution	indicated	by	the	red-shaded	
region	having	diameter	parameterized	by	S2.	 	The	vector	�⃗�	 is	the	direction	of	the	
incident	 photon	 as	 determined	 by	 the	 locations	 of	 the	 voxel	 center	 and	 the	 first	
interaction.		The	actual	direction	of	the	incident	radiation	Ω44⃗ "	is	characterized	by	a	
distribution	indicated	by	the	green-shaded	region	having	diameter	parameterized	
by	 S1.	 	 The	 purple	 arc	 indicates	 the	 opening	 angle	 qkin	 predicted	 by	 Compton	
kinematics	 and	 the	 observed	 energy	 depositions.	 	 The	 purple	 “Compton	 Cone”	
intersects	the	celestial	sphere	with	a	finite	width	that	is	characterized	by	S3.		The	CC	
function	is	determined	by	the	overlap	integral	of	the	purple	“Compton	Cone”	with	
the	green	“Source”	direction.		However,	that	simple	overlap	integral	is	complicated	
by	the	wobbling	to	the	“Compton	Cone”	axis	around	the	direction	�⃗�.	
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Figure	5.		This	diagram	is	a	schematic	slice	through	the	sphere	in	Figure	4	on	the	great	
circle	 determined	 by	 vectors	 �⃗�	 and	 �⃗�.	 	 The	 integrals	 over	Ω44⃗ "and	Ω44⃗ %	 involve	 the	
overlap	of	the	distributions	for	Ω44⃗ "	(green),	Ω44⃗ %	(red),	and	the	angular	separation	of	
the	 characterized	by	Ω44⃗ " ⋅ Ω44⃗ % = 𝑐𝑜𝑠(𝜃.!+)	with	 a	distribution	OA	 (purple).	 	 In	 this	
figure	the	angle	between	�⃗�	and	𝛽	(indicated	as	fgeo)	is	slightly	larger	that	the	angle	
predicted	by	E1,	E2,	and	the	kinematics	of	Compton	scattering,	qkin.	
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The	evaluation	of	the	CC	function	is	difficult.	 	The	details	of	the	CC	calculation	are	
sufficiently	 complicated	 that	 the	 evaluation	 and	 resulting	 algorithm	 are	 relegated	 to	
Appendix	C.		In	that	appendix,	a	series	of	approximations	are	presented	that	culminate	in	
Equations	 (C.51a-e).	 	 In	 summary,	 the	 best	 analytic	 approximation	 for	 CC	 currently	
available	is	given	by		

	 𝜈 ≡ �⃗� ∙ �⃗�	 (63a)	

	 𝜇 ≡ 𝑚𝑎𝑥 ¥−1	, 1 − (�r##@"Br"#(@$T@#)�
@$�r"#@#Br##(@$T@")�

¦	 (63b)	

	 σ ≡ 𝑠𝑖𝑔𝑛P𝜇√1 − 𝜈% − 𝜈r1 − 𝜇%Q	 (63c)	

	 Υ ≡ 𝑚𝑎𝑥P𝜖, 𝜇𝜈 + r1 − 𝜇%√1 − 𝜈%Q							[𝜖 ≈ .001]	 (63d)	

	 Δ ≡ σ√1 − Υ%		 (63e)	

	 𝜒 ≡ �o
�
	 (63f)	

and	 𝐶𝐶(𝜈, 𝜇; Σ!) =
d!

�d!#B("T�#)d"#B("Tl#)d##
𝑒𝑥𝑝 ½− Z√"T�#T�^

#
o#

%�d!#B("T�#)d"#B("Tl#)d##�
¾.	 (63g)	

[N.B.	the	Υ	of	Equation	(63d)	is	effectively	𝑐𝑜𝑠A𝜃.!+ − 𝜙?'*E	where	𝜇 = 𝑐𝑜𝑠𝜃.!+	and	𝜈 =
𝑐𝑜𝑠𝜙?'*	and	the	angular	difference	does	not	exceed	𝜋 2⁄ ;	so	that,	Equation	(63e)	implies	
Δ ≅ sinA𝜃.!+ − 𝜙?'*E.]		The	combination	of	this	approximate	CC	function	[Equation(63g)]	
with	Equation	(59);	namely,	

𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) = (𝐿$𝐴∗)⟦𝐸𝑓𝑓"𝐸𝑓𝑓%𝐴𝑡𝑡!+J𝐴𝑡𝑡'1J⟧ �
%9#q"#q##

F$#F"##
� q𝜇"𝜆"𝜇%𝜆%𝑓[e"𝑓f@%𝑋ij"% s	 	

	 𝑒𝑥𝑝 �− (@$T@"T@#)#

%Zr"#Br##^
� 	Θ ¥2 − (�r##@"Br"#(@$T@#)�

@$�r"#@#Br##(@$T@")�
¦ 		𝐶𝐶(𝜈, 𝜇; Σ!),	 (64)	

produces	 a	 complete	 algorithm	 for	 the	 rate	 calculation.	 	 The	 value	 of	 𝜇	 calculated	 in	
Equation	(63b)	is	always	in	the	range	[-1,1];	thereby,	permitting	one	to	compute	the	CC	
function	for	unphysical	energy	combinations.		The	Q	function	that	is	added	to	the	second	
line	of	Equation	(64)	eliminates	kinematically	prohibited	combinations.		Extreme	caution	
must	be	exercised	in	using	this	result	for	events	in	the	vicinity	of	𝜇 = ±1.		As	discussed	in	
Appendices	B	and	C,	such	events	are	of	doubtful	value	in	Compton	cameras	and	should	
probably	be	excluded.		Near	𝜇 = −1	the	angular	resolution	is	poor	and	provides	virtual	
no	 directional	 information.	 	 On	 the	 other	 hand,	 events	 in	 the	 vicinity	 of	 𝜇 = 1	 have	
sufficient	angular	resolution,	but	are	seldom	observed	due	to	small	E1	energy	deposition.		
In	either	case	the	analytic	approximations	in	Appendix	C	become	problematic	when	the	
back-projection	“cone”	becomes	a	narrow	pencil-beam.			

Very	early	in	the	analysis	[Equation	(2)]	we	asserted	that	the	observed	rate	should	
satisfy	

	 𝑅𝑎𝑡𝑒		 ∝ 		 𝜆"	$ 		𝜆%$		𝜀"	𝜀%.	 (2)	
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If	one	examines	Equation	(64),	the	dependence	on	𝜆"$	and	𝜆%$		appears	exactly	as	expected.		
However,	the	dependence	on	𝜀"	and	𝜀%	is	problematic;	nowhere	in	Equation	(64)	do	the	
energy	 resolutions	 explicitly	 appear.	 	 Careful	 analysis	 reveals	 a	 hidden	 dependence	
arising	from	two	terms:	(1)	the	energy	Gaussian	and	(2)	the	CC	function.		If	one	integrates	
the	 energy	 Gaussian	 over	 all	 the	 possible	 source	 energies	 (𝐸)),	 one	 gets	 a	 factor	 of	
r𝜀"% + 𝜀%%.		If	one	evaluates	the	CC	function	for	a	voxel	on	the	Compton	cone	(𝜇 = 𝜈),	one	
finds		

	 𝐶𝐶(𝜇, 𝜇; Σ!) =
d!

�d!#B("Tl#)Zd"#Bd##^
’	 (65)	

so	that	

	 𝑅𝑎𝑡𝑒	 ∝ r"	r#

�d!#B("Tl#)Zd"#Bd##^
	.	 (66)	

One	can	conclude	that	Equation	(2)	is	satisfied	provided	that	

	 d!
�"Tl#

< rΣ"% + Σ%%.	 (67)	

Recalling	Equation	(B.21),	one	writes	Inequality	(67)	as	

	 𝜂 [(B@("Tl)]
@�"Bl

< rΣ"% + Σ%%		 (68)	

which	is	generally	satisfied	except	in	the	immediate	vicinity	of	𝜇 = −1	where	Appendix	B	
has	already	revealed	significant	problems.		Basically,	the	CC	function	has	peak	value	𝐶𝐶 =
1	 in	 the	 vicinity	 of	𝜇 = 𝜈 = −1,	 due	 to	 the	 ‘pencil	 beam’	 nature	 of	 the	 Compton	 cone.		
Elsewhere	along	the	(𝜇 = 𝜈)	line,	the	CC	function	gives	rates	proportional	to	𝜀"𝜀%	because	
the	S3	 contribution	 to	 the	denominator	of	Equation	(66)	 is	 smaller	 than	 the	S1	 and	S2	
contributions.		However,	in	the	vicinity	of	𝜇 = 𝜈 = −1	the	large	values	of	S3	dominate,	so	
that	one	finds	𝑅𝑎𝑡𝑒	 ∝ r𝜀"% + 𝜀%%,	rather	than	𝜀"𝜀%.		This	anomaly	is	directly	attributable	to	
the	pathological	broadening	of	the	Compton	cone	in	the	backscatter	limit.	

V.	Coincident	Detection	Rates	for	Voxel	Sources	with	Narrow-Energy	Spectra	

This	 section	 displays	 and	 discusses	 the	 rate	 of	 (D1,D2)	 events	 as	 predicted	 by	
Equation	 (64).	 	 Of	 particular	 concern	 are	 the	 rate	 predictions	 for	 backscatter	 events	
(𝜇 ≈ −1).	 	 In	 both	 Appendices	 B	 and	 C	 we	 observed	 that	 backscattered	 radiation	
produced	 large	 angular	 uncertainties	 that,	 subsequently,	 produced	 pathological	
broadening	in	the	CC	function.		Indeed,	Figures	C.4	and	C.5	seem	to	challenge	the	viability	
of	 Compton	 cameras	 because	 the	 CC	 function	 response	 for	 large-angle	 scattering	was	
stronger	 than	 the	 response	 for	 small-angle	 scattering	 that	 provides	 better	 angular	
resolution.		Fortunately,	other	terms	in	the	Rate	Equation	(64)	multiply	the	CC	function	
and	 tend	 to	 suppress	 the	 backscatter	 response;	 thereby,	 ameliorating	 the	 problem.		
Recalling	that	backscatter	events	imply	large	energy	transfers	(E1)	at	the	first	interaction,	
one	expects	smaller	energy	(E2)	for	the	scattered	photons.		These	comparative	energies	
affect	three	terms	in	Rate(D1,D2)	equation	that	multiply	the	CC	function;	namely,	𝐴𝑡𝑡!+J ,	
P𝜇%𝑓f@%Q,	 and	 𝑋ij"% .	 	 [The	 combined	 term	 P𝜇%𝑓f@%Q	 is	 the	 portion	 of	 the	 attenuation	
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coefficient	arising	from	photoelectric	absorption,	and,	consequently,	is	actually	a	single	
physical	phenomenon].		Both	𝐴𝑡𝑡!+J	and	𝑋ij"% 	suppress	the	rate	of	backscattered	radiation	
as	compared	to	forward	scattered	radiation.		On	the	other	hand,	the	term	P𝜇%𝑓f@%Q	tends	
to	 increase	 at	 lower	 values	 of	 E2	 and,	 therefore,	 enhances	 the	 contribution	 from	
backscattered	radiation.	 	The	competition	between	 these	effects	determine	 the	overall	
Rate(D1,D2).		Aside	from	the	energies	E1	and	E2,	the	other	significant	“event”	parameter	
(i.e.,	unrelated	to	the	source	voxels)	affecting	the	rate	is	R12.		The	effects	of	the	𝑅"%	term	
arise	from	(1)	the	obvious	𝑅"%T%	dependence	and	(2)	the	more	subtle	and	significant	effects	
on	the	𝐴𝑡𝑡!+J	term.		The	farther	the	scattered	photon	travels	in	the	detector	materials,	the	
greater	will	be	the	attenuation,	i.e.	𝐴𝑡𝑡!+J	will	be	smaller.		Because	the	attenuation	term	
preferentially	 suppresses	 backscattered	 radiation,	 larger	 values	 of	 R12	 will	 better	
suppress	the	backscatter	response.		The	importance	of	these	considerations	will	become	
obvious	once	the	CC	and	Rate(D1,D2)	functions	are	displayed.	

The	 behavior	 of	 the	 CC	 and	 Rate(D1,D2)	 functions	 for	 individual	 events	 will	 be	
displayed	by	back-projection	onto	an	array	of	source	voxels.		The	source	voxels	will	be	of	
uniform	size	and	located	on	the	x-z	plane.		The	voxel	size	is	given	by	L=10cm;	the	2D	array	
of	voxels	runs	from	(−900𝑐𝑚 ≤ 𝑥 ≤ 900𝑐𝑚)	and	(−900𝑐𝑚 ≤ 𝑧 ≤ 900𝑐𝑚).		The	first	D1	
interaction	is	assumed	to	be	detected	at	the	origin	(𝑥 = 𝑦 = 𝑧 = 0);	whereas,	the	second	
D2	interaction	is	detected	at	(𝑥 = 𝑦 = 0; 𝑧 = −𝑅"%).		Thus,	the	axis	of	the	Compton	cone	
(�⃗�)	is	always	aligned	along	the	negative	z-axis;	and	the	Compton	cone	intersects	the	2D	
voxel	 array	 on	 a	 “V”	 shaped	 wedge	 with	 the	 vertex	 at	 the	 origin.	 	 Figure	 6	 shows	 a	
prototype	diagram	for	the	results	that	follow.		For	these	displays,	CZT	was	selected	as	the	
detector	material	and	the	spatial	resolution	of	the	interaction	locations	was	set	at	1mm.		
The	cross-sections	and	attenuation	coefficients	were	calculated	based	on	interactions	in	
CZT	at	the	observed	energies.		Therefore,	the	basic	parameters	for	the	displays	are:	

	 𝜆" = 𝜆% = .1	𝑐𝑚	
	 𝑅"% = 1.5	𝑜𝑟	3.0	𝑐𝑚	

	 𝐿 = 10	𝑐𝑚	 (69)	

	 𝐴∗𝐿$ = 1	𝑐𝑛𝑡/𝑠𝑒𝑐	

	 ⟦𝐸𝑓𝑓"𝐸𝑓𝑓%𝐴𝑡𝑡'1J⟧ = 1	

and	 𝐴𝑡𝑡!+J = 𝑒𝑥𝑝 q−0.9𝑅"%𝜇%s.	

The	calculation	of	𝐴𝑡𝑡!+J	 is	problematic	because	the	distance	that	the	scattered	photon	
travels	 within	 the	 detector	material	 before	 photo-absorption	 depends	 on	 the	 specific	
geometric	design	of	the	camera.	 	Many	cameras	feature	air	gaps	between	detectors,	so	
that	only	a	fraction	of	the	total	separation	(𝑅"%)	is	actually	inside	the	detector	material.		
We	selected	0. 9𝑅"%	as	a	compromise	attenuation	 length.	 	The	energy	resolutions	were	
calculated	as	described	in	Appendix	B;	namely,	

	 𝜀(𝐸) = r𝜀M% + 𝜂%𝑚𝐸		 (B.19)	

where	we	selected	𝜀M = 5	𝑘𝑒𝑉	and	𝜂 = 0.0331	as	typical	values.	 	The	value	𝜂 = 0.0331	
corresponds	to	3%	energy	resolution	at	E=662	keV;	i.e.,	𝐸 = 662 ± 19.9	𝑘𝑒𝑉.			
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Figure	6.	 	The	standard	display	diagram	for	both	the	CC	and	Rate(D12,D2)	

functions	is	shown.		The	source	voxels	are	distributed	in	the	x-z	plane.		The	
vertical	axis	shows	the	back-projection	of	the	function	for	a	single	event.		
The	initial	D1	interaction	is	assigned	to	the	origin	(𝑥 = 𝑦 = 𝑧 = 0).		The	
second	interaction	is	located	at	(𝑥 = 𝑦 = 0, 𝑧 = −𝑅"%);	so	that,	the	cone	
axis	is	always	along	the	negative	z-axis;	i.e.,	�⃗� = −𝑒R .		For	a	source	voxel	
located	at	the	green	dot,	the	direction	of	the	source	radiation	is	denoted	
by	 the	 green	 vector,	 𝛽.	 	 The	 angle	 between	 �⃗�	 and	 𝛽	 is	 the	 geometric	
scattering	angle;	whereas,	the	predicted	scattering	angle	is	determined	by	
the	 energies	 E1	 and	 E2.	 	 If	 the	 two	 angles	 coincide,	 the	 CC	 function	
approaches	 1;	 otherwise,	 the	 CC	 function	 is	 nearly	 zero.	 	 In	 this	 case,	
E1<<E2	which	implies	a	small	scattering	angle.	 	The	resulting	Compton	
cone	 is	 revealed	 as	 a	 very	narrow	 ‘V’	 along	 the	positive	 z-axis	with	 its	
vertex	at	the	origin.	

	

!
Source Voxel

!
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Figure	7a	

	
Figure	7b	

	
Figure	7c	

	
Figure	7d	

	
Figure	7e	

	
Figure7f	

	
Figure	7g	

	
Figure	7h	
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Figure	7	Caption	
	
Figure	7.		The	series	of	images	(7a)-(7h)	display	the	CC	function	for	parameters	given	in	

Equations	(69),	𝑅"% = 3.0	𝑐𝑚,	and	total	energy	(𝐸" + 𝐸%)	equal	to	662	keV.	 	The	
deposition	 energies	 E1	 and	 E2	 are	 assigned	 to	 provide	 Compton	 cone	 opening	
angles	 between	 5°	 and	 175°.	 	 [A	 .gif	 file	 of	 these	 images	 is	 provided	 in	 the	
Supplemental	Materials.].	
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The	imaging	properties	of	the	CC	function	are	clearly	displayed	in	Figure	7.		The	CC	
function	is	restricted	to	values	0≤CC≤1	and	is	expected	to	vanish	unless	the	source	voxel	
lies	near	the	Compton	cone	of	an	event.		Because	the	vertex	of	the	Compton	cone	is	at	the	
origin	 and	 the	 cone	 axis	 this	 aligned	 with	 the	 z-axis	 of	 the	 grid,	 the	 Compton	 cone	
intersects	the	x-z	plane	in	a	wedge-shaped	‘V’.	 	The	CC	function	clearly	displays	this	‘V’	
wedge	in	Figures	7a-7f.	 	These	images	also	demonstrate	the	finite	angular	width	of	the	
Compton	cone.		As	E1	increases	(and	E2	decreases),	the	angular	width	of	the	Compton	cone	
increases.		In	Figure	7g	angular	width	provides	only	limited	resolution;	and,	in	Figure	7h	
the	CC	has	expanded	to	include	virtually	all	voxels	in	the	backscatter	hemisphere!		Thus,	
our	observations	 in	Appendix	B	that	backscatter	events	cannot	be	expected	to	provide	
imaging	information	are	confirmed	by	Figure	7h.		As	we	will	see,	however,	the	problems	
associated	with	backscattered	radiation	do	not	necessarily	degrade	the	overall	Compton	
camera	response.	

Figure	7	also	reveals	a	significant	deficiency	 in	our	evaluation	of	 the	CC	 function.		
Every	image	in	Figure	7	displays	an	unphysical	“notch”	in	the	CC	function	near	the	vertex	
of	the	cone.		This	“notch”	is	most	visible	in	Figure	7e.		This	artificial	depression	of	the	CC	
function	is	a	direct	result	of	the	approximations	used	in	Appendix	C.		If	a	voxel	is	very	near	
the	first	 interaction	(𝑅) < 2𝐿),	 then	the	incident	radiation	can	come	from	virtually	any	
direction	on	the	hemisphere	facing	that	voxel.		In	terms	of	our	parameters,	this	means	that	
S1	 becomes	 very	 large	 and	 the	 approximations	 based	 on	 small	 values	 of	 S1	 fail.	 	 [In	
particular	the	approximation	used	in	Equation	(C.17)	for	the	asymptotic	expansion	of	the	
confluent	 hypergeometric	 function	 is	 no	 longer	 valid.].	 	 Basically,	 the	 CC	 calculation	
assumes	that	the	distribution	of	incident	photons	is	restricted	to	a	narrow	angular	region	
on	 the	 celestial	 sphere	 and,	 therefore,	 expects	S1	 small.	 	 A	 voxel	 close	 to	 the	detector	
violates	this	assumption.		One	method	to	remedy	the	problem	is	to	find	a	better	analytic	
approximation.		Another	method	is	to	reduce	the	voxel	size	(L)	in	the	immediate	vicinity	
of	 the	detector.	 	 In	 the	absence	of	 a	better	approximation,	we	currently	 recommend	a	
reduction	in	voxel	size	for	sources	near	the	detector.	

The	Compton	camera	response	is	determined	by	𝑅𝑎𝑡𝑒(𝐷1, 𝐷2)	which,	in	addition	to	
CC,	includes	numerous	other	factors.		Perhaps	the	most	obvious	and	significant	of	these	is	
the	𝑅)T%	rate	dependence.		The	𝑅)T%	effect	on	the	x-z	plots	implies	that	the	calculated	rate	
for	voxels	near	the	center	will	be	104	 larger	than	voxels	around	the	edges.	 	In	order	to	
visualize	 the	 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2)	 function,	 the	 plots	 will	 display	 [𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%].	 	 The	
significance	of	this	product	goes	beyond	simple	visualization	of	the	plots.		In	the	MLEM	
algorithm	 (and	 any	 maximum	 likelihood	 calculation	 based	 on	 Poisson	 statistics)	 the	
system	matrix	is	divided	by	the	voxel	sensitivity	(see	Appendix	F).		If	the	Compton	camera	
is	stationary,	the	sensitivity	is	proportional	to	𝑅)T%;	so	that,	the	system	matrix	divided	by	
the	 sensitivity	 is	 proportional	 to	 [𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%]—which	 is	what	 appears	 in	 each	
update	step	of	the	MLEM	algorithm.			
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Figure	8a	

	
Figure	8b	

	
Figure	8c	

	
Figure	8d	

	
Figure	8e	

	
Figure	8f	

	
Figure	8g	

	
Figure	8h	
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Figure	8	Caption	
	
Figure	 8.	 	 The	 series	 of	 images	 (8a)-(8h)	 display	 the	 function	 [𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%]	 for	

parameters	 given	 in	 Equations	 (69),	 𝑅"% = 3.0	𝑐𝑚,	 and	 total	 energy	 (𝐸" + 𝐸%)	
equal	 to	 662	 keV.	 	 The	 deposition	 energies	 E1	 and	 E2	 are	 assigned	 to	 provide	
Compton	cone	opening	angles	between	5°	and	175°.		[A	.gif	file	of	these	images	is	
provided	in	the	Supplemental	Materials.].	
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Figure	9a	

	
Figure	9b	

	
Figure	9c	

	
Figure	9d	

	
Figure	9e	

	
Figure	9f	

	
Figure	9g	

	
Figure	9h	
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Figure	9	Caption	
	
Figure	 9.	 	 The	 series	 of	 images	 (9a)-(9h)	 display	 the	 function	 [𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%]	 for	

parameters	 given	 in	 Equations	 (69),	 𝑅"% = 1.5	𝑐𝑚,	 and	 total	 energy	 (𝐸" + 𝐸%)	
equal	 to	 662	 keV.	 	 The	 deposition	 energies	 E1	 and	 E2	 are	 assigned	 to	 provide	
Compton	cone	opening	angles	between	5°	and	175°.		[A	.gif	file	of	these	images	is	
provided	in	the	Supplemental	Materials.].		
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The	 product	 [𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%]	 is	 displayed	 in	 Figure	 8	 for	 the	 same	 detector	
configuration	as	was	displayed	in	Figure	7	for	the	CC	function.		The	difference	is	striking	
because	the	backscatter	response	is	suppressed.		Despite	the	catastrophic	loss	of	angular	
resolution,	 the	 [𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%]	 for	 backscattered	 events	 drops	 by	 an	 order	 of	
magnitude	 compared	 with	 the	 rate	 for	 high-resolution,	 forward-scattered	 events.		
Comparison	 of	 Figures	 7h	 and	 8h	 reveals	 the	 same	 angular	 distribution,	 but	 the	
backscatter	rate	is	so	much	lower	that	it	poses	little	problem	when	back-projected	onto	
the	voxels.		This	fortunate	state	of	affairs	arises	from	the	three	terms	mentioned	earlier;	
namely,	𝐴𝑡𝑡!+J ,	P𝜇%𝑓f@%Q,	and	𝑋ij"% .		In	fact,	the	major	factor	suppressing	the	undesirable	
backscatter	rate	is	the	𝐴𝑡𝑡!+J	term.		This	conclusion	is	verified	by	changing	the	parameter	
𝑅"%.			

The	 interaction	 distance	 𝑅"%	 affects	 the	 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2)	 in	 three	 ways.	 	 First,	 the	
overall	rate	is	proportional	to	𝑅"%T%.		This	effect	is	independent	of	the	deposition	energies	
and	does	not	differentiate	between	forward	or	backward	scattering.		Second,	the	width	
parameter,	Σ%,	 is	 associated	with	 cone-axis	wobble,	 is	proportional	 to	𝑅"%T",	 and	 is	 also	
independent	 of	 the	 deposition	 energies.	 	 Σ%	 affects	 the	 angular	 resolution	 via	 the	 CC	
function,	but	not	the	magnitude	of	the	rate.		Finally,	𝑅"%	affects	the	𝐴𝑡𝑡!+J	term	as	given	in	
Equation	(69)	by	

	 𝐴𝑡𝑡!+J = 𝑒𝑥𝑝 q−0.9𝑅"%𝜇%s.	 (69)	

This	 last	 term	 depends	 on	 the	 E2	 energy	 through	 the	𝜇%	 attenuation	 coefficient.	 	 The	
attenuation	coefficient	increases	dramatically	as	E2	decreases.		Consequently,	the	𝐴𝑡𝑡!+J	
term	provides	preferential	suppression	of	backscattered	radiation.		Furthermore,	larger	
𝑅"%	implies	more	suppression	of	backscattered	response.	

In	Figure	9	the	product	[𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) ∗ 𝑅)%]	is	displayed	for	the	same	parameters	as	
Figure	8	–	except	 the	 interaction	separation	𝑅"% = 1.5𝑐𝑚	 is	 reduced	by	half.	 	A	simple	
comparison	of	Figures	8h	and	9h	reveals	 that	 the	backscattered	response	 is	no	 longer	
suppressed.	 	 	 The	 immediate	 conclusion	 is	 that	 larger	 separations	 between	 the	
interactions	 can	 suppress	 low	 resolution	 backscatter	 events.	 	 This	 phenomenon	 is	
examined	 further	 in	 the	 next	 section.	 	 In	 conclusion,	 one	 concludes	 that	 larger	𝑅"%	 is	
desirable	for	two	reasons:	(1)	better	angular	resolution,	and	(2)	natural	suppression	of	
backscatter	rates.	
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VI.	Interaction	Sequencing	and	Coincident	Detection	Rates	

At the beginning of this analysis, we assumed that the sequence of interactions was 
known.  Consequently, the two interactions were labeled D1 and D2.  In reality this is a bad 
assumption.  Unless one of the sequences violates the backscatter limit (and is, therefore, 
prohibited by Compton kinematics), either sequence D1-D2 or D2-D1 is possible.  Furthermore, 
no current instrumentation is expected to provide such sequencing information.  [Compton 
events involving three or more interactions provide sufficient information for sequencing, but 
occur at such low rates that imaging becomes infeasible.]  The ambiguity associated with 
interaction sequencing is apparently inherent to Compton cameras and must be handle as part 
of the image reconstruction process.  Fortunately, only two alternative sequences are possible, 
so that evaluation of the rate for both sequences is provided by repeating the calculation for the 
alternative sequences.  The idea is simply stated: 

 𝑅𝑎𝑡𝑒(𝑒𝑣𝑒𝑛𝑡) = 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) + 𝑅𝑎𝑡𝑒(𝐷2, 𝐷1) (70) 

where	the	𝑅𝑎𝑡𝑒(𝐷2, 𝐷1)	is	evaluated	with	the	exchange	of	interactions,	i.e.,	

	 𝑟" ± 𝜆" ⇔ 𝑟% ± 𝜆%
𝐸" ± 𝜀" ⇔ 𝐸% ± 𝜀%

	.	 (71)	

The	rates	in	Equation	(70)	include	the	relative	probabilities	of	both	sequences.		Each	voxel	
provides	 a	 rate	 that	 is	 proportional	 to	 the	 probability	 of	 detection	 for	 the	 designated	
sequence.		Because	the	alternate	sequences	are	mutually	exclusive,	one	can	add	the	two	
rates.		This	implies	that	for	many	events	the	camera	response	will	provide	two	Compton	
cones	rather	than	one.		Both	cones	will	share	the	same	axis;	however,	the	vertices	of	these	
cones	will	be	different	(𝑟"	or	𝑟%).			

The	application	of	Equation	(70)	is	demonstrated	in	Figures	10	and	11	that	display	
the	same	configurations	as	Figures	8	and	9,	respectively.		However,	in	Figures	10	and	11	
the	responses	from	both	sequences	are	combined	and	displayed	together.	 	Because	the	
voxel	 size	 is	 10	 cm	 and	 the	 interactions	 are	 separated	 (𝑅"%)	 by	 only	 1.5	 or	 3	 cm,	 the	
displacement	of	the	vertices	is	not	apparent	in	these	figures.		The	Compton	kinematics	for	
the	D1D2	sequence	gives	the	backscatter	limit	for	E=662	keV	at		

	 𝐸" ≡
%@#

(%@B()
= 477.7	𝑘𝑒𝑉	𝑎𝑛𝑑	𝐸% ≡

(@
(%@B()

= 184.3	𝑘𝑒𝑉	

so	that	energy	ranges		
	 0	𝑘𝑒𝑉 < 𝐸" < 477.7	𝑘𝑒𝑉			𝑎𝑛𝑑	184.3	𝑘𝑒𝑉 < 𝐸% < 662	𝑘𝑒𝑉	

are	kinematically	allowed.		On	the	other	hand,	for	the	D2D1	sequence,	the	allow	ranges	
are	given	by	
	 0	𝑘𝑒𝑉 < 𝐸% < 477.7	𝑘𝑒𝑉			𝑎𝑛𝑑	184.3	𝑘𝑒𝑉 < 𝐸" < 662	𝑘𝑒𝑉	.	

Thus,	 in	 the	 range	0	𝑘𝑒𝑉 < 𝐸" < 184.3	𝑘𝑒𝑉	 only	 the	D1D2	 sequence	 is	 allowed,	 in	 the	
range	477.3	𝑘𝑒𝑉 < 𝐸" < 662	𝑘𝑒𝑉	only	the	D2D1	sequence	is	allowed,	and,	finally,	in	the	
range	184.3	𝑘𝑒𝑉 < 𝐸" < 477.7	𝑘𝑒𝑉	both	the	D1D2	and	D2D1	sequences	are	allowed.			

In	Figure	10a	only	 the	D1D2	sequence	 is	kinematically	allowed,	so	only	one	cone	
appears.	 	 For	 Figures	 10b-10f,	 both	 sequences	 are	 kinematically	 possible,	 so	 that	 two	
cones	appear.		As	E1	increases	both	cones	move	toward	the	negative	z-axis.		Figure	10f	is	
located	very	near	the	backscatter	limit	for	the	D1D2	sequence.		In	Figures	10g	and	10h	
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only	the	D2D1	sequence	is	allowed,	so	only	one	cone	appears.	 	The	transition	between	
Figures	10e	and	10g	is	noteworthy	because	the	cones	of	the	D1D2	sequence	fade	away	
and	the	transition	to	the	D2D1	sequence	at	the	backscatter	cutoff	is	smooth.		This	smooth	
transition	can	be	attributed	to	the	suppression	of	the	backscattered	events	by	the	𝐴𝑡𝑡!+J	
function	for	𝑅"% = 3	𝑐𝑚.		If	one	sets	𝑅"% = 1.5	𝑐𝑚	,	as	shown	in	Figure	11,	the	transition	is	
not	 smooth.	 	 Furthermore,	 the	 pathological	 loss	 of	 angular	 resolution	 attributable	 to	
backscatter	radiation	is	evident.		The	problem	is	obvious	in	Figure	11f	that	occurs	near	
the	 D1D2	 backscatter	 limit.	 	 Because	 𝑅"% = 1.5	𝑐𝑚,	 the	 D1D2	 sequence	 is	 no	 longer	
suppressed	 by	 the	 𝐴𝑡𝑡!+J	 term	 and	 produces	 a	 broad	 distribution	 with	 no	 angular	
resolution.		Superimposed	on	the	broad	D1D2	response	is	a	relatively	narrow	cone	from	
the	D2D1	sequence	that	seems	useful	for	imaging.	 	One	might	simply	want	to	drop	the	
D1D2	sequence,	but	the	data	is	incapable	of	distinguishing	which	sequence	to	attribute	to	
event.		Indeed,	the	actual	event	is	most	likely	attributable	to	D1D2	and,	therefore,	not	the	
more	desirable	D2D1	cone.	

The	problem	described	in	the	last	paragraph	poses	a	major	dilemma	for	Compton	
imaging.		Our	proposed	solution	is	inelegant	but	practical.		Backscattered	events	for	either	
the	D1D2	or	D2D1	sequence	produce	pathological	loss	of	angular	resolution.		The	loss	of	
resolution	arises	from	backscatter	events	with	(−1 < 𝜇 < −0.8).	 	One	wants	to	discard	
such	events;	but,	if	one	sequence	is	discarded,	the	other	sequence	must	also	be	discarded	
(or	one	biases	the	data).	 	Our	solution	is	to	discard	both	sequences	if	either	is	near	the	
backscatter	 limit	 (−1 < 𝜇 < −0.8).	 	 Fortunately	 this	 strategy	 does	 not	 discard	 a	 large	
fraction	of	the	events.		Figure	12	and	13	show	regions	of	the	E1-E2	plane	that	are	discarded	
by	this	strategy.	 	As	observed	earlier,	this	rejection	scheme	is	unnecessary	if	the	𝐴𝑡𝑡!+J	
term	 naturally	 suppresses	 the	 backscattered	 sequence.	 	 However,	 a	 determination	 of	
whether	the	attenuation	term	is	adequate	must	be	performed	individually	for	each	event	
because	the	attenuation	distance	will	change.	
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Figure	10a	

	
Figure	10b	

	
Figure	10c	

	
Figure	10d	

	
Figure	10e	

	
Figure	10f	

	
Figure	10g	

	
Figure	10h	
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Figure	10	Caption	
	
Figure	10.		The	series	of	images	(10a)-(10h)	display	the	function	[𝑅𝑎𝑡𝑒(𝑒𝑣𝑒𝑛𝑡) ∗ 𝑅)%]	for	

parameters	given	in	Equations	(69),	𝑅"% = 3.0𝑐𝑚,	and	total	energy	(𝐸" + 𝐸%)	equal	
to	 662	 keV	 [𝑅𝑎𝑡𝑒(𝑒𝑣𝑒𝑛𝑡) = 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) + 𝑅𝑎𝑡𝑒(𝐷2, 𝐷1)].	 	 The	 deposition	
energies	E1	and	E2	are	assigned	to	provide	Compton	cone	opening	angles	between	
5°	and	175°.		[A	.gif	file	of	these	images	is	provided	in	the	Supplemental	Materials.].	
Because	 two	 sequences	 are	 possible	 and	 each	 sequence	 produces	 a	 different	
Compton	 cone,	 each	 image	 can	 potentially	 have	 two	 cones	 associated	with	 the	
single	event.		The	bottom	line	of	the	title	in	each	image	indicates	whether	the	D1D2	
and	D2D1	sequences	are	allowed	or	forbidden	by	Compton	kinematics.		In	Figure	
10a	only	the	sequence	D1D2	is	allowed.	 	 	 In	Figure	10b-10f	both	sequences	are	
allowed.		In	Figures	10f	and	10g	only	sequence	D2D1	is	allowed.		Indeed,	Figures	
10a	and	10h	are	essentially	the	same	event	with	opposite	sequencing.	
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Figure	11a	

	
Figure	11b	

	
Figure	11c	

	
Figure	11d	
	

	
Figure	11e	

	
Figure	11f	

	
Figure	11g	

	
Figure	11h	
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Figure	11	Caption	
	
Figure	11.		The	series	of	images	(10a)-(10h)	display	the	function	[𝑅𝑎𝑡𝑒(𝑒𝑣𝑒𝑛𝑡) ∗ 𝑅)%]	for	

parameters	 given	 in	 Equations	 (69),	 𝑅"% = 1.5	𝑐𝑚,	 and	 total	 energy	 (𝐸" + 𝐸%)	
equal	to	662	keV	[𝑅𝑎𝑡𝑒(𝑒𝑣𝑒𝑛𝑡) = 𝑅𝑎𝑡𝑒(𝐷1, 𝐷2) + 𝑅𝑎𝑡𝑒(𝐷2, 𝐷1)].		The	deposition	
energies	E1	and	E2	are	assigned	to	provide	Compton	cone	opening	angles	between	
5°	and	175°.		[A	.gif	file	of	these	images	is	provided	in	the	Supplemental	Materials.].	
Because	 two	 sequences	 are	 possible	 and	 each	 sequence	 produces	 a	 different	
Compton	 cone,	 each	 image	 can	 potentially	 have	 two	 cones	 associated	with	 the	
single	event.		The	bottom	line	of	the	title	in	each	image	indicates	whether	the	D1D2	
and	D2D1	sequences	are	allowed	or	forbidden	by	Compton	kinematics.		In	Figure	
11a	only	the	sequence	D1D2	is	allowed.	 	 	 In	Figure	11b-11f	both	sequences	are	
allowed.		In	Figures	11g	and	11h	only	sequence	D2D1	is	allowed.		Indeed,	Figures	
11a	and	11h	are	essentially	the	same	event	with	opposite	sequencing.	

	
	
	
	 	



LBNL Report #2001559	 	 2	July	2024	
	

	 45	

	
	
	
Figure	12.		Regions	of	Allowed	Events	are	plotted	on	the	E1-E2	

plane.		For	each	combination	of	E1	and	E2	the	color	coding	
indicates	the	number	of	viable	cones	one	can	use	in	image	
reconstruction.	 	 In	 the	 yellow	 region,	 two	 cones	
corresponding	 to	 the	 alternative	 interaction	 sequences	
D1D2	 and	 D2D1	 are	 both	 viable.	 	 In	 the	 aqua-marine	
regions,	 only	 one	 sequence	 is	 allowed	 by	 Compton	
kinematics.		In	the	dark	blue	regions,	both	sequences	are	
allowed	by	Compton	kinematics,	but	one	of	the	sequences	
involves	 a	 backscatter	 event	 (−1 < 𝜇 < −0.8)	 with	
extremely	poor	angular	resolution.	 	Because	one	cannot	
distinguish	 whether	 the	 event	 is	 a	 good	 (forward	
scattered)	 or	 a	 bad	 (backscattered)	 event,	 one	 should	
reject	the	event	as	unsuitable	for	imaging.	
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Figure	13.	 	 The	number	of	 viable	Compton	 cones	 are	displayed	 as	 a	

function	of	𝐸"	for	incident	radiation	at	𝐸J*J = 𝐸" + 𝐸% = 662	𝑘𝑒𝑉.		
This	plot	is	essentially	a	diagonal	slice	through	Figure	12	along	
the	line	of	constant	𝐸J*J .		The	crucial	observation	is	that	two	gaps	
exist	in	the	spectrum	where	the	events	should	be	rejected	due	to	
poor	angular	resolution	associated	with	backscattered	radiation.		
Fortunately,	 these	 gaps	 involve	 relatively	 narrow	 energy	
windows.	
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VII.	Summary	and	Conclusions	
The rate calculation presented in this report is suitable for applications with list-mode 

MLEM data from Compton cameras.  A rigorous derivation of the rate calculation is presented 
that is then evaluated with realistic physical assumptions and analytic mathematical 
approximations.  The careful exposition of these assumptions and approximations, especially 
in the appendices, assure that future researchers can adjust the results when/if the assumptions 
are violated or the approximations fail.  The results accurately incorporate three sources of 
blurring that affect the camera resolution: (1) source voxel size, (2) spatial resolution of the 
interaction locations, and (3) the resolutions of the deposition energies.  These sources of 
blurring directly affect the angular resolution of the Compton cone which becomes diffuse.  The 
immediate effect is observed as spread of the Compton response from a narrow cone emanating 
from the vertex of the first interaction into a broad cone that expands to include neighboring 
voxels as one moves further from the vertex.  The accurate description of this blurring is the 
major contribution of this report. 

A major observation arising from this analysis is crucial role of energy resolution in the 
Compton camera response.  The authors were surprised by the dramatic loss of angular 
resolution from backscattered events – so dramatic that one is forced to exclude such events 
from the analysis.  The loss of angular resolution is caused by the blurring of the Compton cone; 
which, in turn, is caused by the limited energy resolution of the detectors.  Although spatial 
resolution plays an important role in blurring the axis of the Compton cone, the effects of energy 
resolution seem more profound.   

The problem of interaction sequencing has concerned researchers for decades.  The 
backscatter limit can eliminate the ambiguity of sequencing for many events, especially those 
associated with small angle scattering.  But inevitably, one is faced with a large fraction of 
events for which the sequencing is ambiguous and the imaging effects significant.  Over the 
years researchers devised numerous strategies to either (1) select one sequence as more 
probable, or (2) include a weighted average of the alternate sequences.  In this report, the second 
strategy is firmly supported.  The rate calculation provides an accurate comparison of the 
alternative sequences.  Without a priori information about the appropriate choice, one must 
simply add the rates of the two possible sequences for each voxel and let the relative rates 
determine the relative probabilities.  Selecting a specific sequence for each event (whether well-
founded or not) distorts the entire strategy of a maximum likelihood.  Image reconstruction is 
a mapping from one distribution (data) to another (sources); not an assignment of each event to 
a specific source or sequence.  As displayed in Section VI, the rate calculation provides an 
unambiguous method of calculating the system matrix without the selection of a specific 
sequence.  The maximum likelihood algorithm based on the combined system matrix for both 
sequences provides the most probable assignment of the sources (and, implicitly, the sequences) 
based on the accumulated data – not a single event.  Selection of a specific sequence for an 
event overrides the maximum likelihood algorithm (which considers all the data) with the 
limited information about that specific event; and, therefore, should be avoided.   

Based on this principle, we assert that any viable interaction sequence should be included 
in the Compton rates and, therefore the rates of both alternate sequences should be added 
together in calculating the system response.  Lamentably, events involving backscatter 
(−1 < 𝜇 < −0.8) exhibit such poor angular resolution that their inclusion in image 
reconstruction is dubious.  Exclusion of such events implies exclusion of both sequences, even 
though one of the sequences which seems perfectly viable.  One cannot distinguish whether the 



LBNL Report #2001559	 	 2	July	2024	
	

	 48	

event is good (forward scattered) of bad (backscattered) events based on the data.  Our 
recommendation is that both sequences be excluded.  Fortunately, the energy bands of rejected 
sequences are relatively narrow (as demonstrated in Figures 12 and 13). 

The rate calculation present in this paper has some obvious flaws.  Most of these flaws 
can be traced to the approximations used in the evaluation of the CC function in Appendix C.  
Indeed, this report has been revised dozens of times in the past few years as better methods 
were found to handle anomalous results resulting from inadequate approximations.  The current 
CC function will, undoubtedly, be succeeded by further improvements.  However, the basic 
framework for the Compton camera response as expounded in Section II-VI is both rigorous 
and general enough to accommodate future revisions.   
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Appendix	A.		Blurring	of	the	direction	of	the	Compton	Cone-Axis	due	to	the	Limited	
Spatial	Resolution	of	the	Detector	

Embedded	within	 the	 calculation	of	 the	detector	 rate	 is	 a	 crucial	 term	 [Equation	
(52)]	that	describes	the	blurring	of	the	Compton-cone	axis	due	to	the	uncertainties	in	the	
interaction	positions.	 	 For	notational	purposes	 this	 term	 is	defined	as	 the	 function	CA	
(cone	axis):	

	 𝐶𝐴(𝜔44⃗ ) ≡∭𝑑$�⃗�" 	∭𝑑$�⃗�% 		
1

p𝑥]]⃗ 1−𝑥]]⃗ 2p
2 		𝛿% P𝜔44⃗ ,

1⃗#T1⃗"
|1⃗"T1⃗#|

Q		𝐷1(�⃗�%|𝑟%, 𝜆%)		𝐷1(�⃗�"|𝑟", 𝜆")	 (A.1)	

where	 the	 argument	𝜔44⃗ 	 indicates	 the	 actual	 Compton	 axis;	 whereas,	 r1	 and	 r2	 are	 the	
reported	 locations	 of	 the	 interactions.	 	 The	 function	 CA	 is,	 in	 some	 sense,	 a	weighted	
distribution	of	actual	axis	direct	𝜔44⃗ 	around	the	“measured”	axis	�⃗�	determined	from	r1	and	
r2.		This	mathematical	appendix	provides	an	analytical	evaluation	of	the	CA	term	that	is	
used	for	the	“realistic”	detector	models	in	sections	V	and	VI.			

For	an	“ideal”	detector	as	defined	in	Equation	(41),	there	is	no	blurring	because	the	
positions	are	known	exactly;	thus,	the	crucial	Compton-axis	(CA)	term	is	given	by	

	 𝐶𝐴!g'X2(𝜔44⃗ ) = (%9)!	q"!q#!

F"##
	𝛿%(�⃗�, 𝜔44⃗ )	 (A.2)	

so	that,	the	CAideal	weighting	factor	assures	that	the	Compton-cone	axis	𝜔44⃗ 	is	exactly	aligned	
with	 the	 vector	 �⃗�	 connecting	 the	 two	 interaction	 locations.	 	 Furthermore,	 the	 CAideal	
satisfies	the	integral	identity:	

	 ∬ 𝑑%𝜔44⃗⬚
e# 	𝐶𝐴!g'X2(𝜔44⃗ ) = (%9)!	q"!q#!

F"##
		 (A.3)	

This	 identity	 is	 significant	 because,	 although	 the	 CAideal	 is	 concentrated	 to	 a	 single	
direction,	the	expected	rate	will	be	proportional	to	the	integral	in	Equation	(A.3).		As	we	
will	see,	the	“realistic”	detector	model	yields	a	similar	result,	despite	distributing	𝜔44⃗ 	over	
a	finite	region	on	the	celestial	sphere.	

For	 a	 “realistic”	 detector	model	 [Equation	 (42)],	 the	 Dx	 functions	 are	 Gaussians,	
which	simplifies	the	evaluation	of	Equation	(A.1).		In	particular,	one	finds	that	

	 𝐷1Y'X2(𝑥"|𝑟", 𝜆")	𝐷1Y'X2(�⃗�%|�⃗�%, 𝜆%) = exp q	− |1⃗"TY⃗"|#

%q"#
	− |1⃗#TY⃗#|#

%q##
	s		.	 (A.4)	

The	 integrals	 in	Equation	(A.1)	are	simplified	by	a	simple	change	 in	variables;	namely,	
(𝑥", �⃗�%) ⇔ A𝜉", 𝜉%E	where	

	 𝜉" =
q##1⃗"Bq"#1⃗#
Zq"#Bq##^

		,	 𝜉% = �⃗�% − �⃗�"		;	 (A.5)	

	 �⃗�" = 𝜉" −
q"#

Zq"#Bq##^
𝜉%	 �⃗�% = 𝜉" +

q##

Zq"#Bq##^
𝜉%		.	 	

with	the	supplemental	constant	vector	

	 𝑊444⃗ ≡ q##Y⃗"Bq"#Y⃗#
Zq"#Bq##^

		.	 (A.6)	

A	simple	evaluation	of	the	Jacobian	reveals	that	
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	 ∭𝑑$�⃗�"∭𝑑$�⃗�% =∭𝑑$𝜉"∭𝑑$𝜉%		;	 (A.7)	

whereas,	in	the	new	variables,	the	product	in	Equation	(A.4)	becomes	

	 𝐷1Y'X2(𝑥"|𝑟", 𝜆")	𝐷1Y'X2(�⃗�%|�⃗�%, 𝜆%)	 	

	 = exp ½	−
Zq"#Bq##^	u�]⃗ "T�]]]⃗ u

#

%q"#q##
	−

u�]⃗ #TF"#�]]⃗ u
#

%Zq"#Bq##^
	¾		.	 (A.8)	

Rewriting	 Equation	 (A.1)	 in	 terms	 of	 the	 new	 variables,	 one	 finds	 that	 the	 integrals	
decouple	and	

	 𝐶𝐴Y'X2(𝜔44⃗ ) = ∭𝑑$𝜉" 	exp ½−
Zq"#Bq##^	u�]⃗ "T�]]]⃗ u

#

%q"#q##
¾	

	 ∭𝑑$𝜉% 	
"

u�]⃗ #u
# 	exp ½−

u�]⃗ #TF"#�]]⃗ u
#

%Zq"#Bq##^
¾	𝛿% Ö𝜔44⃗ , �

]⃗ #
u�]⃗ #u
×		.	 (A.9)	

In	Equation	(A.9)	the	integrand	of	the	𝜉"	integral	is	a	simple	3D	Gaussian	and	is	trivially	
evaluated;	 whereas,	 the	 integral	 over	 𝜉%,	 due	 to	 the	 delta	 function,	 reduces	 to	 a	 line	
integral	along	a	ray	originating	at	the	origin	through	a	displaced	Gaussian	that	produces	
an	error	 function.	 	The	 Inequalities	 (15a)	allow	one	 to	approximate	 the	error	 function	
term	as	a	Heaviside	function,	so	that	

	 𝐶𝐴Y'X2(𝜔44⃗ ) = (%9)! #⁄ q"!q#!

Zq"#Bq##^
! #⁄ ∫ 𝑑𝜉	exp �	− |�b]]]⃗ TF"#�]]⃗ |#

%Zq"#Bq##^
	�K

M 	 (A.10)	

	 ≅ (%9)#q"!q#!

Zq"#Bq##^
	Θ(𝜔44⃗ ⋅ �⃗�)	exp Ø− F"##

%Zq"#Bq##^
[1 − (𝜔44⃗ ⋅ �⃗�)%]Ù		.	

The	approximate	function	given	in	the	second	line	of	Equation	(A.10)	is	used	as	CA	in	the	
remainder	of	this	analysis.		[One	should	note	that	the	Gaussian	approximation	for	the	Dreal	
function	is	responsible	for	this	simple	evaluation	of	6	of	the	12	integrals	in	Equation	(47).]	

A	comparison	of	Equations	(A.2)	and	(A.10)	indicates	that	both	the	“ideal”	and	“real”	
detector	models	produce	functions	𝐶𝐴(𝜔44⃗ )	that	are	strongly	peaked	in	the	direction	𝜔44⃗ =
�⃗�.		The	major	difference	between	CAideal	and	CAreal	seems	to	be	the	R12	dependence.		The	
magnitude	of	CAideal	is	explicitly	dependent	of	R12,	whereas	CAreal	is	only	dependent	on	R12	
through	a	narrowing	of	the	angular	dependence.		This	behavior	is	correct	and	is	exactly	
what	should	be	expected.			

The	 function	 CAreal	 in	 Equation	 (A.10)	 can	 verified	 by	 checking	 that,	 in	 the	 limit	
R12>>li	 (i.e.,	 large	 separation	 between	 the	 interactions),	 CAreal	 reproduces	 the	 𝑅"%T%	
behavior	of	function	CAideal	demonstrated	in	Equation	(A.3).		The	function	CA	only	appears	
in	our	calculation	within	integrals	over	𝜔44⃗ .		If	one	integrates	CAreal	over	𝜔44⃗ ,	one	finds	that	
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	 ∬ 𝑑%𝜔44⃗ 	𝐶𝐴Y'X2(𝜔44⃗ ) = (%9)#q"!q#!

Zq"#Bq##^
	2𝜋 ∫ 𝑑𝜇	𝑒𝑥𝑝 �− F"## Z"Tl#^

%Zq"#Bq##^
�"

M 	⬚
e# 	 (A.11)	

	 = (%9)!q"!q#!

Zq"#Bq##^
	𝑒𝑥𝑝 �− F"##

%Zq"#Bq##^
�	 𝐹""
⬚ ¥"

%
, $
%
; F"##

%Zq"#Bq##^
¦	

where	 1F1	 is	 the	 confluent	hypergeometric	 function.	 	The	asymptotic	 expansion	of	 the	
confluent	hypergeometric	function	gives	that	

	 𝐹""
⬚ P"

%
, $
%
; 𝑧Q

	R≫"	
¶⎯⎯̧ 	 "

%R
exp(𝑧)	 (A.12)	

so	that	

	 ∬ 𝑑%𝜔44⃗ 	𝐶𝐴Y'X2(𝜔44⃗ )
	F"## ≫Zq"#Bq##^	
¶⎯⎯⎯⎯⎯⎯⎯⎯⎯̧ 	 (%9)

!q"!q#!

F"##
	⬚

e# 		.	 (A.13)	

A	comparison	of	Equation	(A.13)	and	Equation	(A.3)	shows	that	the	integral	of	CAreal	over	
the	2-sphere	yields	the	same	result	as	CAideal	in	the	limit	of	R12	much	larger	than	the	spatial	
resolution.		This	observation	verifies	that	for	R12>>li,	CAreal	is	approximated	by	CAideal.			
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Appendix	B.		Blurring	of	the	Opening	Angle	of	the	Compton	Cone	due	to	the	
Limited	Energy	Resolution	of	the	Detector	

 
The	goal	of	this	Appendix	is	the	evaluation	OA	for	common	spectra	in	approximate	

analytic	expressions	that	can	be	used	for	the	integration	of	Equation	(57).		The opening 
angle of the Compton cone is determined by relativistic kinematics based on the energies 
deposited at the two interaction sites, E1 and E2; i.e., 𝜇 in Equation (12).  If the energies were 
exactly known, then the cone would be characterized by an opening angle qkin defined by the 
cos 𝜃.!+ = 𝜇(𝐸", 𝐸%) as defined in Equation (12).  Because these energies are measured with 
finite resolution, the Compton cone is blurred.  This blurring is characterized by a blurring 
function that is defined in Equation (53) in terms of integrals over the energy ranges consistent 
with the measurements.  The function OA, the ‘opening angle’ function, is defined by 

	 𝑂𝐴(𝜐) ≡ ∫ 𝑑𝑘K
M 	𝐴(𝑘)		𝐷@ P

.#("T�)
(B.("T�)

¡ 𝐸", 𝜀"Q 	𝐷@ P
(.

(B.("T�)
¡ 𝐸%, 𝜀%Q		.	 (B.1)	

where	𝜐	©= AΩ44⃗ " ∙ Ω44⃗ %Eª	is	the	actual	cosine	of	the	opening	angle	of	the	Compton	cone.		The	
function	OA(u)	 describes	 the	 distribution	 of	u	 given	 the	 observed	 data	 (Ei,ei).	 	 In	 this	
appendix	the	function	OA	is	evaluated	for	(1)	𝐷@Y'X2 	as	defined	by	Gaussian	functions	in	
Equation	 (42),	 and	 for	 (2)	 Gaussian	 source	 distributions,	 A(k)	 that	 can	 represent	
emissions	from	common	spectra.	 	The	DE	 functions	represent	the	distribution	of	actual	
energies,	k,	consistent	with	the	measured	energies,	Ei,	with	resolutions,	ei.		Because	the	DE	
functions	are	narrow	Gaussians,	one	can	create	accurate	approximations	for	OA	based	on	
the	local	behavior	of	A(k)	in	the	vicinity	of	the	peaks.		For	practical	purposes,	one	wants	a	
generic	 expression	 for	OA	 that	 can	be	 easily	 evaluated	 and	 adapted	 to	many	different	
spectra.	 	The	most	obvious	choice	for	such	a	source	A(k)	 is	another	Gaussian	function;	
namely,	

	 𝐴(𝑘) = _∗

√%9d$
	𝑒𝑥𝑝 q− (.T@$)#

%d$#
s	 (B.2)	

where	𝐴∗	has	dimensions	[(𝑐𝑜𝑢𝑛𝑡𝑠)(𝑠𝑒𝑐T")(𝑚T$)]	and	both	𝐸)	and	Σ)	have	units	of	energy	
[(𝑘𝑒𝑉)].	 	The	energy	𝐸)	corresponds	to	the	emission	energy	of	the	source;	whereas,	Σ)	
represents	 the	width	of	energy	window.	 	 In	 the	 limit	Σ) → 0,	A(k)	approximates	a	 line	
spectrum;	whereas,	 in	 the	 limit	Σ) → ∞,	 A(k)	 can	 approximate	 a	 uniform	 background	
distribution.		Intermediate	values	of	Σ)	approximate	spectra	associated	with	finite	energy	
bins.	 	 Table	 B.1	 shows	 how	 the	 Gaussian	 function	 in	 Equation	 (B.2)	 can	 be	 used	 to	
approximate	useful	 spectra	associated	with	spectral	 lines	and	 finite	energy	bins.	 	 [The	
approximation	for	energy	bins	is	demonstrated	in	Appendix	G.]	
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Insight	into	the	integral	of	Equation	(B.1)	is	obtained	from	an	examination	of	the	

2D	distribution	

	 𝑝(𝑘", 𝑘%) ∝ 𝑒𝑥𝑝 q−
(."T@")#

%r"#
s 𝑒𝑥𝑝 q− (.#T@#)#

%r##
s 𝑒𝑥𝑝 q− (."B.#T@$)#

%d$#
s	 (B.3)	

which	emulates	the	integrand	of	that	equation.		Just	as	𝑘	represents	the	actual	incident	
energy,	𝑘"	and	𝑘%	represent	the	actual	deposition	energies	in	the	detectors.		The	maximum	
of	this	2D	Gaussian	product	occurs	at	the	point	

	 𝑘",(X1 =
Zr##Bd$#^@"Br"#(@$T@#)

Zr"#Br##Bd$#^
			and			𝑘%,(X1 =

Zr"#Bd$#^@#Br##(@$T@")
Zr"#Br##Bd$#^

.	 (B.4a)	

[It	 turns	 out	 that	 the	 values	𝑘!,(X1	 are	 also	 the	mean	 values	 of	𝑘! 	 for	 the	 distribution	
𝑝(𝑘", 𝑘%). ]		If	one	converts	the	𝑘"	and	𝑘%	variables	into	the	k	and	𝜐	variables	of	Equation	
(B.1),	the	maxima	of	𝑘	and	𝜐	occur	at	

	 𝑘",(X1 =
.'.=
# ("T�'.=)

[(B.'.=("T�'.=)]
	 𝑘%,(X1 =

(.'.=
[(B.'.=("T�'.=)]

	 (B.4b)	

so	that	

	 𝑘(X1 = 𝑘",(X1 + 𝑘%,(X1 =
Zr"#Br##^@$Bd$#(@"B@#)

Zr"#Br##Bd$#^
	 (B.4c)	

and	

	 𝜐(X1 = 1 − (.",'.=
.'.=.#,'.=

= 1 − (Zr"#Br##Bd$#^�Zr##Bd$#^@"Br"#(@$T@#)�
�Zr"#Br##^@$Bd$#(@"B@#)��Zr"#Bd$#^@#Br##(@$T@")�

.	 (B.4d)	

!∗ "#$%&'
'(" ) *"

+# ,(- .# ,(-	 Functional Equivalent 
             A(k)

"#$%&'
'(" ) ,(- ) *"

Spectral Line 0$%&'∗ 1$%&' lim 5 → 0 	58 0$%&'∗ 	9 : − 1$%&'

Energy Bin 0(%&∗ 1(%& ⁄∆(%& 12 0(%&∗
∆(%&

Ξ : − 1(%& ∆(%&

X

Ξ * Δ

∆
2− ∆2

1

Table B.1
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N.B.		if	𝐸) = 𝐸" + 𝐸%,	then	𝜐(X1 = 𝜇(𝐸", 𝐸%)	as	defined	in	Equation	(12).		One	anticipates	
that	𝜐(X1	is	the	maximum	of	the	integrand	of	Equation	(B.1).		The	detector	functions	in	
Equation	(B.1)	are	defined	as	Gaussians	

	 𝐷@ P
.#("T�)
(B.("T�)

¡ 𝐸", 𝜀"Q ≡ 𝑒𝑥𝑝 Û−
� 3#("@A)
'C3("@A)T@"�

#

%r"#
Ü	 (B.5a)	

	 𝐷@ P
(.

(B.("T�)
¡ 𝐸%, 𝜀%Q ≡ 𝑒𝑥𝑝 Ý−

t '3
'C3("@A)T@#v

#

%r##
Þ.	 (B.5b)	

Insight	 into	 these	 functions	 from	 Equations	 (B.4)	 imply	 that	 the	 arguments	 of	 the	
Gaussians	be	written	as	

	 .#("T�)
(B.("T�)

− 𝐸" = P .#("T�)
(B.("T�)

− 𝑘",(X1Q + A𝑘",(X1 − 𝐸"E	

	 (.
(B.("T�)

− 𝐸% = P (.
(B.("T�)

− 𝑘%,(X1Q + A𝑘%,(X1 − 𝐸%E	

where	one	evaluates	the	bracketed	terms	as	

	 A𝑘",(X1 − 𝐸"E =
r"#

Zr"#Br##Bd$#^
(𝐸) − 𝐸" − 𝐸%)	 (B.6a)	

	 A𝑘%,(X1 − 𝐸%E =
r##

Zr"#Br##Bd$#^
(𝐸) − 𝐸" − 𝐸%)	 (B.6b)	

	 P .#("T�)
(B.("T�)

− 𝑘",(X1Q =
Z..'.=T.#.#,'.=^

..'.=
(𝑘 − 𝑘(X1) −

.#.#,'.=
(

(𝜐 − 𝜐(X1)	 (B.7a)	

and	 P (.
(B.("T�)

− 𝑘%,(X1Q =
.#.#,'.=
..'.=

(𝑘 − 𝑘(X1) +
.#.#,'.=

(
(𝜐 − 𝜐(X1).	 (B.7b)	

In	the	vicinity	of	the	Gaussian	peak	[𝑘 ≅ 𝑘(X1	and	𝑘% ≅ 𝑘%,(X1;	i.e.,	the	region	making	the	
major	 contribution	 to	 the	 integral	 in	 Equation	 (B.1)],	 Equations	 (B.7a&7b)	 can	 be	
approximated	by		

	 P .#("T�)
(B.("T�)

− 𝑘",(X1Q ≅
Z.'.=

# T.#,'.=
# ^

.'.=
# (𝑘 − 𝑘(X1) −

.#,'.=
#

(
(𝜐 − 𝜐(X1)	 (B.8a)	

	 P (.
(B.("T�)

− 𝑘%,(X1Q ≅
.#,'.=
#

.'.=
# (𝑘 − 𝑘(X1) +

.#,'.=
#

(
(𝜐 − 𝜐(X1).	 (B.8b)	

For	convenience,	one	defines	

	 𝜅 ≡ 𝑘 − 𝑘(X1	 	 (B.9a)	

	 ∆𝜐 ≡ 𝜐 − 𝜐(X1	 	 (B.9b)	
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	 ∆𝐸 ≡ 𝐸) − 𝐸" − 𝐸%	 	 (B.9c)	

so	that	

	 𝐷@ P
.#("T�)
(B.("T�)

¡ 𝐸", 𝜀"Q ≅ 𝑒𝑥𝑝

⎣
⎢
⎢
⎢
⎡

−
�
D3'.=# @3#,'.=

# E

3'.=# �T
3#,'.=
#

' (∆�)B F"
#

GF"
#CF#

#CH$#I
(∆@)�

#

%r"#

⎦
⎥
⎥
⎥
⎤

	 (B.10a)	

and	 𝐷@ P
(.

(B.("T�)
¡ 𝐸%, 𝜀%Q ≅ 𝑒𝑥𝑝

⎣
⎢
⎢
⎡
−
�
3#,'.=
#

3'.=# �B
3#,'.=
#

' (∆�)B F#
#

GF"
#CF#

#CH$
#I
(∆@)�

#

%r##

⎦
⎥
⎥
⎤
.	 (B.10b)	

Finally,	one	writes	Equation	(B.2)	as	

	 𝐴(𝑘) = _∗

√%9dJ
	𝑒𝑥𝑝

⎣
⎢
⎢
⎡
−
��T H$#

GF"
#CF#

#CH$
#I
(∆@)�

#

%d$#

⎦
⎥
⎥
⎤
		.	 (B.10c)	

In	the	evaluation	of	the	𝑂𝐴(𝜐)	function	the	parameters	∆𝜐	and	∆𝐸	are	constants;	whereas,	
the	parameter	k	becomes	the	variable	of	integration.		Consequently,	the	function	𝑂𝐴(𝜐)	is	
approximated	by	

	 𝑂𝐴(𝜐) ≅ #∗

√%&'%
∫ 𝑑𝜅(
)( 𝑒𝑥𝑝

⎣
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.',012
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⎥
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	 𝑒𝑥𝑝
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⎥
⎥
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		.	 (B.11)	

This	integration	of	the	Gaussian	is	performed	by	(1)	combining	the	three	quadratic	terms	
in	the	exponential,	(2)	completing	the	square	of	the	k	terms,	and,	finally,	(3)	performing	
the	integral	over	the	displaced	Gaussian.		After	considerable	algebra,	one	finds	

	 𝑂𝐴(𝜐) ≅ 𝐴∗ 3*3'
73*'3''1','[3*'9'13''(:)9)']

𝑒𝑥𝑝 4− (∆2)'

%'6'
5 𝑒𝑥𝑝 4− (∆.)'

%'7'
5	 (B.12)	

where	

	 Ψ ≡ 𝑘2,𝑚𝑎𝑥
2

𝑘𝑚𝑎𝑥2 = �Zr"
#Bd$#^@#Br##(@$T@")

Zr"#Br##^@$Bd$#(@"B@#)
�
%
	 (B.13)	

	 Σ= ≡
>

?',012
'

73*'3''1','[3*'9'13''(:)9)']
73*'13''1','

= >73*'3''1','[3*'9'13''(:)9)'][3*'13''1',']6 '⁄

[(3*'1',').'13''(.,).*)]'
	 (B.14)	
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and	 Σ@ ≡ (𝜀:%+𝜀%% + ΣA%)
73*'3''1','[3*'9'13''(:)9)']

73*'3''(3*'13''1%',')1','[3*'913''(:)9)]'1',7[3*'9'13''(:)9)']
.	 (B.15)	

This	 complicated	 form	 of	 the	 function	 OA	 arises	 from	 the	 arbitrary	 Gaussian	 source	
spectrum	asserted	in	Equation	(B.2).		However,	one	frequently	requires	narrow	energy	
spectra,	e.g.,	emission	lines	or	narrow	energy	bins	(≤ 2	𝑘𝑒𝑉).	 	Assuming	such	a	narrow	
emission	line	significantly	simplifies	the	OA	function.		If	Σ)% ≪ (𝜀"%+𝜀%%),	then	one	finds	

	 𝑂𝐴(𝜐) ≅ 𝐴∗𝑒𝑥𝑝 q− (�T�'.=)#

%d!#
s 𝑒𝑥𝑝 �− (@$T@"T@#)#

%Zr"#Br##^
�	 (B.16)	

where	

	 𝜐(X1 = 1 − (�r##@"Br"#(@$T@#)�
@$�r"#@#Br##(@$T@")�

= 𝜇 ¥r#
#@"Br"#(@$T@#)

Zr"#Br##^
, r"
#@#Br##(@$T@")

Zr"#Br##^
¦ ≅ 𝜇(𝐸", 𝐸%)	 (B.17)	

and	 Σ$ =
(r"r#[𝜀12+𝜀22]3 2⁄

�r"#@#Br##(@$T@")�
# ≈

r"r#

�r"#Br##

(
@##
	.	 (B.18)	

Equations	(B16)	through	(B.18)	constitute	the	form	of	OA	used	in	the	remainder	of	this	
report.		The	cosine	of	the	opening	angle	of	the	Compton	cone	is	characterized	by	𝜐(X1	in	
Equation	(B.17);	this	parameter	is	equivalent	to	𝜇(𝐸", 𝐸%)	of	Equation	(12)	if	the	source	
energy	𝐸)	satisfies	𝐸) = 𝐸" + 𝐸%.		However,	if	the	source	energy	differs	from	𝐸) = 𝐸" + 𝐸%,	
the	opening	 angle	of	 the	Compton	 cone	 shifts	 to	 accommodate	 the	presumed	 incident	
source	 energy,	𝐸).	 	 Fortunately,	 if	𝐸) ≠ 𝐸" + 𝐸%	 by	 any	 significant	 amount,	 the	 finally	
Gaussian	 in	Equation	 (B.16)	 suppresses	 the	 function	OA;	 thereby,	making	 the	value	of	
𝜐(X1	irrelevant.	

General	Observations	about	Effect	of	Energy	Resolution	on	the	Broadening	of	the	Compton	
Cone	

Throughout	most	 of	 this	 paper,	 the	 analysis	 is	 based	 on	 the	 physics	 of	 Compton	
scattering,	 the	 definitions	 of	 physical	 parameters	 (e.g.,	 attenuation	 coefficients,	 cross-
sections,	etc.)	and	elementary	analytical	models	(i.e.,	Gaussian	responses).		In	particular,	
detector	resolutions	(both	spatial	and	energy)	remain	independent	parameters	that	can	
be	 chosen	 based	 on	 the	 detection	 device.	 	 In	 this	 subsection	 of	 Appendix	 B,	 we	
(temporarily)	abandon	that	generality	to	make	important	observations	about	the	effects	
of	energy	resolution	on	the	broadening	of	the	Compton	cone.	 	The	energy	resolution	is	
generally	 dependent	 on	 the	 energy	 deposition.	 	 The	 details	 can	 vary	 significantly	
depending	on	the	electronics,	materials,	design,	and	even	detector	history;	however,	an	
empirical	formula	for	the	energy	resolution	that	is	applicable	to	a	generic	detector	can	be	
written	as	

	 𝜀(𝐸) = r𝜀M% + 𝜂%𝑚𝐸 ≈ 𝑚𝑎𝑥A𝜀M, 𝜂√𝑚𝐸E		 (B.19)	

where	the	parameters	e0	and	h	characterize	the	detector	resolution	over	a	wide	range	of	
energies.	 	The	 functional	 form	in	Equation	(B.19)	reflects	 the	expected	√𝐸	behavior	of	
energy	resolution	for	most	charge-collection	detectors.		The	dimensionless	parameter	h	
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describes	the	resolution	at	E=m=511keV;	i.e.,	h=e(m)/m	with	typical	values	about	0.03-
0.12	(i.e.,	3-12%	error	at	511keV).		The	e0	parameter	is	a	minimal	resolution	that	becomes	
important	only	for	very	low	energies;	a	typical	value	is	e0=5	keV	and	becomes	relevant	
only	for	E<20	keV.		[N.B.	The	effects	of	Doppler	broadening	on	the	energy	deposition	of	
the	 Compton	 scattering	 interaction	 can	 be	 incorporated	 into	 the	 parameter,	 𝜀",	 by	
adjustment	of	the	𝜀M	parameter;	𝜀B% → 𝜀B% + 𝜀CDEEFGH% ,	so	that	<𝜀: = =𝜀B% + 𝜀CDEEFGH% + 𝜂%𝑚𝐸:	B.]	

The	parameter	S3	defined	in	Equation	(B.18)	indicates	the	uncertainty	in	the	cosine	
of	the	scattering	angle	[𝜇 = 𝑐𝑜𝑠𝜃]	caused	by	the	energy	resolution.		For	measurements	E1	
and	 E2,	 one	 can	 define	 E=E1+E2	 and	 use	 𝜇	 as	 defined	 in	 Equation	 (12)	 to	 convert	
(𝐸", 𝐸%) ⟶ (𝐸, 𝜇),	so	that	

	 Σ$ =
r"r#

(�r"#Br##

[(B@("Tl)]#

@#
	 (B.20)	

If	one	evaluates	e1	and	e2	with	the	empirical	formula	(B.19),	the	uncertainty	parameter	S3	
becomes	

	 Σ$ ≅ 𝜂 [(B@("Tl)]
@ r1 − 𝜇		.	 (B.21)	

This	uncertainty	in	the	cosine	can	then	be	converted	into	an	uncertainty	in	the	opening	
angle	of	the	Compton	cone:	

	 Δ𝜃 = Δ𝜇
¡gl
g�
¡é = d!

�"Tl#
≅ 𝜂 [(B@("Tl)]

@�"Bl
		.	 (B.22)	

The	parameter	S3	plays	a	crucial	role	in	the	remainder	of	this	paper;	however,	the	opening	
angle	of	the	Compton	cone	(Dq)	provides	better	intuitive	understanding	of	the	effects	of	
S3.		In	particular,	backscattered	radiation	(𝜇 ≈ −1)	suffers	from	extremely	poor	angular	
resolution;	whereas,	the	forward	scattered	radiation	(𝜇 ≈ 1)	exhibits	comparatively	good	
angular	 resolution.	 	 This	 important	 observation	 arises	 from	 the	 small	 errors	 in	 𝜀"	
A𝜀" ∝ r𝐸" ∝ r1 − 𝜇E	that	arise	in	forward	scattering	(𝐸" ⟶ 0).	 	On	the	other	hand,	for	
backscattering	 the	𝜀%A∝ r𝐸%E	 term	does	not	vanish	and,	 therefore	does	not	cancel	 the	
1 r1 − 𝜇%⁄ 	 term	 that	 arises	 from	 the	 coordinate	 transformation	 in	 Equation	 (B.22).		
Another	important	observation	is	that	once	the	total	energy,	E,	drops	smaller	the	m	(E<m),	
the	angular	resolution	degrades	significantly	–	even	for	small	angle	scattering.		This	fact	
is	 the	 basis	 of	 the	well-known	 observation	 that	 Compton	 cameras	work	 best	 for	 high	
energy	radiation	sources.		Both	these	effects	are	illustrated	in	Figures	B.1	and	B.2.		The	
figures	 demonstrated	 the	 expected	 angular	 resolution	 from	 the	 broadening	 of	 the	
Compton	 cone	 for	 detectors	 exhibiting	 3%	 energy	 resolution	 at	 511	 keV.	 	 The	 loss	 in	
angular	 resolution	 for	 backscattered	 radiation	 is	 dramatic.	 	 For	 events	 scattering	 at	
greater	 than	 160	 degrees,	 the	 angular	 uncertainty	 is	 greater	 than	 30	 degrees!	 	 One	
possible	 conclusion	 is	 that	 the	 events	 associated	with	 scatter	 angles	 greater	 than	140	
degrees	 should	 be	 discarded.	 	 Fortunately,	 the	 Klein-Nishina	 scattering	 cross-section	
naturally	suppresses	backscatter	events	for	high	energy	radiation,	so	that	such	a	cut-off	
actually	excludes	few	events.	
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Figure	B.1.	 	The	function	S3	 is	shown	for	the	energy	resolution	parameters	h=0.03	and	

e0=4	keV.		The	values	of	E1	and	E2	are	calculated	from	the	total	energy	(E)	and	the	
scattering	angle	q	 [𝜇 = 𝑐𝑜𝑠(𝜃)].	 	The	energy	resolutions,	e1	 and	e2,	 are	calculated	
from	E1	and	E2	based	on	Equation	(B.19).		The	function	S3	is	then	calculated	from	
Equation	(B.18).		This	plot	demonstrates	two	important	properties	of	S3.		First,	for	
fixed	E,	S3	is	a	slowly,	monotonically	increasing	function	of	q	with	minimum	at	q=0	
(forward	 scattering)	 and	 maximum	 at	 q=180o	 (backscattering).	 	 Second,	 as	 a	
function	of	E,	S3	is	a	monotonically	decreasing	function	that	is	very	large	for	small	
E(<200	keV),	but	decreases	and	plateaus	for	E>m.		
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Figure	B.2a.		The	width	of	the	Compton	cone	Dq	is	shown	as	determined	from	S3	(see	

Figure	B.1)	by	application	of	Equation	(B.19).	 	The	figure	demonstrates	that	
the	angular	resolution	degenerates	dramatically	at	low	energies	(E<200	keV)	
and	 at	 large	 scattering	 angles	 (q>150o).	 	 Thus,	 one	 should	 not	 expect	 the	
backscattered	events	to	contribute	significantly	to	the	imaging	process.	
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Figure	B.2b.		The	width	of	the	Compton	cone	Dq	(in	degrees)	is	shown	as	determined	

from	S3.	 	The	color	bar	on	the	right	indicates	the	angular	uncertainty	(Dq,	in	
degrees)	associated	with	measurements	having	total	energy	E(=E1+E2)	and	
scattering	at	angle	q.		The	figure	displays	the	same	information	as	Figure	B2a	
from	a	perspective	 that	more	clearly	delineates	 the	regions	of	poor	angular	
resolution.	
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The	Function	OA	Fails	to	Suppress	Unphysical	Interaction	Sequences	

The	 kinematics	 of	 Compton	 scattering	 is	 at	 the	 core	 of	 the	 entire	 response	
calculation	and	 the	 function	OA	characterizes	 this	kinematics.	 	The	energies	E1	 and	E2	
determine	the	angle	of	scattering	according	to	Equation	(12).		The	most	probably	cosine	
of	the	scattering	angle	is	represented	as	𝜐(X1	in	Equation	(B.17);	and,	the	uncertainty	in	
this	 cosine	 is	 characterized	 by	 S3	 in	 Equation	 (B.18).	 	 However,	 according	 to	 the	
Inequalities	 (13)	 some	combinations	of	E1	 and	E2	 are	unphysical	because	 they	predict	
𝜐(X1 ≅ 𝜇(𝐸", 𝐸%) < −1.	 	One	expects	the	rates	 for	these	unphysical	combinations	to	be	
suppressed	in	the	OA	function	where	the	kinematic	prediction	[𝜐(X1	in	Equation	(B.17)]	
is	compared	with	the	actual	physical	cosine,	u.		Indeed,	the	function	OA	is	suppressed	for	
such	combinations,	but	the	suppression	is	not	a	sharp	cutoff	at	𝜇(𝐸", 𝐸%) = −1.		If	𝜐(X1 =
−1 − 𝛿	 (and	is,	 therefore,	unphysical),	 the	maximum	of	OA(u)	occurs	for	u=-1;	so	that,	
according	to	Equation	(B.25)	

	 𝑂𝐴(−1) = 𝐴∗𝑒𝑥𝑝 q− �#

%	d!#
s	 (B.24)	

is	 the	 maximum	 value	 of	 OA	 for	 an	 unphysical	 combination	 of	 E1	 and	 E2.	 	 Thus,	 the	
condition	 OA(unphysical)<.02*OA(physical)	 implies	 d<3S3.	 	 The	 function	 OA	 will	
successfully	 suppress	 unphysical	 combinations	 if	 𝜇(𝐸", 𝐸%) = −1 − 3Σ$.	 	 However,	 for	
𝜇(𝐸", 𝐸%)	in	the	interval	

	 −1 ≤ 𝜇(𝐸", 𝐸%) ≤ −1 − 3Σ$	 (B.25)	

(a	priori	unphysical)	there	is	only	partial	suppression	of	the	function	OA.		This	interval	of	
partial	suppression	is	associated	with	the	uncertainty	in	the	𝜇	caused	by	the	uncertainty	
in	measured	energies.			

The	 region	 of	 partial	 suppression	 described	 by	 the	 Inequalities	 (B.25)	 can	 be	
estimated	based	on	the	assumption	𝜇(𝐸", 𝐸%) ≈ −1.		In	the	vicinity	of	𝜇(𝐸", 𝐸%) ≈ −1,	one	
finds	that	(E=E1+E2)	

	 𝐸" ≈
%@#

((B%@)
			 ; 			𝐸% ≈

(@
((B%@)

		 (B.26)	

so	that,	according	to	Equation	(B.19)	the	errors	associated	with	these	energies	are		

	 𝜀" ≈ 𝜂𝐸ê %(
((B%@)

			 ; 			𝜀% ≈ 𝜂𝑚ê @
((B%@)

		.	 (B.27)	

The	resulting	parameter	Σ$(𝜇 ≈ −1)	is	given	by	

	 Σ$(𝜇 ≈ −1) = √2	𝜂 ((B%@)@
		.	 (B.28)	
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From	Equation	(B,28)	one	observes	that	a	lower	limit	for	Σ$(𝜇 ≈ −1)	is	given	by	

	 √8𝜂 < Σ$(𝜇 ≈ −1)	.			 (B.29)	

For	typical	values	h=.03	and	E=m,	one	finds	S3=0.12.		This	approximate	result	indicates	a	
serious	problem.		If	S3=0.12	the	OA	function	does	not	fully	suppress	unphysical	sequences	
until	𝜇 < −1.36.	 	 Unphysical	 sequences	 in	 the	 interval	 [−1.36 < 𝜇 < −1]	 will	 be	 only	
partially	 suppressed.	 	 This	 discouraging	 result	 is	 a	 simple	 corollary	 of	 the	 angular	
resolution	problem	illustrated	in	Figures	B1	and	B2.		Basically,	the	angular	resolution	for	
backscattered	 radiation	 is	 so	 poor	 that	 the	 detectors	 are	 incapable	 of	 distinguishing	
whether	an	 interaction	sequence	has	crossed	the	backscatter	threshold	[i.e.,	 Inequality	
(13)]	or	not.		This	conclusion,	combined	with	the	overall	angular	resolution	problem	near	
the	backscatter	limit,	suggests	that	the	general	form	of	OA	given	in	Equation	(B.16)	should	
be	modified	by	imposing	an	angular	cutoff	of	the	form	

	 𝑂𝐴∗(𝜐) = 𝑂𝐴(𝜐)ΘA𝜐(X1 − 𝜇-�J*mmE	 (B.30)	

where	a	typical	value	of	𝜇-�J*mm = −0.85	might	be	considered	(i.e.,	rejection	of	all	events	
with	 scattering	 angle	𝜃 > 150°).	 	 Because	 such	 a	 cutoff	 depends	 on	 only	 the	 detected	
energies	and	associated	resolutions	(not	u),	it	does	not	affect	the	rate	calculation	and	can	
be	 imposed	at	any	point	 in	 the	analysis.	 	Nonetheless,	 the	obvious	cutoff	𝜇-�J*mm = −1	
should	be	implemented	to	suppress	the	most	egregious	combinations,	i.e.,	

	 𝑂𝐴∗(𝜐) = 𝑂𝐴(𝜐)Θ(1 + 𝜐(X1)	

or	 𝑂𝐴∗(𝜐) = 𝑂𝐴(𝜐)Θ ¥2 − (
@$

�r"#@#Br##(@$T@")�
�r##@"Br"#(@$T@#)�

¦	.	 (B.31)	

	 	



LBNL Report #2001559	 	 2	July	2024	
	

	 63	

Appendix	C.		Evaluation	the	Compton	Cone	(CC)	function	–	the	Crucial	Double	
Spherical	Integral	

This	 appendix	 evaluates	 the	 integrals	 over	 the	 possible	 directions	 of	 both	 the	
incident	 and	 scattered	 radiation	 that	 appear	 in	 Equation	 (57).	 	 For	 purposes	 of	 this	
calculation,	the	integrals	are	written	in	a	very	general	form:	

	 𝐶𝐶A�⃗� ⋅ �⃗�, 𝜇; Σ!E ≡
"

Z%9d"#^Z%9d##^
∬ 𝑑%Ω44⃗ " 	∬ 𝑑%Ω44⃗ %

⬚
e#

⬚
e# 		ΘAΩ44⃗ " ⋅ 𝛽E	ΘAΩ44⃗ % ⋅ �⃗�E	

	 	 		𝑒𝑥𝑝 �− "
%d"#

q1 − AΩ44⃗ " ⋅ �⃗�E
%
s − "

%d##
q1 − AΩ44⃗ % ⋅ �⃗�E

%
s�		 (C.1)	

	 	 𝑒𝑥𝑝 �− "
%d!#

©AΩ44⃗ " ∙ Ω44⃗ %E − 𝜇ª
%
�	.	

The	exponentials	in	the	integrand	are	similar	to	Gaussians	locally;	but,	due	to	the	global	
integration	 over	 spheres,	 do	 not	 exhibit	 the	 same	 asymptotic	 properties	 that	 simplify	
integrations	 over	 Gaussians	 on	 Rn.	 	 Nonetheless,	 because	 the	 constants,	 Si,	 are	 small	
(Si<<1),	the	integrals	are	dominated	by	the	local	behavior;	so	that,	the	integrands	can	be	
treated	locally	as	Gaussians.			

The	evaluation	of	the	CC	function	requires	the	4D	integration	of	over	the	half	spheres	
in	Equation	(C.1).	 	One	accomplishes	 this	 integration	by	mapping	the	 two	half-spheres	
AΩ44⃗ ", Ω44⃗ %E	onto	two	R2	planes	(𝑟, 𝑠)	by	the	transformations:	

	 Ω44⃗ " = ½√1 − 𝑟%𝛽 + 𝑟"
t�]]⃗ T��]]⃗ v

√"T�#
+ 𝑟%

�]]⃗ ×�]]⃗

u�]]⃗ ×�]]⃗ u
¾	

	 Ω44⃗ % = Ý√1 − 𝑠%�⃗� + 𝑠"
Z\]]⃗ "T��]]⃗ ^
√"T�#

+ 𝑠%
�]]⃗ ×\]]⃗ "
��]]⃗ ×\]]⃗ "

]]]]]⃗ �
Þ	 (C.2)	

where	

	 𝜈 ≡ �⃗� ⋅ 𝛽	,		

	 𝜅(𝑟) ≡ Ω44⃗ " ∙ �⃗� = √1 − 𝑟%𝜈 + 𝑟"√1 − 𝜈%	,	

	 𝑟% ≡ 𝑟"% + 𝑟%% < 1	,	 (C.3)	

	 𝑠% ≡ 𝑠"% + 𝑠%% < 1	.	

We	note	that	

	 −1 < 	𝜅(𝑟) < 1			 and		 𝜅(𝑟 = 0) = 𝜈.	 (C.4)	

These	transformations	are	basically	a	projection	of	the	half	spheres	into	unit	circles	in	the	
planes	R2.		[The	case	n2=1	must	be	formally	excluded	because	collinear	vectors	a	and	b	
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produce	 a	 pathology	 in	 the	 mapping;	 however,	 the	 problem	 can	 be	 computationally	
resolved	by	adding	an	arbitrary	infinitesimal	rotation	to	either	of	the	vectors.]		From	the	
transformations	 in	 Equation	 (C.2)	 one	 finds	 that	 the	 range	 of	 integration	 over	 a	 half-
sphere	is	mapped	into	the	unit	circle	in	the	R2	plane:	so	that,		

∬ 𝑑%⬚
e#

\]]⃗ "∙�]]⃗ �M
Ω44⃗ " 		∬ 𝑑%⬚

e#
\]]⃗ #∙�]]⃗ �M

Ω44⃗ % 	= 	∬ 𝑑%𝑟⬚
F#

|Y⃗|�"
	(1 − 𝑟%)T" %⁄ 	∬ 𝑑%𝑠⬚

F#
|)⃗|�"

		(1 − 𝑠%)T" %⁄ 	 (C.5)	

where	 the	 weightings	 in	 Equation	 (C.5)	 arise	 from	 the	 Jacobian	 associated	 with	 the	
coordinate	transformations.	 	Other	terms	in	the	integrand	of	Equation	(C.1)	depend	on	
inner	products.		In	particular,	one	finds	that	

	 AΩ44⃗ " ∙ 𝛽E = √1 − 𝑟%	 AΩ44⃗ % ∙ �⃗�E = √1 − 𝑠%	 (C.6)	

	 AΩ44⃗ " ∙ Ω44⃗ %E = 𝜅√1 − 𝑠% + √1 − 𝜅%𝑠"	 (C7)	

so	that	

	 1 − AΩ44⃗ " ∙ 𝛽E
%
= 𝑟%	 1 − AΩ44⃗ % ∙ �⃗�E

%
= 𝑠%.	 (C.8)	

Thus,	Equation	(C.1)	becomes	

	 𝐶𝐶A�⃗� ⋅ �⃗�, 𝜇; Σ!E =
"

Z%9d"#^Z%9d##^
∬ 𝑑%⬚
⌈Y⃗⌉�" 𝑟	(1 − 𝑟%)T" %⁄ ∬ 𝑑%⬚

⌈)⃗⌉�" 𝑠	(1 − 𝑠%)T" %⁄ 	

	 	 		𝑒𝑥𝑝 �− Y#

%d"#
− )#

%d##
� 	𝑒𝑥𝑝 �− "

%d!#
©AΩ44⃗ " ⋅ Ω44444⃗ %E − 𝜇ª

%
�		.	 (C.9)	

For	convenience,	we	denote	the	three	crucial	Gaussian	functions	as	

	 𝑀"(𝑟) ≡ 𝑒𝑥𝑝 q− |Y⃗|#

%d"#
s	,	 	

	 𝑀%(𝑠) ≡ 𝑒𝑥𝑝 q− |)⃗|#

%d##
s		,	and		 (C.10)	

	 𝑀$(𝑟, 𝑠) ≡ 𝑒𝑥𝑝 �− "
%d!#

©AΩ44⃗ " ⋅ Ω44444⃗ %E − 𝜇ª
%
�	 	

The	M1	function	suppresses	contributions	to	the	integral	from	larger	values	of	|𝑟|;	and	the	
M2	function	suppresses	contributions	to	the	integral	from	larger	values	of	|𝑠|.		Our	earlier	
analysis	of	realistic	events	indicated	that	A1 2Σ",%%⁄ E > 6;	so	that	the	Gaussian	peaks	in	the	
vicinity	of	𝑟 ≈ 0	and	𝑠 ≈ 0	are	relatively	narrow.		In	particular,	the	contributions	to	the	
integrals	for	values	of	|𝑟|% > 1 2⁄ 	or	|𝑠|% > 1 2⁄ 	are	generally	insignificant.		The	difficulties	
with	these	integrals	arise	from	the	complicated	nature	of	the	M3	function.		This	suggests	
a	simple	approximation		

		 𝑀$(𝑟, 𝑠) ≈ 𝑀$A04⃗ , 04⃗ E = 𝑒𝑥𝑝 q− "
%d!#

(𝜈 − 𝜇)%s	.	 (C.11)	

If	 one	 adopts	 this	 approximation,	 the	 integrals	 over	 𝑟	 and	 𝑠	 decouple	 and	 become	
standard	special	functions;	so	that	
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	 𝐶𝐶(𝜈, 𝜇; Σ!) ≈
"

d"#d##
𝑒𝑥𝑝 q− "

%d!#
(𝜈 − 𝜇)%s 𝑒𝑥𝑝 q− "

%d"#
− "

%d##
s	

	 𝐹""
⬚ P"

%
, $
%
; "
%d"#
Q 𝐹""
⬚ P"

%
, $
%
; "
%d##
Q	 (C.12)	

Using	the	asymptotic	behavior	of	the	1F1	for	large	argument;	namely,	

	 𝐹"(𝛼, 𝛾; 𝑥) 1≫"¶⎯̧ �(�)
�(�)"

⬚ 𝑥�T�𝑒𝑥𝑝(𝑥)	 (C.13)	

one	concludes	that	

	 𝐶𝐶(𝜈, 𝜇; Σ!) d"≪"
d#≪"

¶⎯⎯̧ 	𝑒𝑥𝑝 q− "
%d!#

(𝜈 − 𝜇)%s	 (C.14)	

approximates	the	CC	function.		We	note	that	the	important	imaging	properties	associated	
with	the	Compton	cone	are	expressed	in	the	Gaussian	term	of	Equation	(C.14).		For	many	
years	 this	 approximation	 was	 used	 in	 our	 analysis.	 	 The	 problem	 with	 this	 simple	
expression	is	that	virtually	all	the	blurring	effects	of	S1	and	S2	(which	may	be	comparable	
to	S3)	are	ignored.			

A	better	approximation	of	CC	can	be	found	by	assuming	that	

	 𝑀$(𝑟, 𝑠) ≈ 𝑀$A04⃗ , 𝑠E = 𝑒𝑥𝑝 q− "
%d!#

A𝜈√1 − 𝑠% + √1 − 𝜈%𝑠" − 𝜇E
%
s	.	 (C.15)	

This	approximation	ignores	the	blurring	effects	due	to	S1,	but	includes	the	blurring	due	to	
S2.	 	Essentially,	this	assumption	is	exact	in	the	Σ" → 0	 limit.	 	In	this	approximation,	the	
integral	over	𝑟	decouples	and	can	be	evaluated	independently,	so	that	

	 𝐶𝐶(𝜈, 𝜇; Σ!) =
"
d"#
𝑒𝑥𝑝 q− "

%d"#
s 𝐹""
⬚ P"

%
, $
%
; "
%d"#
Q	

	 		 "
Z%9d##^

∬ 𝑑%⬚
⌈)⃗⌉�" 𝑠	(1 − 𝑠%)T" %⁄ 	𝑀%(𝑠)	𝑀$A04⃗ , 𝑠E		.	 (C.16)	

Once	again,	the	asymptotic	limit	of	the	1F1	function	for	Σ" → 0	allows	one	to	write	

	 𝐶𝐶(𝜈, 𝜇; Σ!) d"≪"
¶⎯⎯̧ "

Z%9d##^
∬ 𝑑%⬚
⌈)⃗⌉�" 𝑠	(1 − 𝑠%)T" %⁄ 	𝑀%(𝑠)	𝑀$A04⃗ , 𝑠E	.	 (C.17)	

Despite	these	simplifications,	this	integral	is	still	daunting	due	the	complicated	nature	of	
M3	term.		However,	these	complications	can	now	be	easily	visualized	by	displaying	the	M2	
and	M3	functions	on	the	𝑠	plane.		Figure	C.1	displays	the	functions	M2	and	M3	on	the	(s1,s2)	
plane	for	S2=.05,	S3=.07,	n=0.8	and	various	values	of	𝜇.		A	major	conclusion	can	be	inferred	
from	the	Figure	C.1;	namely,	that	the	values	of	M3	off	the	s2	axis	have	little	effect	on	the	
product	M2*M3	because	only	the	point	of	closest	approach	of	the	Compton	cone	with	the	
origin	 (s2=0)	 contributes	 to	 the	 product.	 	 Thus,	 one	 can	 approximate	 𝑀$A04⃗ , 𝑠E ≅
𝑀$A04⃗ , 𝑠"𝑒"E.		The	effects	of	this	approximation	are	displayed	in	Figure	C.2	which	compares	
the	product	M2*M3	with/without	the	approximation.		The	errors	are	less	than	1	percent.	
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Figure	C.1.		The	functions	M2	and	M3	are	displayed	for	S2=0.05,	S3=0.07,	and	n=0.8.		Each	row	displays	the	M2,	M3,	and	

M2*M3	functions	for	different	values	a	specific	value	of	𝜇	(=0.95,	0.85,	0.8,	0.5	and	0.15	in	successive	rows).		In	the	
first	 column,	 the	M2	 function	 represents	 the	 dispersion	 of	 the	 cone	 axis	 due	 to	 uncertainty	 in	 the	 interaction	
positions,	does	not	depend	on	𝜇,	and	is	the	same	in	each	row.		In	the	second	column,	the	M3	function	displays	the	
arc	of	the	Compton	cone	intersecting	the	𝑠	plane	and	varies	significantly	depending	on	the	opening	angle	of	the	
cone	(𝜇).		The	third	column	shows	the	product	of	M2*M3	which	appears	as	another	Gaussian-like	function	centered	
on	a	position	on	the	s2=0	axis	and	displaced	from	the	origin	toward	the	point	of	closest	approach	on	the	arc	of	the	
Compton	cone.			
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Figure	C.2.		The	functions	M2,	M3	and	their	approximations	are	displayed	for	S2=0.05,	S3=0.07,	and	n=0.8.		Each	row	

corresponds	to	a	specific	𝜇	(=0.95,	0.85,	0.8,	0.5,	and	0.15).		Each	column	corresponds	to	a	specific	function.		
The	 first	 column	 displays	M2	 which	 represents	 the	 dispersion	 of	 the	 cone	 axis	 due	 to	 uncertainty	 in	 the	
interaction	positions.		The	second	column	displays	M3	which	exhibits	the	intersection	of	the	Compton	cone	
with	the	𝑠	plane.	 	The	third	column	displays	the	product	M2*M3	that	appears	 in	the	 integrand.	 	The	fourth	
column	 shows	 the	 proposed	 approximation	 for	M3;	 namely,	𝑀=(𝑟 = 0, 𝑠 = 𝑠:𝑒:)	 that	 assumes	 s2=0.	 	 This	
approximation	has	the	same	profile	as	M3	along	the	s2=0	axis,	but	displays	no	s2	dependence	and,	therefore,	
the	arc	structure	of	the	Compton	cone	is	lost.		Nonetheless,	the	product	of	M2	and	the	M3	approximation,	shown	
in	the	fifth	column,	is	virtually	identical	to	the	exact	product	in	the	third	column.		The	difference	M2*M3	and	its	
approximation	 is	displayed	 in	 the	sixth	column.	 	The	differences	are	 less	 than	a	 few	percent	of	 the	actual	
product.	
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Based	 on	 these	 considerations,	 we	 adjust	 the	 approximation	 again	 and	 settle	 on	 the	
approximation	(used	for	the	remainder	of	this	paper):	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
"

Z%9d"#^Z%9d##^
∬ 𝑑%⬚
⌈Y⃗⌉�" 𝑟	(1 − 𝑟%)T" %⁄ 𝑀"(𝑟)	 (C.18)	

	 ∬ 𝑑%⬚
⌈)⃗⌉�" 𝑠	(1 − 𝑠%)T" %⁄ 𝑀%(𝑠)	𝑀$(𝑟"𝑒", 𝑠"𝑒")	.	

With	this	approximation	the	integrals	over	r2	and	s2	can	be	performed	explicitly;	so	that	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
"

Z%d"#^Z%d##^
∫ 𝑑𝑟"
"
T" 𝑒𝑥𝑝 q− Z"TY"#^

%d"#
s 𝐹""
⬚ P"

%
, 1; Z"TY"

#^
%d"#

Q	𝑀"(𝑟"𝑒")	 (C.19)	

	 ∫ 𝑑𝑠"
"
T" 𝑒𝑥𝑝 q− Z"T)"#^

%d##
s 𝐹""
⬚ P"

%
, 1; Z"T)"

#^
%d##

Q𝑀%(𝑠"𝑒")	𝑀$(𝑟"𝑒", 𝑠"𝑒")	.	

Once	again,	arguments	of	the	confluent	hypergeometric	functions	are	expected	to	be	large	
so	that	the	asymptotic	behavior	of	1F1	[Equation	(C.13)]	can	be	invoked	with	the	result,	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
"

%9d"d#
∫ 𝑑𝑟"
"
T" (1 − 𝑟"%)T" %⁄ 	𝑀"(𝑟"𝑒")	 (C.20)	

	 ∫ 𝑑𝑠"
"
T" 	(1 − 𝑠"%)T" %⁄ 	𝑀%(𝑠"𝑒")	𝑀$(𝑟"𝑒", 𝑠"𝑒")	.	

Equation	(C.20)	provides	an	excellent	approximation	of	the	CC	function	and	will	be	used	
in	 all	 subsequent	 analysis.	 	 The	M3	 term	 is	most	 problematic	 in	 the	 evaluation	 of	 the	
integrals	and,	therefore,	warrants	careful	examination.		One	observes	that	

	 𝑀$(𝑟"𝑒", 𝑠"𝑒") = 𝑒𝑥𝑝 �− "
%d!#
	P𝜅r1 − 𝑠"% + √1 − 𝜅%𝑠" − 𝜇Q

%
�	 (C.21)	

can	be	simplified	by	the	notation	

	 Ξ(𝑥, 𝑦) ≡ 𝑥r1 − 𝑦% + 𝑦√1 − 𝑥% = Ξ(𝑦, 𝑥)	 (C.22)	

so	that	by	Equations	(C.3)	and	(C.21)	can	be	written	as	

	 𝜅 = Ξ(𝑟", 𝜈)		 (C.23)	

and	 𝑀$(𝑟"𝑒", 𝑠"𝑒") = 𝑒𝑥𝑝 q− "
%d!#
	(Ξ(𝑠", 𝜅) − 𝜇)%s,	respectively.	

As	a	result,	M3	is	maximum	(s1=smax)	when	

	 Ξ(𝑠(X1 , 𝜅) = 𝜅r1 − 𝑠(X1% + √1 − 𝜅%𝑠(X1 = 𝜇.	 (C.24)	

Simple	algebra	reveals	the	general	result	that	

	 Ξ(𝑥, 𝑦) = 𝑧			 ⇒ 			𝑥 = Ξ(𝑧, ±𝑦).	 (C.25)	

This	 identity	will	 be	 invoked	 repeatedly.	 	 The	 ±	 sign	 in	 Equation	 (C.25)	 provides	 two	
solutions	of	the	quadratic	equation	–	corresponding	in	Equation	(C.24)	to	the	directions	
on	the	Compton	cone	that	are	nearest	and	furthest	from	the	direction	to	the	voxel.		The	
contribution	to	the	integrand	will	be	greatest	for	the	direction	of	closest	approach.		As	a	
result,	we	find	that	

	 𝑠(X1 = 𝜎ê1 − ©𝑚𝑎𝑥A0, Υ(𝜇, 𝜅)Eª% ≅ 	Ξ(𝜇, −𝜅)	 (C.26a)	
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	 r1 − 𝑠(X1% = 	𝑚𝑎𝑥A0, Υ(𝜇, 𝜅)E	 (C.26b)	

where	

	 Υ(𝑥, 𝑦) ≡ 𝑥𝑦 + √1 − 𝑥%r1 − 𝑦%	 (C.27)	

and	 𝜎 = 𝑠𝑖𝑔𝑛AΞ(𝜇, −𝜈)E;	 (C.28)	

Expanding	the	Ξ(𝑠", 𝜅)	function	in	a	Taylor’s	series	around	the	peak	in	M3,	one	finds	

	 Ξ(𝑠", 𝜅) ≅ Ξ(𝑠(X1 , 𝜅) + q
��()",�)
�)"

s
)"L)'.=

	(𝑠" − 𝑠(X1) + ℎ𝑖𝑔ℎ𝑒𝑟	𝑜𝑟𝑑𝑒𝑟	𝑡𝑒𝑟𝑚𝑠	

	 ≅ 𝜇 + 𝛾%(𝑠" − 𝑠(X1)	 (C.29)	

where	

	 𝛾% ≡ q��()",�)
�)"

s
)"L)'.=

= �"Tl#

�"T)'.=
#

= �"Tl#

(X1ZM,�(l,�)^
	 (C.30)	

so	that	one	can	approximate	M3	as	a	Gaussian	of	the	form	

	 𝑀$(𝑟"𝑒", 𝑠"𝑒") ≅ 𝑒𝑥𝑝 q− �##

%d!#
	(𝑠" − 𝑠(X1)%s.	 (C.31)	

The	product	of	M2	and	M3	is,	therefore,	

	 𝑀%(𝑠"𝑒")𝑀$(𝑟"𝑒", 𝑠"𝑒") ≅ 𝑒𝑥𝑝 q− )"#

%d##
− �##

%d!#
	(𝑠" − 𝑠(X1)%s	 (C.32)	

	 = 𝑒𝑥𝑝 q− �d!#B�##d##�
%d##d!#

𝑠"% +
�##)'.=
d!#

𝑠" −
�##)'.=

#

%d!#
s	

Returning	to	Equation	(C.20),	we	find	that	the	s1	integral	becomes	

	 ∫ 𝑑𝑠"
"
T" 	(1 − 𝑠"%)T" %⁄ 	𝑀%(𝑠"𝑒")	𝑀$(𝑟"𝑒", 𝑠"𝑒")	 (C.33)	

	 = 𝑒𝑥𝑝 q− �##)'.=
#

%d!#
s	∫ 𝑑𝑠"

"
T" 	(1 − 𝑠"%)T" %⁄ 	𝑒𝑥𝑝 q− "

%d#!#
𝑠"% +

�##)'.=
d!#

𝑠"s	

where	

	 Σ%$% ≡ d##d!#

�d!#B�##d##�
< Σ%% ≪ 1	 (C.34)	

This	integral	is	now	performed	under	the	assumption	that	S23<<1.		We	define	
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	 𝐼(𝐴, 𝐵) = ∫ 𝑑𝑠"
T" (1 − 𝑠%)T" %⁄ 𝑒𝑥𝑝(−𝐴𝑠% + 𝐵𝑠)	

	 = ∑  '

(!
K
(LM ∫ 𝑑𝑠"

T" (1 − 𝑠%)T" %⁄ 𝑠(𝑒𝑥𝑝(−𝐴𝑠%)	

	 = ∑  #'

(%()!
2K

(LM ∫ 𝑑𝑠"
M (1 − 𝑠%)T" %⁄ 𝑠%(𝑒𝑥𝑝(−𝐴𝑠%)	

	 = ∑  #'

(%()!
K
(LM ∫ 𝑑𝑥"

M (1 − 𝑥)T
"
#𝑥(T

"
#𝑒𝑥𝑝(−𝐴𝑥)	 (C.35)	

	 = ∑  #'

(%()!
K
(LM 𝑒𝑥𝑝(−𝐴)∫ 𝑑𝑥"

M (1 − 𝑥)(T
"
#𝑥T

"
#𝑒𝑥𝑝(𝐴𝑥)	

	 = ∑  #'

(%()!
K
(LM 𝑒𝑥𝑝(−𝐴)

�t"#v�t(B
"
#v

�((B")
𝐹""

⬚ P"
%
, 𝑚 + 1; 𝐴Q.	

If	A>>1	(i.e., S23<<1),	one	can	apply	the	asymptotic	behavior	of	1F1	[Equation	(C.13)]	and	
find	that	

	 𝐼(𝐴, 𝐵) ≅ ∑  #'

(%()!
K
(LM 𝑒𝑥𝑝(−𝐴)	Γ P𝑚 + "

%
Q 	𝑒𝑥𝑝(𝐴)	𝐴T(T

"
#	

	 = 𝐴T
"
#∑

�t(B"#v

(%()!
K
(LM P 

#

_
Q
(
= ê9

_
∑ "

(!
K
(LM P 

#

;_
Q
(
	 (C.36)	

	 = ê9
_
𝑒𝑥𝑝 P 

#

;_
Q	

We	now	can	evaluate	the	s1	 integral	of	Equation	(C.33)	using	Equation	(C.36)	with	the	
result	that	

	 ∫ 𝑑𝑠"
"
T" 	(1 − 𝑠"%)T" %⁄ 	𝑀%(𝑠"𝑒")	𝑀$(𝑟"𝑒", 𝑠"𝑒")	

	 = √%9d#d!

�d!#B�##d##
𝑒𝑥𝑝 �− �##)'.=

#

%�d!#B�##d##�
�	.	 (C.37)	

[N.B.:	 This	 expression	 is	 dependent	 on	 the	 r1	 parameter	 because	 both	 g2	 and	 smax	 are	
functions	of	r1.]		The	function	CC	as	expressed	in	Equation	(C.20)	becomes	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
"

√%9d"
∫ 𝑑𝑟"
"
T" (1 − 𝑟"%)T" %⁄ 	𝑒𝑥𝑝 q− Y"#

%d"#
s	 (C.38)	

	 d!

�d!#B�##d##
𝑒𝑥𝑝 �− �##)'.=

#

%�d!#B�##d##�
�	.	

The	part	of	the	integrand	in	the	first	line	of	Equation	(C.38)	is	strongly	peaked	near	r1=0;	
whereas,	the	second	line	of	the	integrand	is	peaked	around	smax=0.		According	to	Equation	
(C.26)	we	have	

	 𝑠(X1(𝑟") ≅ ΞA𝜇,−𝜅(𝑟")E.	 (C.39)	

If	we	define	rmax	as	the	value	of	r1	at	the	peak	of	the	second	exponential	of	the	integrand;	
i.e.,	

	 𝑠(X1(𝑟(X1) ≡ 0		 ⇒ 		ΞA𝜇, −𝜅(𝑟(X1)E = 0,	 (C.40)	
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which,	in	turn,	implies	
	 𝜅(𝑟(X1) ≡ Ξ(𝑣, 𝑟(X1) = 𝜇.	 (C.41)	

Once	again,	one	finds	a	pair	of	solutions	for	rmax	for	which	the	solution	of	closest	approach	
is	given	by	

	 𝑟(X1 = 𝜎ê1 − ©𝑚𝑎𝑥A0, Υ(𝜇, 𝜈)Eª% ≅ 	Ξ(𝜇, −𝜈) = 	𝜇√1 − 𝜈% − 𝜈r1 − 𝜇%	 (C.42a)	

and	 r1 − 𝑟(X1% = 𝑚𝑎𝑥A0, Υ(𝜇, 𝜈)E.	 (C.42b)	

As	before,	we	assume	 that	 the	 second	exponential	 in	 the	 integrand	of	Equation	 (C.38)	
contributes	only	in	the	vicinity	of	the	peak,	rmax=0;	so	that	one	can	approximate	𝑠(X1(𝑟")	
by	a	Taylor’s	series	expansion	around	rmax.		In	particular,	we	approximate	

	 𝑠(X1(𝑟") ≅ 𝑠(X1(𝑟(X1) + q
g)'.=
gY"

s
Y"LY'.=

(𝑟" − 𝑟(X1) = 𝛾"(𝑟" − 𝑟(X1)	 (C.44)	

where		

	 𝛾" ≡ qg)'.=
gY"

s
Y"LY'.=

= "
�"Tl#

Û√1 − 𝜈% − �Y'.=

�"TY'.=
#
Ü	 (C.45)	

Because	the	Gaussians	imply	r1	and	smax	must	both	be	small,	we	expect	the	integrand	in	
Equation	 (C.38)	 will	 be	 non-vanishing	 only	 if	 𝑟(X1 ≅ 0.	 	 Using	 the	 Taylor’s	 series	
expansion,	one	finds	that	

	 d!

�d!#B�##d##
𝑒𝑥𝑝 �− �##)'.=

#

%�d!#B�##d##�
�	 (C.46)	

	 ≅ d!

�d!#B�##d##
𝑒𝑥𝑝 �− �##�"#(Y"TY'.=)#

%�d!#B�##d##�
�.	

Putting	this	expression	into	Equation	(C.38),	one	finds	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
d!

√%9d"�d!#B�##d##
∫ 𝑑𝑟"
"
T" (1 − 𝑟"%)T" %⁄ 	𝑒𝑥𝑝 q− Y"#

%d"#
s	 (C.47)	

	 𝑥𝑝 �− �##�"#(Y"TY'.=)#

%�d!#B�##d##�
�.	

Rearranging	the	terms	in	the	Gaussians	and	defining	

	 Σ"%$% = d"#�d!#B�##d##�
�d!#B�##d##B�##�"#d"#�

≤ Σ"% ≪ 1	 (C.48)	

one	finds	that	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
d!

√%9d"�d!#B�##d##
𝑒𝑥𝑝 �− �##�"#Y'.=

#

%�d!#B�##d##�
�	 (C.49)	

	 ∫ 𝑑𝑟"
"
T" (1 − 𝑟"%)T" %⁄ 	𝑒𝑥𝑝 q− Y"#

%d"#!# s 𝑒𝑥𝑝 ��#
#�"#Y'.=

�d!#B�##d##�
𝑟"�	.	
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Once	again,	we	invoke	the	result	of	Equation	(C.36)	and	get	

	 𝐶𝐶(𝜈, 𝜇; Σ!) ≅
d!

�d!#B�##d##B�"#�##d"#
𝑒𝑥𝑝 �− �##�"#Y'.=

#

%�d!#B�##d##B�"#�##d"#�
�.	 (C.50)	

Equation	(C.50)	is	the	result	of	numerous	approximations.		Based	on	this	calculation,	the	
following	CC	function	can	be	summarized	by	the	following	analytic	calculations:	

	 σ ≡ 𝑠𝑖𝑔𝑛P𝜇√1 − 𝜈% − 𝜈r1 − 𝜇%Q	 (C.51a)	

	 Υ ≡ 𝑚𝑎𝑥P𝜖, 𝜇𝜈 + r1 − 𝜇%√1 − 𝜈%Q							[𝜖 ≈ .0001]	 (C.51b)	

	 Δ ≡ σ√1 − Υ%		 (C.51c)	

	 𝜒 ≡ �o
�
	 (C.51d)	

and	

	 𝐶𝐶(𝜈, 𝜇; Σ!) =
d!

�d!#B("T�#)d"#B("Tl#)d##
𝑒𝑥𝑝 ½− Z√"T�#T�^

#
o#

%�d!#B("T�#)d"#B("Tl#)d##�
¾.	 (C.51e)	

Equations	(C.51a-e)	are	the	final	result	of	this	appendix.	

Most	 of	 the	 properties	 of	 this	 CC	 function	 are	 consistent	 with	 our	 intuitive	
expectations.		These	properties	are	displayed	in	Figure	C.3	which	shows	CC	as	a	function	
of	𝜇	and	𝜈	 for	S1=.03,	S2=04,	and	S3=.02.	 	One	expects	the	CC	function	to	be	a	sharply-
peaked	 ridge	 along	 the	 𝜇 = 𝜈	 line;	 and	 this	 behavior	 is	 successfully	 demonstrated	 in	
Figure	C.3.		Another	feature	is	that	the	ridge	dips	from	peak	values	(CC=1)	near	𝜇 = ±1	to	
a	minimum	at	𝜇 = 0.		This	behavior	arises	from	the	coefficient	preceding	the	exponential	
and	has	a	natural	explanation.	 	This	factor	accounts	for	the	fraction	of	the	voxel	that	is	
viewed	within	the	finite	width	of	the	Compton	cone.		If	the	voxel	is	far	from	the	detector	
(Σ" ≪ Σ$),	then	virtually	all	voxel	will	be	within	the	blurred	Compton	cone;	however,	if	
the	voxel	is	near	the	detector	(Σ$ ≪ Σ"),	the	cone	will	slice	through	the	voxel,	so	that	only	
a	fraction	of	the	emissions	will	be	capable	of	producing	the	event.		Likewise,	if	the	cone	
axis	 wobbles	 significantly	 (Σ$ ≪ Σ%),	 then	 only	 a	 fraction	 of	 the	 wobble	 positions	 is	
capable	of	producing	the	event.		Consequently,	the	CC	function	is	suppressed	if	either	the	
voxel	is	near	the	detector	or	the	cone	axis	is	uncertain.		The	effect	is	mediated	if	the	cone	
is	tight	near	the	axis	because	a	larger	fraction	of	the	cone	will	intersect	the	voxel;	so	that	
the	 suppression	 is	 reduced	 as	 𝜇	 approaches	 ±1.	 	 More	 surprising	 is	 the	 pathologic	
behavior	of	the	exponential	term	of	the	CC	function	in	the	vicinity	of	𝜇 = ±1.			
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Figure	C.3.		The	𝐶𝐶(𝜈, 𝜇; ΣI)	function	is	displayed	as	for	S1=0.03,	S2=0.04,	and	S3=0.02.		The	top	row	shows	color	lookup	

tables	of	the	CC	function	and	the	second	row	shows	3D	display	of	the	same	CC	function.	 	The	first	column	
shows	CC	function	in	terms	of	the	cosines	𝜇	and	𝜈	from	the	cone	axis;	whereas,	the	second	column	shows	CC	
in	terms	of	angles	(degrees)	from	the	cone	axis.	

	

In	 the	 vicinity	 of	 𝜇 = ±1	 the	 CC	 function	 as	 approximated	 in	 Equation	 (C.43)	
displays	 anomalous	 high	 responses	 for	 values	 of	 𝜈	 on	 the	 interval	 𝜈 ∈ [0, 𝜇].	 	 One	
concludes	that	the	Compton	camera	provides	no	angular	resolution	for	such	events.		This	
result	 is	 counter-intuitive	 because	 the	 cases	𝜇 = ±1	 correspond	 to	 the	 Compton	 cone	
contracting	 to	 a	 narrow	 pencil	 beam	 –	which	 should	 provide	 extremely	 good	 angular	
resolution.		This	paradox	is	independent	of	the	angular	resolution	problems	described	in	
Appendix	B.		The	approximations	used	in	the	derivation	of	Equation	(C.43)	are	the	source	
of	 this	paradox.	 	At	numerous	points	 in	 the	derivation,	we	assumed	 that	 the	Gaussian	
widths	were	small	and	used	this	assumption	to	truncate	Taylor’s	series	or	use	asymptotic	
approximations.		In	the	vicinity	of	𝜇 = ±1	these	assumptions	may	be	inappropriate.		More	
significantly	the	fundamental	approximation	asserted	in	Equation	(C.18)	is	based	on	the	
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“arc-like”	appearance	of	the	Compton	cone	in	Figures	C.1	and	C.2.		In	the	cases	of	𝜇 = ±1,	
this	approximation	fails.	 	Different	approximations	are	required	for	these	special	cases.		
[The	 lead	 author	 has	 spent	 many	 months	 tracking	 down	 and	 accounting	 for	 such	
inappropriate	 approximations	 with	 limited	 success.]	 	 As	 a	 practical	 matter,	 however,	
these	anomalies	do	not	significantly	affect	the	results.		One	cannot	detect	D1	events	that	
deposit	no	energy	in	the	detector,	so	the	case	𝜇 = 1	never	arises.		The	considerations	in	
Appendix	B	imply	that	backscattered	events	(𝜇 = −1)	provide	so	little	angular	resolution	
(i.e.,	S3	is	so	large)	that	the	such	events	should	not	be	used	in	imaging.		This	conclusion	is	
supported	 by	 Figures	 C.4	 and	 C.5	 that	 display	 the	 CC	 function	 for	 realistic	 detector	
parameters.		Consequently,	the	Equation	(C.43)	provides	an	adequate	approximation	for	
all	practical	purposes.		
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Figure	 C.4.	 	 The	𝐶𝐶(𝜈, 𝜇; ΣI)	 function	 is	 displayed	 as	 for	 incident	 radiation	 at	 662	 keV,	S1=0.03,	 and	S2=0.04.	 The	

parameter	S3	is	determined	by	the	energy	resolution	model	h=0.04	and	e0=5keV	of	Equation	(B.13)	(i.e.,	4%	
energy	resolution	at	511	keV).		The	values	of	S1	and	S2	are	the	same	as	Figure	C.3.		The	S3	models	a	detector	
with	4%	energy	resolution	at	511	keV.		The	top	row	shows	color	graphics	of	the	CC	function	and	the	second	
row	shows	3D	projections	of	the	same	CC	function.		The	first	column	shows	CC	function	in	terms	of	the	cosines	
𝜇	and	𝜈	from	the	cone	axis;	whereas,	the	second	column	shows	CC	in	terms	of	angles	(degrees)	from	the	cone	
axis.	
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Figure	 C.5.	 	 The	 𝐶𝐶(𝜈, 𝜇; ΣI)	 function	 is	 displayed	 as	 for	 incident	 radiation	 at	 662	 keV,	 S1=0.03,	 and	 S2=0.1.	 The	

parameter	S3	 is	determined	by	 the	energy	resolution	model	h=0.09	and	e0=5keV	of	Equation	 (B.13).	 	The	
values	of	Si	are	appropriate	for	the	UC	Berkeley	CCI-II	system.		The	top	row	shows	color	lookup	tables	of	the	
CC	function	and	the	second	row	shows	3D	display	of	the	same	CC	function.		The	first	column	shows	CC	function	
in	terms	of	the	cosines	𝜇	and	𝜈	from	the	cone	axis;	whereas,	the	second	column	shows	CC	in	terms	of	angles	
(degrees)	from	the	cone	axis.	
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Appendix	D.		The	Relation	Between	Distant	Source	Voxels	and	Incident	Fluxes	

Throughout	this	analysis	an	“idealized”	Gaussian	voxel	is	assumed	to	be	the	source	of	
radiation	as	described	in	Equations	(3)	and	(4).		However,	a	detector	inherently	observes	
the	local	radiation	field	--	not	distant	sources.		For	this	reason,	one	often	wants	to	describe	
the	 radiation	 in	 terms	 of	 the	 local	 incident	 flux	 originating	 from	 directions	 on	 the	 2-
sphere,	rather	than	in	terms	of	distant	source	voxels.		This	Appendix	provides	a	method	
of	translating	the	rate	produced	by	a	Gaussian	source	voxel	to/from	the	rate	produced	by	
an	incident	flux.	

In	Section	III	the	photon	phase-space	density,	F,	was	defined	by	

	 Φ(�⃗�, �⃗�) ≡ [	#HI*J*+)	]
[(!][.'/!]

= photon	phase − space	density			.	 (16)	

The	radiation	flux	is	defined	by	

	 ΨA𝑥, 𝐸, Ω44⃗ E ≡ �	#HI*J*+)	ZXJ	1⃗	X+g	@	!+	JI'	g!Y'-J!*+	\]]⃗ ^	�
[)'-][(#][.'/][)J'YXg!X+]

= photon	flux	.	 (D.1)	

The	two	functions	are	essentially	equivalent	and	related	by	

	 ΨA𝑥, 𝐸, Ω44⃗ E = 𝑐𝐸%ΦA𝑥, 𝐸Ω44⃗ E	.	 (D.2)	

The	 photon	 phase-space	 density	 is	 easier	 to	 use	 in	 calculations	 and	 less	 prone	 to	
misinterpretations;	whereas,	 the	 photon	 flux	 emphasizes	 the	 directional	 aspect	 of	 the	
photon	 distribution	 and	 is	 often	 more	 experimentally	 relevant.	 	 The	 photon	 flux	
distribution	is	generally	represented	on	a	2D	sphere	showing	the	intensity	of	the	flux	from	
different	directions	at	energy	E.		In	this	Appendix	the	source	of	radiation	will	no	longer	be	
a	distant	voxel;	instead,	detector	position	will	be	assumed	fixed	at	𝑥M	and	the	source	will	
be	an	incident	flux	at	that	location,	i.e.	ΨA𝑥M, 𝐸, Ω44⃗ E.		This	incident	radiation	flux	is	a	function	
of	the	energy,	E,	and	the	direction,	Ω44⃗ ,	of	the	radiation	on	the	2D	sphere.		This	direction	is	
represented	by	discrete	values	on	a	2D	grid	of	pixels	covering	 the	sphere	–	each	pixel	
corresponding	to	a	direction	of	photon	propagation.		For	example,	HEALPix	provides	such	
a	grid	(as	shown	in	Figure	D.1).		Each	pixel	“i”	(i=1,…,N)	on	the	sphere	can	be	characterized	
by	 the	central	direction,	Ω44⃗ ! ,	 and	pixel	size,	ΔΩ! ,	 in	steradians.	 	This	pixelization	can	be	
characterized	analytically	by	a	set	of	pixelation	functions,	Λ!AΩ44⃗ E	where	

	 Λ!AΩ44⃗ E ≡ H1 𝑖𝑓	Ω44⃗ 	𝑖𝑛𝑠𝑖𝑑𝑒	𝑝𝑖𝑥𝑒𝑙	"𝑖"
0 𝑖𝑓	Ω44⃗ 	𝑜𝑢𝑡𝑠𝑖𝑑𝑒	𝑝𝑖𝑥𝑒𝑙	"𝑖"

	 (D.3)	

[N.B.:	the	functions	Λ! 	are	dimensionless]	and	

	 ∬ 𝑑%Ω44⃗ 	⬚
e# Λ!AΩ44⃗ E = ΔΩ! 	 (D.4)	

so	that	 (D.5)	

	 ∑ ΔΩ!j
!L" = 4𝜋.	 (D.6)	

The	incident	flux	can,	therefore,	be	written	as	
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	 ΨA�⃗�M, 𝐸, Ω44⃗ E = ∑ Λ!AΩ44⃗ Ej
!L" Ψ!(�⃗�M, 𝐸)	 (D.7)	

For	most	pixelizations,	the	sizes	of	the	pixels	are	chosen	with	equal	area;	so	that,	ΔΩ! ≅
4𝜋 𝑁⁄ .		Any	tessellation	of	a	sphere	necessarily	requires	that	the	shapes	of	the	pixels	be	
variable	 (as	 illustrated	 in	Figure	 (D.1)].	 	These	variable	 shapes	pose	problems	 for	any	
attempt	 to	 characterize	 the	 pixels.	 	 If	 one	 approximates	 each	 pixel	 as	 rotationally	
symmetric	around	the	direction	Ω44⃗ ! ,	one	can	write	that	

	 Λ!
XHHY*1AΩ44⃗ E = Θ PΩ44⃗ ∙ Ω44⃗ ! − 1 +

o\K
%9
Q.	 (D.8)	

These	 “approximate”	 pixels	 produce	 N	 circular	 areas	 that	 exhibit	 overlaps	 and	 gaps;	
however,	for	our	purposes,	the	approximation	is	both	useful	and	sufficiently	accurate.	

	

Figure	D.1.	 	A	typical	HEALPix	grid	is	shown.	 	[Taken	from:	Górski, Krzysztof M.; 
Hivon, Éric; Banday, Anthony J.; Hansen, Frode K.; Wandelt, Benjamin D.; Reinecke, M.; 
Bartelmann, M. (2005). "HEALPix: A Framework for High-Resolution Discretization and Fast 
Analysis of Data Distributed on the Sphere". Astrophysical Journal. 622 (2): 759–
771. arXiv:astro-ph/0409513]	
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Figure	D.2.		The	basic	idea	of	this	appendix	is	shown	in	this	diagram.		The	flux	of	
radiation	at	the	detector	in	the	direction	Ω44⃗ ! 	is	represented	by	a	pixel	on	the	
celestial	sphere	of	angular	size	ΔΩ! .		This	flux	can	be	approximated	as	that	of	
a	hypothetical	Gaussian	voxel	source	located	at	an	arbitrarily	large	distance,	
R,	 from	 the	 detector.	 	 The	 Gaussian	 source	 strength,	 A(E),	 and	 size,	 L,	 at	
distance	R	are	directly	 related	 to	 the	 flux,	Ψ! ,	 and	size	of	 the	pixel	on	 the	
celestial	sphere,	ΔΩ! .	

	

The	basic	idea	of	this	appendix	is	that	one	can	approximate	the	flux	from	a	single	
pixel	 location	 by	 a	 single	 Gaussian	 voxel	 source	 located	 far	 from	 the	 detector	 and	 in	
opposite	 the	direction	of	 incident	 radiation.	 	 In	 this	approximation,	 the	grid	pattern	 is	
reproduced	by	a	collection	of	Gaussian	voxel	sources	arranged	on	a	sphere	surrounding	
the	 detector.	 	 The	 distance	 to	 the	 sphere	 (R)	 is	 assumed	 very	 large	 (compared	 to	 the	
detector	 size)	 and	 the	 voxel	 size	 (L)	 must	 be	 selected	 to	 match	 the	 pixel	 size	 (in	
steradians)	of	the	grid.		The	geometric	idea	is	presented	in	Figure	D.2.	

If	a	Gaussian	source	with	voxel	size	L	is	located	at	center	point	𝐶 = �⃗�M − 𝑅Ω44⃗ ! ,	
then	 the	 photon	 phase-space	 density	 according	 to	 Equation	 (25)	 [ignoring	
attenuation]	is	given	by	

	 Φ(M)A𝑥M, 𝐸Ω44⃗ E =
8	_(@)D	
;9#-	@#

exp �	− 8F#

D#
q	1 − AΩ44⃗ ∙ Ω44⃗ !E

%
	s	� 	ΘAΩ44⃗ ∙ Ω44⃗ !E	.	 (D.9)	

which,	according	to	Equation	(D.2)	gives	

	 Ψ(M)A�⃗�M, 𝐸, Ω44⃗ E =
8	_(@)D	
;9#

exp �	− 8F#

D#
q	1 − AΩ44⃗ ∙ Ω44⃗ !E

%
	s	� 	ΘAΩ44⃗ ∙ Ω44⃗ !E.	 (D.10)	

One	now	compares	this	incident	flux	with	the	desired	approximate	flux	from	the	pixel	“i”;	
namely,	

L

AΔΩ!
Detector
Location

Ω!
Flux direction

Pixel of Flux
in steradians

Hypothetical Gaussian
Voxel Source associated 
With Flux Pixel

R
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	 ΨA𝑥M, 𝐸, Ω44⃗ E = Ψ!(𝑥M, 𝐸)		Θ PΩ44⃗ ∙ Ω44⃗ ! − 1 +
o\K
%9
Q.	 (D.11)	

These	expressions	cannot	be	equated	because	the	angular	dependence	on	AΩ44⃗ ∙ Ω44⃗ !E	differs.		
However,	 both	 expressions	 are	 determined	 by	 two	 variables.	 	 In	 Equation	 (D.10)	 the	
function	Ψ(M)	is	determined	by	the	parameters	[A(E)L]	and	[L/R],	whereas,	in	Equation	
(D.11)	the	function	Ψ	is	determined	by	Ψ! 	and	ΔΩ! .		{N.B.	the	parameters	[A(E)L]	and	Ψ! 	
have	 the	 same	 dimensions	 [counts/(sec	 keV	 cm2)],	 whereas	 both	 [L/R]	 and	 ΔΩ! 	 are	
dimensionless,	as	steradians	are	dimensionless.}.		Although	the	two	expressions	cannot	
be	equated,	the	angular	distributions	can	be	adjusted	by	the	parameters	to	give	similar	
results.	 	The	key	properties	of	 such	distributions	arise	 from	 their	 integrals	with	other	
functions.	 	 Because	 the	 angular	 distributions	 of	 both	 Equations	 (D.10)	 and	 (D.11)	 are	
radially	symmetric	around	Ω44⃗ ! ,	a	comparison	of	the	“radial”	moments	is	suggested.		If	one	
defines	the	“A”	moments	by	

	 𝐾_(𝐸) = ∬ 𝑑%Ω44⃗⬚
e# 	ΨA�⃗�M, 𝐸, Ω44⃗ E	q1 − AΩ44⃗ ∙ Ω44⃗ !E

%
s
_
	 (D.12)	

and	 𝐾_M(𝐸) = ∬ 𝑑%Ω44⃗⬚
e# 	ΨMA�⃗�M, 𝐸, Ω44⃗ E	q1 − AΩ44⃗ ∙ Ω44⃗ !E

%
s
_
,	 (D.13)	

then,	by	matching	the	moments	of	the	two	distributions,	one	might	hope	to	find		

	 𝐾_(𝐸) ≅ 𝐾_M(𝐸)		 (D.14)	

for	all	A.	 	Because	only	 two	parameters	 can	be	matched,	one	can	assert	 the	Equalities	
(D.14)	for	only	two	moments:	A=0	and	1.		These	two	moments	assure	that	the	total	flux	
and	its	angular	width	are	approximately	equivalent.		Using	Equation	(D.11)	for	ΨA�⃗�M, 𝐸, Ω44⃗ E	
in	Equation	(D.12),	one	finds	that	

	 𝐾_(𝐸) = 2𝜋Ψ!(�⃗�M, 𝐸) ∫ 𝑑𝜇"
"T

LMK
#N

[1 − 𝜇%]_	

	 	 = ¢K(1⃗O,@)(o\K)
(_B")

Po\K
9
Q
_

𝐹"⬚%
⬚ P−𝐴, 𝐴 + 1; 𝐴 + 2; o\K

;9
Q.	 (D.15)	

Consequently,	one	finds	

	 𝐾M(𝐸) = Ψ!(�⃗�M, 𝐸)(ΔΩ!)	 (D.16)	

and	 𝐾"(𝐸) = Ψ!(𝑥M, 𝐸)(ΔΩ!) P
o\K
%9
Q q1 − o\K

89
s.	 (D.17)	

Likewise,	if	one	uses	Equation	(D.10)	in	Equation	(D.	13),	one	finds	
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	 𝐾_M(𝐸) =
$	_(@)D

9 ∫ 𝑑𝜇"
M

[1 − 𝜇%]_exp �	− 8F#

D#
[	1 − 𝜇%	]	�	

	 	 = $	_(@)D
9

exp �	− 8F#

D#
� ∫ 𝑑𝜇"

M
[1 − 𝜇%]_exp �	8F

#

D#
𝜇%	�	 (D.18)	

	 	 = $	_(@)D
%9

exp �	− 8F#

D#
	�
�t"#v�(_B")

�t_B!#v
𝐹" P

"
%
, 𝐴 + $

%
; 8F

#

D#
Q"

⬚ 	.	

The	argument	of	the	confluent	hypergeometric	function	is	always	large	(R>>L),	so	that	
one	can	use	the	asymptotic	behavior	of	1F1;	namely,	

	 𝐹" P
"
%
, 𝐴 + $

%
; 𝑧Q

"≪R
¶⎯̧"

⬚ �t_B!#v

�t"#v
𝑒𝑥𝑝(𝑧)𝑧T_T"	 (D.19)	

and	find	that	

	 𝐾_M(𝐸) ≅
$	_(@)D
%9

Γ(𝐴 + 1) P8F
#

D#
Q
T_T"

.	 (D.20)	

As	a	result,	one	concludes	that	

	 𝐾MM(𝐸) ≅
_(@)D!

;9F#
	 (D.21)	

and	 𝐾"M(𝐸) ≅
_(@)D!

;9F#
P D#

8F#
Q.	 (D.22)	

Equating	the	moments	for	the	two	distributions,	one	finds	that	

	 Ψ!(�⃗�M, 𝐸)(ΔΩ!) =
_(@)D!

;9F#
	 (D.23)	

and	 Ψ!(�⃗�M, 𝐸)(ΔΩ!) P
o\K
%9
Q = _(@)D!

;9F#
P D#

8F#
Q.	 (D.24)	

From	which,	one	concludes	that	

	 (ΔΩ!) =
9D#

$F#
	 (D.25)	

and	 Ψ!(�⃗�M, 𝐸) =
$_(@)D
;9#

.	 (D.26)	

These	relations	provide	the	conversion	between	the	local	flux	Ψ!(�⃗�M, 𝐸)	from	a	pixel	on	
the	celestial	sphere	of	angular	size	ΔΩ! 	and	one	of	the	idealized	Gaussian	voxels	treated	
the	paper.	 	The	radial	distance	between	the	Gaussian	voxel	and	the	detector,	R,	can	be	
chosen	arbitrary	(provided	that	R	is	much	greater	than	the	size	of	the	detector	system).		
The	size	of	the	Gaussian,	L,	is	then	related	to	the	pixel	size,	ΔΩ! ,	by	Equation	(D.25).		The	
local	flux,	Ψ!(�⃗�M, 𝐸),	is	related	to	the	Gauss	activity,	𝐴(𝐸),	by	Equation	(D.26).		
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Appendix	E.		Comparison	with	an	Alternative	Treatment	by	Xu	and	He	

The	analysis	of	Compton	camera	data	has	a	 long	history	and,	consequently,	many	
alternative	 treatments	 have	 been	 introduced	 by	 different	 researchers.	 	 An	 extensive	
review	and	comparison	of	these	alternative	approaches	is	beyond	the	scope	of	this	report;	
however,	some	general	observations	are	useful.		Early	treatments	of	the	subject	involved	
ad	 hoc	 observations	 that	 the	 observed	 rate	 (or	 probability	 of	 detection)	 should	 be	
proportional	 to	 various	 terms	 [source	 activity,	 (source	 distance)-2,	 attenuated	 flux,	
scattering	cross-sections,	etc.];	and,	subsequently,	multiplying	these	terms	together.		If	all	
such	terms	were	included,	then	the	result	would	be	proportional	to	the	desired	rate	(i.e.,	
accurate	to	within	a	constant	multiplicative	factor).		The	major	distinction	between	our	
treatment	and	previous	published	analyses	 lies	 in	 the	analytic	calculation	of	 the	phase	
space	contributions.		These	phase	space	calculations	can	be	analyzed	using	Monte	Carlo	
simulations.	 	But	 that	strategy	 is	 inappropriate	when	one	needs	 the	detector	response	
evaluated	 rapidly	 for	 large	 numbers	 of	 events.	 	 Thus,	most	 researchers	 implement	 an	
approximate	analytic	expression.	 	Among	the	most	concise	and	insightful	treatments	is	
presented	 by	 Xu	 and	He	 [D.	 Xu	 &	 J.	 He.	 Nuclear	 Instruments	 and	Methods	 in	 Physics	
Research	A574	(2007)	98-109].		In	particular,	Section	2	of	that	paper	provides	a	detailed	
derivation	of	their	analytic	response	function	–	which	we	consider	one	of	the	best	in	the	
literature.	 	 In	 this	 appendix,	 rather	 than	 survey	 the	 entire	 literature,	we	 compare	 our	
analysis	 with	 that	 paper.	 	 Both	 the	 papers	 analyze	 two-interaction	 coincident	 events.		
However,	Xu	and	He	consider	both	Compton-Photoelectric	events	and	Compton-Compton	
events;	whereas,	this	paper	considers	only	Compton-Photoelectric	events.		Nonetheless,	
direct	comparison	of	the	results	is	possible.		With	minor	exceptions,	the	two	treatments	
yield	similar	results.	

Xu	 and	 He	 calculate	 “the	 system	 response	 function	 tij”	 which	 “is	 defined	 as	 the	
probability	of	a	photon	emitted	from	pixel	j	to	be	observed	as	a	measured	event	i.”		The	
definitions	of	a	measured	event	i	are	the	same	in	both	the	analysis	of	Xu	and	He	and	this	
report	 --	with	 our	Gaussian	 approximations	 substituting	 for	 their	 detector	 voxels	 and	
energy	bins.		The	definition	of	the	emission	“pixel	j”	requires	more	careful	interpretation.		
Xu	 and	 He	 assume	 that	 the	 energy	 and	 direction	 of	 the	 incident	 photon	 are	 known;	
whereas,	 in	 our	 analysis	 the	 emissions	 arise	 from	 a	 finite	 voxel	 with	 an	 energy	
distribution.	 	 Our	 treatment	 of	 emissions	 from	 a	 line	 spectrum	 in	 the	 limit	 𝐿 → 0,	
corresponds	to	that	of	Xu	and	He.		In	our	notation,	therefore,	one	finds	

	 𝑡!£ ≡
YXJ'	*m	('X)�Y'	'0'+J)

YXJ'	*m	'(!))!*+)
= YXJ'"#

_∗D!
[≡ 𝑃!�(𝑜𝑓	𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥	𝐹)]	 (E.1)	

where	𝐴∗𝐿$	is	the	rate	of	emissions	from	a	source	voxel.		The	limit	𝐿 → 0	implies	that	the	
activity	𝐴∗	(which	is	a	spatial	density)	must	behave	as	𝐴∗ → 𝐿T$	in	order	to	produce	finite	
rates.	 	 Furthermore,	 from	 the	 definition	 of	 Σ"	 [Equation	 (14)],	 one	 concludes	 the	
treatment	 of	 Xu	 and	He	 corresponds	 to	 the	 limit	 Σ" → 0.	 	 Xu	 and	He	 assume	 that	 the	
detectors	have	perfect	efficiency	(𝐸𝑓𝑓! = 1),	so	that	our	𝐸𝑓𝑓! 	terms	can	be	ignored.		From	
the	combination	of	Equation	(E.1)	with	Equation	(64),	our	analysis	yields	
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	 𝑡!£ = ⟦𝐴𝑡𝑡!+J𝐴𝑡𝑡'1J⟧ �
%9#q"#q##

F$#F"##
� q𝜇"𝜆"𝜇%𝜆%𝑓[e"𝑓f@%𝑋ij"% s	 	

	 𝑒𝑥𝑝 �− (@$T@"T@#)#

%Zr"#Br##^
� 		Θ P2 − (@"

(@"B@#)@#
Q 		𝐶𝐶(𝜈, 𝜇; Σ!).	 (E.2)	

The	equivalent	expression	given	by	Xu	and	He	[as	Equation	(29)	in	their	paper]	is	

	 	 (E.3)	

Although	their	notation	is	different,	many	of	the	terms	are	immediately	recognizable	as	
equivalent	 to	 our	 analysis.	 	 In	 particular,	 the	 following	 expressions	 appear	 to	 be	
equivalent	(our	notation	on	the	left,	Xu-He	notation	on	the	right):	

	 𝐴𝑡𝑡'1J ↔ 𝑒Tl,Og" 	 𝐴𝑡𝑡!+J ↔ 𝑒Tl,O@,"g 	

	 𝑅) ↔ 𝑅	 𝑅"% ↔ 𝑑	

	 𝜆" ↔ 𝑅M	 𝜆% ↔ 𝑅M	 (E.4)	

	 𝜀" ↔ 𝜎@" 	 𝜀% ↔ 𝜎@# 	

	 𝜀" ↔ ∆𝐸"	 𝜀% ↔ ∆𝐸%	

	 𝜇%𝑓f@% ↔ 𝑁𝜎H(𝐸%)	 𝜇"𝑓[e"𝑋ij"% ↔ 𝑁 ghP
g\
(𝐸M)	

	 r1 − 𝜇% ↔ sin 𝜃' .	

There	are,	however,	some	rather	glaring	differences	in	our	expressions	for	tij.		The	
most	significant	difference	is	that	our	analysis	considers	two	scatter	angles:	(1)	the	angle	
between	 the	 incident	radiation	and	 the	axis	between	 interaction	positions	 (𝜈 = 𝑐𝑜𝑠𝜙),	
and	(2)	the	predicted	angle	of	scatter	based	on	Compton	kinematics	(𝜇 = 𝑐𝑜𝑠𝜃).		In	our	
analysis	the	blurring	of	the	Compton	cone	appears	in	the	CC	function	that	compares	the	
cosines	(𝜈	and	𝜇 )	and,	thereby,	suppresses	the	response	if	the	angles	differ.		No	such	term	
appears	in	Xu-He	paper.		Apparently,	their	assumption	is	that	the	implicit	delta	function	
in	 the	Compton	cross-section	equates	 the	 two	angles.	 	This	assumption	eliminates	 the	
blurring	 of	 the	 Compton	 cone	 that	 is	 a	 crucial	 component	 of	 our	 analysis.	 	 Such	 an	
assumption	constitutes	the	most	significant	difference	between	the	two	treatments.			

The	 treatment	 of	 the	 Compton	 cross-section	 seems	 central	 to	 many	 of	 the	
discrepancies	between	the	two	results.		The	lengthy	(pedantic)	discussion	of	the	Compton	
cross-section	was	included	following	Equation	(33)	for	this	reason.		In	our	treatment,	the	
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kinematics	 and	 cross-section	 are	 included	 explicitly;	 thereby	 avoiding	 confusion.	 	For	
example,	 one	 term	 that	 appears	 exclusively	 in	 our	 analysis	 is	 the	 Θ P2 − (@"

(@"B@#)@#
Q	

function.	 	 This	 function	 explicitly	 excludes	 unphysical	 scattering	 angles	 (i.e.,	 the	
backscatter	limit).		In	the	Xu-He	analysis	this	condition	is	apparently	considered	implicit	
within	the	Compton	cross-section	term.		The	other	discrepancies	can	be	explained	if	one	
restricts	the	analysis	to	the	case	Σ" = 0	and	𝜇 = 𝜈.		In	that	case,	the	function	CC	is	given	
by	

	 𝐶𝐶(𝜇, 𝜇; Σ!) =
d!

�d!#B("Tl#)d##
	 	 (E.5)	

where,	according	to	Equation	(54),		

	 Σ% ≡
�q"#Bq##

F"#
	 	 (E.6)	

and,	according	to	Equation	(B26c),	

	 Σ$ =	
r"r#(	Zr"#Br##^

! #⁄

�r"#@#Br##(@Q/T@")�
# ≈

r"r#(	

�r"#Br##	@##
	 (E.7)	

so	that	

	 𝐶𝐶(𝜇, 𝜇; Σ!) =
r"r#(	F"#	

�(r"r#(	F"#)#B("Tl#)Zq"#Bq##^Zr"#Br##^@#R
		.	 (E.8)	

Substituting	this	expression	for	the	CC	function	in	Equation	(E.2),	one	finds	

	 𝑡!£ = ⟦𝐴𝑡𝑡!+J𝐴𝑡𝑡'1J⟧ �
%9#q"#q##

F$#F"##
� q𝜇"𝜆"𝜇%𝜆%𝑓[e"𝑓f@%𝑋ij"% s	 	

	 𝑒𝑥𝑝 �− (@Q/T@"T@#)#

%Zr"#Br##^
� 		Θ P2 − (@"

(@"B@#)@#
Q	 r"r#(	F"#	

�(r"r#(	F"#)#B("Tl#)Zq"#Bq##^Zr"#Br##^@#R
.	 (E.9)	

One	notes	that	dropping	the	first	term	under	the	square	root	in	Equation	(E.9),	i.e.	

r(𝜀"𝜀%𝑚	𝑅"%)% + (1 − 𝜇%)(𝜆"% + 𝜆%%)(𝜀"% + 𝜀%%)𝐸%; → r(1 − 𝜇%)(𝜆"% + 𝜆%%)(𝜀"% + 𝜀%%)𝐸%;,	

reproduces	[using	the	conversions	in	(E.4)]	the	result	of	Xu-He	in	Equation	(E.3).	 	The	
additional	term	in	the	square	root	of	Equation	(E.9)	prevents	a	pathology	in	the	Equation	
(E.3)	when	sin 𝜃' = 0,	[i.e.,	𝜇 = ±1]	which	is	a	major	concern	for	small	angle	scattering.		
In	particular,	one	finds	that	the	ratio	of	the	two	expressions	for	tij	is	given	by	

	
JKS
TU*)QV,Q)	./

JKS
XU@YQ ≅ �"<9

! #⁄

%
�

�("Tl#)Zq"#Bq##^Zr"#Br##^@#R

�(r"r#(	F"#)#B("Tl#)Zq"#Bq##^Zr"#Br##^@#R
.	 (E.10)	



LBNL Report #2001559	 	 2	July	2024	
	

	 85	

The	constant	term	[in	{curly	brackets}]	is	an	inevitable	result	of	notational	differences;	
however,	the	pathological	behavior	near	𝜇 = ±1	is	significant.	 	Equation	(E.10)	implies	
that	the	two	treatments	yield	equivalent	results	if	

	 (r"r#

@##�r"#Br##	

	F"#

�q"#Bq##
≪ r1 − 𝜇% ≡ sin 𝜃' .	 (E.11)	

For	 typical	 Compton	 camera	 data,	 one	 might	 expect	 q𝑚𝜀"𝜀% 𝐸%%r𝜀"% + 𝜀%%⁄ ≈ .03s	 and	

q𝑅"% r𝜆"% + 𝜆%%⁄ ≈ 10s;	so	that,	the	two	treatments	are	essentially	equivalent	for	sin 𝜃' >
0.3	or,	in	angular	coordinates,	18∘ < 𝜃' < 162∘.	

Our	conclusion	 is	 that	near	 the	Compton	cone	(𝜇 = 𝜈),	 the	analysis	of	Xu	and	He	
yields	results	consistent	with	this	report.		The	major	advantage	of	the	current	work	is	that	
the	rate	can	be	evaluated	for	voxels	not	specifically	“on	the	Compton	cone.”		Consequently,	
the	blurring	of	the	Compton	cone	can	be	accurately	evaluated.		Furthermore,	the	“small-
angle”	pathology	associated	with	sin 𝜃' = 0	in	the	Xu-He	analysis	 is	ameliorated	in	our	
analysis.	
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Appendix	F.		Utilizing	Detection	Rates	in	List-Mode	MLEM	

The	MLEM	algorithm	 is	often	used	 in	 the	analysis	of	Compton	camera	data.	 	The	
accumulation	of	counts	is	fundamentally	a	Poisson	process	and	the	MLEM	algorithm	is	
specifically	designed	for	Poisson-distributed	data.	 	The	standard	MLEM	assumes	that	a	
collection	of	 ‘S’	Poisson	sources	each	produce	𝐶𝐸�(𝛼 = 1,… , 𝑆)	“counts	emitted”	over	a	
time	 period	 T,	 and	 that	 a	 collection	 of	 ‘D’	 detectors	 observes	 𝑁!(𝑖 = 1,… , 𝐷)	 “counts	
detected”	over	that	same	period.	 	Furthermore,	one	assumes	that	the	probability	of	an	
emission	from	source	‘a’	will	be	observed	in	detector	‘i’	is	known;	namely,	

𝑃!� ≡ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑎𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑟𝑜𝑚	𝑠𝑜𝑢𝑟𝑐𝑒	𝛼	𝑖𝑠	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑖𝑛	𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑖	,	 (F.1)	

so	that	the	expectation	values	of	the	Poisson	distributions	are	related	by	

	 〈𝑁!〉 = ∑ 𝑃!�〈𝐶𝐸�〉e
�L" .	 (F.2)	

The	probability	matrix,	𝑃!� ,	is	often	call	the	system	matrix.		The	analysis	of	detector	rates	
in	this	report	provides	an	approximate	analytic	formula	for	the	evaluation	of	the	matrix	
𝑃!� .		In	particular,	for	a	coincident	event	[i=(D1,D2)]	and	a	source	voxel	labeled	‘a’,	our	
analysis	indicates	that	

	 𝑃!� =
(FXJ'Z"Z#)K

('(!))!*+	YXJ')[
= (FXJ'Z"Z#)K

(_∗D!)[
.	 (F.3)	

The	MLEM	algorithm	is	an	iterative	scheme	for	determining	values	of	𝐶𝐸� 	that	produce	
the	maximum	likelihood	associated	with	a	particular	Poisson	data	sample	𝑁! .			From	an	
initial	estimate	of	𝐶𝐸�

(.),	one	calculates	successive	updates	using	the	algorithm:	

	 𝐶𝐸�
(.B") = [@[

(3)

$[
∑ jK

∑ fK\[@\
(3)2

\]"

§
!L" 𝑃!� 	 (F.4)	

where	 $� ≡ ∑ 𝑃!�§
!L" .	 (F.5)	

The	parameter	$� 	is	defined	as	the	sensitivity	of	the	source	a.		Equations	(F.1)	through	
(F.5)	 constitute	 the	 standard	MLEM.	 	 One	 should	 note	 that	 all	 the	 parameters	 in	 the	
algorithm	are	dimensionless	numbers,	i.e.	counts	or	probabilities.		But	for	most	imaging	
applications,	the	source	rates	are	required	–	not	the	number	of	counts	emitted,	𝐶𝐸� .			

At	the	beginning	of	our	analysis,	we	concluded	that	the	source	activity	density,	𝐴,	with	
units	of	[(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) (sec ∙𝑚$ ∙ 𝑘𝑒𝑉)⁄ ],	was	the	most	appropriate	parameter	to	represent	
voxel	sources.		In	Appendix	B,	the	analysis	was	restricted	to	sources	with	Gaussian	energy	
spectra	 that	 could	be	adapted	 to	various	applications.	 	Accordingly,	 in	Appendix	B	 the	
activity	was	written	as		

	 𝐴(𝑘) = _∗

√%9d$
	𝑒𝑥𝑝 q− (.T@$)#

%d$#
s	 (B.2)	
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where	 𝐴∗	 has	 dimensions	 [(𝑐𝑜𝑢𝑛𝑡𝑠)(𝑠𝑒𝑐T")(𝑚T$)]	 and	 both	 𝐸¨	 and	 Σ¨	 have	 units	 of	
energy	 [(𝑘𝑒𝑉)].	 	One	 can	view	 the	Gaussian	parameter	Σ¨	 	 as	 the	width	of	 the	 source	
energy	bin.		The	distinction	between	A	and	A*	is	significant	because	the	dimensions	of	the	
two	parameters	differ,	i.e.		

	 𝐴~ ['(!))!*+)]
[)'-][(!][.'/]

	 𝐴∗~ ['(!))!*+)]
[)'-][(!]

;	 	

so	that,	the	number	of	“counts	emitted”	from	the	“a”	voxel,	𝐶𝐸� ,	can	be	written	as	

	 𝐶𝐸� = 𝑇𝐿�$𝐴�∗ .	 (F.6)	

N.B.:	 The	 specific	 value	 of	 A*	 does	 not	 affect	 the	 definition	 of	 the	 probability,	 𝑃!� ,	 in	
Equation	(F.3)	because	the	A*	in	the	denominator	cancels	an	identical	A*	term	appearing	
in	the	Rate	(D1,D2)	of	the	numerator.		The	substitution	of	Equation	(F.6)	into	Equation	
(F.2)	yields	

	 〈𝑁!〉 = ∑ 𝑃!�𝑇𝐿�$𝐴�∗e
�L" 	 (F.7)	

Finally,	 Equation	 (F.7)	 can	 be	 further	 generalized	 by	 assuming	 that	 each	 independent	
measurement,	𝑁! ,	could	be	acquired	over	a	time	of	variable	duration	or	acquisition	time	
𝑇! .		With	this	additional	generalization,	one	can	write	

	 〈𝑁!〉 = ∑ 𝑇!𝑃!�𝐿�$𝐴�∗e
�L" = ∑ 𝐾!�𝐴�∗e

�L" 	 (F.8)	

where	the	“kernel	matrix”	(not	to	be	confused	with	the	“system	matrix”)	is	defined	by	

	 𝐾!� ≡ 𝑇!𝑃!�𝐿�$ = 𝑑𝑖𝑎𝑔(𝑇!)𝑃!�𝑑𝑖𝑎𝑔(𝐿�$ )	 (F.9)	

and	 has	 dimensions	 [(𝑠𝑒𝑐)(𝑚$)]	 due	 to	 the	 T	 and	 L3	 terms.	 	 A	 corresponding	MLEM	
algorithm	follows	from	the	same	derivation	as	the	original	MLEM	algorithm	applied	to	
Equation	(F.8);	namely,	

	 𝐴�
∗(.B") = _[

∗(3)

$[0
∑ jK

∑ iK\_\
∗(3)2

\]"

§
!L" 𝐾!� 	 (F.10)	

where	the	kernel	sensitivity,	$�i ,	must	now	be	defined	by	

	 $�i ≡ ∑ 𝐾!�§
!L" 	 (F.11)	

which	has	 the	 same	dimensions	 as	𝐾!� ,	 i.e.,	 [(𝑠𝑒𝑐)(𝑚$)].	 	 This	 generalized	 form	of	 the	
MLEM	is	used	for	the	analysis	of	List-Mode	MLEM.	

List-Mode	MLEM	was	first	introduced	for	the	analysis	of	coincident	events	in	PET	
reconstruction.	 	 In	 PET	 imaging,	 a	major	 problem	arises	 from	 the	 number	 of	 possible	
combinations	 of	 coincident	 interactions.	 	 For	 an	 imaging	 device	 consisting	 of	 104	
segmented	detector	voxels,	one	expects	108	combinations	of	coincident	interactions.	 	If	
only	106	events	are	detected,	then	less	than	1%	of	the	possible	combinations	are	observed,	
i.e.,	𝑁! ≠ 0;	the	vast	majority	of	detector	combinations	must	vanish,	 i.e.,	𝑁! = 0.	 	In	this	
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situation,	 the	 binning	 of	 the	 event	 data	 into	 108	 possible	 coincident	 combinations	 is	
inefficient	and,	frequently,	infeasible.		Instead,	a	list	of	the	events	is	stored;	each	event	is	
then	interpreted	as	a	“bin”	with	𝑁! = 1.	 	Most	significantly,	the	summation	in	Equation	
(F.10)	does	not	require	the	evaluation	of	𝐾!� 	for	unobserved	event	combinations	(i.e.,	if	
𝑁! = 0,	 none	 of	 the	 other	 terms	 in	 the	 sum	 need	 be	 evaluated);	 thereby,	 saving	 both	
computation	 time	 and	 computer	 memory.	 	 This	 observation	 is	 the	 basis	 of	 list-mode	
MLEM.	 	 The	 same	 situation	 arises	 with	 Compton	 camera	 events;	 namely,	 many	
combinations	of	 coincident	 interaction	are	unobserved	and	 can	be	 ignored.	 	However,	
Compton	cameras	generally	involve	an	additional	complication	–	the	camera	is	generally	
moving	 during	 the	 data	 acquisition.	 	 Surprisingly,	 this	 motion	 has	 little	 effect	 on	 the	
imaging	kernel,	𝐾!� ,	which	is	evaluated	for	each	event	using	the	formalism	of	this	report;	
but,	unfortunately,	the	calculation	of	the	sensitivity	is	significantly	altered.		The	problem	
arises	 from	 the	definition	of	 the	 sensitivity	 in	Equation	 (F.11).	 	 This	 summation	must	
include	all	possible	events,	independent	of	whether	those	events	were	actually	observed	
or	not.		This	implies	the	calculation	of	the	kernel	matrix	for	all	possible	camera	positions	
and	all	combinations	of	interaction	positions,	energies	and	their	resolutions!		For	the	fixed	
geometry	 of	 a	 PET	 imaging	 device,	 this	 sensitivity	 can	 be	 evaluated	 once	 (either	
experimentally	or	theoretically)	and	used	in	all	subsequent	analyses.	 	But	for	a	moving	
camera,	the	sensitivity	will	depend	on	the	trajectory	and	orientation	of	the	camera;	and	
will,	therefore,	change	with	each	data	acquisition.	 	If	the	camera	passes	close	to	source	
voxel	or	sits	near	the	voxel	over	a	long	period,	the	sensitivity	of	that	voxel	will	rise.		If	a	
voxel	is	far	from	the	camera	trajectory	or	is	passed	only	fleetingly,	the	sensitivity	will	be	
small.		Consequently,	the	calculation	of	the	sensitivity	for	a	moving	camera	is	complicated	
by	 both	 (1)	 the	 details	 of	 the	 camera	 trajectory/orientation	 and	 (2)	 the	 inclusion	 of	
unobserved	combinations	of	interactions	in	the	summations.	

The	 crucial	 idea	 required	 for	 list-mode	 analysis	 requires	 the	 subdivision	 of	 the	
observations	into	extremely	short	time	intervals.		In	particular	the	time	intervals	[𝑇! = 𝑑𝑡]	
must	be	so	short	that	(1)	no	two	events	are	observed	during	the	same	interval,	and	(2)	
during	each	interval	the	motion	of	the	camera	is	negligible.		The	camera	motion	will	be	
described	by	the	position,	𝐷44⃗ (𝑡),	associated	with	the	location	of	a	central	fiducial	point	in	
the	camera	as	a	function	of	time.			

	

Figure	F.1.		A	camera	trajectory	is	shown	with	a	source	voxel.	

From	Figure	F.1,	one	defines	the	distance	between	the	source	voxel	and	the	detector	as		
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	 𝑅�(𝑡) ≡ `𝑅4⃗ �!(𝑡)` = `𝐷44⃗ (𝑡) − 𝐶�` ≈ 𝑅) > 𝐿� .	 (F.12)	

One	must	also	consider	the	orientation	of	the	detector	with	respect	to	the	source	voxel	a.		
For	notational	convenience,	the	orientation	will	be	described	by	a	rotation	matrix,	𝑂4�(𝑡),	
that	indicates	the	relative	orientation	of	the	source	to	the	fixed	axes	of	the	detector.		The	
evaluation	 of	 the	 sum	 Σ!L"§ 	 in	 Equation	 (F.11)	 involves	 the	 sum	 over	 all	 possible	
combinations	of	interactions	and	also	all	the	infinitesimal	time	intervals,	dti.	 	Formally,	
one	can	write	the	sum	as	

	 Σ!L"§ = ΣJ!('	!+J'Y0X2)⬚ Σ!+J'YX-J!*+	-*(¨!+XJ!*+)⬚ 	.	 (F.13)	

The	sum	over	time	intervals	is	naturally	written	as	

	 ∑ 𝑑𝑡!J!('	!+J'Y0X2) → ∫ 𝑑𝑡W
M ,	 (F.14)	

whereas,	the	sum	over	interaction	combinations	can	be	formally	written	as	

	 Σ !+J'YX-J!*+	
-*(¨!+XJ!*+)

⬚ →∭ 𝑑$�⃗�"
⬚
§'0!-'
/*2�('

∭ 𝑑$�⃗�%
⬚
§'0!-'
/*2�('

∫𝑑𝐸" ∫𝑑𝐸% 	
"

(%9)Rq"!q#!r"r#
	.	 (F.15)	

If	one	wants	to	evaluate	the	dimensionless	sensitivity,	$� ,	[as	defined	by	Equation	(F.5)]	
for	a	fixed	detector	location	and	orientation,	one	writes	

	 $�A𝑅� , 𝑂4�E ≡ ∑ 𝑃!�A𝑅� , 𝑂4�E§
!L" 	 (F.16)	

	 = ∭ 𝑑$𝑥"
⬚
§'0!-'
/*2�('

∭ 𝑑$𝑥%
⬚
§'0!-'
/*2�('

∫𝑑𝐸" ∫𝑑𝐸% 	
fK[(F[,©ª[)

(%9)Rq"!q#!r"r#
.	 	

If	the	separation	of	the	detector	and	the	source	voxel	is	sufficiently	large,	one	may	assume	
that	

	 $�A𝑅� , 𝑂4�E =
FO#

F[#
$�A𝑅M, 𝑂4�E	 (F.17)	

and	define	

	 $�(𝑅M, 𝑚𝑎𝑥) ≡ 𝑚𝑎𝑥X22	*Y!'+JXJ!*+)©$�A𝑅M, 𝑂4�Eª.	 (F.18)	

One	can,	therefore,	write	the	kernel	sensitivity,	$�i ,	as	

	 $�i = $�(𝑅M, 𝑚𝑎𝑥)𝐿�$ ∫ 𝑑𝑡W
M

FO#

F[#(J)

$[tFO,©ª[(J)v

$[(FO,(X1)
	.	 (F.19)	

Typically,	the	dimensionless	sensitivity,	$�A𝑅M, 𝑂4�E,	is	measured	experimentally	and	the	
kernel	sensitivity,	$�i ,	is	evaluated	for	each	detector	trajectory	by	performing	the	integral	
over	time.		Each	source	voxel	is	“effectively”	observed	for	a	period	of	
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	 𝑇�
'mm ≡ ∫ 𝑑𝑡W

M
FO#

F[#(J)

$[tFO,©ª[(J)v

$[(FO,(X1)
	 (F.20)	

so	that	

	 $�i = $�(𝑅M, 𝑚𝑎𝑥)𝐿�$ 𝑇�
'mm .	 (F.21)	

Returning	to	the	List-Mode	MLEM	algorithm	[Equation	(F.10)],	one	writes	

	 𝐴�
∗(.B") = _[

∗(3)

$[0
∑ iK[

∑ iK\_\
∗(3)2

\]"

§
!L" .	 (F.22)	

Significant	observations	follow	directly	from	Equation	(F.22).	 	First,	the	dimensions	on	
either	side	of	Equation	(F.22)	agree.		The	sum	q∑ 𝐾!�𝐴�

∗(.)(≪ 1)e
�L" s	is	the	(dimensionless)	

number	of	expected	counts	for	detector	configuration	“i”.	 	Because	$�i 	and	𝐾!� 	have	the	
same	dimensions	 [(sec)(𝑚$)],	 the	 term	 [𝐾!� $�i⁄ ]	 is	 also	dimensionless.	 	 Consequently,	
𝐴�
∗(.B")	has	the	same	dimensions	as	𝐴�

∗(.).		Second,	the	infinitesimal	time	intervals,	dti,	do	
not	 affect	 the	 calculation.	 	 Although	 the	 integration	 of	 these	 time	 intervals	 appears	
implicitly	in	the	evaluation	of	𝑇�

'mm ,	the	explicit	value	of	dti	appears	identically	in	𝐾!� 	of	
both	the	numerator	and	denominator	of	Equation	(F.22)	and,	therefore,	will	cancel	out.		
Third,	the	effect	of	voxel	size	is	crucial	and	cannot	be	ignored.		Unlike	the	time	intervals	
that	are	identical	in	the	numerator	and	denominator,	the	voxel	sizes	for	various	sources	
“b”	in	the	sum	∑ 𝐾!�𝐴�

∗(.)e
�L" 	are	not	necessarily	equal	and	will	give	erroneous	results	if	

ignored.	

Finally,	the	List-Mode	MLEM	suffers	from	the	same	problem	as	MLEM	if	the	kernel	
sensitivity	vanishes.	 	 If	 the	kernel	sensitivity,	$�i ,	 is	extremely	small,	 the	algorithm	will	
amplify	noise	and,	consequently,	predict	anomalously	high	activities	in	the	‘a’	voxel.		The	
standard	regularization	strategy	used	in	MLEM	can	be	applied	to	List-Mode	MLEM	if	one	
substitutes	

	 "
$[0
→ $[0

Z$[0^
#
B«#Z$[,'.=

0 ^
#	 (F.23)	

in	Equation	(F.22),	where	

	 $�,(X1i ≡ 𝑚𝑎𝑥�($�i)	 (F.24)	

and	the	parameter	t	is	a	dimensionless	Tikhonov	regularization	parameter	that	satisfies	
0 ≤ 𝜏 ≪ 1.	
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Appendix	G.		Gaussian	Voxels	in	N-Dimensions	

A voxel in N-dimensions can be written as a function of the form 

 Λ(�⃗�|𝑐, 𝐿) = H1 𝑖𝑓	|𝑥! − 𝑐!| <
D
%
	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1,… , 𝑁

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (G.1) 

which is an N-dimensional box.  One wants to approximate this distribution with an N-
dimensional isotropic Gaussian of the form 

 Ξ(�⃗�|𝑐, 𝐴, Σ) = 𝐴	𝑒𝑥𝑝 q− |1⃗T-⃗|#

%d#
s. (G.2) 

Obviously, the two distributions are not identical; however, one wants integrals over these two 
distributions that give approximately the same results.  Therefore, the moments of the 
distributions must be examined and equated if possible.  Because the Gaussian has only two 
free parameters (𝐴	𝑎𝑛𝑑	Σ), only two moments can be matched; presumably, the lowest order 
moments are the most important.  Thus, one defines 

 𝐼M ≡∭𝑑j𝑥 	Λ(𝑥|𝑐, 𝐿) (G.3a) 
 𝐼% ≡∭𝑑j𝑥 	|𝑥 − 𝑐|%	Λ(�⃗�|𝑐, 𝐿) (G.3b) 
and 

 𝐽M ≡∭𝑑j𝑥 	Ξ(�⃗�|𝑐, 𝐴, Σ) (G.4a) 
 𝐽% ≡∭𝑑j𝑥 	|𝑥 − 𝑐|%	Ξ(𝑥|𝑐, 𝐴, Σ) (G.4b) 

The 𝐼M and 𝐼% integrals are easily evaluated; in particular, 

 𝐼M = 𝐿j (G.5a) 
and 𝐼% =

j
"%
𝐿jB%. (G.5b) 

On the other hand, the 𝐽M and 𝐽% integrals require slightly more analysis.  

 𝐽M ≡ 𝐴∭𝑑j𝑥 	𝑒𝑥𝑝 q− |1⃗|#

%d#
s = 𝐴 q∫ 𝑑𝑥	𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

TK s
j

 (G.6a) 

 𝐽% ≡ 𝐴∭𝑑j𝑥 	|�⃗�|%	𝑒𝑥𝑝 q− |1⃗|#

%d#
s 

 = 𝑁𝐴 q∫ 𝑑𝑥	𝑥%𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

TK s q∫ 𝑑𝑥	𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

TK s
jT"

 (G.6b) 

The two integrals are evaluated in terms of the G function; namely, 

 ∫ 𝑑𝑥	𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

TK = 2∫ 𝑑𝑥	𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

M = √2Σ∫ 𝑑𝑢K
M 	𝑢T" %⁄ 𝑒𝑥𝑝(−𝑢) 

 = √2ΣΓ P"%Q = √2𝜋Σ (G.7a) 
and 
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 ∫ 𝑑𝑥	𝑥%𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

TK = 2∫ 𝑑𝑥	𝑥%𝑒𝑥𝑝 q− |1⃗|#

%d#
sK

M = 2√2Σ$ ∫ 𝑑𝑢K
M 	𝑢" %⁄ 𝑒𝑥𝑝(−𝑢) 

 = 2√2Σ$Γ P$%Q = √2𝜋Σ$. (G.7b) 

As a result, one finds 

 𝐽M = (2𝜋)j %⁄ 𝐴Σj (G.8a) 
 𝐽% = (2𝜋)j %⁄ 𝑁𝐴ΣjB%. (G.8b) 

Equating the moments, one finds 

 𝐼M = 𝐽M ⇒ 𝐿j = (2𝜋)j %⁄ 𝐴Σj (G.9a) 
and  𝐼% = 𝐽% ⇒

j
"%
𝐿jB% = (2𝜋)j %⁄ 𝑁𝐴ΣjB%. (G.9b) 

From Equations (G.9a) and (G.9b) one immediately concludes that 

 Σ = ê "
"%
𝐿 (G.10a) 

and 𝐴 = P8
9
Q
j %⁄

. (G.10b) 

From these results the Gaussian voxel in N dimensions is written as 

 Ξ(�⃗�|𝑐, 𝐿) = P8
9
Q
j %⁄

	𝑒𝑥𝑝 q− 8|1⃗T-⃗|#

7#
s. (G.11) 

Figure	 G.1	 compares	 a	 1-dimensional	 (N=1)	 energy	 bin	 Λ(�⃗�|𝑐, 𝐿)	 with	 the	 associated	
Gaussian	bin	Ξ(�⃗�|𝑐, 𝐿).		The	area	under	both	curves	is	the	same;	furthermore,	the	second	
order	moments	(standard	deviations)	are	also	equal.	

	

Figure	G.1.		The	1D	Gaussian	approximation	Ξ(�⃗�|𝐸, 𝐿)	of	a	standard	energy	bin	Λ(�⃗�|𝐸, 𝐿)	
is	shown	for	E=511	keV	and	L=10	keV.	




