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Abstract

Ab Initio Methods for Modeling the Thermodynamics of Molecules Adsorbed in Zeolites

by

Lance Bettinson

Professor Alexis T. Bell, Chair

Zeolites are crystalline microporous solids composed of corner-sharing, tetrahedrally-
coordinated silicate (SiO4) units. The isomorphic substitution of a framework Si atom by an
Al atom is charge-compensated by a proton, introducing Brønsted-acidic bridging-hydroxy
groups. These proton-exchanged zeolites are used in a large number of processes, including
hydrocarbon cracking, isomerization, and alkylation, and conversion of petroleum to trans-
portation fuel. In addition to catalytic processes, zeolites can be used as adsorbents for
carbon capture, molecular sieving, and pollution control technologies. It is therefore of great
interest to predict the impact of zeolite structure and composition on its functional proper-
ties to screen new catalysts and improve existing catalysts. Quantum chemical calculations
can provide molecular-scale information on zeolite-adsorbate interactions, as well as model
the energetic changes and dynamics of important reactions that occur within the channels
and pores of zeolite catalysts. However, the application of quantum chemical calculations for
the study of chemical reactions occurring in zeolites is made difficult by the lack of reliable
methods to generalize the theory beyond zero Kelvin. Modeling adsorption and desorption
free energies is particularly troublesome, relying on a subtle balance between enthalpic and
entropic terms. While the enthalpic term is becoming ever more accurate through density
functional development, the much more temperature-sensitive entropic term remains gener-
ally underquantified by frequently-assumed harmonic approximations. The consequence is an
inability to computationally replicate experimental observations, such as rate coefficients or
equilibrium constants, with chemical accuracy. This work is concerned with a re-examination
of harmonic approximations, including quantifying its failures in reaction kinetics of aldol
condensation on isolated metal sites, exploring alternative approximation methods for anhar-
monic intramolecular motions, and developing new methods for approximating anharmonic
external molecular motions for species adsorbed in zeolites.
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Chapter I

Introduction

Zeolites are crystalline microporous solids composed of corner-sharing, tetrahedrally coor-
dinated silicate (SiO4) units. The isomorphic substitution of a framework Si atom by an
Al atom is charge-compensated by a proton, introducing Brønsted-acidic bridging-hydroxy
groups. These materials are solid acid catalysts that are used in a large number of processes,
including hydrocarbon cracking, isomerization, alkylation, and conversion of petroleum to
transportation fuel [1, 2, 3, 4, 5]. In addition to catalytic processes, zeolites can be used
as adsorbents for carbon capture, molecular sieving, and pollution control technologies [6,
7, 8, 9, 10, 11]. It is therefore of great interest to predict the impact of zeolite structure
and composition on their functional properties to screen new catalysts and improve existing
catalysts. Understanding the thermodynamics through a rigorous quantitative theory is in-
creasingly realizable, with continuing advances in ab initio electronic structure methods [12]
such as density functional theory (DFT) [13, 14, 15, 16, 17] permitting a closer examina-
tion of challenging chemical problems in heterogeneous catalysis. In the context of zeolites,
quantum chemical calculations can provide molecular-scale information on zeolite-adsorbate
interactions, as well as model the energetic changes and dynamics of important reactions
that occur within the channels and pores of zeolite catalysts [18, 19, 20, 21, 22].

The application of these methods for the study of chemical reactions occurring on any
catalyst, however, is made difficult by the lack of reliable and computationally feasible meth-
ods to generalize the theory beyond zero Kelvin. To do so involves computing the energy
levels En of all relevant nuclear motions from the Schrödinger equation,

Ĥ |Φn〉 =
[
T̂ + V̂

]
|Φn〉 = En |Φn〉 , (1.1)

where Ĥ is the Hamiltonian operator, |Φn〉 is the nth eigenstate, T̂ is the kinetic energy
operator of the relevant motion, and V̂ is the potential energy operator. The nuclear partition
function is solved by summation over the Boltzmann-distributed energy levels,

Qqu =
∑
n

gne
−βEn , (1.2)

where gn is the degeneracy of the nth energy level, and the superscript qu denotes that
the partition function is derived from a discrete sum. This is, in principle, a challenging
problem because it requires modeling the full-dimensional potential energy surface (PES),
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which is often computationally prohibitive except for extremely small systems. Path integral
Monte Carlo (PIMC) and ab initio molecular dynamics (AIMD), for instance, incorporate
the full-dimensional PES into the evaluation of thermodynamics, but can require millions of
energy calculations to reach convergence [20, 23], and therefore quickly become unattractive
for larger systems or more rigorous levels of electronic structure theory. Instead, for simple
molecular systems, the problem is usually solved by assuming that vibrational modes behave
like uncoupled harmonic oscillators (HOs). Thus all the energy levels as well as thermody-
namic functions can be derived by a normal mode analysis, in which each vibrational mode’s
potential energy is approximated as a quadratic potential whose curvature is determined
by frequencies (νi) obtained from the second order derivatives of the electronic PES. The
simplicity of this approximation is evident in the closed-form solution to the energy levels
and partition function, which is shown in the following equations for a given mode i.

Ei,n = hνi

(
n+

1

2

)
∀n ∈ Z≥ (1.3)

Qqu,HO =
∞∑
n=0

e−βhνi(n+ 1
2)

=
e−βhνi/2

1− e−βhνi
(1.4)

Here, h is the Planck constant, νi is the harmonic frequency of mode i, n is the quantum
number corresponding to the HO energy levels.

Modeling adsorption and desorption free energies using the HO approximation poses its
own set of problems, particularly when it comes to approximating adsorption entropies. The
HO frequencies corresponding to these modes tend to be small in comparison to the frequen-
cies of intramolecular modes, leading to nonphysical divergences in entropies derived from
the HO partition function [24]. Furthermore, studies comparing experimental adsorption
entropies for a wide range of molecules have consistently found as much as two-thirds of
the gas phase entropy is retained from the gas phase, indicating significant retention of both
translational and rotational motions [25, 26]. This is in contrast to harmonic approximations,
which approximate translational and rotational degrees of freedom as effectively immobile
relative to their gas phase counterparts. The result of using the HO approximation for all
modes is a systematic underestimation of adsorption entropies.

Attempts have been made to correct errors inherent to the HO approximation through in-
terpolation approaches [27], frequency down-scaling [28, 29], and anharmonic sampling along
normal mode coordinates [19, 20, 30, 31, 32]. Perhaps the most widely used alternative to
the HO approximation is the quasi-rigid rotor harmonic oscillator (q-RRHO) approxima-
tion proposed by Grimme [27], in which the entropies of low frequency normal modes are
replaced by a semi-empirical interpolation between rigid rotor (RR) and harmonic oscillator
(HO) entropies using the Head-Gordon damping function $ [33]:

Sq-RRHO =
∑
i

[$(νi)S
HO + (1−$(νi))S

RR] (1.5)
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$(νi) ≡
1

1 + (100 cm−1/νi)
4 (1.6)

Investigation of the quasi-harmonic approach is examined in detail in Chapter II. This
was done in the context of ketonization and aldol condensation reactions over site-isolated
metal catalysts on a silica support. This effort involved modeling the stationary states of
reaction intermediates on a silsesquioxane cluster model [34, 35], the reaction mechanism of
which was informed by experiments. While the q-RRHO method accounts for rotational en-
tropy of the adsorbate, we did not find this ad hoc approach to be particularly accurate. The
degree to which the quasi-harmonic approximation cannot describe entropic contributions
was quantified by a sensitivity analysis of adsorption entropies. Specifically, we computed
the apparent activation energies, turnover frequencies, and partial pressure dependences
for ketonization and aldol condensation reactions as a function of the adsorption entropy
contribution to the free energy. Comparison of these quantities against experimental re-
sults affirmed a systematic underestimation of the adsorption entropy by quasi-harmonic
approaches, with significant gas phase motion needing to be retained in order to obtain
agreement with experiment.

An alternate approach for computing the adsorbed phase thermodynamics, pursued by
Sauer and colleagues [19, 20, 31, 32], is to approximate an anharmonic (AnH) representation
of the potential energy V by sampling electronic energies along linear displacements of the
normal mode coordinates. The vibrational energy levels of the system can then be solved
using basis functions through the variational method [36]. By this method, the wavefunction
is approximated as a linear combination of orthonormal basis functions, chosen to be the
eigenfunctions of the HO,

|Φ〉 =
∑
n

cn |n〉 , (1.7)

ψn(q) ≡ 〈q|n〉 =
1√

2n n!

(µω
π~

)1/4

e−
µωq2

2~ Hn

(√
µω

~
q

)
(1.8)

where Hn is the nth Hermite polynomial, µ is the mass of the oscillator, and ω is its frequency.
A matrix representation of the Hamiltonian is obtained by computing the matrix elements,

Hmn = 〈m| T̂ + V̂AnH |n〉 . (1.9)

Diagonalization of this matrix yields the energy levels, through which the quantum partition
function can be computed by Equation 1.2.

The above approach accounts for local anharmonicity of the potential energy, but because
it still requires sampling along local normal mode coordinates, it does not account for multi-
ple conformers on the extended domain. This was demonstrated by previous work studying
internal rotations (i.e. torsions) of gas phase molecules [30], a comparable problem to that
of hindered rotation and translation of adsorbed species in that the potential energy surface
is highly anharmonic and possibly contains multiple energetically-favorable configurations.
In this work, the total anharmonic PES was assumed to be the sum of each torsional con-
tribution (the uncoupled mode approximation for torsions, labeled UM-T). Each torsional
PES was obtained by sampling along the dihedral angular coordinate (φ), and the energy
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levels were obtained by the variational method using Fourier basis functions:

ψn(φ) ≡ 〈φ|n〉 =


1√
2π

n = 0
1√
π

cos
(
n+1

2
φ
)

n odd
1√
π

sin
(
n
2
φ
)

n even
, ∀n ∈ Z≥ (1.10)

The UM-T method yielded superior results against the HO and anharmonic normal mode
alternatives when compared against experimental values, particularly the gas phase entropy.
This suggests that the usual normal mode analysis, even under a locally anharmonic poten-
tial, could benefit from incorporating non-local information obtained by sampling the entire
range of the relevant motion.

The drawback to non-local uncoupled mode methods is that some modes, particularly
hindered translations and hindered rotations, are realistically coupled to each other. More-
over, obtaining the desired mode-coupled partition function by the variational method is
computationally prohibitive because requires not only sampling electronic energies of the
full-dimensional PES, but also diagonalization of a sizeable Hamiltonian matrix [37]. Mode
coupling and an approximation to the quantum mode-coupled partition function can be
described by the Pitzer-Gwinn (PG) approximation, through which the classical partition
function of an anharmonic, non-local motion is scaled by a prefactor given by the quotient
of the quantum partition function of a known local reference potential and its classical coun-
terpart [37, 38, 39, 40]. We represent this approximation as PGref.

AnH, where the superscript
“ref.” indicates the chosen reference potential (e.g. the HO reference) for which the quantum
and classical partition functions can be computed, and the subscript “AnH” indicates the
target anharmonic, non-local potential that the reference potential approximates (e.g. the
torsional or hindered rotational potential).

QPGref.
AnH =

Qqu,ref.

Qcl,ref. Q
cl,AnH (1.11)

As before, the superscript qu denotes that the partition function is derived from a sum of
discrete elements, and cl denotes that the partition function is derived classically, i.e. by
integration over canonical position and momentum variables.

In Chapter III, we demonstrate how PG approximations can be used to capture anhar-
monic mode-coupling effects of internal rotations, a high-dimensional problem for which
solving the energy levels using a variational solution to the Schrödinger equation is com-
putationally prohibitive. We present the PGUM-T

CM-T method, which uses the uncoupled tor-
sional (UM-T) potential energy as the reference potential to approximate the torsional
mode-coupled (CM-T) thermodynamics. The quantum UM-T partition function is com-
puted using the variational method in the Fourier basis [30], and the classical mode-coupled
partition function is solved by Monte Carlo integration. The Monte Carlo sampler we im-
plemented in this work was a hybrid Monte Carlo algorithm called the No U-Turn Sampler
(NUTS), which combines principles of AIMD and Markov chain Monte Carlo [41, 42, 43].
This involved drawing random dihedral angular momenta and solving their trajectories on
the multidimensional PES by time-integration of Hamilton’s equations of motion. The ther-
modynamics derived from the partition functions of the PGUM-T

CM-T approximation are found to

4



outperform HO approximations, HO-reference Pitzer-Gwinn approximations (PGHO
CM-T and

PGHO
UM-T), and UM-T approximations when compared against experimental gas phase en-

thalpies, entropies, and heat capacities. Notably, we find the underapproximation of the
entropy to be greatly improved by the anharmonic, non-local description of molecular tor-
sions.

The results of the work of Chapter III introduce the possibility of using PG approxima-
tions for more challenging anharmonic multidimensional problems, including modes such as
the hindered translation and rotation for adsorbed species. This motivated us to pursue a
description of the rotational PES for adsorbed species under a rigid rotor (RR) approxima-
tion, which is the rotational analog to the UM-T method. The undertaking of this work is
presented in Chapter IV, where we present a discrete sampling scheme for adsorbate orien-
tations of non-linear molecules adsorbed in the zeolites H-MFI and H-CHA. The RR PES
is obtained via a discrete, spherical Fourier transform using Wigner D-Matrix element basis
functions:

V (φ, θ, χ) =
Lmax∑
`=0

∑̀
m=−`

∑̀
k=−`

v̂`mkD
`
mk(φ, θ, χ) (1.12)

D`
mk(φ, θ, χ) = e−imφ d`mk(θ) e

−ikχ (1.13)

d`mk(θ) =

√
(`+ k)! (`− k)!

(`+m)! (`−m)!

(
sin

θ

2

)k−m(
cos

θ

2

)k+m

P
(k−m, k+m)
`−k (cos θ) (1.14)

The result is a description of the rotational PES that can be used to (1) solve the discrete
RR energy levels using a variational solution to the Schrödinger equation in the same basis,

ψ`mk(φ, θ, χ) ≡ 〈φ, θ, χ|`mk〉 =

√
2`+ 1

8π2
D`∗
mk(φ, θ, χ) ∀` ∈ Z≥, −` ≤ m ≤ `, −` ≤ k ≤ `

(1.15)
(2) obtain the HO-reference PG partition function for a RR (the PGHO

RR method), and (3)
obtain the classical RR partition function. These results were subsequently paired with
harmonic and non-local descriptions of translation, and their accuracies were then compared
against the strictly local HO approximation.

The accuracy of the methods in Chapter IV is shown to depend on the strength of the
adsorption, with lightly bound alkanes better represented under non-local and RR approx-
imations when compared against experimental adsorption data, particularly adsorption en-
tropies. Strong adsorptions, such as the adsorption of methanol and ethanol in H-MFI, are
found to strongly favor harmonic translational approximations. RR and PGHO

RR methods are
nevertheless found to be comparable to local harmonic approximations in the extreme of
strong adsorption, speaking to their general applicability in describing hindered rotation.
More strongly bound adsorbates are also found to potentially benefit from direct considera-
tion of rotational degrees of freedom, with RR and PGHO

RR methods accounting for multiple
stable adsorption conformers. Moreover, the externality of rotations and translations render
these methods exceptionally scalable, with the number of samples needed to construct the
PES independent of molecule size. This opens the possibility of applying higher levels of
electronic structure theory for describing the rotational PES.
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These results and the RR results obtained in this work are the foundation of future
development to include the full-dimensional PES of translations and rotations. At the end
of Chapter IV, we propose the next steps to realize this objective. Foremost, considerable
improvements should be made to the anharmonic description of adsorbate translations, which
yet lack the same rigor as the RR method. A general method for handling translational
anharmonicity and non-locality in zeolites is proposed, which involves sampling adsorbate
positions in three dimensions to obtain the uncoupled translational PES. This and the RR
PES will serve as a computationally feasible reference potentials to apply in a PG scheme
that interrogates translational and rotational mode coupling of adsorbed species in zeolites.
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Chapter II

Computational Studies of Ketonization
and Aldol Condensation Reactions over
Site-Isolated Zirconium Catalysts

The reaction kinetics of aldol condensation and ketonic decarboxylation (ketoniza-
tion) are investigated for reactions over isolated Zr centers supported on a high surface

area silica. These reactions were modeled by a Zr cluster model using density functional
theory, after which the thermodynamics, computed via harmonic approximations, were com-
pared against experimental data. Catalysts were synthesized by the grafting of Cp2ZrCl2 on
the surface of amorphous silica. The connectivity of Zr was characterized by XRD, UV-vis,
and Raman spectroscopy. For the lowest Zr loading, Zr is present predominantly as isolated
monomeric species. As the Zr loading is increased, a progressively larger fraction of Zr forms
oligomeric species and ZrO2 nanoparticles. Measurements of catalytic activity show that
the turnover frequency for carboxylic acid ketonic decarboxylation reaction and aldol con-
densation of ketones decreases monotonically with increasing Zr loading. An H/D kinetic
isotope effect was not observed over isolated Zr catalysts, suggesting that α-H abstraction
is not the rate-determining step, rather C–C bond forming may be rate limiting for both
reactions. This conclusion is supported by computational modeling of the reaction mecha-
nism. The proposed catalytic cycle for ketonization proceeds via a β-keto acid intermediate
on isolated Zr sites that are always coordinatively saturated with C–C bond formation as the
rate-limiting step. C–C bond formation is also rate-determining for aldol condensation, with
an apparent activation energy that is in good agreement with the experiment if the resting
state is a saturated ≡ZrOH site with two adsorbed ketone molecules. The extent to which
the resting state is malapproximated by the quasi-rigid rotor-harmonic oscillator (qRRHO)
approximation are probed by a sensitivity analysis of turnover frequencies computed by the
energetic span model. The results of this study affirm the failure of harmonic approximations
to describe the entropies of species adsorbed from the gas phase.
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1. Introduction

Biomass and biomass-derived products are an attractive source of renewable carbon for
producing chemicals and fuels [1, 2]. A significant drawback to using these feedstocks is
their high content of oxygen. For example, bio-oil produced by fast pyrolysis of biomass
contains a high fraction of acids, alcohols, aldehydes, esters, phenolics, and other oxygenates
[3, 4]. Of these compounds, the largest fraction comprises low molecular weight carboxylic
acids, aldehydes, and ketones (R-COOH, R-CHO, R-CO-R). Carboxylic acids can also be
produced by fermentation of sugars [5]. Because of their low molecular weight and high
oxygen content, these compounds cannot be used as fuels without being upgraded to products
containing more carbon atoms and fewer oxygen atoms [6, 7, 8, 9, 10].

An attractive approach for removing oxygen from biomass-derived carboxylic acids is
ketonic decarboxylation (ketonization) [11, 12]. This reaction condenses two carboxylic acid
molecules, eliminating 75% of the oxygen in the reactants to produce a linear ketone with
2n-1 carbon atoms, CO2, and H2O [11]. The alkanone produced by ketonic decarboxylation
can undergo subsequent aldol condensation, thereby further increasing the chain length of
the product and its energy density via the removal of oxygen as water [13]. While ketonic
decarboxylation is conventionally promoted by homogeneous base catalysts, such as NaOH
or KOH, catalyst separation from the reaction mixture is difficult and catalyst disposal is
expensive [14].

Previous studies have shown that bulk and dispersed metal oxides are promising hetero-
geneous catalysts for ketonic decarboxylation and aldol condensation because they contain
Lewis acid-Brønsted base pairs on their surface [11]. Oxides with a high lattice energy, such
as TiO2 or ZrO2, are particularly active and selective for C-C bond formation because car-
boxylic acids or aldehydes can adsorb at Lewis-acidic Ti or Zr sites. The resulting adsorbate
can then undergo abstraction of the α-proton at an adjacent Brønsted-basic oxygen sites [9,
15, 16, 17, 18, 19, 20].

The purpose of this study was to elucidate the role of local coordination and connec-
tivity of supported Zr sites on the gas-phase, ketonic decarboxylation of carboxylic acids
and aldol condensation of ketones. Catalysts were prepared by impregnation of the support
with a metal alkoxide precursor and then characterized by XRD, Raman and UV-Vis spec-
troscopy. Since we were particularly interested in investigating the properties of isolated Zr
structures, well-defined active sites were obtained either by the grafting an organometallic
Zr precursor onto a silica support or by incorporating Zr into the framework of a meso-
porous silica. We observed that isolated, tetrahedrally coordinated Zr species (≡Zr-OH)
are more active for ketonic decarboxylation of carboxylic acids and aldol condensation of
ketones than tetrahedrally coordinated Zr dimer species and octahedrally coordinated ZrO2
nanoparticles dispersed on silica. Based on this finding, we focused attention on the kinetics
of ketonic decarboxylation and aldol condensation occurring on isolated ≡Zr-OH species.
The mechanism by which these reactions proceed was probed both experimentally and by
computational quantum chemistry calculations through density functional theory (DFT).
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Figure 1: Cluster model of isolated M-OH site on silica support. White, red, and yellow
spheres represent H, O, and Si atoms, respectively. The blue sphere represents the Zr metal
site.

2. Computational Methods

The active site for ketonization and aldol condensation was represented by a cluster com-
prised of an isolated ZrOH group incorporated into the corner of a silsesquioxane, as shown
in Figure 1. This model has previously been used to investigate aldol condensation on iso-
lated TiOH groups supported on silica [20], and more generally silsesquioxanes have been
used as molecular models of silica-grafted metal hydroxo and oxo species [21]. Geometry
optimization of the initial structure preceded all calculations of adsorbed species. The struc-
ture of each adsorbed species on the optimized active site was hypothesized a priori, and
then further optimized by relaxing the Zr metal center, all atoms in its first coordination
sphere of Zr, the hydrogen of the terminal hydroxyl group, and all atoms of the adsorbate.
The vibrations of the converged species were then determined by vibrational analysis. These
calculations were done using the ωB97X-D functional [22] and the def2-SVP basis set [23],
including the def2- effective core potential (ECP) for the Zr atom [24]. The resulting Hes-
sian matrix output with zero negative eigenvalues (i.e. zero imaginary frequencies) confirmed
that a given structure was at an energetic minimum. Structural convergence was followed by
higher accuracy single-point energy calculations at the ωB97M-V/def2-TZVP level of theory
[23, 25].
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Estimates of the transition state structures occurring between reactant and product states
were obtained using the frozen string method [26]. These estimates were then refined to
transition structures at the ωB97X-D/def2-SVP level of theory. Similar to geometry opti-
mization of reaction intermediates, transition structures were confirmed by the presence of
one negative eigenvalue in the Hessian matrix corresponding to motion in a single direction
(the reaction coordinate). Visualization of the corresponding imaginary frequency was used
to identify a vibrational mode in the direction of bond formation. All calculations were
performed using the Q-Chem software package [27].

Enthalpies and entropies at the reaction temperature were determined by calculating the
zero-point vibrational energy and the temperature corrections to the enthalpy using the
quasi-rigid rotor harmonic oscillator (q-RRHO) approach proposed by Grimme [28]. This
approach replaces the vibrational entropy and enthalpy for low frequency modes (< 100cm−1)
by an interpolation between the rigid rotor harmonic oscillator (RRHO) vibrational values
and free-rotor rotational values. The turnover frequencies (TOFs) of the catalytic cycles
were predicted using Kozuch’s model of a catalytic cycle, which uses transition state theory
to predict the TOF from estimates of the Gibbs free energy and enthalpy for all reaction
intermediates and transition states, weighted by appropriate reactant and product partial
pressure contributions [29, 30].

We used this model to determine the rate-limiting transition structures and most abun-
dant surface intermediates for both ketonization and aldol condensation. Where applicable,
we performed a degree of rate control analysis [31, 32] to determine dominant intermediate
states in the reaction mechanism. These were then used to predict experimentally-observed
activation energies from the free energies of reaction intermediates following a procedure
described by Mao and Campbell [33].

Experiments were performed by Shylesh [34], with the methods for catalyst synthesis,
measurement of activity, and characterization included in Appendix A. The results of these
experiments, also contained in Appendix A, are referenced against the computational pre-
dictions under our approximations.

3. Computational Results

3.1. Analysis of Propanoic Acid Ketonization

The minimum energy pathway for ketonization of propanoic acid over isolated Zr sites is
shown in Scheme II.1, for which reaction intermediates were hypothesized based on the
mechanism supported by experimental evidence. The reaction begins with the adsorption
of two propanoic acid molecules, each one interacting with the nucleophilic oxygen of the
carbonyl groups and the electrophilic Zr, as depicted in reactions 1 and 2. These elementary
steps result in Zr becoming a saturated hexacoordinated species. Polarization of the carbonyl
groups makes the carbon more electrophilic and the α-H more acidic, thereby facilitating
abstraction of the α-H by the Lewis basic hydroxyl oxygen to form an adsorbed enolized
carboxylic acid, as shown in reaction 3. The formation of this enolate intermediate mirrors
that of aldol condensation previously described over isolated TiOH sites [20]. Polarization of
the carbonyl group encourages nucleophilic attack of the enolate on the electrophilic carbon
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on the second adsorbed propanoic acid molecule, leading to the formation of a C-C bond
(reaction 4) in the hydroxy-β-keto acid intermediate (species E). Water leaves after the
hydroxyl group on species E abstracts the proton on the Brønsted site, forming the β-keto-
acid. Deprotonation of the β-keto acid and cleavage of the C-C bond leads to decarboxylation
and formation of an enolized ketone. Desorption of the CO2 is followed by the energetically
favorable repopulation of the site with another reactant molecule to maintain Zr saturation.
Subsequent proton transfer from the Brønsted site to the enol π orbital forms the final
product, pentan-3-one. Desorption of the product closes the cycle, reforming intermediate
B.

Scheme II.1: Proposed reaction mechanism of ketonic decarboxylation of propanoic acid
over isolated ZrOH to form 3-pentanone.
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The predicted Gibb’s free energy pathway at the reaction temperature (573 K) for the
sequence described in Scheme II.1 is shown in Figure 2. The dissociative adsorption of
propanoic acid on the empty site A forms intermediate B. The adsorption free energy for
this step, reaction 1, is -2 kJ mol−1 . Because intermediate B represents the beginning of
the cycle under the mechanism of Scheme II.1, we designate this state as the reference state.
Our thermodynamic approximations predict adsorption of a second propanoic acid molecule
to form intermediate C is approximately thermodynamically neutral at -2 kJ mol−1 . These
two energetically similar states represent the lowest energy, most abundant intermediates.
The largest free energy barrier corresponds to C-C bond formation (D‡) at 189 kJ mol−1

relative to the reference state, suggesting that C-C bond formation is the rate-limiting step.
This conclusion is consistent with the experimental absence of an H/D kinetic isotope effect.
The overall reaction is energetically favorable, since ∆Grxn = -55 kJ mol−1 .

Figure 2: Free energy diagram for ketonic decarboxylation of propanoic acid over isolated
≡ZrOH species. The elementary steps are labeled according to the reaction sequence shown
in Scheme II.1. Relevant transition state structures are depicted, as are the points where
gas phase molecules enter and exit the cycle. Values were calculated at reaction conditions:
T = 573 K, PTot. = 1 atm.

A rate expression for the kinetics of propanoic acid ketonization was derived using the
reaction sequence shown in Scheme II.1 and the free energy profile presented in Figure 2
following the procedure described by Kozuch [29, 30]. Details of this derivation are given
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in the Appendix (Beginning with Equation A.1). Figure 3 shows the dependence of the
turnover frequency (TOF) on the partial pressure of propanoic acid (Pacid) at 573 K. The
model of the TOF predicts less than first order kinetics in the range of experimental reactant
partial pressures (0.1–0.4 kPa). At higher partial pressures (greater than approximately 2
kPa), it predicts approximately zero order in Pacid.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.0 1.0 2.0 3.0
Propanoic acid partial pressure / kPa

TO
F 

/ s
−1

, 1
0−

5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.1 0.2 0.3 0.4
Pacid / kPa

TO
F 

/ s
−1

, 1
0−

5

Figure 3: Predicted turnover frequency for ketonization of propanoic acid based on the
mechanism proposed in Scheme II.1 and the free energy landscape presented in Figure 2.
The reaction range (0.1–0.4 kPa) is shaded and expanded for clarity in the inset. Reaction
conditions: T = 573 K, PTot. = 1 atm.

Under reaction conditions used in this study, the conversion of propanoic acid was < 2%
and hence the concentrations of products was very small. Consequently, all terms in the
rate expression that depend on product concentration are set to zero and the TOF is well
approximated by Equation 2.1. The percent error between this expression and the complete
equation for TOF is on the order of 10−3 s−1 for the range of Pacid considered. The result is
an expression for the TOF as a function of reactant partial pressure that effectively captures
the character of the reaction mechanism with the free energies of states B, C, and D‡.

TOF =
kBT

h

Pacid e
−β∆Grxn

Pacid e
β(GD‡−GC−∆Grxn) + eβGD‡−GB

(2.1)

The TOF is dictated by both kinetic and thermodynamic quantities. While the kinetics
are determined by the transition state barrier of the rate-limiting step, GD‡ , the thermo-
dynamic quantities depend on the free energy minima of the reaction (the free energies of
intermediates B and C). Because GC−∆Grxn and GB are roughly equal, our model predicts
the order of the TOF with respect to Pacid is dependent on Pacid itself and is always < 1. At
vanishingly small Pacid, the second term in the denominator dominates the expression and the
model predicts approximately first order kinetics. This signifies reaction equilibrium favors
a singly adsorbed reactant (intermediate B) as the resting state. At high Pacid, the TOF
is zero order in reactant partial pressure, signifying intermediate C is thermodynamically
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favored. At reaction partial pressures (0.1–0.4 kPa), our model predicts kinetics between
zero and first order, meaning intermediates B and C are similarly favorable and contribute
significantly to the overall TOF. The resting state is therefore represented by a combination
of singly and doubly adsorbed reactant species.

Campbell and coworkers defined the generalized degree of rate control (DRC) as a means
for quantifying the thermodynamic importance of each intermediate and the kinetic impor-
tance of each transition state for the rate of a multi-step reaction mechanism [31, 32]. We
performed this analysis (Equations A.5-A.8) in order to define the relative significance of
each adsorbed species as a function of Pacid (see Figure A.14). As anticipated, we found
that for the reaction conditions used in this study, both intermediates (B and C) have a
significant DRC. Because both terms in the denominator of Equation 2.1 are significant, the
apparent activation energy (Eapp) cannot be calculated straightforwardly. This is evident
on inspection of the enthalpy profile given in Figure 8. Therefore, Eapp was approximated
using an expression derived by Campbell [33], which expresses Eapp using a sum of reactive
intermediate and transition state enthalpies weighted by their appropriate DRCs (Equation
A.3). The result is a predicted Eapp reflecting a weighted average of enthalpy differences
between states D‡ and B and states D‡ and C. The predicted Eapp versus Pacid is depicted
in Figure 5.

Figure 4: Enthalpy diagram of ketonic decarboxylation over isolated ZrOH. The elementary
steps are labeled according to the reaction mechanism shown in Scheme II.1. Values were
calculated at reaction conditions: T = 573 K, PTot. = 1 atm.

Under reaction conditions (0.1-0.4 kPa), we predict Eapp to be between 96 and 124
kJ mol−1 . An Arrhenius plot of log(TOF) vs T−1 using our model of this free energy
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Figure 5: Predicted apparent activation energy of ketonic decarboxylation over isolated
ZrOH as a function of reactant partial pressure. The reaction range (0.1-0.4 kPa) is shaded
and expanded for clarity. The experimentally-observed activation barrier is depicted by a
square data point. The reaction range (0.1-0.4 kPa) is shaded and expanded for clarity in
the inset. Reaction conditions: T = 573 K, PTot. = 1 atm.

pathway under reaction conditions is in accord with this finding, predicting an Eapp of 106
kJ mol−1 (Figure A.15) at Pacid = 0.2 kPa and T = 563-593 K. Both analyses yield values
in apparent agreement with the experimentally observed Eapp of 92 kJ mol−1 . In further
support of this mechanism, the predicted Gibbs activation energy of the reaction (∆G‡)
calculated from Equation A.11 is 198 kJ mol−1 , in reasonable agreement with 182 kJ mol−1

calculated from the experimental TOF.
The model predicts a reaction order in Pacid of 0.7, which differs from that observed

experimentally, which is 0.1 between 0.1 and 0.4 kPa. We believe this discrepancy may be
because our approximation of an immobile adsorbate with only quasi-harmonic vibrational
modes fails to account for internal and surface rotations of adsorbed species, leading to an
over-estimation of entropy loss upon adsorption (−T∆Sads). This is a well-known problem
of harmonic approximation techniques [35], and implies the free energy of intermediate C
is more favorable than initially predicted. We therefore conducted an analysis to examine
the extent to which changes to the adsorption entropy simultaneously affect the predicted
∆G‡, Eapp, and Pacid dependence. The results of this analysis are shown in Figure 6, which
shows that relatively small changes in −T∆Sads cause significant changes in ∆G‡, Eapp, and
the order in Pacid. Over the range of values of −T∆Sads shown, it is possible to achieve
reasonable agreement with the values of ∆G‡ and Eapp observed experimentally but not
the order in Pacid. Alternatively, it is possible to match the observed or in Pacid with a 16
kJ mol−1 adjustment to the adsorption entropy, but not the observed values of ∆G‡ and
Eapp.
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Figure 6: Effect of propanoic acid adsorption entropy on ketonization reaction order in
partial pressure of reactant (blue, bottom), apparent activation energy (red, middle), and
Gibbs activation energy (yellow, top). Each plot reflects the reaction region of Pacid =
0.1-0.4 kPa. The vertical dotted line corresponds to the q-RRHO approximation. The
horizontal dashed lines on each plot correspond to experimentally observed quantities. Re-
action conditions: T = 573 K, PTot. = 1 atm.
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3.2. Analysis of Propan-2-one Condensation

The pathway for aldol condensation of propan-2-one over ≡ZrOH sites analyzed by DFT is
shown in Scheme II.2, and mirrors that proposed for aldol condensation on ≡TiOH species
[20]. The associated free energy profile is given in Figure 7. The reaction begins with
adsorption of the carbonyl oxygen of propan-2-one to the Lewis-acidic Zr center. Adsorption
of a second propan-2-one molecule prior to enolization of the adsorbed propan-2-one causes
the α-hydrogen to become more acidic, thereby facilitating abstraction of the α-proton. We
note that at reaction temperature (T = 473 K), our thermal analysis predicts each adsorption
to be uphill in free energy by about 11 kJ mol−1 . Following the formation of the enolate,
C-C coupling of the nucleophilic carbon of the π-system to the carbonyl carbon of the non-
enolized co-adsorbate forms the diacetone alcohol, with a free energy activation barrier of
114 kJ mol−1 relative to the empty site. This is the free energy maximum of the cycle. The
adsorbed diacetone alcohol readily dehydrates to form mesityl oxide.

Figure 7: Free energy diagram for aldol condensation on isolated ≡ZrOH species. The
elementary steps are labeled according to the reaction mechanism shown in Scheme II.2.
Relevant transition state structures are depicted alongside, as are the points where gas-
phase species enter and exit the cycle. Values were calculated at reaction conditions: T =
573 K, PTot. = 1 atm.

As with ketonization, the free energy profile suggests that the rate-limiting step is C-C
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bond formation (D‡), the free energy maximum in this cycle. This conclusion is consistent
with an experimentally observed H/D kinetic isotope effect of unity. It is evident from
the enthalpy diagram for this process (Figure 8) that the theoretically determined Eapp is
strongly influenced by which adsorbed state is identified as the resting state. If either A
or B is the resting state, for example, Eapp is negative, but if intermediate C is the resting
state, Eapp is 70 . With the experimentally observed Eapp of 76 kJ mol−1 , intermediate C
can be reasonably inferred as the resting state. The approximately zero order dependence
of the reaction rate with Pketone observed experimentally supports this hypothesis. However,
the free energy profile predicting uphill adsorption of propan-2-one predicts a second order
Pketone dependence. As with ketonization, we postulate our quasi-harmonic approximations
to the free energy overestimate the adsorption free energy of propan-2-one to the active site.

Figure 8: Enthalpy diagram of aldol condensation on isolated ZrOH. The elementary steps
are labeled according to the reaction mechanism shown in Scheme II.2. Values were calcu-
lated at reaction conditions: T = 573 K, PTot. = 1 atm.

In light of these apparent limitations, we applied the same analysis used to investigate
the effects of adjusting −T∆Sads in the ketonization reaction to aldol condensation. The
computational details of the underlying TOF and degree of rate control calculations for
this reaction are reported in Appendix A. As depicted in Figure 9, our current free energy
approximation techniques under q-RRHO predict a reaction second order in Pketone with a
negative Eapp. Applying a -27.5 kJ mol−1 adjustment to −T∆Sads for each propan-2-one
adsorption leads to a predicted 0.1 order dependence in propan-2-one partial pressure and
an Eapp in the reaction range between 57 and 70 kJ mol−1 , in good agreement with the
experimentally observed Eapp of 76 kJ mol−1 . The predicted ΔG‡, after the adjustment to
−T∆Sads is applied, is between 145 and 146 kJ mol−1 in the reaction range, in excellent
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agreement with 145 kJ mol−1 calculated from experimental TOF data.
In contrast to ketonization, the adjustment to −T∆Sads required to correct the q-RRHO

approximation to 0.1 order reactant partial pressure dependence is notably larger for aldol
condensation (-27.5 kJ mol−1 for propan-2-one adsorption compared to -16 kJ mol−1 for
propanoic acid adsorption). Whereas both propan-2-one and propanoic acid are C3 oxy-
genates, we might expect similar error in our model of adsorption thermodynamics. We
postulate this is because propanoic acid behaves more like an immobile adsorbate than
propan-2-one due to the capacity of propanoic acid to hydrogen bond to the surface oxygen
atoms near the adsorption site. Since propan-2-one lacks such a stabilizing force, it can
retain more of its gas-phase rotational entropy upon adsorption. Indeed, factoring in the
adjustment to adsorption entropy, adsorbed propan-2-one species are expected to retain ap-
proximately 17.5% of their total gas phase entropy, compared to 7% for adsorbed propanoic
acid species. By comparison, rotational entropy for both propanoic acid and propan-2-one
makes up about 30% of the total gas phase entropy, supporting the hypothesis that adsorbed
propan-2-one may retain significantly more rotational entropy.
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Figure 9: Effect of propan-2-one acid adsorption entropy on aldol condensation reaction
order in partial pressure of reactant (blue, bottom), apparent activation energy (red, mid-
dle), and Gibbs activation energy (yellow, top). Each plot reflects the reaction region of
Pketone = 0.1-0.4 kPa. The vertical dotted line corresponds to the q-RRHO approximation.
The vertical dashed line reflects the required adjustment for agreement with experimen-
tal partial pressure dependence. The horizontal dashed lines on each plot correspond to
experimentally observed quantities. Reaction conditions: T = 573 K, PTot. = 1 atm.
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4. Conclusions

We have examined the effects of Zr coordination environment and connectivity on the rate
of ketonic decarboxylation of carboxylic acids and aldol condensation of propan-2-one over
silica-supported zirconia prepared by grafting Zr onto the surface of amorphous silica. The
turnover frequency for both reactions decreases monotonically with increasing Zr loading,
leading to the conclusion that isolated ≡ZrOH species are more active than Zr oligomers or
ZrO2 nanoparticles. For both reactions, H/D isotope measurements indicate that cleavage
of the α-C-H bond is not rate limiting. Instead, carbon-carbon bond formation is the rate-
limiting step. Both reactions depend on the presence of a strong Lewis acid center for
adsorption of either the carboxylic acid or the ketone.

Theoretical analysis of ketonic decarboxylation on isolated ≡ZrOH species suggests that
the reaction mechanism for this process occurs via a β-keto acid intermediate and that
isolated Zr sites remain coordinatively saturated throughout the cycle. Our analysis also
suggests that C-C bond formation is the free energy maximum of the process, and is there-
fore the rate-limiting step. A thorough analysis of generalized degrees of rate control (DRCs)
and associated partial pressure dependences suggests that both singly and doubly adsorbed
propanoic acid species are significant thermodynamic intermediates under our thermody-
namic approximations at reaction conditions. Varying the adsorption entropy of reactant
adsorption above and below that predicted by the q-RRHO approximation, we demonstrated
the sensitivity of reactant partial pressure dependence, apparent activation energy, and Gibbs
activation energy to the predicted free energy of adsorption. This allowed us to quantify the
degree to which our thermodynamic approximations might underestimate the entropy of
adsorbed propanoic acid species, and to explain otherwise irreconcilable experimental quan-
tities. While we found justifiable agreement between experimental and computed values
among each observed value, the ensemble suggests combined limitations in computational
and experimental methods.

Theoretical analysis supports the conclusion that C-C bond formation is the rate-limiting
step for aldol condensation of propan-2-one. Experimental evidence suggests the resting state
for this reaction is a saturated ≡ZrOH site with two adsorbed ketone molecules. Assuming
that resting state, calculation of the apparent activation energy by inspection of the associ-
ated enthalpy diagram yields good agreement with experiment. The same sensitivity analysis
performed for ketonization showed that we underestimate the entropy of adsorbed propan-2-
one to a greater degree as adsorbed propanoic acid. Correcting for this over-approximation
results in good agreement with the experimentally observed partial pressure dependence,
apparent activation energy, and Gibbs activation energy.

More broadly, we have also obtained insight into the applicability of our computational
methodology. Notwithstanding the pervasiveness of error in harmonic approximation tech-
niques, the combined use of Kozuch’s model of a catalytic cycle and Campbell’s generalized
degree of rate control allowed for both quantification of the extent of this error and the
promise of reconciliation of computational studies with experimental results notwithstand-
ing this error.
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Chapter III

Pitzer-Gwinn Approximations for Gas
Phase Molecules with Significant
Torsional Anharmonicity and Mode
Coupling

Partition functions of gas phase molecular species with significant anharmonic inter-
nal rotations were calculated using Pitzer-Gwinn (PG) approximations that account for

internal rotation mode coupling. The idea behind PG methods is that classical partition
functions can be corrected for quantum effects by applying a quantum correction given by
the ratio of the quantum to classical partition functions under a known, simpler reference po-
tential. Or, equivalently, mode-coupling effects neglected in uncoupled quantum treatments
can be included as a correction at the classical level. In its original formulation, the PG ap-
proximation was applied to the classical partition function of internal rotation (i.e. torsion)
using the harmonic oscillator (HO) potential energy as the reference potential. Recently-
developed computational protocols for solving the energy levels of one-dimensional, torsional
uncoupled mode (UM-T) potential energy surfaces are explored in this work as improved
references. The difficulty in evaluating the UM-T-reference PG approximation stems from
needing to solve the multidimensional integral in the classical mode-coupled partition func-
tion with the inclusion of torsional rotations. This is overcome through Markov Chain Monte
Carlo, namely the No U-Turn Sampler (NUTS), a Hamiltonian Monte Carlo algorithm that
operates as an efficient ab initio molecular dynamics simulation. The calculated partition
functions were compared against simpler approximations, including typical harmonic oscil-
lator (HO) approximations and PG approximations that include HO reference potentials.
The heat capacities, enthalpies, and entropies were thus computed and compared against
accepted values for a set of twelve organic molecules containing multiple torsional degrees
of freedom. It was observed that PG methods that use UM-T reference potentials account-
ing for torsional mode-coupling are more accurate relative to the HO, UM-T, and harmonic
reference alternatives.
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1. Introduction

Theoretical determination of the thermodynamic properties of molecules and their interac-
tions with their environment (e. g., a solvent or the walls of a porous adsorbent) are the
subject of ongoing research having impact on many practical problems, including the ther-
modynamics of vapor liquid condensation and adsorption. Advances in ab initio electronic
electronic stricture methods, such as density functional theory (DFT) [1, 2, 3, 4, 5], have
enabled calculation of the electronic energy of molecules in their ground state with chemical
accuracy (±1 kcal mol−1 ). However, determination of thermodynamics properties at finite
temperatures remains a challenge because it requires the determination of the molecular
partition function, Q, which necessitates knowledge of potential energy surface (PES) gov-
erning molecular motion. The challenge is that the motion involves vibrations, rotations,
and torsions, which are in general coupled to one another. Therefore, standard variational
approaches to obtain the quantum nuclear partition function from the Schrödinger equation
are computationally prohibitive except for extremely small systems because it requires both
sampling of the full-dimensional PES and diagonalization of a sizeable Hamiltonian matrix
[6]. Methods such as path integral Monte Carlo (PIMC) and path integral molecular dy-
namics (PIMD) account for these mode-mode coupling effects, but these methods are also
burdened with high computational costs because they can require millions of samples to
reach convergence [7]. For this reason, more approximate representations of the PES have
been assessed. The problem can be greatly simplified, for example, by assuming molecular
motions are separable. These uncoupled partition functions are relatively easy to evaluate
because they can be divided into a set of one-dimensional systems and solved independently.
Evaluation of the partition function therefore only requires description of the PES along the
axes of each internal coordinate.

The simplest of these approximations is the harmonic oscillator (HO) approximation,
in which all internal modes are assumed to have a quadratic potential. This model has
widespread use in vibrational analysis of molecular models, since the frequencies required
to attain each oscillator’s partition function are easily obtained by diagonalization of the
mass-weighted Hessian. However, for internal modes that significantly deviate from a har-
monic potential, this approximation leads to errors in spectroscopic and thermodynamic ob-
servables. Molecules and molecular complexes with large-amplitude internal rotations (e.g.
torsions around single bonds) are notoriously anharmonic and non-local, which can lead to
difficulties in accurately describing the entropy [8]. Neglect of mode coupling may typically
lead to underestimates of the entropy, while the well-known zero frequency divergence of the
HO partition function can lead to overestimates [9, 10, 11].

While ad hoc techniques such as the quasi-rigid rotor/harmonic oscillator approxima-
tion [12] or corrections to low-frequency normal modes [13, 14] - which tend to correlate to
hindered rotation or translation - attempt to correct this anharmonicity, a more rigorous
approach is to model the internal degrees of freedom assuming a realistic anharmonic poten-
tial. Perhaps the simplest way this can be done is by sampling electronic energies for each
normal mode by finite differences along each uncoupled coordinate, as detailed by previous
works [6, 8, 15, 16, 17, 18]. This most basic form, the uncoupled normal mode (UM-N)
model, uses finite displacement along each normal mode coordinate, leading to an anhar-
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monic model whose computational cost scales with molecular size in a manner similar to that
for harmonic analysis. However, the application of this approach has not led to significant
improvement in the calculated thermodynamic properties compared to harmonic analysis [8].
Rather, significant improvements can be obtained by using torsional (T) coordinates to cap-
ture large-amplitude motions and harmonic vibrational modes for the remaining degrees of
freedom (UM-T model). For torsions, this requires obtaining each one-dimensional torsional
potential by independently sampling dihedral angles along the torsional internal coordinate.
In the UM-T approximation, the associated potentials at each sampling point are used to
obtain a continuous representation of the PES as a function of the dihedral angles of internal
rotations [6, 8, 18], and the partition function is obtained by direct eigenvalue summation
after variationally solving the Schrödinger equation for this potential using Fourier basis
functions.

Despite the improved accuracy of the UM-T approximation versus the HO approximation,
a method that includes torsional mode coupling effects is still desired because these non-local
modes are expected to exhibit the greatest degree of interaction. One such method is the
Pitzer-Gwinn (PG) approximation, which has specifically been used to investigate torsional
mode coupling for low-dimensional systems, notably by Truhlar and coworkers [6, 19, 20,
21]. Under this class of approximation, the torsional partition function is represented as the
product of the classical torsional partition function, which includes mode coupling terms,
and a quantum correction factor, given by the ratio of the quantum to classical partition
functions for a known reference potential. Much of the research into these methods has been
devoted to improving the reference potential beyond the HO reference originally proposed by
Pitzer and Gwinn [22], and including additional mode coupling terms in the classical partition
function [6, 19, 20]. Among these improvements to the PG method is the improved-reference
PG approximation introduced by Ellingson, Lynch, et al. in their comprehensive studies of
PG methods applied to hydrogen peroxide and its isotopologs [20]. In their approach, the
reference potential was taken to be the uncoupled torsional potential (UM-T), with the
corrective factor applied to the classical partition function of the single torsion coupled
to anharmonic vibrations and rotations. Simón-Carbadillo et al. used a similar approach
for two-dimensional systems in their E2DT method [6], in which the reference potential was
described by the two-dimensional torsional potential – whose quantum partition function was
simple enough to be obtained by direct eigenvalue summation. However, these anharmonic-
reference, mode-coupled PG methods have not yet been generalized to molecules with more
than two torsions. This is undoubtedly because evaluation of the torsional partition function
for a coupled system requires solving a challenging multidimensional integral, the evaluation
of which suffers from the same curse of dimensionality that uncoupled approximations are
intended to avoid.

Fortunately, substantial improvements to Markov chain Monte Carlo (MCMC) algorithms
have been made to enable computationally tractable evaluation of challenging multidimen-
sional integrals [23, 24, 25]. Of particular note is a class of MCMC algorithms called Hamil-
tonian Monte Carlo (HMC), which has been demonstrated to accurately model joint distri-
butions of high-dimensional problems with fewer iterations needed for convergence versus
conventional random walk algorithms [23]. Using this method, sampling of variables is done
by random simulations of Hamiltonian dynamics [23, 26, 27, 28]. More recently, an extension
of HMC was developed that disallows "U-turns" in the simulated trajectory and automati-
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cally optimizes sampling parameters that would otherwise require costly hand-tuning [24].
With these promising developments at our disposal, we revisit and extend PG-corrective

schemes to treat mode coupling in high-dimensional problems. The broad purpose of this
undertaking is to investigate the accuracy of using uncoupled modes as reference potentials
for more complex potential energy surfaces of interest, and to compare the results to those
of more approximate methods, including uncoupled mode approximations. We focus our
attention on the internal rotational modes in gas phase molecules, whose large-amplitude
motions are expected to contribute to significant mode coupling. We first examine the theory
and implementation of uncoupled and torsional PG approximations, ultimately presenting
the UM-T-reference coupled PG approximation, whose non-separable, classical partition
function is calculated by the No U-Turn Sampling (NUTS) HMC algorithm. We call this
method the PGUM-T

CM-T method, where the superscript indicates that the reference potential is
the UM-T potential, and the subscript indicates that the corrective factor is applied to the
classical partition function of the mode-coupled energy for torsions (CM-T). This method is
compared against the similarly-named PGHO

UM-T and PGHO
CM-T methods, as well as the UM-T

and HO methods. Across all methods, non-torsional vibrations and whole-molecule rota-
tions are assumed to be separable from molecular torsions, and are simply calculated using
the HO and rigid rotor approximations. This allows us to then assess the extent to which
torsional uncoupled mode approximations might be in error by isolating the mode coupling
to internal rotations. We report significant improvement using the PGUM-T

CM-T method rel-
ative to harmonic-reference uncoupled PG approximations (PGHO

UM-T), harmonic-reference
coupled PG approximations (PGHO

CM-T), UM-T, and HO approximations when comparing the
calculated enthalpies, entropies, and heat capacities of each method against experimental
references for a series of molecules. We also find reduction in the number of calculations
required to achieve these thermodynamic quantities versus the direct solution, demonstrat-
ing the possibility of achieving accurate thermodynamics for significantly larger systems of
interest than would otherwise be possible.

2. Theory and Methods

As detailed in previous studies [15, 16, 17, 29], uncoupled mode approximations generally
begin with evaluation of the mass-weighted Hessian matrix at the equilibrium geometry.
The diagonalization of this matrix decouples the problem into a set of harmonic normal
modes. The associated eigenvalues of the normal modes are the squared frequencies of
oscillation along the corresponding normal mode axes. The eigenvectors of the Schrödinger
equation with a harmonic oscillator potential are obtained analytically as a family of Hermite
polynomial functions with equally-spaced eigenvalues given by

Ei,v = ~ωi
(
v +

1

2

)
, ∀ v ∈ Z≥ (3.1)

where i is the index of the vibrational mode and ωi is the harmonic frequency of the same
mode. The partition function and all thermodynamic quantities derived therefrom are func-
tions only of the harmonic frequencies (ωi, i = 1, . . . , Nvib), as shown in Equations 3.2-3.3,
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where the superscript qu denotes that energies of the partition function are quantized.

Qqu,HO
vib,1-D, i =

∞∑
ν=0

e−βEi,ν =
e−β~ωi/2

1− e−β~ωi
(3.2)

Qqu,HO
vib =

Nvib∏
i=1

Qqu
vib,1-D, i (3.3)

Inclusion of anharmonic torsions under the same uncoupled framework (i.e. the UM-T
method) is done by distorting the geometry of a given molecule along its torsional internal
coordinate, φτ , with all other modes unrelaxed and performing energy calculations at each
geometry sampled. The potential energies, Vτ (φτ ), can be easily fitted to a Fourier series [6,
18] or interpolated [8], resulting in one-dimensional descriptions of the potential energy as
a function of the dihedral angles of each torsion. For N torsions, this leads to the following
estimation of the total torsional potential:

V (φ1, . . . , φN) ≈
N∑
τ=1

Vτ (φτ ) (3.4)

The discrete energy levels of each one-dimensional potential can then be obtained as a numer-
ical solution to the Schrödinger equation using the variational method, with the Hamiltonian
matrix composed of the integrals

Hmn = 〈Ψm|
−~2

2Iτ

∂2

∂φ2
τ

+ Vτ (φτ )|Ψn〉 (3.5)

The matrix elements can be conveniently solved using Fourier basis functions,

Ψm(φ) =


1√
2π

m = 0
1√
π

cos
(
m+1

2
φ
)

m odd
1√
π

sin
(
m
2
φ
)

m even
, ∀m ∈ Z≥ (3.6)

after which the one-dimensional torsional partition function is obtained by summing over the
energy eigenvalues from diagonalizing the Hamiltonian matrix. Accounting for the torsional
symmetry of the rotor, στ , this leads to

Qqu
tors,1-D,τ =

1

στ

Mτ∑
m=0

e−βEτ,m (3.7)

where Mτ is the number of Fourier basis functions for torsion τ required for the sum to
converge. Because each torsion is assumed to be uncoupled, the total torsional partition
function is represented by the product of each individual torsional partition function,

Qqu,UM-T
tors =

N∏
τ=1

Qqu
tors,1-D,τ (3.8)

33



This result is multiplied by the one-dimensional partition functions for each non-torsional
internal degree of freedom – for which torsion-free normal mode coordinates are used – to
obtain the total internal vibrational partition function.

Pitzer, Gwinn, and Kilpatrick also addressed the thermodynamics of internal rotations
in gas phase alkanes [22, 30], representing the torsional partition function as the product of
the classical anharmonic partition function of a torsion (Qcl,CM-T

tors ), multiplied by a quantum
correction factor given by the ratio of the quantum to classical partition functions for a known
reference potential. In the original Pitzer-Gwinn (PG) formulation, the reference potential
was taken to be the harmonic potential: the second order Taylor series approximation of the
anharmonic potential about the equilibrium position.

V (φ1, . . . , φN) =
1

2

∑
ττ ′

∂2V

∂φτ∂φτ ′

∣∣∣∣
eq.
φτφτ ′︸ ︷︷ ︸

HO reference potential

+
1

3!

∑
ττ ′τ ′′

∂3V

∂φτ∂φτ ′∂φτ ′′

∣∣∣∣
eq.
φτφτ ′φτ ′′ + . . . (3.9)

The HO-reference coupled Pitzer-Gwinn partition function, labeled PGHO
CM-T, is given math-

ematically by

Q
PGHO

CM-T
tors =

Qqu,HO
tors

Qcl,HO
tors

Qcl
tors (3.10)

and the HO-reference prefactor is given by the expression

Qqu,HO
tors

Qcl,HO
tors

=
N∏
τ=1

e−β~ωτ/2 (1− e−β~ωτ )−1

(β~ωτ )−1
. (3.11)

The numerator of the HO prefactor is derived from Equations 3.2-3.3, with harmonic po-
tential curvature determined by the harmonic frequencies corresponding to torsions instead
of non-torsional vibrations (ωτ , τ = 1, . . . , N). The classical HO partition function coun-
terpart is given by the expression in the denominator. The torsional frequencies used in
both expressions are determined by the usual normal mode analysis using the torsional co-
ordinate Hessian. The second term in the PGHO

CM-T approximation, Qcl
tors, is the classical

CM-T partition function, which is given by the multidimensional integral over all torsional
phase-space:

Qcl
tors =

1

hN

∫ ∞
−∞

dp1 · · ·
∫ ∞
−∞

dpN

∫ 2π/σ1

0

dφ1 · · ·
∫ 2π/σN

0

dφN e
−β

(
p21
2I1

+···+ p2N
2IN

+V (φ1,...,φN )

)
.

(3.12)
As mentioned previously, evaluation of this multidimensional integral for a given potential is
the computational bottleneck. The simplest approximation to make this integral tractable is,
again, the UM-T approximation. In contrast to Equation 3.7, the classical partition function
for a single torsion is given by

Qcl
tors,1-D,τ =

(
Iτ

2πβ~2

)1/2 ∫ 2π/στ

0

dφτ e
−βVτ (φτ ) (3.13)
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and for N anharmonic torsional potentials, the total classical UM-T partition function is,
similar to Equation 3.8, given by the product of the individual one-dimensional contributions.

Qcl,UM-T
tors =

N∏
τ=1

Qcl
tors,1-D,τ (3.14)

This simplification is the PGHO
UM-T approximation, which can be thought of as an approxi-

mation to the UM-T method solved by the variational method. This is because it involves
the classical UM-T partition function “corrected” to the quantum level by the HO-reference
prefactor. We will examine PGHO

UM-T alongside its more rigorous PGHO
CM-T counterpart after

the numerical evaluation of the multidimensional integral is addressed.
Pitzer and Gwinn reasoned that in the high-temperature limit, the HO-reference prefac-

tor approaches unity and the classical torsional partition function is recovered. Similarly,
they reasoned that in the low-temperature limit, if the lowest energy levels of the torsional
potential energy are reasonably approximated by the HO approximation, Qcl,CM-T

tors and Qcl,HO
tors

become equal, recovering the quantum HO approximation. The qualification in their sec-
ond assertion is a recognition that for many systems, particularly systems with multiple
low-energy conformers, the HO approximation is suboptimal. For this reason, more sophisti-
cated reference potentials for which energy levels can be calculated have been introduced to
improve the original PG approximation. One such improvement can be found in multistruc-
tural models, in which torsions with multiple low energy conformers are represented by HO
potentials centered at their local minima [19, 20, 21]. We posit that an even closer reference
for the anharmonic potential can be found in the UM-T model, whose quantum and classical
partition functions are readily computable by Equations 3.7-3.8 and 3.13-3.14. A pictorial
representation of these reference methods is compared against a one-dimensional isopentane
torsion in Figure 1, which illustrates the advantage of referencing the UM-T potential for
multidimensional problems. A more quantitative reasoning based on the original literature
can be found by expanding the N -dimensional potential in a Fourier series:

V (φ1, . . . , φN) =
N∑
τ=1

Vτ (φτ )︸ ︷︷ ︸
UM-T reference

+
∑
m1

· · ·
∑
mN

cm1...mN e
im1φ1 . . . eimNφN (3.15)

The higher order terms are corrections specifically accounting for mode coupling. These
terms are expected to be much less important than the higher order terms in the Taylor
series expansion given in Equation 3.9. This is in large part because the UM-T ansatz
accounts for the non-locality (i.e. high probability of low-energy conformers) of molecular
torsions, whereas the terms in the Taylor expansion are derived from the PES near the
equilibrium position. The PGUM-T

CM-T approximation is then given by

Q
PGUM-T

CM-T
tors =

Qqu,UM-T
tors

Qcl,UM-T
tors

Qcl
tors (3.16)

A pictorial representation of the components needed for this method is given in Figure 2.
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Figure 1: Graphical representations of HO-reference, multi-conformer HO-reference, and
UM-T-reference approximations on a single torsion. The anharmonic potential of a single
isobutane torsion is represented in black, the classical harmonic approximations to the same
torsion in blue, and the discrete energy levels and squared probability amplitudes of the
quantum results in multicolor.
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Figure 2: Schematic representation of the PGUM-T
CM-T method for an isobutane molecule. On

the diagonal, classical UM-T potential (black) and the UM-T discrete energy levels and
squared probability amplitudes (multicolor) associated with internal rotations are depicted
with polar plots. The lower triangular plots depict the coupled, classical potential.
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The approach for solving the classical CM-T partition functions necessary for the PGUM-T
CM-T

and PGHO
CM-T methods is now addressed. Kilpatrick and Pitzer proposed the following solution

to Equation 3.12 following studies by Eidinoff and Aston on nonrigid molecules [30, 31]:

Qcl
tors =

(
1

2πβ~2

)N/2 ∫ 2π/σ1

0

dφ1· · ·
∫ 2π/σN

0

dφN |D|1/2e−βV (φ1,...,φN ) (3.17)

The term |D| is the determinant of the torsional moment of inertia matrix [30, 32], which
remains in the integral because it is not strictly independent of the molecular configuration
[6]. The matrix is given by

D =


I1 −Λ12

−Λ21 I2
· · · −Λ1N

−Λ2N
... . . . ...

−ΛN 1 −ΛN 2 · · · IN

 (3.18)

The diagonal elements, Iτ , correspond to the reduced moments of inertia of the τth torsion,
and off-diagonal elements, Λττ ′ , are the coupling of torsional moments of inertia Iτ and Iτ ′ .
Any given element of the moment of inertia matrix is dependent on Aτ , the moment of the
τth top itself, Ix, Iy, Iz, the rigid rotational moments of inertia of the entire molecule, and
λτi, the direction cosine between the axis of the τth top and the ith principal axis of rotation
[22, 30].

Iτ = Aτ −
∑
i=x,y,z

λ2
τiA

2
τ/Ii (3.19)

Λττ ′ = AτAτ ′
∑
i=x,y,z

λτiλτ ′i/Ii (3.20)

The non-separable integral in Equation 3.17 is solved by a Markov chain Monte Carlo
approach, through which we can find thermodynamic quantities from samples drawn from
the classical coupled distribution by statistical inference. This is done by Hamiltonian Monte
Carlo (HMC), which has a direct equivalence to the physics of the problem. By this method,
a Markov chain is simulated in which each iteration samples a random momentum and then
performs a Metropolis update with a proposal determined after time-integrating the Hamil-
tonian equations of motion [23, 26, 27, 28]. The sampler thus explores multidimensional
phase-space through solving dynamic trajectories. In the context of modeling the coupled
molecular torsions, this is equivalent to stochastically simulating torsional AIMD in the
canonical ensemble. The corresponding governing equations are

H(Φ,p) = V (Φ) +
1

2
pTM−1p (3.21)

dΦ

dt
= M−1p (3.22)

dp

dt
= −∂V

∂Φ
(3.23)

where H is the Hamiltonian, Φ = [φ1, . . . , φN ]T is the vector of dihedral angles encoding a
configuration of N torsions, V is the torsional potential, p = [p1, . . . , pN ]T is the vector of
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dihedral angular momenta, and M is the mass matrix. In HMC, the mass matrix informs
how momenta, with the chain indexed by k, are randomly drawn from the multivariate
Gaussian distribution:

pk(t = 0) ∼ N (0, M) . (3.24)

The mass matrix has a direct physical analog in the torsional moment of inertia matrix D
previously defined. In practice, however, M is optimally tuned or chosen to increase the
efficiency of the sampler, and is not necessarily equal to D.

It is apparent from Equation 3.23 that in order to use HMC for sampling torsional confor-
mations of a molecule, we require not only the energy at a given sampling point, but also its
gradient. This can be readily obtained using DFT calculations, where the torsional energy
gradients can be isolated from the internal coordinate energy gradient, which is related to
the Cartesian gradient by a coordinate transform

∇qV = B−1∇xV . (3.25)

B−1 is the generalized inverse of the Wilson B-Matrix, the rectangular Jacobian mapping the
Cartesian coordinates x to the internal coordinates q [8, 33]. We thus have the components
to implement a Hamiltonian Monte Carlo method for sampling torsional potential energies
from the classical mode coupled distribution.

We employed an extension of HMC called the No U-Turn Sampler (NUTS) [24]. This al-
gorithm explores parameter space by disallowing "U-Turns", which can expend a significant
amount of computational time solving the molecular dynamics for small gains in displace-
ment. The U-Turn condition is determined by constructing a binary tree to trace the path
of the trajectory in forward and backward directions using a leap frog time integrator. This
method has the added benefit of automatically tuning sampling parameters such as time
integration steps and the mass matrix M from which random momenta are drawn [34, 35].
Initialization of tuning parameters for this algorithm is discussed in the Computational De-
tails section.

The torsional contributions to the energy and heat capacity can be expressed in terms of
the mean and variance of the torsional potential energy V , with

Ecl,CM-T
tors =

N

2
RT + 〈V 〉 (3.26)

Ccl,CM-T
V, tors =

N

2
R +

〈V 2〉 − 〈V 〉2

RT 2
(3.27)

where the angled brackets denote the mean of the quantity. Similarly, the entropy can be
expressed in terms of expected values, with the following expression given in terms of the
mean square root of |D| and the mean negative logarithm of the probability density function
(pdf) associated with Φ, f(Φ).

Scl,CM-T
tors = R

[
N

2
− N

2
ln
(
2πβ~2

)
+ ln

(
〈|D|1/2〉

)
− 〈ln f(Φ)〉

]
(3.28)

Derivations of these terms are provided in Appendix B.
Provided enough samples have been taken to accurately reflect the underlying distribution,

most of the angle-bracketed quantities were found by their sample means. The exception is

39



the negative logarithm of the pdf, which is not directly measurable. Instead, this quantity
was obtained through a kernel density estimator (KDE) [36, 37, 38], with the pdf estimated
by a sum of local Gaussian functions centered at the sampling points.

f(Φ) ≈ 1

n

n∑
i=1

KΣ(Φ− Φi) (3.29)

KΣ(Φ) = (2π)−N/2 |Σ|−1/2e−
1
2

ΦTΣ−1Φ (3.30)

The bandwidth of the KDE, Σ, was chosen by Scott’s rule with
√

Σττ = n−1/(N+4) ςτ [39],
where n is the number of samples, N is the number of torsions, and ςτ is the standard
deviation of the τth variable. This choice of KDE parameters was verified to accurately
represent the pdfs of uncoupled potential energies sampled by the NUTS protocol. The
expected value of the negative logarithm of the pdf was then solved as

〈ln f(Φ)〉 =

∫
dNΦ f(Φ) ln f(Φ) (3.31)

which was computed by Monte Carlo integration resampling from the distribution approxi-
mated in Equation 3.29.

Because thermodynamic state functions are derived from the logarithm of the partition
function, the thermodynamics of the product (or quotient) of multiple partition functions
are linearly additive. For example, the heat capacity, energy, and entropy of Equation 3.16
are calculated by

C
PGUM-T

CM-T
V,tors = Cqu,UM-T

V,tors − Ccl,UM-T
V,tors + Ccl,CM-T

V,tors (3.32)

E
PGUM-T

CM-T
tors = Equ,UM-T

tors − Ecl,UM-T
tors + Ecl,CM-T

tors (3.33)

S
PGUM-T

CM-T
tors = Squ,UM-T

tors − Scl,UM-T
tors + Scl,CM-T

tors (3.34)

Classical and quantum UM-T thermodynamic quantities derived from the partition functions
of Equations 3.7 and 3.14 are given in Appendix B. These quantities were evaluated using
numerical methods following sampling the uncoupled potentials by the protocol of Li [8,
40]. The remaining internal thermodynamics (i.e. the stretch and bend contributions) were
solved under the HO approximation, with external thermodynamics, namely translational
and rotational contributions, solved under the ideal gas and rigid rotor approximations. The
thermodynamic variables of these modes are also given in Appendix B.

3. Computational Details

All electronic structure calculations were performed using a developmental version of the
Q-Chem software package [41]. In accordance with previous work [8], all DFT calculations
were carried out at the B97-D/6-31G* level of theory [42]. This level of theory demonstrated
no statistically significant degradation in representing the one-dimensional torsional PES rel-
ative to ωB97X-D/6-311+G-(2df,2pd) [43], which is a far more computationally demanding
level of theory. Potential energy functions for the uncoupled mode approximation (UM-
T) were obtained by cubic spline interpolation following finite-difference sampling along
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torsional coordinates at a 10◦ resolution [8]. All internal coordinate transformations and
other associated matrix algebra was performed using the open-access Automated Property
Estimator (APE) [40]. Thermodynamic parameters such as the symmetry numbers and mo-
ments of inertia, both for external and internal rotations, were calculated using the Reaction
Mechanism Generator (RMG-Py) [44].

The No U-Turn Sampling algorithm was provided by the PyMC3 software package [34].
To enforce continuity at the periodic boundaries, sampling was done in two dimensional
(cos Φ and sin Φ) vector space. Approximate step size was fixed at approximately 10◦,
scaled down by ( 1

N
)1/4 [39], where N is the number of dimensions (i.e. torsions). Because

such a resolution was determined by previous studies to sufficiently capture the features
of the torsional PES, adaptive step tuning was forgone in favor of using computational
efforts of training the model into achieving a good estimate of the mass matrix. An initial
equilibration run included a tuning schedule, wherein the mass matrix was iteratively adapted
to a time-integration target acceptance rate of 70%. The tuning schedule comprised 500
iterations of the algorithm, which was determined sufficient in replicating distributions of
uncoupled mode systems. Additional Hamiltonian Monte Carlo parameters assumed the
default/recommended values, for which additional information can be found in the reference
documentation [34, 35, 45]. Production runs comprised 10 parallel Markov chains of 1000
samples. These chains were pooled maintaining parallelism prior to computing standard
thermodynamic quantities. These measures were sufficient to achieve convergence of the
energy to a sampling standard deviation of less than 0.1 RT across all molecules tested. The
convergence criterion was verified by computing thermodynamic quantities as a function of
the number of samples. Statistical computations, namely KDEs and KDE integration, were
performed using modified functions from the SciPy open-source library [46].

4. Results and Discussion

We compared the calculated gas phase heat capacities, enthalpies, and entropies for a set of
twelve molecules for which these data are readily available. In order to specifically probe the
performance of this method relative to uncoupled methods, the molecules in this study were
chosen based on the degree to which significant torsional mode coupling was suspected, such
as mode coupling through hydrogen bonding or steric hindrance. Heat capacity data, and
the less common enthalpic and entropic data, were obtained from the National Institute of
Standards and Technology database [47].

The calculated constant pressure heat capacities at 298 K are given in Table 1. The HO
approximation tends to underestimate the expected values. This is attributed to the overes-
timation of the energy level spacing using HO energy levels, leading to an underestimation
of the fluctuation between energy levels. Figure 1 illustrates the difference in energy spacing
between the HO approximation and anharmonic UM-T approximation, where we observe
closer spacing in energy levels using an anharmonic potential, particularly at excitation en-
ergies above potential barriers separating torsional conformers. The PGHO

UM-T method can be
interpreted [6] to correct the errant quantum HO heat capacity toward the UM-T result by
subtraction of the classical HO heat capacity and addition of a classical UM-T heat capacity
(see Equation 3.32). Nevertheless, both UM-T and PGHO

UM-T tend to overestimate the heat
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capacity, attributable to an overestimation of the energy variance when generally restrictive
mode coupling effects are ignored. The root-mean-squared errors (RMSEs) of the HO, UM-
T, and PGHO

UM-T methods are thus comparably around 2.5 cal mol−1 K−1. Superior results
are obtained with mode-coupled methods, with the PGHO

CM-T and PGUM-T
CM-T methods generally

coming within 1 cal mol−1K−1 of the accepted value, as shown by the parity plot in Figure 3.
The PGHO

CM-T method performs marginally better, with an RMSE of 0.85 cal mol−1K−1, com-
pared to 0.9 cal mol−1K−1 for PGUM-T

CM-T. The similarity in computed heat capacities between
PGHO

CM-T and PGUM-T
CM-T methods, and the difference between the PGHO

CM-T and PGHO
UM-T meth-

ods, suggests these quantities depend much more on the assumption on mode coupling than
they depend on the choice of reference. This hypothesis is supported by the closeness of the
PGHO

UM-T and UM-T results, indicating the UM-T energy variances can be well-approximated
by an appropriate adjustment of the quantum HO reference. Mathematically, these observa-
tions suggest approximate equality of quantum and classical heat capacities at a given level
of theory.

The experimental results for the enthalpy for ten of the twelve molecules studied are listed
in Table 2 and depicted in Figure 4, which examines the enthalpy difference between 298
K and 0 K. All methods tend to fall within 1 kcal mol−1 of the accepted values. This is
consistent with what was found previously [8], where it was concluded that the enthalpy
is not sensitive to the choice of model due to the elimination of degenerate conformers
represented in the partition function by differentiation. As with the heat capacities, the HO
approximation generally underestimates the experimentally determined enthalpies, while
the UM-T approximation tends to overestimate the experimental enthalpies. Unlike the
heat capacities, however, the accuracy of the enthalpy for PG approximations is much more
sensitive to the choice of reference potential. The PGHO

UM-T and PGHO
CM-T methods, for example,

lead to similar results, but can have limited accuracy where the harmonic approximation is
a poor prior. Using the UM-T approximation reference potential in conjuction with the
coupled torsional partition function yields more accurate results, with PGUM-T

CM-T consistently
falling within less than 0.5 kcal mol−1 of experimental values and having an RMSE of 0.22
kcal mol−1. This result is strikingly good, and may well be controlled by errors in the DFT
energies as much as by limitations of PGUM-T

CM-T.
By contrast, the entropy is much more sensitive to the choice of model because of the

direct dependence on the logarithm of the partition function [8]. Therefore, accurate results
require explicit enumeration of degenerate conformers. As seen in Table 3 and Figure 5,
this leads to an underestimation of entropies by the HO approximation, with values across
most molecules falling outside the range of chemical accuracy. PGHO

UM-T and UM-T methods
account for conformational effects, performing similarly well. Improvements are obtained by
accounting for mode coupling, with the PGHO

CM-T and PGUM-T
CM-T method generally falling within

the range of chemical accuracy, defined for the standard entropy as ±3.35 calmol−1K−1 ,
which is ±1 kcal mol−1 of TS at 298 K. PGUM-T

CM-T proves a better method, with a RMSE of
2.24 cal mol−1 K−1 compared to 2.53 cal mol−1 K−1 for PGHO

CM-T. As with the heat capacity,
the accuracy of the computed entropies is depends strongly on the assumption of mode
coupling, but these results suggest improvements can also be obtained by improving the
reference potential. This can be rationalized by the additional dependence of the entropy on
the energy, which, as shown for the computed enthalpies, relies significantly on the choice of
the reference potential.
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Figure 3: Parity plot for constant pressure heat capacity of select molecules in the gas-
phase. The shaded region represents the interval of ±1 calmol−1K−1 of the experimental
value.

Table 1: Constant Pressure Heat Capacities for Selected Molecules at 298.15 K
(cal mol−1K−1)

Molecule ref.a HO UM-T PGHO
UM-T PGHO

CM-T PGUM-T
CM-T

Ethylene glycol 20.74 18.92 20.67 19.93 20.92 21.66
Ethyl ether 28.55 25.05 28.63 28.53 28.62 28.72
Ethanedial 14.44 19.13 22.38 22.20 17.15 17.33
2,2-Dimethylbutane 34.00 33.18 35.38 35.32 34.26 34.32
2,3-Dimethylbutane 33.51 32.28 35.70 34.95 33.16 33.91
2,2,3,3-Tetramethylbutane 45.00 43.45 45.82 45.04 44.20 44.98
Isopentane 28.56 27.51 29.37 29.32 28.75 28.81
Neopentane 29.05 28.01 29.44 29.21 28.84 29.07
2-Methylpentane 34.18 32.39 35.10 35.00 34.32 34.42
3-Ethylpentane 39.87 36.68 40.03 39.70 39.46 39.79
2,2-Dimethylpentane 40.07 38.16 41.55 41.46 40.04 40.13
2,3,4-Trimethylpentane 46.06 42.10 45.69 44.77 45.59 46.51
RMSE 2.53 2.49 2.41 0.85 0.90

a Ref [47], experimental values calculated at 298.15 K.
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Figure 4: Parity plot for H◦(T = 298K) −H◦(T = 0). The shaded region represents the
interval of ±1 kcal mol−1 of the experimental value.

Table 2: Enthalpies H◦(298 K)−H◦(0 K) for Selected Molecules at 298.15 K (kcal mol−1)

Molecule ref.a HO UM-T PGHO
UM-T PGHO

CM-T PGUM-T
CM-T

Ethylene glycol 3.96 3.74 4.38 3.46 2.69 3.61
Ethyl ether 5.61 4.74 5.30 5.17 5.19 5.32
Ethanedial 3.26 3.86 4.39 4.24 3.27 3.42
2,2-Dimethylbutane 6.01 5.67 6.34 6.15 5.87 6.06
2,3-Dimethylbutane 5.85 5.42 6.53 5.88 5.52 6.17
Isopentane 5.26 4.95 5.49 5.32 5.14 5.31
Neopentane 5.54 4.86 5.28 5.07 5.01 5.22
2-Methylpentane 6.29 5.70 6.53 6.29 6.04 6.28
3-Ethylpentane 7.50 6.16 7.19 5.41 5.51 7.29
2,2-Dimethylpentane 6.98 6.46 7.29 7.05 6.72 6.96
RMSE 0.67 0.50 0.78 0.79 0.22

a Ref [47], experimental values calculated at 298.15 K. Results for 2,2,3,3-tetramethylbutane
and 2,3,4-trimethylpentane are omitted for lack of reference data.
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Figure 5: Parity plot for standard entropy. The shaded region represents the interval of
±3.35 calmol−1K−1 (±1 kcal mol−1 of TS at 298 K).

Table 3: Standard Entropies for Selected Molecules at 298.15 K (cal mol−1K−1)

Molecule ref.a HO UM-T PGHO
UM-T PGHO

CM-T PGUM-T
CM-T

Ethylene glycol 74.53 68.23 73.67 74.18 75.47 74.96
Ethyl ether 81.90 76.47 79.64 79.97 80.97 80.64
Ethanedial 65.11 72.11 75.51 75.72 68.44 68.23
2,2-Dimethylbutane 85.72 83.52 87.22 87.72 88.87 88.37
2,3-Dimethylbutane 87.46 80.72 85.74 86.58 85.78 84.94
2,2,3,3-Tetramethylbutane 93.05 87.10 90.26 91.25 93.86 92.87
Isopentane 82.16 78.63 81.97 82.39 83.36 82.94
Neopentane 73.14 72.2 73.81 74.02 74.46 74.25
2-Methylpentane 91.06 84.96 90.56 91.01 94.60 94.15
3-Ethylpentane 98.35 88.58 96.66 97.24 103.3 102.7
2,2-Dimethylpentane 93.90 89.95 94.69 95.27 96.47 95.89
2,3,4-Trimethylpentane 102.1 91.44 97.12 98.07 104.1 103.1
RMSE 6.32 3.61 3.47 2.53 2.24

a Ref [47], experimental values calculated at 298.15 K.
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A summary of the RMSEs of the calculated heat capacity, entropy, enthalpy, and free
energy is given in Figure 6 for all methods. For nearly all thermodynamic quantities cal-
culated, the PGUM-T

CM-T method outperforms harmonic, UM-T, PGHO
UM-T, PGHO

CM-T alternatives.
The Gibbs free energy RMSEs of the PGUM-T

CM-T method and the UM-T method are compa-
rable, nevertheless, due to the compensation of generally overestimating the enthalpy with
underestimating the entropy. For accuracy of enthalpy and entropy, PGUM-T

CM-T remains the
preferable method.

To analyze the temperature scaling of the PGUM-T
CM-T method and Hamiltonian Monte Carlo

relative to HO, UM-T, PGHO
UM-T, and PGHO

CM-T, we performed computations of the heat ca-
pacity using 2,2,3,3-tetramethylbutane as an example. We use the constant pressure heat
capacity for these studies because, as opposed to other computable thermodynamic quanti-
ties, temperature dependence studies of heat capacities are widely available. The computed
values for an array of temperatures were thus benchmarked against these reference data,
which were obtained from the NIST database [47]. The results are given in Figure 7. We
find that at intermediate temperatures, PGUM-T

CM-T generally outperforms uncoupled mode ap-
proximations, and notably outperforms the HO approximation. As temperature increases,
uncoupled methods and the HO method steer from the expected value, while coupled meth-
ods PGHO

CM-T and PGUM-T
CM-T remain relatively stable. At higher temperatures, however, the

HMC sampling could not give convergent results in the amount of samples specified by our
sampling protocol. This is attributed to the Hamiltonian Monte Carlo algorithm relying on
the gradient scaled by β. When temperature increases, the energy distribution flattens, which
is known to cause gradient-based methods to fail [48]. Because the NUTS algorithm relies
on exploration of the PES through time integration of the potential gradient and chooses
samples based on the criterion of a turn in trajectory, these low-gradient distributions cannot
be reliably explored. Consequently, our implementation of the PGHO

CM-T and PGUM-T
CM-T meth-

ods, which use NUTS exclusively, is most useful at temperatures where the PES still has
significant curvature. This could possibly be remedied by using non-gradient-based MCMC
algorithms, increasing the number of samples, or adapting HMC for these edge cases, as has
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been proposed to explore multimodal distributions with significant flat features [48].
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Figure 7: Temperature scaling of constant pressure heat capacity of 2,2,3,3-
tetramethylbutane across HO, UM-T, PGHO

UM-T, PGHO
CM-T, and PGUM-T

CM-T methods. The
dashed line represents the expected value, with the gray shaded region representing the
range of ±1 cal mol−1 K−1. The hatched green region denotes the range where Hamilto-
nian Monte Carlo begins to become computational intractable.

We also examined the computational scaling of each method against each other. For a
molecule with N torsions, a brute force finite-difference approach to sampling the potential
energy surface at a 10◦ resolution scales as 36N . This is in contrast to the uncoupled mode
scaling of the HO, UM-T, and PGHO

UM-T methods, which scales simply with N . For mode-
coupled approximations (PGHO

CM-T and PGUM-T
CM-T) solved using HMC, we generally found the

energies of all molecules to converge to values within 0.1 RT in fewer than 10,000 samples
even in higher dimensional cases. The tradeoff, however, is that higher-dimensional systems
can require more gradient calculations per sample. As a typical example, we examine the
case of isobutane, which on average required 15 gradient calculations per sample using the
NUTS algorithm. The convergence plot for isobutane as a function of the total number of
computations, with N = 4 torsions, is given in Figure 8. From this analysis, we note that the
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convergence of the energy is achieved between 362.5 calculations, a significant improvement
from 364 given by the finite-difference solution. In even the highest-dimensional systems,
we experienced similar improvement, requiring on the order of 105 computations at most for
convergence.
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Figure 8: Convergence of the energy of isobutane as a function of number of computations.
The number of computations includes both the single point energy samples at desired
sampling configurations and the gradient calculations required in the HMC algorithm. The
y-axis represents the difference in expected value for the nth iteration minus the previous
iteration. The convergence criterion of 0.1 RT is given by the shaded region.

5. Conclusions

We have explored generalized Pitzer-Gwinn approximations for describing the thermody-
namics of molecules with torsional mode coupling, for which a direct rigorous description is
difficult. In its original formulation, the PGHO

CM-T was applied to torsional internal modes,
for which it demonstrated remarkable improvement against the standard normal mode HO
approximation. Continuing this work, Truhlar and coworkers have found similar improve-
ment in obtaining improved PG corrections by using more informative harmonic reference
potentials, such as that of the multiconformer HO model [19, 20, 21]. The method pre-
sented here uses an even more informative reference potential in the UM-T approximation,
which describes the discrete mode uncoupled energy levels for explicitly anharmonic inter-
nal rotations. We have demonstrated that using this reference potential in the classical,
torsional mode-coupled PES of molecules with significant torsional anharmonicity provides
an accurate, computationally feasible way of assessing the coupling of torsions in gas phase
molecules.

Benchmarked against accepted thermodynamic quantities, the PGUM-T
CM-T method generally
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outperforms the HO, UM-T, PGHO
UM-T, and PGHO

CM-T approximations for molecules with sig-
nificant internal rotations. Harmonic approximations tend to underestimate the expected
thermodynamic observables in large part because they fail to represent multiple degenerate
conformers. While the UM-T and PGHO

UM-T methods account for the non-locality and anhar-
monicity of the PES, they too can yield substantial errors if internal rotations are treated as
uncoupled. The PGHO

CM-T method includes mode coupling, but is still generally outperformed
by PGUM-T

CM-T, attributable to shortcomings in using the HO reference potential. The PGUM-T
CM-T

method thus proves superior in predicting experimental observables because it accounts for
the anharmonicity in the reference potential and coupling of internal rotations in its clas-
sical description of torsions. The superiority of PGUM-T

CM-T extends to the thermodynamics of
gas-phase molecules at intermediate temperatures. Another key aspect of coupled mode PG
methods is how efficiently the multidimensional configurational integral can be evaluated.
For this purpose we employed the NUTS algorithm within Markov chain Monte Carlo. We
found at standard conditions, the NUTS sampler requires substantially less computational
time against the finite-difference solution. Beyond 800 K, however, the same effect could not
be realized because of the unsuitability of the Hamiltonian Monte Carlo sampling method
for flat distributions.

The generalizability of PG methods suggests that similar schemes can be employed for
external degrees of freedom, such as hindered rotations and translations for which harmonic
approximations are known to yield substantial underestimations of thermodynamic quan-
tities, particularly the entropy. In this context, this study suggests thermodynamics may
be improved by using a variational method to determine discrete energy levels in the un-
coupled limit, employing a PG scheme with a reference solved variationally, and accounting
for multiple rotational and translational conformers by sampling the external mode-coupled
potential energy surface.
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Chapter IV

Effects of Confinement on the
Estimation of Enthalpies and Entropies
of Small Molecule Adsorption in Zeolites

Rotational and translational contributions to the thermodynamics of adsorption are in-
vestigated using density functional theory in a QM/MM scheme for species in H-CHA

and H-MFI. Conventional harmonic approaches ill-enumerate molecular motion of species
affixed to surfaces, neglecting the anharmonic and non-local complexity of hindered rota-
tional and translational degrees of freedom. By contrast, our approach explicitly considers
the full-dimensional potential energy surfaces associated with orientation (rotation) and po-
sition (translation) of rigid molecules confined by the zeolite walls and interacting with a
binding site. For rotations, classical, semi-classical, and quantum partition functions are
considered. These methods involve sampling the rotational potential energy surface using
an Euler angle parametrization of adsorbate orientations. Wigner D-Matrix basis functions
are used to describe the rotational potential energy surface, classical rotational partition
functions are obtained by numerical quadrature, and quantum rotational partition functions
are determined using the variational method. These approximations are used together with
translational partition functions approximated by local harmonic approximations and non-
local classical approximations, the latter which is determined by the accessible volume of
the zeolite. The methods presented provide a more rigorous description of relevant modes of
adsorbed species, leading to a more accurate prediction of the thermodynamic properties of
adsorbed molecules. In particular, when we compare against experimental adsorption data,
we find that anharmonic rotational and translational approximations are favored for weakly
bound adsorbates such as small alkanes in H-CHA, suggesting non-local potential energy
surfaces should be used to describe their thermodynamics. For strongly bound molecules
such as hydrogen-bonded adsorbates methanol and ethanol in H-MFI, non-local rotational
approximations yield predictions that are comparable to those obtained using harmonic po-
tentials. Conversely, local translational approximations such as the harmonic approximation
outperform the non-local translational approximations when compared against experimental
adsorption data. We thus find anharmonic rigid rotor approximations capable of describing
the thermodynamics of rotation for both extremes, and suggest improvement/generaliza-
tion of anharmonic translational approximations through a more informed description of the
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non-local potential energy surface.

1. Introduction

Zeolites are used as adsorbents and catalysts for a wide range of applications, including
hydrocarbon synthesis [1, 2], carbon capture [3, 4], molecular sieving [5, 6], and pollution
control [7, 8]. All of these applications share a common feature that one or more components
are adsorbed within the zeolite, where, in the case of catalysis, they may undergo chemical
transformations to form products. Hence, understanding the thermodynamics of adsorption
in terms of the properties of the adsorbate and the adsorbent, i.e., the zeolite, becomes
highly important. Great progress has been achieved in determining the thermodynamics of
weak molecular adsorption (physisorption) using classical potentials (e.g. Lennard-Jones and
Coulombic potentials) and Monte Carlo or molecular dynamics methods [9, 10]. However,
these approaches depend on the parametrization of potentials to fit measured enthalpies and
entropies of adsorption. While the parameters thus obtained are transferable within a class
of molecules (such as hydrocarbons), it is neither possible to readily determine how these
parameters will change with changes in the adsorbate composition and structure, nor with
changes in the composition and structure of the zeolite. A more rigorous and satisfying
approach would be to use electronic structure methods, such as density functional theory
(DFT) to determine the energy of adsorption at 0 K. However, generalization of electronic
structure to finite temperature remains among the most difficult challenges towards devel-
oping a full ab initio description of the thermodynamics, namely the enthalpy and entropy
of adsorption. Significant progress along these lines has been made, and today enthalpies of
adsorption can be determined by such means with chemical accuracy (± 5 kJ mol−1 [11]) [9,
12, 13, 14]. Despite this, reliable methods for determining the entropy of adsorption are still
under debate [12, 15, 16, 17, 18, 19, 20, 21].

The frequently-invoked harmonic oscillator (HO) approximation has been found to sys-
tematically underestimate the entropy of adsorption [12, 21, 22]. In this approximation, the
internal motions in a system are represented as a collection of “normal modes” with local-
ized, quadratic potential energies. Moreover, it should be recognized that the modes with
the lowest vibrational frequencies carry the largest entropic contributions. Consequently,
small errors in the predicted frequency consequently lead to large errors in the predicted
thermodynamics. Such is the case for hindered translational and hindered rotational degrees
of freedom, which tend to have low vibrational frequencies. For computational studies on
systems whose reaction kinetics depend on adsorption free energies, the accuracy of available
methods is therefore extremely limited.

Attempts have been made – often with good success – to correct entropies obtained by the
HO approximation through quasi-harmonic interpolation approaches [9, 18] and anharmonic
sampling along normal mode coordinates [19, 20]. However, these approaches also fail to
account for the potentially non-local energy landscape associated with frustrated rotations
and translations of adsorbates interacting with a binding site. This problem is reminiscent of
gas phase internal rotations, where frustrated intramolecular rotations of chemical moieties
are particularly anharmonic and non-local. Past contributions addressing the anharmonicity
of these modes using uncoupled mode and Pitzer-Gwinn approximations have found that
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local potential energy approximations, including anharmonic internal coordinate sampling,
yield poor predictions of the gas phase thermodynamics when compared against experimental
measurements [23]. Instead, better results are obtained through explicitly sampling along
the dihedral coordinates of internal rotations, and leaving local approximations to the less
thermodynamically-relevant vibrational modes.

In light of this observation, a first principles approach to surface chemistry should in-
clude direct enumeration of rotational and translational anharmonicity. In principle, this
is possible through sampling the full-dimensional potential energy surface using molecular
dynamics, Monte Carlo methods, or hybrid approaches. However, these methods can require
millions of samples in order to reach convergence, and rapidly becomes intractable for large
systems, especially at rigorous levels of electronic structure theory [24]. This motivates us
to pursue general uncoupled descriptions for the potential energy surfaces of adsorbate ro-
tations and translations, from which direct calculation of thermodynamic properties can be
derived straightforwardly.

In this work, two uncoupled mode approximations are investigated: one for non-local
rotations and one for non-local translations. The uncoupled rotational PES was found by
treating the adsorbate as a rigid rotor. This is done by sampling rotational motion un-
der an Euler angle parametrization of adsorbate orientations. A representation of the PES
was then obtained by fitting the samples to the SO(3) Fourier series [25]. This allowed us
to obtain the classical, quantum, and harmonic-reference Pitzer-Gwinn partition functions
for rigid rotation. For translations, a non-local representation of the translational partition
function was obtained using a description of the occupiable volume of unit cell of the zeolite.
Using a previously-developed QM/MM framework for zeolites, adsorption thermodynam-
ics of methane and ethane in H-CHA, and propane, methanol, and ethanol in H-MFI are
considered and benchmarked against experimental references. We find considerable promise
in directly modeling adsorbate rotations and non-local translations for relatively weakly-
bound species, where substantial entropic contributions are retained from the gas phase. We
find similar promise in direct rotational modeling for more strongly-bound species, such as
hydrogen-bonded species, wherein multiple stable H-bond configurations can be considered
compared to strictly local approximations. Additionally, we find translational approxima-
tions for strongly bound species to be best described by local approximations such as the
HO approximation, while weakly bound species require explicit enumeration of translational
freedom under a more rigorous approximation.

2. Theory and Methods

The thermodynamics of adsorption are derived from a description of the canonical partition
function, which is an enumeration of the possible energetic states the adsorbate can occupy
in the canonical ensemble. Classically, we solve this problem by taking an integral over the
Boltzmann-distributed energies, leading to one momentum and one configurational integral

Qcl =
1

h3

∫
d3p

∫
d3q e−βH(p,q)

=
1

h3

∫
d3p e−β p·p/2m

∫
d3q e−βV (q) (4.1)
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where H is the Hamiltonian, p denotes the momentum of the adsorbate (interchangeable
with angular momentum L for angular motion), q is the parametrization of the relevant
motion in space, m is the mass of the adsorbate (or moment of inertia I), and V is the
potential energy. Similarly, the quantum partition function is solved by summation over the
energy eigenvalues of the Hamiltonian operator

Ĥ |Φj〉 =

[
p̂ 2

2m
+ V̂

]
|Φj〉 = Ej |Φj〉 (4.2)

Qqu =
∑
j

gj e
−βEj (4.3)

where Ej is the energy of the jth eigenstate |Φj〉, and gj is the degeneracy of the same.
The energy, and therefore the overall Hamiltonian, is often decomposed into nuclear and

electronic contributions under the Born-Oppenheimer approximation, the former further
decomposed into rotational, translational, and internal contributions. Consequently, the
overall partition function is given as a product of these individual contributions, from which
the thermodynamics of each can be solved independently.

Etot = Etrans + Erot + Eint + Eelec (4.4)

Qtot = QtransQrotQintQelec (4.5)

Relevant thermodynamic state functions follow from standard thermodynamic relations
derived from the partition functions,

A = − 1

β
logQ (4.6)

E = −∂ logQ

∂β
(4.7)

H = E + PV (4.8)

S =
E − A
T

(4.9)

G = H − TS (4.10)

where A, E, H, S, andG are respectively the Helmholtz free energy, average energy, enthalpy,
entropy, and Gibbs free energy associated with the relevant motion whose partition function
is Q. The parameters P and V are the pressure and volume of the system. In the gas phase,
the product PV is equivalent to the thermodynamic temperature β−1.

In this work, the electronic energy contribution is solved by density functional theory,
which considers only the ground state energy. The electronic partition function is not rel-
evant because the energies are always assumed to be in the ground state, and the thermal
contributions are contained within the other degrees of freedom. This is a good approxima-
tion in the low temperature limit, when electronic excitations can be neglected. Additionally,
internal motions such as vibrations and internal rotations are approximated to be mostly
retained from the gas phase to the adsorbed phase. Adsorption thermodynamics are deter-
mined by taking the difference between the adsorbed and gas phase quantities, resulting in
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the cancellation of intramolecular contributions and leaving purely external rotational and
translational contributions. The resulting adsorption energies, enthalpies, and entropies are

∆Eads = ∆Etrans + ∆Erot + ∆Eelec (4.11)

∆Hads = ∆Eads + P∆V (4.12)
∆Sads = ∆Strans + ∆Srot (4.13)

The next sections will detail how electronic, rotational, and translational contributions are
derived from first principles for models of molecules adsorbed in zeolites.

2.1. Molecular Model and Energy Calculations

The combinations of adsorbate and zeolite were chosen based on (1) the availability of
experimental data against which to compare, namely the enthalpy and entropy, and (2),
the presence of features that influence adsorption strength. While there is abundant data
on the adsorption thermodynamics of weakly-bound alkanes in zeolites, there is a relative
dearth on strongly-bound species, such as oxygenated compounds that interact with binding
sites by hydrogen bonding. The generality of the approach developed herein is tested at
both extremes. The chosen candidates are methane and ethane in H-chabazite, for which
we expect to observe confinement effects, and methanol, ethanol, and propane in H-MFI, for
which we expect to observe varying degrees of binding strength.

The charge-compensating proton accompanying a framework aluminum atom in H-CHA
and H-MFI is considered as the primary binding site. In CHA, the acidic proton extends into
pore vacuum of one of its straight channels, while in MFI, it extends into the intersection of
two channels. In modeling both structures, the QM region was chosen to encompass as many
of these features as computationally feasible. The extended zeolite framework surrounding
the chosen QM region constitutes the MM region. These structures are depicted in Figures
1 and 2.

Adsorption geometries were generated by geometry optimization of each substrate within
the QM/MM framework, with full relaxation of the QM region. Electronic structure calcula-
tions were performed using the ωB97X-D density functional [26] and the def2-SVP basis set
[27], with non-zeolite MM contributions represented by the CHARMM force field [28], and
framework MM contributions represented by improved Lennard-Jones parameters optimized
for zeolites [9]. Thermal analysis, including potential energy sampling described in the sec-
tions below, was done at the same level of theory. Refined electronic energies for optimized
geometries were performed at the more rigorous ωB97M-V / def2-TZVP level of theory [27,
29]. All electronic energy calculations were performed using a developmental version of the
Q-Chem software package [30].

2.2. Adsorbate Rotations

Parametrization of a Molecular Top

The three-dimensional rotation group SO(3) describes all rotations about the origin of three
dimensional Euclidean space R3, and has several candidate parametrization schemes, in-
cluding Euler angles, Tait-Bryan angles, and quaternions [31]. We employ an Euler angle
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Figure 1: QM/MM Model for H-CHA. Yellow, red, blue, and white molecules represent sili-
con, oxygen, aluminum, and hydrogen atoms in the QM region. Gray silhouetted molecules
represent the encompassing silica MM region. The top orthographic projection highlights
the acidic proton and proximal aluminum dopant viewed down the straight channel of the
structure. The bottom view depicts the QM region viewed from the side. Both structures
are equivalent.
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Figure 2: QM/MM Model for H-MFI. Yellow, red, blue, and white molecules represent sili-
con, oxygen, aluminum, and hydrogen atoms in the QM region. Gray silhouetted molecules
represent the encompassing silica MM region. The top orthographic projection is viewed
down the straight channel pore of the structure. The bottom view depicts the QM region
viewed from the side, highlighting the acidic proton and proximal aluminum dopant. Both
structures are equivalent.
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Figure 3: Geometric Interpretation of the Euler Angle Parametrization of a Molecular Top.
Dark red, green, and blue arrows represent laboratory frame axes. Light red, green, and
blue counterparts represent the molecular frame axes. The yellow vector represents the line
of nodes. Azimuthal (φ), polar (θ), and intrinsic rotation (χ) angles are labeled accordingly.

parametrization, which is well-documented in angular momentum and harmonic analysis
texts [25, 32, 33, 34]. Under this parametrization, the orientation of a rigid body is described
by elemental rotations by angles φ, θ, and χ, with respect to a fixed coordinate system. For
rotating molecules, the fixed coordinate system, often referred to as the laboratory frame, is
denoted by XY Z, and the body-fixed frame, also known as the "molecular frame", by xyz.
We employ the ZY Z convention shared by Zare [32], Kroto [33], and Brink and Satchler [34],
wherein each net rotation is the result of three chained rotations by χ about Z, θ about Y ,
and φ about Z, in that order. This is an equivalent parametrization to the zy′z′′ convention,
where rotations are instead referenced to the molecular axes (φ about z, θ about y′, and χ
about z′′, in that order). The equivalence is shown in Appendix C. Linear molecules contain
only two rotational degrees of freedom, leading to a simple spherical parametrization of its
rotations. In this chapter, we consider rotations of non-linear molecules, which are more
general.

Potential Energy Surface

Determining the thermodynamics quantities for our systems of interest first requires a de-
scription of the potential energy surface. Computationally, this must be achieved by dis-
cretely sampling energies on the relevant domain, followed by numerical fitting, interpolation,
or series expansion of sampled points. Previous studies solving the one-dimensional potential
energy surfaces of internal rotations, for example, begin by sampling a uniform discretization
of the dihedral angle. The resulting discrete function is fitted to a Fourier series or spline
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interpolated [23, 35].
Analogously, obtaining the rotational potential energy surface begins by sampling a dis-

crete set of adsorbate orientations which are obtained by rigid rotation of the atomic coor-
dinates about the molecular center of mass. In the Euler angle parametrization scheme we
adopt, angles φ and θ together span a spherical domain, and χ spans a 2π-periodic domain.
A convenient discretization scheme should combine a spherical discretization for φ and θ pa-
rameters with a uniform discretization for χ. For spherical discretizations, popular methods
include Gauss-Legendre [36, 37], Hierarchical Equal Area isoLatitude Pixelation (HEALPix)
[38, 39], Chebyshev nodes [40, 41], and Lebedev grids [42, 43, 44]. For ease of numerical
integration, we chose a Lebedev discretization of φ and θ parameters, for which the number
and location of the grid points and set of numerical quadrature weights are determined by
enforcing the exact integration of spherical harmonics up to a given order. The χ angular
resolution was chosen to be approximately the average angular resolution of φ and θ, with
the number of χ sampling points determined by Nχ = b

√
πNθ,φc. A pictorial representation

of this discretization scheme is given in Figure 4. Computation of the single-point energies
at each point represents the computational bottleneck – accordingly, this method scales with
Nθ,φ

√
Nθ,φ/Nproc, where Nproc is the number of processors that can independently perform

the calculation at a gridpoint in parallel. The Lebedev grid and its associated integration
weights were generated using the Numgrid library [45], with orientations achieved using a
quaternionic rotation code with the origin defined as the orientation of the geometric min-
imum. We examined the effects of successively increasing Lebedev grid sizes with Nθ,φ =
50, 74, and 110 quadrature points, finding 74 Lebedev quadrature points to be sufficient for
modeling the rotational PES (see Table C.1).

A continuous representation of the potential from discretely sampled points is obtained
by a harmonic expansion in the appropriate basis. If the adsorbate were a linear rotor that
could be simply parameterized by φ and θ, we could expand the potential in the basis of the
spherical harmonics,

V (θ, φ) =
∞∑
`=0

∑̀
m=−`

v̂m` Y
m
` (θ, φ). (4.14)

The presence of a third inertial axis in non-linear rotors requires a representation that in-
cludes the additional χ angular parameter. This is possible by introducing an arbitrary
unitary rotation operator consistent with the ZY Z Euler angle convention previously de-
tailed

R̂(φ, θ, χ) = e−iφL̂Z e−iθL̂Y e−iχL̂Z (4.15)

where L̂Y and L̂Z are the angular momentum operators for rotations about the laboratory
frame Y and Z axes, respectively. From angular momentum eigenvalue relations discussed
in Appendix C, it immediately follows that rotations in the spherical basis are described by
the elements of the rotation matrix, well-known as the Wigner D-Matrix

D`
mk(φ, θ, χ) ≡ 〈`m|R̂(φ, θ, χ)|`k〉 = e−imφ d`mk(θ) e

−ikχ (4.16)

d`mk(θ) ≡ 〈`m|e−iθĴy |`k〉 =

√
(`+ k)! (`− k)!

(`+m)! (`−m)!

(
sin

θ

2

)k−m(
cos

θ

2

)k+m

P
(k−m, k+m)
`−k (cos θ)

(4.17)
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Figure 4: Schematic Representation of Potential Energy of Adsorbed Molecular Species
Sampled on SO(3). Pictured: centroid-represented, oriented methane embedded in the
QM region. For clarity, the MM region is not pictured. Azimuthal and polar angles are
discretely sampled on a Lebedev grid. Intrinsic spin angles are sampled at the same average
angular resolution as the grid.
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The function d`mk(θ) of Equation 4.17 is the reduced rotation matrix, also known as the
Wigner (small) d-matrix, which is further expressed as a function of the Jacobi polynomials
P

(α,β)
n (x), which are a generalization of the Legendre polynomials.
Wigner D-Matrix elements form a complete set of orthogonal functions, with∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχ D`′∗
m′k′(φ, θ, χ)D`

mk(φ, θ, χ) =
8π2

2`+ 1
δ`′` δm′m δk′k (4.18)

Thus, any function of φ, θ, and χ can be expanded in the basis of Wigner D-Matrix elements
to the bandlimit Lmax, which is the maximum degree ` for which the expansion coefficients
are non-zero.

V (φ, θ, χ) =
Lmax∑
`=0

∑̀
m=−`

∑̀
k=−`

v̂`mkD
`
mk(φ, θ, χ) (4.19)

v̂`mk =
2`+ 1

8π2

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχ V (φ, θ, χ)D`∗
mk(φ, θ, χ) (4.20)

The expansion coefficients relate to V by the SO(3) Fourier transform (SOFT) and are solved
by evaluating the inner product given in Equation 4.20. This can be solved using quadrature
rules for our discretization scheme. However, determining an appropriate bandwidth has
been shown to be a challenging task, with increasing bandwidth often leading to diverging
results or aliasing [25]. We instead cast SOFT(V ) as the matrix vector product

Dv̂ = v (4.21)

where D is a matrix of all Wigner D-Matrix elements (up to the maximum order) at every
sampling position. The rows of D are indexed by i, and correspond to the position of
the sampling point (φi, θi, χi), while the columns of D are indexed by j, which is uniquely
mapped to the `mk index by j = 4

3
`3 + 2`2 + 5

3
` + 2`m + k. Dij is therefore the Wigner

D-Matrix element at the `mk index corresponding to j, evaluated at the sampling point
(φi, θi, χi). The dimensions of D are Nφ,θ,χ × N`mk, where Nφ,θ,χ = Nθ,φNχ and N`mk =
1
3
(`max+1)(2`max+1)(2`max+3). The vector v̂ is the vector of v̂`mk Fourier coefficients indexed

by j, and the vector v is the vector of sampled potential energies indexed by i, in other words
vi = V (φi, θi, χi). Because D is generally not invertible, the Fourier coefficients are solved
by the Moore-Penrose pseudoinverse (denoted by superscript +) through its singular value
decomposition D = UΣV†.

v̂ = D+v

= VΣ+U†v (4.22)

The factorization features the complex unitary matrices U and V, which have dimensions
Nφ,θ,χ × Nφ,θ,χ and N`mk × N`mk, respectively. The matrix Σ is rectangular diagonal with
dimensions Nφ,θ,χ × N`mk, whose diagonal entries ςi = Σii are the so-called singular values.
Σ+ is easily solved by replacing the non-zero diagonal elements by their reciprocals and
transposing the resulting matrix.

The Wigner D-Matrix functions used for fitting were calculated using open access code
for spherical harmonic functions [46]. The SOFT coefficients for each system sampled under
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this method were iteratively solved up to a coefficient of determination of R2 > 0.99. This
criterion was generally met at a maximum order `max < 10 for potential energy surfaces of
molecules in this work.

Partition Functions

The classical partition function for adsorbate rigid rotation (RR) are given by

Qcl,RR
rot =

1

σ

√
IxIyIz

(2πβ~)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχ e−βV (φ,θ,χ) (4.23)

which is derived from Equation 4.1. In this expression, Ix is the moment of inertia about
the molecular x axis, Iy about the y axis, and so forth. The parameter σ is the rotational
symmetry number for our parametrization, and V (φ, θ, χ) is the potential energy given by
Equation 4.19. The subscript RR denotes that this is the partition function under the rigid
rotor approximation. In the limit of gas phase free rotation (i.e. zero potential), this equation
reduces to the well-known free rotor (FR) partition function for non-linear rotors,

Qcl,FR
rot =

√
π

σ

√
(kBT )3

ABC
(4.24)

where A, B, and C are the rotational constants associated with the molecular y, z, and
x axes, respectively, a convention adapted from Kennerly [47]. The rotational symmetry
numbers and rotational constants were determined using the Reaction Mechanism Generator
(RMGPy) software package [48], which determines these quantities through analysis of the
atomic coordinates of the adsorbate. The integral in Equation 4.23 is most conveniently
solved using numerical quadrature for which integration weights w are known for Lebedev
discretizations. The result is given by∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχ e−βV (φ,θ,χ) =
8π2

Mχ

Mχ∑
p=1

Mθ,φ∑
q=1

wq e
−βV (φq ,θq ,χp) . (4.25)

whereMχ andMθ,φ were chosen such that the integration grid is much finer than the sampling
grid. Generation of grid points and integration weights was again facilitated by the Numgrid
library [45], and Wigner D-Matrix functions are computed using spherical function software
[46].

Pitzer-Gwinn [49] and variational solutions for rigid rotation were also considered. The
former was originally formulated to describe the quantum effects of molecular internal ro-
tations. This involved correcting classical torsional potential energies by the difference in
the quantum and classical potential energies of a harmonic oscillator reference. In terms
of partition functions, this results in the following expression for a given one dimensional
torsion,

Q
PGHO

CM-T
tors =

Qqu,HO
tors (ωτ )

Qcl,HO
tors (ωτ )

Qcl
tors.. (4.26)
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The quantum and classical HO partition functions are functions of the normal mode fre-
quency corresponding to the internal rotation, ωτ . The expression for the quantum and
classical HO partition functions are, for a general frequency ω,

Qqu,HO(ω) =
e−β~ω/2

1− e−β~ω
(4.27)

Qcl,HO(ω) = (β~ω)−1 (4.28)

In the limit that the classical torsional potential resembles the reference classical HO, the
quantum HO thermodynamics are thus recovered. The rotational analog employs a rigid
rotor classical potential, keeping the HO reference correction factor.

Q
PGHO

RR
rot =

Qqu,HO(ωφ)Qqu,HO(ωθ)Q
qu,HO(ωχ)

Qcl,HO(ωφ)Qcl,HO(ωθ)Qcl,HO(ωχ)
Qcl,RR

rot (4.29)

Because non-linear rigid rotations are three-dimensional, harmonic reference partition func-
tions are products of each one-dimensional normal mode frequency corresponding to rota-
tional motion, ωφ, ωθ, ωχ. These are calculated by considering only a partial Hessian that
includes the atoms of the adsorbed species.

On the other hand, the variational solution to rigid rotation is Hessian-free, solved with
normalized Wigner D-Matrix element basis functions given by

ψ`mk(φ, θ, χ) ≡ 〈φ, θ, χ|`mk〉 =

√
2`+ 1

8π2
D`∗
mk(φ, θ, χ) (4.30)

The elements of the Hamiltonian matrix in this basis is constructed by the following expres-
sion, and then diagonalized to obtain the energy eigenvalues to solve Equation 4.3:〈

`′m′k′
∣∣Ĥ ∣∣`mk〉 =

1

2

[
(A+ C) `(`+ 1) + (A− C)κk2

]
δ`′`δm′mδk′k

+
1

4
(C −A)

√
`(`+ 1)− k(k ± 1)

√
`(`+ 1)− (k ± 1)(k ± 2) δ`′`δm′mδk′k±2

+

√
2`′ + 1

2`+ 1

∑
`′′

∑
m′′

∑
k′′

v̂`
′′
m′′k′′

〈
`′m′`′′m′′

∣∣`m〉 〈`′k′`′′k′′∣∣`k〉 (4.31)

where κ = 2B−(A+C)
A−C , A, B, and C are the rotational constants in the previously-defined

convention, v̂`mk are the Fourier coefficients of Equation 4.20, and 〈`′m′`′′m′′|`m〉 are the
Clebsch-Gordan coefficients. A derivation of the Hamiltonian matrix is given in Appendix
C. The Hamiltonian matrix was constructed under an OpenMP parallelization scheme [50],
with Clebsch-Gordan coefficients calculated using a C++ library by Dumont [51]. Eigen-
decomposition was performed using Armadillo, a C++ library for scientific computing [52],
after which the partition function was solved by the summation in Equation 4.3. An iteration
convergence tolerance of 10−6 determined the minimum number of basis functions required.

Finally, the RR thermodynamics for all these methods were benchmarked against the
HO approximation. The partition function for all the rotational harmonic frequencies is
equal to the quantum HO reference partition function in the numerator of Equation 4.29,
with each component HO partition function given by Equation 4.27 and each harmonic
frequency again determined by diagonalization of the partial Hessian of only adsorbate atoms.
Thermodynamic derivations under the HO, PGHO

RR, classical rigid rotor (RRcl) and quantum
rigid rotor (RRqu) approximations are given in Appendix C.

65



2.3. Translational Partition Functions

The partition functions for gas phase molecules are approximated classically, beginning from
Equation 4.1. This results in the following well-known expression for free translation (FT):

Qcl,FT
trans =

(
M

2πβ~

)3/2

V (4.32)

where M is the mass of the molecule and V is the volume. Similarly, we wish to evaluate
partition functions for non-local modes of translation in zeolitic systems, for which local
harmonic approximations significantly undercount. Just as ideal gas partition functions
involve integration over the volume available to the gas, non-local translational partition
functions involve integration over the accessible cell volume of the enclosing zeolite Vacc.
This leads to the following expression for non-local translation (NLT) of the adsorbate.

Qcl,NLT
trans =

(
M

2πβ~

)3/2

Vacc (4.33)

The accessible volume obviously depends not only on the zeolite framework, but also
the size of the translator. Good estimates of the accessible volume for water in a number
of zeolites have been attained computationally through sphere-packing methods [53], which
provide a good starting point for estimating the accessible volume for more adsorbates of
interest. More sophisticated sphere-packing sampling algorithms for micropore character-
ization have more recently been explored [54]; although not to a level of granularity for
characterizing accessible volumes of signicantly non-spherical molecules. Nevertheless, we
proceed with the available data computed for water in H-CHA and H-MFI, and generalize
the accessible volume of a generic adsorbate as

Vacc(r) =
r3
H2O

r3
VH2O

acc (4.34)

where r is the kinetic radius of the molecule of interest, rH2O is the kinetic radius of wa-
ter, and VH2O

acc is the accessible volume of water in a given zeolite. The rationale for this
expression is that an (approximately spherical) adsorbate occupying x times as much space
as (approximately spherical) water will have 1/x times the accessible volume in the unit
cell. The values of VH2O

acc were obtained through the online database for zeolite structures
compiled by Baerlocher and McCusker [55].

As with rotational methods developed in this work, the NLT method is benchmarked
against the HO approximation, for which the partition function is the product of harmonic
partition functions associated with translational normal mode frequencies ωx, ωy, and ωz.

Qqu,HO
trans (ωx, ωy, ωz) = Qqu,HO(ωx)Q

qu,HO(ωy)Q
qu,HO(ωz) (4.35)

These frequencies were also determined by visualization of the normal modes of the partial
Hessian including only adsorbate atoms. The thermodynamics derived from these approxi-
mations are given in Appendix C.
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Table 1: Generalized Procedure for Computing Translational and Rotational Thermody-
namics of Adsorbed Species

Trans. Method Rot. Method
HO NLT HO PG RRcl RRqu

Geometry optimization and single point
energy calculation

Mass-weighted Hessian diagonalization × · × × · ·
Potential energy surface sampling · · · × × ×
Hamiltonian matrix diagonalization · · · · · ×

Computation of partition function and
thermodynamics

2.4. Computational Procedure and Additional Details

The synthesis of the concepts and protocols detailed above are summarized in a workflow di-
agram, Table 1, with necessary steps for each translational and rotational method indicated
by a cross. Computational analysis for each system begins with geometry optimization of the
system of interest, followed by single point electronic energy calculations. This provides the
zero-Kelvin baseline to which subsequent thermal corrections are added. Depending on the
combination of translational and rotational methods, the succeeding steps are vibrational
analysis through diagonalization of the mass-weighted Hessian, sampling of the potential
energy surface, and/or construction and diagonalization of the Hamiltonian matrix. Calcu-
lation of partition functions and the thermodynamics therefrom is the final step. Code for
rotational potential energy sampling and Hamiltonian matrix diagonalization is available in
public GitHub repositories [56, 57], which requires the previously-mentioned software depen-
dencies, as well libraries containing wrapper functions facilitating Q-Chem job script creation
[58].

3. Results and Discussion

3.1. Adsorption Structures and ab Initio Electronic Energies

Optimized structures representing the equilibrium positions and orientations of candidate
adsorbates are shown in Figures 5 and 6. Electronic energies of adsorption accompanying
these geometries appear in Table 2, along with previously reported values determined using
different levels of theory. Alkanes exhibit relatively weak binding affinity to the acidic proton
of their respective frameworks, and within the selection of alkanes, increasing chain length
results in increased adsorption strength. Methane has the weakest binding strength with an
adsorption energy of -29.81 kJ mol−1 , followed by ethane at -42.75 kJ mol−1 , and propane at
-72.27 kJ mol−1 . For these species, the interaction distance between the primary carbon of
the molecule and the acidic proton is greater than 2 Å. The predicted electronic adsorption
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Figure 5: Adsorption geometries of methane (top row; two views) and ethane (bottom row;
two views) in H-CHA. The QM region alone is pictured for clarity. Yellow atoms represent
silicon; red, oxygen; blue, aluminum; black, carbon; and white, hydrogen. Bond lengths to
the acidic proton are indicated in the left column.
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Figure 6: Adsorption geometries of propane (top row; two views), methanol (middle row;
two views), and ethanol (bottom row; two views) in H-MFI. The QM region alone is pictured
for clarity. Yellow atoms represent silicon; red, oxygen; blue, aluminum; black, carbon; and
white, hydrogen. Bond lengths to the acidic proton are indicated in the left column.
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Table 2: Calculated Electronic Adsorption Energies [kJ mol−1 ] Species Adsorbed in Zeolites

Species Zeolite This worka Literature refs.
Methane H-CHA -29.81 -32.3b -25.3c

Ethane H-CHA -42.75 -43.4b -36.2c

Propane H-MFI -72.27 -68.5d -58.0e

Methanol H-MFI -106.1 -117.7f -100.7g

Ethanol H-MFI -117.9 -133.2f -112.8g

aωB97M-V / def2-TZVP single point energy calculations at ωB97X-D / def2-SVP optimized
geometries; bPBE+D at the PBE+D optimized structure, ref. [59]; chybrid MP2:PBE+D,
ref. [19]; dPBE+D2 at the PBE+D2 optimized structure, ref. [60]; ehybrid MP2:PBE+D2
with a CCSD(T) correction, ref. [60]; f PBE+D2 at the PBE+D2 optimized structure, ref.
[20]; ghybrid MP2(Counterpoise-corrected, complete basis set):PBE+D2 with a CCSD(T)
correction at the PBE+D2 optimized structure, ref. [20].

energies for methane and ethane are in close agreement with those found by Göltl et al.
[59], and those for propane are similar to those found by Berger et al. [60]. These DFT
energies tend to be over-bound compared to electronic structure methods featuring higher
level corrections, such as hybrid DFT / Møller-Plesset perturbation theory (MP2) approaches
featuring coupled cluster single-double and perturbative triple (CCSD(T)) corrections [19,
60]. By contrast, electronic adsorption energies for methanol and ethanol are in closer
alignment to the determinations at hybrid DFT/MP2 levels of theory [20].

3.2. Thermal Corrections to the Electronic Energy

Methane adsorbed in H-CHA was chosen as a representative system for in-depth analysis
of competing methods before proceeding with the larger and significantly more complicated
adsorbates. We begin with a visualization of the sampled rotational potential energy surface
of methane given in Figure 7. This shows spherical representations of the potential energy at
different orientations of χ, obtained after solving for the Fourier coefficients through Equation
4.22. The PES features significant barriers along the polar coordinate θ at the equilibrium
position (φ, θ, χ) = 0. These barriers become surmountable with rotation of the molecule
by a small amount, which causes the spherical potential energy surface to flatten. As such,
we anticipate a substantial retention of rotational freedom from the gas phase using the
RR approximation, notwithstanding the confinement effects of the zeolite at the geometric
minimum.

Indeed, we find a substantial degree of rotational entropy is retained from the gas phase
to the adsorbed phase using RR and RR-like approximations, as shown in Table 3. For rota-
tions, uncoupled classical, Pitzer-Gwinn, and variational solutions predict retention of more
than 85% of the gas phase entropy, while harmonic approximations for rotations predict re-
tention of about 57% of the rotational gas phase entropy. Expectedly, the HO approximation
predicts a much more bound adsorption geometry. This is also the case for translational de-
grees of freedom, which account for the largest share of the total gas phase entropy. For these
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Figure 7: Spherical plots of the Wigner D-Matrix-fitted potential for methane adsorbed
in H-CHA. Each row represents an intrinsic rotational orientation described by χ, with
left spheres representing top-down views of the (φ, θ) potential energy surface, and right
spheres representing the respective antipodal views.

modes, the HO approximations predict only 20.6% retention of the gas phase translational
entropy, compared to 66.8% for NLT approximations. This is consistent with the analyses of
Campbell and Sellers [22] and Dauenhauer and Abdelrahman [21], who found weakly-bound
adsorbates were generally expected to retain two-thirds of their total gas phase entropies,
substantially more than is predicted by HO approximations.

Combining rotational and translational methods, we compare the computed thermody-
namics at experimental temperatures to the measured results, as shown in Table 4. We
note across all combinations of methods tested, predicted enthalpies are remarkably stable.
This is because the enthalpic term is dominated by the electronic energy, with variations
in the thermal corrections across all methods small by comparison. By contrast, entropic
terms are much more thermally sensitive, with a fully harmonic (HO/HO) entropic contribu-
tion to the free energy (i.e. −T∆S) of 38.0-41.7 kJ mol−1 versus non-local translator/rigid
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Table 3: Translational and Rotational Entropy Contributions: Methane in H-CHA

Mode Method ∆SMode
a [Jmol−1K−1 ] % S Retainedb

Translation HO -114.0 20.6
NLT -47.7 66.8

Rotation HO -23.5 56.7
PGHO

RR -6.69 87.7
RRcl -7.41 86.3
RRqu -6.53 88.0

aModal entropy contributions, calculated at T = 303 K.; bModal gas phase entropy reten-
tion at T = 303 K.

Table 4: Adsorption Thermodynamics of Methane in H-CHA for Translational/Rotational
Approximation Methods

Methane HO/HO HO/PG HO/RRcl HO/RRqu NLT/HO NLT/PG NLT/RRcl NLT/RRqu Exp.
∆ZPE 4.6 4.6 1.4 6.8 3.1 3.1 0 5.4
∆E0 -25.3 -25.3 -28.4 -23.0 -26.7 -26.7 -29.8 -24.4
T = 273 K
∆H -24.7 -21.5 -22.0 -21.8 -25.9 -22.8 -23.2 -23.0 -20.4a
−T∆S 38.0 33.2 33.5 33.2 20.6 15.8 16.1 15.8 17.7a
∆G 13.3 11.7 11.5 11.4 -5.3 -6.9 -7.2 -7.3 -2.7a

T = 303 K
∆H -24.2 -21.3 -21.7 -21.5 -25.6 -22.6 -23.0 -22.9 -17.0b

−T∆S 41.7 36.6 36.8 36.5 22.8 17.7 17.9 17.6 19.2b

∆G 17.5 15.3 15.1 15.0 -2.8 -4.9 -5.2 -5.3 2.2b

aH-CHA, Si/Al = 2.6, T = 273.2, ref. [61]; bH-SSZ-13, Si/Al = 14.4, T = 303 K, ref. [19]

rotor (NLT/RR) entropic contributions of around 16-18 kJ mol−1 . To this end, NLT meth-
ods are invariably more accurate in predicting adsorption entropies, with more granular
improvements achieved using PGHO

RR and RR approximations. In comparing the two experi-
mental references, we achieve considerably better enthalpic agreement from the experiments
of Barrer and Davies using H-CHA [61] compared to that of Piccini using H-SSZ-13, a more
siliceous H-chabazite [19]. Discrepancies in entropies between the two experiments, however,
are within the margin of chemical accuracy and are thus deemed insignificant.

An analysis of the effect of grid size on the methane adsorption showed no significant dif-
ference when decreasing grid size from 110 to 74, and 74 to 50 (see Table C.1). The savings
in computational effort being significant, further computations of rotational potential energy
surfaces were carried out using a Lebedev grid size of 74, for a total sampling set of 1036
and average angular resolution of 23.6 degrees. Additionally, thermodynamics calculations
were not pursued through variational solutions to the Schrödinger equation for the remain-
ing systems. This is primarily because direct diagonalization of the required Hamiltonian
matrix for molecules larger than methane exceeds computer memory limitations. Because
classical and Pitzer-Gwinn partition functions are significantly more tractable and compa-
rably accurate, sparse matrix eigen-decompositions were also not pursued. The results of
these determinations are presented in Table 5.
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Table 5: Adsorption Thermodynamics of Molecules in Zeolites for Translational/Rotational
Approximation Methods

Ethane HO/HO HO/PGHO
RR HO/RRcl NLT/HO NLT/PGHO

RR NLT/RRcl Exp.
∆ZPE 3.3 3.3 1.1 2.2 2.2 0
∆E0 -39.5 -39.5 -41.7 -40.6 -40.6 -42.8
T = 313 K
∆H -37.3 -35.8 -36.1 -38.6 -37.2 -37.4 -27.5a , -30.8b

−T∆S 48.9 42.1 42.2 31.1 24.3 24.4 23.82a , 20.33b

∆G 11.6 6.2 6.1 -7.5 -12.9 -13.0 -3.68a , -10.47b

Propane HO/HO HO/PGHO
RR HO/RRcl NLT/HO NLT/PGHO

RR NLT/RRcl Exp.
∆ZPE 2.5 2.5 0.6 1.9 1.9 0
∆E0 -69.8 -69.8 -71.7 -70.4 -70.4 -72.3
T = 320 K
∆H -66.8 -63.5 -63.6 -68.1 -64.8 -65.0 -45.0c
−T∆S 50.6 43.3 43.4 31.6 24.2 24.3 32.6c
∆G -16.1 -20.2 -20.2 -36.6 -40.6 -40.7 -12.4c

T = 340 K
∆H -66.4 -62.9 -63.0 -67.9 -64.3 -64.5 -41d

−T∆S 53.5 45.4 45.5 33.5 25.4 25.5 32d

∆G -13.0 -17.5 -17.6 -34.4 -38.9 -39.0 -9d

Methanol HO/HO HO/PGHO
RR HO/RRcl NLT/HO NLT/PGHO

RR NLT/RRcl Exp.
∆ZPE 4.4 4.4 1.0 3.4 3.4 0
∆E0 -101.7 -101.7 -105.1 -102.7 -102.7 -106.1
T = 323 K
∆H -100.2 -105.4 -105.9 -101.6 -106.8 -107.3 -107e , -74f

−T∆S 56.1 52.0 52.2 31.8 27.7 28.0 55e , 47f

∆G -44.1 -53.4 -53.7 -69.7 -79.0 -79.3 -52e , -27f

Ethanol HO/HO HO/PGHO
RR HO/RRcl NLT/HO NLT/PGHO

RR NLT/RRcl Exp.
∆ZPE 3.9 3.9 0.8 3.1 3.1 0
∆E0 -114.1 -114.1 -117.2 -114.8 -114.8 -117.9
T = 313 K
∆H -112.3 -120.6 -121.0 -113.6 -121.9 -122.4 -89±1g
−T∆S 58.8 56.9 57.1 35.9 34.1 34.3 62±1g
∆G -53.5 -63.7 -63.9 -77.7 -87.8 -88.1 -27±0.1g

T = 400 K
∆H -110.9 -119.1 -119.4 -112.6 -120.8 -121.1 -130±5h
−T∆S 73.5 71.0 71.1 45.6 43.1 43.2
∆G -37.4 -48.1 -48.3 -67.0 -77.7 -77.9

aZeolite H-SSZ-13, Si/Al = 14.4, ref. [19]; bZeolite H-CHA, Si/Al = 2.6, ref. [61]; crefs.
[62, 63]; dObtained 300-400 K, ref. [64]; eData extracted from Fig. 1 of ref. [65], coverage
of 0.4; f Data extracted from Fig. 1 of ref. [65], coverage of 0.75; gmonomeric ethanol
adsorption, H-MFI, Si/Al = 15, [66]; hcoverage of 1.0, ref. [67]. Statistical errors are given
where reported.

73



We first comment on the enthalpies, which indicate the predicted binding strength. For
alkanes ethane and propane, we find that our methods predict more negative adsorption
enthalpies relative to experiments. As with methane, these quantities are dominated by
the predicted energies at zero Kelvin, and consequently represent limitations in electronic
structure methods. For methanol and ethanol, the deviation from experimental enthalpies is
largely dependent on the experimental determinations themselves, with different adsorbate
coverages and experimental methods producing widely different results. We find generally
better agreement in the adsorption enthalpy of ethanol, for example, comparing against
the calorimetry experiments of Lee [67] relative to those of Alexopoulos [66]. Similarly,
we find our models’ predicted adsorption enthalpies of methanol to be much closer to the
experimentally-determined enthalpy at a coverage of 0.4 relative to that of 0.75.

The entropies paint a clearer picture. As with methane, alkanes ethane and propane are
unmistakably best predicted using the NLT approximation. RR and PGHO

RR rotational meth-
ods improve the NLT for ethane, for a predicted entropy contribution of about 24 kJ mol−1

compared to 20.3-23.8 kJ mol−1 predicted by experiments. Propane is a slightly different
story, where NLT/RR and NLT/PGHO

RR methods stray further than NLT/HO from experi-
mental values. The degree to which this result is due to an over-approximation of rotational
entropy retention predicted by PGHO

RR and RR methods versus an over-approximation of
translational entropy retention predicted by NLT is unclear. When it comes to methanol
and ethanol, adsorption entropies are primarily determined by the translational contribu-
tion. The highly local HO approximation expectedly predicts higher entropy loss from the
gas phase to the adsorbed phase, which for H-bonded methanol and ethanol species proves
to be a good approximation. The NLT fails in this limit, systematically underestimating the
entropic contribution to the free energy. Within the translational approximations, however,
differing rotational methods produce remarkably similar results, indicating RR and PGHO

RR
thermodynamics obtained from sampling also predict a highly localized potential energy
surface, notwithstanding the non-locality of the sampling domain.

Free energies are reported in Table 5. Beginning with ethane, we find that we can attain
remarkable agreement against the experimental determinations of Barrer and Davies [61]
using NLT/RR and NLT/PGHO

RR approximations, a consequence of a modest underestimation
of enthalpic contributions and overestimation of entropic contributions. If we were to use
higher level of theory electronic energy calculations pursued by Piccini et al. [19], we would
underestimate enthalpic contributions by 6.55 kJ mol−1 less (see Table 2), predicting more
reliably a free energy that lies between both experimental values. This is similarly the case
for propane, whose binding enthalpy using our QM/MM scheme is largely underestimated.
Using the higher level of theory electronic adsorption energy, we underestimate enthalpies
of propane adsorption by 14.27 kJ mol−1 less, placing predicted enthalpies within the reach
of chemical accuracy. Nevertheless, apparently errors in the enthalpies of adsorption for
propane lead to artificial support of HO translational methods when benchmarking against
experimental free energies, despite having considerably less accurate entropies relative to
NLT counterparts. Such a cancellation of errors can be a constant theme in using primitive
approximations to support experimental observations sensitive to the free energy, such as the
rate coefficients or equilibrium constants. A general, system-agnostic method should ideally
minimize the errors of its component parts. Therein lies the importance of considering both
contributions to the free energy separately.
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In the case of methanol adsorption, we find quite good agreement using the HO/PGHO
RR

and HO/PGHO
RR approximations with experimental free energies of adsorption at a site cov-

erage of 0.4 [65]. This is attributed to (1) RR and PGHO
RR methods predicting lower binding

enthalpies relative to HO rotational counterparts, likely due to their consideration of multiple
H-bonding conformers, (2) the comparable accuracy of our QM/MM methods in methanol
and ethanol systems with higher level of theory determinations, and (3) the accuracy of
HO translation entropy approximations for strongly bound systems. However, as discussed
above, experimental data for methanol and ethanol in H-MFI are highly uncertain. There-
fore, the same agreement in free energies cannot be found for higher methanol coverages,
nor for ethanol adsorption altogether. This finding is similar to that of Piccini et al. [20],
who postulated variability of experimental results is due to surface heterogeneity, differences
in Si/Al ratios, or lattice imperfections, all of which are not explicitly accounted for in our
idealized framework model of H-MFI.

4. Conclusion

The methods developed in this work were undertaken for the purpose of improving the an-
harmonic description of rotational and translation motions of molecules adsorbed in zeolites,
particularly with regard to the entropy. To this end, NLT approximations and more rigor-
ous RR and PGHO

RR approximations are marked improvements in describing the adsorption
of alkanes in zeolites, although the same principles can be applied in other weakly-bound
systems in heterogeneous catalysis.

More strongly bound adsorbates are also found to potentially benefit from direct con-
sideration of rotational degrees of freedom, with RR and PGHO

RR approximations capable of
accounting for multiple stable adsorption conformers. Moreover, RR and PGHO

RR methods
are exceptionally scalable, with the number of samples needed independent of molecule size.
This opens the possibility of applying higher levels of electronic structure theory in describing
the potential energy surface of rotations. These results lead us to advocate for the general
applicability of the rigid rotor methods developed herein.

But while rotational descriptions of the adsorbed molecule are rigorous in the uncoupled
limit, considerable improvements can be made for translational contributions, which as of
yet lack the same generality. Our crude NLT approximation assumes free translation of a
sphere in the vacuum space of the zeolite, whereas realistically finer features of the unit
cell environment, and the molecule, can significantly hinder translational freedom. This is
particularly the case for the methanol, ethanol, and propane molecules investigated in this
work. A more general technique might improve on the description of the occupiable volume,
including more sophisticated determinations of occupiable volume [54] and improved non-
local translational sampling techniques in three dimensions.

5. Future Directions

The result of this study brings theory closer to the objective of chemical accuracy in modeling
adsorption in zeolites, with a rigorous method for obtaining the potential energy surface for
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whole-adsorbate rotations parameterized by three non-separable degrees of freedom. While
the harmonic and NLT approximations can offer reasonable results in the extremes of strong
and weak adsorption, respectively, a unified protocol for obtaining translational potential
energy surface and the combined rotational-translational thermodynamics remains to be
formulated. We propose the following work can be done to this end:

In this work, translations are assumed to be uncoupled from rotations, such that the
translational potential energy surface can be found distinctly from the rotational potential
energy surface. An uncoupled mode treatment for translations would include jointly sampling
finite displacements of the adsorbate center of mass from its equilibrium position in x, y, and
z spatial coordinates. The resulting surface can be modeled using three-dimensional Fourier
basis functions, the resulting thermodynamics of which can be solved using the variational
method, classical integration, or harmonic-reference PGHO

RR methods.
A non-separable approach can also be taken, which would include joint translational and

rotational sampling of the adsorbate. This process would thus require sampling x, y, z,
φ, θ, and χ together. This six-dimensional problem approaches the limit of computational
feasibility, particularly when it comes to obtaining a variational solution to the Schrodinger
equation obtained by matrix diagonalization. Instead, the classical translational-rotational
partition function can be solved by Monte Carlo integration. A quantum corrective factor
obtained using uncoupled mode reference potentials for translation and rotation can be
applied to the mode coupled result for an improved description of coupled adsorbate motion,
analogous to the investigation of torsional mode coupling undertaken in Chapter III.
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Appendix A

Supplementary Information for Chapter
II

1. Experimental Methods

1.1. Catalyst Synthesis

Zirconium was grafted onto a silica support using the following procedure. One gram of amor-
phous silica (Silicycle, surface area: 500 m2 g−1) was dried in vacuum at 373 K for 24 h, or
pretreated at 1023 K for 5 h, and then stored in vacuum prior to use. Zr was introduced onto
the silica surface either by grafting Cp2ZrCl2 (Aldrich, 97%) dissolved in toluene (Alfa Aesar,
anhydrous 99.8% pure) or by impregnation with a toluene solution of Zr(OiPr)4 (Aldrich,
99.999%). These catalysts are referred to as xZrCp/SiO2 and xZrPr/SiO2, respectively,
where x denotes the dispersion of zirconium (atoms nm−2). A similar synthesis procedure
was utilized for the synthesis of titanium-silica and tin-silica catalysts using Cp2TiCl2 and
(CH3)2SnCl2 as the respective metal precursors. All impregnated and grafted catalysts were
dried at 393 K for 12 h and calcined in 100 cm3 min−1 of air (Praxair) for 823 K for 6 h. A
zirconium dimer complex, [(i PrCp)2ZrH(µ H)]2 was also prepared according to literature
procedures [1].

1.2. Catalyst Activity

Reaction rates were measured using a 6.35 mm OD quartz reactor containing an expanded
section (≈12.7 mm OD, ≈20 mm length). A plug of quartz wool placed below the catalyst
bed to hold the powder in place. The catalyst bed temperature was measured with a K-
type thermocouple sheathed in a quartz capillary placed in direct contact with the catalyst
bed. Prior to reaction, the catalyst was heated to the reaction temperature at a rate of
2 K min1 in pure He (Praxair, 99.999%) flowing at 100 cm3 min−1 at STP. A filled 1 mL
syringe connected to a syringe pump (Cole-Palmer, 74900 series) was used to inject propanoic
acid or propan-2-one into a heated port through which helium was flowed continuously. All
experiments were carried out at a total gas pressure of 1 atm. The total gas flow rate was
typically 100 cm3 min−1 at STP. Under these conditions, the conversion of carboxylic acids or
propan-2-one was less than 20%. Reaction products were analyzed using an Agilent 6890N
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gas chromatograph containing a bonded and cross-linked (5%-phenyl)-methylpolysiloxane
capillary column (Agilent, HP-1) connected to a flame ionization detector (FID). The rate
of product formation per Zr atom, or turnover frequency (TOF) was calculated by dividing
the measured rate of reaction per gram of catalyst by the measured amount of Zr per gram
of catalyst.

1.3. Catalyst Characterization

The metal content of the catalysts was determined by inductively coupled plasma optical
emission spectroscopy (ICP-OES) at Galbraith Laboratories (Knoxville, TN). Nitrogen ad-
sorption isotherms were performed using a Micromeritics Gemini VII surface area and pore
volume analyzer. The specific surface area and pore size were calculated using the Brunauer-
Emmet-Teller (BET) equation and Barrett-Joyner-Halenda (BJH) equations. Raman spec-
tra were acquired at ambient conditions using a confocal Raman microscope (LabRam HR,
Horiba Jobin Yvon) equipped with a 532 nm HeNe laser operated at a power of 50 mW.
Diffuse reflectance UV-Vis spectra were acquired using a Fischer Scientific EVO 300 spec-
trometer equipped with a Praying Mantis reflectance chamber. Spectra were referenced to
the diffuse reflectance spectrum of Teflon.

2. Experimental Results

2.1. Catalyst Characterization

The properties of each catalyst are shown in Table A.1. The surface area of the Cp2ZrCl2
grafted silica sample is very similar to that of the silica support at low Zr loadings and
decreases progressively with increasing weight loading of Zr on the silica support. We note
that a part of this loss is apparent and is associated with the increasing mass of the deposited
Zr relative to that of the silica support.

Literature XANES and EXAFS analysis of Zr dispersed on silica derived from Cp2ZrCl2
and Zr(OiPr)4 showed that Zr forms in coordinatively unsaturated, tetragonal structures
[1]. We further probed the coordination and connectivity of Zr by Raman and UV-Vis
spectroscopy. Raman spectra of the silica support and various xZrCp/SiO2 samples are
shown in Figure A.6. The spectrum of the support exhibits peaks at 485 cm−1 and 975 cm−1

attributable to the stretching vibrations of four-membered siloxane linkages (Si O Si) and
surface silanol groups (O3Si OH), respectively [2]. For loading of up to 0.1 Zr nm−2, the
spectrum of ZrCp/SiO2 is indistinguishable from that of silica because of the low weight
loading of Zr. Samples with higher Zr loadings exhibit the characteristic peaks of tetragonal
zirconia at 600 cm−1 and 800 cm−1 due to Ag vibrations of Zr O Zr bonds [3]. Although
XRD patterns do not show the presence of bulk oxides at any Zr loading levels, the Raman
spectra suggest that a fraction of the Zr is present as ZrO2 nanoparticles, possibly in particles
smaller than 5 nm in diameter for loadings of more than 0.5 Zr atoms nm−2.

The UV-Vis edge energy of xZrCp/SiO2 prepared with different Zr surface densities is
shown in Figure A.1 together with those of model compounds. The observed decrease in the
edge energy of xZrCp/SiO2 with increasing Zr surface density is attributable to an increase
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Table A.1: Chemical and textural properties of Zr containing silica samples

Sample Zr content (wt.%) BET surface area [m2g−1] TOF [10−4, s−1]
0.07ZrCp/SiO2 0.61 495 3.2
0.1ZrCp/SiO2 0.82 490 3.3
0.1ZrCp/SiO2a 0.82 482 7.3
0.5ZrCp/SiO2 3.85 435 2.5
0.7ZrCp/SiO2 4.30 413 1.5
1.0ZrCp/SiO2 6.10 385 0.5
0.1ZrPr/SiO2 0.86 473 2.1
SiO2 - 500 0

Sample prepared on silica calcined at 1023 K prior to grafting with Cp2ZrCl2. Reaction
conditions: T = 573 K, PTot. = 1 atm, QTot. = 100 cm3 min−1, Pacid = 0.2 kPa, Mcat. =
0.1 g.

in the connectivity of Zr atoms. These results suggest that, at low Zr loading (0.1 Zr atoms
nm−1), Zr exists as isolated tetrahedral structures, at intermediate Zr loadings (0.5 Zr atoms
nm−1), possibly as dimeric or oligomeric species, and at high loadings (1.0 Zr atoms nm−1),
as bulk-like ZrO2 structures. The trend in Zr speciation with increasing Zr surface density is
supported by measured edge energies for the model compounds Cp2ZrCl2 (isolated Zr atoms)
and [(i PrCp)2ZrH(µ H)]2 (isolated Zr dimers) and for bulk ZrO2.

2.2. Catalytic Activity of Silica-Supported Zr Catalysts

The catalytic activity of silica-supported zirconia was evaluated for the ketonic decarboxyla-
tion of propanoic acid at 573 K. Experiments were conducted under conditions of differential
conversion (< 2%) so that catalyst deactivation and secondary condensation could be mini-
mized. The only product observed under the conditions investigated was pentan-3-one. The
rate of formation of the product was zero order in the partial pressure of propanoic acid for
partial pressures between 0.1 kPa and 0.4 kPa (Figure A.7). Control experiments with silica
displayed no catalytic activity, indicating that surface-grafted zirconium sites are responsible
for the observed catalytic activity.

The dependence of the specific activity of ZrCp/SiO2 on the Zr loading is shown in Figure
A.2. As the surface density of Zr increases, the turnover frequency decreases monotonically.
The catalyst prepared with a low surface concentration of zirconium (0.1 Zr nm−2) is ap-
proximately six times more active than that prepared with 1.0 Zr nm−2, whereas the activity
of the catalyst prepared with a high zirconium, such as 2.0 Zr nm−2 in negligible. The high
activity of 0.1ZrCp/SiO2 suggests that isolated tetrahedrally coordinated Zr sites are more
active than Zr atoms in clusters.

FT-IR spectra of adsorbed CH3CN were acquired as a function of temperature to probe
the strength of Lewis and Brønsted acidic sites. As shown in Figure A.8, the peaks observed
at 2315 cm−1 and 2290 cm−1 correspond to the ν(CN) mode of CH3CN, N-coordinated to Zr
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split by the coupling with the ν(CC) + δsym(CH3) combination, while the peak at 2260 cm−1

corresponds to physisorbed or H-bonded CH3CN associated with surface hydroxyl groups
[4]. A strong absorption band is not observed in the region of 2200-2050 cm−1, character-
istic of ν(CN) modes of CH2CN- species and polymeric anions such as [CH3C(NH)CHCN]-,
suggesting the absence of strongly Lewis basic sites on ZrCp/SiO2 [5].

The data presented in Figure A.8 show that CH3CN desorbs at a lower temperature
from Zr oligomers (1.0 Zr nm−2) than from isolated ≡Zr-OH species (0.1 Zr nm−2). These
results suggest that more highly coordinated Zr sites are less Lewis acidic than isolated four-
coordinated Zr sites, from which we infer that the adsorption of propanoic acid via binding
of the carbonyl group with the Lewis acid center will be stronger with isolated Zr atoms
sites than with Zr atoms that are part of a ZrOx oligomer. Thus we attribute the decrease
in the ketonization activity for catalysts with higher Zr site densities to the formation of
ZrOx dimers and oligomers, in a manner similar to what we previously reported for aldol
condensation on TiOx species [2].

To obtain additional support for the above hypothesis, the silica support was calcined at
progressively higher temperatures in order to achieve spatial separation of the silanol groups
prior to grafting Cp2ZrCl2 onto the support. 29Si MAS NMR indicates that silica pretreated
at 373 K and 1023 K possess nearly 4 and 1.6 SiOH nm−2, respectively [6]. As shown in Table
A.1, the TOF of 0.1ZrCp/SiO2 catalyst prepared on silica pretreated at 1023 K is roughly
twice as high as that for 0.1ZrCp/SiO2 prepared on silica pretreated at 373 K. This inverse
correlation between the activity and the density of support silanol groups supports the idea
that isolated ZrOH centers are most active for carboxylic acid ketonization. By contrast,
Zr catalysts synthesized by incipient wetness impregnation using Zr(OiPr)4, showed a much
lower TOF than those prepared by grafting Cp2ZrCl2 for similar Zr loadings (Table A.1).
These findings are consistent with previous studies done on titania dispersed on silica, which
show that a metal alkoxide precursor such as Ti(OiPr)4 reacts with surface silanols to form
dinuclear Ti complexes [7].

Further experiments were undertaken to obtain information about the mechanism of the
reaction. The first of these involved examination of the inhibiting effects of ketone, CO2 and
water, the products formed during the ketonization of propanoic acid over ZrCp/SiO2. We
also explored the effect of co-feeding pyridine, a Lewis base expected to inhibit the reaction.
As illustrated in Figure A.4, co-feeding pyridine or water with the reactants produced an
approximately two-fold decrease in the rate of ketone formation. However, co-feeding CO2
decreased the rate of ketone formation only marginally. These results show that activity of
0.1ZrCp/SiO2 for the ketonization of propanoic acid decreases in the order: H2O > C6H5N
> CO2. The data in Figure A.4 also show that upon removal of CO2 from the feed, the
activity returned to that observed prior to the addition of this compound; however, in the
cases of water and pyridine addition, the original activity was only partially restored. The
incomplete recovery of activity after the removal of pyridine or water from the feed suggests
that Lewis acidic sites are more relevant than the Brønsted basic sites (e.g., Zr OH) for the
ketonization of propanoic acid over isolated sites of Zr supported on SiO2.

To confirm that isolated ≡Zr-OH sites only contain Lewis acidic sites, and not Brønsted
acid sites, we acquired IR spectra of adsorbed pyridine on 0.1ZrCp/SiO2. Prior work has
shown that IR peaks at 1445, 1575, and 1605 cm−1 are attributable to strong Lewis acid
sites; a peak at 1490 cm−1, to a combination of Lewis and Brønsted acid sites; and peaks at
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1540 and 1640 cm−1, to Brønsted acid sites [8]. The IR spectra shown in Figure A.9 indicates
that 0.1ZrCp/SiO2 possess pyridine bonded to strong Lewis acid sites (peaks at 1445, 1575,
and 1605 cm−1) and no evidence for pyridine interacting with Brønsted acid sites.

In situ IR spectroscopy was used to probe the form in which a carboxylic acid interacts
with isolated Zr sites on 0.1ZrCp/SiO2. As seen in Figure A.5, upon passing pulses of
acetic acid over 0.1ZrCp/SiO2 at 373 K, a peak was observed at 1745 cm−1 for acetic acid
adsorbed on the silanol groups of silica, and a second peak was observed at 1680 cm−1

attributable to the interaction of -C=O species in the carboxylic acids with the Lewis acidic
Zr sites. Interestingly, no peak was observed near 1580 cm−1 characteristic of the formation
of bidentate species. By contrast, peaks were observed at 1745, 1680 cm−1 and 1580 cm−1

for 1.0ZrCp/SiO2 [9, 10, 11]. As mentioned, the first two peaks are attributable to acetic acid
adsorbed on silanol groups and on Lewis-acidic Zr sites, whereas the third peak is assigned
to the formation of bidentate carboxylate species formed by the dissociative adsorption
of carboxylic acids on Lewis acid pairs. Previous studies have proposed that bidentate
carboxylates are the most abundant surface species formed on the surface of metal oxides
during ketonization [12, 13, 14, 15, 16]. However, our results suggest that for isolated Zr
supported on silica, monodentate carboxylate species are the active sites for ketonization
of carboxylic acids. This interpretation is also in accord with recent DFT calculations over
anatase TiO2, which show that bidentate carboxylate species are not involved in ketonization,
but act instead as spectators [17].

Additional insights into the reaction mechanism were obtained by exploring the reaction
of a number of substituted carboxylic acids. Substituting the α-H of propanoic acid with one
or two methyl groups decreased the rate of reaction, and carboxylic acids without any α-H
were almost inactive (Figure A.10). Moving the methyl group from the α- to the β-position
decreased the rate of ketonization by a factor of two relative to that for carboxylic acids
without any substituents. These results indicate that the presence of an α-H is crucial for
ketonic decarboxylation to occur [18].

H/D isotopic substitution was utilized to further probe the mechanism of propanoic acid
ketonization over 0.1ZrCp/SiO2 and 1.0ZrCp/SiO2. The kinetic isotope effect, kH/kD, for
ketonic decarboxylation of CH3COOH versus CD3COOD was nearly unity at 573 K (Figure
A.11), suggesting that abstraction of α-H is not rate limiting and that instead C-C bond
formation is more critical. The conclusion that a bimolecular reaction is rate limiting for ke-
tonization of carboxylic acids differs from previous reports that concluded that the formation
of a ketene intermediate or abstraction of α-H, are rate-limiting [19, 20, 21]. Nevertheless,
our findings are consistent with recent DFT calculations, which suggest that C-C bond for-
mation to produce a β-keto acid is the kinetically relevant step in the ketonic decarboxylation
of monocarboxylic acids [13].

3. Supporting Mathematics

3.1. The Energetic Span Model

We model the turnover frequency using the energetic span model derived by Kozuch, which
considers all intermediate states, transition states, and effects of reactant and product partial
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pressures [22, 23]:

TOF =
kBT

h

e−β∆Grxn
∏

k[Rk]−
∏

k[Pk]∑
ij e

β(Ti−Ij−δG′ij)
∏

h δR′k,ijδPk,ij

=
kBT

h

e−β∆GrxnP 2
acid − PH2OPCO2Pketone∑

ij e
β(Ti−Ij−δG′ij)

∏
h δR′k,ijδPk,ij

(A.1)

δG′ij =

{
∆Grxn if i > j

0 if i ≤ j

Here, Ti refers to the free energy of the ith transition state before the ith intermediate,
and Ij refers to the free energy of the jth intermediate state after the jth transition state.
All values of Ti and Ij are energies with respect to a single reference state. Where there is
no explicit transition state for Ti, the transition state is considered to be the higher of the
previous intermediate Ii−1 and the following intermediate Ii.

The term δR′ij is equal to the partial pressure of reactant k if, between intermediate
Ij and Ti, the reactant is not consumed, and is equal to unity otherwise. Reactants that
enter the catalytic cycle are considered to do so on the uphill of the relevant transition
state’s formation, while products that leave the catalytic cycle are considered to do so on
the downhill from the relevant transition state. The result for the partial pressure term in
the denominator for all i and j in this reaction is given by the matrix

∏
k

δR′k,ijδPk,ij =



cbd bcd bcd cd cd d ad ad a
a2 bcd bcd cd cd cd d ad ad a
a2 a2 bcd cd cd cd d ad ad a
a2 a2 a2 cd cd cd d ad ad a
a2b a2b a2b a2 bcd bcd bcd abd abd ab
a2b a2b a2b a2 a2 bcd bcd abd abd ab
a2b a2b a2b a2 a2 a2 bcd abd abd ab
abc abc abc ac ac ac a bcd bcd ab
abc abc abc ac ac ac a a2 bcd ab
abc abc abc ac ac ac a a2 a2 ab


(A.2)

where a corresponds to the partial pressure of the acid, b corresponds to the partial pressure
of H2O byproduct, c to that of CO2 byproduct, and d to that of the ketone product. Equation
A.2 simplifies when product partial pressures are approximated as zero. This assumption is
deemed appropriate because the reaction is considered under differential conditions, meaning
the conversion of products to reactants is less than 2%. Therefore, only a few terms in the
matrix need to be considered:
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∏
k

δR′k,ijδPk,ij =



0 a
a2 a
a2 a2 a
a2 a2 a2 a

a2

a2 a2

a2 a2 a2

a
a a2

a a2 a2 0


(A.3)

The exponential terms in the denominator of Equation A.1 are dominated by the combi-
nations of transition state Ti and intermediate Ij free energies whose differences are greatest.
Therefore, the TOF can be further simplified considering only the dominant combinations of
Ti and Ij. In our case, the free energy difference of the C-C bond formation transition state
D‡ and the singly adsorbed propanoic acid state B (T3 − I10/0), and the difference in free
energy of D‡ and the doubly adsorbed propanoic acid state C (T3− I1) are sufficiently large
that their exponential values dominate the denominator of Equation A.1. Their associated
partial pressure weights are indicated in red text in Equation A.3. The TOF simplifies to

TOF =
kBT

h

Pacid e
−β∆Grxn

Pacid eβ(T3−I1−∆Grxn) + eβ(T3−I10)
(A.4)

The percent error of this simplification to the full implementation of the model is on the
order of 10−3 s−1 for all relevant values of reactant partial pressure.

3.2. Generalized Degrees of Rate Control and Apparent Activation
Energy

Using our expression of TOF derived from the energetic span model, we quantified the
relative importance of each intermediate and transition state (denoted by index i) to the
total rate using an expression derived by Campbell [24].

Xi =
∂ logTOF
∂(−βGi)

(A.5)

Since our TOF expression depends on the energies of three intermediates and transition
states, DRCs for these intermediates were calculated using Equation A.1.

XB = − eβ(GC+∆Grxn)

Pacid eβGB + eβ(GC+∆Grxn)
(A.6)

XC = − Pacid e
βGB

Pacid eβGB + eβ(GC+∆Grxn)
(A.7)

XD‡ = 1 (A.8)
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The dependence of the intermediate DRCs on reactant partial pressure is shown in Figure
A.14. The apparent activation energy is then calculated as a sum of RT and each intermediate
and transition state enthalpy, weighted by their respective DRCs [25]. The result is an
apparent activation energy as a function of reactant partial pressure.

Eapp = RT +XBH
0
B +XCH

0
C +XD‡H

0
D‡ (A.9)

3.3. Gibbs Activation Energy

As with the derivation for Kozuch’s energetic span model, the effective rate of the reaction
can be related to an effective Gibbs free energy of activation for the reaction.

TOF =
kBT

h
e−β∆G‡ (A.10)

∆G‡ = −RT log

(
h

kBT
TOF

)
(A.11)

3.4. Energetic Span Model, Generalized Degrees of Rate Control,
and Apparent Activation Energy: Aldol Condensation

Given the reaction mechanism for aldol condensation depicted in Scheme II.2, and assuming
negligible product partial pressures under differential conversion, the energetic span model
simplifies to

TOF =
kBT

h

P 2
ketone e

−β∆Grxn

Z
(A.12)

Z = P 2
ketone

(
eβ(GD‡−GC−∆Grxn) + eβ(GC‡−GC−∆Grxn)

)
+

Pketone
(
eβ(GD‡−GC−∆Grxn) + eβ(GC‡−GC−∆Grxn)

)
+

eβ(GD‡−GA) + eβ(GC‡−GA)

The associated generalized degrees of rate controls and the apparent activation energy
are as follows

XA = − eβ(GB+GC+∆Grxn)

P 2
ketone e

β(GA+GB) + Pketone eβ(GA+GC) + eβ(GB+GC+∆Grxn)
(A.13)

XB = − Pketone e
β(GA+GC)

P 2
ketone e

β(GA+GB) + Pketone eβ(GA+GC) + eβ(GB+GC+∆Grxn)
(A.14)

XC = − P 2
ketone e

β(GA+GB)

P 2
ketone e

β(GA+GB) + Pketone eβ(GA+GC) + eβ(GB+GC+∆Grxn)
(A.15)

XC‡ =
eβGC‡

eβGC‡ + eβGD‡
(A.16)

XD‡ =
eβGC‡

eβGC‡ + eβGD‡
(A.17)

Eapp = RT +XAH
0
A +XBH

0
B +XCH

0
C +XC‡H

0
C‡ +XD‡H

0
D‡ (A.18)
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4. Supporting Figures
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Figure A.1: UV-Vis edge energies of xZrCp/SiO2 as a function of Zr surface density and
Zr-containing model compounds.
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Figure A.2: Effect of Zr site density in the activity of xZrCp/SiO2 catalysts for ketonization
of propanoic acid. Reaction conditions: T = 573 K, PTot. = 1 atm, QTot. = 100 cm3 min−1,
Pacid ≈ 0.2 kPa, MCat = 0.1 g.
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Figure A.3: Effect of Zr site density in the activity of xZrCp/SiO2 catalysts for the aldol
condensation of propan-2-one. Reaction conditions: T = 573 K, PTot. = 1 atm, QTot. =
100 cm3 min−1, Pacid ≈ 0.2 kPa, MCat = 0.1 g.
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Figure A.4: Poisoning experiments conducted over 0.1ZrCp/SiO2 catalysts in the ketonic
decarboxylation of propanoic acid. Dotted lines represent the time at which 10 wt.% of
the poisoning agent was co-fed together with propanoic acid in the gas stream. Reaction
conditions: T = 573 K, PTot. = 1 atm, QTot. = 100 cm3 min−1, Pacid ≈ 0.2 kPa, MCat =
0.1 g.
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Figure A.5: In situ FT-IR spectra of acetic acid adsorption recorded at room temperature
and during desorption at various temperatures. (a) 0.1ZrCp/SiO2 and (b) 1.0ZrCp/SiO2
catalyst.
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Scheme A.1: Possible surface species formed in the ketonic decarboxylation reaction over
ZrCp/SiO2 catalysts and their respective FT-IR frequencies.
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Figure A.6: Raman spectra of support silica and various Zr loaded silica samples.
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Figure A.7: Partial pressure dependency of 0.1ZrCp/SiO2 catalysts in the ketonization
reaction of propanoic acid.
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Figure A.8: In situ FT-IR spectra of CH3CN adsorption at room temperature and its
desorption at various temperatures. (a) 0.1ZrCp/SiO2 and (b) 1.0ZrCp/SiO2 catalyst.
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Figure A.9: Pyridine IR studies over a ZrCp/SiO2 catalyst. Lewis acid sites are noted in
the IR spectrum and a decrease in peak intensity is noted with an increase in temperature
from 50 to 200 ◦C (bottom to top).
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Figure A.10: Catalytic activity of propanoic acid and various substituted carboxylic acids
in the ketonization reactions, where PA = propanoic acid, 2Me-PA = 2-methyl propanoic
acid, 2,2DiMe-PA = 2,2-dimethyl propanoic acid, and 3Me-BA = 3-methyl butyric acid.
Reaction conditions: T = 573 K, PTot. = 1 atm, QTot. = 100 cm3 min−1, Pacid ≈ 0.2 kPa,
MCat = 0.1 g.
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Figure A.11: Kinetic isotope effect over (a) 0.1ZrCp/SiO2 and (b) 1.0ZrCp/SiO2 catalyst
using acetic acid and deuterated acetic acid substrate. Reaction conditions: T = 573 K,
PTot. = 1 atm, QTot. = 100 cm3 min−1, Pacid ≈ 0.2 kPa, MCat = 0.1 g.

kH/kD	~	1	

30 60 90 120 150
0

3

6

9

12

TOS / min.

TO
F/

 s
-1
, 1

0-4

 (CH3)2CO
 (CD3)2CO

Figure A.12: Kinetic isotope effect over a 1.0ZrCp/SiO2 catalyst using propan-2-one and
deuterated propan-2-one substrate. Reaction conditions: T = 473 K, PTot. = 1 atm, QTot.
= 100 cm3 min−1, Pketone ≈ 0.2 kPa, MCat = 0.1 g.
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Figure A.13: Comparison in TOF and activation energy of carboxylic acid, ketone, and
aldehyde. Reaction conditions: T = 573 K, PTot. = 1 atm, QTot. = 100 cm3 min−1, Pacid
≈ 0.2 kPa, MCat = 0.1 g.
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Figure A.14: Relative degrees of TOF control of ketonization intermediates B and C as a
function of reactant partial pressure, based on the approximation of TOF given in Equation
2.1.
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Figure A.15: Arrhenius plot for ketonization of propanoic acid on ZrOH sites using the free
energy pathway of Figure 2. Values of TOF were calculated using the full expression of the
energetic span model [22].
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Appendix B

Supplementary Information for Chapter
III

1. Thermodynamic Derivations

Thermodynamic quantities are statistically-rooted values that can be derived from the par-
tition function Q, which in the canonical ensemble is defined by a summation of the allowed
states. The Helmholtz Free Energy, for example, is computed through the logarithm of the
partition function as

A = −RT logQ, (B.1)

the internal energy is given by

E = −∂ logQ

∂β
, (B.2)

the entropy is computed by the relationship

S =
E − A
T

, (B.3)

and the heat capacity is computed as

CV =
∂E

∂T
=

1

RT 2

∂2 logQ

∂β2
. (B.4)

Under the assumption of separable translational, rotational, and internal degrees of free-
dom, Q is defined as the product of each separable component

Q = QtransQrotQint (B.5)

This work explores the internal degrees of freedom, which can be further separated into
stretches, bends, and torsions

Qint = QsbQtors (B.6)

The torsional contributions to the free energy, internal energy, and heat capacity are reported
for several approximation schemes in the following subsections. The entropy relationship,
while not explicitly stated, is calculated from Equation B.3.
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1.1. Quantum Harmonic Oscillator

The quantum harmonic oscillator Schrödinger Equation has equally spaced energy levels

Ev = ~ω(v +
1

2
) ∀ v ∈ Z≥ (B.7)

which leads directly to the zero point energy and and quantum harmonic oscillator partition
function.

EHO
0 =

1

2
~ω (B.8)

Qqu,HO =
1

2 sinh(βE0)
(B.9)

(B.10)

The latter is a direct result of simplifying the geometric series to its closed form. The internal
energies and heat capacities follow by derivation, algebraically simplified:

Equ,HO =
E0

tanh(βE0)
(B.11)

Cqu,HO
V = R

(
βE0

sinh(βE0)

)2

(B.12)

1.2. Classical Harmonic Oscillator

The classical harmonic oscillator partition function is simply calculated by two Gaussian
integrals, one momentum integral and one position integral. This simplifies to

Qcl,HO = (β~ω)−1 (B.13)

The derivation from Equations B.2 and B.4 is straightforward.

Ecl,HO = RT (B.14)

Ccl,HO
V = R (B.15)

1.3. Classical Uncoupled Mode Approximation

Beginning with the classical partition function for an uncoupled torsion under the UM-T
approximations given in the manuscript,

Qcl,UM-T
tors,τ =

(
Iτ

2πβ~2

)1/2 ∫ 2π/στ

0

dφτ e
−βVτ (φτ ), (B.16)

the internal energy and heat capacities are then given by the equations

Ecl,UM-T
tors,τ =

1

2β
+ 〈Vτ 〉 (B.17)
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Ccl,UM-T
V,tors,τ =

1

2
R +

1

RT 2

∫ 2π/στ

0

dφτ (Vτ (φτ )− 〈Vτ 〉)2 f(φ) (B.18)

where 〈Vτ 〉 is the average potential energy of the τth torsion,

〈Vτ 〉 =

∫ 2π/στ

0

dφτ Vτ (φτ )f(φτ ) (B.19)

and f is the associated probability density function in the canonical ensemble,

f(φ) =
e−βV (φ)∫ 2π/σ

0
dφ e−βV (φ)

(B.20)

Bounds of integration correct for symmetry effects by division by the torsional symmetry
factor στ . These integrals are solved numerically, with expressions for Vτ obtained by cubic
spline interpolation of points sampled along the dihedral coordinate.

1.4. Classical Coupled Mode Approximation

The CM-T thermodynamics derived from Qcl,CM-T
tors are given in the main text. The energy

and heat capacities are straightforward, and can be compared against the uncoupled mode
quantities whose mathematics are similar. They are repeated here, with 〈V 〉 representing
the expected value of the coupled torsional potential energy:

Ecl,CM-T
tors =

N

2β
+ 〈V 〉 (B.21)

Ccl,CM-T
V,tors =

N

2
R +

〈V 2〉 − 〈V 〉2

RT 2
(B.22)

The entropy term of Equation 3.28 is derived beginning with Equations B.1 and B.3:

Scl,CM-T
tors =

Ecl,CM-T
tors

T
+R lnQcl,CM-T

tors (B.23)

where Qcl,CM-T
tors is the classical CM-T partition function given by Equation 3.17 in the main

text. Using

〈 |D|1/2 〉 =

∫
dNΦ |D|1/2e−βV (Φ)∫

dNΦ e−βV (Φ)
, (B.24)

Equation 3.17 becomes

Qcl,CM-T
tors =

(
1

2πβ~2

)N/2
〈 |D|1/2 〉

∫
dNΦ e−βV (Φ) (B.25)

Using this result, we separate Equation B.23 into kinetic (T ) and potential (V ) contribu-
tions, arriving at

Scl,CM-T
tors =

[
〈T 〉
T

+R ln

(
1

2πβ~2

)N/2
+R ln〈 |D|1/2 〉

]
+

[
〈V 〉
T

+R ln

∫
dNΦ e−βV (Φ)

]
(B.26)
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= R

[
N

2
− N

2
ln
(
2πβ~2

)
+ ln〈 |D|1/2 〉

]
− 〈R ln f(Φ)〉 (B.27)

We now show the equivalence of 〈−R ln f(Φ)〉 with the potential contribution to the
entropy. First, we have probability density function given by

f(Φ) =
e−βV (Φ)∫

dNΦ e−βV (Φ)
=

e−βV (Φ)

Q
(B.28)

Inserting this result into the logarithm term of the expression for the expected value, we
obtain

〈−R ln f(Φ)〉 = −R
∫

dNΦ f(Φ) ln f(Φ) (B.29)

= −R
∫

dNΦ ln

(
e−βV (Φ)

Q

)
f(Φ) (B.30)

= −R
∫

dNΦ [(−βV (Φ))− ln Q] f(Φ) (B.31)

=
〈V 〉
T

+R ln Q
��

���
���:

1∫
dNΦ f(Φ) (B.32)

=
〈V 〉
T

+R ln

∫
dNΦ e−βV (Φ) (B.33)

which is identically the potential contribution, as desired.

2. No U-Turn Sampling

The No U-Turn Sampling (NUTS) algorithm requires a positive integer number of leap frog
steps L and a positive time step size ∆t. Beginning at t = 0, for a position Φ of sample k in
the Markov chain:

Φk(0) = Φk (B.34)

Hamiltonian Monte Carlo employs a random walk in momentum (rather than position, as is
the case for Metropolis-Hastings), so that the momentum vector at t = 0 is drawn from

pk(0) ∼ N (0,M) (B.35)

where M is the mass matrix appearing in the Hamiltonian and approximated during in the
tuning schedule. Then, the position will evolve under Hamiltonian dynamcs for time L∆t,
solved numerically using the leap frog algorithm. The position and momentum vectors after
time ∆t using the leap frog algorithm are

pk

(
t+

∆t

2

)
= pk(t)−

∆t

2
∇V (Φ)|Φ=Φk(t) (B.36)

Φk(t+ ∆t) = Φk(t) + ∆tM−1pk

(
t+

∆t

2

)
(B.37)
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pk(t+ ∆t) = pk

(
t+

∆t

2

)
− ∆t

2
∇V (Φ)|Φ=Φk(t+∆t) (B.38)

These equations are applied to Φk and pk in the forward (Φ+
k and p+

k ) and backward (Φ−k
and p−k ) directions until the U-Turn condition is met. This is given by either criterion

(Φ+
k − Φ−k ) · p+

k < 0 (B.39)
(Φ+

k − Φ−k ) · p−k < 0 (B.40)

Once the U-Turn condition is met, the next MCMC sample, Φk+1, is obtained by sampling
uniformly the leap frog path traced out by the binary tree

{Φ−k , . . . ,Φk(−∆t), Φk(0), Φk(∆t), . . . , Φ+
k }

which satisfies
Uk < e−H(Φk+1,pk+1) (B.41)

where Uk ∼ Uniform(0, exp(−H(Φk(0), pk(0)))) is sampled. This procedure is covered
comprehensively in the original literature [1].
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3. Data Visualization

φ1 φ2 φ3

φ1
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φ3

Reference Potential

NUTS Sampling Histogram

Joint Distribution Countour Map

Figure B.1: Corner plot of internal rotation sampling for ethylene glycol. On the diagonal,
sampling histograms for each internal rotation. Blue lines represent the uncoupled mode
distributions for each internal rotation. On the off-diagonal, density plots of samples drawn
from the joint distribution. Substantial coupling accounts for the difference between the
reference potential and the mode-coupled potential.
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Figure B.2: Corner plot of internal rotation sampling for 3-ethylpentane. On the diagonal,
marginal distributions estimated by Gaussian kernels are shown for each internal rotation.
Scatter plots of samples are given on the upper and lower triangles. Contours of the densities
are indicated on the lower triangle.

Figure B.3: Mean unpooled energy for internal rotations of isobutane (in kcal mol−1) versus
number of samples taken. Each line color represents an independently-sampled chain.
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Figure B.4: Mean pooled energy for internal rotations of isobutane (in kcal mol−1) versus
number of samples taken. Samples were pooled maintaining parallelism across chains.

Figure B.5: Variance of the unpooled energy for internal rotations of isobutane (in kcal2

mol−2) versus number of samples taken. Each line color represents an independently-
sampled chain.
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Figure B.6: Variance of the pooled energy for internal rotations of isobutane (in kcal2

mol−2) versus number of samples taken. Samples were pooled maintaining parallelism
across chains.

Figure B.7: Mean of the negative logarithm of the probability density function for internal
rotations of isobutane. versus number of samples taken. This was obtained by computing
the probability density function through a Gaussian kernel density estimator and resampling
the resulting distribution. Samples were pooled maintaining parallelism across chains.
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Appendix C

Supplementary Information for Chapter
IV

1. Molecular Rotations

1.1. Euler Angle Addendum

As discussed in Section §2 2.2, Euler angles are a convenient parametrization to describe the
orientation of a rigid body in space. This section clarifies the mathematics appertaining to
the adopted ZY Z convention.

Rotations can be classified under two categories: intrinsic and extrinsic. Extrinsic rota-
tions are defined with respect to the laboratory frame axes XY Z, whereas intrinsic rotations
are defined with respect to the molecular frame axes xyz. Because laboratory frame axes
are definitionally fixed, extrinsic rotations are perhaps the more intuitive. Extrinsically, the
target orientation (φ, θ, χ) is attained as follows

1. The molecule rotates by χ about the Z axis, s.t. the x axis is at an angle χ relative to
the X axis (and the y axis is at an angle χ relative to the Y axis).

2. The newly-oriented molecule rotates by θ about the Y axis, s.t. the z axis is at an
angle θ relative to the Z axis.

3. The molecule then rotates by φ, again about the Z axis.

This sequence is clearly depicted with the rotation operator defined in Equation 4.15, and
directly leads to the Wigner D-Matrix definition. This operation can also be cast as the
chained matrix multiplication

R(φ, θ, χ) = RZ(φ)RY (θ)RZ(χ) (C.1)

where RZ(φ) is the matrix for a rotation about the Z axis by φ, and so forth. Equivalently,
the intrinsic rotation sequence to achieve the orientation (φ, θ, χ) is given by

1. The molecule rotates φ about the z axis.

2. The molecule rotates θ about the y′ axis.
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3. The molecule rotates χ about the z′′ axis.

where y′ and z′′ are the molecular frame axes after the first and second rotations, respectively.
The rotation matrix is again given by a chained matrix multiplication

R(φ, θ, χ) = Rz′′(χ)Ry′(θ)Rz(φ) (C.2)

The equivalence of Equations C.1 and C.2 is not necessarily obvious, and is now shown.
That is,

RZ(φ)RY (θ)RZ(χ) = Rz′′(χ)Ry′(θ)Rz(φ) (C.3)

First, we note that z and Z are definitionally the same because the molecular axes prior to
rotation are aligned with the laboratory axes, leading to

RZ(φ) = Rz(φ) (C.4)

Next, let us consider the y′ axis, which is the molecular y axis after rotation by φ about z.
The same orientation for y′ can be achieved by rotating the molecule back to the original
xyz orientation, rotating the molecule by θ about the Y axis, and rotating the molecule back
again to resume the x′y′z′ orientation. Mathematically:

Ry′(θ) = Rz(φ)RY (θ)R−1
z (φ) (C.5)

And by the same logic, but with two more rotation operations:

Rz′′(φ) = Ry′(θ)Rz(φ)RZ(χ)R−1
z (φ)R−1

y′ (θ) (C.6)

And therefore,

Rz′′(χ)Ry′(θ)Rz(φ) = Ry′(θ)Rz(φ)RZ(χ)R−1
z (φ)

���
���

��:1
R−1
y′ (θ)Ry′(θ)Rz(φ)

= Ry′(θ)Rz(φ)RZ(χ)
���

���
��:1

R−1
z (φ)Rz(φ)

= Rz(φ)RY (θ)
��

���
���:1

R−1
z (φ)Rz(φ)RZ(χ)

= RZ(φ)RY (θ)RZ(χ)

which proves Equation C.3, as desired. Explicitly, the rotation matrix is given by the 3× 3
matrix

R(φ, θ, χ) =

cosφ cos θ cosχ− sinφ sin θ − cosχ sinφ− cosφ cos θ sinχ cosφ sin θ
cosφ sinχ+ cos θ cosχ sinφ cosφ cosχ− cos θ sinφ sinχ sinφ sin θ

− cosχ sin θ sin θ sinχ cos θ


(C.7)

1.2. Variational Method for Non-linear Rotors

The linear variational method is a procedure for finding the best possible approximate solu-
tions to the eigenvalue problem

Ĥ |Φ〉 = E |Φ〉 (C.8)
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from a set of orthonormal basis functions. Following the derivation of Szabo and Ostlund
[1], |Φ〉 is approximated in the symmetric top basis as

|Φ〉 =
Lmax∑
`=0

∑̀
m=−`

∑̀
k=−`

c`mk |`mk〉 (C.9)

where 〈φ, θ, χ|`mk〉 ≡
√

2`+1
8π2 D

`∗
mk(φ, θ, χ). Substituting the expansion into Equation C.8

and multiplying by 〈`′m′k′|, the matrix representation of Ĥ becomes apparent.

Lmax∑
`=0

∑̀
m=−`

∑̀
k=−`

c`mk 〈`′m′k′|Ĥ|`mk〉 = E
Lmax∑
`=0

∑̀
m=−`

∑̀
k=−`

c`mk 〈`′m′k′|`mk〉 = Ec`
′

m′k′ (C.10)

Hc = Ec (C.11)

Kinetic Energy Matrix Elements

The following paragraphs are a derivation of the kinetic energy matrix elements. We use a
rotational constant convention after Kennerly [2], with

a =
1

2Iy
, b =

1

2Iz
, c =

1

2Ix

The kinetic energy operator under this convention is given by

T̂ = aL̂2
y + bL̂2

z + cL̂2
x

=
1

2
(a+ c)L̂2 +

1

2
(a− c)

(
L̂2
y + κL̂2

z − L̂2
x

)
(C.12)

where an asymmetry parameter is defined as κ = 2b−(a+c)
a−c . Each component will be solved

individually below, and pieced together to give the final result.
First, we state the known eigenvalues of the operators L̂2, L̂Z , and L̂z, drawing atten-

tion to the difference between operators of the molecular frame and the laboratory frame.
Specifically, L̂z manifests in observations of k (multiples of ~), and L̂Z in observations of m.

L̂2 |`mk〉 = ~2`(`+ 1) |`mk〉
L̂Z |`mk〉 = ~m |`mk〉
L̂z |`mk〉 = ~k |`mk〉

Intuitively, only molecular frame operations appear in the kinetic energy operator, and the
quantum number m will therefore not appear in the description of the kinetic energy. The
relevant contributions for total angular momentum and z angular momentum are thus

〈`′m′k′|L̂2 |`mk〉 = ~2`(`+ 1) δ`′`δm′mδk′k (C.13)

〈`′m′k′|L̂2
z |`mk〉 = ~2k2 δ`′`δm′mδk′k (C.14)

114



For L̂x and L̂y contributions, we define angular momentum creation and annihilation
operators L̂± = L̂x ± iL̂y, which act on the Wigner D-Matrix kets as [3]

L̂± |`mk〉 = ~
√
`(`+ 1)− k(k ∓ 1) |`mk ∓ 1〉 (C.15)

(Note that L̂+ is the annihilation operator and L̂− is the creation operator in the molecular
frame, which lower and raise the quantum number k only). With L̂x = 1

2
(L̂+ + L̂−) and

L̂y = 1
2i

(L̂+ − L̂−),

L̂2
x =

1

4

(
L̂+L̂+ + L̂−L̂− + L̂+L̂− + L̂−L̂+

)
(C.16)

L̂2
y = −1

4

(
L̂+L̂+ + L̂−L̂− − L̂+L̂− − L̂−L̂+

)
, (C.17)

and the selection rules ∆k = 0, ±2 follow. By Equations C.15-C.17, we obtain the L̂2
x and

L̂2
y matrix elements after some simple algebra:

〈`′m′k′|L̂2
x |`mk〉 =

~2

2

[
`(`+ 1)− k2

]
δ`′`δm′mδk′k

+
~2

4

√
`(`+ 1)− k(k ± 1)

√
`(`+ 1)− (k ± 1)(k ± 2) δ`′`δm′mδk′k±2

(C.18)

〈`′m′k′|L̂2
y |`mk〉 =

~2

2

[
`(`+ 1)− k2

]
δ`′`δm′mδk′k

− ~2

4

√
`(`+ 1)− k(k ± 1)

√
`(`+ 1)− (k ± 1)(k ± 2) δ`′`δm′mδk′k±2

(C.19)

Combining Equations C.12-C.14 and C.18-C.19, we arrive at the following result for the
kinetic energy matrix elements, again after some light algebra.

〈`′m′k′|T̂ |`mk〉 =
1

2

[
(A+ C) `(`+ 1) + (A− C)κk2

]
δ`′`δm′mδk′k

+
1

4
(C − A)

√
`(`+ 1)− k(k ± 1)

√
`(`+ 1)− (k ± 1)(k ± 2) δ`′`δm′mδk′k±2

(C.20)

The products of the ~2 factors and constants a and c lead to the canonical rotational constants
A and C, convention preserved. Note the dependence of the kinetic energy on Iz is contained
within b, which is contained within κ. The rotational constant B therefore does not explicitly
appear in Equation C.20.

Potential Energy Matrix Elements

Matrix elements of the potential energy component of the Hamiltonian matrix are derived
here. As discussed in the main text, sampled potential energy surfaces can be approximated
as continuous functions of Euler angles φ, θ, and χ by expansion into a finite basis of Wigner
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D-Matrix elements (see Equations 4.18-4.20). Including this result in the potential energy
matrix in the same basis yields

〈`′m′k′|V̂ |`mk〉 = 〈`′m′k′|
∑
`′′

∑
m′′

∑
k′′

v̂`
′′

m′′k′′D
`′′

m′′k′′(φ, θ, χ)|`mk〉

=

√
2`′ + 1

√
2`+ 1

8π2

∑
`′′

∑
m′′

∑
k′′

v̂`
′′

m′′k′′

∫
Ω

dΩ D`′

m′k′(Ω)D`′′

m′′k′′(Ω)D`∗
mk(Ω)

(C.21)

where Ω specifies the orientation of the molecule in Euler angles, and∫
Ω

dΩ ≡
∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχ (C.22)

The Kronecker product D`′ ⊗D`′′ can be reduced by the Clebsch-Gordan series [4]:

D`′

m′k′(Ω)D`′′

m′′k′′(Ω) =
`′+`′′∑

L=|`′−`′′|

〈`′m′`′′m′′|LM〉 〈`′k′`′′k′′|LK〉DL
MK(Ω) (C.23)

whereM ≡ m′+m′′ and K ≡ k′+k′′. The quantity 〈`′m′`′′m′′|LM〉 and its k counterpart are
the well-known Clebsch-Gordan coefficients. By orthogonality (Equation 4.18) and Equation
C.23, the triple integral over the three Wigner D-Matrices of Equation C.21 is reduced to∫

Ω

dΩ D`′

m′k′(Ω)D`′′

m′′k′′(Ω)D`∗
mk(Ω) =

8π2

2`+ 1
〈`′m′`′′m′′|`m〉 〈`′k′`′′k′′|`k〉 (C.24)

Equation C.21 simplifies to the final result:

〈`′m′k′|V̂ |`mk〉 =

√
2`′ + 1

2`+ 1

∑
`′′

∑
m′′

∑
k′′

v̂`
′′

m′′k′′ 〈`′m′`′′m′′|`m〉 〈`′k′`′′k′′|`k〉 (C.25)

1.3. Thermodynamic Derivations

Thermodynamic quantities are statistical quantities derived from the partition function Q.
In all cases, the Helmholtz Free Energy is computed by

A = − 1

β
logQ (C.26)

and the entropy is computed by the relationship

S =
E − A
T

(C.27)

The partition functions and energetic contributions derived therefrom are given by the
following relationships, stemming from

E = −∂ logQ

∂β
(C.28)

Partition functions are included in the main text, but are included in subsequent equations
(often in different algebraic forms) for additional clarity. Superscripts and subscripts are
retained for disambiguation across methods.
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Quantum Harmonic Oscillator

E0 =
1

2
~ω (C.29)

Qqu
HO =

1

2 sinh(βE0)
(C.30)

Equ
HO =

E0

tanh(βE0)
(C.31)

Classical Harmonic Oscillator

Qcl
HO = (β~ω)−1 (C.32)

Ecl
HO = β−1 (C.33)

Classical Rigid Rotor

Qcl
RR =

1

σ

√
IxIyIz

(2πβ~)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχ e−βV (φ,θ,χ) (C.34)

Linearization of the partition function by log and subsequent derivation with respect to β
gives

Ecl
RR =

3

2β
+ 〈V 〉 (C.35)

where the average potential energy is given by the integral

〈V 〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dχV (φ, θ, χ) f(φ, θ, χ) (C.36)

where f is the probability density function in the canonical ensemble, given by

f(φ, θ, χ) =
e−βV (φ,θ,χ)∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ 2π

0
dχ e−βV (φ,θ,χ)

(C.37)

Quantum Rigid Rotor

The thermodynamics of the quantum rigid rotor are solved after diagonalization of the
Hamiltonian matrix to obtain a set of eigenvalues Ej. The partition function is obtained by
direct summation of the Boltzmann-distributed eigenvalues, with symmetry corrected:

Qqu
RR =

1

σ

∑
j

e−βEj (C.38)

Degeneracies are implicitly included in this expression, stipulating computed eigenvalues can
be identical. The average energy under a discrete probability distribution is therefore

Equ
RR =

∑
j Ej e

−βEj∑
j e
−βEj

. (C.39)

Zero point energies under this method are given by lowest eigenvalue, E0.
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Pitzer-Gwinn Approximations

The thermodynamics of the PG approximation are straightfoward, since the product of the
partition function linearizes under logarithmic operation. As such,

QPG
RR =

Qqu
HO

Qcl
HO
Qcl

RR (C.40)

directly leads to

EPG
RR = Equ

HO − E
cl
HO + Ecl

RR

and so forth for A, S, etc. Zero point energy contributions are implicitly contained within
the quantum HO reference parition function, and therefore the zero point energy is that of
the quantum HO.

2. Sampling Grid Size Effects

Table C.1: Effect of Lebedev Grid Size on Predicted Rotational Thermodynamics of
Methane in H-CHA

Grid size Sample size Resolution [deg.] ∆E a
rot [kJ mol−1 ] ∆S a

rot [Jmol−1K−1 ]
50 550 28.7 6.87 -7.74
74 1036 23.6 6.87 -7.43
110 1870 19.3 6.75 -7.61

aStandard rotational contributions derived from the classical partition function at T = 298
K.

3. Model Parameters

Table C.2: Parameters for Relevant Molecules

Molecule rk [Å]
Water 1.40a

Methane 1.90b

Ethane 2.22c

Propane 2.15b

Methanol 1.80d

Ethanol 2.15e

aRef [5]; bRef [6, 7]; cRef [8, 9]; dRef [10, 11]; eRef [12, 13].

118



Table C.3: Zeolite Parameters

Framework Cell Volume [Å3] % Occupiable
H-CHA 2391.6a 17.27b

H-MFI 5211.3a 9.81b

aRef [14]; bRef [5].
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