UC San Diego UC San Diego Electronic Theses and Dissertations

Title

Bioinformatic characterization of the copper and heavy metal families of P-type ATPases

Permalink https://escholarship.org/uc/item/2k31k9rz

Author Harake, Danielle Elaine

Publication Date 2007

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Bioinformatic Characterization of the Copper and Heavy Metal Families of P-type

ATPases

A Thesis submitted in partial satisfaction of the requirement for the degree

Master of Science

in

Biology

by

Danielle Elaine Harake

Committee in charge:

Professor Milton Saier, Jr., Chair Professor Stephen Baird Professor Christopher Wills

The Thesis of Danielle Elaine Harake is approved:

Chair

University of California, San Diego

2007

DEDICATION

In recognition of their constant support and inspiration, this thesis is dedicated to my family and to all the members of the Saier lab, in particular Professor Milton Saier, Jr.

Signature Pag	ge	iii
Dedication		iv
Table of Con	tents	v
List of Figure	es	ix
List of Tables	5	xi
Acknowledge	ements	xii
Abstract		xiii
Introduction		1
Chapter 1: Th	ne 3.A.3. Superfamily: P-type ATPases	12
1.1	Phylogenetic Analysis	14
1.2	Families of Functionally Characterized P-type ATPases	17
1.3	Families of Functionally Uncharacterized P-type ATPases	17
1.4	Hydropathy Analysis	18
Chapter 2: Th	ne Copper P-type ATPases	20
2.1	Phylogenetic Analysis	22
2.2	Analyses of Sequences of Unusual Length	25
2.3	Hydropathy Analysis	32
2.4	HMMTop Analysis	33
2.5	SOPMA Analysis	35
2.6	EMBOSS Pepwheel Analysis	37
2.7	16S rRNA Analysis	38
Chapter 3: Th	ne Heavy Metal P-type ATPases	41

TABLE OF CONTENTS

3.1	Phylogenetic Analysis	42
3.2	Analyses of Sequences of Unusual Length	46
3.3	Hydropathy Analysis	51
3.4	HMMTop Analysis	52
3.5	SOPMA Analysis	54
3.6	EMBOSS Pepwheel Analysis	56
3.7	16S rRNA Analysis	57
Chapter 4: Co	nserved Motifs in Copper P-type ATPases	59
4.1	Motif 1	61
4.2	Motif 2	62
4.3	Motif 3	62
4.4	Motif 4	64
4.5	Motif 5	65
4.6	Motif 6	65
4.7	Motif 7	66
4.8	Motif 8	67
4.9	Motif 9	67
Chapter 5: Co	nserved Motifs in Heavy Metal P-type ATPases	68
5.1	Motif 1	69
5.2	Motif 2	70
5.3	Motif 3	71
5.4	Motif 4	71

	5.5	Motif 5	72
	5.6	Motif 6	72
	5.7	Motif 7	73
	5.8	Motif 8	73
	5.9	Motif 9	74
Chapt	er 6: Ho	omology Analyses of Copper and Heavy Metal P-type ATPases	75
	6.1	Homology Analyses of Copper P-type ATPases	76
	6.2	Homology Analyses of Heavy-Metal P-type ATPases	97
Chapt	er 7: Ar	nalyses of P-type ATPases by Organismal Domain	125
	7.1	Archaea	127
	7.2	Bacteria	129
	7.3	Eukaryota	129
Discu	ssion		131
Apper	ndix		134
		e 1A	135
	Figure	e 1.B	136
	Figure	2.A	137
	Figure	e 3.A.1	138
		e 3.B.1	139
	Figure 3.C.114		
	Figure	e 3.D	141
		e 4	142

Figure 5.A	143
Figure 6.A.1	144
Figure 6.B.1	145
Figure 6.C.1	146
Figure 6.D	147
Figure 7	148
Figure 8.	149
Figure 9	150
Table 1.	151
Table 2	155
Table 3.	170
Table 4.	171
Table 5	178
Table 6.	195
Table 7.	198
Table 8	210
Table 9.	212
References	214

LIST OF FIGURES^{*}

Figure 1.A: The phylogenetic tree of the 3.A.3 Superfamily. The clustering patterns of the families and Sub-Superfamilies (SSFs) are indicated within the figure.	 135
Figure 1.B.1: The AveHas plots representing the sequences within the Sub-Superfamilies created from the proteins of the 3.A.3 Superfamily.	 136
Figure 2.A: The phylogenetic tree of the 385 protein sequences representing the Copper P-type ATPase Family (dendogram format). The locations of the twenty clusters representing these sequences are indicated in the figure.	 137
Figure 2.B: The Phylogenetic Tree of the proteins of the Copper P-type ATPase Family (cladogram format). The locations of the twenty clusters found within these sequences are indicated in the figure.	 *
Figure 3.A.1 AveHas analysis for cluster 1 of the Copper P-type ATPase Family.	 138
Figure 3.B.1 HMMTop analysis for cluster 1 of the Copper P-type ATPase Family.	 139
Figure 3C.1 SOMPA analysis for cluster 1 of the Copper P-type ATPase Family.	 140
Figure 3.D: The EMBOSS Pepwheel analyses of a segment from the protein sequence Ssu1, from cluster 15. This cluster was determined to have the best amphipathic peak in the region between TMS2 and TMS3 of all of the clusters representing the Copper P-type ATPases.	 141
Figure 4: The 16S rRNA phylogenetic tree for the prokaryotic genera present among the sequences representing the Copper P-type ATPase Family.	 142
Figure 5.A : The phylogenetic tree of the sequences representing the proteins of the Heavy Metal P-type ATPase Family (dendogram format). The locations of the 17 clusters found within these sequences are indicated in the figure.	 143
Figure 5.B : The phylogenetic tree of the sequences representing the proteins of the Heavy Metal P-type ATPase Family (cladogram format). The locations of the seventeen clusters found within these sequences are indicated in the figure.	 144

^{*} For the purpose of clarity when examining the figures corresponding with this thesis, all figures are available in their entirety at: <u>http://www.biology.ucsd.edu/~msaier/supmat/P-type_ATPase</u>. Condensed views of select figures are also provided in the appendix.

Figure 6A.1: AveHas analysis for cluster 1 of the Heavy Metal P-type ATPase Family.	 145
Figure 6.B.1: HMMTop analysis for cluster 1 of the Heavy Metal P-type ATPase Family.	 146
Figure 6C.1: SOPMA analysis for cluster 1 of the Heavy Metal P-type ATPase Family.	 147
Figure 6D: The EMBOSS Pepwheel analyses of a segment from the protein sequence Ssp3, from cluster 10. This cluster was determined to have the best amphipathic peak in the region between TMS2 and TMS3 of all of the clusters representing the Heavy Metal P-type ATPases.	 148
Figure 7 : The 16S rRNA phylogenetic tree containing one sequence for every genus present in the sequences representing the Heavy Metal P-type ATPase Family.	 149
Figure 8 : The AveHas plot constructed from one sequence from each of the twenty clusters representing the sequences of the Copper P-type ATPase Family. This plot was used to identify the region amongst these sequences that contained the strongest amphipathic peak, which was then investigated using the EMBOSS Pepwheel program.	 150
Figure 9 : The AveHas plot constructed from one sequence from each of the seventeen clusters representing the sequences of the Heavy Metal P-type ATPase Family. This plot was used to identify the region amongst these sequences that contained the strongest amphipathic peak, which was then investigated using the EMBOSS Pepwheel program.	 151
Figure S1 : The multiple alignment of the sequences representing the 3.A.3 Superfamily in TCDB	 *
Figure S2: The multiple alignment of the sequences representing the Copper P-type ATPase Family.	 *
Figure S3 : The multiple alignment for the sequences representing the Heavy Metal P-type ATPase Family.	 *

LIST OF TABLES^{\dagger}

Table 1: The proteins sequences representing the families within the 3.A.3. Superfamily in TCDB.	 151
Table 2: The protein sequences representing the Copper P-type ATPaseFamily (385 sequences).	 155
Table 3: Motif analyses for the twenty clusters representing the proteins of the Copper P-type ATPase Family.	 170
Table 4: Information regarding the protein sequences used to generate the 16S rRNA phylogenetic tree representing the genura present in Copper P-type ATPase Family.	 171
Table 5: The protein sequences representing the Heavy Metal P-typeATPase Family (311 sequences).	 178
Table 6: Motif analyses for the seventeen clusters representing the Heavy Metal P-type ATPase Family.	 195
Table 7: The organisms whose 16S rRNAs were used to construct aphylogenetic tree representing each genus found among the 311 proteinsequences representing the Heavy Metal P-type ATPase Family	 198
Table 8: An overview of the sequence characteristics of the clusters representing Copper P-type ATPase Family	 210
Table 9: An overview of the sequence characteristics of the clusters representing the Heavy Metal P-type ATPase Family	 212

[†] Condensed views of these tables are provided in the appendix, and are also available at: <u>http://www.biology.ucsd.edu/~msaier/supmat/P-type_ATPase</u>.

ACKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge and sincerely thank Professor Milton Saier, Jr. for his guidance and support in the completion of my research project. I am greatly indebted to him for his mentorship and for allowing me join him in his research. I am particularly grateful to him for renewing in me a passion for learning and an eagerness to follow the path of discovery. Additionally, I would like to thank all of the members of the Saier Lab, whose help and encouragement were invaluable and whose friendship I shall always hold dear.

ABSTRACT OF THE THESIS

Bioinformatic Characterization of the Copper and Heavy Metal Families of P-type

ATPases

by

Danielle Elaine Harake

Master of Science in Biology

University of California, San Diego, 2007

Professor Milton Saier, Jr., Chair

P-type ATPases are classified as the 3.A.3 Superfamily in the Transport Classification Database (TCDB) and are an important group of protein pumps involved in the translocation of specific ions or phospholipids across biological membranes. The 3.A.3. Superfamily presently consists of thirty-four families of P-type ATPases, only ten of which are functionally characterized. Methodical analyses of sequences from each of these families are required to elucidate the mechanism by which they transport their substrates and to identify their distinguishing functional characteristics. A phylogenetic tree was constructed to confirm that sequences representing the 3.A.3. Superfamily in TCDB reflected their family assignments, and that the sequence characteristics of each

"sub-superfamily" cluster within this tree were examined. The Copper and Heavy Metal P-type ATPase families were subsequently selected for more in-depth analyses. Protein sequences representing these two families were collected using NCBI psi-BLAST, multiply aligned, and analyzed using protein and 16S rRNA phylogenetic trees. The sequence similarities within each family, with regard to sequence length and conservation of specific amino acid motifs, were examined and compared. Additionally, the secondary structure patterns, regions of amphipathicity and hydrophobicity, and predicted numbers and locations of transmembrane segments (TMSs) for these sequences were analyzed. Most sequences from both families showed conservation of nine well-described motifs and exhibited a consistent pattern of eight TMSs. Sequence homology analyses revealed that while most sequences clustered with others from their genus or phylogenetic group, some sequences were so divergent from their neighbors that they could indicate instances of horizontal gene transfer.

Introduction

P-type ATPases are a diverse group of protein transporters involved in either the uptake or efflux of ions across a membrane in concert with ATP hydrolysis. These proteins have been identified in numerous species belonging to Archaea, Bacteria and Eukaryota, and are collectively classified as belonging to the 3.A.3 Superfamily in the Transport Classification Database (TCDB). Despite the substrate binding differences observed amongst P-type ATPases and the wide range of organisms in which they are found, they do consistently exhibit some key points of similarity. P-type ATPases show strong conservation of nine well-described sequence motifs (Møller J.V., et al. 1995). Furthermore, all P-type ATPases depend on ATPase activity to engage in their specific ion binding activities, and they all rely on the formation of an intermediate conformation which requires the phosphorylation of a specific aspartate residue (Møller J.V., et al., 1995).

At present, ten families within the 3.A.3 Superfamily have been distinguished based on substrate ion type and, in some instances, by some discernible functional property. An additional twenty-four families have been identified which consist of Ptype ATPases that, at this time, are functionally unclassified. Particular attention was paid in this thesis to Families 5 and 6, the Copper and Heavy Metal Families, respectively. In addition, ninety-three full-length sequences listed as representatives of the 3.A.3 Superfamily in the Transport Classification Database (TCDB) were collected and analyzed. The protocol employed for subsequent analyses of these proteins was essentially identical to the protocol previously used in the analyses of archaeal homologues (Saier, unpublished data). In brief summation, redundant and partial sequences were removed from the initial individual compilation of sequences for both Family 5 and Family 6, respectively, leaving only full-length sequences for analysis. Sequence alignments were conducted, and phylogenetic trees and hydropathy plots were constructed so as to provide a means for identifying and evaluating the conservation of specific motifs and to facilitate the discovery of unique sequence characteristics. The multiple sequence alignments can be found online at http://www.biology.ucsd.edu/~msaier/supmat/P-type_ATPase.

Table 1 provides a summary of the ninety-three protein sequences listed as representative members of the P-type ATPase Superfamily (3.A.3). Sixty-nine of these sequences can be found distributed throughout ten functionally-characterized families within the 3.A.3 Superfamily. The remaining twenty-four sequences each represents a family of P-type ATPases which, as of yet, are functionally uncharacterized. While some of these proteins appear to cluster with functionally characterized proteins, as indicated by their clustering patterns on the phylogenetic tree, preliminary analysis indicates that they are phylogenetically distinct from one another. Collectively, these subfamilies are visually displayed in Figure 1.A where, for the most part, they appear to cluster well based on their functional properties, if not precisely by their family assignments.

Data for the Copper P-type ATPases were collected by conducting a nonredundant protein psi-BLAST (NCBI) search using as query the protein sequences listed on TCDB as representatives of Family 5. Redundant sequences with greater than ninety percent sequence similarity were removed from each BLAST result using the program CD-Hit (M.R. Yen and M.H. Saier, unpublished program). Redundant sequences were eliminated again using the same program after all BLAST results were combined, yielding 385 distinct protein sequences (Table 2). After retrieving the corresponding sequence data from NCBI a multiple alignment was generated and a phylogenetic tree was constructed and examined (Figures 2.A and 2.B). Additionally, one nucleotide sequence of 16S ribosomal RNA was collected for every genus present among the 385 protein sequences, and a 16S rRNA phylogenetic tree was constructed and analyzed (Figure 4 and Table 4). As the protein sequence phylogenetic tree was too dense to properly assess the clustering properties of the sequences, it was divided into twenty smaller clusters (Figures 2.A and 2.B; Table 2). These clusters were created based on the most distinct branches visible in the phylogenetic tree. The clusters containing more than one sequence were individually multiply aligned, and the resulting data were then used to perform motif analyses on each cluster. Additionally, these data were used to perform a series of analyses using the programs AveHAS or WHAT, HMMTOP, SOPMA and EMBOSS Pepwheel (Figures 3A.1-.20, 3.B.1-.20, 3C.1-.20, 3D).

Nearly identical procedures were performed to collect and analyze the data for Family 6, the Heavy metal P-type ATPases, as were used to collect the data for Family 5. After collecting the initial set of sequences and eliminating redundancies, a total of 311 proteins sequences remained. Accordingly, these sequences were multiply aligned and a phylogenetic tree was generated and evaluated. Likewise, one 16S ribosomal RNA sequence was collected to represent each genus present amongst the 311 protein sequences. As in Family 5, the phylogenetic tree containing all of the sequences representing Family 6 was too dense to use for detailed data analysis. Consequently, the tree was divided into seventeen clusters based on the most distinct grouping patterns observed in the phylogenetic tree (Figures 5.A-5.B; Table 5). Multiple alignments were generated for the clusters containing more than one protein sequence, and motif analyses were performed. These data were consequently used to carry out motif, AveHAS, WHAT, HMMTOP, SOPMA and EMBOSS Pepwheel analyses (Figures 6A.1-.17, 6B.1-.17, 6C.1-.17, 6D).

Computational Methods

Sequence Collection

The data representing the protein sequences of the Copper P-type ATPase Family (Family 5) were gathered by first individually examining each of the sample proteins listed as representative members of Family 5, which, at the time, was only five proteins. This was accomplished by running each of the full-length sequences listed on TCDB as a representative of Family 5 separately through NCBI's nonredundant psi-BLAST program (<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>). All sequences with e-values above threshold were collected and compiled into one large group, which was then greatly reduced in size by eliminating sequences that were redundant, fragmented or too short. Elimination of redundancies was accomplished using the program CD-Hit, which removed sequences with greater than ninety-percent similarity. After the redundancies were eliminated within each of these groups, all of the sequences were combined, and, again, redundant sequences were eliminated using the same criteria with CD-Hit, thereby reducing the total to 385 sequences. The corresponding TinySeq XML format (NCBI) of these proteins was obtained and modified using the script MakeTable4 to generate a format of the sequences compatible for running the sequences through a multiple alignment. The MakeTable4 program also generated a file with 16S rRNA nucleotide sequences representing one example of nearly every prokaryotic genus present among the protein sequences analyzed (M.R. Yen and M.H. Saier, unpublished program). 16S rRNA nucleotide sequences for the remaining genera were manually retrieved from NCBI's Core Nucleotide database and combined with those collected by the Make Table4 program. Using the multiple alignment program ClustalX and the phylogenetic tree-generating program TreeView PPC, these nucleotide sequences were aligned and a 16S rRNA phylogenetic tree was created.

Virtually identical methods were employed to gather the proteins representing Family 6, the Heavy Metal P-type ATPases, resulting in the collection of 311 sequences. Likewise, the Make Table4 program was used to collect a sample 16S rRNA nucleotide sequence for nearly every genus of prokaryotic species found in the protein sequences representing Family 6, as well as to modify the TinySeq XML format for the sequences from Family 6 so as to prepare them for running a multiple alignment. Representative 16S rRNA nucleotide sequences for the genera that were not found in the Make Table4 program were manually retrieved from NCBI's Core Nucleotide database and added to the previously obtained sequences from Make Table4. These sequences were then aligned using ClustalX and a 16S rRNA phylogenetic tree was generated using TreeView PPC.

By contrast to the procedures used to obtain data for Family 5 and Family 6, the collection of the sequences for the analysis of the 3.A.3 Superfamily was less complicated. The data pertaining to each of the 93 protein sequences listed on the Transport Classification Database (TCDB) as representatives of the 3.A.3 Superfamily were compiled and converted to a TinySeq XML format compatible for running a multiple alignment, as detailed above. While most of the relevant sequence data were obtained through NCBI, two of the proteins were not yet listed on NCBI at the time of this report. The sequence for one of these proteins, obtained from *Cyanidioschyzon merolae* 10D and designated as Cme1, was obtained form *Thalissiosira thermophila* SB210 and designated as Tpe1 (Thever M.D.; 2007). Both Cme1 and Tpe1 are, at the present time, functionally uncharacterized P-type ATPases and belong to the subfamilies 3.A.3.12.1 (Family 12) and 3.A.3.21.1 (Family 21), respectively.

<u>16S rRNA Analysis</u>

The 16S ribosomal RNA sequences used for analysis of the prokaryotic genera present in Families 5 and 6 were obtained from the NCBI database. The 18S ribosomal RNAs were not collected for the eukaryotic genera, as eukaryotes represented only a small fraction of the total sequences from either Family 5 or 6, and, for the most part, clustered by themselves. Prokaryotic organisms with unclassified genera were omitted from the 16S rRNA analyses for these two families. A total of 138 different genera were identified in Family 5, and 136 different genera were identified in Family 6. When possible, 16S rRNA corresponding to the complete genomes of each genus were collected for analysis. However, the complete 16S rRNA could not be located for all of the prokaryotic genera. In these instances, the 16S rRNA of the partial genome of an organism belonging to the desired genus was used instead, given that it was similar in length to the 16S rRNA obtained from the fully sequenced genomes of other organisms collected. The sequences were aligned using the multiple alignment program ClustalX (see below), and phylogenetic trees for both Family 5 and Family 6 were constructed using TreeView PPC (see below). These phylogenetic trees were subsequently analyzed to evaluate the clustering patterns of each organism.

Multiple Alignments and Phylogenetic Trees

The ClustalX program was used to perform multiple alignments of the 16S rRNA sequences, as well as the protein sequences representing Families 5 and 6. Additionally, it was used to perform a multiple alignment of the protein sequences representing the 3.A.3 Superfamily, as well as multiple alignments on the six sub-superfamilies (SSFs) created based on the clustering patterns of sequences observed in the 3.A.3 Superfamily. After completing these alignments, corresponding

phylogenetic trees were generated. The vast number of sequences present in Families 5 and 6 obscured detailed analysis of their respective phylogenetic trees. Thus, to facilitate further analysis, the sequences in each family were divided into smaller clusters based on the most distinct grouping patterns found in their respective phylogenetic trees (Figures 2.A-.B and 5.A-5.B). This resulted in the production of twenty groups within Family 5 and seventeen groups within Family 6. Accordingly, multiple alignments were run for each group consisting of more than one protein sequence. The completed alignment data were subsequently used to analyze the conservation of motifs and the similarities, amphipathicities, hydrophobicities, and topological patterns of the sequences in each group using the programs AveHAS, WHAT, HMMTOP, SOPMA and EMBOSS Pepwheel (see below).

Hydropathy Analysis

The AveHAS program was run on almost each of the twenty groups representing the proteins of the Copper P-type ATPase Family and the seventeen groups representing the proteins of the Heavy Metal P-type ATPase Family. However, group # 7 in Family 5 and groups # 11 and 17 in Family 6 only contained one sequence each. Thus, the WHAT program was run in lieu of AveHAS for these three groups, based on program specifications (<u>http://tcdb.ucsd.edu/avehas.html</u> and (<u>http://tcdb.ucsd.edu/what.html</u>). These two programs are designed to display regions of hydrophobicity and amphipathicity, as well as predict the numbers and locations of transmembrane sequences (TMS) present in each sequence or group of sequences it

analyzes. The AveHAS program also provides an indication of the average similarity of the proteins it analyzes.

In addition to analyzing the protein sequences in many of the clusters in both Families 5 and 6, the AveHAS program was also run on twenty protein sequences from the Copper P-type ATPases and seventeen protein sequences from the Heavy Metal P-type ATPases, one per cluster. This was done to provide additional means of comparing these two families, and, more specifically, to identify the most amphipathic region in each of these two families to examine using the EMBOSS Pepwheel program.

Motif Analysis

One of the most distinguishing factors of the P-type ATPases is their display of nine well conserved motifs, which are examined in depth for Families 5 and 6 in Chapters 4 and 5, respectively. Thorough examination of these motifs was conducted via manual identification in the multiple alignments of each of the twenty Copper and seventeen Heavy metal groups. The alignment locations, levels of conservations, and appearance or absence of residue substitutions in each of these motifs were documented in Microsoft Excel spreadsheets, as seen in Tables 3 and 6. The motifs from the groups belonging to Families 5 and 6 were further scrutinized using the SOMPA program to analyze trends in motif topology and the HMMTop program to identify the location of each motif in relation to the protein sequence's TMSs.

Homology Analysis

Each of the twenty clusters of protein sequences representing the Copper Ptype ATPase and the seventeen clusters of protein sequences representing the Heavy Metal P-type ATPases were examined to determine the phylogenetic relationships of the individual sequences within each cluster. Several sub-clusters were discovered within each cluster. The branching distances and genera of the protein sequences within these sub-clusters were compared using the 16S rRNA and protein phylogenetic trees corresponding with either the Copper or Heavy Metal families (Figures 2.A-2.B, 4, 5.A-5.B, and 7). Sequences that clustered closely together in their protein phylogenetic tree were either all from the same genus, or were from genera that were found within the same cluster in their 16S rRNA tree, were predicted to be orthologous to one another. Although the sequences clustering closely together most frequently were from the same or a closely related genus, others were found in adjacent or very distant clusters in their 16S rRNA tree. These sequences were not likely to be orthologous to one another and, depending on their branching differences in both the 16S rRNA and protein phylogenetic trees, some appeared to be possible examples of horizontal gene transfer.

Phylogenetic Domain Analysis

It is not uncommon for P-type ATPases to exhibit greater sequence similarity with other P-type ATPases with the same substrate than they might with a P-type ATPase from the same organism, but with a different substrate. However, most P-type ATPases have certain conserved functions, like phosphate recycling, and conserved regions like a phosphorylation site and an ATP-binding site. Additionally, the functions and characteristics of P-type ATPases are influenced by the phylogenetic kingdom to which they belong (Møller J.V., et al., 1995). Consequently, the sequences of the Copper and Heavy Metal P-type ATPases (Families 5 and 6, respectively) were further analyzed by examining the characteristics of sequences based on their phylogenetic kingdoms. The Bacterial domain was, by far, the most represented domain amongst the sequences in both families. The number of protein sequences belonging to Archaea and Eukaryota in these two families was comparatively small, with twenty archaeal sequences and fifteen eukaryotic sequences found in Family 5 and forty-seven archaeal sequences and eight eukaryotic sequences found in Family 6. Chapter 1: 3.A.3: The P-Type ATPase Superfamily

3.A.3: The P-Type ATPase Superfamily

The P-type ATPase Superfamily, which is classified as the 3.A.3 Superfamily (TCDB), is a collection of proteins associated with the transport of ions across a membrane in concert with the hydrolysis of ATP. It is comprised of both prokaryotic and eukaryotic proteins, and is classified into several distinct families. In some cases, these families are further broken down into subfamilies based on distinguishable genomic differentiations within a given family. At present, ten families within the 3.A.3 Superfamily have been classified based on substrate (ion) type. An additional twenty-four families have been created from, as of yet, functionally unclassified P-type ATPases.

Table 1 provides a summary of the data corresponding to the 93 full-length protein sequences listed on TCDB as representatives of the 3.A.3 Superfamily. Sixtynine of these sequences are members of Families 1-10 within the 3.A.3 Superfamily, which each contains distinct, functionally characterized P-type ATPases. The remaining twenty-four proteins represent Families 11-34 which, as of yet, are functionally uncharacterized P-type ATPases. Preliminary examinations suggest that, while some of these proteins appear to cluster near proteins that belong to various functionally classified families, these twenty-four families are phylogenetically different from one another. Collectively, these proteins are visually displayed in Figure 1.A where, for the most part, they appear to cluster well based on their functional properties, if not precisely by their family assignments.

1.1: Phylogenetic Analysis

The phylogenetic tree for the 3.A.3 Superfamily, the P-type ATPases, is depicted in Figure 1.A. As expected, the protein sequences with known substrates (ions) primarily aligned in accordance with their family groupings. The clustering patterns seen in this phylogenetic tree generally support previous research, which indicated that greater sequence similarity generally exists between P-type ATPases with the same substrate, even from different organisms, than between those from the same organism, but different substrate type (Axelsen and Palmgren; 1998). However, there were some exceptions to these clustering patterns observed. While the protein sequences that represented Families 1 and 9 (3.A.3.1 and 3.A.3.9, respectively) clustered closely without interruption from proteins belonging to other families, they themselves broke up the continuity of the sequences representing Family 2 (3.A.3.2). Despite the difference in ion substrate types, the division of Family 2 by Families 1 and 9 was somewhat expected, as Na^+/K^+ , H^+/K^+ , fungal Na^+ , and Ca^{2+} P-type ATPases are collectively classified as type II ATPases (Møller J.V., et al., 1996; Axelsen and Palmgren, 1998). Unlike type I ATPases, which include the Copper and Heavy Metal Families and have, on average, eight TMSs, the type II ATPases generally consist of ten TMSs. Type II ATPases have been further subdivided into type IIA ATPases, type IIB ATPases, type IIC ATPases and type IID ATPases. The first of these two subdivisions of type II ATPases are involved in Ca²⁺ transport. The third subdivision is comprised of both Na^+/K^+ and H^+/K^+ transporters, whereas the last subdivision is made up of both Ca²⁺ and Na⁺ transporters. Although differences in ion

substrate types are found even within the different categories of type II ATPases, previous research supports the existence of such relationships and suggests that their ancient origins may have necessitated the co-evolution of these transporters (Axelsen and Palmgren, 1998; Benito, et al., 2000).

Family 1, which was represented by four protein sequences in Figure 1.A, was comprised of P-type ATPases transporting Na⁺, K⁺, H⁺, or NH₄⁺ ATPases. Similarly, Family 9, which was also represented by four protein sequences in Figure 1.A, consisted of P-type ATPases primarily associated with Na⁺ and/or K⁺ efflux. By contrast, Family 2 was one of two families within TCDB associated with Ca²⁺ ion pumps, the other being Family 10. Family 2 was represented by eighteen sequences in Figure 1.A, which were further divided into Family 2A, 2B and 2C. Collectively, these three components of Family 2 appeared to be composed of Ca P-type ATPases that were located in one of the following regions: the trans-Golgi network, the plasma membrane, or endomembranes, which include the Endoplasmic Reticulum. Interestingly, it did not appear that the three divisions in Family 2 seen in Figure 1.A exclusively contained protein sequences from one region versus another.

In Figure 1.A, the only sequence representing Family 4 (3.A.3.4), which is involved in $Mg^{2+/}Ni^{2+}$ uptake, was depicted as clustering within Family 3 (3.A.3.3). These two families are classified as type IIIB and type IIIA ATPases, respectively (Axelsen and Palmgren, 1998). While Family 3 is primarily associated with the translocation of protons, other studies have indicated that these two families are similar in function and location, so it was not surprising to find them clustered

together (Axelsen and Palmgren, 1998; Mukherjee, et al., 2000). Additionally, Figure 1.A depicted the proteins of Family 3 as belonging two distinct subgroups, with cluster 3 (3.A.3.3.3) belonging to its own subgroup, and the remaining clusters (1, 2 and 4-7) falling into a second subgroup. Family 4 was shown in Figure 1.A as forming its own subgroup between the two groups in Family 3.

The functionally uncharacterized proteins belonging to Families 12-22 clustered together in Figure 1.A, with Families 11-18 forming one subgroup, and Families 10, 12, 20 and 22 forming distinct subgroups of their own. These groups associated closely with Family 8, whose proteins in Figure 1.A fall into one distinct subgroup and are associated with phospholipid translocation, and contain Family 10, whose proteins are associated with the endoplasmic reticulum Ca²⁺ pumps. The remaining families of uncharacterized P-type ATPases can be seen in Figure 1 as follows: Family 30 appeared to cluster with Families 1, 2 and 9, but formed its own distinct subgroup. Families 23 and 24 appeared to form their own subgroup and cluster between Families 3 and one of the subfamilies of Family 2. The sequences representing Family 8 are classified as type IV ATPases, whereas the neighboring eukaryotic sequences, which are functionally uncharacterized, have been categorized as type V ATPases (Axelsen and Palmgren, 1998).

Families 26, 31, and 32 clustered alongside Family 7, but each formed their own subgroup. All of the proteins representing Family 6 in Figure 1.A appeared to form two subgroups, one containing cluster 7 (3.A.3.6.7) and the other containing all of their other clusters (1-6 and 8-10). Families 25, 33 and 34 formed a distinct

subgroup between Families 5 and 6, and Families 27 and 29 formed another subgroup with clusters 9 and 13 from Family 5 (3.A.3.5.9 and 3.A.3.5.13), which was located in Figure 1.A between the other sequences belonging to Families 5 and 6. The remaining sequences from Family 5 were all found together in a separate subgroup, and Family 28 was found in its own distinct subgroup clustering closely to Family 5, but on the side farthest from Family 6.

1.2: Families of Functionally Characterized P-type ATPase Proteins

To date, the substrate ion and, in some cases, some of the functional characteristics of ten families within the 3.A.3 Superfamily have been identified (3.A.31- 3.A.310). These families were collectively represented by a total of sixty-nine protein sequences in Figure 1.A, eighteen of which represented the Copper Family (Family 5) and ten of which represented the Heavy Metal Families (Family 6).

1.3: Families of Functionally Uncharacterized P-type ATPase Proteins

Twenty-four families within the 3.A.3 Superfamily are, at the writing of this report, functionally unclassified. As previously described, some of these families clustered next to or within families of P-type ATPases whose functionality has been characterized. While this suggests that they may share some sequence and functional similarity with those proteins, it is premature to conclude that they are, in fact,

functionally or phylogenetically similar enough to be categorized as part of the same family within the 3.A.3 Superfamily.

<u>1.4: Hydropathy Analysis</u>

The ninety-three protein sequences representing the 3.A.3 Superfamily were subdivided into seven groupings classified as sub-superfamilies, or SSFs, based on the major clusters observed in the corresponding phylogenetic tree (Figure 1.A). The proteins in each of these sub-superfamilies were then analyzed using the AveHAS program (<u>http://tcdb.ucsd.edu/avehas.html</u>). This program provided predictions of the number of transmembrane segments (TMSs) in each sub-superfamily, as well as visually indicated the levels of similarity and the points of hydrophobicity, and amphipathicity shared by the protein sequences in each sub-superfamily.

SSF 1 and SSF 7 were examined both together and separately using the AveHAS program. These two sub-superfamilies are thought to be Type I P-type ATPases, and both display very similar sets of eight TMSs (Figure 1.B.1-1.B.7). SSF 1 contains the characterized families of the Copper and Heavy metal P-type ATPases (Families 5 and 6, respectively). It also contains the uncharacterized Families 27 and 28, which cluster within Family 5, but each form their own distinct subgroup, and Families 25, 29, 33 and 34, which cluster together between Families 5 and 6. SSF 7 contains the characterized Family 7, the Kdp P-type ATPases, and the uncharacterized Families 26, 31 and 32.

SSF 2 is thought to contain Type II P-type ATPases, and consist of ten distinct TMSs. It is comprised of the characterized Families 1, 2 and 9, which are known to cluster together, and the uncharacterized Family 30. Both Families 1 and 9 are involved in Na⁺ and/or K⁺ translocation. Family 2 is one of the two families within the 3.A.3 Superfamily associated with Ca^{2+} translocation, but it is also believed to be closely linked with Na⁺ translocation as well due to similarities in evolutionary origin (Benito, et. al, 2000). Like SSF 2, the protein sequences falling within SSF 3,4 have ten TMSs. SSF 3,4 contains only Families 3 and 4, the Proton and Mg^{2+/}Ni²⁺ P-type ATPases, which are known to cluster together (Mukherjee, et al., 2000). Additionally, SSF 2 clusters closely to SSF 6 (Figure 1.A), which also contains ten TMSs. SSF 6 does not contain any of the currently functionally characterized P-type ATPases. Instead, it is comprised entirely of Families 23 and 24, which each form their own distinct subgroup within SSF 6. Lastly, SSF 5, which also contains 10 TMSs, consists of the functionally characterized Families 8 and 10, which are involved in phospholipid and calcium translocation, respectively, and the uncharacterized Families 11-22. All of the members of Family 8 cluster together, forming a single subgroup within SSF 5. Likewise, Families 13-16 appear to collectively form another subgroup within SSF 5. The remaining Families within SSF 5, Families 11, 12 and 17-20, each form their own distinct subgroup.

Chapter 2: The Copper P-Type ATPases

The Copper P-Type ATPases

Copper P-type ATPases, which are classified as Family 5 in TCDB, are found in both prokaryotic and eukaryotic organisms. Many Family 5 proteins exhibit functional and phylogenetic similarities to proteins belonging to the Heavy metal Ptype ATPase Family, including their tendency to have one or more heavy metalassociated domains (HMAs). Despite these similarities, though, phylogenetic analyses indicate that Copper and Heavy metal P-type ATPases are distinct from one another. Amongst the most studied proteins belonging to Family 5 include human proteins ATP7A and ATP7B. Although in-depth analyses of these proteins was not within the scope of this study, it is interesting to note that defects in these proteins are associated with Menkes and Wilson's diseases, respectively.

385 Copper P-type ATPase sequences were obtained as a result of performing a series of non-redundant psi-BLAST searches (NCBI) and subsequent eliminations of redundant sequences. The corresponding sequence data from NCBI was used to perform a multiple alignment and to generate a phylogenetic tree. Additionally, these data were used to collect and analyze the 16S rRNAs of the prokaryotic genera present (see below). As the initial phylogenetic tree was too dense to properly assess the clustering properties of the sequences present, it was subsequently divided into twenty smaller clusters. These groups were based on the most distinct branches visible in the phylogenetic tree containing all 385 sequences, and underwent motif, AveHAS, HMMTOP, SOPMA and EMBOSS Pepwheel analyses.

2.1: Phylogenetic Analysis

The original 385 protein sequences representing the Copper P-type ATPase Family were divided into twenty clusters based on the distinct branching patterns observed in the protein phylogenetic tree (Figures 2.A-2.B; Table 2). Cluster 1 was comprised of four protein sequences with an average amino acid length of 771 \pm 52 residues. The two bacterial sequences present belonged to the phylogenetic groups Thermotogae and ε -proteobacteria, while the two archaeal sequences present both belonged to Crenarchaeota. Cluster 2 contained twenty-eight protein sequences, all from Actinobacteria. The average length of these sequences was 769 \pm 53 residues.

Cluster 3 contained twenty-six protein sequences from several different bacterial phylogenetic groups: Acidobacteria, Δ -proteobacteria, β -proteobacteria, γ proteobacteria, Chlorobi, and one unclassified proteobacterium. The average length of these sequences was 806 ± 16 residues. Cluster 4 consisted of twenty protein sequences, averaging 706 ± 40 amino acid residues in length. Six of these proteins belong to the archaeal phylogenetic group, Euryarchaeota. The remaining sequences belonged to the bacterial phylogenetic groups Firmicutes, Aquificae, β -proteobacteria, **A**-proteobacteria, Deiococci, and Chloroflexi.

Cluster 5 contained five bacterial protein sequences with an average length of 827 ± 18 amino acid residues. These sequences belonged to the phylogenetic groups Deinococci, Actinobacteria, and α -proteobacteria. Cluster 6 was comprised of forty-seven bacterial sequences from the phylogenetic groups Planctomycetes, α -

proteobacteria, β -proteobacteria, and γ -proteobacteria. These sequences had an average length of 788 ± 52 amino acid residues.

Cluster 7 was the only group amongst the twenty groups that contained only one sequence. This sequence was 807 amino acid residues long and was from an unclassified proteobacteria. Cluster 8 consisted of twenty-seven bacterial protein sequences from Cyanobacteria, Deinococci, α -proteobacteria, β -proteobacteria, and γ proteobacteria. These sequences averaged 816 ± 52 amino acids residues in length.

Cluster 9 contained twenty-four protein sequences with an average length of 849 \pm 83 amino acid residues. Unlike most of the groups of its size, all of the sequences from group 9 are from a single bacterial phylogenetic group, γ -proteobacteria. Group 10 was one of the larger groups, containing thirty-nine protein sequences which averaged 831 \pm 84 amino acid residues in length. Its nine archaeal sequences were all from the phylogenetic group Euryarchaeota, whereas its thirty bacterial sequences were from a range of phylogenetic groups, which included Chloroflexi, Cyanobacteria, Chlorobi, Firmicutes, Bacteriodetes, Actinobacteria, Acidobacteria, β -proteobacteria, and Δ -proteobacteria.

Cluster 11 consisted of nine protein sequences which had an average length of 831 ± 71 amino acid residues. Its three archaeal sequences were all from the phylogenetic group Euryarchaeota, and its remaining sequences were from the bacterial phylogenetic groups Actinobacteria, Chlorobi, Firmicutes, and Δ -proteobacteria. All seven of the protein sequences belonging to cluster 12 belonged to the bacterial phylogenetic group Firmicutes, and exhibited a rather small average

amino acid length of 658 ± 41 residues. Cluster 13 was comprised of forty-five protein sequences, all eukaryotic sequences from the phylogenetic group Viridiplantae, and was the largest of all twenty groups. In addition to its large group size, cluster 13 exhibited the largest average amino acid length per sequence at 1206 ± 214 residues. These unique features may contribute to its unique AveHAS plot, as described below.

Cluster 14 was made up of nine proteins, which averaged 826 ± 76 amino acid residues. Two of its sequences belonged to the eukaryotic phylogenetic group Viridiplantae. These eukaryotic sequences were at least one-hundred residues longer than the remaining seven sequences, which all belonged to the bacterial phylogenetic group Cyanobacteria. Cluster 15 was comprised of nineteen bacterial proteins belonging to the phylogenetic groups Firmicutes, Fusobacteria, Spirochetes, Δ proteobacteria, and ε -proteobacteria. These sequences had an average sequence length of 786 ± 63 amino acid residues.

Both clusters 16 and 18 were comprised of three bacterial protein sequences. The sequences found in cluster 16 averaged 806 ± 26 amino acid residues in length and were of the phylogenetic groups β -proteobacteria and γ -proteobacteria. The sequences found in cluster 18, however, had a shorter average sequence length of 725 ± 4 amino acid residues and were entirely from Firmicutes. Cluster 17 contained seventeen bacterial protein sequences from the phylogenetic groups α -proteobacteria, β -proteobacteria, γ -proteobacteria, and Chlamydiae. These sequences had an average length of 757 ± 34 amino acid residues. Cluster 19 consisted of twenty-two bacterial protein sequences, which had an average length of 796 ± 49 amino acid residues. These sequences were almost entirely from the phylogenetic group Firmicutes, with only one sequence belonging to the phylogenetic group Spirochaetes. Lastly, cluster 20 was comprised of thirty protein sequences from the bacterial phylogenetic groups α -proteobacteria, β -proteobacteria, γ -proteobacteria. These sequences had an average length of 820 ± 92 amino acid residues.

2.2: Analyses of Segments of Unusual Length

The sequences within the Copper P-type Family that appeared notably shorter or longer than other sequences, particularly than those they clustered with in the phylogenetic tree, were subjected to a more thorough examination (Figure S2; Table 2). After identifying sequences of unusually great length in Family 5, the multiple alignment for the proteins of Family 5 was used to determine if these sequences had extra segments, as compared to their neighboring sequences. This was accomplished using the programs TCDB BLAST and NCBI BLAST. TCDB BLAST compiled and ranked a list of proteins within its database that shared similarities with the given segment of amino acid residues. NCBI BLAST performed a similar task on these proteins in its own database, but was also able to take its search one step farther through its ability to utilize NCBI's Conserved Domain Database (NCBI CDD), which provided a ranked listing of possible conserved domains present within the segment of interest. Many of the unusual segments or sequences examined did not contain any unique conserved domains that exhibited a strong E-value. Nonetheless, several proteins did have segments or entire sequences of interest, as described below (Table 8).

Forty sequences or segments of sequences were analyzed from the proteins representing the Copper P-type ATPases (Family 5). Thirty-three segments from a collection of twenty-nine sequences that were longer than the other sequences they clustered with were analyzed. Additionally, seven full-length sequences that were unusually short in length were analyzed to assure that they did, in fact, contain the necessary domains required to be fully-functional P-type ATPases. As expected, most of the TCDB BLAST and NCBI BLAST results indicated that the segments and sequences analyzed exhibited the strongest relationship to proteins from Family 5, Family 6, or both. However, in several of the segments a protein from 9.A.2.1.1, identified as a Periplasmic mercury ion binding protein (TCDB) was also present amongst the retrieved proteins in TCDB BLAST. This protein was retrieved with values above threshold (1e-04) for Fsp4, Dra1, Det1, Dha1, Cac1, Tde1, Bma1, Bce1, Bce2, Psp1, and Reu1. It was also amongst the proteins retrieved in the TCDB BLAST for the extra segment from the sequence Asu1, but it had an E-value below threshold (0.006). In addition to the retrieval of the Periplasmic mercury ion binding protein, a few other unexpected proteins were retrieved while performing TCDB BLASTs on the segments of interest, but they all exhibited incredibly E-values below threshold, and therefore were not included in this analysis.

Many conserved domains or fragments of conserved domains were identified by NCBI CDD during analysis of the thirty-three segments that were notably larger than most other sequences within their respective clusters. Two different heavy metal associated domains (HMAs) were identified, cd00371 and pfam00403, with at least one present in all but Psp2, Rpa1, Sal1 and Bps1 from cluster 6, Nsp3 and Reu2 from cluster 10, Spn1 from cluster 12, and Sth2 from cluster 19. Other common conserved domains included COG2608 (CopZ), PRK10671 (copper transporter), COG2217 (ZntA), and PRK11033 (zntA). Amongst the segments examined in cluster 10, the conserved domains pfam04945 (YHS domain), cd01057 (AAMH_A, Aromatic and Alkene Monooxygenease Hydroxylases, subunit A), COG3350 (uncharacterized conserved protein) and smart00746 (TRASH, metallochaperone-like domain) were common, and were all found in Rpa1, Sal1, Nsp6, Bps1 in cluster 6 contained all of these domains but cd0157, and Reu2 in cluster 6 contained COG3350 and smart00746. Reu2 also contained an unusual conserved domain, PRK00807 (50S ribosomal protein L24e), but its E-value, 0.001, was below threshold. This domain was also found in the segment analyzed from Nsp6, also in cluster 10, which had an Evalue above threshold, 3e-04.

In addition to exhibiting several of the more common conserved domains, Dha1 from cluster 11 also contained the conserved domain cd5062_PTKc_IGF-1R, Protein-Tyrosine-like Kinase Family; Insulin-like Growth Factor-1 Receptor; catalytic domain. Although its E-value was below threshold, 0.010, it seems possible that the sequence could, in fact contain such a domain. Spn1 from cluster 12 only had a fragment of a single conserved domain located in its extra segment, COG4633, an uncharacterized protein conserved in bacteria. Although only part of this conserved domain is actually found in a portion of the sequence analyzed, it exhibited a strong E-value of 1e-12, and it was the only segment of any of the sequences analyzed in Family 5 in which NCBI CDD detected this domain. In cluster 19, Sth2, from *Symbiobacterium thermophilium*, an Actinobacterium, contained fragments of conserved domains not detected by NCBI CDD in any of the other segments from the sequences analyzed in Family 5. The fragments of these domains, pfam00115 (COX2, Cytochrome C oxidase subunit II, periplasmic domain) and COG2131 (SufI, Putative multicopper oxidases), both exhibited E-values above threshold, 6e-05 and 6e-04, respectively.

Although segments from sequences in clusters 2, 4, 6, 8-13, 15, 19 and 20 were analyzed, clusters 6, 10, and 20 contained the most unusually long sequences. The proteins analyzed from cluster 6 were Rfe2, Psp2, Rpa1, Sal1, and Bps1, from *Rhodoferax ferrireducens, Polaromonas* sp. JS666, *Rhodopsudomonas palustris, Xanthomonas axonopodis pv. vesicatoria*, and *Burkholderia pseudomallei*, respectively (Table 2). These sequences range between 787 to 973 amino acids long, and are from the phylogenetic groups α -proteobacteria, γ -proteobacteria, and β proteobacteria, respectively (Table 8). The long proteins analyzed from cluster 10 were Nsp6, Nsp3, Det1, Reu2 and Mbu1. Nsp6 and Nsp3 were both from *Nocardioides* sp. JS614, and consequently from the phylogenetic group Actinobacteria. The remaining three segments were from *Dehalococcoides* *ethenogenes*, *Ralstonia eutropha*, and *Methanococcoides burtonii*, respectively. These sequences were between 828 and 1071 amino acids long and are from Chloroflexi, β-proteobacteria, and Euryarchaeota, respectively. Lastly, the long proteins analyzed in cluster 20 were Bma1, Bce1, Bce2, Psp1 and Reu1, which were between 816 and 1061 amino acids in length. These proteins were from *Burkholderia mallei*, *Burkholderia cepacia*, *Burkholderia cenocepacia*, *Polaromonas* sp. JS666, and *Ralstonia eutropha*, respectively, and were all β-proteobacteria. Despite their length, however, they did not exhibit any unusual conserved domains, but instead exhibited a collection of HMAs cd00371 and pfam00403, COG2608 (CopZ), PRK10671 (copper transporter), COG2217 (ZntA), and PRK11033 (zntA).

Amongst the proteins with the longest sequences found in Family 5 were eukaryotic proteins labeled Hsa1, Cfa2, Dme1 and Ddi2 from cluster 13, and bacterial proteins labeled Nsp6, Bma1, Bce1, and Bce2 from clusters 10 and 20 (Table 2). These sequences were all over one-thousand amino acid residues long, and were chosen for examination either because their length was an anomaly within their cluster, or as a representative sequence of part of a cluster or an entire cluster that is unusually long. The eukaryotic sequences were from the organisms, *Homo sapiens*, *Canis familiaris, Drosophila melanogaster*, and *Dictyostelium discoideum*, and were all Metazoans and slime molds, although cluster 13 also consisted of a few sequences from Fungi and one sequence from Viridiplantae. Nsp6, the only bacterial sequence examined from cluster 10, was from an Actinobacterium from *Nocardiodes* sp. JS614, whereas the bacteria examined from cluster 20 were from *Burkholderia ambifaria* AMMD, *Burkholderia cepacia* R18194, and *Burkholderia cenocepacia* HI2424, respectively, were all β-proteobacteria. Despite their differences, most of the TCDB BLAST and NCBI BLAST results indicated that the segments of these proteins that extended beyond the length of some of the shorter sequences in their clusters still were most closely related to Copper or Heavy metal P-type ATPases. No results were found on TCDB BLAST for Ddi2, nor were any conserved domains found on NCBI CDD. Also, the only result retrieved for this segment in NCBI BLAST with an E-value above threshold (9e-104) was a hypothetical protein DDBDRAFT_0217251. Similarly, in Dme1, no conserved domains were detected by NCBI CDD, nor were any results retrieved by TCDB BLAST, but one copper and one heavy metal P-type ATPase were detected at levels above threshold by NCBI BLAST.

Nearly every segment from the above long sequences analyzed indicated the presence of at least one HMA (heavy metal-associated) domain, with the exception of Nsp6, Ddi2, Cfa2, and Dme1, which did not have any conserved domains detected by NCBI CDD. The segments from three of these sequences, Ddi2, Cfa2, and Dme1, did not pull up any results on TCDB or NCBI BLAST. Nsp6 did not produce any results on NCBI BLAST and only had one protein retrieved on TCDB BLAST, a L-lysine transport protein from 2.A.3.2.4, which had a E-value below threshold (0.85). While it is uncertain at this time why these extra segments, which distinguish these proteins from others which they cluster with, do not have any conserved domains, it is possible that their extra amino acid residues still play a role in their biological function by

binding heavy metals. Further examination of this hypothesis, however, is not within the scope of this thesis.

In addition to closely examining the largest sequences found amongst the Copper P-type ATPases, the shortest of the sequences found with Family 5 were also carefully evaluated to insure that they were, in fact, full-length protein sequences. Prior to even examining these sequences for the presence of the nine known well conserved sequence motifs (see above), a couple of these sequences were selected for sequence examination via the TCDB BLAST, NCBI BLAST and NCBI CDD programs. The seven sequences identified as having shorter lengths than all or most of their neighboring sequences were Rge3, Bfu2, Sty1, Nsp4, Mth2, Ptr1, and Cte1, which were from Rubrivivax gelatinosus, Burkholderia fungorum, Salmonella typhimurium, Nostoc sp. PCC 7120, Moorella thermoacetica, Pan troglodytes and *Clostridium tetani*, respectively. These sequences were between 670 and 1197 amino acids in length, with Rge3 and Bfu2 from cluster 6, Neu3 from cluster 8, Nsp4 and Mth2 from cluster 10, Ptr1 from cluster 13, and Cte1 from cluster 15 (Figures 2.A and 2.B; Table 2). Rge3 and Sty1 were β -proteobacteria, Sty1 was a γ -proteobacterium, Nsp4 was a Cyanobacterium, Mth2 and Cte1 were Firmicutes, and Ptr1 was a Metazoan. Although the lengths of these proteins are shorter than most or all of their neighboring sequences, all of these sequences brought up only P-type ATPases on TCDB, most or all of which were Copper or Heavy metal P-type ATPases. Interestingly, the protein labeled Ptr1 was described as being similar to ATP7B. Additionally, the results obtained from NCBI CDD indicated that both sequences

contained an E1-E2 domain and a hydrolase domain, both with E-values above threshold, and thereby provided evidence that both sequences were, in fact, full-length P-type ATPases.

2.3: Hydropathy Analysis

The WHAT program or a newly updated version of AveHAS (TCDB) was used to analyze each of the twenty clusters from Family 5 (Figure 3.A.1- 3.A.20). The recently modified AveHAS program not only displays information regarding the similarities, hydrophobicities and amphipathicities of the sequences present in the multiple alignment, but also generates a prediction regarding the numbers and locations of TMSs present. The AveHAS program predicted 8 TMSs for clusters 1, 2, and 4-20, which were subsequently labeled as TMSs A, B, 1, 2, 3, 4, 5, and 6. It predicted the existence of 8 TMSs, which were labeled as A, B, 1, 2, 3, 4, 5, and 6. Cluster 3, by contrast, appeared to have 9 TMSs, which were labeled as Y, A, B, 1, 2, 3, 4, 5, and 6. In lieu of AveHAS, the WHAT program was used to analyze the single sequence belonging to cluster 7. The additional transmembrane segment predicted in cluster 3, TMS Y, appeared to be in front of TMSA and did not seem to impact the grouping of the other eight TMSs. All of the clusters but clusters 6 and 10 had TMSs A, B, and 1-6 arranged in a fairly consistent pattern, where TMSA and TMSB grouped closely together and were separated only by a short gap from TMS1 and TMS2, which also were close to one another. TMS1 and TMS2 were then separated by another short gap from TMSs 3 and 4. After a much longer gap than that separating TMS2 from TMS3, and TMS5 and TMS6 were found clustering closely together. The eight TMSs detected in clusters 6 and 10, however appeared to deviate from the typical pattern of TMS groupings. Although TMSs 1-6 appeared to group together as expected, TMSA was separated by a sizeable gap from TMSB, which grouped more closely to TMSs 1 and 2.

In addition to using the AveHAS program to analyze the sequences of the individual clusters within Family 5, it was also used to analyze one protein sequence from each of the twenty clusters representing the Copper P-type ATPases. These data were used to provide a means for identifying the regions in Family 5 which exhibited the most strongly conserved amphipathic peaks in the sequence, the best of which was examined using the EMBOSS PEPWEEL program (see below).

2.4: HMMTop Analysis

The program HMMTop was employed to predict the numbers and locations of transmembrane sequences in each of the twenty clusters, which collectively represent the Copper P-type ATPase Family (<u>http://www.tcdb.org/progs/hydropathy.php</u>). This program is an optimization method for predicting transmembrane segments and topology. It is designed to take into account the effects of how the placement of a given set of residues in a given segment of a protein can impact other segments within that protein (Dosztányi Z., et al., 2003).

Unlike the AveHAS program, HMMTop can only be run on one protein sequence at a time. Thus, one protein sequence was selected from each of the twenty clusters that were created based on clustering patterns (see above). While using only one sequence per cluster limits the strength of the results obtained, these data provide useful information when compared to the results for each cluster obtained with the WHAT, AveHAS, and SOPMA programs (Figures 3.A.1-.20, 3.B.1-.20, and 3.C.1-.20). In agreement with the information yielded by the AveHAS plots, HMMTop analysis revealed that Motif 4 (M4) was located inside of TMS4 of all twenty clusters. Additionally, HMMTOP analysis of each sequence provided the numbers and locations of its TMSs, thereby more clearly identifying the location of each of the nine recognized conserved motifs in relation to each TMS (Møller J.V., et al., 1995).

All but two of the twenty clusters had eight TMSs, which were labeled A, B, 1, 2, 3, 4, 5, and 6 (Figures 3.B.1-.20). The proteins analyzed from cluster 3 had 9 TMSs, as was also indicated by the AveHAS analysis (Figures 3.A.1-.20). By contrast, the protein examined from cluster 6 only yielded a prediction of 7 TMS, which differed from the value predicted by the AveHAS program. The protein from cluster 6 chosen for HMMTop analysis was Cvi2, from *Chromobacterium* violaceum ATCC 12472, and was one of several sequences in group 6 belonging to β -proteobacteria. It did not differ significantly in length from the other protein sequences in cluster 6. Based on the locations of the nine known well-conserved motifs, it appeared that the transmembrane sequences designated TMSs 3-6 were present in this protein. In the AveHAS plot corresponding to cluster 6, TMSs A and B were located unusually far

apart from each other. These data suggest that the missing TMS noted by HMMTop in Cvi2 could be either TMSA or TMSB, as the lack of one of those two TMSs in a sequence belonging to cluster 6 could impact the calculations made by the AveHAS program when predicting the average distances of these two TMSs amongst its sequences.

2.5: SOPMA Analysis

Like HMMTop, the SOPMA program was conducted on one sample protein from each of the twenty clusters in Family 5 (Figure 3.B.1- 3.B.20). SOPMA is a program designed to predict secondary structures of any protein sequence, providing predictions on a residue-to-residue basis (Geourjon and Deléage, 1995). The predictions of TMSs for each of the twenty clusters generally appeared to correspond to the predictions made by HMMTop and the AveHAS or WHAT programs, and most, if not all, of the differences in predictions made by these programs can be attributed to the differences in their design.

In addition to examining the numbers and locations of TMSs in comparison to the locations of the nine known well-conserved motifs, the SOPMA program was also used to evaluate the secondary structure patterns of each of the nine motifs for all twenty clusters. The program is designed to detect a number of different secondary structures and assign them a distinct label in the form of one letter of the alphabet. However, the only letters used to describe the secondary structures within any of the motifs for all twenty clusters were the letters C, E, H, and T, which stood for random coil, extended strand, alpha helix, and beta turn, respectively (Figures 3.C.1-.20).

The secondary structure patterns for Motifs 1, 2, 3, and 5 were conserved throughout all twenty clusters and were ttc, ccc, ttcc, and ctccee, respectively. Motif 4 exhibited either the secondary structure patterns ccch or cccc for all twenty clusters. Most of the twenty clusters exhibited a secondary structure pattern for Motif 6 that was either ttcce, or some variation close to it. The clusters that exhibited some slight variation of this pattern were as follows: Clusters 8, 16, and 20 displayed etcce, clusters 9 and 17 displayed etccc, cluster 10 displayed ttccc, and cluster 18 displayed ttcce. The secondary structure pattern observed in all twenty clusters for Motif 7 was either hhcc or cccc. Motif 8 exhibited the secondary structure pattern eeecc in all but cluster 5, which was eeetc. Lastly, Motif 9, which is comprised of 23 residues, was consistently composed of a string of several "e's" followed by several "c's", then several "h's", and finally several more "e's." These results indicated that most of the conserved motifs are in exposed surface regions of the proteins, possibly at the ends of the α -helices or β -strands. They are present in regions that are likely to include β turns or random coils.

While the SOPMA program does not provide an actual prediction for the number of TMSs, its in-depth residue secondary structure predictions can be used to assess the predictions regarding the locations and numbers of predictions made by the WHAT or Ave Has programs and the HMMTop program. As expected, analysis of the data generated by the SOPMA program indicates that regions which were predicted by

the WHAT or Ave Has programs and the HMMTop program to have transmembrane segments do, in fact, have multiple residues with helical topologies. Additionally, the SOPMA program generates a visual plot of the patterns created by helices, sheets, turns and coils. A comparison between the distances, in amino acid residues, between peaks in the SOPMA-generated plots and those generated by the AveHAS program generally appear to match. While some discrepancies between AveHAS, HMMTop and SOPMA data were observed, these were generally minor differences and are likely attributable to the fact that data obtained from AveHAS represent the average pattern for a group of proteins, whereas HMMTop and SOPMA only analyze one protein at a time.

2.6: EMBOSS Pepwheel Analyses

EMBOSS Pepwheel is a program designed to detect and facilitate analysis of amphipathic regions in a sequence through the generation of alpha helices (<u>http://www.tcdb.org/progs/pepwheel.php</u>). An AveHAS plot containing one sequence from each cluster representing Family 5 indicated that the region between TMS2 and TMS3 had two well-conserved amphipathic peaks (Figures 8). Analyses of the twenty AveHAS plots corresponding to each of the clusters representing the Copper P-type ATPases indicated that these peaks were expressed most strongly in cluster 15. Therefore, the EMBOSS Pepwheel program was used to analyze the segment of amino acids between TMS2 and TMS3 in a single sequence from cluster 15, SSu1 (from *Streptococcus suis*). Initial analysis of the sequence motifs found between TMS2 and TMS3, M1- M3, did not reveal any strongly amphipathic regions. However, analysis of the regions between these motifs and TMS2 and TMS3 indicated the fifteen amino acids between M2 and M3 aligned such that amphipathic residues and hydrophobic residues were almost completely separated on opposite sides of the predicted alpha helix. Two strongly hydrophilic residues, aspartic acid (D) and glutamine (Q), were surrounded by hydrophobic residues. While the disruption of the hydrophobic region by these two hydrophilic residues indicates that the amino acids in this region form a structure near the protein surface that in some way contributes to an important, conserved function, as indicated by the AveHAS plots for Families 5 and 6. One possible explanation for the presence of such a helix between M2 and M3 is to provide flexibility for the movement of the TGES loop, which has been proposed to occur as part of the conformation change that occurs between the phosphorylated and dephosphorylated states (Anthonisen, et al.; 2006).

2.7: 16S rRNA Analysis

The 16S ribosomal RNA sequences used to analyze the prokaryotic genera present in Families 5 were collected from the NCBI database, as previously described. A total of 138 different genera were identified in Family 5 after removing unclassified organisms from the search, and the corresponding 16S rRNA for each genus was used to perform a multiple alignment and to generate a phylogenetic tree (Table 4).

Although some exceptions were noted, for the most part, the clustering patterns of the genera in the 16S rRNA tree were similar to those observed among the corresponding protein sequences in the phylogenetic tree representing the Copper P-type ATPases (Figure 4).

As expected, all eleven archaeal genera, which consisted of the phylogenetic groups Thermoprotei, Crenarchaeota and Euryarchaeota, clustered closely together. The bacterial genera *Deinococus, Thermus, Chloroflexus, Aquifex* and *Thermotoga* were located clustering near these archaeal genera. These bacterial genera belong to diverse range of phylogenetic groups: Gloeobacteria, α -proteobacteria, Chloroflexi, Aquificae and Thermotogae, respectively, and appear to cluster distinctly from other bacterial organisms, even those from the same bacterial phylogenetic group (Figure 4).

The remaining bacterial genera primarily clustered together by phylogenetic groups, with several distinct clusters predominately composed of Firmicutes, Cyanobacteria, Actinobacteria, α -proteobacteria, β -proteobacteria, δ -proteobacteria and γ -proteobacteria. One notable exception to these fairly well-organized clusters, however, was a cluster composed of the genera *Rhodospirellula*, *Bacteroides*, *Cytophaga*, *Chlorobium*, *Pelodictyon*, *Campylobacter*, *Thiomicrospira*, *Helicobacter* and *Wolinella*. These genera were from the phylogenetic groups Planctomycetacia, Bacteroidetes, Chlorobi, ε -proteobacteria, and β -proteobacteria. Another unusual cluster observed amongst the bacterial genera was one containing *Solibacter*, *Leptospira*, *Treponema*, *Candidatus*, and *Dehalococcoides*, which belong to Acidobacter, Spirochaetes, Spirochaetes, Chlamydiae and Chloroflexi, respectively.

Additionally, there were a few genera that clustered amongst genera that belonged to a different phylogenetic group than their own. *Arthrobacter*, from β -proteobacteria, was found in a cluster of genera from *Actinobacteria*. *Fusobacter*, from Fusobacteria, was found in a cluster of genera from Firmicutes, as was *Listeria*, from Spirochaetes. Lastly, the genera *Thiobacillus* and *Xanthomonas*, from β -proteobacteria and γ -proteobacteria, respectively, were found in a cluster with γ -proteobacteria.

Chapter 3: The Heavy Metal P-Type ATPases

The Heavy metal P-Type ATPases

Heavy metal P-type ATPases are found in both prokaryotes and eukaryotes, and are classified as Family 6 in TCDB. Phylogenetic analyses indicate that while a number of Family 6 proteins exhibit functional and phylogenetic similarity with proteins found in Family 5, the proteins belonging to these two phylogenetic families are distinguishable from one another.

311 Heavy Metal P-type ATPase sequences were collected from several nonredundant psi-BLASTs (NCBI), which were combined after elimination of redundant sequences using the program CD-Hit (Table 5). A multiple alignment was performed on the combined sequences, a phylogenetic tree was generated, and the 16S rRNA of the prokaryotic genera present within these sequences were analyzed (see below). The sequences belonging to Family 6 were divided into seventeen smaller clusters based on their branching patterns in the corresponding phylogenetic tree. Multiple alignments were conducted on the clusters containing more than one protein sequence, and motif analyses were conducted on the sequences within each cluster. All clusters then were run through either the AveHAS program or the WHAT program and underwent motif, EMBOSS Pepwheel, HMMTOP, and SOPMA analyses.

3.1: Phylogenetic Analysis

The 311 sequences representing the Heavy metal P-type ATPase Family were divided into seventeen clusters based on clustering patterns in the corresponding phylogenetic tree, as previously described (Figures 5.A-5.B). Cluster 1 was the largest of all seventeen groups and consisted of fifty-eight bacterial protein sequences, averaging 760 \pm 59 amino acid residues in length. These proteins were from the phylogenetic groups -proteobacteria, -proteobacteria, -proteobacteria, and Deinococci. Cluster 2 consisted of forty-seven protein sequences, averaging 776 \pm 63 amino acid residues in length. These proteins belonged to -proteobacteria, proteobacteria, -proteobacteria, -proteobacteria, -

Nine bacterial protein sequences were found in cluster 3. These sequences belonged to the phylogenetic groups α -proteobacteria, β -proteobacteria, γ -proteobacteria, and Planctomycetes, and had an average length of 775 ± 98 amino acid residues. Cluster 4 was comprised of only two bacterial protein sequences, which exhibited a rather small average length of only 664 ± 32 amino acid residues. These two protein sequences were from the phylogenetic groups Firmicutes and Chlamydiae.

Cluster 5 was the second largest of all seventeen groups with fifty-seven protein sequences. These sequences had an average length of 695 \pm 60 amino acid residues. Three of these sequences belonged to the archaeal phylogenetic group Euryarchaeota. The remaining fifty-four sequences were from δ -proteobacteria, γ -proteobacteria, ϵ -proteobacteria, Firmicutes, Cyanobacteria, and Spirochaetes.

Cluster 6 contained only six protein sequences, all from the eukaryotic phylogenetic group Viridiplantae. These proteins exhibited the largest average amino acid length of all seventeen groups at 989 \pm 175 proteins. Cluster 7 consisted of fourteen residues, which had a smaller average sequence length of only 640 \pm 31 amino acid residues. Two of the sequences were from Euryarchaeota, while the

remaining five protein sequences were from the bacterial phylogenetic groups of Firmicutes, Chloroflexi, Actinobacteria, and α -proteobacteria.

Cluster 8 was composed of nineteen protein sequences, which were further subdivided into parts A, B, and C. These subdivisions had average sequence lengths of 639 ± 14 residues, 821 ± 2 residues, and 664 ± 13 residues, respectively. Part A was composed of the bacterial phylogenetic group Firmicutes, Part B was composed of the eukaryotic phylogenetic group Viridiplantae, and Part C was composed of the bacterial phylogenetic group Chlamydiae.

Cluster 9 consisted of twenty-five bacterial protein sequences from the phylogenetic groups Actinobacteria, Bacteroidetes, α -proteobacteria, and β -proteobacteria. These sequences had an average length of 794 ± 82 amino acid residues. Cluster 10 contained ten protein sequences, averaging 696 ± 83 amino acid residues in length. These sequences were from the bacterial phylogenetic groups Cyanobacteria, Actinobacteria, and Chloroflexi.

Cluster 11 was made up of a single protein sequence, Lpn3, from *Legionella pneumophila* subsp. pnuemophila str. Philadelphia 1, which was described as a cadmium efflux ATPase (NCBI). This γ -proteobacterium had a sequence length of 635 amino acid residues. Like cluster 11, cluster 17 consisted of only one protein sequence, Cau1, which was 684 amino acid residues long and was from *Chloroflexus aurantiacus* (group Chloroflexi).

Cluster 12 contained twenty-four proteins, all belonging to the bacterial phylogenetic group Actinobacteria. These sequences were further subdivided into

12A, 12B, and 12C, based on their amino acid lengths. The average amino acid lengths for these sequences were 653 ± 13 , 716 ± 9 , and 638 ± 25 , for Parts A, B, and C, respectively. Both 12A and 12B primarily consisted of organisms belonging to the genus *Mycobacterium*, although 12A also contained the genera *Janibacter*, *Nocardia*, *Rhodococcus*, *Arthrobacter* and 12B contained the genera *Rhodococcu and*, *Gordonia*. 12C, by contrast, was mostly composed of organisms of the genus *Corynebacterium*, although it also contained an organism from *Brevibacterium*. Interestingly, 12A and 12C, the sub-clusters most similar in amino acid length, each contained a single organism simply described as a marine actinobacterium.

Cluster 13 consisted of seven proteins, which averaged 813 ± 60 amino acid residues in length. These sequences all belonged to the archaeal phylogenetic group Euryarchaeota. Cluster 14 was comprised of only three proteins, and like cluster 13, they were all from Euryarchaeota. However, unlike cluster 13 it exhibited a much smaller average sequence length of only 678 ± 65 amino acid residues.

Cluster 15 contained twenty-one protein sequences, all belonging to Firmicutes. These proteins had an average sequence length of 731 ± 55 amino acid residues. Cluster 16 consisted of seven bacterial protein sequences, averaging a sequence length of 759 ± 56 amino acid residues. These proteins belonged to the phylogenetic groups Cyanobacteria, Actinobacteria, and Chloroflexi.

3.2: Analyses of Segments of Unusual Length

A more thorough analysis was conducted on the sequences within the Heavy Metal P-type Family that appeared notably shorter or longer than other sequences, particularly than those they clustered within the phylogenetic tree. After identifying sequences of unusually great length in Family 6, the multiple alignment for the proteins of Family 6 was used to identify where these sequences had extra segments of amino acids, as compared to their neighboring sequences (Figure S3; Table 5). This was accomplished using the programs TCDB BLAST and NCBI BLAST. TCDB BLAST compiled and ranked a list of proteins within its database that shared similarities with the given segment of amino acid residues. NCBI BLAST performed a similar task on these proteins in its own database, but was also able to take its search one step farther through its ability to utilize NCBI's Conserved Domain Database (NCBI CDD), which provided a ranked listing of possible conserved domains present within the segment of interest. Many of the unusual segments or sequences examined did not contain any unique conserved domains that exhibited a strong E-value. Nonetheless, several proteins did have segments or entire sequences of interest, as described below (Table 9).

Thirty-five sequences or segments of sequences were analyzed from the proteins representing the Heavy Metal P-type ATPases. Twenty-nine segments from a collection of twenty-three sequences that were longer than the other sequences they clustered with were analyzed. Six full-length sequences that were unusually short in length were also analyzed to assure that they contained the basic domains required to function as P-type ATPases. The results for most of the TCDB BLAST and NCBI

BLAST queries indicated that the segments and sequences analyzed were most similar to proteins from Family 5, Family 6, or both. However, a few unique proteins were brought up in these BLASTs. The most common proteins pulled up by these searches were Periplasmic mercury binding proteins from 9.A.2.1.1, which were found at values above threshold (1e-04) in Hma3, Hma1, and Hwa1 from cluster 13 and in Atu1 from cluster 1. This protein was also found at values below threshold in Ssp1 (0.002) and Msp2 (0.002) from cluster 1. Additionally, although no results were found using TCDB BLAST for the segment from Cau2 from cluster 10, NCBI BLAST found one Heavy metal P-type ATPase sequence and numerous transcriptional regulators with E-values above threshold. The transcriptional regulators found in the NCBI BLAST search were primarily TrmB, a sugar-specific transcriptional regulator. These data correspond with the results obtained from NCBI CDD, which indicate the presence of three transcriptional regulators as conserved domains in this segment. The conserved domains detected all had E-values above threshold and were pfam01978 (TrmB), COG3355, and COG1378. Additionally, a few other unexpected proteins were detected amongst the TCDB BLAST results for several of the segments of interest. However, these proteins all exhibited E-values below threshold, and were subsequently excluded from analysis.

The twenty-nine segments from long sequences analyzed from Family 6 primarily either lacked any conserved domains or exhibited one or a collection of a small repertoire of conserved domains or fragments of conserved domains. Using NCBI CDD, two heavy metal associated domains (HMAs) were identified, cd00371 and pfam00403. These two domains were detected along with the domain COG2608 (CopZ) in Hma3, Hma1, Hwa1 and Hma2 of cluster 13, Ssp1, Atu1 and Msp2 of cluster 1, and Rme1 and both segments from Cte1 from cluster 2. Other common conserved domains included PRK10671 (copper transporter), COG2217 (ZntA), and PRK11033 (zntA), a zinc/cadmium/mercury/lead-transporting ATPase, which are all found in Hma3, Hma1, Hwa1 and Hma2 of cluster 13, and Ssp1, Atu1 and Msp2 of cluster 1.

While sequence from clusters 1, 2, 3, 5, 6, 8, 9, 10, and 13 were analyzed, clusters 1, 2, and 13 contained the most proteins with unusually long sequences, and were the only clusters with detected conserved domains. Despite their length, no conserved domains were detected in clusters 3, 5, 6, 8, 9, or 10. Ath2 and Osa2, proteins from Viridiplantae found in cluster 8, were about eight-hundred amino acids long and were the only eukaryotic proteins in a cluster predominantly consisting of bacteria from Firmicutes and Chlamydiae, which were all only about six-hundred amino acids long. While eukaryotes typically have longer sequence lengths than prokaryotes, this does not explain why eukaryotes within the same cluster would be so much longer than their prokaryote counterparts without gaining some additional function. Thus, while no conserved domains were detected within the segments analyzed for Ath2 and Osa2, it is possible that these extra amino acids provide some unknown function. Similarly, the sequences from cluster 9, Lbl1, Sru1, Asp5, Csp1, Asp4, Eli1, and Bmu2, from Leewenhoekiella blandensis, Salinibacter rubber, Athrobacter sp. FB24, Caulobacter sp. K31, Acidovorax sp. JS42, Erythrobacter

litoralis, and *Burkolderia multivorans*, are also all approximately eight-hundred amino acids in length by contrast to several sequences in cluster 9 that were approximately six-hundred amino acids long. These sequences are from the phylogenetic groups Bacteroidetes, Actinobacteria, α -proteobacteria and β -proteobacteria, and their difference in size from the shorter sequences within their cluster cannot be attributed to differences in phylogenetic groups, as several of the shorter sequences belong to some of the same phylogenetic groups as the longer sequences. It is possible, however, that these additional amino acids may confer some unknown benefits in certain environmental niches, or that bacteria in certain environmental niches were highly exposed to another organism bearing these additional residues, and incorporated them into their genetic material at a high frequency. The same reasoning may hold true for Msp1, from *Mesorhizobium* sp. BNC1, an α -proteobacterium from cluster 3 that was approximately three-hundred amino acids longer than any of the other sequences it clustered with, even other a-proteobacteria. Lastly, none of the segments of Ota1, Tca2 or Aha1 from cluster 6, from Ostreococcus tauri, Thlaspi caerulescens, and Arabidopsis halleri, respectively, indicated the presence of any conserved domains, despite the fact they were at least one-hundred amino acids longer than any of the three remaining sequences in cluster 6, which are also from Viridiplantae. While the actual usefulness of these excess residues is unknown, it is possible they provide each organism with increased fitness in their respective environmental niches.

In addition to closely examining the largest sequences found amongst the Heavy metal P-type ATPases, the shortest of the sequences found with Family 6 were also carefully evaluated to confirm that they were, in fact, full-length protein sequences containing the E1-E2 domain and hydrolase domain characteristic of P-type ATPases. The six proteins identified as having shorter sequence lengths than most of their neighboring sequences were Ssp5, Pla2, and Pmi1 from cluster 1, Aav1 and Asp6 from cluster 2, and Csp4 from cluster 5. Ssp5, from Sulfitobacter sp. EE-36 and Pla2, from *Parvibaculum lavamentivorans* are both α -proteobacterial proteins from the same sub-cluster within cluster 1. Pmi1, from Proteus mirabilis, is a yproteobacterium from another sub-cluster in cluster 1. These three sequences are about six-hundred amino acids long, whereas most other sequences in cluster 1 are one- to two-hundred amino acids longer. Two unusually short sequences were examined from cluster 2: Aav1 and Asp6, from Acidovorax avenae and Acidovorax sp. JS42, respectively. These two β -proteobacteria, which were 629 and 673 amino acids long, respectively, were at least fifty to one-hundred amino acids shorter than the other sequences they clustered with. Similarly, Csp4, from Clostridium sp. OhILAs, was much shorter, by at least one-hundred amino acids, than its neighboring sequences in a sub-cluster of cluster 5, even though they were all from Firmicutes. Despite their short lengths, however, all six proteins have E1-E2 and hydrolase domains with E-values above threshold.

3.3: Hydropathy Analysis

As performed on the groups of sequences representing Family 5 (see above), the WHAT program or the AveHAS program (TCDB) was used to analyze the seventeen clusters belonging to Family 6 (Figure 6.A.1- 6.A.17). As previously noted, the modified AveHAS program not only provides information regarding the similarities, hydrophobicities and amphipathicities of the sequences present in a given multiple alignment, but it also generates a prediction regarding the numbers and locations of TMS present.

Fifteen of the clusters representing Family 6 contained more than one protein sequence, and thus were analyzed using the AveHAS program. All of these sequences appeared to contain eight TMSs, as expected for type I ATPases (Møller J.V, et al., 1995). Two of the seventeen clusters representing the proteins of Family 6 consisted of only one protein sequence, cluster 11 and cluster 17. As dictated by program requirements, the WHAT program was used to analyze these two clusters instead of the AveHAS program. While eight TMSs were detected in cluster 11, their predicted locations appeared to deviate from what was seen in the other clusters with eight TMSs in Family 6. By contrast, only six TMSs were predicted for cluster 17. Examination of the plot constructed by the WHAT programs indicates the presence of the last four TMSs, 3, 4, 5 and 6, but also indicates that two of the first four TMSs, A, B, 1 or 2, were missing. As cluster 17 only contains one sequence, it is not clear whether or not it was incompletely sequenced and is missing a segment containing

additional TMSs or, perhaps, it was unique from the other clusters representing Family 6.

Of the clusters of proteins representing the Heavy Metal P-type ATPases that consisted of eight TMSs, nearly every one had their TMSs spaced in a fairly consistent pattern. The locations of these TMSs closely mirrored the most common pattern seen in Family 5: TMSA and TMSB grouped closely together with TMS1 and TMS2, which were followed after a short space by TMS3 and TMS4, which were then followed by a slightly longer space by TMS5 and TMS6. The nine known wellconserved motifs were generally located between TMSs, with Motif 4 usually found partially or completely within TMS4. Cluster 6, however, appeared to deviate from this expected pattern. Although it appeared to contain eight TMSs in its AveHAS plot, there was a sizeable gap between TMSA and TMSB, instead of between TMSB and TMS1, and TMSB was grouped together with TMS1 and TMS2. All of the sequences in cluster 6 are from Viridiplantae, and it is possible that the differences observed in cluster 6's arrangement of its TMSs locations is important for ion translocation in Ptype ATPases from Viridiplantae, and perhaps for other eukaryotes as well.

3.4: HMMTop Analysis

The HMMTop program (Dosztányi Z., et al., 2003) was used on one sample protein from each of the seventeen clusters in an effort to determine the numbers and locations of the transmembrane segments (TMSs) present in each group (<u>http://www.tcdb.org/progs/hydropathy.php</u>). This program also illustrated the locations of each of the nine well-conserved motifs in relation to these TMSs (Figure 6.B.1- 5.6.17). As such, these data provided another useful source of information that could be compared to the results obtained for each cluster through the WHAT, AveHAS, and SOPMA programs (Figures 6.A.1-.17, 6.B.1-.17, and 6.C.1-.17).

Many of the predictions made by HMMTop for the Heavy Metal proteins chosen from each of the seventeen clusters did not match the numbers of TMSs predicted by AveHAS. Only three of the clusters were predicted to have eight TMSs, clusters 3, 11, and 15. Clusters 9, 13, and 14 were predicted to only have five TMSs, whereas clusters 7 and 12 were predicted to have seven TMSs. Cluster 10 was predicted to have ten TMSs and clusters 1, 2, 4, 6, 8, 16, and 17 were predicted to have six TMSs. Despite these notably different predictions in the numbers of TMSs, almost all of the clusters had four TMSs following Motif 3, as expected. However, clusters 8, 9, 13 and 14 had only three TMSs after Motif 3, cluster 11 had five predicted TMSs after Motif 3, and cluster 10 had six predicted TMSs after Motif 3. While several differences were noted between predictions made by AveHAS and HMMTop, these are most likely attributable to the sampling size of each of these programs. HMMTop, like the SOMPA program, only examines one protein sequence at a time. Therefore, it does not predict the characteristics of the proteins in a given cluster as well AveHAS, which bases its predictions on averages of the values obtained from all of the protein sequences in a group.

3.5: SOPMA Analysis

The SOPMA program for secondary structure prediction was conducted on one sample protein from each of the seventeen groups representing branches from Family 6 (Figure 6.C.1- 6.C.17). Primarily, the SOPMA program was used to evaluate the secondary structure patterns of each of the nine motifs for all seventeen clusters. Additionally, the SOPMA program was used to compare the predictions of the numbers and locations of TMSs for each of the seventeen clusters made by the HMMTop and AveHAS or WHAT programs.

As mentioned previously, one of the functions of the SOPMA program is to detect a number of different secondary structures and assign them a distinct label in the form of one letter of the alphabet. However, as observed in Family 5, the only letters used to describe any of the motifs for the seventeen clusters representing Family 6 were the letters C, E, H, and T, which represent random coil, extended strand, alpha helix, and beta turn, respectively. The most common secondary structure patterns for each motif are described below.

As observed in Family 5, the secondary structure patterns for Motifs 1, 2, 5, and 8 were completely conserved throughout all seventeen clusters, and were ttc, ccc, and ctccee, and eeecc, respectively. Motif 3 most commonly exhibited the secondary structure pattern ttcc, which was conserved in all groups but clusters 9 and 14, where was cccc, and cluster 8 where it was ttce. As seen in Family 5, Motif 4 exhibited either the secondary structure patterns ccch or cccc for all seventeen clusters. Again, most of

the seventeen clusters exhibited a secondary structure pattern for Motif 6 that was either ttcce, or some variation close to it. Clusters 3, 4, 5, 7, and 10 displayed the pattern etcce, and cluster 12 displayed the pattern etccc.

The secondary structure pattern hhcc or cccc was observed at Motif 7 in all but group 17, which exhibited the pattern hhhh. Additionally, this different secondary pattern was not found in any of the clusters of Family 5 at Motif 7. Due to the uniqueness of this pattern, other residues between Motif 6 and Motif 8 were examined for the possible presence of a secondary structure pattern that matched one of the expected patterns for Motif 7, but no better candidates were identified. Lastly, Motif 9, which is comprised of 23 residues, consistently displayed of a string of several "e's" followed by several "c's", then several "h's", and finally several more "e's" in all seventeen groups.

Although the SOPMA program is not ideal for predicting the number of TMSs in a protein sequence, its detailed predictions regarding the secondary structure of each residue within a sequence helps identify potential locations for TMSs, which can then be compared to data obtained using the WHAT or AveHAS programs and the HMMTop program. As expected, analysis of the data generated by the SOPMA program indicates that regions that were predicted by the WHAT or Ave Has programs and the HMMTop program to have transmembrane segments do, in fact, have multiple residues with helical topologies. Additionally, the SOPMA program generates a visual plot of the patterns created by helices, sheets, turns and coils. A comparison between the distances, in amino acid residues, between peaks in the SOPMA-generated plots and those generated by the AveHAS program appear to closely correlate. Examination of the results showed that SOPMA did not accurately predict transmembrane helices. It did, however, indicate that most observed motifs are exposed to the surfaces of the proteins, and are primarily located in coils and β -turns.

3.6: EMBOSS Pepwheel Analysis

Analysis of an AveHAS plot containing one sequence from each of the seventeen clusters representing the Heavy Metal P-type ATPases revealed that the region between TMS2 and TMS3 had two well-conserved amphipathic peaks (Figures 9). These two peaks were also noted in an AveHAS plot containing a sequence from each of the twenty clusters representing the Copper P-type ATPases. In Family 6, these two amphipathic peaks were exhibited the most strongly in cluster 10. As such, EMBOSS Pepwheel was used to analyze the segment of amino acids found between TMS2 and TMS3 in a single protein sequence from cluster 10, SSp3 (from Synechocystis sp. PCC6803). As observed in Family 5, no strongly amphipathic regions were detected at any of the sequence motifs between TMS2 and TMS3, whereas analyses of the regions between these motifs and TMS2 and TMS3 indicated that the fifteen amino acids between M2 and M3 aligned such that most of the hydrophilic residues and hydrophobic residues were located on different sides of the predicted alpha helix. However, one semipolar residue, serine (S), and one strongly hydrophilic residue, asparagine (S), were located amongst hydrophobic residues.

While the clustering patterns of amphipathic and hydrophobic amino acids in the predicted alpha helix do not show precise symmetry in their arrangement, it is possible that these proteins form a helical structure that in some way contributes to an important, conserved function. As previously mentioned for this region in Family 5, it is possible that this region contributes in some way to the movement of the TGES loop, which may undergo notable conformational changes as it transitions between phosphorylated and dephosphorylated states (Anthonisen, et al.; 2006).

3.7: 16S rRNA Analysis

As previously described the 16S ribosomal RNA sequences used for analysis of the prokaryotic genera present in Family 6 was obtained from the NCBI database. After removing unclassified organisms, a total of different 136 genera were identified in Family 6. The 16S rRNA data corresponding to a single organism belonging to each genus were collected for analysis (see above). The nucleotide sequences were aligned using the program ClustalX and a phylogenetic tree was created (Figure 7). Analysis of this tree indicated that organisms belonging to different genera generally clustered by phylogenetic group and by nucleotide sequence length. All ten archaeal genera belonged to the phylogenetic group Euryarchaeota and clustered together, as expected. *Blastopirellula* and *Halothermothrix*, two bacterial genera from the phylogenetic groups Planctomycetes and Firmicutes, respectively, appeared to cluster more closely to these ten archaeal genera than to any other bacterial genus present amongst the

Heavy metal P-type ATPase Family protein sequences. These two genera are among the more ancient bacterial genera and, as such, it is not unusual that they were discovered to branch at a point near the center of the 16S rRNA tree from the archaeal sequences.

Another point of interest is that the genera Treponema, Halothermothrix, Mariprofundus, Fusobacterium and Symbiobacterium are not found amongst other genera belonging to the same phylogenetic group as themselves. Treponema, which belongs to the phylogenetic group Spirochaetes, is found in the cluster containing Chlamydiae and Cyanobacteria, but appears to exhibit a more distant phylogenetic relationship to its neighboring genera. *Halothermothrix* belongs to the phylogenetic group Firmicutes, but does not cluster with the other genera from Firmicutes. Instead, it clusters closely with Blastospirellula, from Planctomycetes, and together they cluster very closely to the archaeal genera. Mariprofundus, presently described as only an unclassified proteobacterium, appears to be distinct from all of the other surrounding genera, which are from α -proteobacteria and Δ -proteobacteria. Similarly, Fusobacterium, from the phylogenetic group Fusobacteria, notably varies phylogenetically from all of the other genera it clusters with, which almost entirely consist of genera belonging to the phylogenetic group Firmicutes. The only other genus in this cluster that is not from Firmicutes is Symbiobacterium, which belongs instead to the phylogenetic group Actinobacteria. Unlike Fusobacterium, however, Symbiobacterium clusters closely with its neighboring genera (Figure 7).

Chapter 4: Conserved Motifs in Copper P-Type ATPases

Conserved Motifs in Copper P-Type ATPases

Motif Introduction

A notable characteristic of P-type ATPases is their strong conservation of nine distinct sequence motifs (Møller J.V., et al., 1995). Their order of appearance, in progression from the N-terminus to the C-terminus of each sequence, is as follows: PGD, PAD, TGES, PEGL, DKTGTLT, KGAPE, DPPR, MVTGD, and VAVTGDGVNDSPALKKADIGVAM. The first three of these motifs are located in the small cytosolic loop between TMS2 and TMS3, known as 'Region B.' The residues within this loop, particularly those in Motif 3, may enhance the stability of this region, thereby providing more favorable reaction kinetics for the enzyme's transition between its E1 and E2 states.

Motif 4, PEGL, was consistently located within TMS4 of the sequences from Families 5 and 6, and is believed to contribute to energy transduction. Motifs 5-8 are found within a large, catalytically active cytosolic loop, known as 'Domain C,' which immediately followed TMS 4. Motif 5, DKTGTLT, contains a phosphorylatable aspartate (D) residue and exhibited considerable conservation of its residues in both Families 5 and 6. This aspartate residue is phosphorylated during enzyme cycling. The remaining residues of motif 5 may play roles in catalysis and help maintain the structure of Domain C. Unlike motif 5, motif 6, KGAPE, was poorly conserved in Families 5 and 6, with the exception of its glycine residue. Despite its poor conservation, motif 6 is thought to play a role in ATP binding. Motif 7, DPPR, exhibited the best conservation of its first and last residues in Families 5 and 6. Interestingly, these two residues are thought to be important for phosphorylation of the ATPase. The final three residues in motif 8, MVTGD, are also believed to play a critical role in phosphorylation of the enzyme, and were notably well-conserved in both Families 5 and 6. Lastly, Motif 9, VAVTGDGVNDSPALKKADIGVAM, forms part of a flexible hinge region that joins Domain C with the C-terminal domain (Møller J.V., et al, 1995). This 'hinge' region, or 'Region J,' helps provide the flexibility needed for conformational changes that occur during ion translocation (Møller J.V., et al., 1995).

Each motif was individually identified and examined through methodical, manual analyses of all twenty clusters in their respective multiple alignments. As expected, the multiple alignments indicated that all of the sequences in each cluster aligned at these nine motifs, with at least some degree of conservation at one or more residues within the motif. All sequence motifs can bee seen, along with their location in their corresponding multiple alignments and their degree of conservation, in Table 3.

4.1: Motif 1 (PGD)

This motif most commonly presented itself not as PGD, but as PGE, with the second residue, glycine (G), fully conserved in all twenty groups. Proline (P) was fully or partially conserved in seventeen of the twenty clusters, as designated in Table 3 by

an asterix or by one or two dots above the residue, respectively. However, neither it nor any conservatively substituted residue was present in clusters 1, 3, and 17. Aspartic acid (D) was only partially conserved in clusters 8, 14, and 16. Its most frequent substitute ion, glutamate (E), was fully or partially conserved in eleven clusters. Lack of a conserved residue in the third position of this motif was observed in clusters 3, 4, 5, 10, 12, and 13.

4.2: Motif 2 (PAD)

Motif 2, like Motif 1, is located between TMS2 and TMS3, and was consistently located within three residues of the end of Motif 1. The most strongly conserved residue in this motif was aspartic acid (D), which was completely conserved throughout all twenty clusters. Proline (P) was partially or completely conserved in fifteen of the twenty clusters, but was not conserved in clusters 2, 3, 5, 13, or 15. Alanine (A) was not partially or fully conserved in any of the twenty clusters. Instead, the most common substituted residue at the second position in this motif was Valine, which was fully or partially conserved in eleven clusters. Threonine was also partially conserved in two of the twenty clusters in lieu of alanine.

<u>4.3: Motif 3 (TGES)</u>

Motif 3, like Motifs 1 and 2, was consistently located between TMS2 and TMS3. Both Threonine (T) and glycine (G) were fully or partially conserved in all twenty clusters. Glutamate (E) was fully or partially conserved in all but cluster #2, where it was still expressed amongst several of the sequences in this cluster. Serine was fully or partially conserved in all but clusters 1, 3, 7, 8, 9, 17, and 18. In its place, proline was conserved in clusters 7, 8, and 9, but no replacement residues were conserved in clusters 1, 3, 17, or 18. Previous mutagenesis studies have investigated the conservation of this motif in the Ca²⁺-ATPase (Anthonisen, et al.; 2006). Crystal structures were used to assess the effects of residue size, polarity, and charge on the reaction kinetics involved in the transition from the E1 to E2 states. It was noted that glutamate (Glu) was incredibly well conserved in this motif in all P-type ATPases. This was also found to be generally true amongst the P-type ATPases examined in this thesis, but it was found that the level of this residue's conserved" residue.

Concerns about actual levels of the conservation of Glu aside, analyses of the functional data produced from the mutagenesis studies indicated that Glu played an imperative role in the dephosphorylation of E2P. It was demonstrated that the length, the hydrogen bonding potential, and the negatively charged carboxylate group of Glu are all integral components of its hypothesized ability to bind to and to activate the water molecule that attacks the phosphoryl group during this process. Various mutated forms of this motif were created, where different residues were substituted for Glu. While examination of their respective crystal structures indicated that some residue

substitutions still permitted the continuation of the reaction cycle, and therefore produced seemingly viable alternatives to glutamate, all residue substitutions appeared to negatively affect the reaction kinetics at one transition point or another. Consequently, in light of the all-around desirability of Glu in motif 3 from a kinetic standpoint and evidence that Glu is essential to the catalysis in E2/E2P, it has been proposed that during the Ca₂E1P→E2P transition Glu is actively involved in the insertion of the TGES loop into the catalytic site. It also appears that the movement of this loop into the catalytic site may permit lumenal Ca²⁺ sites to open, thus permitting ion translocation.

4.4: Motif 4 (PEGL)

Motif 4 was consistently located partially within TMS4 in all twenty clusters, and most commonly took the form PCAL as opposed to the predicted motif sequence. Proline (P) was completely conserved in all twenty clusters, whereas glutamate (E) was not conserved in any cluster. In place of glutamate, cysteine was completely conserved in all but clusters 4, 5, and 15. Although no residues were fully or partially conserved in cluster 15 at the second position in the motif, histidine was completely conserved in cluster 4 and aspartic acid was completely conserved in cluster 5. Glycine was not conserved at all in the third position of motif 4. However, it was predominantly replaced by alanine, which was fully or completely conserved in all but clusters 15 and 17, where no residues exhibited any distinguishable degree of conservation. Leucine was completely conserved in all twenty clusters except cluster 15, where it still exhibited partial conservation.

4.5: Motif 5 (DKTGTLT)

In Motif 5, which was located between TMS4 and TMS5, the initial four residues, DKTG, were partially or completely conserved in all groups except in cluster 13. It appears that in cluster 13, the aspartic acid residue was separated from the proceeding three residues by the insertion of other residues in another sequence. This insertion seems to have caused the sequences in cluster 13 to misalign at the point of this motif. The threonine residue located in the fifth position was completely conserved in all but group 3, where no residue was conserved at this location, and the threonine residue located at the end of the motif was fully conserved in all twenty clusters. Leucine was fully or partially conserved in clusters 1, 3, 4, 5, 6, 7, 10, and 11. In its place, lysine (K) was partially or fully conserved only in clusters 8 and 9, valine was fully or partially conserved in clusters 2, and 19, and isoleucine was fully or partially conserved in clusters 11, 12, and 18.

4.6: Motif 6 (KGAPE)

Motif 6 appeared to be located immediately following the end of Motif 5. With the exception of its glycine residue, which was fully or partially conserved in all but cluster #11, Motif 6 was generally poorly conserved in its entirety. While this poor conservation of residues was somewhat disconcerting at first, comparison of the corresponding data obtained from the SOPMA analyses, (Figure 3.C.1-.20) suggested that the secondary structure present within Motif 6 was still fairly well conserved (see above).

4.7: Motif 7 (DPPR)

Motif 7, located between TMS4 and TMS5, displayed the strongest conservation at its first and last residues. Aspartic acid was fully conserved in all twenty clusters. By contrast, proline in the second residue position was only partially conserved in cluster 7, and proline in the third position was only partially conserved in clusters 12 and 16. Substituting for proline in the second position, alanine exhibited partial conservation in cluster 5 and glutamine displayed partial conservation in cluster 18. In lieu of proline in the third residue position, isoleucine was partially conserved in clusters 4, 9, 10, and 18, valine was partially conserved in clusters 6 and 11, threonine was completely conserved in cluster 7, and leucine was partially conserved in cluster 17. Arginine (R) was fully or partially conserved in clusters 1, 3, 4, 5, 14, 16, and 17. In place of arginine, Lysine was partially or fully conserved in clusters 2, 6, 7, 8, 10, 11, 12, 13, 15, 18, 19, 20. No residues were conserved in this position in cluster 9.

4.8: Motif 8 (MVTGD)

Motif 8 was generally located approximately twenty residues away from the end of Motif 7. The final two residues in this motif, glycine and aspartic acid, were completely conserved in all twenty clusters. The first residue, methionine, was partially or completely conserved in all but clusters 2, 3, 14, and 20 where, instead, it was replaced by a partially conserved leucine, clusters 2, 14, and 20, or a partially conserved isoleucine, cluster 3. Valine was partially or fully conserved in groups 7, 8, 13, and 16. Most commonly, valine was replaced by leucine, which was fully or partially conserved in clusters 4, 7, 9, 10, 12, 14, 15, 17, 18, and 20, or by isoleucine, which was fully or partially conserved in clusters 2, 3, 6, or 19.

4.9: Motif 9 (VAVTGDGVNDSPALKKADIGVAM)

Motif 9 exhibited a lot of sequence variation amongst the sequences in each of the twenty clusters of Family 5, but it was completely conserved at the residues "GDG"s in all but groups 17, 19, and 20, where it was partially conserved. Additionally, strong conservation at the residues "PALA," either partially or fully, was observed. Similarly, the last four residues in this motif, "GVAM," were generally well conserved, either partially or fully, although usually one or more of these residues deviated from the expected amino acid.

Chapter 5: Conserved Motifs in Heavy Metal P-Type ATPases

Conserved Motifs in Heavy Metal P-Type ATPases

Motif Introduction

The proteins of the Heavy metal P-type ATPase Family, like all known P-type ATPases, have nine known well-conserved sequence motifs (Møller J.V., et al., 1995). As described above for the proteins of Family 5, these motifs can be found in sequential progression from the N-terminus to the C-terminus of a given sequence as follows: PGD, PAD, TGES, PEGL, DKTGTLT, KGAPE, DPPR, MVTGD, and VAVTGDGVNDSPALKKADIGVAM.

Each motif was individually identified and examined in the multiple alignments of all seventeen of the groups representing the Heavy metal P-type ATPases using methods identical to those described above for the Copper P-type ATPase Family. As expected, the multiple alignments indicated that all of the sequences in each group aligned at these nine motifs, with at least some degree of conservation at one or more residues within each motif. The sequence motifs for all seventeen clusters, along with their corresponding data, can be found in Table 6.

5.1: Motif 1 (PGD)

This motif most commonly presented itself not as the residues PGD, but as PGE, with the second residue, glycine (G), being the most strongly conserved of the

three and fully conserved in all but cluster 10, where no residue was significantly conserved. Proline (P) was partially (as designated by one or two dots) or fully conserved in nine clusters (as designated by an asterix on the multiple alignment). In place of proline, alanine was partially conserved in cluster 6, and no residues were significantly conserved at this location in clusters 3, 5, 7, 8, 9, and 16. Aspartic acid was fully or partially conserved in clusters 3, 9, and 14. In substitution for aspartic acid, glutamine (E) was partially or fully conserved in clusters 4, 6, 11, 12, 13, 16, and 17, whereas no residues displayed significant levels of conservation at this location in clusters 1, 2, 5, 7, 8, 10, and 15.

5.2: Motif 2 (PAD)

As expected, Motif 2 was identified between TMS2 and TMS3, and was almost always found within three residues of the end of Motif 1. As observed in Family 5, the most strongly conserved residue in this motif was aspartic acid, which was fully or completely conserved throughout all seventeen clusters. Proline was partially or completely conserved in nine of the seventeen clusters. However, in place of proline, alanine was seen as either fully or partially conserved in clusters 11, 12, and 15. Alanine, as the residue in the second position in this motif, was only partially conserved in cluster 17. Several different residues were substituted in its place throughout the remainder of the groups in Family 6. Threonine was fully conserved in clusters 11 and 12. Valine was fully or partially conserved in clusters 7 and 16. Leucine was fully or partially conserved in clusters 3 and 14. Methionine was partially conserved in cluster 15 and isoleucine was partially conserved in cluster 6.

5.3: Motif 3 (TGES)

As observed in Family 5, Motif 3 of Family 6, which was located between TMS2 and TMS3, exhibited high levels of conservation. Threonine, glycine, and glutamate are partially or fully conserved in all seventeen groups. Serine was partially or completely conserved in all but cluster 8, in which no substitute residue exhibited any conservation, and cluster 17, in which a proline residue was substituted and displayed partial conservation.

5.4: Motif 4 (PEGL)

As was seen in Family 5, Motif 4 was located at the edge and partially inside of TMS4 in Family 6. Likewise, a notable conservation of the residues "PCAL" was observed, as opposed to the expected residues "PEGL." Proline was fully or partially conserved in all seventeen clusters. Although no glutamate was seen in the second position, cysteine was predominantly observed in its place. Cysteine, as a substitute residue, was fully or partially conserved in all but cluster 7, which does not display significant residue conservation at this location. Alanine was partially or fully conserved in all but cluster 6, which displayed a partially conserved glycine residue. Leucine was fully or partially conserved in all but cluster 13, which exhibited a partially conserved phenylalanine residue instead.

5.5: Motif 5 (DKTGTLT)

Motif 5 was fully or partially conserved in all seventeen clusters at residues DKT and at the threonine residue immediately following glycine. Glycine was fully or partially conserved in all but cluster 4, where no residue exhibited significant conservation at this location. Leucine was partially or fully conserved in clusters 3-5, and clusters 7-17. In place of leucine, aspartic acid was partially or fully conserved at this location in clusters 1 and 12 and isoleucine was partially conserved at this location in clusters 6.

5.6: Motif 6 (KGAPE)

Motif 6 exhibited poor conservation except at its glycine residue. This residue was partially or fully conserved in all but clusters 1 and 12. In its place a histidine residue was partially conserved in cluster1 and an asparagine residue was partially conserved in cluster 12. Despite the presence of these unique residue substitutions and poor conservation of residues in general, examination of corresponding SOPMA analysis data confirmed that, for the most part, the residues associated with Motif 6 exhibited fairly consistent secondary structure patterns (Figure 6.C.1-.17).

5.7: Motif 7 (DPPR)

The last residue of Motif 7 was generally located approximately twenty residues from the first residue of Motif 8. Although both proline residues exhibited fairly poor levels of conservation, both the first and last residue exhibited better conservation. Aspartic acid was partially or fully conserved in all seventeen clusters. Although it exhibited somewhat weaker conservation than aspartic acid, arginine was partially or fully conserved in all but clusters 5 and 8, in which no residues exhibited appreciable conservation.

5.8: Motif 8 (MVTGD)

In Motif 8 the last two residues, glycine and aspartic acid, were partially or fully conserved in all seventeen clusters. Methionine was partially or fully conserved in all but cluster 17, in which it was replaced by a leucine residue. Threonine was partially or fully conserved in all but cluster 9, where a partially conserved isoleucine residue has been substituted. Leucine was partially or completely conserved only in clusters 5 and 8. A partially conserved isoleucine residue was substituted for leucine at this position in cluster 9, and either a partially or fully conserved leucine residue was substituted at this location in clusters 1-4, 6, and clusters 10-17.

5.9: Motif 9 (VAVTGDGVNDSPALKKADIGVAM)

Considerable sequence variation was observed for Motif 9. However, the residues "GDG" were completely conserved in all seventeen clusters. Again, strong residue conservation, either partial or fully, was observed at "PALA" and "GVAM." However, usually one or more of these residues varied from those expected for this motif. For example, instead of seeing the expected residues "GVAM", the most commonly observed residues for that portion of Motif 9 were "GIAM", which were fully or partially conserved in all but clusters 2 and 17. In cluster 2 this portion of Motif 9 showed partial conservation of residues "GFAM," and cluster 17 showed partial conservation of residues "GLAV."

Chapter 6: Homology Analyses of Copper and Heavy Metal P-type ATPases

6.1: Homology Analyses of Copper and Heavy Metal P-type ATPases

The homology of the sequences representing the Copper P-type ATPase and Heavy Metal P-type ATPases was examined, one cluster at a time. Analysis of the phylogenetic relationships of the individual sequences within each phylogenetic group revealed the formation of several sub-clusters. The branching distances and relative similarity of the genera of the protein sequences within these sub-clusters were compared using their corresponding 16S rRNA and protein phylogenetic trees (Figures 2.A-2.B and 4, and Figures 5.A-5.B and 7, respectively). Sequences that clustered closely in both the 16S rRNA and protein phylogenetic trees were generally predicted to be orthologous to one another. However, some sequences that were located near each other in the protein phylogenetic tree actually belonged to genera that were found either in adjacent or more distant clusters in the 16S rRNA tree. These sequences were not predicted to be orthologous to one another, and, in some instances, may represent instances of horizontal gene transfer.

Homology Analyses for Copper P-type ATPases

Cluster 1 was made up of two archaeal and two bacterial protein sequences. The two archaeal sequences, Ape1 and Pae2 (from *Aeropyrum pernix* and *Pyrobaculum aerophilium*), clustered closely in both the 16S rRNA tree and the protein phylogenetic tree, and therefore could be orthologs. While the bacterial sequences Tma1 (from *Thermotoga maritima*) and Wsu1 (from *Wolinella*) *succinogenes*) clustered closely to each other, as well as close to the archaeal sequences, in the protein phylogenetic tree, their genera were located in very distant clusters from one another in the 16S rRNA tree. As such, the clustering of Wsu1 with these other three sequences may represent an instance of horizontal gene transfer. Additionally, *Thermotoga* was located in a cluster adjacent to the archaeal cluster containing *Aeropyrum* and *Pyrobaculum* in the 16S rRNA tree. Although these two clusters branch close to the center of the tree, the proximity of *Thermotoga* to these archaeal genera suggests that a horizontal gene transfer event may have taken place.

А mixture of organisms from Tropheryma, Brevibacterium, Propionibacterium, Arthrobacter, Corynebacterium, Mycobacterium, Frankia, Streptomyces, Nocardia, Thermobifda, Kinecoccus, and Nocardioides are found in cluster 2. These bacteria were all Actinobacteria, and clustered closely in both the 16S rRNA and protein phylogenetic trees, thereby making them possible orthologs. While some organisms from the same genus were found adjacent to each other in the protein phylogenetic tree, in many cases they were joined or separated by organisms from other genera. For example, Pac2 (from Propionibacterium acnes) clustered closer to Mtu3 (from Mycobacterium tuberculosis), Mle1 (from Mycobacterium leprae), and Mtu2 (from Mycobacterium tuberculosis), as opposed to with Pac1 (from *Propionibacterim acnes*).

Cluster 3 contained bacterial sequences from Acidobacteria, Δ -proteobacteria, Chlorobi, γ -proteobacteria, β -proteobacteria, ϵ -proteobacteria, and one unclassified proteobacterium. Sus2 (from *Solibacter usitatus*), which was distant from all other sequences in both the 16S rRNA and protein phylogenetic trees, is not likely to be orthologous to any of the other sequences in cluster 3. Cph3 (from Chlorobium phaeobacteroides), Cli2 (from Chlorobium limicola), and Pph2 (from Pelodictyon phaeoclathratiforme), all Chlorobi, clustered together with Msp4 (an unclassified proteobacterium) in both the 16S rRNA and protein phylogenetic trees and are likely orthologous sequences. Pae3, Mfl2, and Tde5 (from Pseudomonas aeruginosa, Methylobacillus flagellatus, and Thiobacillus dentrificans, respectively), clustered adjacent to one another in the protein phylogentic tree, but were not clustered tightly together. Similarly, in the 16S rRNA tree, the genera that these sequences belong to appeared to cluster together, but exhibited early branching, and so they may or may not be orthologs. Asp6 and Dar4 (from Azoarcus sp. EbN1 and Dechloromonas aromatica, respectively) were found next to these three proteins, but were distant enough in both the 16S rRNA and protein phylogenetic trees that they are not likely to be orthologs. However, they did cluster closely enough to one another in these two trees that they themselves could be orthologs. Sde2, Sam2, Sfr2, Sba2, Ppr4, and Son2 (from Shewanella denitrificans, Shewanella amazonensis, Shewanella frigidimarina, Shewanella baltica, and Photobacterium profundum, Shewanella oneidensis, respectively) all clustered closely together in both the 16S rRNA and protein phylogenetic trees, and are likely to be orthologous sequences. Likewise, Vch4, Vvu2, Vpa2, Vsp2 (from Vibrio cholerae, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio sp. Ex25, respectively) were found clustering closely in both the 16S rRNA and protein phylogenetic trees, as were Ngo2 and Nme3 (from Neisseria gonorrhoeae and

Neisseria menigitidis, respectively). The proximity of these four *Vibrio* sequences suggests that they are orthologous, as does the proximity of these two *Neisseria* sequences. Lastly, the proteins Tde6, Cla1, and Cup1 (from *Thiomicrospira denitrificans, Campylobacter lari,* and *Campylobacter upsaliensis*, respectively) were found clustered closely together in both the 16S rRNA and protein phylogenetic trees, and so are likely to be orthologs.

Cluster 4 contained several archaeal sequences and a mixture of bacterial sequences from Firmicutes, Aquificae, β -proteobacteria, Δ -proteobacteria, Deinococci, and Chloroflexi. Several of the sequences found clustering together belonged to the same genus and are very likely to be orthologs. These sequences included Efa5, Efa4, Ehi1 (from Enterococcus faecalis, Enterococcus faecium, and Enterococcus hirae, respectively), as well as Sau2 and Sep2 (from Staphylococcus aureus and Staphylococcus epidemidis) and Lpl2 and Lca1 (from Lactobacillus plantarum and Lactobacillus casei). These sequences, along with Ppe1 (from Pedicoccus pentosacaeus), clustered next to one another in both the 16S rRNA and protein phylogenetic trees. While it is apparent that the genera these sequences belong to are all found within the same cluster in the 16S rRNA tree, the branching distances observed in both trees suggests that, collectively, these sequences may or may not be orthologs. Aae1, Oih2, Mth3, Tde4, Bba2, Afu3, Mba2, Mac2, Mma4 (from Aquifex aeolicus, Oceanobacillus iheyensis, Methanothermobacter thermautotrophicus, Thiobacillus denitrificans, Bdellovibrio bacteriovorus, Archaeoglobus fulgidus, Methanosarcina barkeri, and Methanosarcina mazei, respectively), also all grouped

together in cluster 4, albeit at some distance from one another. Interestingly, these sequences were a mix of bacteria and archaea, and did not all cluster with other sequences from the same phylogenetic domain. For instance, the sequence Mth3 does not cluster closely in the phylogenetic tree with the other archaeal sequences in its sub-cluster, Afu3, Mba2, and Mac2, and so it may not orthologous to any of those sequences. Similarly, the bacterial sequences Bba2, Tde4, Oih2, and Aae1 do not all cluster adjacently in the protein phylogenetic tree and are very distant from one another in the 16S rRNA phylogenetic tree, making them unlikely to be orthologs and possibly even examples of horizontal gene transfer. Lastly, the sequences Tth2, Cau2, and Hma3 (from Thermus thermophilus, Chloroflexus aurantiacus, and Haloarcula marismortui, respectively) clustered together in the protein phylogenetic tree, and Thermus and Chloroflexus were found together in a cluster adjacent to Haloarcula in the 16S rRNA tree. However, instead of clustering more closely to the other bacterial sequence, Cau2 was closer to the archaeal sequence Hma3. Tth2 and Cau2 belong to genera that are amongst the more ancient bacterial sequences and branch very close to the center of the 16S rRNA tree from the cluster that contains the archaeal sequences. As these two sequences belong to two separate domains they may represent an occasion of horizontal gene transfer

The sequences found in cluster 6 were primarily from α -proteobacteria, β -proteobacteria, and γ -proteobacteria, but it also contained one sequence from Planctomycetes. Cvi2, Xax1, and Asp4 (from *Chromobacterium violaceum*, *Xanthomonas axonopdis* and *Azoarcus* sp. EbN1, respectively) branched distantly

from each other and from the remaining sequences in cluster 6 in both the protein phylogenetic and the 16S rRNA trees. By contrast, the sequences Bvi2, Bvi3, Neu6, Neu4, Neu5, Neu7, Rfe2, Rge3, Psp2, and Rfe3 (from Dechloromonas aromatica, Ralstonia metallidurans, Burkholderia vietnamiensis, Burkholderia vietnamiensis, Nitrosomonas eutropha, Nitrosomonas *eutropha*, Nitrosomonas *eutropha*, Nitrosomonas europaea, Rhodoferax ferridreducens, Rubrivivax gelatinosus, Polaromonas sp. JS666, and Rhodoferax, respectively) all clustered closely together in both the 16S rRNA and protein phylogenetic trees and could all be orthologous to one another. While not all of the sequences clustered most closely to others from the same genera, the proximity of all of their genera in the 16S rRNA tree suggests that they all cluster close enough to one another to exchange genetic material. Mde2, Spo3, Rle1, Mlo1, Msp3, Tde3, Sme4, and Rpa1 (from Microbulbifer degradans, Silicibacter pomeroyi, Rhizobium leguminosarum, Mesorhizobium loti, Mesorhizobium sp. BNC1, Thiomicrospira denitrificans, Sinorhizobium meliloti, and Rhodopseudomonas palustris, respectively) also clustered closely in both the 16S rRNA and protein phylogenetic trees, with the exceptions of Mde2 and Tde3. While Tde3 was located more distantly than any of the other proteins in this cluster in both the 16S rRNA and protein phylogenetic trees, Mde2 was close to Spo3 in the protein phylogenetic tree, but very distant from any of the other genera from these sequences in the 16S rRNA tree. These data suggest that neither Tde3 nor Mde2 are orthologous to the other sequences they cluster with, or to each other, and that they each represent instances of horizontal gene transfer.

Also found in cluster 6 were the sequences Bja1, Nha1, Nha2, Nha3, Nwi1, Nar1, Sal1, Nar2, Sal2, Sal3 (from Bradyrhizobium japonicum, Nitrobacter hamburgensis, Nitrobacter hamburgensis, Nitrobacter hamburgensis, Nitrobacter winofradskyi, Novosphingobium aromaticivorans, Novosphingobium aromaticivorans, Sphingopyxis alaskensis, Sphingopyxis alaskensis, and, Sphingopyxis alaskensis, respectively). These protein sequences exhibited similar distance patterns in both the 16S rRNA and protein phylogenetic trees and clustered relatively closely to Rle1, Mlo1, Msp3, Tde3, Sme4, and Rpa1, possibly indicating that all of these sequences are orthologous. Sty2, Kpn1, Sma2, (from Salmonella typhimurium, Klebsiella pneumoniae, and Serratia marcescens, respectively) and Lpn4, Lpn3, Lpn1, Lpn2 (all from Legionella pneumophila) were also found in cluster 6. These seven sequences were separated into two sub-clusters with the sequences Sty2, Kpn1, and Sma2 clustered together in one sub-cluster, and Lpn4, Lpn3, Lpn1, and Lpn2 clustered together in the other. The sequences within each of these sub-clusters were found close together in both the 16S rRNA and protein phylogenetic trees, and are likely to be orthologous to one another. However, these two sub-clusters of cluster 6 were distant from each other in both trees, and, collectively, are not likely to be orthologous. Lastly, the sequences Rba1, Eli1, Par2, Pcr2, Bps1, Bfu2, Bvi4 (from Rhodopirellula *baltica*, *Erythrobacter* litoralis, *Psychrobacter* arcticus, Psychrobacter cryohalolentis, Burkholderia pseudomallei, Burkholderia fungorum, and Burkholderia vietnamiensis, respectively) were also found within cluster 6. The two sequences from *Psychrobacter* clustered close to one another and distantly from

the other sequences surrounding it in the protein phylogenetic tree, as did the three sequences from *Burkholderia*. While is likely that the sequences from the same genera are orthologous to one another, collectively, the four genera represented by these seven sequences were not very close to each other in the 16S rRNA tree, as they were either in adjacent clusters or branched at very distant points within the same cluster, and so they may or may not all be orthologous to each other.

Clusters 5, 7 and 18 contained far fewer sequences than most of the other clusters. Cluster 5 contained five bacterial sequences from Deinococci, Actinobacteria, and α -proteobacteria. Dge4, from *Deinococcus geothermalis*, and Nha4, from Nitrobacter hamburgensis, branched distantly in the protein phylogenetic tree and were found in different clusters from each other and from the remaining protein sequences in the 16S rRNA tree. As such, it is unlikely that these two sequences are orthologous to each other or to any of the remaining three sequences in cluster 5. By contrast, Nsp8, from Nocardioides sp. JS614, Nfa2 and Nfa3 (both from Nocardia farcinica) clustered closely together in the protein phylogenetic tree and exhibited similar clustering patterns in the 16S rRNA tree as well. Consequently, it is likely that all three sequences are orthologous to one another. Only one sequence was found in cluster 7, Msp2. This sequence was an unclassified proteobacterium from Magnetococcus sp. MC-1. It was the only sequence from its genera out of all of the sequences representing the Copper P-type ATPases, and was very distant from the other genera it clustered with in the 16S rRNA tree. Lastly, cluster 18 contained three sequences, all from Firmicutes, Lla1, Efa3, and Ehi1 (from Lactococcus lactis,

Enterococcus faecium, and *Enterococcus hirae*, respectively). Efa3 and Ehi1 were from the same genus, and Lla1 clustered closely to these sequences in the protein phylogenetic tree and 16S rRNA tree, thus making it likely that all three sequences are orthologs.

With the exception of one uncultured bacterium, the sequences found in cluster 8 were from α -proteobacteria, β -proteobacteria, γ -proteobacteria, Cyanobacteria and Deinococci. Ilo1, from Idiomarina loihiensis, was very distant from other sequences within cluster 8, but was located in the same cluster in the 16S rRNA tree as Sty1 and Pmi1. However, Ilo1, Sty1, and Pmi1 (from Salmonella typhimurium and Proteus mirabilis, respectively) were not clustered close to each other in the protein phylogenetic tree, and are not likely to be orthologs. Neu2, Msp1, New3, Sty1, Bbr1, and Avi1 (from Nitrosomonas eutropha, Mesorhizobium sp. BNC1, Nitrosomonas eutropha, Salmonella typhimurium, Bordetella bronchiseptica, and Azotobacter vinelandii, respectively) were also found in cluster 8. Although these sequences were all found relatively near one another in the protein phylogenetic tree, only Nitrosomonas and Bordetella were found within the same cluster in the 16S rRNA tree, and therefore could possibly be orthologs. The genera of the remaining sequences are very distant from each other in the 16S rRNA tree, and these sequences could be examples of horizontal gene transfer. Additionally, Atu1, Bme1, Sme3, Sme1, Sme2, Atu2, and bac2 (from Agrobacterium tumefaciens, Brucella melitensis, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium meliloti, Agrobacterium tumefaciens, and an uncultured bacterium, respectively) were found in cluster 8. While the two

sequences from *Agrobacterium* did not cluster adjacently to one another in the protein phylogenetic tree, it is still likely that they are orthologs and that their distance from each other can be attributed to genetic exchange between other nearby sequences. Collectively, *Agrobacterium, Salmonella*, and *Brucella* cluster very closely within the same cluster in the 16S rRNA tree, and so it is likely that Atu1, Bme1, Sme3, Sme1, Sme2, Atu2 are orthologous to each other. Since the sequence bac2 was from an uncultured bacterium, no 16S rRNA sequence could be entered into the 16S rRNA tree to compare it to the other genera representing the sequences of the Copper P-type ATPases. Subsequently, it cannot be determined at this time whether or not bac2 is orthologous to the sequences surrounding it, or if it is from a very distant genus and may be an example of horizontal gene transfer.

Also found in cluster 8 were the protein sequences Pde1, Jsp1, Ssp2, Rsp1, and Spo2 (from *Paracoccus denitrificans, Jannaschia* sp. CCS1, *Silicibacter* sp. TM1040, *Rhodobacter sphaeroides*, and *Silicibacter pomeryoi*, respectively). The clustering patterns of these sequences were similar in both the 16S rRNA and protein phylogenetic trees, and as they all clustered closely it is quite possible that these sequences are all orthologs. Lastly, the sequences Tth1, Dra1, and Gvi1 (from *Thermus thermophilus, Deinococcus radiodurans*, and *Gloeobacter violaceus*, respectively), as well as Dge3, Dge1, and Dge2 (all from *Deinococcus geothermalis*) were found in cluster 8. Although Dra1 does not cluster amongst the other sequences in cluster 8 from *Deinococcus*, it is likely that it is still orthologous to these sequences, and that its distance from them can be attributed to an exchange of genetic material with other nearby sequences. Also, *Deinococcus* and *Thermus* were next to each other in the 16S rRNA tree, and therefore the sequences in cluster 8 belonging to these genera could be orthologs. By contrast, *Gloeobacter* was located in a cluster of the 16S rRNA tree that was adjacent to the one containing *Deinococcus* and *Thermus*, and so Gvi1 is most likely not orthologous to the other sequences in cluster 8.

The sequences found in cluster 9 were exclusively from γ -proteobacteria. The sequences Apl1, Aau1, and Msu1 (from Actinobacillus pleuropneumoniae, Actinobacillus succinogenes, and Mannheimia succiniciproducens, respectively) clustered together in both the 16S rRNA and protein phylogenetic trees and could be orthologous. While the sequences Aau1 and Msu1 clustered more closely in the protein phylogenetic tree than Aau1 clustered with Apl1, it is possible that Msu1 and Aau1 were able to exchange some of their genetic material, thereby causing them to cluster more closely together than expected. Eca1, Plu1, Sma1, Ype1, Eco1, and Sen1 (from Erwinia carotovora, Photorhabdus luminescens, Serratia marcescens, Yersinia pestis, Escherichia coli, and Salmonella enterica, respectively) clustered closely to one another in both the 16S rRNA and protein phylogenetic trees, and therefore could all be orthologous. These sequences were distant enough from Apl2, Aau1, and Msu1, the first three sequences examined in cluster 9, that they were found in a separate cluster in the 16S rRNA tree, and, as such, are not likely to be orthologous to them. Ppr3, from *Photobacterium profundum*, was located in a sub-cluster of cluster 9 along with Vfi1, Vch3, Vch1, Vch2, Vvu1, Vpa1,Vsp1 (all from Vibrio), as well as with Sba1 and Son1 (from Shewanella baltica and Shewanella oneidensis). While the sequences from the same genera clustered the closest together, all of the sequences clustered closely in both the 16S rRNA and protein phylogenetic trees, and could all be orthologs. Lastly, the sequences Cbu1, Mca1, Csa1, Ilo2, and Sfr1 (from *Coxiella burnetti, Methylococcus capsulatus, Chromohalobacter salexigens, Idiomarina loihiensis,* and *Shewanella frigidimarina*, respectively) were also found together in cluster 9. Cbu1, Mca1, Csa1 were more distant from Ilo2, and Sfr1, and were located within the same 16S rRNA cluster, making them possible orthologs. Ilo2 and Sfr2 clustered closely together, and were located near each other in a cluster of the 16S rRNA tree adjacent to the one containing Cbu1, Mca1, and Csa1. Thus, it is possible that Ilo2 and Sfr2 are orthologous, but it is unlikely that these five sequences are all orthologous to one another.

Cluster 10 contained bacterial sequences from Chloroflexi, Actinobacteria, Δ proteobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, and Firmicutes, as well archaeal sequences from Euryarchaeota. Cau1, Nsp6, Rxy1, Ade1, Sus1, Nsp3, Ppr2 (from *Chloroflexus aurantiacus, Nocardioides* sp. JS614, *Rubrobacter xylanophilus, Anaeromyxobacter dehalogenans, Solibacter usitatus, Nocardioides* sp. JS614, and *Pelobacter propionicus*, respectively) were found together in cluster nine, with the first four sequences forming one sub-cluster and the remaining three sequences forming another. Despite their separation, it is likely that the two sequences from *Nocardioides* are still orthologous to one another, and that their separation can be attributed to the trading of genetic material between two similar sequences. Examination of the 16S rRNA tree indicated that *Nocardioides* and *Rubrobacter* were located together in one cluster, as were *Pelobacter* and *Anaeromyxobacter* in a different cluster. The remaining genera, Chloroflexus and Solibacter, were not located in either of these two clusters, but rather were each located in their own separate clusters in the 16S rRNA tree. Subsequently, it appears that Nsp6, Nsp3, and Rxy1 could all be orthologs, as could Ppr2 and Ade1. Cau1 and Sus1, on the other hand, are fairly distant in the 16S rRNA tree from the proteins they cluster with in the protein phylogenetic tree and therefore could possibly be examples of horizontal gene transfer. The sequences Ssp1, Sel1, Cwa1, Ter1, Npu1, Nsp2, Ava1, and Nsp1 (from Synechocystis sp. PCC 6803, Synechoccus elongates, Crocosphaera watsonii, Trichodesmium erythraeum, Nostoc punctiforme, Nostoc sp. PCC 7120, Anabaena variabilis, and Nostoc sp. PCC 7120, respectively) were also seen in cluster 10. All of these sequences clustered closely in both the 16S rRNA and protein phylogenetic trees. Nsp1 and Ava1 clustered more closely together than Nsp1 did with the other sequences from *Nostoc*, which suggests that these two sequences may have exchanged genetic material with one another or both taken up similar pieces of genetic material from a foreign source. As such, it is still likely that these protein sequences could all be orthologous to each other.

Also found in cluster 10 were the sequences Bfr1, Chu1, Bfr2, and Bth1 (from *Bacteroides fragilis, Cytophaga hutchinsonii, Bacteroides fragilis*, and *Bacteroides thetaiotamicron*, respectively). These sequences all clustered closely in the protein phylogenetic tree, and their genera, which were located alongside each other in the 16S rRNA tree, exhibited very short branches. As such, it appears highly likely that

these sequences are all orthologous to each other. The sequences Dac1, Det1, and Dsp1 (from *Desulfuromonas acetoxidans, Dehalococcoides ethenogenes*, and *Dehalococcoides* sp. CBDB1, respectively) also were located together in cluster 10. While these three sequences all clustered together in the protein phylogenetic tree, with Det1 and Dsp1 the closest together, the genera *Desulfuromonas* and *Dehaloccoides* were located very distantly from each other in the 16S rRNA tree. As such, while both sequences from *Dehalococcoides* are likely to be orthologous, Dsp1 is not likely to be orthologous, and may even be an example of horizontal gene transfer. Sfu1, Reu2, and Nsp4 (from *Syntrophobacter fumaroxidans, Ralstonia eutropha*, and *Nostoc* sp. 7120, respectively) were all located around the edge of a sub-cluster of cluster 10, and an examination of the protein phylogenetic tree indicated that they were quite distant from each other and the remaining sequences in their sub-cluster. They were also quite distant from each other in the 16S rRNA tree, making them unlikely to be orthologs and possibly even examples of horizontal gene transfer.

Other sequences that grouped together in cluster 10 include Mth2, Mbu1, Mba1, Mac1, and Mma3 (from *Moorella thermoacetica, Methanococcoides burtonii, Methanosarcina barkeri, Methanosarcina acetivorans*, and *Methanosarcina mazei*, respectively). Mth2 was a bacterial sequence and was quite distant from the other four sequences it its sub-cluster, with regard to location on the 16S rRNA tree. Its location near to archaeal sequences in the protein phylogenetic tree indicates that it might have taken up some genetic material from an archaeal sequence, and thus may be an example of horizontal gene transfer. The remaining sequences from this sub-cluster

were archaea and clustered closely in both the 16S rRNA and protein phylogenetic trees. Consequently, it is likely that they are orthologous to each other, and not orthologous to Mth2. Afu1, Pfu1, Tko1, Mma2, and Mth1 (from Archaeoglobus fulgidus, Pyrococcus furiosus, Thermococcus Kodakarensis, methanococcus maripaludis, and Methanothermobacter thermautotrophicus, respectively) were also found in cluster 10. These archaeal sequences were further divided into two subclusters. The first sub-cluster was composed of Afu1, Pfu1, and Tko1, and the other sub-cluster was composed of Mma2 and Mth1. Although these two sub-clusters are separated. However, it is possible that they are all orthologous to one another, as they all clustered closely together in both the 16S rRNA and protein phylogenetic trees. Lastly, the sequences Cli1, Cte2, Cph2, and Pph1 (from Chlorobium limicola, Chlorobium tepidum, Chlorobium phaeobacteroides, and Pelodictyon phaeoclathratiforme, respectively) were also found in cluster 10. Three of these sequences belonged to Chlorobium and were very likely to be orthologous. The last sequence was from *Pelodictyon*, which was located right alongside *Chlorobium* in the 16S rRNA tree. The proximity of these sequences in the protein phylogenetic tree and their late branching in the 16S rRNA tree suggest that all four sequences are orthologous.

Cluster 11 contained three archaeal sequences from Euryarchaeota and six bacterial sequences from Actinobacteria, Chlorobi, Firmicutes, and Δ -proteobacteria. Mtu1 (from *Mycobacterium tuberculosis*) was distant from other proteins in cluster 11 in both the 16S rRNA and protein phylogenetic trees, and so is most likely not orthologous to any of the other sequences. By contrast, the archaeons Hsp1, Hma1, and Hma2 (from *Halobacterium* sp. NRC-1, *Haloarcula marismortui*, and *Haloarcula marismortui*, respectively), were found close to one another in both the 16S rRNA and protein phylogenetic trees, and are most likely orthologs. Of the remaining sequences in cluster 11, Cph1, Dha1, Ppr1, Gme1, and Gsu1 (from *Chlorobium phaeobacteroides, Desulfitobacterium hafniense, Pelobacter propionicus, Geobacter metallireducens*, and *Geobacter sulfurreducens*, respectively), only Gme1 and Gsu1 clustered close to each other in both the 16S rRNA and protein phylogenetic trees, and protein phylogenetic trees, and therefore are not likely to be orthologous to any other protein in cluster 11.

All seven sequences found in cluster 12 were Firmicutes and are likely to all be orthologs. Lmos2, Lde1, Spn1, Lpl1, Lac1, Lga1, and Ljo1 (from *Listeria moncytogenes, Lactobacillus delbrueckii, Streptococcus pneumoniae, Lactobacillus plantarum, Lactobacillus gasseri*, and *Lactobacillus johnsonii*) clustered closely to each other in both the 16S rRNA and protein phylogenetic trees, and exhibited similar branching patterns. While these proteins are likely to all be orthologous, it appears that some exchange of genetic material between closely related organisms, as Lpl1 clusters more closely to Lga1 and Ljo1, from *Lactobacillus*, than Lde1 does.

All sequences in cluster 13 were eukaryotes and were from Viridiplantae, Fungi, Mycetozoa, and Metazoa. No comparison was made between the protein phylogenetic tree and the 18S rRNA of the eukaryotic genera. No 18S rRNA tree was constructed because all but two eukaryotes, which were Viridiplantae and clustered with Cyanobacteria, clustered together in the protein phylogenetic tree. While not all organisms from the same genera were adjacent to each other in the protein phylogenetic tree, all sequences were located close to one another. Therefore, it is likely that the sequences within each phylogenetic group, if not all sequences in cluster 6, are orthologs. Cluster 14 contained the remaining two eukaryotic sequences, and also contained seven bacterial sequences from Cyanobacteria. As Viridiplantae are thought to have evolved from Cyanobacteria, it is not unexpected to find that they cluster more closely to Cyanobacteria than to other eukaryotes. The Cyanobacteria, Sel2, Ter2, Npu2, Ava2, Snp7, Ssp3, and Tel1 (from Synechococcus elongates, Trichodesmium erythraeum, Nostoc punctiforme, Anabaena variabilis, Nostoc sp. PCC 7120, Synechocysistis sp. PCC 6803, and Thermosynechoccus elongatus, respectively) clustered closely to one another in both the 16S rRNA and protein phylogenetic trees, albeit some formation of sub-clusters in the protein phylogenetic tree and some possible differences in branching distances in the 16S rRNA tree. Despite these differences, these sequences may all be close enough to be orthologous to one another.

Cluster 15 was composed of several bacteria from Firmicutes, Spirochaetes, Δ proteobacteria, Fusobacteria, and ϵ -proteobacteria. Although there were other sequences from *Streptococcus* in cluster 15, Ssu1 (from *Streptococcus suis*) clustered more closely to the two sub-clusters containing the sequences Cpe1, Cte1, Cac1, Efa1, and Efa2 (from *Clostridium perfringens, Clostridium tetani, Clostridium* *acetobutylicum, Enteroccus faecalis,* and *Enterococcus faecium,* respectively), which were separated by genus. While it is highly likely that the sequences from the same genus are orthologous to one another, collectively the sequences from these three genera may or may not be orthologs as their branches were somewhat distant from each other in both the 16S rRNA and protein phylogenetic trees.

Cluster 16 consisted of only three proteins, two γ -proteobacteria and one β proteobacteria. The sequences Mca2 and Mca3 were both from *Methylococcus capsulatus*, and since they are from the same organism and cluster adjacent to one another in the protein phylogenetic tree, they are most likely orthologs. However, Dar3 (from *Dechloromonas aromatica*) clustered at a greater distance from the other two proteins in cluster 16 in the protein phylogenetic tree and was located in an adjacent cluster in the 16S rRNA tree, and so is most likely not orthologous to Mca2 and Mca3.

Cluster 17 primarily contained γ -proteobacteria and β -proteobacteria, although it also contained one α -proteobacterium and one uncultured bacterium. The sequences Pam1, Zmo1, Bba1, Asp1, and Gox1 (from *Candidatus Protochlamydia amoebophila, Zymomonas mobilis, Bdellovibrio bacteriovorus, Acinetobacter* sp. ADP1, and *Gluconobacter oxydans*, respectively) clustered together, albeit somewhat distantly in the protein phylogenetic tree. However, they were all very distant from one another in the 16S rRNA tree, and may be an example of horizontal gene transfer. By contrast, the sequences Hin1, Pmu1, Ngo1, Nme1, Nme2, Par1, and Pcr1 (from *Haemophilus influenzae, Paseutella multocida, Neisseria gonorrhoeae, Neisseria* *meningitidis, Neisseria meningitides, Psychrobacter arcticus,* and *Psychrobacter cryohalolentis,* respectively), clustered more closely to each other than Pam1, Zmo1, Bba1, Asp1, and Gox1 did in both the 16S rRNA and protein phylogenetic trees. Thus, while it is highly likely that the sequences from the same genus are orthologs, it is also possible that these seven sequences, collectively, are orthologous to each other.

Cluster 19 was composed entirely of gram positive bacteria. With the exception of one Actinobacterium, all of the sequences from cluster 19 were Firmicutes. In both the 16S rRNA and protein phylogenetic trees, Lin2 (from Leptospira interrogans), was too distant to make it a likely ortholog of any of the other sequences in cluster 19. Bsu1, Ban1, Bli1, Bcl1, Bha1 (from Bacillus subtilis, Bacillus anthracis, Bacillus licheniformis, Bacillus clausii, Bacillus and Bacillus halodurans, respectively) were all from the same genus and clustered closely together, making them probable orthologs. While a slight gap appeared to separate these five sequences into two sub-clusters, with Bsu1, Ban1, and Bli1 in one sub-cluster and Bcl1 and Bha1 in the other, this could be attributed to an exchange of genetic material between sequences within each of these sub-clusters of bacteria. The sequences Bce3, Gka1 and Oih1 (from Bacillus cereus, Geobacillus kaustophilus, and Oceanobacillus iheyensis, respectively) were found in a sub-cluster of cluster 19 near the sequences Sha1, Ssa1, Sau1, and Sep1 (from Staphylococcus haemolyticus, Staphylococcus saphropyticus, Staphylococcus aureus, and Staphylococcus epidermidis, respectively), which formed another sub-cluster. While it is highly likely that all of the sequences from *Staphylococcus* are orthologous to one another, collectively these proteins

appeared to have similar branching patterns in both the 16S rRNA and protein phylogenetic trees, and so could all be orthologs. Although it is interesting that Bce3 would cluster more closely in the protein phylogenetic tree to Gka1 than to other sequences from *Bacillus* in cluster 19, it is possible that an exchange of genetic material occurred between these two sequences, as they are from closely related genera. A similar explanation could explain why the sequence Bcl2, from *Bacillus clausii*, clustered more closely in the protein phylogenetic tree to Esi1, Lin1, and Lmo1 (from Exiguobacterium sibricum, Listeria innocua, and Listeria monocytogenes) than to any other sequence from Bacillus. Again, these bacteria exhibited similar branching patterns in both the 16S rRNA and protein phylogenetic trees, and their proximity in both of these trees suggests that they could all be orthologous to each other. Lastly, the sequences Hmo1, Sth2, Swo1, Cth1, and Tte1 (from Heliobacillus mobilis, Symbiobacterium thermophilum, Syntrophomonas wolfei, *Clostridium thermocellum*, and *Thermoanaerobacter tengcongensis*, respectively) were all from different genera that were found near to each other in both the 16S rRNA and protein phylogenetic trees. However, the branching distances of these organisms and genera in both trees, and the differences in location between some of the sequences in the phylogenetic tree and the locations of their genera in the 16S rRNA tree indicates that these sequences may or may not be orthologs.

The sequences from cluster 20 were mostly γ -proteobacteria, β -proteobacteria, although there were a few α -proteobacteria, as well. The sequences Mde1, from *Microbulbifer degradans*, and Mf11, from *Methylobacillus*, were very distant both

from each other and from the other sequences in cluster 20 in both the 16S rRNA and protein phylogenetic trees, and so are not likely to be orthologous to each other or any of these sequences. Rfe1, from Rhodoferax ferrireducens, clustered next to Bfu1, Bma1, Bvi1, Bam1, Bce1, and Bce2 (from Burkholderia fungorum, Burkholderia mallei, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia, respectively). Although Rfe1 clustered somewhat more distantly from the six sequences from *Burkholderia* in the protein phylogenetic tree, the genera Burkholderia and Rhodoferax were next to each other in the 16S rRNA tree and branched at approximately the same distance within their cluster, thereby making them possible orthologs. Sam1, Cps1, and Sde1 (from Shewanella amozonensis, Colwellia psychrerythraea, and Shewanella denitrificans, respectively), were clustered together in both the 16S rRNA and protein phylogenetic trees. Although Colwellia and Shewanella were found within the same cluster in the 16S rRNA tree, they branched very early on in the cluster. However, as Cps1 and Sde1 clustered more closely together than Sam1 and Sde1, it appears that genetic material could have been exchanged between these two sequences and suggests that, collectively, these three sequences could be orthologous to one another. The sequences Mma2, from Magentospirillum magnetotacticum, and Rru1, from Rhodospirllum rubrum, were very distant from other sequences in cluster 20. Although they were also somewhat distant from each other, and exhibited distant branching in the 16S rRNA tree, these two sequences were found within the same cluster in both the 16S rRNA and protein phylogenetic tree and could be orthologs.

6.2: Homology Analyses of Heavy Metal ATPases

Cluster 1 contained sequences from α -proteobacteria, β -proteobacteria, γ proteobacteria, and Deinococci. The sequences Neu1, Nwi1, Nha2, Rpa3, and Pla2 (from Nitrosomonas eutropha, Nitrobacter winogradskyi, Nitrobacter hamburgensis, Rhodopseudomonas palustris, and Parvibaculum lavamentivorans, respectively) were grouped together in the protein phylogenetic tree. As expected, the sequences from Nitrobacter exhibited closer branching to one another than to Rpa3 and Pla2, which also clustered closely together. Neu1 from Nitrosomonas also clustered closely in the protein phylogenetic tree with the sequences from *Nitrobacter*, but these two genera were found in separate clusters in the 16S rRNA tree, making it unlikely that they are orthologs. With the exception of the sequence Neu1, branching patterns similar to those seen in the protein phylogenetic tree were also observed in the 16S rRNA tree. While there was some distance between these sequences in both trees, they were all close enough together to possibly be orthologous to each other. The sequences Ssp1, Pcr1, Dge2, Dge1, and Dra1 (from Shewanella sp. W3-18-1, Psychrobacter cyohalolentis, Deinococcus geothermalis, Deinococcus geothermalis, and Deinococcus radiodurans, respectively) were also found next to one another in cluster 1. All of the sequences from *Deinococcus* grouped closer to one another than to any other sequence in this sub-cluster, and are most likely orthologous. The sequences Pcr1 and Ssp1 clustered closely together in the protein phylogenetic tree. While they were also found within the same cluster in the 16S rRNA tree, they branched away from each other at a point close to the center of the tree. As such, they could still be orthologous to one another, but it appears that they are much more distantly related that the other sequences found in this sub-cluster. Cluster 1 also contained the sequences Atu1, Rsp2, Pde1, Pde2, Ogr1, Ssp5, Oha1, and Rsp4 (from Agrobacterium tumefaciens, Rhodobacter sphaeroides, Paracoccus denitrificans, Paracoccus denitrificans, Oceanicola granulosus, Sulfitobacter sp. EE-36, Oceanicola batsensis, and *Rhodobacter sphaeroides*, respectively). Not all of these sequences clustered the closest to other sequences from the same genus. However, this phenomenon could be attributed to an exchange of genetic material between closely related sequences. Incidentally, all of the genera of these sequences clustered closely to each other in both the 16S rRNA and protein phylogenetic trees, and therefore these sequences may all be orthologs. Also located in cluster 1 were the sequences: Rru1, Msp3, Xau1, Nha1, Rpa1, Bsp4, Rpa2, Bsp5, Ret1, and Rle1 (from Rhodospirillum rubrum, Mesorhizobium sp. BNC1, Xanthobacter autrophicus, Nitrobacter hamburgensis, Rhodopsuedomonas palustris, Bradyrhizobium sp. BTAi1, Rhodopseudomonas palustris, Bradyrhizobium sp. BTAi1, Rhizobium etli, and Rhizobium leguminosarum, respectively). Again, these sequences exhibited some variations in their clustering patterns, with regard to type of genus. However, these sequences all clustered within the same 16S rRNA cluster and exhibited similar branching patterns as those observed in the protein phylogenetic tree, and so could all be orthologous to one another.

Also found in cluster 1 were the sequences: Bsu1, Sme1, Sme2, Msp2, Asp2, and Mlo1 (from Brucella suis, Sinorhizobium medicae, Sinorhizobium meliloti, Mesorhizobium sp. BNC1, Aurantimonas sp. SI85-9A1, and Mesorhizobium loti, respectively). These sequences were further divided into two sub-cluster, with the first sub-cluster containing Bsu1, Sme1, and Sme2, and the second sub-cluster containing Msp2, Asp2, and Mlo1. Collectively, all six of these sequences were not only close to each other in the protein phylogenetic tree, but examination of their 16S rRNA tree indicated that their respective genera were grouped together in the same cluster and exhibited similar branching patterns as those seen amongst these sequences in the protein phylogenetic tree. Consequently, it is very likely that these proteins are all orthologous to each other. In addition to these sequences, Ppr5, Vfi1, Vch1, Vsp2, Vvu1, Vsp1, Vpa1, Van1, Ppr3, and Ppr4 (from Photobacterium profundum, Vibrio fischeri, Vibrio cholerae, Vibrio sp. MED222, Vibrio vulnificus, Vibrio sp. Ex25, Photobacterium profundum, Vibrio parahaemolyticus, *Photobacterium* and profundum, respectively) were found in cluster 1. Nearly all of the sequences from Vibrio clustered much closer to one another than to sequences from every other genus, with the exceptions of Vfi1 and Van1. Vfi1 was located by itself on a relatively distant branch next to most of the other sequences from Vibrio. By contrast, Van1 clustered more closely to Ppr3 and Ppr4, from *Photobacterium*, than to any other sequences from Vibrio. It is possible that these sequences underwent some event in which they exchanged or acquired genetic material from another similar organism, thereby causing them to branch apart from other sequences from other sequences from Vibrio.

Despite these differences, the genera of these sequences all clustered closely together in the 16S rRNA tree and so could all be orthologs. Also found in cluster 1 were the sequences Ahy1, Msp4, Eca1, Plu1, Pmi1, Spr1, Yps1, Yen1, Yfr1, Ymo1, and Yin1 (from Aeromonas hydrophila, Marinomonas sp. MWL1, Erwinia carotovora, Photorhabdus luminescens, Proteus mirablis, Serratia proteamaculans, Yersinia pseudotuberculosis, Yersinia enterocolitica, Yersinia frederiksenii, Yersinia mollaretii, and Yersinia intermedia, respectively). Of these sequences, Ahy1, Msp4, and Eca1 were separated by the greatest branch lengths. The remaining sequences formed several smaller sub-clusters, with Plu1 and Pmi1 clustering together and Spr1 clustering at a distance all of the sequences from *Yersinia*, which all clustered amongst themselves. With the exception of the genus Marinomonas, which was located in a nearby, but separate cluster, all of these sequences were found in the same cluster in the 16S rRNA tree, and exhibited clustering patterns similar to those observed in the protein phylogenetic tree. As such, these sequences may be orthologous to each other. Lastly, the sequences Esp1, Sen1, and Eco1 (from Enterobacter sp. 638, Salmonella enterica, and Escherichia coli, respectively) were found in cluster1. These sequences were close to one another in the protein phylogenetic tree, but were very distant from the other sequences in cluster 1. Despite their distance from their neighboring sequences, they themselves were very close to one another, both with regard to the protein phylogenetic tree and the 16S rRNA tree, where they exhibited short branch distances from each other. Consequently, these sequences could be orthologous to one another.

Cluster 2 was very large and contained sequences from β -proteobacteria, γ proteobacteria, ∆-proteobacteria, and Cyanobacteria. Cvi1, Rfe1, Mfl1, and Ppr1 (from Chromobacterium violaceum, Rhodoferax ferrireducens, Methylobacillus flagellatus, and Pelobacter propionicus, respectively) formed one of the several subclusters within cluster 2, and appeared to branch distantly in the protein phylogenetic tree from each other and all of the other sequences in this cluster. Despite this distance, the genera of Cvi2, Rfe1, and Mfl1 were all found in the same cluster in the 16S rRNA tree, and so could possibly be orthologs. The genus for Ppr1, however, was found in a distant cluster and thus is not only unlikely to be orthologous to Cvi2, Rfe1, and Mfl1, and may be an example of a horizontal gene transfer event. Rme1, Psp1, Avi1, Rpi1, Asp1, Rme3, Cte2, and Kpn1 (from Ralstonia metallidurans, Polunucleobacter sp. QLW-P1DMWA-1, Azotobacter vinelandii, Ralstonia piketti, Acidovorax sp. JS42, Ralstonia metallidurans, Comamonas testosteroni, and Klebsiella pneumoniae, respectively) were also found together in cluster 2. Several further sub-clusters were distinguished amongst these sequences. Rme1 and Psp1 formed one sub-cluster, and Avi1 was located by itself at a distance from Rpi1, Asp1 and Rme3, which formed another sub-cluster, as well as from Cte2 and Kpn1, which also clustered together. In addition to grouping together in the protein phylogenetic tree, the genera of the first two sets of sequences, Rme1 and Psp1 and Rpi1, Asp1 and Rme3, all clustered close to one another in the 16S rRNA tree, which suggests that they could be orthologous. While Cte2 and Kpn1, the two sequences from the third sub-cluster within this group of proteins, clustered together in the protein phylogenetic

tree, their genera were very distant from each other in the 16S rRNA tree. While the genus *Comamonas* was located close within the same cluster in the 16S rRNA tree as the genera from the sequences in the first two sub-clusters, *Klebsiella* was found in an adjacent cluster and is most likely too distant to be orthologous to the other sequences it clustered with. Avi1, which branched distantly from the other sequences around, was also not located in the same cluster as the genera from Rme1, Psp1, Rpi1, Asp1 and Rme3, and so is unlikely to be orthologous to them. Although its genus was located in the same cluster containing *Klebsiella* in the 16S rRNA tree, these two genera branched close to the center of the tree and were also somewhat distant from each other in the protein phylogenetic tree as well. Thus, Avi1 and Kpn1 may or may not be orthologous to each other.

Additional sequences that grouped together in cluster 2 were Pme1, Pae1, Psy1, Pf11, Pf12, Ppu2, Ppu1, and Pen1 (from *Pseudomonas mendocina, Pseudomonas aeruginosa, Pseudomonas syringae, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas putida*, and *Pseduomonas entomophila*, respectively). Although these sequences were subdivided into three smaller sub-clusters, they all grouped together closely in the protein phylogenetic tree and were from the same genus, and are almost certainly orthologs of each other. The sequences Rme2, Reu1, and Reu2 (from *Ralstonia metallidurans, Ralstonia eutropha*, and *Ralstonia eutropha*, respectively) were found together in a sub-cluster of cluster 2 that was adjacent to the sequences from *Pseudomonas*. While these three sequences were close to one another in the protein phylogenetic tree and of the same genus, making them likely to be orthologs of

one another, their distance from the sequences in *Pseudomonas* in both the protein phylogenetic and 16S rRNA trees suggests that, collectively, these sequences are not orthologous to each other. Also found in a neighboring sub-cluster of cluster 2 were the sequences Darl, Bpn1, Bps2, Bmu1, Bvi1, and Bsp2 (from Dechloromonas aromatica, Burkholderia phytofirmans, Burkholderia pseudomallei, Burkholderia multivorans, Burkholderia vietnamiensis, and Burkholderia sp. 383, respectively). The sequence from *Dechloromonas* clustered at a slightly greater distance from the rest of the sequences in this sub-cluster, which all cluster closely together and are from the same genus, Burkholderia. Nonetheless, these two genera clustered near to one another in the 16S rRNA tree and so all of these sequences could be orthologs. The sequences Sgl1, Bar1, and Bbr1 (from Sodalis glossinidius, Bordetella avium, and Bordetella bronchieseptica, respectively) and Ppr2, Rso1, and Rpi2 (from Pelobacter propionicus, Ralstonia aolanacearum, and Ralstonia pickettii, respectively) were also found branching slightly more distantly from their surrounding sub-clusters of sequences in cluster 2. While the sequences within these two small sub-clusters grouped closely amongst themselves, examination of the locations of their genera in the 16S rRNA tree indicated that in the first of these sub-clusters Sodalis and Bordetella were in separate, but nearby, sub-clusters, and that Pelobacter and Ralstonia were in separate and distant sub-clusters. Thus, while the sequences from the same genus in these sub-clusters are most likely orthologs, it is unlikely that the sequences from different genera are orthologous to one another. Additionally, the distance between the genera of Ppr2, Rso1, and Rpi2 indicated that the proximity of

Ppr2 to the two sequences from *Ralstonia* may have occurred as a result of a horizontal gene transfer event. Also found in cluster 2 were the sequences Ssp2, Aav1, Pna1, Dar2, Cte3, Asp3, Asp6, Cte4, and Dac1 (from Synechococcus sp. WH 5701, Acidovorax avenae, Polaromonas napthalenivorans, Dechloromonas aromatica, Comamonas testosterone, Acidovorax sp. JS42, Acidovorax sp. JS42, Comamonas testosteroni, and Delftia acidovorans, respectively). Altogether, these sequences formed two sub-clusters that branched somewhat distantly from each other, with Ssp2, Aav1, Pna1, Dar2, Cte3, Asp3 located in the first sub-cluster and Asp6, Cte4, and Dac1 located in the second sub-cluster. Of the sequences in the first of these subclusters, only Cte3 and Asp3 appeared to group closely to each other. By contrast, the three sequences in the second of these sub-clusters all appeared to group much closer to one another, even though two of them belonged to genera that were also present in the first cluster. This separation of sequences from the same genera indicates that some of these sequences may have undergone an exchange of genetic material with each other, or acquired or lost some quantity of genetic material, therefore causing them to cluster more distantly from other sequences from the same distance. Despite the branch distances between the sequences of these two sub-clusters in the protein phylogenetic tree, the genera of all the sequences but Ssp2 were located in the same cluster of the 16S rRNA tree and may be orthologous to each other. The genus Synechococcus was very distant in the 16S rRNA tree from the cluster containing the other genera from these two sub-clusters. Ssp2 also branched quite distantly in the protein phylogenetic tree from the other sequences in its sub-cluster. As such, Ssp2 is

not likely to be orthologous to these sequences, and may be an instance of horizontal gene transfer. Lastly, the sequences Cte1, Lpn1 and Lpn2 (from *Comamonas testosterone, Legionella pneumophila*, and *Legionella pneumophila*, respectively) were also found in cluster 2. While these sequences branched distantly in the protein phylogenetic tree from the other sub-clusters of cluster 2, they grouped closely together in both in this tree. However, while the two sequences from *Legionella* are likely to be orthologous to one another, the genera *Legionella* and *Comamonas* were located in separate, albeit adjacent, sub-clusters in the 16S rRNA tree and so Cte1 is most likely not orthologous to Lpn1 and Lpn2.

Cluster 3 and cluster 4 of Family 6 both only contained a few sequences. Cluster 3 was composed entirely of sequences from α -proteobacteria. The most distantly clustering sequences found in cluster 3 were Bma1, Ftu1, and Sfu1 (from *Blastopirellula marina, Francisella tularensis*, and *Syntrophobacter fumaroxidans*, respectively). In addition to being distant from one another in the protein phylogenetic tree, the genera corresponding with these sequences were located in different clusters from one another, making them unlikely to be orthologs and possibly even instances of horizontal gene transfer. Msp1, Mma7, and Mma3 (from *Mesorhizobium* sp. BNC1, *Magnetospirillum magentotacticum*, and *Magnetospirillum magneticum*, respectively) were also found in cluster 3, but were much closer to one another in the protein phylogenetic tree, and their genera were located in the same cluster in the 16S rRNA tree. While they did branch somewhat distantly from each other with the same cluster of the 16S rRNA tree, it is still possible that these sequences, especially the two sequences from *Magnetospirillum*, were orthologous. Also located together in cluster 3 were the sequences Rsp3, Rsp1, and Dsh1 (from *Roseobacter* sp. MED193, *Roseobacter* sp. MED193, and *Dinoroseobacter shibae*, respectively). Like Msp1, Mma7, and Mma3, these three sequences clustered close to each other in the protein phylogenetic tree. However, unlike these sequences, the genera of Rsp3, Rs11, and Dsh1 branched more closely together in the same cluster in the 16S rRNA tree, and are therefore more likely to be orthologous to one another. By contrast to cluster 3, only two sequences were found in cluster 4: Chy1 and Pam1 (from *Carboxydothermus hydrogenoformans*, and *Candidatus Protochlamydia amoebophila*, respectively). These two sequences branched very distantly from one another in both the protein phylogenetic tree and the 16S rRNA tree. Such branching distances in both trees suggest that these sequences are not orthologous to one another, and that perhaps their proximity to one another in the phylogenetic tree may signify the occurrence of a horizontal gene transfer event.

Cluster 5 contained bacterial sequences from Firmicutes, Fusobacteria, Δ proteobacteria, ϵ -proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, γ proteobacteria, and Spirochaetes, and archaeal sequences from Euryarchaeota. These sequences primarily grouped together with other sequences from the same genus or phylogenetic group, although this was not always the case. Among the sequences in cluster 5 with the greatest branch lengths were Lin1, Lsa2, and Wsu1 (from *Lawsonia intracellularis, Lactobacillus salivarius*, and *Wolinella succinogenes*, respectively). While these sequences appeared to be located more closely to one another in the protein phylogenetic tree than to any other sequences in cluster 5, they branched very distantly from one another in both this tree and the 16S rRNA tree. Lawsonia and Wolinella were located in the same cluster in the 16S rRNA tree, but branched close to the center of the tree, making it uncertain whether or not they are orthologs. Lin1, by contrast, not only branched the most distantly from the other sequences, but its genus, *Lactobacillus*, was located in a cluster on the opposite side of the 16S rRNA tree from Lawsonia and Wolinella. Given these sequences' distant branching in both trees, it is unlikely that these sequences are orthologs, especially Lin1. Additionally, the clustering patterns of these sequences in the 16S rRNA tree were not thought to indicate the occurrence of horizontal gene transfer, as significant branch lengths were also observed in the protein phylogenetic tree as well. The sequences Efa1, Efa2, Fnu1, and Cce1 (from Enterococcus faecalis, Enterococcus faecium, Fusobacterium nucleatum, and Clostrium cellulolyticum, respectively) were also found within cluster 5. Efa1 and Efa2 clustered together in the protein phylogenetic tree and belonged to the same genus, therefore making them likely orthologs. Fnu1 and Cce1, by contrast, were more spread out from each other in the protein phylogenetic tree and in the 16S rRNA tree. Although these two sequences were found within the same cluster of the 16S rRNA tree, they branched away from a point almost at the center of the tree. As such, these sequences may or may not be orthologous to one another. Also, the cluster in the 16S rRNA tree in which Fusobacterium and Clostridium were found in one cluster and Enterococcus was found in an adjacent cluster, thereby making it less likely that, collectively, these four sequences are orthologs. The sequences Bce1,

Bce2, Bsu2, and Bli1 (from Bacillus cereus, Bacillus cerus, Bacillus subtilis, and Bacillus licheniformis, respectively) were also found together in cluster5. Although the protein phylogenetic tree indicated that these sequences all clustered closely, they exhibited some separation from each other and created two sets of sub-clusters, which each contained two sequences. This partitioning of sequences into two separate subclusters could indicate that the sequences from *Bacillus* that clustered most closely to one another underwent similar events that affected their genetic composition. Despite the slight distance between some of these sequences, they were from the same genus are most likely to be orthologous. The sequences Cth1, Csp3, Dha1, Csu1, Ame2, Csp4, Cbe1, and Cno1 (from *Clostridium thermocellum*, *Clostridium* sp. OhILAs, Desulitobacterium hafniense, Alkaliphilus metalliredigenes, Clostridium sp. OhILAs, Clostridium beijerincki, and Clostridium novyi, respectively) were also found in cluster 5. Not all of the sequences from *Clostridium* clustered adjacent to one another, which suggested that they could have exchanged genetic material with other closely clustering sequences from different genera. Despite their separation, Cth1, Csp3, Csu1, Csp4, and Cbe1 were still relatively close to one another in the protein phylogenetic tree and they are all from the same genus. As such, these sequences could be orthologous to one another. While the remaining three sequences from this sub-cluster, Dha1, Csu1, and Ame1, were located within close proximity to one another in both the protein phylogenetic and 16S rRNA trees, making them possible orthologs, the genera from these three sequences were distant from *Clostridium* in the

16S rRNA tree. Thus, it does not appear that these eight sequences are all orthologous to one another.

Also located in cluster 5 were the sequences Tet1, Tet2, Cdi1, Cpe1, Cte5, and Cac1 (from Thermoanaerobacter ethanolicus, Thermoanaerobacter ethanolicus, Clostridium difficile, Clostridium perfringens, Clostridium tetani, and Clostridium *acetobutylicum*, respectively). These sequences were divided into three sub-clusters, each containing two sequences. Two of the sub-clusters contained the sequences from *Clostridium*, and while these sub-clusters exhibited relatively distant branching from each other in the protein phylogenetic tree, they could still be orthologous to one another. The remaining sub-cluster contained the two sequences from Thermoanaerobacter, which grouped tightly together and were most likely orthologs. Although the two genera represented by the sequences in these three clusters were found within the same cluster of the 16S rRNA tree, they branched away from each other at a point that was very close to the center of the tree. Subsequently, these sequences may or may not all be orthologous to each other. Mla1, Esi1, and Lsa1 Methanocorpusculum Exiguobacterium (from labreanum, sibiricum, and Lactobacillus sakei, respectively) were also found together in a sub-cluster of cluster 5. Esi1 and Lsa1 grouped the most closely together of the three sequences in the protein phylogenetic tree and their genera were located with the same cluster of the 16S rRNA tree, therefore making them likely to be orthologous to one another. Whereas Esi1 and Lsa1 were bacterial sequences, Mla1 was an archaeal sequence and was in a cluster that represented an entirely different phylogenetic domain in the 16S

rRNA tree than Esi1 and Lsa1. The proximity of Mla1 to two bacteria suggests that horizontal gene transfer may have occurred. Other sequences from cluster 5 included Hor1, Pab1, and Mma4 (from *Halothermothrix orenii, Pyrococcus abyssi*, and *Methanococcus maripaludis*, respectively). While Pab1 and Mma4 clustered more closely to one another than to Hor1, they were both archaeal sequences and displayed similar branching points in the 16S rRNA tree. Such similarities make it likely that Pab1 and Mma4 are orthologs. Although Hor1 is a bacterial sequence, its genus was found in a cluster near the archaeal genera and it separated from the branch that contained all of the archaeal genera at a point near the center of the 16S rRNA tree. Despite its proximity to Pab1 and Mma4, Hor1 is from a different phylogenetic domain. Thus, it is likely that its proximity to these archaeal sequences in the protein phylogenetic tree can be attributed to a horizontal gene transfer event.

Also found in cluster 5 were the sequences Sth3, Mth1, Dha2, and Dha3 (from *Symbiobacterium thermophilum, Moorella thermoaceitca, Desulfitobacterium hafniense*, and *Desulfitobacterium hafniense*, respectively). Although these sequences were not all from different genera, they all clustered closely to one another in the protein phylogenetic tree and the 16S rRNA tree, and were all likely to be orthologs. The sequences Sth3, Mth1, Dha2, and Dha3 also clustered next to Npu2, Ssp7, Obp1, and Lsp2 (from *Nostoc punctiforme, Synechocystis* sp. PCC 6803, *Oscillatoria brevis,* and *Lyngbya* sp. PCC 8106, respectively) in cluster 5. Like Sth3, Mth1, Dha2, and Dha3, Npu2, Ssp7, Obp1, and Lsp2 all clustered closely in both the 16S rRNA tree and the protein phylogenetic tree, which suggested that they were all orthologous to

one another. However, the genera of Sth3, Mth1, Dha2, and Dha3 were located in a separate cluster in the 16S rRNA tree from the one containing the genera representing the sequences Npu2, Ssp7, Obp1, and Lsp2, thereby making it unlikely that all of these sequences were orthologous.

Other sequences found in cluster 5 were Chu1, Chu2, Fjo1, Orh1, and Spu1 (from Cytophaga hutchinsonii, Cytophaga hutchinsonii, Flavobacterium johnsoniae, Ornithobacterium rhinotracheale, and Shewanella putrfaciens, respectively). These sequences grouped closely to one another in the protein phylogenetic tree, and, with the exception of Spu1, were all found clustering together in the 16S rRNA tree at distances that were similar to the patterns observed in the protein phylogenetic tree. Spu1, by contrast, was located in a very distant cluster from the rest of these sequences in the 16S rRNA tree, and may even be an instance of horizontal gene transfer. Also found in cluster 5 were the sequences Lbl2, Tsp1, Rbi1, Gfo2, Csp5, Lpl3, Brf1, and Bth2 (from Leeuwenhoekiella blandensis, Tenacibaculum sp. MED152, Robignitalea biformata, Gramella forsetti, Cellulophaga sp. MED134, Leewenhoekiella blandensis, Bacteroides fragilis, and Bacteroides thetaiotaomicron, respectively). These sequences all grouped together in cluster 5, forming several small, close sub-clusters. Additionally, the genera corresponding to these sequences were all located in the same cluster in the 16S rRNA tree, and appeared to exhibit similar clustering patterns as those seen in the phylogenetic tree. While these sequences all grouped together in both trees and could all be orthologs, the two sequences from Bacteroides branched at a notably greater distance from the other sequences in both trees, and, consequently,

may or may not be orthologous to the other six proteins they clustered with. Lastly, the sequences Tde1, Csa2, Hhe1, Hac1, and Hfe1 (from *Treponema denticola, Caldicellulosiruptor saccharolyticus, Helicobacter hepaticus, Helicobacter acinonychis*, and *Helicobacter felis*, respectively) were also found in cluster 5. The three sequences from *Helicobacter*, Hhe1, Hac1, and Hfe1, are most likely orthologous to each other as they grouped closely together and were notably distant from even their neighboring proteins Tde1 and Csa2. While Tde1 and Csa2 also appeared to be in close proximity to one another, their genera were neither located in the same cluster nor in the same cluster as Hhe1, Hac1, and Hfe1. Thus, Tde1 and Csa2 were unlikely to be orthologous to each other or to Hhe1, Hac1, and Hfe1, and may even be examples of horizontal gene transfer.

All sequences in cluster 6 were eukaryotes from Viridiplantae, and included Ota1, Mtr1, Aha2, Ath1, Tca2, and Aha1 (from *Ostreococcus tauri, Medicago truncatula, Arapidopsis halleri, Arabidopsis thaliana, Thlaspi caerulescens*, and *Arabidopsis halleri*, respectively). As in Family 5, no 18S rRNA tree was constructed because all but two eukaryotes, which were Viridiplantae and clustered with Firmicutes and Chlamydiae, were located together in the protein phylogenetic tree. Although not all organisms from the same genera were located adjacent to each other, their close proximity in the protein phylogenetic tree suggests that sequences could still be similar enough to be orthologous to one another.

The sequences found in cluster 7 were from the bacterial phylogenetic groups Firmicutes, Actinobacteria, Chloroflexi, and α -proteobacteria, and from the eukaryotic

phylogenetic group Euryarchaeota. Csp2, Lme1, Lsa3 (from Clostridium sp. OhILAs, Leuconstoc mesenteroides, and Lactobacillus salivarius, respectively) were located in a sub-cluster that was quite distant from the other sequences in cluster 7, as were Hau1 (from Alkaliphilus metalliredigenes and Herpetosiphon, Ame1 and respectively). Csp2, Lme1, and Lsa3 exhibited similar clustering patterns in both the 16S rRNA and protein phylogenetic trees, and were close enough to each other in both that they could all be orthologs. By contrast, Ame1 and Hau1 are very distant from each other in the 16S rRNA tree, as Ame1 is a bacterial sequence and Hau1 is an archaeal sequence. This considerable difference makes it unlikely that they are orthologous, and suggests that this could be an instance of horizontal gene transfer. Met2, Hma5, Cgl2, Cgl1, Cef2, Nsp4, Bli3, Rxy2, and Pde3 (from an uncultured methanogenic archaeon, Haloarcula marismortui, Corynebacterium glutamicum, Corynebacterium glutamicum Corynebacterium efficiens, Nocardioides sp. JS614, Brevibacterium linens, Rubrobacter xylanophilus, and Paracoccus denitrificans, respectively) were also found in cluster 7. These sequences were further divided into four sub-clusters: met2 and Hma5 in the first, Cgl2, Cgl2 and Cef2 in the second, Nsp4 and Bli3 in the third, and Rxy2 and Pde3 in the fourth. As Hma5 and met2 were archaeal sequences and the remaining sequences in these sub-clusters were bacterial sequences, these two sequences may be instances of horizontal gene transfer. With the exception of Rxy2 and Pde3, the bacterial sequences were all located close to one another in the same cluster of the 16S rRNA tree, and could be orthologs. Rxy2 was located in the same cluster as Cgl2, Cgl1, Nsp4, and Bli3, but it branched very close to

the center of the tree, and so may or may not be orthologous to these sequences. By contrast, Pde3 was from the genus *Paraoccus*, which was very distant in the 16S rRNA tree from the genera of the other sequences. Consequently, Pde3 could be an instance of horizontal gene transfer.

Cluster 8 was primarily composed of Firmicutes and Chlamydiae, although it also contained two eukaryotic sequences from Viridiplantae, Ath2 and Osa1 (from Arabidopsis thaliana and Oryza sativa, respectively). As previously discussed, Viridiplantae are thought to have evolved from Cyanobacteria. Although no sequences from Cyanobacteria were found in cluster 8, the genera from Chlamydiae were located in a cluster adjacent to one containing genera from Cyanobacteria in the 16S rRNA tree. While these two clusters exhibited very early branching from one another, it is possible that Heavy Metal P-type ATPases from Viridiplantae are more closely related to the phylogenetic group Chlamydia than Cyanobacteria. If this is true, then some time after the division between genera from Chlamydiae and genera from Cyanobacteria occurred, the Family 6 genera from Viridiplantae separated from the genera from Chlamydiae. The branch distances observed, however, between members of these phylogenetic groups are significant, and it is unlikely that the sequences from Viridiplantae are orthologous to any of the bacterial sequences in cluster 8. Examination of the phylogenetic tree indicates that cluster 8 is comprised of several sub-clusters of bacterial sequences. The sequences Efa4, Esi2, Bcl2, Bha2, Bsp6, Bce3, Bth1, Bsu3, Bli1 (from Enteroccous faecium, Exiguobacterium sibiricum, Bacillus clausii, Bacillus halodurans, Bacillus sp. NRRL B-14911, Bacillus cereus,

Bacillus thuringiensis, Bacillus subtills, and Bacillus licheniformis, respectively) were located close together in both the protein phylogenetic and 16S rRNA trees, and are therefore likely to all be orthologous to one another. Lwe1 and Lmo2 clustered adjacent to each other in the protein phylogenetic tree (from Listeria weishimeri and Listeria monocytogenes, respectively), as did Efa3 and Spy1 (from Enterococcus faecium and Streptococcus pyogenes, respectively). While Lwe1 and Lmo2 were from the same genus and are very likely to be orthologs, Efa3 and Spy1 were distant from the other sequences in cluster 8 and were from genera that are in adjacent clusters in the 16S rRNA tree. As such, they are less likely to be orthologous to each other or to other sequences in cluster 8. The sequences Ctr1, Cpn1, Cab1, and Cfe1 (from Chlamydia trachomatis, Chlamydophila pneumoniae, Chlamydophila abortus, and Chlamydophila felis, respectively) formed another sub-cluster found in cluster 8. Although Ctr1 was from Chlamydia and was somewhat distant in the protein phylogenetic tree from the other proteins in this sub-cluster, which were all from Chlamydophila, these two genera were only a short distance from each other in the 16S rRNA tree. Thus, it is likely that these four sequences were orthologous to one another.

The sequences found in cluster 9 were from Actinobacteria, α -proteobacteria, β -proteobacteria, γ -proteobacteria, and Bacteroidetes. The most distant sub-clusters with cluster 9 were Cef1, Lbl1 and Gfo1, Sru1 and Asp5, Dac2 and Nar1, and Mfl2, Ssp6, and Hne1. Cef1, from *Corynebacterium efficiens*, was distant in both the 16S rRNA and protein phylogenetic trees from the other sequences in cluster 9. Similarly,

Lbl1, and Gfo1 (from Leeuwenhoekiella blandensis, and Gramella forsetii, respectively), which cluster closely enough in both trees to likely be orthologous to each other, were distant from the other sequences in cluster 9 and, like Cef1, are not likely to be orthologous to any of the other sequences in cluster 9. While Sru1 and Asp5 (from Salinibacter rubber and Arthrobacter sp. FB24, respectively) have a relatively short branch distance from each other in the protein phylogenetic tree, their genera were very distant from each other in the 16S rRNA tree. As such, their proximity to one another in the protein phylogenetic tree could indicate the occurrence of horizontal gene transfer. Similarly, Dac2 and Nar1 (from *Delftia acidovorans* and *Novosphingobium aromaticivorans*, respectively) were also located next to each other in the protein phylogenetic tree, but their genera were far apart in the 16S rRNA tree and could represent an instance of horizontal gene transfer. Mfl2, Ssp6, and Hne1 (from Mycobacterium flavescens, Sulfitobacter sp. NAS-14.1, and Hyphomonas neptunium, respectively) also formed one of the more distant sub-clusters within cluster 9. Although Mfl2 was not very distant from Ssp6 and Hne1 in the protein phylogenetic tree, its genus, Mycobacterium, was very distant from the genera Sulfitobacter and Hyphomonas in the 16S rRNA tree, which were found in the same cluster. Consequently, while Ssp6 and Hne1 could be orthologous to each other, Mycobacterium was so distant from the other two genera in the 16S rRNA tree that Mfl2 may be an example of horizontal gene transfer.

Also found in cluster 9 were the sequences Csp1, Ccr1, Asp4, Bmu2 (from *Caulobacter* sp. K31, *Caulobacter crescentus, Acidovorax* sp. JS42, and *Burkholderia*

multivorans, respectively). Csp1 and Ccr1 were from the same genus and are very likely to be orthologous to each other. Bmu2 and Asp4, while not from the same genus, were found in the same cluster of the 16S rRNA and clustered next to each other in the protein phylogenetic tree, and could also be orthologous to one another. Although these four sequences all are found relatively close to each other in the protein phylogenetic tree, they are not found in the same cluster in the 16S rRNA tree and are most likely not all orthologous to each other. Eli1, Ppu3, and Sal1(from Erythrobacter litoralis, Pseudomonas putida, and Sphingopyxis alaskensis, respectively) were also found in cluster 9. Although these sequences were next to each other in the protein phylogenetic tree, they exhibited early branching points. While Eli1 and Sal1 did not cluster as closely together in the protein phylogenetic tree as Sal1 and Ppu3, the genera Sphinopyxis and Erythrobacter were found in the same cluster of the 16S rRNA tree, whereas *Pseudomonas* is located in a nearby cluster. As such, Eli1 and Sal1 may be orthologous to each other, but is unlikely that they are also orthologous to Ppu3. Also seen in cluster 9 were the sequences Rme4, Rpa4, and Pla1 (from Ralstonia metallidurans, Rhodopseudomonas palustris, and Parvibaculum lavamentivorans, respectively). Although the branch distances between these sequences in the protein phylogenetic tree suggested that these sequences were not incredibly close to one another, the genera Parvibaculum and Rhodospeudomonas were adjacent to each other in the 16S rRNA tree and exhibited similar branching patterns as the protein phylogenetic tree. Thus, Rpa4 and Pla1 could be orthologous to each other. The genus *Ralstonia*, however was located in a separate, but nearby,

cluster, and suggests that Rme4 is most likely not orthologous to Rpa4 and Pla1. Lastly, Bsp7, Xau2, Xau3, Ssp4, and Msp5 (from *Bradyrhizobium* sp. BTAi1, *Xanthobacter autotrophicus, Xanthobacter autotrophicus, Sphigomonas* sp. SKA58, and *Mesorhizobium* sp. BNC1, respectively) were also found in cluster 9. Bsp7, Xau2, and Xau3 were located close together in the protein phylogenetic tree, as were their genera, *Bradyrhizobium* and *Xanthobacter*, in the 16S rRNA tree. Therefore it is likely that these three sequences are orthologous to each other. Msp5 and Ssp4 were also close to each other in the protein phylogenetic tree and their genera are found within the same cluster of the 16S rRNA tree, so they too could be orthologs.

The sequences found in cluster 10 were all either from Chloroflexi or from Cyanobacteria. Ssp3, Lsp1, Nsp2, Npu1, and Nsp3 (from *Synechocystis* sp. PCC6803, *Lyngbya* sp. PCC 8106, *Nodularia spumigena, Nostoc punctiforme,* and *Nostoc* sp. PCC 7120, respectively) were all located close together in a sub-cluster of cluster 10. The genera of these sequences were also located closely in the same cluster of the 16S rRNA tree, which indicated that all five of these sequences could be orthologs. Sth2, Cau2, Cag2, Rca2, and Rsp5 (from *Symbiobacterium thermophilum, Chloroflexus aurantiacus, Chloroflexus aggregans, Roseiflexus castenholsii,* and *Roseiflexus* sp. RS-1, respectively) were also found in a sub-cluster of cluster 10. Sth2 was the most distant of these five sequences in the protein phylogenetic. The remaining four sequences clustered closer together, and in accordance to their genus. While the genera *Chloroflexus* and *Roseiflexus* were located in the same cluster of the 16S rRNA tree adjacent to one another, *Symbiobacterium* was located in a very distant cluster. As

such, it seems likely that while Cau2, Cag2, Rca2, and Rsp5 are most likely orthologs, Sth2 may be the result of a horizontal gene transfer event.

Two of the clusters representing the sequences of the Heavy Metal ATPases only contained a single sequence: cluster 11 and cluster 17. Cluster 11 contained the sequence Lpn3, from *Legionella pneumophila*, and cluster 17 contained the sequence Tth1, from *Thermus thermophilus*. Tth1 was the only sequence from the genus *Thermus*, which could explain why it did not cluster with the other sequences from the phylogenetic group Deinococci in cluster1. However, Lpn3 was not the only sequence from *Legionella* in Family6, and so it is possible that it may have undergone horizontal gene transfer, making it notably distinct from the other sequences from Legionella in Family 6. Also, as Lpn3 is only 635 amino acids long, and the other two sequences from *Legionella*, Lpn1 and Lpn2, are 729 and 713 amino acids long, respectively. As such, it is possible that Lpn1 and Lpn2 underwent a gene duplication event contained an extra domain, thereby making them longer and more distant from Lpn3.

Cluster 12 was entirely composed of sequences from Actinobacteria. Nfa1, Msp6, Mva1, Mfl4, Rer1, and Mfl6 (from *Nocardia farcina, Mycobacterium* sp. JLS, *Mycobacterium vanbaalenii, Mycobacterium flavescens, Rhodococcus erythropolis,* and *Mycobacterium flavescens*, respectively) were located next to one another in cluster 12. While most of the sequences from *Mycobacterium* clustered alongside each other, Mfl6 clustered more closely to Rer1, from *Rhodococcus*. This variation could be attributed to the exchange of genetic material between sequences from genera that

cluster near one another in their corresponding 16S rRNA tree, as is seen with these two genera. Collectively, Mycobacterium, Rhodococcus, and Nocardia are all located very close to one another in the same cluster of the 16S rRNA tree, and so Nfa1, Msp6, Mva1, Mf14, Rer1, and Mf16 are likely to be orthologous sequences. Jsp1, Nsp5, Asp8, mar1, Aau2, Aau1, and Asp7 (from Janibacter sp. HTCC2649, Nocardiodes sp. JS614, Arthrobacter aurescens, a marine actinobacterium, Arthrobacter aurescens, and Arthrobacter sp. FB24, respectively) were also found in cluster 12. Although the genus of mar1 is unknown, and it is only described as a marine actinobacterium, clustered very closely with Asp8 in the protein phylogenetic tree and these two sequences are most likely orthologous to one another, as well as to the other three sequences from Arthrobacter, Aau2, Aau1, and Asp7. The sequences Jsp1 and Nsp5, which clustered closely to each other in both the protein phylogenetic and 16S rRNA trees, were also found in the same cluster in the 16S rRNA tree as Nocardiodes and Arthrobacter. Thus, the sequences Jsp1, Nsp5, Asp8, mar1, Aau2, Aau1, and Asp7 could all be orthologs. Gwe1, Rer2, Mfl7, Msp7, Mfl3, and Mfl5 (from Gordonia westfalica, Rhodococcus erythropolis, Mycobacterium flacescens, Mycobacterium sp. MCS, Mycobacterium flavescens, and Mycobacterium flavescens, respectively) were also found together in cluster 12, with the sequences from Mycobacterium grouped more closely amongst themselves than with either Gwe1 or Rer2. As all three of the genera represented by these sequences clustered closely within the 16S rRNA tree, there is a strong likelihood that these sequences, especially the ones from *Mycobacterium*, are orthologous to one another. Lastly, the sequences

mar2, Cje1, Bli4, Cef3, and Cef4 (from a marine actinobacterium, Corynebacterium jeikeium, Brevibacterium linens, Corynebacterium efficiens, and Corynebacterium *efficiens*, respectively) were also found in cluster 12. Although the separation of Cje1 from the other sequences from *Corynebacterium* indicates that it may have exchanged some genetic material with Bli4, it is still likely Cje1, Bli4, Cef3, and Cef4 were all orthologous to one another, as both Corynebacterium and Brevibacterium were found within the same cluster of the 16S rRNA tree and branched at distances that were similar to what was observed in the protein phylogenetic tree. Although it is possible that mar2 is also orthologous to these sequences, it exhibited a greater branch length in the protein phylogenetic tree than the other sequences surrounding it. Also, as mar2 is only described as a marine actinobacterium, it cannot be determined whether or not it is similar enough to be orthologous to these sequences, or if its cluster location in the protein phylogenetic tree was caused by a horizontal gene transfer event or the exchange of genetic material from sequences from nearby, but separate clusters in the 16S rRNA tree.

Clusters 13 and 14 were amongst the smallest clusters representing Family 6, and were both exclusively composed of archaeal sequences. Cluster 13 contained the archaeal sequences Nph1, Hsp2, Hma3, Hma1, Hwa1, Hma2, Hma4 (from *Natronomonas pharaonis, Halobacterium* sp. NRC-1, *Haloarcula marismortui, Haloquadratum walsbyi, Haloarcula marismortui*, and *Haloarcula marismortui*, respectively). These sequences all clustered closely together in both the protein phylogenetic and 16S rRNA trees, making it very likely that they

are orthologous. Although Hwa1, from *Halquadratum*, grouped more closely to Hma3 and Hma1 than the two other sequences from *Haloarcula* did, this variation is most likely attributable to the exchange of genetic material between sequences from two closely clustering genera. As such, it is likely that all of these sequences are orthologous to each other. Cluster 14 only contained three sequences: Mst1, Mma2, Mth2 (from *Methanosphaera stadtmanae, Methanosphaera marisigri,* and *Methanothermobacter thermautrophicus,* respectively). These sequences were found very close to one another in the protein phylogenetic tree and their genera, *Methanosphaera* and *methanothermobacter* were located adjacent to one another in the16S rRNA tree. Consequently, it is very likely that all three of these sequences are orthologs.

Cluster 15 was almost entirely composed of sequences from Firmicutes, with the exception of met1, an archaeal sequence from Euryarchaeota. The sequences Gst1, Gka2, Bha1, Bcl1, Sau1, Bps1, Sep1, Lmo2, Sth1, and Lla1 (from *Geobacillus stearothermophilus, Geobacillus kaustophilus, Bacillus halodurans, Bacillus clausii, Staphylococcus aureus, Bacillus pseudofirmus, Staphylococcus epidermidis, Listeria monocytogenes, Streptococcus thermophilus*, and *Lactococcus lactis*, respectively) all clustered together in the phylogenetic tree. Gst1 and Gka2 were the most distantly branching sequences of this sub-cluster, but as they were located next to one another in the protein phylogenetic tree and they are from the same genus, they are most likely orthologous to one another. Similarly, while it appears that an exchange of genetic material may have occurred between some of the sequences, as Bps1 and Sth1 were not located amongst the other sequences in this sub-cluster from their respective genera, these sequences all belong to genera that cluster closely in the 16S rRNA tree. Thus, all of the sequences within this sub-cluster could be orthologous to one another. Oih1, Bsp1, Gka1, Sag1, Gsu1, Tca1 (from Oceanobacillus iheyensis, Bacillus sp. NRRL B-14911, Geobacillus kaustophillus, Streptococcus agalactiae, Geobacter sulfurreducens, and Thermosinus carboxydivorans, respectively) were also next to one another in cluster15. Although these sequences formed two distinct sub-clusters in the protein phylogenetic tree, their genera were all found within the same cluster in the 16S rRNA tree and exhibited similar branching patterns as was observed in the protein phylogenetic tree. As such, it is likely that, despite some distance separating these subclusters in the protein phylogenetic tree, these sequences are all orthologs. Lastly, the sequences Swo1, Dre1, met1, Bwe1, Ssa1 (from Syntrophomonas wolfei, Desulfotomaculum reducens, an uncultured methanogenic archaeon, Bacillus weihenstephanensis, and Staphylococcus saprophyticus, respectively) were found grouped into two sub-clusters within cluster 15. Swo1 and Dre1, two bacteria, formed one sub-cluster, along with met1, an archaeal sequence. Although Swo1 and Dre1 were close to one another both the protein phylogenetic tree and the 16S rRNA tree, and are most likely orthologs, met1 was from a separate phylogenetic kingdom and is not likely to be orthologous to Swo1 or Dwe1. Bwe1 and Ssa1 formed the second subcluster amongst these five sequences, and were located close to one another in both the protein phylogenetic and 16S rRNA trees, making them likely orthologs. Additionally the genera of these two sequences are located in the same cluster as those of Swo1 and Dre1, albeit rather distantly, and so collectively these four sequences could be orthologous to one another.

The sequences found in cluster 16 were from Cyanobacteria, Actinobacteria, Chloroflexi, and one unclassified Proteobacteria. Cluster 16 was composed of two distant sub-clusters, with Ava1, Nsp1, Mfe1, Rxy1 (from Anabaena variabilis, Nostoc sp. PCC 7120, Mariprofundus ferroxydans, and Rubrobacter xylanophilus, respectively) in one, and Rca1, Cag1, and Cau1 (from Roseiflexus castenholzii, Chloroflexus aggreganss, and Chloroflexus aurantiacus, respectively) in the other. In the first sub-cluster, Ava1 and Nsp1 clustered together and Mfe1 and Rxy1 clustered together. While genera of Ava1 and Nsp1 were also located adjacent to one another in the 16S rRNA tree, indicating that they are most likely orthologs, the genera of Mfe1 and Rxy1 were very distant from each other and the proximity of their clustering in the protein phylogenetic tree could represent an instance of horizontal gene transfer. The sequences found in the second sub-cluster of cluster 16, Rca1, Cag1, and Cau1, were located directly beside one another in both the 16S rRNA and protein phylogenetic trees. As such, it is very likely that these three sequences are orthologous to one another.

Chapter 7: Analyses of P-type ATPases by Organismal Domain

Analyses of P-type ATPase by Organismal Domain

Introduction

P-type ATPases, regardless of substrate type or host organism, exhibit certain characteristic features. These include a phosphorylation site and ATP-binding site, and the ability to undergo phosphate recycling. Additionally, P-type ATPases generally show conservation of nine well-known sequence motifs. While all P-type ATPases consist of several joined cytosolic and membrane-associated regions, the actual number of membrane traverses often differs between proteins with different substrate types and phylogenetic classifications. For instance, previous research indicated that many P-type ATPases tend to have six membrane traverses in the N-terminal region (type I P-type ATPases), whereas type II enzymes only have four in this region. By contrast, these type II systems frequently have more membrane traverses in their Cterminal region, generally four to six traverses, as opposed to the two to four traverses often seen in the same region in type I prokaryotes (Møller J.V., et al., 1995). These differences in TMS locations affect the organization of the intramembranous channel through which substrates ions or phospholipids pass, and may provide some insight into the genomic evolution of these different types of P-type ATPases.

Type I P-type ATPases appear to have originally evolved to allow for heavy metal transport, and most notably include the proteins of Families 5 and 6, the Copper and Heavy Metal P-type ATPases (Møller J.V., et al., 1995). Most type I P-type

ATPases are characterized by well-conserved cysteine-containing consensus motifs in the N-terminal region, which are involved in heavy metal ion binding. Family 7, the Kdp transporters, have also been classified as type I P-type ATPases. It has been proposed that channel membrane proteins for K⁺ may have fused to the C-terminal end of type I P-type ATPases, thereby making them capable of K⁺ translocation (Møller J.V., et al., 1995). Type II P-type ATPases generally have more membrane traverses than type I P-type ATPases, especially in the C-terminal region. It has been suggested that these extra membrane traverses are a feature necessitated by the general tendency of type II P-type ATPases to transport ions like Na⁺, K⁺, Ca²⁺, and H⁺, which have lower atomic masses than those transported by type I P-type ATPases (Møller J.V., et al., 1995).

7.1: Archaea

The number of archaeal sequences containing Copper and Heavy Metal P-type ATPases were twenty and fifteen, respectively, and corresponded to only a small fraction of the total number of prokaryotes possessing Families 5 and 6 ATPases (Tables 2 and 5). In Family 5, archaeal homologues were found in clusters 2, 4, 10 and 11. The two sequences in cluster 1 were from Crenarchaeota and were from the genera *Aeropyrum* and *Pyrobaculum*. These archaea were in the same cluster as two bacterial proteins from Thermotogae and ε-proteobacteria. Six Euryarchaeotal enzymes were found in cluster 4, one from *Archaeoglobus*, two from *Methanosarcina*,

one from *Methanothermobacter* and one from *Haloarcula*. Nine Euryarchaeotal enzymes were found in cluster 10. Four of these archaeal sequences were from a subcluster also containing bacterial sequences, and were from the genera *Methanococcoides* and *Methanosarcina*. Another four sequences were from a subcluster without bacteria, and were from the genera *Archaeoglobus*, *Methanococcus*, *Pyrococcus*, *Thermococcus*. The final sequence was found in another sub-cluster, along with several bacteria, and was from the genus *Methanothermobacter*. Three more archaeal sequences from Euryarchaeota were found in cluster 11, two from the genera *Haloarcula* and one from the genus *Halobacterium*.

In Family 6 seven Euryarchaeotal homologues were found in cluster 13, four from the genus *Haloarcula*, and one from each of the genera *Natromonas*, *Haloquadratum*, and *Halobacterium*. Three proteins from Euryarchaeota were found in cluster 14. Cluster 14 did not contain any bacterial homologues, and its three sequences were each from a separate genera, *Methanosphaera*, *Methanoculleus*, and *Methanothermobacter*. One uncultured methanogenic archaeal protein from Euryarchaeota was found in cluster 15, along with two bacterial ATPases. Similarly, three sequences from Euryarchaeota were found amongst bacterial sequences in cluster 5, one from each of the genera *Methanocorpusculum*, *Pyrococcus* and *Methanococcus*. Lastly, two archaeal sequences from Euryarchaeota were found in cluster 7, one from the genus *Pyrococcus* and the other from the genus *Methanococcus*.

7.2: Bacteria

Bacteria by far was the largest of the three domains, with 318 bacteria sequences representing Family 5 and 288 bacterial sequences in Family 6 (Tables 2 and 5). In both of Families 5 and 6, these bacterial sequences were further subdivided into many clusters and sub-clusters, which were generally based on similarities in sequence lengths and phylogenetic groups. P-type ATPases often exhibit greater sequence similarity based on substrate type, as opposed to organism type (Møller J.V., et al., 1995). Additionally, it is not uncommon for bacterial sequences to take up foreign DNA and to incorporate it into their own genetic makeup, either accidentally or intentionally, to confer enhanced levels of fitness. As such, many of the bacterial sequences in both Families 5 and 6 cluster alongside archaeal or eukaryotic sequences, or amongst protein sequences belonging to very distant phylogenetic groups.

7.3: Eukaryota

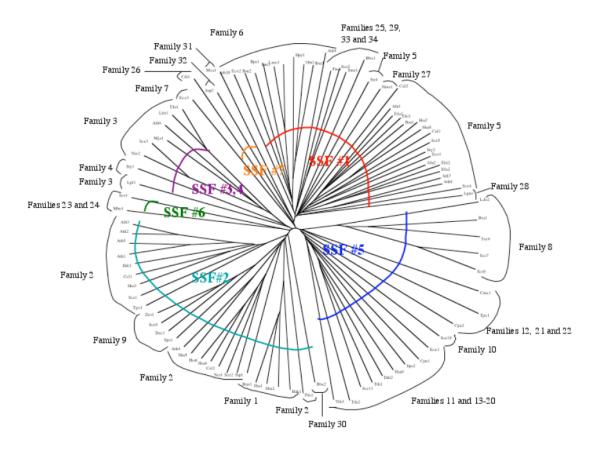
Families 5 and 6 consisted of forty-seven and eight eukaryotic sequences, respectively (Tables 2 and 5). These proteins were amongst the longest all of the sequences representing the Copper and Heavy Metal Families of the P-type ATPases. Eukaryotic sequences representing the Copper P-type ATPases were found in two different clusters, cluster 13 and cluster 14. Cluster 13 exclusively contained eukaryotic proteins, and cluster 14, which primarily consisted of bacterial sequences, contained two eukaryotic sequences from Viridiplantae. Cluster 13 was broken down into several sub-clusters. The sub-cluster representing nine sequences from

Viridiplantae included two sequences from each of the genera Arabidopsis and Sorghum, one from the genus Zea, and three from the genus Oryza. The sub-clusters containing Fungal homologues were from a total of fourteen sequences, two from each of the genera Aspergillus and Gibberella, and one from each of the genera Schizosaccharomyces, Yarrowia, Cryptococcus, *Glomerella*, Kluyceromyces, Magnaporthe, Neurospora, Saccharomyces, Trametes, and Ustilago. The two proteins from the sub-cluster containing Mycetozoa were both from the genus Dictyostelium. Lastly, a collection of twenty sequences from animal homologues in several adjacent sub-clusters in the phylogenetic tree, were from the following genera; two from each of Anopheles, Caenorhabitus, Canis, Rattus, and Mus, one each from Drosophila, Cricetulus, Danio, Ovis, and Tetradon, and three from Homo. The two eukaryotic enzymes found in cluster 14 were both from Viridiplantae. These sequences were from the genera Arabidopsis and Oryza, and were found clustered together with Cyanobacteria. The clustering of sequences from Viridiplantae with Cyanobacteria was not unexpected, as the evolution of Chloroplasts from Cyanobacteria has previously been supported by phylogenetic evidence.

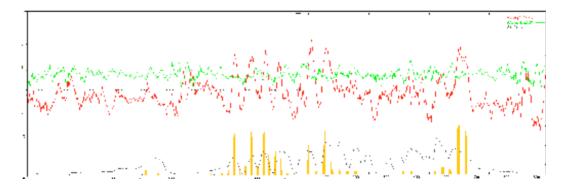
As in Family 5, the eukaryotic sequences representing the Heavy Metal P-type ATPases were divided into two clusters, cluster 6 and cluster 8. The sequences found in cluster 6 were entirely from Viridiplantae, with one from each of the genera *Ostreococcus, Medicago* and *Thlaspi*, and three from the genus *Arabidopsis*. The remaining two eukaryotic sequences were found in a sub-cluster of cluster 8. Although there were homologues from Firmicutes and Chlamydiae within cluster 8, there were no bacterial sequences within this sub-cluster. The two eukaryotic proteins in cluster 8

were both from Viridiplantae, with one from the genus *Arabidopsis* and the other from the genus *Oryza*.

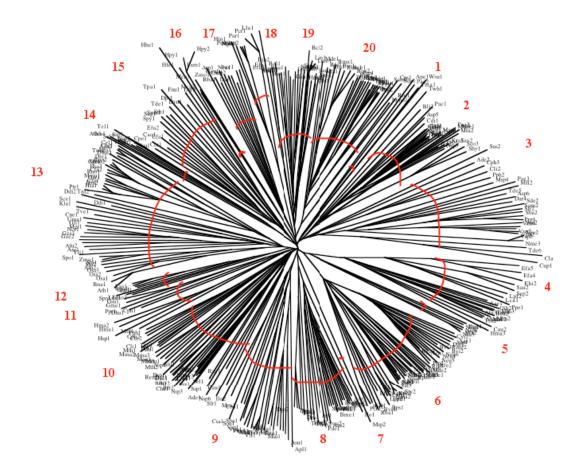
Discussion


P-type ATPases, which are classified the 3.A.3 Superfamily (TCDB), are a diverse phylogenetic group of protein pumps that are involved in the translocation of many different substrates (ions) in archaeal, bacterial, and eukaryotic organisms, as well as phospholipids in eukaryotes. Despite their differences, most possess nine well-conserved sequence motifs, and all are dependent on the phosphorylation of a specific aspartate residue (Møller J.V., et al., 1995).

Phylogenetic analysis of the proteins representing the different families within the 3.A.3 Superfamily revealed that most of the clustering observed in Figure 1.A correlated with similarities in substrate type. Such clustering patterns were expected, as previous research has indicated that substrate type, as opposed to type of organism, plays a more substantial role in determining sequence similarity amongst P-type ATPases (Axelsen and Palmgren; 1998). Twenty-four functionally unclassified families of P-type ATPases were recently added to the Transport Classification Database. Some of these families appeared to cluster closely to sequences with known functionalities, thus indicating that they may share functional aspects with these characterized P-type ATPases. However, most of the families of functionally unclassified P-type ATPases clustered independently from both other functionally uncharacterized families, as well as from functionally characterized families of P-type ATPases.


A total of 385 protein sequences representing the Copper P-type ATPase family, Family 5, and 311 protein sequences representing the Heavy Metal P-type ATPase family, Family 6, were collected and separately analyzed. The methodologies used to analyze these two families were essentially the same, with the proteins of Family 5 being subdivided into twenty smaller clusters and the proteins of Family 6 being subdivided into seventeen smaller clusters. These clusters were created based on observed branching patterns in each phylogenetic tree, so as to facilitate in-depth analyses of each family. Protein sequences from each cluster of Families 5 and 6 that contained more than one sequence were multiply aligned and manually examined to determine whether or not they exhibited nine well-conserved motifs, some of which are already known to play important roles (Møller J.V., et al., 1995; Anthonisen A.N., et al., 2006). Overall, either the actual amino acids predicted for each of these motifs or a consistent pattern of secondary structure predictions were made by the SOMPA program at the location of these motifs for every cluster in both Families 5 and 6. The conservation of these motifs' primary and secondary structures suggests that changes in the primary structure at these regions may be carefully protected against, from an evolutionary standpoint, as they could be important for structure. Such changes may destroy the protein's ability to selectively transport a given substrate across a biological membrane, and thus could be incredibly disadvantageous to an organism's fitness.

In addition to motif and SOPMA analyses, the AveHAS, WHAT, HMMTop, and EMBOSS Pepwheel programs were used to further analyze the sequences. These programs indicated that most clusters within these two families exhibited a consistent pattern of eight TMSs, as expected for type I P-type ATPases. These programs also showed that sequences in both Families 5 and 6, on average, exhibited a strong amphipathic region between motifs 2 and 3. Although the actual implication for this occurrence is not yet known, it is possible that it somehow enhances the flexibility of the TGES loop, which has been proposed to radically change its conformation during the transition between phosphorylated and dephosphorylated states (Anthonisen A.N., et al., 2006).


While P-type ATPases encompass a diverse and complex group of proteins, this research indicates that each family contains certain sets of identifiable characteristics that may help elucidate their functional characteristics. Perhaps the differences that distinguish different families of P-type ATPases from one another will be identified by experimentally testing regions of sequences that are only conserved amongst proteins from a given family, rather than throughout all of the 3.A.3 Superfamily. <u>Appendix</u>

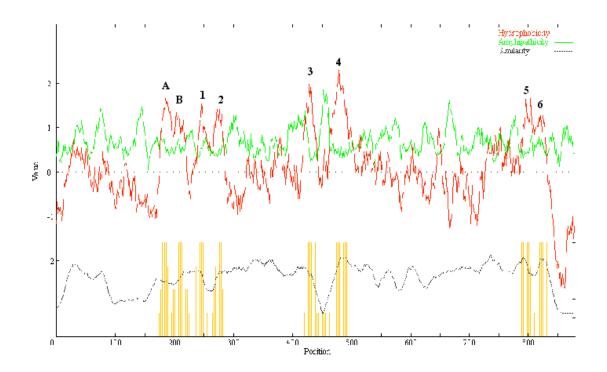
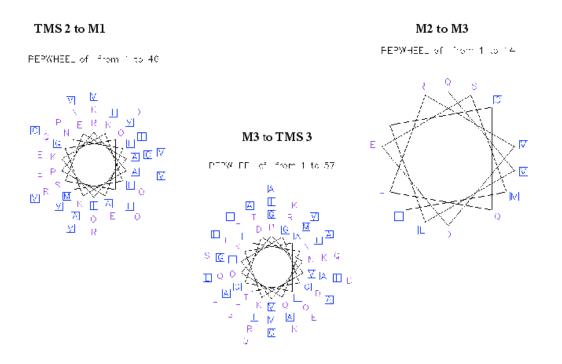

Figure 1.A: The phylogenetic tree of the 3.A.3 Superfamily. The clustering patterns of the families and sub-superfamilies within the 3.A.3 Superfamily are indicated within the figure.

Figure 1.B.1: The AveHAS plot representing the sequences within Sub-Superfamily 1 (SSFI).

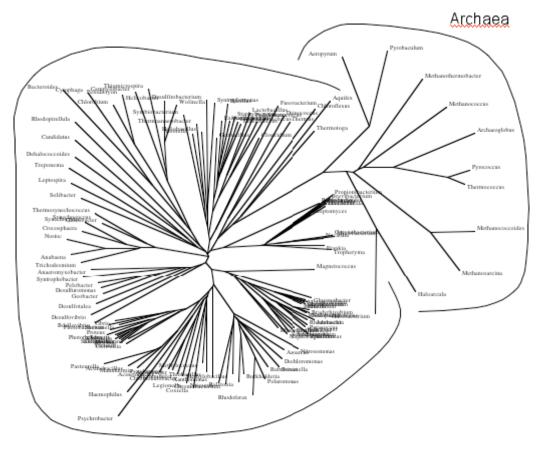
Figure 2.A: The phylogenetic tree of the 385 protein sequences representing the Copper P-type ATPase Family. The locations of the twenty clusters representing these sequences are indicated in the figure.

Figure 3.A.1: The AveHAS plot for sequences representing the Copper P-type ATPase Family from cluster1.

TMS Prediction	
TMS 1: 101 - 120 TMS 2: 124 - 143 TMS 3: 161 - 179 TMS 4: 183 - 201 TMS 5: 342 - 360 TMS 6: 390 - 415 TMS 7: 682 - 700	
TMS 8: 704 - 722 MSDQKTMEDRAAKNEEIKKTFTVTGMTCATCAKTVEKALKKLDGVKFAAVNLATSTGFIVAEKEISFEEIKKAVEEV VTTESPEDVERKRYEESKENIILANIVTAPIALLMIYHMFVSEVPYFTWIEVFAGAFVTFYVGRGTIRGAWIALTHI MDTLIFFGAVTSWVTALLDSVGLPVMSFGAIGAMIVAFHITGRFIESYLRDRASKEIKALLKLQAKEARVITDEGEV IEAVKEGFIVLVKPGERIPVDGVIVEGQSSIDESVVTGESIPVLKKENDEVIGGSLNVSSPIKIKVTKVGEDTFLS(KHTN VMMP
LIQEAQGSKVPIQALADRITMWFVPIIIVLAITSALVWYFNYERFLPFVEKAREIFPWIIQTSDPLTFSIFVFVAT CPCALGLATPMALVTGTGLAAKKGLLIRNAEAIQTSKDVGVVLTDKTGTLTEGSPKVVDHNLSAELIRIVASIERNS LAKAISELSODVVEVESVEEIPGEGVRALYGGEEYFVGKPLDYSKYESLLEEGKTIVEVRRNGEVVGFLAIEDPIRI EAVRRLKENGIEPVMITGDNEKTARAVARRLGIEKFHAGVKPSEKLDLVRSYQAQGKKVAMVGDGMNDAAALKGAD IGSGTDLAIDSADIIITKGGISKVVDAIEISRKTFKIIKONLFWAFFYNVIAIPMAMMGLHPVIAELAMAFSSIT	SNHP 3DSP /GIA


Figure 3.B.1: The HMMTop plot for the protein sequence Tma1. This sequence was taken from cluster 1 of the sequences representing the Copper P-type ATPase Family.

SOPMA result for : Tma1xx0


Abstract Georgies, C. & Deldage, G. & OPMA: Significant improvement in provin secondary structure prediction by concessus prediction from multiple alignments, Cables (1995) 11. 681-684

View SOPMA in: [MPSA (Mar. LNIX) , About] [AnTheProt (PC) , Down	aload, 1 [HELP]
the bost met an interest states of the second states of the	
10 20 30 40 10	68 VÜ
HSEQNTHY DRAAKNESS IN STPTYTONY CATCALTVENAL SKIDOV SPAAVNLATSTOP	
eechhhhhhheeceecheest techhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	
KKAVEEVEYGY71E3PECVERKE1EESKENLILAXL/TAFLALLEIYENFV3EVFYFT	
hhinhihit toolah hooocoo oo chihihihihihihihihihihihihihihihihihihi	
<pre>sticchbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb</pre>	
DRASKBIKALLKI OAKBARVITEE GEVMEPIBAVEDOPIVLVKFCERIPVDGVIVEGO	
high data being a state of the second s	
TEVLEKE SDEVT COSTAVE SPEKT KYPKVCED?FL SONVKLEOFAQGSKVFT OALADB	THE REPORT FOR
ccssccttoceescoccctteesssecccochhhhhhhhhhhhhbbccccchhhhhh	hbhhochsseh
AIT SALWAYFWYERFLPFVERARE IFPKI IQTSE PLTFS IFVFVATIVIAC PCALGLA	TFRALVTCICLA
hhhhhhheccocceehcocccccccccccchhhhhhheeeccccchec	
AREGLISHARAIQTSREVGVVLTDETGILTEGSPEVVEBNLSARLIRIVASIERSSN	
hctoeestochhhhhttheeescttoceettoceessechhhhhhhhhhh	
DWVEVESVEEIDGEGVRALYGGEFYFVGKPLDYSKYESLLEDGKTIVEVRR3GEVVGF httpppppggagegegegegegegegegegegegegegegege	
EAVERLAST MODE FOR ITS CHERT A RAVABILITY OF THE STRATCH PREMINENT A RAVABILITY A RAVABILITY OF THE STRATCH PREMINENT A RAVABILITY OF THE STRATCH PREMINENT A RAVABILITY A RAVA	
and the state of the second state of the sta	
ALEGADYSTATGSGEDUATDSAELETTREGTSEVVDATETSBETERTIESNLPHAFET	
hhhabhasseecccochhabhasseeccchbhabhabhabhabhabhabhabhabhabha	chessekhtuto
LHEVIAE LAMAPS SITVILNSMRVRD	
och hla hhala hha eech hla hhoo	The second s
Sequence length : 726	
SCENA :	רודי זוז האי יאא א וי יאד א
Alpha holia (Hh) : 348 is 47.938	
3 ₁₀ helix (Gg) : 0 in 0.00%	17.51
Pi helix (11): 0 is 0.00%	· · · · · · · · · · · · · · · · · · ·
Beta bridge (Sb) ; 0 is 0.00%	in 2
Extended abrand (Be) : 126 is 17.36%	and the second
Beta turn (Tt): 47 is 6.47k	· · · · · · · · · · · · · · · · · · ·
Bend region (Ss): D is 0.00%	·大洗洗礼 - A. 《明如秋风》, · · · · · · · · · · · · · · · · · · ·
Randour coil (Cu): 205 is 28.24%	
Ambigous states (2) : D is 0.20k	No. 1970 Land Contraction Cont
Other states : 0 is 0.00%	- 115 ALL 157 RD 1999 ALL 1997
	Dapageter :
	Minister products V
	finiterity threaded : 0

Figure 3.C.1: The SOPMA plot for the protein sequence Tma1. This sequence was taken from cluster 1 of the sequences representing the Copper P-type ATPase Family.

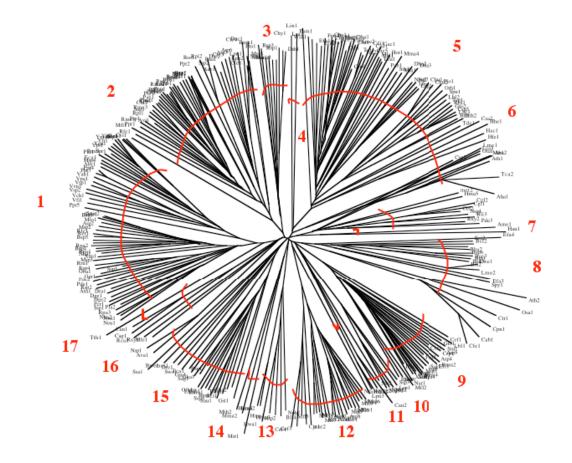


Figure 3.D: The EMBOSS Pepwheel analyses of a segment from the protein sequence Ssu1, from cluster 15. This cluster was determined to have the best amphipathic peak in the region between TMS2 and TMS3 of all of the clusters representing the Copper P-type ATPases.

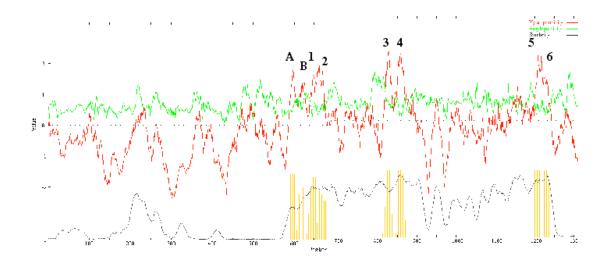
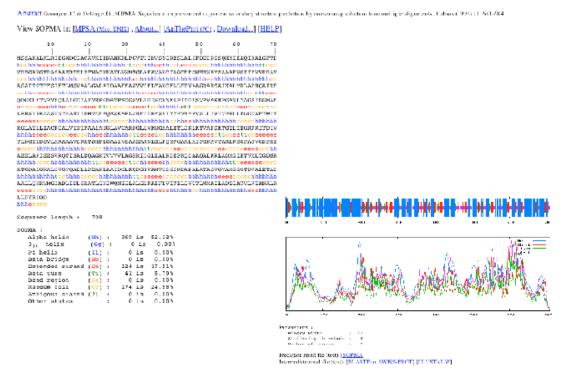


Figure 4. The 16S rRNA phylogenetic tree containing each of the prokaryotic genera found among the sequences representing the Copper P-type ATPases.

Figure 5.A: The phylogenetic tree of the 311 protein sequences representing the Heavy Metal P-type ATPase Family. The locations of the twenty clusters found within these sequences are indicated in the figure.


Figure 6.A.1: The AveHAS plot for sequences representing the Heavy Metal P-type ATPase Family from cluster1.

TMS Prediction

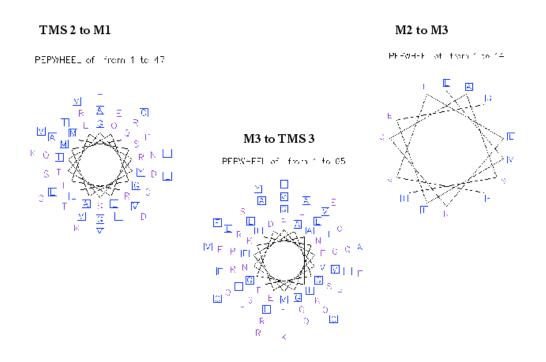
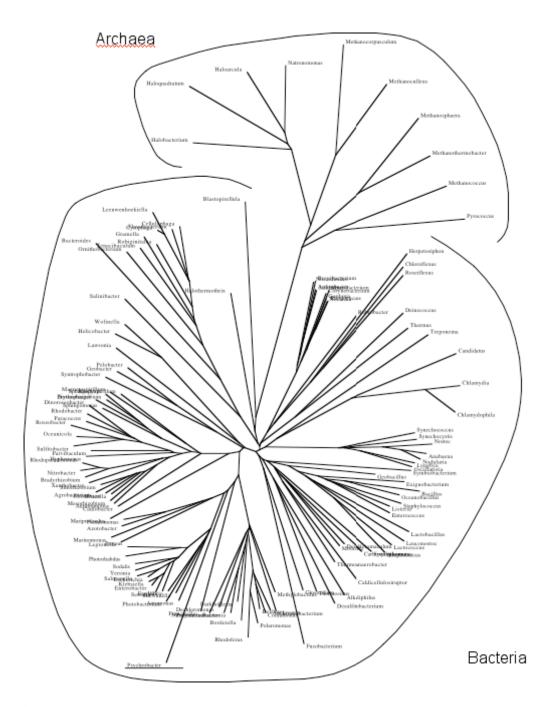
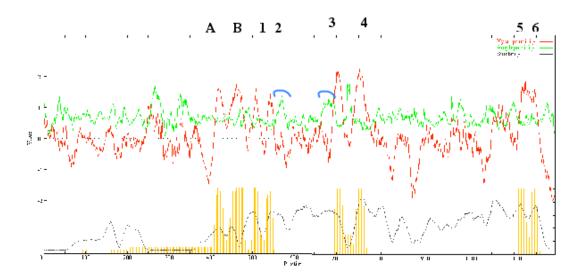

TMS 1: 98 - 117
TMS 2: 143 - 166
TMS 3: 318 - 341
TMS 4: 353 - 378
TMS 5: 659 - 678
TMS 6: 682 - 700
MSSAKALKLRIEGMDCGACAVKIENAMKRLPGVTDINVSYGRESLALSFDEDRSSQHNIEAQIRALGFTPVREGAVGTRA
SAAERESLPFWAGKKAKLVWMTGLAFAVAVGIAQFFPQWERWAYSAAAFVGIIPVVRRAYASAITGTPFSIETLMSVAAL
GALAIDAAEEAAVVIFLFAVGELLETVAAGRARSAIKALMDLAPRQAIREQDGKLETVPVEQLAIGDIAIVRPGDRVPSD
GSVLEGISEVNEAPI <u>TGES</u> VPVAKEPGANLYAGSINGNAELRMSISRAASDNTIARIIHMVEEAQESKAPLARFIDR <mark>FSS</mark>
IYTPVAMVVSLLIVIVPPLLFGGDWMTWIYRGLATLLIACPCALVISTPAAIASGLAVGARRGLLVKGGAALETLGKLKT
VAFDKTGTLTEGRPRITDIVTLNGTEDEVLARAAAVERKTSHPLGAAIVEAAEARNLELPQSFGAALAIPGKAVTARLKS
GFASVGSPRYAEELAPIEESVRQTISALEQAGKTVVVVLAGKRIDGLIALR <mark>DEPR</mark> QDAAQALKRLADMGIKTVMLTGDNR
RTGDAIGRALGVGVQAELLPEAKLAAIDGLKQDGHVAMVGDGINDAPALATASVGVAMGGGTDVALETADAALLQNRVMG
IADLIDLSRATLGNIWQNIGLALGLKAIFLVTTILGVTTLWMAILADTGATVLVTANALRLLRYRSQD

Figure 6.B.1: The HMMTop plot for the protein sequence Neu1. This sequence was taken from cluster 1 of the sequences representing the Copper P-type ATPase Family.


SOPMA result for : Neu1xx0


Figure 6.C.1: The SOPMA plot for the protein sequence Neu1. This sequence was taken from cluster 1 of the sequences representing the Heavy Metal P-type ATPase Family.

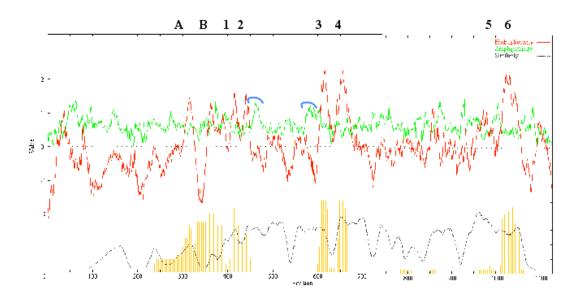

Figure 6.D: The EMBOSS Pepwheel analyses of a segment from the protein sequence Ssp3, from cluster 10. This cluster was determined to have the best amphipathic peak in the region between TMS2 and TMS3 of all of the clusters representing the Heavy Metal P-type ATPases.

Figure 7. The 16S rRNA phylogenetic tree containing each of the prokaryotic genera found among the sequences representing the Copper P-type ATPases.

Figure 8. An AveHAS plot containing one sequence from each of the twenty clusters representing the Copper P-type ATPases. The two broadest amphipathic peaks between TMS2 and TMS3 are marked.

Figure 9. An AveHAS plot containing one sequence from each of the seventeen clusters representing the Heavy Metal P-type ATPases. The two broadest amphipathic peaks between TMS2 and TMS3 are marked.

		1					1 2	
	Abbr.	SequenceDescription	Organism	Group	#AA	GI#	Group	Kingdom
		Sodium/potassium-transporting						
		ATPase subunit alpha-1						
		precursor (Sodium pump						
		subunit alpha-1) (Na(+)/K(+)						
1	Hsa1	ATPase alpha-1 subunit)	Homo sapiens	3.A.3.1.1	1023	114374	Metazoa	Eukaryota
		Potassium-transporting ATPase						
		alpha chain 1 (Proton pump)						
-		(Gastric H(+)/K(+) ATPase						
2	Hsa2	subunit alpha)	Homo sapiens	3.A.3.1.2	1035	148877240		Eukaryota
			Heterosigma				Raphidophycea	
3	Hak1	Na-ATPase	akashiwo	3.A.3.1.3	1330	75213257	e	Eukaryota
		Potassium-transporting ATPase						
		alpha chain 2 (Proton pump)						
	Rno1	(Non-gastric H(+)/K(+) ATPase subunit alpha)	Detter constructions		1036	4702464	Metazoa	E
4	Rhoi	Plasma memorane calcium-	Rattus norvegicus	3.A.3.1.4	1030	1703404	metazoa	Eukaryota
		transporting ATPase 4						
		(PMCA4) (Plasma membrane						
		calcium pump isoform 4)						
		(Plasma membrane calcium						
5	Hsa3	ATPase isoform 4) (Matrix-	Homo sapiens	3.A.3.2.1	1241	14286105	Metazoa	Eukaryota
J	1540	Calcium-transporting ATPase 2	Saccharomyces	517151211	1241	14200103	metazoa	Cunaryota
6	Sce1	(Vacuolar Ca(2+)-ATPase)	cerevisiae	3.A.3.2.2	1173	728904	Funci	Eukaryota
0	0021	Calcium-transporting ATPase 1	Saccharomyces	3.M.3.2.2	1173	120804	- angi	Eukaryota
-	Sce2	(Golgi Ca(2+)-ATPase)	cerevisiae	3.A.3.2.3	950	114301	Eunai	Eukaryota
/	30ez	Cation-transporting ATPase	Synechocystis sp.	3.A.3.2.3	800	114301	Fungi	Eukaryota
	Ssp1	pma1	PCC 6803	3.A.3.2.4	905	2508205	Cyanobacteria	Bacteria
ö	Sspi	Calcium-transporting ATPase	FUU 0003	3.A.3.2.4	800	2000200	Cyanobacteria	Daciena
		type 2C member 1 (ATPase						
9	Hsa4	2C1) (ATP-dependent Ca(2+)	Homo sapiens	3.A.3.2.5	919	68068024	Metazoa	Eukaryota
2	⊓5d 1	Putative calcium P-type ATPase		3.A.3.2.3	818	00000024	wetazoa	Eukaryota
10	Ncr1		Neurospora crassa	2 4 2 2 6	1025	74698463	Eunai	Eukaryota
10	NOT	(Hypothetical protein Sarcoprasmic/endoprasmic	recirospora crassa	3.A.3.2.0	1023	14080403	rungi	Eukaryota
		reticulum calcium ATPase 2						
		(Calcium pump 2) (SERCA2)						
		(SR Ca(2+)-ATPase 2)						
		(Calcium-transporting ATPase						
		sarcoplasmic reticulum type,						
		slow twitch skeletal muscle						
		isoform) (Endoplasmic reticulum						
11	Hsa5	class 1/2 Ca(2+) ATPase)	Homo sapiens	3.A.3.2.7	1042	114312	Metazoa	Eukaryota
			Plasmodium					
12	Pfa1	P-type ATPase	falciparum	3.A.3.2.8	1228	74967369	Apicomplexa	Eukaryota
		Calcium-transporting ATPase						
13	Hsa6	type 2C member 2 (ATPase	Homo sapiens	3.A.3.2.9	963	19924283	Metazoa	Eukaryota
		Calcium-transporting ATPase 8,						L (
		plasma membrane-type (Ca(2+)	Arabidopsis					
14	Ath1	ATPase isoform 8)	thaliana	3.A.3.2.10	1074	12643246	Viridiplantae	Eukaryota
		Calcium-transporting ATPase 1,						
		chloroplast precursor (Ca(2+)-						
		ATPase isoform 1) (Plastid	Arabidopsis					
15	Ath2	envelope ATPase 1)	thaliana	3.A.3.2.11	1020	30316378	Viridiplantae	Eukaryota
		Calcium-transporting ATPase 2,						
		plasma membrane-type (Ca(2+)	Arabidopsis					
16	Ath3	ATPase isoform 2)	thaliana	3.A.3.2.12	1014	12229639	Viridiplantae	Eukaryota
		Calcium-transporting ATPase 1,	Arabidopsis					
17	Ath4	endoplasmic reticulum-type	thaliana	3.A.3.2.13	1061	12643704	Viridiplantae	Eukaryota
		Calcium-transporting ATPase 9,						
		plasma membrane-type (Ca(2+)						
18	Ath5	ATPase isoform 9)	thaliana	3.A.3.2.14	1086	150421517	Viridiplantae	Eukaryota
		Calcium ATPase (Hypothetical	Caenorhabditis					
19	Cel1	protein mca-1)	elegans	3.A.3.2.15	1228	74763859	Metazoa	Eukaryota
		PMR1 protein (Hypothetical	Caenorhabditis					
20	Cel2	protein pmr-1)	elegans	3.A.3.2.16	901	75028081	Metazoa	Eukaryota
		Probable calcium-transporting	Dictyostelium					-
21	Ddi1	ATPase PAT1	discoideum	3.A.3.2.17	1115	1703456	none	Eukaryota
22	Tgo1	Ca2+-ATPase	Toxoplasma gondii	3.A.3.2.18	1405	75023636	Apicomplexa	Eukaryota
-	<u> </u>	Plasma membrane ATPase						
23	Ncr2	(Proton pump)	Neurospora crassa	3.A.3.3.1	920	114347	Fungi	Eukaryota
		D						

Table 1. The Protein sequences of the Families within the 3.A.3 Superfamily in TCDB.

		Beskehle enter ATDess 14	Leishmania				T	
24	Ldo1	Probable proton ATPase 1A (LdH1A)	donovani	3.A.3.3.2	974	20981683	Trypanosomatid ae	Eukaryota
25	Lpl1	Cadmium/manganese transport ATPase	plantarum	3.A.3.3.3	758	81325414	Firmicutes	Bacteria
	Mja1	Putative cation-transporting ATPase MJ1228	Methanocaldococc us jannaschii		805	47000050	Euryarchaeota	Archaea
26	Mjal	ATPase MJ1220	Trypanosoma	3.A.3.3.4	000	47000000	Trypanosomatid	Archaea
27	Tbr1	P-type H+-ATPase Plasma membrane ATPase 1	brucei Saccharomyces	3.A.3.3.5	912	75013788	ae	Eukaryota
28	Sce3	(Proton pump 1)	cerevisiae	3.A.3.3.6	918	1168544	Fungi	Eukaryota
29	Ath6	type (Proton pump 1)	Arabidopsis thaliana	3.A.3.3.7	949	12644156	Viridiplantae	Eukaryota
		Magnesium-transporting ATPase, P-type 1 (Mg(2+)	Salmonella				Gammaproteo-	
30	Sty1	transport ATPase, P-type 1)	typhimurium	3.A.3.4.1	902	543864	bacteria	Bacteria
31	Ehi1	Probable copper-importing ATPase A	Enterococcus hirae	3.A.3.5.1	727	416665	Firmicutes	Bacteria
22	Ehi2	Probable copper exporting ATPase B	Enterococcus hirae	3.A.3.5.2	745	416666	Firmicutes	Bacteria
32	Emz	Copper-transporting ATPase 2	mae	3.M.3.3.2	/45	410000	Firmicates	Dacteria
22	Hsa7	(Copper pump 2) (Wilson disease-associated protein)	Homo sapiens	3.A.3.5.3	1465	84028176	Metazoa	Eukaryota
		Putative cation-transporting P-	Salmonella				Gammaproteo-	· · ·
34	Sty2	type ATPase Copper-transporting P-type	typhimurium	3.A.3.5.4	824	13633955	bacteria Gammaproteo-	Bacteria
35	Eco1	ATPase	Escherichia coli	3.A.3.5.5	834	2493016		Bacteria
		Copper-transporting ATPase 1 (Copper pump 1) (Menkes						
36	Hsa8	disease-associated protein)	Homo sapiens	3.A.3.5.6	1500	1351993	Metazoa	Eukaryota
37	Afu1	Cation-transporting ATPase, P- type (PacS)	fulgidus	3.A.3.5.7	804	74549566	Euryarchaeota	Archaea
20	Cal1	Copper-transporting P-type ATPase	Candida albicans	3.A.3.5.8	1204	74623612	Eunoi	Eukaryota
		Copper resistance-associated P					-	
39	Cal2	type ATPase Copper-transporting ATPase, P-	Candida albicans Archaeoglobus	3.A.3.5.9	1197	74698483	Fungi	Eukaryota
40	Afu2	type (CopB)	fulgidus Arabidopsis	3.A.3.5.10	690	74514552	Euryarchaeota	Archaea
41	Ath7	Putative copper-transporting ATPase PAA1	thaliana	3.A.3.5.11	949	12643855	Viridiplantae	Eukaryota
42	Ath8	Paa2 P-type ATPase	Arabidopsis thaliana	3.A.3.5.12	883	75145757	Viridiplantae	Eukaryota
			Sulfolobus					· · ·
43	Sso1	Copper-transporting ATPase Probable copper-transporting	solfataricus Saccharomyces	3.A.3.5.13	695	/4038031	Crenarchaeota	Archaea
44	Sce4	ATPase (Cu(2+)-ATPase)	cerevisiae Enterococcus	3.A.3.5.14	1216	584790	Fungi	Eukaryota
45	Efa1	TcrA	faecium	3.A.3.5.15	811	122613057	Firmicutes	Bacteria
46	Efa2	TorB	Enterococcus faecium	3.A.3.5.16	710	75404579	Firmicutes	Bacteria
47	Sce5	Copper-transporting ATPase (Cu(2+)-ATPase)	Saccharomyces cerevisiae	3.A.3.5.17	1004	728935	Funai	Eukaryota
		Copper-transporting P-type					- Č	
48	Bsu1	ATPase copA (Protein copA) Probable cadmium-transporting	Bacillus subtilis Staphylococcus	3.A.3.5.18	803	7531047	Firmicutes	Bacteria
49	Sau1	ATPase (Cadmium efflux Lead, cadmium, zinc and	aureus	3.A.3.6.1	727	115414	Firmicutes Gammaproteo-	Bacteria
50	Eco2	mercury-transporting ATPase	Escherichia coli	3.A.3.6.2	732	586655	bacteria	Bacteria
51	Hpy1	Cadmium, zinc and cobalt- transporting ATPase	Helicobacter pylori	3.4.3.6.3	686	2493007	Epsilonproteoba cteria	Bacteria
51			Burkholderia	0.0101010		2.00007		
52	Bps1	putative heavy metal resistance membrane ATPase	k96243	3.A.3.6.4	836	53720986	Betaproteobacte ria	Bacteria
53	Obr1	P type ATPase BXA1	Oscillatoria brevis	3.A.3.6.5	660		Cyanobacteria	Bacteria
		Putative cadmium/zinc- transporting ATPase HMA1,	Arabidopsis					
54	Ath9	chloroplast precursor Putative cadmium/zinc-	thaliana Arabidopsis	3.A.3.6.6	819	12643808	Viridiplantae	Eukaryota
55	Ath10	transporting ATPase 3	thaliana	3.A.3.6.7	951	12229675	Viridiplantae	Eukaryota
56	Lmo1	Probable cadmium-transporting ATPase (Cadmium efflux	Listeria monocytogenes	3.A.3.6.8	711	3101820	Firmicutes	Bacteria
57	Bsu2	YkvW protein	Bacillus subtilis	3.A.3.6.9	637		Firmicutes	Bacteria
58	Bsu3	YvgW protein	Bacillus subtilis	3.A.3.6.10	702	81815569	Firmicutes	Bacteria

<u> </u>		Potassium-transporting ATPase						
59	Eco3	A chain (Potassium- translocating ATPase A chain) (ATP phosphohydrolase A chain) (Potassium-binding and translocating subunit A)	Escherichia coli	3.A.3.7.1	682	2506206	Gammaproteo- bacteria	Bacteria
		Probable phospholipid- transporting ATPase IA (Chromaffin granule ATPase II) (ATPase class I type 8A						
60	Bta1	member 1) Probable phospholipid-	Bos taurus Saccharomyces	3.A.3.8.1	1149	8134328	Metazoa	Eukaryota
61	Sce6	transporting ATPase DRS2	cerevisiae	3.A.3.8.2	1355	728905		Eukaryota
62	Ldo2		Leishmania donovani	3.A.3.8.3	1097	75008488	Trypanosomatid ae	Eukaryota
63	Sce7	Probable phospholipid- transporting ATPase DNF1	Saccharomyces cerevisiae	3.A.3.8.4	1571	728906	Fungi	Eukaryota
64	Sce8	Probable phospholipid- transporting ATPase DNF2	Saccharomyces cerevisiae	3.A.3.8.5	1612	2493010	Fungi	Eukaryota
	Sce9	Sodium transport ATPase 1	Saccharomyces cerevisiae	3.A.3.9.1	1091	114302		Eukaryota
	Spo1	Calcium-transporting ATPase 3	Schizosaccharomy		1037	114303	Ť	
	· ·		Debaryomyces	3.A.3.9.2				Eukaryota
	Doc1	P-type ATPase 2	occidentalis Zygosaccharomyc	3.A.3.9.3	1082	74675873		Eukaryota
	Zro1	Na+-ATPase Probable cation-transporting	es rouxii Saccharomyces	3.A.3.9.4	1048	74676231	Fungi	Eukaryota
69	Sce10	ATPase 1 CATION-TRANSPORTING	cerevisiae Encephalitozoon	3.A.3.10.1	1215	731415	Fungi	Eukaryota
70	Ecu1	ATPase Functionally uncharacterized P-	cuniculi	3.A.3.11.1	1146	74697535	Fungi	Eukaryota
71	Cme1	type ATPase family 12 (FUPA12) (one member; 1998	Cyanidioschyzon merolae 10D	3.A.3.12.1	1998	*not in NCBI: CMR432C	* some type of Protozoan	Eukaryota
	Hsa9	Probable cation-transporting ATPase 13A2	Homo sapiens	3.A.3.13.1	1180			
		Probable cation-transporting	Saccharomyces			14285364		Eukaryota
	Sce11	ATPase 2	cerevisiae Dictyostelium	3.A.3.14.1	1472	2493012		Eukaryota
74	Ddi2	Hypothetical protein	discoideum AX4 Tetrahymena	3.A.3.15.1	1158	74997157	none	Eukaryota
75	Tth1	E1-E2 ATPase family protein	thermophila SB210	3.A.3.16.1	1328	121979716	Oligohymenoph orea	Eukaryota
76	Spo2	Probable cation-transporting ATPase C29A4.19c	Schizosaccharomy ces pombe	3.A.3.17.1	1096	6707665	Fungi	Eukaryota
77	Cpa1	cation-transporting ATpase 2 with 8 transmembrane domains	Cryptosporidium parvum lowa II	3.A.3.18.1	1491	66359870	Apicomplexa	Eukaryota
			Tetrahymena thermophila				Oligohymenoph	
78	Tth2	E1-E2 ATPase family protein	SB210 Tetrahymena	3.A.3.19.1	1807	118355868		Eukaryota
79	Tth3	E1-E2 ATPase family protein	thermophila SB210	3.A.3.20.1	1072	121971402	Oligohymenoph orea	Eukaryota
	Tpe1	Functionally uncharacterized P- type ATPase family 21	Thalassiosira pseudonana	3.A.3.21.1		*not in NCBI: ORF00905	* some type of Protozoan	Eukaryota
00	Tper	Possible MgtA, cation transport		5.A.5.21.1	13/2	ORP00805	F10t020an	Eukaryota
81	Cpa2	ATpase, signal peptide, 12 transmembrane domains	Cryptosporidium parvum	3.A.3.22.1	1434	74777644	Apicomplexa	Eukaryota
82	Sco1	Cation-transporting ATPase	Streptomyces coelicolor	3.A.3.23.1	802	81858200	Actinobacteria	Bacteria
83	Mbo1	Cation-transporting ATPase	Mycobacterium bovis	3.A.3.24.1	1625	81835012	Actinobacteria	Bacteria
84	Sco2	Putative cation-transporting ATPase	Streptomyces coelicolor	3.A.3.25.1	776		Actinobacteria	Bacteria
85	Cdi1	Putative cation transport protein	Corynebacterium diphtheriae	3.A.3.26.1	841		Actinobacteria	Bacteria
	Nme1	Cation transport ATPase, E1-E2 family	Neisseria meningitidis serogroup B	3.A.3.27.1	823	81784642	Betaproteobacte	Bacteria
			Legionella pneumophila subsp.					
87	Lpn1	Heavy metal transporting P-type ATPase, cation transporting Cation transport ATPase, E1-E2	pneumophila str. Philadelphia 1	3.A.3.28.1	852	81378261	Gammaproteo- bacteria Deltaproteo-	Bacteria
88	Bba1	family precursor	bacteriovorus	3.A.3.29.1	798	81616796		Bacteria

			Bdellovibrio				Deltaproteo-	
89	Bba2	Cation-transporting ATPase	bacteriovorus	3.A.3.30.1	825	81829271	bacteria	Bacteria
			Methylococcus					
		heavy metal translocating P-	capsulatus str.				Gammaproteo-	
90	Mca1	type ATPase	Bath	3.A.3.31.1	839	53804062	bacteria	Bacteria
		Putative cation transport	Azoarcus sp.				Betaproteo-	
91	Asp2	ATPase	EbN1	3.A.3.32.1	694	81358540	bacteria	Bacteria
		Putative cation transport P-type	Sinorhizobium				Alphaproteo-	
92	Sme1	ATPase	meliloti	3.A.3.33.1	746	81854505	bacteria	Bacteria
		Probable cation-transporting P-	Pseudomonas				Gammaprote-	
93	Pae1	type ATPase	aeruginosa	3.A.3.33.4	661	81857196	obacteria	Bacteria

									Ave, AA length f cluster decimal
	Abbr.	Sequence Description cation-transporting ATPase,	Organism Thermotoga maritima	#AA	GI#	Group	King	Cluster#	places) 770.5 ±
1	Tma1	P-type	MSB8	726	4980818	Thermotogae	в	1	51.53
2	Wsu1	CATION-TRANSPORTING ATPASE (P-TYPE)	Wolinella succinogenes	732	34482565	Epsilonproteo- bacteria	в	1	
3	Ape1	cation-transporting ATPase	Aeropyrum pernix K1	835	14601418	Crenarchaeota	А	1	
4	Pae2	cation-transporting ATPase (P-type)	Pyrobaculum aerophilum str. IM2	789	18313568	Crenarchaeota	А	1	Ī
5	Twh1	metal cation-transporting ATPase	Tropheryma whipplei TW08/27	716	28572954	Actinobacteria (HighGC G+)	в		769.39 53.34
	Bli2	COG2217: Cation transport ATPase	Brevibacterium linens BL2	735		Actinobacteria (HighGC G+)	в	2	t
7	Pac1	cation-transporting ATPase	Propionibacterium acnes KPA171202	752	50843675	Actinobacteria (HighGC G+)	в	2	
		Copper-translocating P-type ATPase:Heavy metal				Actinobacteria			Ī
8	Asp5	translocating P-type ATPase	Arthrobacter sp. FB24	779	66963956	(HighGC G+)	в	2	ł
9	Cdi1	Putative cation-transporting P- type ATPase	diphtheriae NCTC 13129	743	38234821	Actinobacteria (HighGC G+)	в	2	
10	Cef1	putative cation-transporting	Corynebacterium efficiens YS-314	757	23492243	Actinobacteria (HighGC G+)	в	2	I
10	0011			131	20402240				t
11	Cgl1	Cation transport ATPases	Corynebacterium glutamicum ATCC 13032	755	21323151	Actinobacteria (HighGC G+)	в	2	
12	Cje1	putative cation-transporting P- type ATPase	Corynebacterium jeikeium K411	706	68263309	Actinobacteria (HighGC G+)	в	2	
13	Mav1	CtpA	Mycobacterium avium subsp. paratuberculosis K- 10	742	41410382	Actinobacteria (HighGC G+)	в	2	
	_	Copper-translocating P-type ATPase:Heavy metal				Actinobacteria			
14	Fsp4	translocating P-type ATPase	Frankia sp. Ccl3	996	68172203	(HighGC G+) Actinobacteria	В	2	ł
15	Aau1	metal transporter ATPase	Arthrobacter aurescens	773	42558790	(HighGC G+)	В	2	ł
16	Fsp1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Frankia sp. EAN1pec	792	68232964	Actinobacteria (HighGC G+)	в	2	
17	Sco1	putative metal transporter ATPase	Streptomyces coelicolor A3(2)	753	8894835	Actinobacteria (HighGC G+)	в	2	Ī
	Nfa1	putative cation transporter	Nocardia farcinica IFM 10152	750		Actinobacteria (HighGC G+)	в	2	t
	Tfu1	ATPase, E1-E2 type:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase		752		Actinobacteria (HighGC G+)	в	2	
20	Sav1	putative cation-transporting P- type ATPase	Streptomyces avermitilis MA-4680	750	29608991	Actinobacteria (HighGC G+)	в	2	
21	Sco2	probable cation-transporting P-type ATPase.	Streptomyces coelicolor A3(2)	760	6714779	Actinobacteria (HighGC G+)	в	2	
22	Fsp2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Frankia sp. EAN1pec	785	68229303	Actinobacteria (HighGC G+)	в	2	
23	Fsp3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Frankia sp. EAN1pec	810	68233340	Actinobacteria (HighGC G+)	в	2	
24	Kra1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Kineococcus radiotolerans SRS30216	867	67988497	Actinobacteria (HighGC G+)	в	2	

Table 2. The protein sequences representing the Copper P-type ATPases

	1							r ı
	Copper-translocating P-type							
	ATPase:Heavy metal				Actinobacteria			
25 Nsp5	translocating P-type ATPase	Nocardioides sp. JS614	785	71366152	(HighGC G+)	В	2	.
	putative cation-transporting P-	Strentomuces avermitilis			Actinobacteria			
26 Sav2	type ATPase	MA-4680	751	29604256	(HighGC G+)	в	2	
20 0012	probable cation-transporting	Streptomyces coelicolor	701	20004200	Actinobacteria	-		·
27 Sco3		A3(2)	762	6689151	(HighGC G+)	в	2	
		Streptomyces			Actinobacteria			i
28 Shy1	unknown	hygroscopicus	762	63033835	(HighGC G+)	в	2	
	cation-transporting P-type	Propionibacterium acnes			Actinobacteria	_		
29 Pac2		KPA171202	747	50842178	(HighGC G+)	В	2	.
	PROBABLE CATION TRANSPORTER P-TYPE	Musehastarium			Actinobacteria			
30 Mtu3	ATPASE A CTPA	Mycobacterium tuberculosis H37Rv	761	15607234	(HighGC G+)	в	2	
00 11100			701	10001204	Actinobacteria	-	-	-
31 Mle1	cation-transporting ATPase	Mycobacterium leprae TN	750	15828087	(HighGC G+)	в	2	
								i
	cation-transporting ATPase,	Mycobacterium			Actinobacteria			
32 Mtu2	E1-E2 family	tuberculosis CDC1551	752	13879590	(HighGC G+)	В	2	
	Copper-translocating P-type							
	ATPase:Heavy metal	Solibacter usitatus						806.04 ±
33 Sus2	translocating P-type ATPase	Ellin6076	824	67929240	Acidobacteria	в	3	15.91
000002	a shore carry i spersi i ado			0.020240		-		
	Copper-translocating P-type							
	ATPase:Heavy metal	Anaeromyxobacter			Deltaproteo-	-		
34 Ade2	translocating P-type ATPase	dehalogenans 2CP-C	807	66858031	bacteria	В	3	
	Copper-translocating P-type							
	ATPase:Heavy metal	Chlorobium						
35 Cph3		phaeobacteroides BS1	807	67939261	Chlorobi	в	3	
prio	grand and a second seco					1		
	Copper-translocating P-type							
	ATPase:Heavy metal	Chlorobium limicola DSM				_		
36 Cli2	translocating P-type ATPase	245	809	67918515	Chlorobí	В	3	
	Copper-translocating P-type							
	ATPase:Heavy metal	Pelodictyon						
37 Pph2		phaeoclathratiforme BU-1	818	68551122	Chlorobi	в	3	
						-		
	Copper-translocating P-type							
	ATPase:Heavy metal			000.00.00	unclassified	L		
38 Msp4	translocating P-type ATPase	Magnetococcus sp. MC-1	818	68246176	Proteobacteria	В	3	
	COG2217: Cation transport	Pseudomonas aeruginosa			Gammaproteo-			
39 Pae3		UCBPP-PA14	811	53727752		в	3	
			5.1			-		
	Copper-translocating P-type							
	ATPase:Heavy metal	Methylobacillus flagellatus			Betaproteo-			
40 Mfl2	translocating P-type ATPase	KT	806	68213218	bacteria	В	3	.
	begay motal translegation D	Thiobacillus denitrificans			Bataprotoo			
41 Tde5	heavy metal translocating P- type ATPase	ATCC 25259	834	74318062	Betaproteo- bacteria	в	3	
411025	Spo All abo	10020200	554	14310002	Note to the	-	3	
	probable cation transport P-				Betaproteo-			
42 Asp6	type ATPase	Azoarcus sp. EbN1	817	56478348		в	3	
	ATDasa E1 E2 trac/Corner							
	ATPase, E1-E2 type:Copper- translocating P-type							
	ATPase:Heavy metal	Dechloromonas aromatica			Betaproteo-			
43 Dar4	translocating P-type ATPase	RCB	812	71906350		в	3	
	Copper-translocating P-type							
1	ATPase:Heavy metal	Shewanella denitrificans		00045004	Gammaproteo-	L.	_	
44 0 4 0		00.047	0.4.0	b9945884	bacteria	В	3	
44 Sde2		OS-217	813					
44 Sde2	translocating P-type ATPase	OS-217	813					
44 Sde2	translocating P-type ATPase Copper-translocating P-type	OS-217 Shewanella amazonensis	813		Gammaproteo-			
44 Sde2	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal		813	68548180	Gammaproteo- bacteria	в	3	
	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal	Shewanella amazonensis				в	3	
	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Shewanella amazonensis SB2B			bacteria	в	3	
45 Samá	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal	Shewanella amazonensis SB2B Shewanella frigidimarina	795	68548180	bacteria Gammaproteo-			
	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Shewanella amazonensis SB2B			bacteria Gammaproteo-	В	3	
45 Samá	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Shewanella amazonensis SB2B Shewanella frigidimarina	795	68548180	bacteria Gammaproteo-			
45 Samá	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Shewanella amazonensis SB2B Shewanella frigidimarina	795	68548180	bacteria Gammaproteo- bacteria			
45 Sam2 46 Sfr2	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal	Shewanella amazonensis SB2B Shewanella frigidimarina	795	68548180 69952331	Gammaproteo- bacteria Gammaproteo-	в	3	
45 Samá	translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Shewanella amazonensis SB2B Shewanella frigidimarina NCIMB 400	795 797	68548180	Gammaproteo- bacteria Gammaproteo-			

49	Ppr4	putative cation transport ATPase, E1-E2 family	Photobacterium profundum SS9	769	54309022		в	3	
50	Vch4	COG2217: Cation transport ATPase	Vibrio cholerae V51	790	75819988		в	3	
51	Vvu2	cation transport ATPase	Vibrio vulnificus YJ016	789	37679860	Gammaproteo- bacteria	в	3	ļ
	Vpa2	cation transport ATPase, E1- E2 family	Vibrio parahaemolyticus RIMD 2210633	787	28898313	Gammaproteo-	в		
		COG2217: Cation transport				Gammaproteo-		3	i
53	Vsp2	ATPase	Vibrio sp. Ex25	787	75854754		В	3	
54	Ngo2	putative P-type cation- transporting ATPase putative P-type cation-	Neisseria gonorrhoeae FA 1090 Neisseria meningitidis	818	59801112	Betaproteo- bacteria Betaproteo-	в	3	
55	Nme3	transporting ATPase	Z2491	823	7380097		в	3	
56	Tde6	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Thiomicrospira denitrificans ATCC 33889	817	71149739	Epsilonproteo- bacteria	в	3	
57	Cla1	cation-transporting ATPase, P-type (copA)	Campylobacter lari RM2100	781	57241791	Epsilonproteo- bacteria	в	3	ļ
58	Cup1	cation-transporting ATPase, P-type (copA)	Campylobacter upsaliensis RM3195	830	57241905	Epsilonproteo- bacteria	в	3	
	Ath3	metal-transporting P-type ATPase	Arabidopsis thaliana	949		Viridiplantae	E		825.78 : 76.00
60	Osa4	putative potential copper- transporting ATPase	Oryza sativa (japonica cultivar-group) Svnechococcus elongatus	959		Viridiplantae	E	14	
61	Sel2	copper transporting P- ATPase	PCC 7942	790	436954	Cyanobacteria	в	14	
		Copper-translocating P-type ATPase:Heavy metal	Trichodesmium						
62	Ter2	translocating P-type ATPase COG2217: Cation transport	erythraeum IMS101 Nostoc punctiforme PCC	773	71677457	Cyanobacteria	В	14	ļ
63	Npu2	ATPase Copper-translocating P-type	73102 Anabaena variabilis ATCC	808	23130092	Cyanobacteria	в	14	ļ
64	Ava2	ATPase cation-transporting P-type	29413	813	75907770	Cyanobacteria	в	14	ļ
65	Nsp7	ATPase	Nostoc sp. PCC 7120	815	17132916	Cyanobacteria	в	14	ļ
66	Ssp3	cation-transporting ATPase; E1-E2 ATPase	Synechocystis sp. PCC 6803 Thermosynechococcus	780	16331210	Cyanobacteria	в	14	
67	Tel1	cation-transporting P-type ATPase	elongatus BP-1	745	22295646	Cyanobacteria	в	14	700 97
68	Ssu1	COG2217: Cation transport ATPase	Streptococcus suis 89/1591	816	50591442	Firmicutes (LowGC G+)	в	15	786.37 62.54
69	Cpe1	probable copper-transporting ATPase	Clostridium perfringens str. 13	889	18144214	Firmicutes (LowGC G+)	в	15	
70	Cte1	copper efflux ATPase	Clostridium tetani E88	670	28210589	Firmicutes (LowGC G+)	в	15	
71	Cac1	Heavy-metal transporting P- type ATPase	Clostridium acetobutylicum ATCC 824	818	15026756	Firmicutes (LowGC G+)	в	15	L
72	Efa1	copper-translocating P-type ATPase	Enterococcus faecalis V583	828	29374937	Firmicutes (LowGC G+)	в	15	
73	Efa2	TcrA	Enterococcus faecium	811	76151977	Firmicutes (LowGC G+)	в	15	
74	Spy1	copper-exporting ATPase	Streptococcus pyogenes MGAS5005	743	71911218	Firmicutes (LowGC G+)	в	15	
75	Sag1	hypothetical protein gbs0421	Streptococcus agalactiae NEM316	744	25010494	Firmicutes (LowGC G+)	в	15	
76	Smu1	СорА	Streptococcus mutans	742	9965435	Firmicutes (LowGC G+)	в	15	L
77	Sth1	cation transporting ATPase, copper transport	Streptococcus thermophilus CNRZ1066	742	55739474	Firmicutes (LowGC G+)	в	15	
78	Tde1	copper-translocating P-type ATPase	Treponema denticola ATCC 35405	891	42525527	Spirochaetes	в	15	
	Tpa1	cation-transporting ATPase, P-type	Treponema pallidum subsp. pallidum str. Nichols	792	15640020	Spirochaetes	в	15	
	Dps1	probable heavy-metal transporting ATPase	Desulfotalea psychrophila LSv54	816	50876360	Deltaproteo-	в	15	ĺ
	Dvu1	copper-translocating P-type ATPase	Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough	905	46580729	Deltaproteobacteri	в	15	

			Fusobacterium						
			nucleatum subsp.						
		Copper-exporting	nucleatum ATCC				_		
82	Fnu1	ATPase	25586	769	19713692	Fusobacteria	в	15	
		Helicobacter hepaticus							
		ATCC 51449, complete	Helicobacter hepaticus			Epsilonproteo-			
83	Hhe1	genome	ATCC 51449	747	32262231	bacteria	в	15	
						Epsilonproteopact			
84	Hfe1	copA	Helicobacter felis	732	2660542		в	15	
						Epsilonproteobact			
85	Hpy1	CopA	Helicobacter pylori	741	1477772	erla	в	15	
		adenosine				Epsilonproteobact			
86	Hpy2	triphosphatase	Helicobacter pylori	745	1518876	eria	в	15	
		copper-translocating P-	Enterococcus faecalis			Firmicutes			706.1 ±
87	Efa5	type ATPase	V583	701	29375460	(LowGC G+)	в	4	40.41
		Copper-translocating P-							1 1
		type ATPase:Heavy							
		metal translocating P-	Enterococcus faecium			Firmicutes			
88	Efa4	type ATPase	DO	718	68194673	(LowGC G+)	в	4	
						Firmicutes			1 1
89	Ehl2	ATPase	Enterococcus hirae	745	290643	(LowGC G+)	в	4	
			staphylococcus aureus						1 1
		putative cation exporting	subsp. aureus			Firmicutes			
90	Sau2	ATPase protein	MRSA252	681	49482924	(LowGC G+)	в	4	
		cation-transporting	Staphylococcus			Firmicutes			
91	Sep2	ATPase, E1-E2 family	epidermidis RP62A	687	57865849	(LowGC G+)	в	4	
		copper transporting	Lactobacillus			Firmicutes			
92	Lpl2	ATPase	plantarum WCFS1	679	28379707	(LowGC G+)	в	4	
		COG2217: Cation	Lactobacillus casel			Firmicutes			
93	Lca1	transport ATPase	ATCC 334	674	62514142	(LowGC G+)	в	4	
			Pediococcus	2			-		
		COG2217: Cation	pentosaceus ATCC			Firmicutes			
94	Ppe1	transport ATPase	25745	696	48870965	(LowGC G+)	в	4	
	· pe ·	cation transporting	20140		40070200	(conce er/	-	~	
95	Aae1	ATPase (E1-E2 family)	Aguifex aeolicus VF5	664	15606387	Aquificae	в	4	
	/ who i	copper-transporting	Oceanobacillus	004	10000001	Firmicutes	<u> </u>	-	
96	Olh2	ATPase	Ihevensis HTE831	671	23000176	(LowGC G+)	в	4	
30	OIL	AIFabe	Methanothermobacter	0/1	23035170	(LOWGC GT)	0	-	
		heavy-metal transporting	thermautotrophicus str.						
07	Mth3	CPx-type ATPase	Delta H	675	2621844	Euryarchaeota	A	4	
37	Muno	GPX-type ATPase	Thiobadilus	6/5	2021044	Euryarchaeota	^		
		heavy metal translocating	denitrificans ATCC			Betaproteobacteri			
98	Tde4	P-type ATPase	25259	689	74318758		в	4	
	1004	i gperti doc	20205	000	14010100		<u> </u>	-	
		Heavy-metal transporting	Briellowibrio			Deitaproteobacteri			
- 00	Bba2	CPX-type ATPase	bacteriovorus HD100	692	42523748		в	4	
35	0002	copper-transporting	Archaeoglobus fulgidus	032	42020140	a	-	-	
100	Afu3	ATPase, P-type (copB)	DSM 4304	690	11497760	Euryarchaeota	A	4	
100	Nuu	Copper-translocating P-	03814304	030	1145/705	Curyarchaeota	^	-	
		type ATPase:Heavy							
		metal translocating P-	Methanosarcina barkeri						
101	Mba2	type ATPase	str. fusaro	829	68133215	Euryarchaeota	A		
101	mode	Merrinage	Methanosarcina	523	00100210	anyaranacata	-	4	
102	Mac2	copper P-type ATPase	acetivorans C2A	764	20080064	Euryarchaeota	A		
102	14202	Copper-exporting	Methanosarcina mazel	704	20009004	caryaronaeota	2	4	
102	Mma4	ATPase	Go1	711	21227665	Europarchaecta	A	4	
100	-1164	ni rabe	Thermus thermophilus	711	2122/000	Euryarchaeota	2	4	
104	Tth2	conner-exporting ATPace	HB27	687	46100673	Deinococci	в	4	
104	1012	copper-exporting ATPase	1021	007	40199073	001100000	5		
		type:Copper-							
		translocating P-type						I	
								I	
		ATPase:Heavy metal	Chioroflexus						
105	Car.2	ATPase:Heavy metal translocating P-type	Chioroflexus	700	76250054	Chloroflavi			
105	Cau2	ATPase:Heavy metal	Chioroflexus aurantiacus J-10-1	709	76259864	Chioroflexi	в	4	
105	Cau2	ATPase:Heavy metal translocating P-type ATPase	aurantiacus J-10-1	709	76259864	Chioroflexi	в	4	
		ATPase:Heavy metal transiocating P-type ATPase copper-transporting	aurantiacus J-10-1 Haioarcula marismortul					4	
	Cau2 Hma3	ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase CopA	aurantiacus J-10-1	709 760		Chloroflexi Euryarchaeota	в A	4	
		ATPase:Heāvy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P-	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049					4	
		ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus						878 5 -
106	Hma3	ATPase:Heävy metai translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metai translocating P-	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM	760	55229187	Euryarchaeota	A		828.6±
106		ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metal translocating P- type ATPase	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus		55229187				828.6 ± 17.56
106	Hma3	ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metal translocating P- type ATPase Copper-translocating P-	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM	760	55229187	Euryarchaeota	A		
106	Hma3	ATPase:Heävy metai translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metai translocating P- type ATPase:Heavy Copper-translocating P- type ATPase:Heavy	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300	760	55229187	Euryarchaeota Deinococci	A B		
106	Hma3 Dge4	ATPase:Heävy metai translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metai translocating P- type ATPase:Heavy metai translocating P- type ATPase:Heavy metai translocating P-	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300 Nitrobacter	760 857	55229187 66798845	Euryarchaeota Deinocooci Aiphaproteobacteri	в	5	
106	Hma3	ATPase:Heävy metai translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metai translocating P- type ATPase:Heavy metai translocating P- type ATPase:Heavy metai translocating P- type ATPase	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300	760	55229187	Euryarchaeota Deinocooci Aiphaproteobacteri	A B		
106	Hma3 Dge4	ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300 Nitrobacter	760 857	55229187 66798845	Euryarchaeota Deinocooci Aiphaproteobacteri	в	5	
106	Hma3 Dge4	ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy Mathematicating P- type ATPase:Heavy	aurantiacus J-10-1 Haioarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300 Nitrobacter hamburgensis X14	760 857	55229187 66798845	Euryarchaeota Deinococci Alphaproteobacteri a	в	5	
106 107 108	Hma3 Dge4 Nha4	ATPase:Heävy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy	aurantiacus J-10-11 Haloarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300 Nitrobacter hamburgensis X14 Nocardioides sp.	760 857 811	55229187 66798845 69931139	Euryarchaeota Deinococci Alphaproteobacteri a Actinobacteria	A B	5	
106 107 108	Hma3 Dge4	ATPase:Heavy metai translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metai translocating P- type ATPase	aurantiacus J-10-11 Haloarcula marismortul ATCC 43049 Delnococcus geothermalis DSM 11300 Nitrobacter hamburgensis X14 Nocardioldes sp. JS614	760 857	55229187 66798845 69931139	Euryarchaeota Deinococci Alphaproteobacteri a Actinobacteria (HighGC G+)	в	5	
106 107 108 109	Hma3 Dge4 Nha4	ATPase:Heävy metal translocating P-type ATPase copper-transporting ATPase CopA Copper-translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy metal translocating P- type ATPase:Heavy	aurantiacus J-10-11 Haloarcula marismortul ATCC 43049 Deinococcus geothermalis DSM 11300 Nitrobacter hamburgensis X14 Nocardioides sp.	760 857 811	55229187 66798845 69931139 71369384	Euryarchaeota Deinococci Alphaproteobacteri a Actinobacteria	A B	5	

111	Nfa3	putative cation-transporting ATPase	Nocardia farcinica IFM 10152	830	54027676	Actinobacteria (HighGC G+)	в	5	
112	Cvi2	Cu-ATPase	Chromobacterium violaceum ATCC 12472	724	34498672	Betaproteobacteri a	в		787.83± 51.63
113	Xax1	CopF	Xanthomonas axonopodis pv. vesicatoria	808	46981559	Gammaproteobact eria	в	6	
114	Asp4	haloacid dehalogenase/epoxide hydrolase family protein	Azoarcus sp. EbN1	785	56476640	Betaproteobacteri	в	6	
114	Азрт	ATPase, E1-E2 type:Copper- translocating P-type ATPase:Heavy metal	Dechloromonas aromatica	705	30470040	a Betaproteo-			
115	Dar2	translocating P-type ATPase Copper-translocating P-type	RCB	772	71907887	bacteria	В	6	
116	Rme2	ATPase:Heavy metal translocating P-type ATPase	Ralstonia metallidurans CH34	805	68558944	Betaproteo- bacteria	в	6	
117	Bvi2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Burkholderia vietnamiensis G4	814	67534305	Betaproteo- bacteria	в	6	
	Bvi3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Burkholderia vietnamiensis G4	716	67543438	Betaproteo-	в	6	
	Neu6	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nitrosomonas eutropha C71	794	71549362	Betaproteo-	в	6	
120	Neu4	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nitrosomonas eutropha C71	778	71549384	Betaproteo- bacteria	в	6	
121	Neu5	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Haloacid	Nitrosomonas eutropha C71	794	71550862	Betaproteo- bacteria	в	6	
122	Neu7	dehalogenase/epoxide hydrolase family:E1-E2 ATPase	Nitrosomonas europaea ATCC 19718	722	30249201	Betaproteo- bacteria	в	6	
123	Rfe2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Rhodoferax ferrireducens DSM 15236	851	74024178		в	6	
124	Rge3	COG2217: Cation transport ATPase	Rubrivivax gelatinosus PM1	675	47571761	Betaproteo- bacteria	в	6	
125	Psp2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Polaromonas sp. JS666	796	67848215	Betaproteo- bacteria	в	6	
126	Rfe3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport	Rhodoferax ferrireducens DSM 15236 Microbulbifer degradans 2-	816	74021198	Betaproteo- bacteria Gammaproteo-	в	6	
127	Mde2	ATPase copper-translocating P-type	40 Silicibacter pomerovi DSS-	822	48863058		в	6	
128	Spo3	ATPase	3	785	56709147		в	6	
129	Rle1	copper transporter ActP cation transporting P-type	Rhizobium leguminosarum bv. viciae Mesorhizobium loti	841	4633808	Alphaproteo- bacteria Alphaproteo-	в	6	
130	Mlo1	ATPase	MAFF303099	839	13474443		в	6	
131	Msp3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Mesorhizobium sp. BNC1	846	68192368	Alphaproteo- bacteria	в	6	
132	Tde3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Thiomicrospira denitrificans ATCC 33889	721	71151189	Epsilonproteo- bacteria	в	6	
133	Sme4	Putative cation transport P- type ATPase	Sinorhizobium meliloti 1021	733	16263042	Alphaproteo- bacteria	в	6	
134	Rpa1	putative cation transporting P- type ATPase	Rhodopseudomonas palustris CGA009	973	39934730	Alphaproteo- bacteria	в	6	

135	Bja1	heavy-metal transporting P- type ATPase	Bradyrhizobium japonicum USDA 110	823	27375811	Alphaproteo- bacteria	в	6
136	Nha1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nitrobacter hamburgensis X14	801	69931404	Alphaproteo- bacteria	в	6
137	Nha2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nitrobacter hamburgensis X14	818	69931153	Alphaproteo- bacteria	в	6
138	Nha3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nitrobacter hamburgensis X14	833	69930453	Alphaproteo- bacteria	в	6
139	Nwi1	Heavy metal translocating P- type ATPase	Nitrobacter winogradskyi Nb-255	831	75675104	Alphaproteo- bacteria	в	6
140	Nar1	COG2217: Cation transport ATPase	Novosphingobium aromaticivorans DSM 12444	719	48848119	Alphaproteo- bacteria	в	6
141	Sal1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Sphingopyxis alaskensis RB2256	787	68537607	Alphaproteo- bacteria	в	6
142	Nar2	COG2217: Cation transport ATPase	Novosphingobium aromaticivorans DSM 12444	753	48848641	Alphaproteo- bacteria	в	6
143	Sal2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Sphingopyxis alaskensis RB2256	773	68537513	Alphaproteo- bacteria	в	6
144	Sal3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Sphingopyxis alaskensis RB2256	773	68537533	Alphaproteo- bacteria	в	6
145	Sty2	putative cation transporting P- type ATPase SilP	Salmonella typhimurium	824	4206631		в	6
146	Kpn1	SilP	Klebsiella pneumoniae	815	38016809	Gammaproteo- bacteria	в	6
147	Sma2	putative cation transporting P- type ATPase (silver resistance)	Serratia marcescens	815	38259447	Gammaproteo- bacteria	в	6
148	Lpn4	copper efflux ATPase	Legionella pneumophila subsp. pneumophila str. Philadelphia 1	736	52841258	Gammaproteo- bacteria	в	6
149	Lpn3	hypothetical protein lpl1397	Legionella pneumophila str. Lens	735	54294329	Gammaproteo- bacteria	в	6
150	Lpn1	hypothetical protein lpp1596	Legionella pneumophila str. Paris	735	54297546	Gammaproteo- bacteria	в	6
151	Lpn2	copper efflux ATPase	Legionella pneumophila subsp. pneumophila str. Philadelphia 1 Rhodopirellula baltica SH	735	52841854	Gammaproteo- bacteria	в	6
152	Rba1	copper-transporting ATPase	1	807	32442997	Planctomycetes	В	6
153	Eli1	putative cation transporting P- type ATPase copper/silver efflux P-type	Erythrobacter litoralis HTCC2594 Psychrobacter arcticus	776	61101425		в	6
154	Par2	ATPase	273-4	814	71039127	Gammaproteo- bacteria	в	6
155	Pcr2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport	Psychrobacter cryohalolentis K5 Burkholderia	814	71363512	Gammaproteo- bacteria Betaproteobacteri	в	6
156	Bps1	ATPase	pseudomallei 668	807	67736006	a	в	6
157	Bfu2	COG2217: Cation transport ATPase	Burkholderia fungorum LB400	693	48782831	Betaproteo- bacteria	в	6
158	Bvi4	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Burkholderia vietnamiensis G4	801	67543504	Betaproteo- bacteria	в	6
	Msp2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Magnetococcus sp. MC-1	807	68246736	unclassified Proteobacteria	в	7

160	llo1	Cation transport ATPase	Idiomarina loihiensis L2TR	749	56459705	Gammaproteo- bacteria	в		815.96 : 51.95
100	101	Cator transport ATPase	2111	145	30433703	bacteria			51.55
		putative cation-transporting P-	to include the second		00.000.00	Gammaproteobact		_	
161	Asp3	type ATPase	Acinetobacter sp. BW3	663	30409104	eria	В	8	
		Copper-translocating P-type							
		ATPase:Heavy metal	Nitrosomonas eutropha			Betaproteo-			
162	Neu2	translocating P-type ATPase	C71	837	71549401	bacteria	В	8	
		Copper ion-binding:Copper-							
		translocating P-type				Alash a san da a			
163	Msp1	ATPase:Heavy metal translocating P-type ATPase	Mesorhizobium sp. BNC1	855	68190740	Alphaproteo- bacteria	в	8	
100	март	translocating i stype Arr asc	wesomizosium sp. bive i	000	00100740	Dactoria	-		
		Copper-translocating P-type							
404	Nau 2	ATPase:Heavy metal	Nitrosomonas eutropha	000	74540047	Betaproteo-	_		
164	Neu3	translocating P-type ATPase putative cation transport	C71 Salmonella typhimurium	829	71548817	pacteria Gammaproteo-	В	8	
165	Sty1	ATPase	LT2	762	16418854		в	8	
		probable cation-transporting	Bordetella bronchiseptica			Betaproteobacteri			
166	Bbr1	ATPase	RB50	808	33600166	a	В	8	
		Copper ion binding							
		domain:Copper-translocating	America and a strength of the second strengt			0			
167	Δvi1	P-type ATPase:Heavy metal translocating P-type ATPase	Azotobacter vinelandii AvOP	829	67158934	Gammaproteobact	в	8	
107	-1111	a analocating r stype Arrase		523	07130334	ona		0	
		heavy-metal transporting P-				Gammaproteo-	_		
168	Pmi1	type ATPase	Proteus mirabilis	829	1353678	bacteria	В	8	
		heavy-metal transporting P-	Agrobacterium			Alphaproteo-			
169	Atu1	type ATPase	tumefaciens str. C58	836	17935100		в	8	
		<u></u>							
170	Bme1	COPPER-TRANSPORTING ATPASE	Brucello melitonoio 1614	826	17003757	Alphaproteo-	в		
170	bmei	ActP copper transport	Brucella melitensis 16M Sinorhizobium meliloti	020	17983757	Alphaproteo-	D	8	
171	Sme3	ATPase	1021	826	16263001		в	8	
			Sinorhizobium medicae			Alphaproteo-	_		
1/2	Sme1	P-type ATPase ActP	WSM419	827	4680350	bacteria	В	8	
		putative copper-transporting	Sinorhizobium meliloti			Alphaproteo-			
173	Sme2	P-type ATPase protein	1021	827	15140904	bacteria	в	8	
474	44.2		Agrobacterium	004	47024045	Alphaproteo-		_	
1/4	Atu2	copper transporting ATPase	tumefaciens str. C58	861	17934845	environmental	В	8	
175	bac2	ActP	uncultured bacterium	962	37222119	samples	в	8	
175	bac2		uncultured bacterium	962	37222119	samples	в		
175	bac2	Copper-translocating P-type		962	37222119		в		
		Copper-translocating P-type ATPase:Heavy metal	Paracoccus denitrificans			Alphaproteo-		8	
	bac2 Pde1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase		962 807	37222119 69935212	Alphaproteo-	B		
		Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Paracoccus denitrificans			Alphaproteo- bacteria		8	
176	Pde1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal	Paracoccus denitrificans PD1222	807	69935212	Alphaproteo- bacteria Alphaproteo-	в	8	
176		Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Paracoccus denitrificans			Alphaproteo- bacteria Alphaproteo-		8	
176	Pde1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type	Paracoccus denitrificans PD1222	807	69935212	Alphaproteo- bacteria Alphaproteo- bacteria	в	8	
176 177	Pde1 Jsp1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1	807 744	69935212 68182783	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo-	B	8	
176 177	Pde1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040	807	69935212	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria	в	8	
176 177 178	Pde1 Jsp1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1	807 744	69935212 68182783	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo-	B	8	
176 177 178 179	Pde1 Jsp1 Ssp2 Rsp1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides	807 744 814 813	69935212 68182783 69301665 46192167	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo-	B B B	8	
176 177 178 179	Pde1 Jsp1 Ssp2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3	807 744 814 813	69935212 68182783 69301665	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo-	B B B	8	
176 177 178 179 180	Pde1 Jsp1 Ssp2 Rsp1 Spo2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus	807 744 814 813 828	69935212 68182783 69301665 46192167 56677433	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria	B B B B	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
176 177 178 179 180	Pde1 Jsp1 Ssp2 Rsp1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3	807 744 814 813	69935212 68182783 69301665 46192167 56677433	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo-	B B B	8	
176 177 178 179 180 181	Pde1 Jsp1 Ssp2 Rsp1 Spo2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus HB27 Deinococcus radiodurans R1	807 744 814 813 828	69935212 68182783 69301665 46192167 56677433 46199660	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria	B B B B	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
176 177 178 179 180 181 182	Pde1 Jsp1 Ssp2 Rsp1 Spo2 Tth1 Dra1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase pacS	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus HB27 Deinococcus radiodurans R1 Gloeobacter violaceus	807 744 814 813 828 798 847	69935212 68182783 69301665 46192167 56677433 46199660 6460273	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Deinococci Deinococci	Б Б Б В В В В	8 8 8 8 8 8 8 8 8 8 8	
176 177 178 179 180 181 182	Pde1 Jsp1 Ssp2 Rsp1 Spo2 Tth1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase pacS	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus HB27 Deinococcus radiodurans R1	807 744 814 813 828 798	69935212 68182783 69301665 46192167 56677433 46199660 6460273	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Deinococci	в в в в в	8 8 8 8 8 8 8 8	
176 177 178 179 180 181 182	Pde1 Jsp1 Ssp2 Rsp1 Spo2 Tth1 Dra1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase pacS	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus HB27 Deinococcus radiodurans R1 Gloeobacter violaceus	807 744 814 813 828 798 847	69935212 68182783 69301665 46192167 56677433 46199660 6460273	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Deinococci Deinococci	Б Б Б В В В В	8 8 8 8 8 8 8 8 8 8 8	
176 177 178 179 180 181 182	Pde1 Jsp1 Ssp2 Rsp1 Spo2 Tth1 Dra1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase pacS cation-transporting ATPase cation-transporting ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus HB27 Deinococcus radiodurans R1 Gloeobacter violaceus	807 744 814 813 828 798 847	69935212 68182783 69301665 46192167 56677433 46199660 6460273	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Deinococci Deinococci	Б Б Б В В В В	8 8 8 8 8 8 8 8 8 8 8	
176 177 178 179 180 181 182	Pde1 Jsp1 Ssp2 Rsp1 Spo2 Tth1 Dra1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase copper-translocating P-type ATPase cation-transporting ATPase cation-transporting ATPase cation-transporting ATPase	Paracoccus denitrificans PD1222 Jannaschia sp. CCS1 Silicibacter sp. TM1040 Rhodobacter sphaeroides 2.4.1 Silicibacter pomeroyi DSS- 3 Thermus thermophilus HB27 Deinococcus radiodurans R1 Gloeobacter violaceus	807 744 814 813 828 798 847 747	69935212 68182783 69301665 46192167 56677433 46199660 6460273	Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Alphaproteo- bacteria Deinococci Deinococci	Б Б Б В В В В	8 8 8 8 8 8 8 8 8 8 8	

									r
185	Dge1	Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Deinococcus geothermalis DSM 11300	838	66799324	Deinococci	в	8	
186	Dge2	Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Deinococcus geothermalis DSM 11300 Actinobacillus	833	66798023	Deinococci	в	8	
187	Apl1	COG2217: Cation transport ATPase	pleuropneumoniae serovar 1 str. 4074	716	32034997		в	9	848.88 ± 83.82
188	Asu1	copper-transporting P-type ATPase	Actinobacillus succinogenes 130Z	922	75431632	Gammaproteo- bacteria	в	9	
189	Msu1	ZntA protein	Mannheimia succiniciproducens MBEL55E	750	52306995	Gammaproteo- bacteria	в	9	
190	Eca1	copper-transporting P-type ATPase	Erwinia carotovora subsp. atroseptica SCRI1043	907	49610658	Gammaproteo- bacteria	в	9	
191	Plu1	Copper-transporting P-type ATPase	Photorhabdus luminescens subsp. laumondii TTO1	911	37527684	Gammaproteo- bacteria	в	9	
192	Sma1	putative copper transporting P-type ATPase efflux pump	Serratia marcescens	903	55581748		в	9	
193	Ype1	cation-translocating ATPase	Yersinia pestis KIM	961	22124996		в	9	
194	Eco1	COG2217: Cation transport ATPase	Escherichia coli HS	834	75194704	Gammaproteo- bacteria	в	9	
195	Sen1	copper-transporting ATPase	Salmonella enterica subsp. enterica serovar Typhi	833	16501768		в	9	
196	Ppr3	hypothetical cation- transporting ATPase	Photobacterium profundum SS9	965	54309978		в	9	
197	Vfi1	copper-exporting ATPase	Vibrio fischeri ES114	893	59711388	Gammaproteo- bacteria	в	9	
198	Vch3	COG2217: Cation transport ATPase	Vibrio cholerae V51	915	75820888		в	9	
199	Vch1	COG2217: Cation transport ATPase	Vibrio cholerae RC385	915	75824332		в	9	
200	Vch2	COG2217: Cation transport ATPase	Vibrio cholerae O395	906	75827509		в	9	
201	Vvu1	cation transport ATPase	Vibrio vulnificus YJ016	922	37679128	Gammaproteo- bacteria	в	9	
202	Vpa1	cation transport ATPase, E1- E2 family	Vibrio parahaemolyticus RIMD 2210633	911	28897532		в	9	
203	Vsp1	COG2217: Cation transport ATPase	Vibrio sp. Ex25	896	75855297	Gammaproteo- bacteria	в	9	
204	Sba1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Shewanella baltica OS155	744	68542465		в	9	
205	Son1	cation transport ATPase, E1- E2 family	Shewanella oneidensis MR-1	753	24373257		в	9	
206	Cbu1	copper-translocating P-type ATPase	Coxiella burnetii RSA 493	742	29654798		в	9	
207	Mca1	copper-translocating P-type ATPase	Methylococcus capsulatus str. Bath	725	53803908	Gammaproteo- bacteria	в	9	
208	Csa1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Chromohalobacter salexigens DSM 3043	850	67677553		в	9	
209	llo2	Cation transport ATPase	Idiomarina loihiensis L2TR	753	56460326	Gammaproteo-	в	9	
	Sfr1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Shewanella frigidimarina NCIMB 400	746	69949999	Gammaproteo-	в	9	

211	Cau1	ATPase, E1-E2 type:Copper- translocating P-type ATPase:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Chloroflexus aurantiacus J-10-fi	850	76258102	Chloroflexi	в		813.14 ± 83.90
212	Nsp6	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nocardioides sp. JS614	1071	71366115	Actinobacteria (HighGC G+)	в	10	
	Rxy1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Rubrobacter xylanophilus DSM 9941	751		Actinobacteria (HighGC G+)	в	10	
214	Ade1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Anaeromyxobacter dehalogenans 2CP-C	954	66855764	Deltaproteo- bacteria	в	10	
215	Sus1	Copper-translocating P-type ATPase:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Solibacter usitatus Ellin6076	798	67933813	Acidobacteria	в	10	
216	Nsp3	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Nocardioides sp. JS614	928	71367384	Actinobacteria (HighGC G+)	в	10	
217	Ppr2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Pelobacter propionicus DSM 2379	786	71839521	Deltaproteo-	в	10	
218	Ssp1	cation-transporting ATPase; E1-E2 ATPase	Synechocystis sp. PCC 6803	745	16329860	Cyanobacteria	в	10	
219	Sel1	PacS	Synechococcus elongatus PCC 7942	747	22002521	Cyanobacteria	в	10	
220	Cwa1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Crocosphaera watsonii WH 8501	766	67921918	Cyanobacteria	в	10	
221	Ter1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Trichodesmium erythraeum IMS101	758	71677291	Cyanobacteria	в	10	
222	Npu1	COG2217: Cation transport ATPase	Nostoc punctiforme PCC 73102	760	53688476	Cyanobacteria	в	10	
223	Nsp2	cation-transporting ATPase	Nostoc sp. PCC 7120	753	17158771	Cyanobacteria	в	10	
224	Ava1	Copper-translocating P-type ATPase	Anabaena variabilis ATCC 29413	753	75910433	Cyanobacteria	в	10	
225	Nsp1	cation-transporting ATPase	Nostoc sp. PCC 7120	753	17135447	Cyanobacteria	в	10	•
226	Bfr1	putative copper transport- related membrane protein COG2217: Cation transport	Bacteroides fragilis NCTC 9343	836	60494739	Bacteroidetes	в	10	
	Chu1	ATPase	Cytophaga hutchinsonii Bacteroides fragilis	804	48854913	Bacteroidetes	в	10	
228	Bfr2	cation-transporting ATPase	YCH46 Bacteroides	736	53713321	Bacteroidetes	в	10	
229	Bth1	cation-transporting ATPase pacS	thetaiotaomicron VPI- 5482	738	29338397	Bacteroidetes	в	10	
230	Dac1	ATPase, E1-E2 type:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Desulfuromonas acetoxidans DSM 684	734	68179510	Deltaproteo- bacteria	в	10	
	Det1	copper-translocating P-type ATPase	Dehalococcoides ethenogenes 195	828		Chloroflexi	в	10	•
	Deri Dsp1	copper-translocating P-type ATPase	Dehalococcoides sp. CBDB1	828		Chloroflexi	в	10	
	Sfu1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Syntrophobacter fumaroxidans MPOB	814	71544562	Deltaproteo-	в	10	

									r
234	Reu2	ATPase, E1-E2 type:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Ralstonia eutropha JMP134	814	72384011	Betaproteo- bacteria	в	10	
235	Nsp4	cation transporting ATPase	Nostoc sp. PCC 7120	724	17158728	Cyanobacteria	в	10	
236	Mth2	Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Moorella thermoacetica ATCC 39073	857	68268515	Firmicutes (LowGC G+)	в	10	
237	Mbu1	Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Methanococcoides burtonii DSM 6242	942	68212009	Euryarchaeota	A	10	
238	Mba1		Methanosarcina barkeri str. fusaro Methanosarcina	954	68133914	Euryarchaeota	A	10	
239	Mac1	ATPase	acetivorans C2A	982	20090203	Euryarchaeota	A	10	
240	Mma3	Copper-exporting ATPase	Methanosarcina mazei Go1	962	21228430	Euryarchaeota	А	10	
241	Afu1	cation-transporting ATPase, P-type (pacS)	Archaeoglobus fulgidus DSM 4304	804	11498084	Euryarchaeota	А	10	
242	Pfu1	heavy-metal transporting cpx- type atpase	Pyrococcus furiosus DSM 3638	799	18977112	Euryarchaeota	A	10	
243	Tko1	heavy-metal transporting P- type ATPase Haloacid	Thermococcus kodakarensis KOD1	799	57159096	Euryarchaeota	A	10	
244	Mma2	dehalogenase/epoxide hydrolase:ATPase, E1-E2 type:Heavy metal transport/detoxification protein	Methanococcus maripaludis S2 Methanothermobacter	723	45358728	Euryarchaeota	A	10	
245	Mth1	heavy-metal transporting CPx- type ATPase		790	2622654	Euryarchaeota	A	10	
	Cli1 Cte2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase copper-transporting ATPase, E1-E2 family	Chlorobium limicola DSM 245 Chlorobium tepidum TLS	786	67918133		в	10	
	Cph2	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Chlorobium phaeobacteroides DSM 266	773	67937188		в	10	
	Pph1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Pelodictyon phaeoclathratiforme BU-1	755	68549269		в	10	
250	Mtu1	cation-transporting ATPase, E1-E2 family	Mycobacterium tuberculosis CDC1551	792	13880563	Actinobacteria (HighGC G+)	в		831.44 ± 71.34
251	Hsp1	YvgX	Halobacterium sp. NRC-1	857	15789882	Euryarchaeota	А	11	
252	Hma1	copper-transporting ATPase	Haloarcula marismortui ATCC 43049	868	55229179	Euryarchaeota	A	11	
253	Hma2	copper-transporting ATPase CopA	Haloarcula marismortui ATCC 43049	873	55230107	Euryarchaeota	A	11	
254	Cph1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Chlorobium phaeobacteroides BS1	727	67938332	Chlorobi	в	11	

		1	1					T	
255	Dha1	Copper ion binding domain:Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Desulfitobacterium hafniense DCB-2	976	68207415	Firmicutes (LowGC G+)	в	11	
256	Ppr1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Pelobacter propionicus DSM 2379	795	71838988	Deltaproteo- bacteria	в	11	
		Copper-translocating P-type ATPase:Heavy metal	Geobacter			Deltaproteo-			
	Gme1	translocating P-type ATPase copper-translocating P-type	metallireducens GS-15 Geobacter sulfurreducens	798	68004283	Deltaproteo-	В	11	
258	Gsu1	ATPase	PCA	797	39984438	bacteria Firmicutes	В	11	658.29 ±
259	Lmo2	CtpA	Listeria monocytogenes	653	1513069	(LowGC G+)	В	12	40.73
260	Lde1	COG2217: Cation transport ATPase COG2217: Cation transport	Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 Streptococcus	638	62516436	Firmicutes (LowGC G+) Firmicutes	в	12	
261	Spn1	ATPase	pneumoniae TIGR4	750	66878130	(LowGC G+)	в	12	
262	Lpl1	copper transporting ATPase	Lactobacillus plantarum WCFS1	641	28379476	Firmicutes (LowGC G+)	в	12	
263	Lac1	copper-transporting ATPase	Lactobacillus acidophilus NCFM	641	58338205	Firmicutes (LowGC G+)	в	12	
		hypothetical protein Lgas 03001578	Lactobacillus gasseri ATCC 33323	644		Firmicutes	в		
	Lga1	cation-transporting ATPase	Lactobacillus johnsonii			(LowGC G+) Firmicutes		12	
	Ljo1	PacS ATP dependent copper	NCC 533	641		(LowGC G+)	В		1206.27 ±
266	Ath1	transporter (RAN1) copper-transporting P-type	Arabidopsis thaliana	1001	6850337	Viridiplantae	E	13	213.52
267	Bna1	ATPase	Brassica napus	999	15636781	Viridiplantae	E	13	
268	Osa1	putative ATP dependent copper transporter putative copper-exporting	Oryza sativa (japonica cultivar-group) Oryza sativa (japonica	926	52076515	Viridiplantae	E	13	
269	Osa2	ATPase	cultivar-group)	1012	50905629	Viridiplantae	E	13	
	Osa3 Ath2	putative copper-transporting P-type ATPase F2K11.18	Oryza sativa (japonica cultivar-group) Arabidopsis thaliana	978 1191		Viridiplantae Viridiplantae	E	13 13	
		putative copper-exporting							
	Sbi2	ATPase putative copper-exporting	Sorghum bicolor	1002	48374970	Viridiplantae	E	13	
273	Sbi1	ATPase	Sorghum bicolor	908	48374969	Viridiplantae	E	13	
274	Zma1	putative ATP dependent copper transporter	Zea mays Schizosaccharomyces	1001	48374954	Viridiplantae	E	13	
275	Spo1	SPBC29A3.01	pombe Yarrowia lipolytica	904	3006137	Fungi	E	13	
276	Yli1	hypothetical protein	CLIB122	933	50551739	Fungi	E	13	
277	Ani1	hypothetical protein AN3624.2	Aspergillus nidulans FGSC A4	1182	67526333	Fungi	E	13	
278	Afu2	copper-transporting ATPase, putative	Aspergillus fumigatus Af293	1187	66849203	Fungi	E	13	
279	Gze2	hypothetical protein FG08188.1	Gibberella zeae PH-1	1174	42550200	Fungi	E	13	
280	Gze1	hypothetical protein FG01501.1	Gibberella zeae PH-1	1106	42546043	Fungi	E	13	
	Ncr1	hypothetical protein	Neurospora crassa OR74A	1181	32417818		E	13	
	Mgr1	hypothetical protein MGG_03724	Magnaporthe grisea 70-15		39943288		E	13	
	Gli1	CLAP1	Glomerella lindemuthiana	1167	24528450		E	13	
	Uma1	hypothetical protein UM00227.1	Ustilago maydis 521	1056	71003387		E	13	
285	Cne1	copper-exporting ATPase, putative	Cryptococcus neoformans var. neoformans JEC21	1055	57230777	Fungi	E	13	
	Tve1	copper P-type ATPase CtaA	Trametes versicolor	983	28625435	Fungi	E	13	
286			Kluyveromyces lactis	I T				— — — — — — — — — — — — — — — — — — —	
	Kla1	unnamed protein product	NRRL Y-1140 Saccharomyces	975	50310791	Fungi	E	13	

I		hypothetical protein	Dictyostelium discoideum					
289	Ddi1	DDBDRAFT_0218568 hypothetical protein	AX4 Dictyostelium discoideum	985	66809993	Mycetozoa	E	13
290	Ddi2	DDBDRAFT_0168129	AX4	1280	66822883	Mycetozoa	E	13
291	Tni2	unnamed protein product PREDICTED: similar to	Tetraodon nigroviridis	1727	47214278	Metazoa	E	13
292	Ptr1	ATP7B	Pan troglodytes	1197	55640249	Metazoa	E	13
	Hsa1	ATP7B	Homo sapiens	1465	1947035	Metazoa	E	13
294	Hsa2	Cu transporting ATPase P	Homo sapiens	1411	738766	Metazoa	E	13
295	Cfa1	ATPase, Cu++ transporting, beta polypeptide	Canis familiaris	1432	70608105	Metazoa	E	13
296	Oar1	ATPase, Cu++ transporting, beta polypeptide	Ovis aries	1505	57619187	Metazoa	E	13
297	Mmu1	ATPase, Cu++ transporting, beta polypeptide	Mus musculus	1462	6680758	Metazoa	E	13
							-	
298	Rno1	ATPase, Cu++ transporting, beta polypeptide	Rattus norvegicus	1451	6978561	Metazoa	E	13
		PREDICTED: similar to						
299	Cfa2	ATPase, Cu++ transporting, alpha polypeptide isoform 2	Canis familiaris	1504	74007803	Metazoa	E	13
300	Hsa3	Menkes Disease (ATP7A)	Homo sapiens	1376	5262841	Metazoa	E	13
		Copper-transporting ATPase						
301	Cgr1	1 (Copper pump 1) putative copper efflux	Cricetulus griseus	1476	1351992	Metazoa	E	13
302	Mmu2	ATPase	Mus musculus	1465	458224	Metazoa	E	13
303	Rno2	ATPase, Cu++ transporting, alpha polypeptide	Rattus norvegicus	1492	16258817	Metazoa	E	13
304	Dre1	Menkes disease ATPase	Danio rerio	1482	70724999	Metazoa	E	13
305	Tni1	unnamed protein product	Tetraodon nigroviridis	1492	47222902	Metazoa	E	13
306	Dme1	CG1886-PA	Drosophila melanogaster	1219	45446920	Metazoa	E	13
307	Aga1	ENSANGP00000026574	Anopheles gambiae str. PEST	1126	55234928	Metazoa	E	13
200	4 2	ENCANODODODODOSC	Anopheles gambiae str.	4445	55224020	Matana	_	40
	Aga2 Cbr1	ENSANGP00000008866 Hypothetical protein CBG21197	PEST Caenorhabditis briggsae	1145 1241	55234929 39586559		E	13
	Cel1	Hypothetical protein Y76A2A.2		1238		Metazoa	E	
510	Cell	170A2A.2	Caenorhabditis elegans	1230	9307107	Metazoa		13
		ATPase, E1-E2 type:Copper-						
		translocating P-type ATPase:Heavy metal	Dechloromonas aromatica			Betaproteo-		
311	Dar3	translocating P-type ATPase	RCB	808	71907465		в	16
242	Mca2	copper-translocating P-type ATPase	Methylococcus capsulatus str. Bath	831	53804835	Gammaproteo-	в	16
3171	andz	copper-translocating P-type	Methylococcus capsulatus		55504033	Gammaproteo-		16
	Mca3			770	53805105	bacteria	IB I	
	Mca3	ATPase	str. Bath Candidatus	779	53805105	bacteria	В	10
313	Mca3 Pam1		str. Bath Candidatus Protochlamydia amoebophila UWE25	779 729		Chlamydiae	В	
313 314		ATPase putative copper-transporting ATPase copper-transporting ATPase	str. Bath Candidatus Protochlamydia amoebophila UWE25 Zymomonas mobilis subsp. mobilis ZM4			Chlamydiae Alphaproteo- bacteria		17
313 314 315	Pam1	ATPase putative copper-transporting ATPase copper-transporting ATPase copper-transporting ATPase copA	str. Bath Candidatus Protochlamydia amoebophila UWE25 Zymomonas mobilis	729	46399353	Chlamydiae Alphaproteo- bacteria Deltaproteo-	в	17 17 17
313 314 315 316	Pam1 Zmo1	ATPase putative copper-transporting ATPase copper-transporting ATPase copper-transporting ATPase	str. Bath Candidatus Protochlamydia amoebophila UWE25 Zymomonas mobilis subsp. mobilis ZM4 Bdellovibrio bacteriovorus	729 740	46399353 56543385	Chlamydiae Alphaproteo- bacteria Deltaproteo- bacteria Gammaproteo-	в	17 17 17
313 314 315 316 316	Pam1 Zmo1 Bba1 Asp1	ATPase putative copper-transporting ATPase copper-transporting ATPase copA P-type ATPase, copper transporting ATPase, a phophatase-like domain	str. Bath Candidatus Protochlamydia amoebophila UWE25 Zymomonas mobilis subsp. mobilis ZM4 Bdellovibrio bacteriovorus HD100 Acinetobacter sp. ADP1 Gluconobacter oxydans	729 740 724 802	46399353 56543385 42523682 50085487	Chlamydiae Alphaproteo- bacteria Deltaproteo- bacteria Gammaproteo- bacteria Alphaproteo-	B B B B	17 17 17 17
313 314 315 316 317 317 318	Pam1 Zmo1 Bba1	ATPase putative copper-transporting ATPase copper-transporting ATPase copA P-type ATPase, copper transporting ATPase, a	str. Bath Candidatus Protochlamydia amoebophila UWE25 Zymomonas mobilis subsp. mobilis ZM4 Bdellovibrio bacteriovorus HD100 Acinetobacter sp. ADP1	729 740 724	46399353 56543385 42523682	Chlamydiae Alphaproteo- bacteria Deltaproteo- bacteria Gammaproteo- bacteria Alphaproteo- bacteria Betaproteo-	B B B	17 17 17

		1						1	r ı
		ATPase, E1-E2 type:Copper-							
		translocating P-type ATPase:Heavy metal	Dechloromonas aromatica			Reterreter			
321	Dar1	translocating P-type ATPase	RCB	735	71906690	Betaproteo- bacteria	в	17	
021	Darr	aunologiang Pageo Arriado		100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	balaconia	-		·
		copA; copper-transporting	Nitrosomonas europaea			Betaproteo-			
322	Neu1	ATPase	ATCC 19718	782	30249022		В	17	.
222	bac1	copper-translocating P-type ATPase	uncultured bacterium 577	797	40063228	environmental	в	17	
323	Daci	probable cation-transporting	Haemophilus influenzae	191	40063220	Gammaproteo-	Б	17	-
324	Hin1	ATPase	86-028NP	722	68057093		в	17	
			Pasteurella multocida						i
			subsp. multocida str.			Gammaproteo-	_		
325	Pmu1	unknown	Pm70	724	12722323	bacteria	В	17	.
			Neisseria gonorrhoeae FA			Betaproteo-			
326	Ngo1	putative transport ATPase	1090	725	59801010		в	17	
		putative cation-transporting	Neisseria meningitidis			Betaproteo-			
327	Nme1	ATPase	Z2491	725	7380180		В	17	.
270	Nme2	cation transport ATPase, E1-	Neisseria meningitidis	720	7006567	Betaproteo-	в	17	
320	Nme2	E2 family probable copper(heavy	MC58	720	7226567	pacteria	ь	17	-
		metal)-transporting P-type	Psychrobacter arcticus			Gammaproteo-			
329	Par1	ATPase	273-4	786	71039177		в	17	
		Ourse from the state of the							
		Copper-translocating P-type ATPase:Heavy metal	Psychrobacter			Gammaproteobact			
330	Pcr1	translocating P-type ATPase	cryohalolentis K5	786	71364942		в	17	
550		copper/potassium-	Lactococcus lactis subsp.	,		Firmicutes	-		
331	Lla1	transporting ATPase	lactis II1403	720	15672816	(LowGC G+)	в	18	725 ± 4.36
		Common terroritory D to an							i
		Copper-translocating P-type ATPase:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-							
		translocating P-type							
		ATPase:Heavy metal				Firmicutes			
332	Efa3	translocating P-type ATPase	Enterococcus faecium DO	728	68194672	(LowGC G+)	в	18	
~~~		175		707		Firmicutes	_	10	
333	Ehi1	ATPase	Enterococcus hirae	727	290642	(LowGC G+)	В	18	
			Leptospira interrogans						
		heavy-metal transporting p-	serovar Copenhageni str.						796.36 ±
334	Lin2	type ATPase	Fiocruz L1-130	739	45658809	Spirochaetes	в	19	49.20
		hum ath ati and masterin	Desillus subtilis subse			Cinucian da a			
335	Bsu1	hypothetical protein BSU33500	Bacillus subtilis subsp. subtilis str. 168	803	16080403	Firmicutes (LowGC G+)	в	19	
000	Doar	COG2217: Cation transport	Bacillus anthracis str.	000	10000100	Firmicutes	-	10	·
336	Ban1	ATPase	A2012	805	65321054	(LowGC G+)	в	19	
			Bacillus licheniformis			Firmicutes			i
337	Bli1	Cu2+-exporting ATPase	ATCC 14580	814	52005067	(LowGC G+)	В	19	.
220	Bcl1	connecting ATD	Regillus algusii KCM K4C	809	56064005	Firmicutes	в	19	
JJ0	DCIT	copper-transporting ATPase	Bacillus clausii KSM-K16	909	00904995	(LowGC G+) Firmicutes	0	19	
339	Bha1	copper-transporting ATPase	Bacillus halodurans C-125	806	10173170	(LowGC G+)	в	19	
		copper-translocating P-type	Bacillus cereus ATCC			Firmicutes			
340	Bce3	ATPase	10987	798	44004521	(LowGC G+)	В	19	
	0	heavy metal-transporting	Geobacillus kaustophilus	700	50440407	Firmicutes			
341	Gka1	ATPase	HTA426 Oceanobacillus iheyensis	798	56419437	(LowGC G+) Firmicutes	В	19	
340	Oih1	copper-transporting ATPase		791	23008507	(LowGC G+)	в	19	
542	Jin	copper-transporting ATFase		731	23030331	(LOWOU GT)	5	19	
		copper-transporting ATPase	Staphylococcus			Firmicutes			
343	Sha1	сорА	haemolyticus JCSC1435	795	70725497	(LowGC G+)	В	19	
			Staphylococcus						
			saprophyticus subsp. saprophyticus ATCC			Firmicutes			
344	Ssa1	copper-transporting ATPase	15305	794	73661606	(LowGC G+)	в	19	
2.11							-	.5	
		putative copper importing	Staphylococcus aureus			Firmicutes			
345	Sau1	ATPase A	subsp. aureus MSSA476	802	49245779	(LowGC G+)	В	19	
			Charleyland			Circuitor da -			
	Sect	copper-transporting ATPase	Staphylococcus epidermidis ATCC 12228	704	27/60027	Firmicutes (LowGC G+)	в	19	
240	Sept	copA	epidermidis ATCC 12228	794	21409037	(LowGC G+) Firmicutes	0	19	
346					07000070	(LowGC G+)	в	19	
	Hmo1	Copper-importing ATPase	Heliobacillus mobilis	839	27262376	(LOWOC C.)		1 120	
	Hmo1			839	21262316		-	19	
347	Hmo1 Sth2	Copper-importing ATPase putative copper-transporting ATPase	Heliobacillus mobilis Symbiobacterium thermophilum IAM 14863	839 949		Actinobacteria (HighGC G+)	в	19	

								· · · · · ·	
		Copper-translocating P-type							
		ATPase:Heavy metal	Syntrophomonas wolfei			Firmicutes			
349	Swo1	translocating P-type ATPase	str. Goettingen	799	71540755	(LowGC G+)	в	19	
		Copper-translocating P-type							
	-	ATPase:Heavy metal	Clostridium thermocellum	740	07047000	Firmicutes	_		
350	Cth1	translocating P-type ATPase	ATCC 27405 Thermoanaerobacter	743	67917082	(LowGC G+) Firmicutes	В	19	
351	Tte1	Cation transport ATPase	tengcongensis MB4	796	20808818	(LowGC G+)	в	19	
551	nei	Cator transport A rease	tengcongenais MD4	130	20000010	Firmicutes	0	19	
352	Bcl2	copper-transporting ATPase	Bacillus clausii KSM-K16	862	56962006	(LowGC G+)	в	19	
						( /	-		
		ATPase, E1-E2 type:Copper-							
		translocating P-type	Eviguela esteriuma elibiria una			Firmicutes			
252	Esi1	ATPase:Heavy metal translocating P-type ATPase	Exiguobacterium sibiricum 255-15	710	69055060	(LowGC G+)	в	19	
333	Lan	transiocating F-type ATFase	Listeria innocua	/10	00033909	Firmicutes	Б	13	
354	Lin1	hypothetical protein lin1967	Clip11262	737	16801033	(LowGC G+)	в	19	
						( /			
		copper-translocating P-type	Listeria monocytogenes			Firmicutes			
355	Lmo1	ATPase	str. 4b F2365	737	46908085	(LowGC G+)	В	19	
		COG2217: Cation transport	Microbulbifer degradans 2-			Gammaproteo-	_		811.97 ±
356	Mde1	ATPase	40	724	48863075	bacteria	В	20	91.92
		Copper-translocating P-type							
		ATPase:Heavy metal	Methylobacillus flagellatus			Betaproteo-			
357	Mfl1	translocating P-type ATPase	KT	730	68212445		в	20	
							-	- 20	
		Copper-translocating P-type							
		ATPase:Heavy metal	Rhodoferax ferrireducens			Betaproteo-			
358	Rfe1	translocating P-type ATPase	DSM 15236	757	74023290		В	20	
		COG2217: Cation transport	Burkholderia fungorum	707	40700500	Betaproteo-	_		
359	Bfu1	ATPase hypothetical protein	LB400	787	48782582	bacteria Betaproteo-	В	20	
360	Bma1	Bmai10 02002739	Burkholderia mallei 10399	1061	67636459		в	20	
									•
		Copper ion-binding:Copper-							
		translocating P-type							
		ATPase:Heavy metal	Burkholderia			Betaproteo-			
361	Bvi1	translocating P-type ATPase	vietnamiensis G4	924	67542206		в	20	
							-		
		Copper-translocating P-type							
		ATPase:Heavy metal	Burkholderia ambifaria			Betaproteo-			
362									
	Bam1	translocating P-type ATPase	AMMD Burkhalderia annais	946	74018699		В	20	
262		COG2217: Cation transport	Burkholderia cepacia			Betaproteo-			
363	Bam1 Bce1			946 1031	74018699 46317831	Betaproteo-	B B	20 20	
363		COG2217: Cation transport	Burkholderia cepacia			Betaproteo-			
363		COG2217: Cation transport	Burkholderia cepacia			Betaproteo-			
363		COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type	Burkholderia cepacia R18194			Betaproteo- bacteria			
	Bce1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal	Burkholderia cepacia R18194 Burkholderia cenocepacia	1031	46317831	Betaproteo- bacteria Betaproteo-	В	20	
		COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type	Burkholderia cepacia R18194			Betaproteo- bacteria Betaproteo-			
	Bce1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424	1031	46317831	Betaproteo- bacteria Betaproteo- bacteria	В	20	
364	Bce1 Bce2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans	1031	46317831 67665187	Betaproteo- bacteria Betaproteo- bacteria Betaproteo-	B	20	
364	Bce1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259	1031	46317831	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	В	20	
364 365	Bce1 Bce2 Tde2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport	Burkholderia cepacia R18194 Burkholderia cenocepacia H12424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus	1031 1021 802	46317831 67665187 52006150	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo-	B	20 20 20	
364 365	Bce1 Bce2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259	1031	46317831 67665187	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo-	B	20	
364 365	Bce1 Bce2 Tde2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia H12424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus	1031 1021 802	46317831 67665187 52006150	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	B	20 20 20	
364 365 366	Bce1 Bce2 Tde2 Rge2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1	1031 1021 802 817	46317831 67665187 52006150 47571766	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	B B B	20 20 20 20	
364 365 366	Bce1 Bce2 Tde2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia H12424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666	1031 1021 802	46317831 67665187 52006150	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a	B	20 20 20	
364 365 366 367	Bce1 Bce2 Tde2 Rge2 Psp1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus	1031 1021 802 817 816	46317831 67665187 52006150 47571766 67847332	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteobacteri	B B B B	20 20 20 20 20	
364 365 366 367	Bce1 Bce2 Tde2 Rge2	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia H12424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666	1031 1021 802 817	46317831 67665187 52006150 47571766	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteobacteri	B B B	20 20 20 20	
364 365 366 367	Bce1 Bce2 Tde2 Rge2 Psp1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus	1031 1021 802 817 816	46317831 67665187 52006150 47571766 67847332	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteo- bacteria	B B B B	20 20 20 20 20	
364 365 366 367 368	Bce1 Bce2 Tde2 Rge2 Psp1 Rge1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase:Heavy metal Copper-translocating P-type ATPase:Heavy metal COG2217: Cation transport ATPase COG2217: Cation transport ATPase Probable cation-transporting atpase transmembrane	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus PM1	1031 1021 802 817 816 739	46317831 67665187 52006150 47571766 67847332 47571847	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	В В В В В	20 20 20 20 20 20 20 20	
364 365 366 367 368	Bce1 Bce2 Tde2 Rge2 Psp1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus	1031 1021 802 817 816	46317831 67665187 52006150 47571766 67847332	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	B B B B	20 20 20 20 20	· · ·
364 365 366 367 368	Bce1 Bce2 Tde2 Rge2 Psp1 Rge1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase:Heavy metal translocating P-type ATPase:Heavy metal probable cation-transport ATPase probable cation-transporting atpase transmembrane protein	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus PM1	1031 1021 802 817 816 739	46317831 67665187 52006150 47571766 67847332 47571847	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	В В В В В	20 20 20 20 20 20 20 20	· · ·
364 365 366 367 368	Bce1 Bce2 Tde2 Rge2 Psp1 Rge1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase probable cation-transporting atpase transmembrane protein	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus PM1	1031 1021 802 817 816 739	46317831 67665187 52006150 47571766 67847332 47571847	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	В В В В В	20 20 20 20 20 20 20 20	· · ·
364 365 366 367 368	Bce1 Bce2 Tde2 Rge2 Psp1 Rge1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase eprobable cation-transporting atpase transmembrane protein	Burkholderia cepacia R18194 Burkholderia cenocepacia H12424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus PM1 Ralstonia solanacearum	1031 1021 802 817 816 739	46317831 67665187 52006150 47571766 67847332 47571847	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteobacteri Betaproteo- bacteria Betaproteo- bacteria	В В В В В	20 20 20 20 20 20 20 20	· · ·
364 365 366 367 368 369	Bce1 Bce2 Tde2 Rge2 Psp1 Rge1	COG2217: Čation transport ATPase Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase COG2217: Cation transport ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase:Heavy metal translocating P-type ATPase COG2217: Cation transport ATPase probable cation-transporting atpase transmembrane protein	Burkholderia cepacia R18194 Burkholderia cenocepacia HI2424 Thiobacillus denitrificans ATCC 25259 Rubrivivax gelatinosus PM1 Polaromonas sp. JS666 Rubrivivax gelatinosus PM1	1031 1021 802 817 816 739	46317831 67665187 52006150 47571766 67847332 47571847	Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria Betaproteobacteri a Betaproteobacteri a Betaproteo- bacteria Betaproteo- bacteria Betaproteo- bacteria	В В В В В	20 20 20 20 20 20 20 20	· · ·

371	Rme1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Ralstonia metallidurans CH34	813	68554610	Betaproteo- bacteria	в	20
372	Psy4	ORFG	Pseudomonas syringae	794	8388793	Gammaproteo- bacteria	в	20
373	Pae1	COG2217: Cation transport ATPase	Pseudomonas aeruginosa UCBPP-PA14	792	32039086	Gammaproteo- bacteria	в	20
374	Ppu2	heavy metal translocating P- type ATPase	Pseudomonas putida KT2440	799	26987324		в	20
375	Pfl2	copper-translocating P-type ATPase	Pseudomonas fluorescens Pf-5	798	70734212		в	20
376	Pfl1	COG2217: Cation transport ATPase	Pseudomonas fluorescens PfO-1	797	48732302		в	20
377	Ppu1	copper transporter	Pseudomonas putida	797	22003413	Gammaproteo- bacteria	в	20
378	Psy3	copper-translocating P-type ATPase	Pseudomonas syringae pv. tomato str. DC3000	732	28867978	Gammaproteo- bacteria	в	20
379	Psy1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Pseudomonas syringae pv. syringae B728a	732	66043921	Gammaproteo- bacteria	в	20
380	Psy2	copper-translocating P-type ATPase	Pseudomonas syringae pv. phaseolicola 1448A	732	71736278	Gammaproteo- bacteria	в	20
	Sam1 Cps1	Copper ion-binding:Copper- translocating P-type ATPase:Heavy metal translocating P-type ATPase copper-translocating P-type ATPase	Shewanella amazonensis SB2B Colwellia psychrerythraea 34H	789	68548173	Gammaproteo-	в	20
	Sde1	Copper-translocating P-type ATPase:Heavy metal translocating P-type ATPase	Shewanella denitrificans OS-217	793	69945673	Gammaproteo-	в	20
384	Mma1	COG2217: Cation transport ATPase	Magnetospirillum magnetotacticum MS-1	724	23015317		в	20
385	Rru1	COG2217: Cation transport ATPase	Rhodospirillum rubrum	754	48764318	Alphaproteo- bacteria	в	20

	Motif 1	Moth 2	Motif 3	Motif 4	Motif 5	Motif 6	Motif 7	Motif 8	Motif 9
	PGD	PAD	TGES	PEGL	DKTGTKT	KGAPE	DPPR	MVTGD	VAVTGDGVNDSPALKKADIGVAM
_									
	**	*:*	**	****	******	•	• •	:::**	• ::•••:••• :• ••:•••:
1	(P)GE	PVD	TGE(P)	PCAL	DKTGTLT	(A)G(APS)	D(EI)R	MITGD	V(A)MVGDGNDA(P)AL(AG)ADVGIAV
	335-337	340-342	358-361	483-486	526-532	533-537	658-662	681-685	724-745
	.*:	.:*	•• .	**:*	******	*:	• :		**: *** **** :*:.:.:
2	PGE	ATD	TG(E)S	PCAL	DKTGTVT	TGTMT	D(TV)K	L(L)TGD	VAM(V)GDG(V)NDAAAL(AQ)ADLGIAM
	519-521	524-526	542-545	652-655	695-702	703-707	850-853	870-874	919-941
	*		. **	****	**** :*	• .	. :		* : ***:** .: * *
3	(P)G(E)	(PA)D	TGE(S)	PCAL	DKTG(T)LT	(R)G(IE)G	D(EI)R	I(L)TGD	V(M)M(V)GDGIND(AP)AL(AA)A(DT)G(VAM
	385-388	391-393	409-412	514-517	557-563	628-632	707-710	729-733	774-795
_									
	.*		***:	****	******	•	* ::	*: ***	: ***:***:* .: :**
- 4	PG(E)	P(A)D	TGES	PHAL	DKTGTLT	(E)G(RFG)	D(I)IR	MLTGD	(VA)M(V)GDGVNDAPAL(A)QA(D)IGIAI
	368-370	373-375	391-394	495-499	539-545	546-550	707-710	729-733	774-795
	**	*	***.	****	******	*.*	*: *	*****	*. *********** **: <u>*</u> **
5	PG(A)	AVD	TGES	PDAL	DKTGTLT	(K)GEP(E)	DA(V)R	MLTGD	VA(M)VGDG/VNDAPALA(Q)AD//GIAI
	373-375	378-380	396-399	500-503	544-550	551-555	672-675	694-698	738-760
	**.	.**	:**.	****	******	• .	* :*	• :••	:.*.***:*******
6	PG(E)	PVD	TGES	PCAL	DKTGTLT	(E)G(K)P(K)	D(P)VK	M(L)TGD	VAMAGDGVNDAPALA(A)ADGIAM
	554-556	559-561	577-580	683-686	726-732	733-737	855-858	878-882	922-944
eq.									
7	PGA	PSD	TGEP	PCAL	DKTGTLT	CGTPV	DPTL	MVTGD	VAMVGDGINDAPALARADVGIAL
	328-330	333-335	351-354	456-459	499-505	506-510	589-592	645-649	691-713
	.*:	. *	:**.	****	*****:*	•	* :	:::**	::*******: :: *.*:
8	PGD	P(V)D	TGEP	PCAM	DKTGTKT	(E)G(RPE)	D(PI)K	MVTGD	(VA)FVGDGINDAPALA(E)AD(V)GIAI
	390-392	395-397	413-416	519-522	562-568	569-573	762-765	784-788	828-850
	·*·	.:*	***.	****	*****:*	•	• :	::***	* ********* *****
9	PGE	PVD	TGEP	PCAL	DKTGTKT	(E)G(KPS)	D(P)I(K)	MLTGD	(VA)M(V)GDGINDAPAL(AQ)DIGIAM
	548-550	553-555	571-574	677-680	720-726	727-731	867-870	889-893	933-955
_	240 220		201204	011 000		121 121			
_	**		**	***	*****-*		* ·-	:::**	* : ***:**: *: :::.*.
10	PG(E)	PVD	TGES	PCAL	DKTGTLT	(R)G(K)P(T)	DITIK	MLTGD	VIAIMIVIGDGINDAIPIALIAQIADIG(I)AI
	578-580	583-585	601-604	726-729	769-775	776-780	914-917	936-940	996-1018
_									
_	***			***:	*******	•	• ::		
11	PGE	PVD	TGES	PCAL	DKTGTLT	(R)G(EPE)	D(T)/K	MITGD	V(A)MVGDGINDAPALA(Q)A(D)G(I)AI
	528-530	532-535	551-554	682-685	725-731	732-736	889-892	911-915	957-979
_									
	**		****	****	******	*:*	· .:		**************
12	PG(E)		TGES	PCAL	DKTGTIT	0.00000000	D(V)PK	MLTGD	VAFVGDGINDAPALS(T)A(D)//GIAM
		PVD				IV GNP(Q)			
		PVD 275-277		405-408		(V)GKP(Q) 455-459		597-601	
_	270-272	PVD 275-277	293-296	405-408	448-454	455-459	575-578	597-601	641-663
_				405-408				597-601	641-663
13	270-272	275-277	293-296	****	448-454	455-459	575-578 * :	::***	641-663 : .:***:**:* : :*::
13			293-296		448-454 :.**:* _KTGTLT				641-663 : .:***:**:* : :*:: V(A)MVGDGINDSPAL(AA)A(D)VGIA(M)
13	270-272 ** PG(D)	275-277 (PA)D	293-296 **** TGE8	PCAL	448-454 :.**:* _KTGTLT	455-459 (H)G(TPV)	575-578 * : D(PI)K	::*** MVTGD	641-663 : .:***:**:* : :*:: V(A)MVGDGINDSPAL(AA)A(D)VGIA(M)
13	270-272 ** PG(D)	275-277 (PA)D	293-296 **** TGE8	PCAL	448-454 :.**:* _KTGTLT	455-459 (H)G(TPV)	575-578 * : D(PI)K	::*** MVTGD	641-663 : .:***:**:* : :*:: V(A)MVGDGINDSPAL(AA)A(D)VGIA(M)
	270-272 ** PG(D) 1270-1272	275-277 (PA)D	293-296 **** TGES 1293-1296	PCAL 1453-1456	448-454 :.**:* _KTGTLT 1534-1539	455-459 (H)G(TPV)	575-578 * : D(PI)K	::*** MVTGD 1839-1843	541-563 : .:***:*:*:*:: ::*:: V(A)MVGDGINDSPAL(AA)A(D)VGIA(M) 1908-1920
	270-272 * * PG(D) 1270-1272 . * :	275-277 (PA)D 1275-1277	293-296 •••• TGE8 1293-1296 ••••:	**** PCAL 1453-1456	448-454 :.**:* _KTGTLT 1534-1539	455-459 * (H)G(TPV) 1540-1544 *	575-578 * : D(PI)K 1817-1823 * *	::*** MVTGD 1839-1843 :*:**	541-563 : .:**:*:*:*:::::::::::::::::::::::::::
	270-272 * * PG(D) 1270-1272 . * : PGD	275-277 (PA)D 1275-1277  PVD	293-296 **** TGES 1293-1296 ***: TGES	**** PCAL 1453-1455 **** PCAL	448-454 :.**:* _KTGTLT 1534-1539 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV)	575-578 * : D(PI)K 1817-1823 * * D(TL)R	::*** MVTGD 1839-1843 :*:** LLSGD	541-563 : :***:**:*:*:::::::::::::::::::::::::
	270-272 * * PG(D) 1270-1272 . * : PGD	275-277 (PA)D 1275-1277  PVD	293-296 •••• TGES 1293-1296 ••••: TGES	**** PCAL 1453-1455 **** PCAL	448-454 :.**:* _KTGTLT 1534-1539 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV)	575-578 * : D(PI)K 1817-1823 * * D(TL)R	::*** MVTGD 1839-1843 :*:** LLSGD	541-563 : :***:**:*:*:::::::::::::::::::::::::
14	270-272 * * PG(D) 1270-1272 .*: PGD 437-439	275-277 (PA)D 1275-1277  PVD	293-296 **** TGES 1293-1296 ***: TGES 460-463	**** PCAL 1453-1455 **** PCAL	448-454 :.**:* _KTGTLT 1534-1539 ****** DKTGTLT 539-645	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV)	575-578 * : D(PI)K 1817-1823 * * D(TL)R	::*** MVTGD 1839-1843 :*:** LLSGD 813-817	541-563 : .:**:*:*:*::::*:: V(A)MV/GDGINDSPAL(AA)A(D)//GIA(M) 1508-1920 :.*:**:**:::**:: VAAM/GDGINDA/PALA(Q)A(D)//GI(A)L 874-895
14	270-272 ** PG(D) 1270-1272 .*: PGD 437-439 .* PGE	275-277 (PA)D 1275-1277 *.* PVD 452-454 :* (P)VD	293-296 TGES 1293-1295 ***: TGES 460-463 .**: TGES	PCAL 1453-1456 PCAL 595-599 *. : PC(A)L	448-454 :.**:* _KTGTLT 1534-1539 DKTGTLT 639-645 *****:*	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * (E)G(KPV)	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * : D(TV)K	::*** MVTGD 1839-1843 :*:** LLSGD 813-817 :::** MLTGD	541-563 : .:**:::::::::::::::::::::::::::::::::
14	270-272 ** PG(D) 1270-1272 *: PGD 437-439 .*	275-277 (PA\D 1275-1277 PVD 452-454	293-296 **** TGES 1293-1295 ***: TGES 460-463 .**:	**** PCAL 1453-1456 **** PCAL 596-599 *. :	448-454 KTGTLT 1534-1539 ****** DKTGTLT 639-645 *****:* DKTGTLT	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 *	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * :	::*** MVTGD 1839-1843 :*:** LLSGD 813-817 :::**	541-663 : .:***:*:*:: ::::: V(A)MVGDGIND8PAL(AA)A(D)VGIA(M) 1908-1920 :*:***:**:: : *:: VAAMVGDGINDAPALA(Q)A(D)VGI(A)L 874-895 *:***:*:: : .:.
14	270-272 ** PG(D) 1270-1272 .*: PGD 437-439 .* PGE	275-277 (PA)D 1275-1277 *.* PVD 452-454 :* (P)VD	293-296 TGES 1293-1295 ***: TGES 460-463 .**: TGES	PCAL 1453-1456 PCAL 595-599 *. : PC(A)L	448-454 KTGTLT 1534-1539 ****** DKTGTLT 639-645 *****:* DKTGTLT	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * (E)G(KPV)	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * : D(TV)K	::*** MVTGD 1839-1843 :*:** LLSGD 813-817 :::** MLTGD	541-563 : .:**:::::::::::::::::::::::::::::::::
14	270-272 ** PG(D) 1270-1272 .*: PGD 437-439 .* PGE 485-487 .*:	275-277 (PA/O 1275-1277 PVD 452-454 (P)VD 490-492 * : *	293-296 TGE8 1293-1295 TGE8 46D-463 .**: TGE8 508-511 	PCAL 1453-1455 PCAL 595-599 *.: PC(A)L 621-624	448-454 	455-459 + (H)G(TPV) 1540-1544 + (T)G(HPV) 646-650 + (E)G(KPV) 672-676	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * : D(TV)K 847-850 * .*	.:*** MVTGD 1839-1843 :*:** LLSGD 813-817 ** MLTGD 869-873	541-663 
14	270-272 ** PG(D) 1270-1272 *: PGD 437-439 .* PGE 485-487 .*: PGD	275-277 * (PA\D 1275-1277 * FVD 452-454 :* (PTVD 490-492 *:* PTD	293-296 TGES 1293-1296 TGES 460-463 : TGES 508-511  TGES	PCAL 1453-1456 **** PCAL 595-599 *.: PC(A)L 621-624 **** PCAL	448-454 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 546-550 * EGK(PV) 572-676 * EGK(P(E)	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * : D(TV)K 847-850 * .* D(P)PR	MVTGD 1839-1843 :*:** LLSGD 813-617 :::** MLTGD 869-673 *:*** MVTGD	541-563 : .:**:*:*:*::*::*:: V(A)MV/GDGINDSPAL(AA)A(D)/VGI/A/M) 1908-1920 : *:**:*:*::*:: VAMVGDGINDAPALA(Q)A(D)/VGI/A)L 874-995 *:**:*:*:: (VA)MVGDGINDAL(AQ)SD(V)GI/A/M 913-935 VGMIGDGINDAPALAAADVGFAI
14	270-272 ** PG(D) 1270-1272 .*: PGD 437-439 .* PGE 485-487 .*:	275-277 (PA/O 1275-1277 PVD 452-454 (P)VD 490-492 * : *	293-296 TGE8 1293-1295 TGE8 46D-463 .**: TGE8 508-511 	PCAL 1453-1455 PCAL 595-599 *.: PC(A)L 621-624	448-454 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * (E)G(KPV) 672-675 * * : *	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * : D(TV)K 847-850 * .*	MVTGD 1839-1843 :*:** LLSGD 813-817 :::** MLTGD 869-873 *:***	541-663 
14	270-272 ** PG(D) 1270-1272 *: PGD 437-439 .* PGE 485-487 .*: PGD	275-277 (PA\D 1275-1277 PVD 452-454 (PTVD 450-492 *:* PTD 366-368	293-296 TGES 1293-1296 TGES 460-463 : TGES 508-511  TGES	PCAL 1453-1456 **** PCAL 595-599 *.: PC(A)L 621-624 **** PCAL	448-454 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 546-550 * EGK(PV) 572-676 * EGK(P(E)	575-578 * : D(PI)K 1817-1823 * * D(TL)R 791-794 * : D(TV)K 847-850 * * D(PJ)PR 659-662	MVTGD 1839-1843 :*:** LLSGD 813-817 :::** MLTGD 869-873 *.*** MVTGD 682-686	541-663 : .:***:*:*: ::*:: V(A)MVGDGIND8PAL(AA)A(D)VGIA(M) 1908-1920 :**:****:::**:: VAMVGDGINDAPALA(Q)A(D)VGI(A)L 874-895 ::**:**:::: (VA)MVGDGINDAL(AQ)SD(V)GI(A)M 913-935 ****:**::::::: VGMIGDGINDAPALAAADVGFAI 725-748
14	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * * PGE 485-487 * PGD 361-363 *.	275-277 (PA\D 1275-1277  PVD 452-454  PVD 452-454  PTD 366-368 *	293-296 TGES 1293-1295 ***: TGES 460-463 .**: TGES 508-511 ***: TGES 384-387 ***	PCAL 1453-1456 **** PCAL 595-599 * PCIAL 521-524 **** PCAL 498-491 ***	448-454 *: _kTGTLT 1534-1539 DKTGTLT 539-54 539-54 DKTGTLT 554-671 DKTGTLT 531-537	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * EGK(PV) 672-676 * EGK(P(E) 538-542 *	575-578	.:*** MVTGD 139-1843 :*:** LLSGD 813-817 :::** MLTGD 869-873 *.*** MVTGD 682-686 :::**	541-563 : .:**:*:*:*::*:: V(A)MV/GDGINDSPAL(AA)A(D)/VGIA(M) 1908-1920 : .:*:**:*:*:: VAMVGDGINDAPALAA(Q)A(D)/VGI(A)L 874-995 *:**:*:*:: (VA)MVGDGINDAL(AQ)SD(V)GI(A)M 913-935 VGMIGDGINDAPALAAADVGFAI 725-748 :.***:**:*:*::::
14	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * : PGG 437-439 * : PGG 435-487 * : PGD 351-363 * : * : (P)GE	275-277 (PA/D 1275-1277 PVD 452-454 (P)/VD 452-454 (P)/VD 450-4592 *.* PTD 366-368 *	293-296 TGES 1293-1296 ***: TGES 460-463 **: TGES 508-511 ***: TGES 384-387 ***: TGE(S)	PCAL 1453-1456 **** PCAL 595-599 *_: PC(A)L 521-524 **** PCAL 488-491 *** PC(A)L	448-454 *:. _KTGTLT 1534-1539  DKTGTLT 539-545  DKTGTLT 534-571  DKTGTLT 531-537 DKTGTLT  DKTGTLT	455-459 * (H)G(TPV) 1540-1544 * (E)G(KPV) 545-650 * (E)G(KPV) 572-676 * * EG(KPE) 538-542 * (E)G(KPQ)	575-578 * : DVPUK 1817-1823 * * DVTVK 847-850 * * DVFUR 847-850 * * DVPPR 655-662 * DVALR		541-563 
14	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * * PGE 485-487 * PGD 361-363 *.	275-277 (PA\D 1275-1277  PVD 452-454  PVD 452-454  PTD 366-368 *	293-296 TGES 1293-1295 ***: TGES 460-463 .**: TGES 508-511 ***: TGES 384-387 ***	PCAL 1453-1456 **** PCAL 595-599 * PCIAL 521-524 **** PCAL 498-491 ***	448-454 *: _kTGTLT 1534-1539 DKTGTLT 539-54 539-54 DKTGTLT 554-671 DKTGTLT 531-537	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * EGK(PV) 672-676 * EGK(P(E) 538-542 *	575-578	.:*** MVTGD 139-1843 :*:** LLSGD 813-817 :::** MLTGD 869-873 *.*** MVTGD 682-686 :::**	541-563 : .:**:*:*:*::*:: V(A)MV/GDGINDSPAL(AA)A(D)/VGIA(M) 1908-1920 : .:*:**:*:*:: VAMVGDGINDAPALAA(Q)A(D)/VGI(A)L 874-995 *:**:*:*:: (VA)MVGDGINDAL(AQ)SD(V)GI(A)M 913-935 VGMIGDGINDAPALAAADVGFAI 725-748 :.***:**:*:*::::
14	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * : PGE 485-487 * : PGD 351-363 * : (P)GE 351-353	275-277 (PA/D 1275-1277 PVD 452-454 (P)/VD 452-454 (P)/VD 450-4592 *.* PTD 366-368 *	293-296 **** TGE8 1293-1296 ***: TGE8 460-463 ***: TGE8 508-511 ***: TGE8 384-387 ***: TGE8 384-387 ***: TGE8 384-387 ***:	PCAL 1453-1456 PCAL 596-599 *.: PCIAL 596-599 *.: PCIAL 621-624 **** PCAL 488-491 *** PCAL 488-491	448-454 *:. _KTGTLT 1534-1539  DKTGTLT 539-545  DKTGTLT 534-571  DKTGTLT 531-537 DKTGTLT  DKTGTLT	455-459 + (H)G(TPV) 1540-1544 + (T)G(HPV) 546-650 + (E)G(KPV) 572-676 + * EGKP(E) 538-542 + (E)G(KPQ) 528-532	\$75-578 * : DVPUK 1817-1823 * * * DVTUR 591-794 * : DVTUR 591-794 * : DVPUR 595-662 * : DVALR 661-664		541-663 
14 15 16 17	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * PGE 485-487 * * PGG 351-363 * : * : * : * : * : PGG 351-363 * :	275-277 (PA/D 1275-1277 * * PVD 452-454 : (P)/VD 452-454 : PVD 450-452 * * PTD 366-368 * PVD 356-358 *	293-296 TGES 1293-1296 ***: TGES 460-463 ***: TGES 508-511 **** TGES 384-387 **** TGES 384-387 ***** ***** ****** **************	PCAL 1453-1455 **** PCAL 595-595 595-592 PCAL 521-524 **** PCAL 488-491 * * PCAL 488-491 * * * PCIAL 478-481	448-454 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 672-676 * EGK(P(E) 538-542 * EGK(P(E) 528-532 * *	575-578 * : DVPUK 1817-1823 * * DVTUK 8071-794 * : DVTUK 847-850 * * DVPUFR 659-664*		541-563 
14 15 16 17 18	270-272 ** PG(D) 1270-1272 *: PGD 437-439 * PGE 485-487 *: PGD 361-363 *: PGD 351-353 *** PGE	275-277 (PA/D 1275-1277 PVD 452-454 (Pf/VD 452-454 (Pf/VD 450-492 *:* PTD 366-368 * PVD 366-358 * *	293-296 TGES 1293-1296 ***: TGES 460-463 TGES 508-511 **** TGES 384-387 *** TGE(S) 374-377 TGE(S)	PCAL 1453-1456 *** PCAL 596-599 *.: PCIAL 521-624 *** PCAL 488-491 *** PCAL 488-491 *** PCAL **** PCAL	448-454 *: JKTGTLT 1534-1539  DKTGTLT 539-645 DKTGTLT 531-537 DKTGTLT 531-537 DKTGTLT 521-527 DKTGTLT 521-527 DKTGTLT	455-459 + (H)G(TPV) 1540-1544 + (T)G(HPV) 646-650 + (E)G(KPV) 672-676 + + EGK(P(E) 538-542 + (E)G(KPQ) 528-532 + (E)G(KPV)E	575-578	.:*** WVTGD 1839-1843 :*:** LLSGD 813-817 :::** MLTGD 682-686 :::** MLTGD 684-688 *.*** MLTGD 684-688	541-663 : .:**::*:: ::::: V(A)MV/GDGIND8PAL(AA)A(D)//GIA/M) 1908-1920 : **:**:**:::*::: VAMV/GDGINDAPALA(Q)A(D)//GIA/M 973-935 *:**:**::::::: VGMIGDGINDAPALA(A)SD(V)GFAI 725-748 : ***:**::::::::::::::::::::::::::::::
14 15 16 17 18	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * PGE 485-487 * * PGG 351-363 * : * : * : * : * : PGG 351-363 * :	275-277 (PA/D 1275-1277 * * PVD 452-454 : (P)/VD 452-454 : PVD 450-452 * * PTD 366-368 * PVD 356-358 *	293-296 TGES 1293-1296 ***: TGES 460-463 ***: TGES 508-511 **** TGES 384-387 **** TGES 384-387 ***** ***** ****** **************	PCAL 1453-1456 *** PCAL 596-599 *.: PCIAL 521-624 *** PCAL 488-491 *** PCAL 488-491 *** PCAL **** PCAL	448-454 	455-459 + (H)G(TPV) 1540-1544 + (T)G(HPV) 646-650 + (E)G(KPV) 672-676 + + EGK(P(E) 538-542 + (E)G(KPQ) 528-532 + (E)G(KPV)E	575-578 * : DVPUK 1817-1823 * * DVTUK 8071-794 * : DVTUK 847-850 * * DVPUFR 659-664*		541-563 
14 15 16 17 18	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * PGE 485-487 * * PGO 361-363 361-363 * * PGE 257-259	275-277 (PA/D 1275-1277 PVD 452-454 (Pf/VD 452-454 (Pf/VD 450-492 *:* PTD 366-368 * PVD 366-358 * *	293-296 TGES 1293-1296 ***: TGES 460-463 ***: TGES 508-511 *** TGES 384-387 TGE(S) 374-377 *** TGE(S) 280-283	PCAL 1453-1456 **** PCAL 595-599 *_: PCIAL 521-524 **** PCAL 488-491 **** PCAL 488-491 **** PCIAL 475-481 **** PCAL 384-387	448-454 *: _KTGTLT 1534-1539  DKTGTLT 539-545  DKTGTLT 539-545  DKTGTLT 539-545  DKTGTLT 531-527  DKTGTIT 531-527  DKTGTIT 427-433	455-459 + (H)G(TPV) 1540-1544 + (T)G(HPV) 646-650 + (E)G(KPV) 672-676 + + EGK(P(E) 538-542 + (E)G(KPQ) 528-532 + (E)G(KPV)E	575-578		541-563 
14 15 16 17 18 18	270-272 ** PG(D) 1270-1272 * * PGD 437-439 * PGD 437-439 * PGG 361-363 * * PGG 351-353 * * PGE 257-259 . *:	275-277 (PA/D 1275-1277 PVD 452-454 (P/VD 452-454 (P/VD 452-454 *:* PVD 366-368 *:* PVD 366-368 * PVD 366-358 * * *	293-296 TGES 1293-1296 ***: TGES 1293-1296 ***: TGES 508-511 **** TGES 508-511 **** TGES 384-387 **** TGE(S) 394-377 TGE(S) 290-283 ***:	PCAL 1453-1456 **** PCAL 596-599 *.: PCIAL 521-624 **** PCAL 488-491 **** PCAL 488-491 **** PCAL 488-491 **** PCAL 488-491 **** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCIAL 596-599 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 596-599 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ******	448-454 *: JKTGTLT 1534-1539  DKTGTLT 539-645 DKTGTLT 539-645 DKTGTLT 531-537  DKTGTLT 531-537  DKTGTLT 521-527  DKTGTLT 427-433 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * (E)G(KPV) 672-676 * * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KP)E 434-438 *	575-578		541-663 : .:***:*:*:*::*:: V(A)MV/GDGIND8PAL/AA)A(D)//GIA/M) 1908-1920 : ***:***::***:: VAMV/GDGINDAPAL/A(Q)A(D)//GIA/L 874-895 (VAMV/GDGINDAPAL/A(Q)SD(V)GI(A)/L 913-935 ************************************
14 15 16 17 18 18	270-272 ** PG(D) 1270-1272 ** PG(D) 1270-1272 ** PG(D) 437-439 ** PG(D) 437-439 ** PG(D) 361-363 ** ** PG(D) 361-363 ** ** PG(D) 257-259 ** PG(E) PG(E) 257-259 ** PG(E) PG(E)	275-277 (PA/D 1275-1277 PVD 452-454 (PIVD 452-454 (PIVD 366-368 PVD 366-368 * * PVD 356-358 * P(A)D 356-358 * P(A)D 356-358	293-296 TGES 1293-1296 ***: TGES 460-463 .**: TGES 508-511 **** TGES 508-511 **** TGES 304-387 *** TGE(S) 280-283 ***: TGES	PCAL 1453-1456 **** PCAL 595-599 *.: PCIAL 595-599 *.: PCIAL 488-491 **** PCAL 488-491 **** PCAL 384-387 **** PCAL	448-454 *: KTGTLT 1534-1539 ****** 539-545 ****** DKTGTLT 559-545 ****** DKTGTLT 521-527 ****** DKTGTLT 521-527 ****** DKTGTLT 521-527	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 546-650 * (E)G(KPV) 572-676 * * EGK(F)E) 538-542 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) (E)G(KPQ) 528-532 * (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (	575-578		541-663 : .:***:*:*:*::*:: VIAIMVGDGIND8PAL(AA)A(D)VGIA(M) 1906-1920 :*:******::*:: VAAMGDGINDAPALA(Q)A(D)VGI(A)L 874-895 (VAIMVGDGINDAPALA(Q)SD(V)GI(A)M 913-935 VGMIGDGINDAPALA(AQ)SD(V)GI(A)M 913-935 VGMIGDGINDAPALA(A)AD(V)SFAI 727-749 : ************************************
14 15 16 17 18 18	270-272 ** PG(D) 1270-1272 * * PGD 437-439 * PGD 437-439 * PGG 361-363 * * PGG 351-353 * * PGE 257-259 . *:	275-277 (PA/D 1275-1277 PVD 452-454 (P/VD 452-454 (P/VD 452-454 *:* PVD 366-368 *:* PVD 366-368 * PVD 366-358 * * *	293-296 TGES 1293-1296 ***: TGES 1293-1296 ***: TGES 508-511 **** TGES 508-511 **** TGES 384-387 **** TGE(S) 394-377 TGE(S) 290-283 ***:	PCAL 1453-1456 **** PCAL 596-599 *.: PCIAL 521-624 **** PCAL 488-491 **** PCAL 488-491 **** PCAL 488-491 **** PCAL 488-491 **** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCAL 596-599 ***** PCIAL 596-599 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 596-599 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** PCIAL 597-524 ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ******	448-454 *: JKTGTLT 1534-1539  DKTGTLT 539-645 DKTGTLT 539-645 DKTGTLT 531-537  DKTGTLT 531-537  DKTGTLT 521-527  DKTGTLT 427-433 	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 646-650 * (E)G(KPV) 672-676 * * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KP)E 434-438 *	575-578		541-663 : .:***:*:*:*::*:: V(A)MV/GDGIND8PAL/AA)A(D)//GIA/M) 1908-1920 : ***:***::***:: VAMV/GDGINDAPAL/A(Q)A(D)//GIA/L 874-895 (VAMV/GDGINDAPAL/A(Q)SD(V)GI(A)/L 913-935 ************************************
14 15 16 17 18 18	270-272 * * PG(D) 1270-1272 * : PGD 437-439 * PGD 437-439 * PGD 437-439 * PGD 361-363 * * PGD 361-363 * PGD 361-353 * PGE 257-259 PGE 435-487	275-277 (PA/D 1275-1277 PVD 452-454 (P/VD 452-454 (P/VD 356-368 PVD 356-358 * PVD 356-358 * P(V)D 262-254 * P(V)D 262-254	293-296 TGES 1293-1296 TGES 1293-1296 ***: TGES 460-463 ***: TGES 508-511 **** TGES 394-387 *** TGES 374-377 *** TGES 374-377 *** TGES 1280-283 *** TGES 469-462	PCAL     1453-1456     ***     PCAL     596-599     *     *     PCAL     597-599     PCIAL     S21-524     ***     PCAL     488-491     *     *     PCAL     488-491     *     *     PCAL     384-387     *     PCAL     384-387     *     PCAL     565-568	448-454 *: KTGTLT 1534-1539 ****** 539-645 ***** DKTGTLT 539-645 ***** DKTGTLT 564-671 ***** 564-671 ***** DKTGTLT 531-537 ***** DKTGTLT 521-527 ***** DKTGTLT 521-527 ***** DKTGTLT 521-527	455-459 + (H)G(TPV) 1540-1544 + (T)G(HPV) 646-650 + (E)G(KPV) 672-676 + + (E)G(KPQ) 528-532 + (E)G(KPQ) 528-532 + (E)G(KPQ) 528-532 + (E)G(KPQ) 528-532 + (E)G(KPE) 515-619	575-578		541-663 : .:***:*:*:: ::::: VIAIMUGDGINDSPAL(AA)A(D)/VGIA(M) 1908-1920 :*:***:**:: :*:: VAMUGDGINDAPALA(Q)A(D)/VGI(A)L 874-895 *:***:*:: (VAIMUGDGINDAPALA(Q)SD(V)GI(A)M 913-935 *****:*:: VGMIGDGINDAPALA(AQ)SD(V)GI(A)M 913-935 *****::::: VGMIGDGINDAPALA(AQ)AD/VGFAI 725-748 :.::::: VAMVVjGDGINDAPALA(A)AD/V/SFAI 727-749 ************************************
14 15 16 17 18 19	270-272 ** PG(D) 1270-1272 ** PG(D) 1270-1272 ** PG(D) 437-439 ** PG(D) 437-439 ** PG(D) 361-363 ** ** PG(D) 361-363 ** ** PG(D) 257-259 ** PG(E) PG(E) 257-259 ** PG(E) PG(E)	275-277 (PA/D 1275-1277 PVD 452-454 (PIVD 452-454 (PIVD 366-368 PVD 366-368 * * PVD 356-358 * P(A)D 356-358 * P(A)D 356-358	293-296 TGES 1293-1296 ***: TGES 460-463 .**: TGES 508-511 **** TGES 508-511 **** TGES 304-387 *** TGE(S) 280-283 ***: TGES	PCAL 1453-1456 **** PCAL 595-599 *.: PCIAL 595-599 *.: PCIAL 488-491 **** PCAL 488-491 **** PCAL 384-387 **** PCAL	448-454 *: _KTGTLT 1534-1539  DKTGTLT 539-545  DKTGTLT 539-545  DKTGTLT 539-545  DKTGTLT 531-537  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT 521-527  DKTGTLT   DKTGTLT   DKTGTLT    DKTGTLT                                                                                                                                                                                                                                              	455-459 * (H)G(TPV) 1540-1544 * (T)G(HPV) 546-650 * (E)G(KPV) 572-676 * * EGK(F)E) 538-542 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) 528-532 * (E)G(KPQ) (E)G(KPQ) 528-532 * (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (E)G(KPQ) (	575-578 * : DI/FU/K 1817-1823 * * DI/T-1823 * * DI/TU/K 847-850 * : DI/TU/K 847-850 * : DI/FU/R 847-850 * : DI/FU/R 661-664 : : CI/TU/K 741-744 * : :		541-663 : .:***:*:*:*::*:: VIAIMVGDGIND8PAL(AA)A(D)VGIA(M) 1906-1920 :*:******::*:: VAAMGDGINDAPALA(Q)A(D)VGI(A)L 874-895 (VAIMVGDGINDAPALA(Q)SD(V)GI(A)M 913-935 VGMIGDGINDAPALA(AQ)SD(V)GI(A)M 913-935 VGMIGDGINDAPALA(A)AD(V)SFAI 727-749 : ************************************

**Table 3.** Motif analyses of the 20 clusters representing the Copper P-type ATPaseFamily

	Abb.	Description	Organism	Length	GI#
		B.kaustophilus 16S ribosomal	Geobacillus		
	Gka1	RNA	kaustophilus	1432	39549
,	Marcad	Mycobacterium marinum 16S	Musshaatarium marinum	1400	44450
2	Mma1	rRNA gene	Mycobacterium marinum	1489	44459
3	Veb1	V.cholerae gene for 16S ribosomal RNA	Vibrio cholerae	1450	40417
5	Vch1	Agrobacterium tumefaciens 16S	Agrobacterium	1452	49417
1	Atu1	rRNA gene	tumefaciens	1489	142272
5	Fsp1	Frankia sp. 16S ribosomal RNA	Frankia sp.	1469	174593
<u> </u>	гэрт	Listeria monocytogenes 16S	Flatikia sp.	1443	174595
6	Lmo1	ribosomal RNA	Listeria monocytogenes	1553	175140
<u> </u>	Linor	Legionella pneumophila 16S	Elstena monocytogenes	1000	1/0140
7	Lpn1	ribosomal RNA	Legionella pneumophila	1544	175168
	Epini	Methanococcus	Eegionella prioarrioprilla	1011	
		thermolithotrophicus 16S	Methanothermococcus		
В	Mth1	ribosomal RNA	thermolithotrophicus	1452	175445
-		P.aeruginosa 16S ribosomal	Pseudomonas		
9	Pae1	RNA	aeruginosa	1517	175722
		Treponema pallidum 16S			
10	Tpa1	ribosomal RNA	Treponema pallidum	1573	176249
		Thermoanaerobacter finii (DSM			
		3389) 16S ribosomal RNA (16S	Thermoanaerobacter		
11	Tbr1	rRNA) gene	brockii subsp. finnii	1523	349568
			Methanococcoides		
12	Mbu1	M.burtonii gene for 16S rRNA	burtonii	1476	434307
			Acinetobacter		
		Acinetobacter anitratus ATCC	calcoaceticus subsp.		
13	Aca1	15308 16S rRNA gene	anitratus	1528	506689
		Chloroflexus aurantiacus gene			
		for 16S ribosomal RNA, partial	Chloroflexus		
14	Cau1	sequence	aurantiacus J-10-fl	1401	550527
		Leptospira weilii Sarmin 16S			
15	Lwe1	rRNA gene, partial sequence	Leptospira weilii	1486	558932
		Bradyrhizobium spec. (LMG	<b>.</b>		
16	Bsp1	9980) gene for 16S rRNA	Bradyrhizobium sp.	1441	563846
		Staphylococcus aureus 16S			
47	Onut	ribosomal RNA (16S rRNA)	Oten hude en course ourse	4500	570000
17	Sau1	gene	Staphylococcus aureus	1500	576603
10	Vnc1	Yersinia pestis 16S ribosomal	Varcinia postia	1467	576926
18	Ype1	RNA (16S rRNA) gene K.aurantiacus (IFO 15268) 16S	Yersinia pestis Kineococcus	1467	576926
19	Kau1	rRNA gene	aurantiacus	1417	609073
19	Nau	Pyrococcus furiosus 16S small	aurantiacus	1417	009073
20	Pfu1	subunit ribosomal RNA	Pyrococcus furiosus	1495	643670
20	- Iui	Pelobacter carbinolicus 16S	i yrococcus fuffosus	1435	043070
		ribosomal RNA gene, partial			
21	Pca1	sequence	Pelobacter carbinolicus	1414	727426
<u> </u>	ruar	Thiomicrospira denitrificans 16S	r cionacter caminolicus	1414	121420
		ribosomal RNA (16S rRNA)	Sulfurimonas		
22	Sde1	gene, partial sequence	denitrificans DSM 1251	1446	790922
-2	Guer	gene, partial sequence	demunicana Dowr 1201	1440	130922
		Exiguobacterium acetylicum 16S	Exiquobacterium		
23	Eac1	rRNA gene, partial sequence	acetylicum	1482	893364
	2001	n an gono, partar ocquerice	assynouri	. 102	000004

**Table 4.** The organisms whose16S rRNAs were used to construct a phylogenetic tree representing each genus found among the 385 protein sequences representing the Copper P-type ATPases.

	1	S.thermovulgaris 16S rRNA	Streptomyces		1
24	Sth1	gene	thermovulgaris	1486	1071779
24	Sull	Synechococcus elongatus gene	Synechococcus	1400	10/1//3
25	Sel1	for 16S rRNA	elongatus	1453	1213586
25	Jen	E.coli (ATCC 11775T) gene for	eloligatus	1455	1215500
26	Eco1	16S rRNA	Escherichia coli	1450	1240022
20	2001	10011017	Methanothermobacter	1450	1240022
27	Mde1	M.defluvii 16S rRNA gene	defluvii	1445	1430856
21	macr	Actinobacillus porcinus 16S	dendrin	1110	1400000
		ribosomal RNA gene, partial			
28	Apo1	sequence	Actinobacillus porcinus	1466	1519226
		Silicibacter lacuscaerulensis 16S			
		ribosomal RNA gene, partial	Silicibacter		
29	Sla1	sequence	lacuscaerulensis	1339	1737206
		Salmonella typhi 16S ribosomal			
30	Sty1	RNA gene, complete sequence	Salmonella typhi	1541	1857865
		RNA gene, complete sequence Desulfitobacterium sp. 16S			
31	Dsp1	rRNA gene, clone 2	Desulfitobacterium sp.	1616	1915888
		Moorella glycerini 16S small			
		subunit ribosomal RNA gene,			
32	Mgl1	complete sequence	Moorella glycerini	1513	1916225
33	Cpe1	C.perfringens 16S rRNA gene	Clostridium perfringens	1504	2058294
		16S rRNA gene of Pasteurella			
34	Pmu1	multocida	Pasteurella multocida	1545	2173518
		Bordetella bronchiseptica 16S	Bordetella		
35	Bbr1	rRNA gene	bronchiseptica	1532	2174260
20	12	Klebsiella oxytoca gene for 16S	Kish sisher and taken		22000.40
36	Kox1	ribosomal RNA, partial sequence	Klebsiella oxytoca	1441	2209046
37	Con1	Syntrophobacter sp. 16S ribosomal RNA	Cumtranhahaatar an	1484	2463455
51	Ssp1	Gluconobacter oxydans gene for	Syntrophobacter sp.	1404	2463435
38	Cov1	16S rRNA	Chusensheeter ovudene	1476	2597906
30	Gox1	Lactobacillus johnsonii 16S	Gluconobacter oxydans	1476	2597906
39	Ljo1	rRNA gene	Lactobacillus johnsonii	1487	2597958
55	LJOT	Photobacterium profundum gene	Lactobacillus jornisorili	1407	2331330
		for 16S ribosomal RNA,	Photobacterium		
40	Ppr1	strain:SS9	profundum SS9	1518	2924634
40	1 111	Nostoc ATCC53789 16S	protundum 000	1310	2024004
		ribosomal RNA gene, partial			
41	Nsp1	sequence	Nostoc sp. ATCC 53789	1481	3132717
		Rubrivivax gelatinosus gene for			
42	Rae1		Rubrivivax gelatinosus	1471	3327378
42	Rge1	16S rRNA, partial sequence	Rubrivivax gelatinosus	1471	3327378
42					3327378
42 43	Rge1 Neu1	16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence	Rubrivivax gelatinosus Nitrosomonas europaea		3327378 3414677
		16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence Trichodesmium contortum 16S	Nitrosomonas europaea		
43	Neu1	16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence		1520	3414677
		16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence Trichodesmium contortum 16S ribosomal RNA gene, partial sequence	Nitrosomonas europaea		
43 44	Neu1	16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence Trichodesmium contortum 16S ribosomal RNA gene, partial	Nitrosomonas europaea Trichodesmium	1520 1438	3414677 3559793
43	Neu1	16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence Trichodesmium contortum 16S ribosomal RNA gene, partial sequence Haloarcula sp. gene for 16S rRNA	Nitrosomonas europaea Trichodesmium contortum Haloarcula sp.	1520	3414677
43 44	Neu1 Tco1	16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence Trichodesmium contortum 16S ribosomal RNA gene, partial sequence Haloarcula sp. gene for 16S rRNA Fusobacterium nucleatum	Nitrosomonas europaea Trichodesmium contortum Haloarcula sp. Fusobacterium	1520 1438	3414677 3559793
43 44	Neu1 Tco1	16S rRNA, partial sequence Nitrosomonas europaea 16S ribosomal RNA gene, complete sequence Trichodesmium contortum 16S ribosomal RNA gene, partial sequence Haloarcula sp. gene for 16S rRNA	Nitrosomonas europaea Trichodesmium contortum Haloarcula sp. Fusobacterium	1520 1438	3414677 3559793

47	Hsp2	Halobacterium sp. AUS-1 DNA for 16S ribosomal RNA	Halobacterium sp. AUS- 1	1465	4580005
		Serratia marcescens 16S			
		ribosomal RNA gene, partial			
48	Sma1	sequence	Serratia marcescens	1494	4883843
		Streptococcus mutans 16S			
49	Smu1	rRNA gene, strain NCTC 10449	Streptococcus mutans	1512	5578899
10	omar	Cytophaga fucicola 16S rRNA		1012	
		gene, type strain NN015860,			
50	Cfu1	partial	Cellulophaga fucicola	1472	5701823
		Enterococcus faecalis 16S			
		ribosomal RNA gene, partial			
51	Efa1	sequence	Enterococcus faecalis	1510	5732229
		Rubrobacter xylanophilus partial	Rubrobacter		
52	Rxy1	16S rRNA gene	xylanophilus	1509	6006622
		Dehalococcoides ethenogenes			
<b>F 2</b>	D (1	16S ribosomal RNA gene, partial		4424	759 4995
53	Det1	sequence Bdellovibrio bacteriovorus strain	ethenogenes	1434	7524025
		TRA2 16S ribosomal RNA gene,	Bdellovibrio		
54	Bba1	partial sequence	bacteriovorus	1380	8131956
94	DDai	partial sequence	bacteriovorus	1500	0131330
		Anabaena bergii 16S ribosomal			
55	Abe1	RNA gene, partial sequence	Anabaena bergii	1399	8571953
		Azoarcus tolulyticus strain	, and been a song a		
		4FB10 16S ribosomal RNA			
56	Ato1	gene, partial sequence	Azoarcus tolulyticus	1454	9965637
		Archaeoglobus profundus 16S			
		ribosomal RNA gene, partial	Archaeoglobus		
57	1-Apr	sequence	profundus	1480	10444409
	0.11.0	Symbiobacterium thermophilum	Symbiobacterium	4.470	44070470
58	Sth2	DNA for 16S rRNA	thermophilum	1479	11079170
		Tropheryma whippelii 16S ribosomal RNA gene, partial	Tropheryma whipplei str.		
59	Twh1		Twist	1484	13507079
59	TWIT	sequence Mannheimia sp. 55E 16S	i wist	1404	13507075
		ribosomal RNA gene, partial	Mannheimia		
60	Msu1	sequence	succiniciproducens	1392	13752230
20		Anaeromyxobacter			
		dehalogenans strain 2CP-3 16S			
		ribosomal RNA gene, partial	Anaeromyxobacter		
61	Ade1	sequence	dehalogenans	1548	14485223
		Pediococcus damnosus 16S	-		
62	Pda1	rRNA gene, strain DSM 20331	Pediococcus damnosus	1561	14572624
~~	-	Thermotoga thermarum gene for			
63	Tth1	16S rRNA	Thermotoga thermarum	1471	14587794
~ ′		Synechocystis PCC6805 gene	Synechocystis sp. PCC	4.407	100 1505
64	Ssp2	for 16S rRNA, partial sequence	6805	1437	16215699
GE	Acrt	Aquifex sp. Ob6 partial 16S	Aquifox on ObC	1500	16044020
65	Asp1	rRNA gene, strain Ob6	Aquifex sp. Ob6	1500	16944830
		Pelodictyon phaeum partial 16S			
66	Pph1	rRNA gene, strain CIB 2401	Pelodictyon phaeum	1453	18076421
	IL MILL	ITTA A GOLD, SUBILI OID 2401	r clouictyon phaeum	1455	10070421

		Pyrobaculum organotrophum	B		
c7	De e1	gene for 16S rRNA, partial	Pyrobaculum	1400	10142420
67	Por1	sequence, strain:JCM 9190 Methanosarcina acetivorans str.	organotrophum Methanosarcina	1426	18143436
68	Mac1	C2A, complete genome	acetivorans C2A	5751492	19918815
00	Waci	Chlorobium tepidum TLS,	Chlorobium tepidum	5751452	13310015
69	Cte1	complete genome	TLS	2154946	21672841
00		Chromobacterium sp. 70 16S	120	2104040	21072041
		ribosomal RNA ribosomal RNA			
70	Csp1	gene, complete sequence	Chromobacterium sp. 70	1455	21898816
			Thermococcus		
71	Tco2	for 16S rRNA	coalescens	1489	31711492
		Candidatus Fritschea eriococci			
		strain Elm 16S ribosomal RNA			
		and 23S ribosomal RNA genes,	Candidatus Fritschea		
72	CFr1	complete sequence	eriococci	4531	31747860
		Azotobacter vinelandii DSM576			
		16S ribosomal RNA gene, partial			
73	Avi1	sequence	Azotobacter vinelandii	1398	33242483
		Methylococcus capsulatus			
74		partial 16S rRNA gene, strain	Methylococcus	4.40.4	47457705
74	Mca1	Texas Xanthomonas campestris pv.	capsulatus	1481	47457725
		coriandri 16S ribosomal RNA	Xanthomonas		
76	Xca1			1500	47524526
75	Acal	gene, partial sequence Wolinella succinogenes strain	campestris pv. coriandri	1502	47524536
		ATCC 29543 16S ribosomal			
76	Wsu1	RNA, partial sequence	Wolinella succinogenes	1481	47558942
10	WSUT	Propionibacterium acnes isolate	Wollfiella succifiogenes	1401	47550542
		WD1 16S ribosomal RNA gene,	Propionibacterium		
77	Pac1	partial sequence	acnes	1484	50082577
	1 act	Oceanobacillus iheyensis strain	acrico	1404	00002011
		MSU3110 16S ribosomal RNA	Oceanobacillus		
78	Oih1	gene, partial sequence	iheyensis	1455	50980367
		3			
		Corynebacterium glutamicum			
		strain CICC10226 16S ribosomal			
79	Cgl1	RNA gene, partial sequence	glutamicum	1472	55735425
		Desulfotalea sp. SFA4 partial	-		
80	Dsp2	16S rRNA gene	Desulfotalea sp. SFA4	1360	56409896
		Heliobacillus mobilis gene for			
81	Hmo1	16S rRNA, partial sequence	Heliobacillus mobilis	1482	56692171
		Photorhabdus luminescens			
		subsp. luminescens strain ATCC			
		29999 16S ribosomal RNA	luminescens subsp.		
82	Plu1	gene, partial sequence	luminescens	1475	58042756
		Jannaschia seosinensis strain			
		CL-SP26 16S ribosomal RNA		1001	5000 1100
83	Jse1	gene, partial sequence	Jannaschia seosinensis	1384	59804128
~ /	- ·	Bacillus subtilis partial 16S rRNA	D 111 1 420	4500	00000070
84	Bsu1	gene, isolate SMF7	Bacillus subtilis	1522	60098072
		Zymomonas mobilis strain			
	_	XW101 16S ribosomal RNA			
85	Zmo1	gene, partial sequence	Zymomonas mobilis	1343	61676855

<b>—</b>	1	Coxiella endosymbiont of		1	
		Amblyomma americanum 16S	Coxiella endosymbiont		
		ribosomal RNA gene, partial	of Amblyomma		
86	Cen1	sequence	americanum	1469	62999434
		Burkholderia pyrrocinia isolate			
		RG6-5 16S ribosomal RNA			
87	Bpy1	gene, partial sequence	Burkholderia pyrrocinia	1387	63020470
		Paracoccus ferrooxidans strain			
		BDN-1 16S ribosomal RNA	Paracoccus		
88	Pfe1	gene, partial sequence	ferrooxidans	1418	63020950
		Deinococcus sp. CC-FR2-10			
89	Dfi1	16S ribosomal RNA gene, partial		1452	66394748
09	חוט	sequence Colwellia aestuarii strain SMK-	Deinococcus ficus	1453	00394740
		10 16S ribosomal RNA gene,			
90	Cae1	partial sequence	Colwellia aestuarii	1496	66734249
50	Jaci	partial sequence	Comenia acoluani	1400	00704240
		Polaromonas aquatica 16S			
91	Paq1	rRNA gene, strain CCUG 39797	Polaromonas aquatica	1407	68051131
	<u> </u>	Magnetospirillum sp. PM2411	Magnetospirillum sp.		
92	Msp1	gene for 16S ribosomal RNA	PM2411	1455	68533196
		Geobacter sp. CLFeRB 16S			
		ribosomal RNA gene, complete			
93	Gsp1	sequence	Geobacter sp. CLFeRB	1485	70906126
~ .	<b>D</b> 4	Dechloromonas aromatica RCB,	Dechloromonas	1501101	74045000
94	Dar1	complete genome	aromatica RCB	4501104	71845263
		Thiobacillus sp. EBD bloom 16S ribosomal RNA gene, partial	Thiobacillus sp. EBD		
95	Tsp1	sequence	bloom	1408	77455743
55	тэрт	Rhodoterax sp. PIC-C33 16S	bioom	1400	11433143
		ribosomal RNA gene, partial			
96	Rsp1	sequence	Rhodoferax sp. PIC-C33	1473	77994459
		Nitrobacter vulgaris partial 16S	F		
		rRNA gene, type strain DSM			
97	Nvu1	10236T	Nitrobacter vulgaris	1441	78271519
		Idiomarina sp. AN-BI1D 16S			
98	lsp1	rRNA gene, strain AN-BI1D	Idiomarina sp. AN-BI1D	1371	82173853
		Haemophilus sp. oral clone	l la anna a bilite an anni		
99	Hsp3	ASCB01 16S ribosomal RNA	Haemophilus sp. oral clone ASCB01	1555	82582885
99	пярэ	gene, complete sequence Methylobacillus flagellatus strain	CIONE ASCOUT	1000	02002000
		KT 16S ribosomal RNA gene,	Methylobacillus		
100	MfI1	partial sequence	flagellatus	1400	83272653
100		Desulfuromonas alkaliphilus	lagenatus	1400	00272000
		strain Z-0531 16S ribosomal	Desulfuromonas		
101	Dal1	RNA gene, partial sequence	alkaliphilus	1504	83595213
		Thermobilida fusca 16S			
		ribosomal RNA gene, partial			
102	Tfu1	sequence	Thermobifida fusca	1448	83722780
		Erwinia persicina strain GS04			
100	Fred	16S ribosomal RNA gene, partial		4.470	00404505
103	Epe1	sequence	Erwinia persicina	1470	86161535
		Raistonia sp. PHD-12 16S ribosomal RNA gene, partial			
104	Den2	<b>S</b>	Paletonia en DHD 12	1493	87312602
104	Rsp2	sequence	Ralstonia sp. PHD-12	1455	07312002

105		Rhodopseudomonas sp.			
105	1	TUT3627 gene for 16S rRNA,	Rhodopseudomonas sp.		
105	Rsp3	partial sequence	TUT3627	1482	88606680
	Кара	Campylobacter sp. 150B 16S	1013027	1402	00000000
		ribosomal RNA gene, partial			
106	Csp2	sequence	Campylobacter sp. 150B	1390	89114015
	0002	Bacteroides dorei gene for 16S			
		rRNA, partial sequence,			
107	Bdo1	strain:JCM 13472	Bacteroides dorei	1490	89242107
	<u> </u>	Microbulbiter sp. KBB-1 16S			
		ribosomal RNA gene, partial			
108	Msp2	sequence	Microbulbifer sp. KBB-1	1500	89258479
		Neisseria sp. J01 16S ribosomal			
109	Nsp2	RNA gene, partial sequence	Neisseria sp. J01	1502	89277202
		Sphingopyxis sp. EMB 355 16S			
		ribosomal RNA gene, partial	Sphingopyxis sp. EMB		
110	Ssp3	sequence	355	1407	89348125
		Rhodobacter azotoformans	Dhadahaataa		
	D-1	strain S3 16S ribosomal RNA	Rhodobacter	1450	00257404
111	Raz1	gene, partial sequence	azotoformans	1459	89357194
		Rhizobium sp. As-2 16S			
112	Dec4	ribosomal RNA gene, partial	Dhinahium an An C	1204	00052754
112	Rsp4	sequence Rhizobium sp. Lv6.1Se 16S	Rhizobium sp. As-2	1391	89953754
		ribosomal RNA gene, partial			
113	Rsp5	sequence	Rhizobium sp. Lv6.1Se	1446	89954503
115	кърэ	Psychrobacter sp. AM11 partial	Rhizobium sp. Lvo. i Se	1440	05554505
114	Psp1	16S rRNA gene, isolate AM11	Psychrobacter sp. AM11	1501	90071222
114	гэрт	Mesorhizobium tianshanense	F sychlobacter sp. Alviri	1501	30011222
		strain RCAN08 16S ribosomal	Mesorhizobium		
115	Mti1	RNA gene, partial sequence	tianshanense	1479	90186421
110		Helicobacter canadensis strain	landranerise	1410	00100421
		L231 16S ribosomal RNA gene,			
116	Hca1	partial sequence	Helicobacter canadensis	1407	90194336
		Brucella cetaceae partial 16S			
117	Bce1	rRNA gene, strain NCTC 12891	Brucella cetaceae	1430	90818672
		Proteus mirabilis strain O 16S			
		ribosomal RNA gene, partial			
118	Pmi1	sequence	Proteus mirabilis	1451	90856205
		Syntrophomonas wolfer subsp.			
		methybutyica strain 5J-1 16S			
		ribosomal RNA gene, partial	Syntrophomonas wolfei	4000	000000000
119	Swo1	sequence	subsp. methylbutyratica	1602	90903520
		Chromohalobacter sp. HS208	Olympic halot i		
	0.0	3 1		1204	0000 1075
100	Csp3	sequence	HS208	1381	90994975
120		Arthrobacter sp. m3 16S			
120		ribosomal RNA gene, partial	A discharge and	4404	04774055
	42				
120 121	Asp2	sequence	Arthrobacter sp. m3	1484	91771955
	Asp2	· ·	Arthrobacter sp. m3	1484	91//1955
	Asp2	sequence Desulfovibrio desulfuricans isolate SRB16 16S ribosomal	Arthrobacter sp. m.3	1484	91771955

		Erythrobacter sp. CNU001 16S			1
		ribosomal RNA gene, partial	Erythrobacter sp.		
123	Esp1	sequence	CNU001	1480	91982998
20	2001	Novosphingobium subarcticum	0.10001		0.002000
		gene for 16S rRNA, partial	Novosphingobium		
124	Nre1	sequence, strain:T7b	resinovorum	1400	92019078
		Brevibacterium sp. CNJ737			
		PL04 16S ribosomal RNA gene,	Brevibacterium sp.		
125	Bsp2	partial sequence	CNJ737 PL04	1493	92091011
		Nocardia sp. CNS044 PL04 16S			
		ribosomal RNA gene, partial	Nocardia sp. CNS044		
126	Nsp3	sequence	PL04	1484	92091036
		Nocardioides sp. CNJ892 PL04			
		16S ribosomal RNA gene, partial	Nocardioides sp.		
127	Nsp4	sequence	CNJ892 PL04	1482	92091040
		Shewanella sp. BSi20587 16S			
		ribosomal RNA gene, partial	Shewanella sp.		
128	Ssp4	sequence	BSi20587	1504	93009053
	· ·				
		Aeropyrum pernix genes for 16S			
		rRNA, 23S rRNA and ITS region,			
129	Ape1	complete sequence, strain:OH3	Aeropyrum pernix	6220	18250957
		L.lactis ribosomal RNA operon			
		encoding 16S, 5S, and 23S			
		ribosomal RNA, transfer RNA-			
130	Lla1	Ala and transfer RNA-Asn	Lactococcus lactis	5953	44070
		Rhodopirellula baltica SH 1,	Rhodopirellula baltica		
131	Rba1	complete genome	SH 1	7145576	32470666
		Gloeobacter violaceus PCC	Gloeobacter violaceus		
132	Gvi1	7421, complete genome	PCC 7421	4659019	37519569
		Thermus thermophilus HB27,	Thermus thermophilus		
133	Tth2	complete genome	HB27	1894877	46198308
		Thermosynechococcus			
	L	elongatus BP-1 DNA, complete	Thermosynechococcus		
134	Tel1	genome	elongatus BP-1	2593857	47118315
			Solibacter usitatus		
135	Sus1	Solibacter usitatus Ellin6076	Ellin6076	113720	67861827
			Crocosphaera watsonii		
136	Cwa1	Crocosphaera watsonii WH 8501	WH 8501	347519	67921358
			Magnetococcus sp. MC-		
137	Msp3	Magnetococcus sp. MC-1	1	51219	69259430
		Rhodospirillum rubrum ATCC	Rhodospirillum rubrum		
138	Rru1	11170, complete genome	ATCC 11170	4352825	83591340

					-				
1									
1									Ave AA
1									length for
1									cluster (2
1								Cluster	decimal
	Abbr.	Sequence Description	Organism	#AA	GI#	Group	King.	n	place)
		heavy metal							all 1:
			Nitrosomonas			Beta-			$760.16 \pm$
1	Neu1	ATPase	eutropha C91	708	114330115	proteobacteria	В	1A	58.83
1		Heavy metal	Nitrobacter			AL 1			
	Nwi1	translocating P-type ATPase	winogradskyi Nb-	712	75677212	Alpha-	в		
- 4	NWI1	AllPase Heavy metal	255 Nitrobacter	/12	/36//312	proteobacteria	в	1A	4
1			hamburgensis			Alabas			
3	Nha2	ATPase	X14	711	92119182	Alpha- proteobacteria	в	1A	
<u> </u>		putative cation-	Rhodopseudomon				-		1
1		transporting P-type	as palustris			Alpha-			
4	Rpa3	ATPase	CGA009	709	39936323	proteobacteria	в	1A	
		putative cation-	Parvibaculum						1
1		transporting P-type	lavamentivorans			Alpha-			
5	Pla2	ATPase	DS-1	619	121523945	proteobacteria	в	1A	
		heavy metal	Charles II			C			
-	Cart		Shewanella sp.		100507055	Gamma-			
6	Ssp1	ATPase Heavy metal	W3-18-1	884	12059/953	proteobacteria	В	1A	4
1			Psychrobacter			Gamma-			
7	Pcr1	ATPase	cryohalolentis K5	738	93006175		в	1A	
⊢–́		Heavy metal	Deinococcus	, 30	2000170	proteobacterid	Ĕ	***	1
1		translocating P-type	geothermalis						
8	Dge2	ATPase	DSM 11300	722	94972219	Deinococci	в	1A	
		Heavy metal	Deinococcus						1
1			geothermalis						
9	Dge1	ATPase	DSM 11300	793	94972049	Deinococci	в	1A	
		cation-transporting P-					_		
10	Dra1	type ATPase	radiodurans R1 Agrobacterium	728	15807741	Deinococci	В	1A	
1		hypothetical protein	Agrobacterium tumefaciens str.			Alaha			
1 11	Atu1	AGR C 1540	C58	916	15888184	Alpha- proteobacteria	в	1A	
		ATPase, E1-E2	000	510	10000101	proteobacteria	-	**	1
1		type:Heavy metal-							
1		(Cd/Co/Hg/Pb/Zn)-							
1		translocating P-type							
1		ATPase:Heavy metal							
			sphaeroides			Alpha-	_		
12	Rsp2	ATPase Hopun, motale	ATCC 17029	740	83371845	proteobacteria	В	1A	
1		Heavy metal- (Cd/Co/Hg/Pb/Zn)-							
1		translocating P-type							
1	I I	ATPase:Heavy metal	Paracoccus	I					
1			denitrificans			Alpha-			
13	Pde1	ATPase	PD1222	758	69934127		в	1A	
		Heavy metal-							1
1		(Cd/Co/Hg/Pb/Zn)-							
1		translocating P-type	_						
1			Paracoccus			Alaha			
	Pde2	translocating P-type ATPase	denitrificans	732	60036175	Alpha- proteobacteria	в	1A	
14	Puez	ATPase Heavy metal-	PD1222	/32	079361/3	proteobacteria	0	14	
1		(Cd/Co/Hg/Pb/Zn)-	Oceanicola						
1		translocating P-type	granulosus			Alpha-			
15	Ogr1	ATPase	HTCC2516	726	89069243		в	1A	
		Heavy metal-							1
1		(Cd/Co/Hg/Pb/Zn)-							
1			Sulfitobacter sp.			Alpha-	_		
16	Ssp5	ATPase	EE-36	576	83943424	proteobacteria	В	1A	
1		Heavy metal- (Cd/Co/Hg/Pb/Zn)-	Oceanicola						
1	1			I		Alpha-			
		translocating D-type							
17	Oba1	translocating P-type ATPase	batsensis HTCC2597	762	84499300		в	1A	

Table 5. The protein sequences representing the Heavy Metal P-type ATPase Family

		ATPase, E1-E2					-	-
		type:Heavy metal-						
		(Cd/Co/Ha/Pb/Zn)-						
		translocating P-type						
			Rhodobacter					
			sphaeroides			Alpha-		
18	Rsp4	ATPase	ATCC 17025	803	83368473	proteobacteria	в	1A
	· ·	(Cd/Co/Hg/Pb/Zn)-	Rhodospirillum				-	
		translocating P-type	rubrum ATCC			Alpha-		
19	Rru1	ATPase	11170	777	83592363	proteobacteria	в	1B
		heavy metal						
		translocating P-type	Mesorhizobium			Alpha-		
20	Msp3	ATPase	sp. BNC1	734	110635182	proteobacteria	в	1B
		ATPase, E1-E2						
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)						
		translocating P-type						
			Xanthobacter					
		translocating P-type	autotrophicus			Alpha-		
21	Xau1	ATPase	Py2	735	89358240	proteobacteria	В	1B
		Heavy metal	Nitrobacter					
2.2	Mart	translocating P-type	hamburgensis	774	00100650	Alpha-		10
22	Nha1	ATPase	X14	734	92109658	proteobacteria	В	1B
		Heavy metal translocating P-type	Bhadaaa			Alaha		
~ ~			Rhodopseudomon	700	01070100	Alpha-	_	
23	Rpa1	ATPase ATPase, E1-E2	as palustris BisB5	726	919/8108	proteobacteria	В	1B
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
		ATPase:Heavy metal						
		translocating P-type	Bradyrhizobium			Alpha-		
24	Bsp4	ATPase	sp. BTAi1	746	78692510	proteobacteria	в	1B
	22001	Heavy metal			.0052010	p. everenceria	-	
		translocating P-type	Rhodopseudomon			Alpha-		
25	Rpa2	ATPase	as palustris BisB5	716	91975984	proteobacteria	в	1B
		ATPase, E1-E2					-	
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
		ATPase:Heavy metal						
		ATPase:Heavy metal translocating P-type	Bradyrhizobium			Alpha-		
26	Bsp5	ATPase:Heavy metal translocating P-type ATPase	Bradyrhizobium sp. BTAi1	762	78697507	Alpha- proteobacteria	в	1B
26	Bsp5	ATPase:Heavy metal translocating P-type ATPase probable heavy metal-	sp. BTAi1	762	78697507	proteobacteria	в	18
		ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase	sp. BTAi1 Rhizobium etli			proteobacteria Alpha-	-	
	Bsp5 Ret1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein	sp. BTAi1	762		proteobacteria	в	1B 1B
		ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative	sp. BTAi1 Rhizobium etli CFN 42			proteobacteria Alpha-	-	
		ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium			proteobacteria Alpha- proteobacteria	-	
27	Ret1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum	748	86359309	proteobacteria Alpha- proteobacteria Alpha-	в	18
27		ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium		86359309	proteobacteria Alpha- proteobacteria	-	
27	Ret1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium-	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841	748	86359309	proteobacteria Alpha- proteobacteria Alpha- proteobacteria	в	18
27	Ret1 Rle1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis	748 756	86359309 116253999	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha-	B	1B 1B
27	Ret1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841	748	86359309 116253999	proteobacteria Alpha- proteobacteria Alpha- proteobacteria	в	18
27	Ret1 Rle1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330	748 756	86359309 116253999	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B	1B 1B
27 28 29	Ret1 Rie1 Bsu1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium	748 756 814	86359309 116253999 23502866	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha-	B B B	1B 1B 1B
27 28 29	Ret1 Rle1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330	748 756	86359309 116253999 23502866	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B	1B 1B
27 28 29	Ret1 Rie1 Bsu1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium	748 756 814	86359309 116253999 23502866	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha-	B B B	1B 1B 1B
27 28 29	Ret1 Rie1 Bsu1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419	748 756 814	86359309 116253999 23502866	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B	1B 1B 1B
27 28 29 30	Ret1 Rle1 Bsu1 Sme1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium	748 756 814 744	86359309 1162539999 23502866 113871168	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B	18 18 18
27 28 29 30	Ret1 Rle1 Bsu1 Sme1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419	748 756 814	86359309 1162539999 23502866 113871168	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B	1B 1B 1B
27 28 29 30	Ret1 Rle1 Bsu1 Sme1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021	748 756 814 744	86359309 1162539999 23502866 113871168	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B	18 18 18
27 28 29 30 31	Ret1 Rle1 Bsu1 Sme1 Sme2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase Cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium	748 756 814 744 743	86359309 116253999 23502866 113871168 15963877	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha-	B B B B	1B 1B 1B 1B
27 28 29 30 31	Ret1 Rle1 Bsu1 Sme1	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1	748 756 814 744	86359309 116253999 23502866 113871168 15963877	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B	18 18 18
27 28 29 30 31 32	Ret1 Rle1 Bsu1 Sme1 Sme2 Msp2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase metal-transporting P-type	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1 Aurantimonas sp.	748 756 814 744 743 955	86359309 116253999 23502866 113871168 15963877 110346943	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B B B	18 18 18 18 18
27 28 29 30 31 32	Ret1 Rle1 Bsu1 Sme1 Sme2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase metal-transporting P- type ATPase	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1	748 756 814 744 743	86359309 116253999 23502866 113871168 15963877 110346943	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B B	1B 1B 1B 1B
27 28 29 30 31 32	Ret1 Rle1 Bsu1 Sme1 Sme2 Msp2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase metal-transporting P- type ATPase probable metal-	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1 Aurantimonas sp. SI85-9A1	748 756 814 744 743 955	86359309 116253999 23502866 113871168 15963877 110346943	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B B B	18 18 18 18 18
27 28 29 30 31 32 33	Ret1 Rle1 Bsu1 Sme1 Sme2 Msp2 Asp2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase metal-transporting P- type ATPase probable metal- transporting P-type	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1 Aurantimonas sp. SI85-9A1 Mesorhizobium	748 756 814 744 743 955 724	86359309 116253999 23502866 113871168 15963877 110346943 90419255	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B B B B B	1B 1B 1B 1B 1B 1B
27 28 29 30 31 32 33	Ret1 Rle1 Bsu1 Sme1 Sme2 Msp2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase metal-transporting P- type ATPase probable metal-	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1 Aurantimonas sp. SI85-9A1	748 756 814 744 743 955	86359309 116253999 23502866 113871168 15963877 110346943 90419255	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B B B	18 18 18 18 18
27 28 29 30 31 32 33	Ret1 Rle1 Bsu1 Sme1 Sme2 Msp2 Asp2	ATPase:Heavy metal translocating P-type ATPase probable heavy metal- transporting ATPase protein putative transmembrane cation transport ATPase cadmium- translocating P-type ATPase putative heavy metal transporting ATPase protein PUTATIVE HEAVY METAL TRANSPORTING ATPASE PROTEIN heavy metal translocating P-type ATPase metal-transporting P- type ATPase probable metal- transporting P-type	sp. BTAi1 Rhizobium etli CFN 42 Rhizobium leguminosarum bv. viciae 3841 Brucella suis 1330 Sinorhizobium medicae WSM419 Sinorhizobium meliloti 1021 Mesorhizobium sp. BNC1 Aurantimonas sp. SI85-9A1 Mesorhizobium	748 756 814 744 743 955 724	86359309 116253999 23502866 113871168 15963877 110346943 90419255	proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria Alpha- proteobacteria	B B B B B B B	18 18 18 18 18 18 18

		1						
		lead, cadmium, zinc and mercury	Vibrio fischeri			Gamma-		
36	Vfi1	transporting ATPase	ES114 Vibrio cholerae	771	59712129	proteobacteria	В	1C
37	Vch1	cation transport ATPase, E1-E2 family cation transport	01 biovar eltor	768	15641046	Gamma- proteobacteria	в	1C
38	Vsp2	ATPase, E1-E2 family protein	MED222	785	86146958	Gamma- proteobacteria	в	1C
39	Vvu1	cation transport ATPase	Vibrio vulnificus VJ016	797	37680562	Gamma- proteobacteria	в	1C
							-	
		hypothetical protein				Gamma-		
40	Vsp1	VEx2w_02001362	Vibrio sp. Ex25	768	116186099	proteobacteria	В	1C
41	Vpa1	cation transport ATPase, E1-E2 family		768	28897733	Gamma- proteobacteria	в	1C
42	Van1	putative cation transport ATPase	Vibrio angustum S14	859	00570000	Gamma- proteobacteria	в	1C
42	Vanii	transport Al Pase	514	839	903/9060	proteobacteria	в	10
43	Ppr3	putative cation transport ATPase putative cation	Photobacterium profundum 3TCK Photobacterium	828	90413284	Gamma- proteobacteria Gamma-	в	1C
44	Ppr4	putative cation transport ATPase	profundum SS9	801	54308413	Gamma- proteobacteria	в	1C
	Ahy1	lead, cadmium, zinc and mercury transporting ATPase	Aeromonas hydrophila subsp. hydrophila ATCC 7966	832		Gamma- proteobacteria	в	1C
	Msp4	heavy metal translocating P-type ATPase	Marinomonas sp. MWYL1	803	118750511	Gamma- proteobacteria	в	1C
47	Eca1	heavy metal- transporting ATPase	Erwinia carotovora subsp. atroseptica SCRI1043	787	50123272	Gamma- proteobacteria	в	1C
48	Plu1	lead, cadmium, zinc and mercury transporting ATPase	Photorhabdus luminescens subsp. laumondii TTO1	761	37527955	Gamma- proteobacteria	в	1C
49	Pmi1	putative P-type cation-translocating membrane ATPase heavy metal	Proteus mirabilis Serratia	692	2624376	Gamma- proteobacteria	в	1C
50	Spr1	translocating P-type ATPase	proteamaculans 568	771	118067336	Gamma- proteobacteria	в	1C
51	Vps1	P-type heavy metal efflux ATPase, ATZN	Versinia pseudotuberculos is IP 32953 Versinia	788	51594570	Gamma- proteobacteria	в	1C
52	Yen1	putative P-type cation-translocating membrane ATPase	enterocolitica subsp. enterocolitica 8081	776	123440611	Gamma- proteobacteria	в	1C
53	Vfr1	COG2217: Cation transport ATPase	Yersinia frederiksenii ATCC 33641	774	77973654	Gamma- proteobacteria	в	1C
54	Ymo1	COG2217: Cation transport ATPase	Versinia mollaretii ATCC 43969	775	77961783	Gamma- proteobacteria	в	1C
55	Vin1	COG2217: Cation transport ATPase	Versinia intermedia ATCC 29909	775	77978516	Gamma- proteobacteria	в	1C
56	Esp1	heavy metal translocating P-type ATPase	Enterobacter sp. 638	728	118741095	Gamma- proteobacteria	в	1D

									7
			Salmonella						
			enterica subsp.						
		P-type ATPase	enterica serovar						
		family, Pb/Cd/Zn/Hg	Choleraesuis str.			Gamma-			
57	Sen1	transporting ATPase	SC-B67	732	62182075	proteobacteria	в	1D	4
		Lead, cadmium, zinc							
		and mercury	Escherichia coli			Gamma-			
58	Eco1	transporting ATPase	CFT073	732	26250084	proteobacteria	в	1D	
50	2001	craitsporting Arrase	011075	/32	20230004	proceobacceria	P	10	
		lead,cadmium,zinc	Chromobacterium						all 2:
		and mercury	violaceum ATCC			Beta-			775.96 ±
59	Cvi1	transporting ATPase	12472	764	34496609	proteobacteria	в	2A	63.34
		Heavy metal	Rhodoferax						1
		translocating P-type	ferrireducens			Beta-			
60	Rfe1	ATPase	T118	812	89899662	proteobacteria	в	2B	4
		Heavy metal	<b>N</b> 1 1 1 11			<b>-</b> .			
~ 1	Mfi1	translocating P-type ATPase	Methylobacillus	748	01776000	Beta-		2C	
91	MUT	heavy metal	flagellatus KT Pelobacter	/48	91//6900	proteobacteria	В	20	4
		translocating P-type	propionicus DSM			Delta-			
62	Ppr1	ATPase	2379	791	118577287	proteobacteria	в	2C	
		Heavy metal	Ralstonia				F		1
		translocating P-type	metallidurans			Beta-			
63	Rme1	ATPase	CH34	984	94311241	proteobacteria	в	2C	
		Heavy metal	Polynucleobacter						1
		translocating P-type	sp. QLW-			Beta-			
64	Psp1	ATPase	P1DMWA-1	726	116269477	proteobacteria	В	2C	
Τ		Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)							
		translocating P-type							
		ATPase:Heavy metal translocating P-type	Azotobacter			Gamma-			
65	Avi1	ATPase	vinelandii AvOP	728	67159452	proteobacteria	в	2C	
0.5	AVI1	heavy metal	VITEIATION AVOP	720	07130432	processaccena	P	20	-
		translocating P-type	Ralstonia pickettii			Beta-		1	
66	Rpi1	ATPase	12J	814	121530669	proteobacteria	в	2C	
	T-priz	heavy metal			121000000	proceourcenta	-		1
		translocating P-type	Acidovorax sp.			Beta-			
67	Asp1	ATPase	JS42	799	121593647	proteobacteria	в	2C	
			Ralstonia						1
			metallidurans			Beta-			
68	Rme3	Pb-efflux ATPase	CH34	799	56130719	proteobacteria	в	2C	
		heavy metal	_						
I		translocating P-type ATPase	Comamonas	201	110040056	Beta-	L		
6.00			testosteroni KF-1	801	118049056	proteobacteria	в	2C	4
69	Ctez	AllPase				C	-		
			Klebsiella	201	29626700	Gamma- protechacteria			
	Cte2 Kpn1	PbrA	Klebsiella pneumoniae	801	38639700	Gamma- proteobacteria	в	2C	-
		PbrA heavy metal	pneumoniae	801	38639700	proteobacteria	в		-
70		PbrA	pneumoniae Pseudomonas	801		proteobacteria Gamma-	в		-
70	Kpn1	PbrA heavy metal translocating P-type	pneumoniae			proteobacteria		2C	
70	Kpn1	PbrA heavy metal translocating P-type ATPase hypothetical protein	pneumoniae Pseudomonas			proteobacteria Gamma-		2C	-
70 71	Kpn1	PbrA heavy metal translocating P-type ATPase	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7		118058132	proteobacteria Gamma- proteobacteria		2C	-
70 71	Kpn1 Pme1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas	734	118058132	proteobacteria Gamma- proteobacteria Gamma-	в	2C 2C	-
70 71	Kpn1 Pme1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv.	734	118058132	proteobacteria Gamma- proteobacteria Gamma- proteobacteria	в	2C 2C	-
70 71 72	Kpn1 Pme1 Pae1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola	734 748	118058132 94414702	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma-	в	2C 2C 2C	-
70 71 72	Kpn1 Pme1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv.	734	118058132 94414702	proteobacteria Gamma- proteobacteria Gamma- proteobacteria	в	2C 2C	-
70 71 72	Kpn1 Pme1 Pae1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A	734 748	118058132 94414702	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	в	2C 2C 2C	-
70 71 72 73	Kpn1 Pme1 Pae1 Psy1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas	734 748 754	118058132 94414702 71736779	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- groteobacteria Gamma-	B B B	2C 2C 2C 2C	-
70 71 72 73	Kpn1 Pme1 Pae1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A	734 748	118058132 94414702 71736779	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	в	2C 2C 2C	-
70 71 72 73	Kpn1 Pme1 Pae1 Psy1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas	734 748 754	118058132 94414702 71736779	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- groteobacteria Gamma-	B B B	2C 2C 2C 2C	-
70 71 72 73	Kpn1 Pme1 Pae1 Psy1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5	734 748 754	118058132 94414702 71736779	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C	-
70 71 72 73 74	Kpn1 Pme1 Pae1 Psy1 Pfl1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas	734 748 754	118058132 94414702 71736779 70733177	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C 2C	-
70 71 72 73 74	Kpn1 Pme1 Pae1 Psy1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas	734 748 754 818	118058132 94414702 71736779 70733177	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C	-
70 71 72 73 74	Kpn1 Pme1 Pae1 Psy1 Pfl1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase Cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas	734 748 754 818	118058132 94414702 71736779 70733177	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C 2C	-
70 71 72 73 74	Kpn1 Pme1 Pae1 Psy1 Pfl1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas	734 748 754 818	118058132 94414702 71736779 70733177	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C 2C	-
70 71 72 73 74	Kpn1 Pme1 Pae1 Psy1 Pfl1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase Cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas	734 748 754 818	118058132 94414702 71736779 70733177	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C 2C	-
70 71 72 73 74	Kpn1 Pme1 Pae1 Psy1 Pfl1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase ATPase Expe:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase ATPase:E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal-	Preumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas fluorescens PfO-1	734 748 754 818	118058132 94414702 71736779 70733177	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C 2C	-
70 71 72 73 74 75	Kpn1 Pme1 Pae1 Psy1 Pfl1 Pfl2	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- translocating P-type	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas fluorescens PfO-1 Pseudomonas	734 748 754 818 769	118058132 94414702 71736779 70733177 77461592	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B B	2C 2C 2C 2C 2C 2C 2C	-
70 71 72 73 74 75	Kpn1 Pme1 Pae1 Psy1 Pfl1	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase:Heavy metal translocating P-type ATPase	Preumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas fluorescens PfO-1	734 748 754 818	118058132 94414702 71736779 70733177 77461592	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B	2C 2C 2C 2C 2C	-
70 71 72 73 74 75	Kpn1 Pme1 Pae1 Psy1 Pfl1 Pfl2	PbrA heavy metal translocating P-type ATPase hypothetical protein PaerP_01003458 cadmium- translocating P-type ATPase cadmium- translocating P-type ATPase Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- translocating P-type	pneumoniae Pseudomonas mendocina ymp Pseudomonas aeruginosa PA7 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas fluorescens Pf-5 Pseudomonas fluorescens PfO-1 Pseudomonas	734 748 754 818 769	118058132 94414702 71736779 70733177 77461592	proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria Gamma- proteobacteria	B B B B	2C 2C 2C 2C 2C 2C 2C	-

		cadmium						
		translocating P-type	Pseudomonas			Gamma-		
78	Pen1	ATPase	entomophila L48	748	104784142	proteobacteria	в	2C
		Heavy metal	Ralstonia			<b>.</b> .		
70	Rme2	translocating P-type ATPase	metallidurans CH34	794	04212516	Beta- proteobacteria	в	2C
/9	Rme2	ATPase, E1-E2	CH34	/94	94313516	proteobacteria	ь	2C
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
		ATPase:Heavy metal						
		translocating P-type	Ralstonia			Beta-		
80	Reu1	ATPase	eutropha JMP134	783	73537805	proteobacteria	в	2C
00		Airase	edd opna SMP104	/05	/333/003	proteobacteria	<u> </u>	
		putative heavy metal	Ralstonia			Beta-		
81	Reu2	efflux P-type ATPase	eutropha H16	791	116695583	proteobacteria	в	2C
		ATPase, E1-E2					-	
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
		ATPase:Heavy metal						
		translocating P-type	Dechloromonas			Beta-	1	1
82	Dar1	ATPase	aromatica RCB	743	71907877	proteobacteria	в	2C
52	5471	heavy metal	Burkholderia	, 45		p. orcobacteria	۲ ۲	
		translocating P-type	phytofirmans			Beta-	1	
83	Bph1	ATPase	PsJN	790	118043038	proteobacteria	в	2C
55	Sprin	putative heavy metal					-	
		resistance membrane				Beta-	1	
84	Bps2	ATPase	K96243	836	53720986	proteobacteria	в	2C
54	Spac	heavy metal	Burkholderia	555	55720500	p. oreobacteria	۲ <u> </u>	
		translocating P-type	multivorans ATCC			Beta-	1	
85	Bmu1	ATPase	17616	862	118720004	proteobacteria	в	2C
55	011701	Heavy metal-		302	110, 20004	p. orcobacteria	۲ <u> </u>	
		(Cd/Co/Hg/Pb/Zn)-					1	1
		translocating P-type					1	1
		ATPase:Heavy metal					1	
		translocating P-type	Burkholderia			Beta-	1	1
86	Bvi1	ATPase	vietnamiensis G4	864	67547414	proteobacteria	в	2C
	5112	Heavy metal-	the second second second second	004	V/ V// 111	p. orcobacteria	۲ ۲	
		(Cd/Co/Hg/Pb/Zn)-					1	1
		translocating P-type	Burkholderia sp.			Beta-	1	1
87	Bsp2	ATPase	383	866	78064791	proteobacteria	в	2C
97	0302		Sodalis	000	/0004/01	proceobacteria	۲–	20
			olossinidius str.				1	1
		putative cation	'morsitans			Gamma-	1	1
88	Sgl1	transport ATPase	' morsicans	780	85059821	proteobacteria	в	2D
50	5911	a anapore Arrease	sepos,	,00	000000001	proteobacteria	<u> </u>	20
		cadmium-	Bordetella avium			Beta-	1	1
00	Bav1	transporting ATPase	197N	753	115422714	proteobacteria	в	2D
07	Ddv1	Gansporting Arease	197N Bordetella	/33	113422/14	proceobacceria	P	20
		putative membrane	bronchiseptica			Beta-	1	1
00	Bbr1	transport ATPase	RB50	770	22601402		в	2D
90	BOLT	transport Al Pase heavy metal	RB50 Pelobacter	778	33001483	proteobacteria	P	20
		translocating P-type				Delta-	1	1
01	Box2		propionicus DSM	783	110570200	proteobacteria	в	2E
91	Ppr2	ATPase	2379	/83	1103/9269	proteobacteria	P	20
		Load cadmium aire	Ralstonia				1	
		Lead, cadmium, zinc	Kaistonia solanacearum			Data	1	1
	Back	and mercury		70.4	00740400	Beta-	L.	25
92	Rso1	transporting ATPase putative metal-	UW551	784	83/49132	proteobacteria	В	2E
							1	1
		transporting P-type					1	1
		ATPase	Deleterate -t-leave			Data	1	1
0.7	Del C	transmembrane	Ralstonia pickettii	702	101500007	Beta-		25
93	Rpi2	protein	12J	783	121530307	proteobacteria	В	2E
		ATPase, E1-E2					1	1
		type:Heavy metal-					1	
		(Cd/Co/Hg/Pb/Zn)-					1	1
		translocatingP-type					1	1
		ATPase:Heavy metal					1	1
~		translocating P-type	Synechococcus					
94	Ssp2	ATPase	sp. WH 5701	700	87302472	Cyanobacteria	в	2F
_		heavy metal	Acidovorax					
	Aav1	translocating P-type ATPase	avenae subsp. citrulli AAC00-1	629		Beta- proteobacteria	в	2F

			Delementer			1			т
		heavy metal translocating P-type	Polaromonas naphthalenivoran			Beta-			
96	Pna1	ATPase	s CJ2	745	121606885	proteobacteria	в	2F	
	Flida	ATPase, E1-E2	5 0.52	745	121000000	proceobacceria	5	21	ł
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-							
		translocating P-type							
		ATPase:Heavy metal				_			
		translocating P-type	Dechloromonas			Beta-	_		
9/	Dar2	ATPase	aromatica RCB	739	/1908244	proteobacteria	В	2F	ļ
		heavy metal	<u> </u>			<b>D</b>			
0.0	Cte3	translocating P-type ATPase	Comamonas testosteroni KF-1	743	110052504	Beta- proteobacteria	в	2F	
50	Ctes	heavy metal	testosteroni KF-1	/43	110033306	proceobacceria	Б	21	ł
		translocating P-type	Acidovorax sp.			Beta-			
99	Asp3	ATPase	JS42	753	121593734	proteobacteria	в	2F	
		heavy metal					-		†
		translocating P-type	Acidovorax sp.			Beta-			
100	Asp6	ATPase	JS42	673	121594932	proteobacteria	В	2F	1
		heavy metal							
		translocating P-type	Comamonas			Beta-	-		
101	Cte4	ATPase heavy metal	testosteroni KF-1 Delftia	711	118053356	proteobacteria	В	2F	ł
		heavy metal translocating P-type	Delftia acidovorans SPH-			Beta-			
102	Dac1	ATPase	acidovorans SPH-	732	118732697	proteobacteria	в	2F	
102	Paci	heavy metal	-	, 52	110/0200/	proteobacteria	-	-	ł
		translocating P-type	Comamonas			Beta-			
103	Cte1	ATPase	testosteroni KF-1	975	118049985	proteobacteria	в	2G	
									t
			Legionella						
			pneumophila						
		cadmium	subsp.			<b>C</b>			
104	Lpn1	translocating P-type ATPase CadA	pneumophila str. Philadelphia 1	729	52041242	Gamma- proteobacteria	в	2G	
104	chut	A iPase Gaux	Legionella	/29	52041243	proteobacteria	0	20	ł
		hypothetical protein	pneumophila str.			Gamma-			
105	Lpn2	p1049	Lens	713	54293990	proteobacteria	в	2G	
		Cd/Co/Hg/Pb/Zn-	Blastopirellula						al 3:
		translocating P-type	marina DSM						774.78 ±
106	Bma1	ATPase	3645	743	87311031	Planctomycetes	В	3	97.92
			Francisella						
		heavy metal cation	tularensis subsp.			Gamma-			
107	Ftu1	transport ATPase	novicida U112	721	118497001	proteobacteria	в	3	
		heavy metal	Syntrophobacter				-	-	t
		translocating P-type	fumaroxidans			Delta-			
108	Sfu1	ATPase	MPOB	737	116751190	proteobacteria	в	3	
		heavy metal							Ť
		translocating P-type	Mesorhizobium			Alpha-	-	-	
109	Msp1	ATPase	sp. BNC1	1022	11034/018	proteobacteria	В	3	ł
			Magnetospirillum						
		COG2217: Cation	magnetospirilium			Alpha-			
110	Mma1	transport ATPase	MS-1	733	46202126	proteobacteria	в	3	
			Magnetospirillum			p. createring	-	-	t
		Cation transport	magneticum AMB-			Alpha-			
111	Mma3	ATPase	1	684	83310111	proteobacteria	В	3	
		Heavy metal-							
		(cd/ce/ue/ol/metal							
		(Cd/Ćo/Hg/Pb/Zn)-							
		(Cd/Ćo/Hg/Pb/Zn)- translocating P-type							
		(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal	Rosenhacter sp			Alpha-			
112	Rsp3	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type	Roseobacter sp. MED193	765	86136996	Alpha- proteobacteria	в	3	
112	Rsp3	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type		765	86136996	Alpha- proteobacteria	в	3	-
		(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type	MED193 Roseobacter sp.			proteobacteria Alpha-	в	3	
	Rsp3 Rsp1	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase	MED193	765		proteobacteria	в	3	
		(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal	MED193 Roseobacter sp. MED193			proteobacteria Alpha- proteobacteria			-
113	Rsp1	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal translocating P-type	MED193 Roseobacter sp. MED193 Dinoroseobacter	784	86139673	proteobacteria Alpha- proteobacteria Alpha-	в	3	-
113		(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal translocating P-type ATPase	MED193 Roseobacter sp. MED193		86139673	proteobacteria Alpha- proteobacteria			-
113	Rsp1	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal translocating P-type ATPase cation-transporting	MED193 Roseobacter sp. MED193 Dinoroseobacter shibae DFL 12	784 784	86139673	proteobacteria Alpha- proteobacteria Alpha-	в	3	-
113	Rsp1	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal translocating P-type ATPase	MED193 Roseobacter sp. MED193 Dinoroseobacter	784 784	86139673	proteobacteria Alpha- proteobacteria Alpha-	в	3	-
113 114	Rsp1 Dsh1	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal translocating P-type ATPase cation-transporting ATPase, E1-E2 family, selenocysteine-	MED193 Roseobacter sp. MED193 Dinoroseobacter shibae DFL 12 Carboxydothermu s hydrogenoforman	784	86139673 118738365	proteobacteria Alpha- proteobacteria Alpha- proteobacteria	в	3	663.5 ±
113 114	Rsp1	(Cd/Ćo/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase cadmium- translocating P-type ATPase heavy metal translocating P-type ATPase cation-transporting ATPase, E1-E2 family,	MED193 Roseobacter sp. MED193 Dinoroseobacter shibae DFL 12 Carboxydothermu s	784 784	86139673 118738365	proteobacteria Alpha- proteobacteria Alpha- proteobacteria	в	3	663.5 ± 31.82

<u> </u>		1	Candidatus						т
			Protochlamvdia				1		
		putative cadmium-	amoebophila				1		
116	Pam1	transporting ATPase	UWE25	641	46445921	Chlamydiae	в	4	
			Lawsonia						all 5:
		cation-transporting	intracellularis PHE/MN1-00	600	04007040	Delta-			695.47 ±
117	Lin1	ATPase, P-type	PHE/MN1-00	688	94987040	proteobacteria	В	5A	59.88
			Lactobacillus				1		
			salivarius subsp.						
		Zinc-transporting	salivarius			Firmicutes			
118	Lsa2	ATPase	UCC118	643	90962608	(LowGC G+)	в	5B	
			Wolinella						1
			succinogenes			Epsilon-			
119	Wsu1	YVGW PROTEIN	DSM 1740	707	34557497	proteobacteria	В	5C	1
		cadmium- translocating P-type	Enterococcus			Firmicutes			
120	Efa1	ATPase	faecalis V583	700	29375967	(LowGC G+)	в	5D	
120		Heavy metal-	laccalis vooo	,00	23373307	(201100 0.)	<u>۳</u>	50	ł
		(Cd/Ćo/Hg/Pb/Zn)-							
		translocating P-type							
		ATPase:Heavy metal							
	Efa2	translocating P-type ATPase	Enterococcus	615	60247226	Firmicutes	в	5D	
121	Era2	AllPase	faecium DO	612	6924/326	(LowGC G+)	в	50	+
			Fusobacterium				1		
			nucleatum subsp.				1		
		Zinc-transporting	nucleatum ATCC				1		
122	Fnu1	ATPase	25586	614	19703603	Fusobacteria	в	5E	
		cadmium-	Clostridium						T
122	Cce1	translocating P-type ATPase	cellulolyticum H10	618	110706401	Firmicutes	в	5F	
123	CCEI	Zinc-transporting	Bacillus cereus	619	118/26401	(LowGC G+) Firmicutes	в	3F	ł
124	Bce1	ATPase	ATCC 14579	788	30018782	(LowGC G+)	в	5F	
	0.001	ATPase, E1-E2	1100 110/0	, 00	50010/02	(201100 0 . )	<u> </u>	51	†
		type:Heavy metal-					1		
		(Cd/Co/Hg/Pb/Zn)-							
		translocating P-type	a :"						
		ATPase:Heavy metal translocating P-type	Bacillus cereus subsp. cytotoxis			Firmicutes	1		
125	Bce2	transiocating P-type ATPase	NVH 391-98	785	89201527	(LowGC G+)	в	5F	
120	DCE2	Allege	Bacillus subtilis	/03	05201327	(2000000)	<u> </u>	51	ł
		hypothetical protein	subsp. subtilis			Firmicutes			
126	Bsu2	BSU33490	str. 168	702	16080402	(LowGC G+)	в	5F	
		Heavy metal-							I
		(Cd/Co/Hg/Pb/Zn)- translocating P-type							
		translocating P-type ATPase,Heavy metal	Bacillus						
		translocating P-type	licheniformis			Firmicutes			
127	Bli1	ATPase	ATCC 14580	703	52081840	(LowGC G+)	в	5F	
<u> </u>		Heavy metal-					-		1
		(Cd/Co/Hg/Pb/Zn)							
		translocating P-type							
			Clostridium thermocellum			Firminutes			
128	Cth1	translocating P-type ATPase	ATCC 27405	707	67916589	Firmicutes (LowGC G+)	в	5F	
120	oun	ATPase, E1-E2		/0/	07910309	(201102 01)	<u>۲</u>	51	†
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)							
		translocating P-type							
		ATPase:Heavy metal							
120	Csp3	translocating P-type ATPase	Clostridium sp. OhILAs	866	106903400	Firmicutes (LowGC G+)	в	5F	
129	usp3	Arpase	UNILAS	366	100093409	(LOWGC G+)	D	35	+
		hypothetical protein	Desulfitobacteriu			Firmicutes			
130	Dha1	DSY0829	m hafniense Y51	784	89893575	(LowGC G+)	в	5F	
							-	-	+

		AlPase, E1-E2						
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type					1	
			Caldicellulosirupt					
		translocating P-type	or saccharolyticus			Firmicutes	1	
131	Csa1	ATPase	DSM 8903	790	82500189	(LowGC G+)	в	5F
101		ATPase, E1-E2	00110000	, , , , ,	02000105	(20//00/01/)	<u> </u>	
		type:Heavy metal-					1	
		(Cd/Co/Hg/Pb/Zn)-					1	
		translocating P-type					1	
		ATPase:Heavy metal	Alkaliphilus				1	
		translocating P-type	metalliredigenes			Firmicutes	1	
132	Ame2	ATPase	OYME	788	77686825	(LowGC G+)	в	5F
		ATPase, E1-E2	<b>.</b>			(	-	
		type:Heavy metal-					1	
		(Cd/Co/Hg/Pb/Zn)-					1	
		translocating P-type						
		ATPase:Heavy metal						
		translocating P-type	Clostridium sp.			Firmicutes	1	
133	Csp4	ATPase	OhILAs .	551	106894859	(LowGC G+)	в	5F
		ATPase, E1-E2						
		type:Heavy metal-					1	1
		(Cd/Co/Hg/Pb/Zn)-					1	
		translocating P-type					1	1
			Clostridium				1	
		translocating P-type	beijerincki NCIMB			Firmicutes	1	
134	Cbe1	ATPase	8052	809	82746499	(LowGC G+)	в	5F
		cadmium-				-		
		translocating P-type	Clostridium novyi			Firmicutes		1
135	Cno1	ATPase	NT	711	118443354	(LowGC G+)	в	5F
		ATPase, E1-E2						
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
			Thermoanaeroba					
		translocating P-type	cter ethanolicus			Firmicutes	1	
136	Tet1	ATPase	ATCC 33223	699	76796108	(LowGC G+)	в	5F
		_						
		Heavy metal	Thermoanaeroba				1	1
		translocating P-type	cter ethanolicus			Firmicutes		
137	Tet2	ATPase	X514	658	114945125	(LowGC G+)	в	5F
_		Alrase	7.011	630	114040100	· · · · · · · · · · · · · · · · · · ·	Б	51
				636	114045155		В	5,
		putative heavy-metal-	Clostridium			Firmicutes	-	
138	Cdi1	putative heavy-metal- transporting ATPase	Clostridium difficile 630	795		Firmicutes (LowGC G+)	в	5.F
138	Cdi1	putative heavy-metal- transporting ATPase cadmium-	Clostridium difficile 630 Clostridium			(LowGC G+)	-	
		putative heavy-metal- transporting ATPase cadmium- translocating P-type	Clostridium difficile 630 Clostridium perfringens ATCC	795	115249322	(LowGC G+) Firmicutes	в	5F
	Cdi1 Cpe1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124		115249322	(LowGC G+) Firmicutes (LowGC G+)	-	
139	Cpe1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani	795 738	115249322 110800762	(LowGC G+) Firmicutes (LowGC G+) Firmicutes	в	5F 5F
139		putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88	795	115249322 110800762	(LowGC G+) Firmicutes (LowGC G+)	в	5F
139	Cpe1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium	795 738	115249322 110800762	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	в	5F 5F
139 140	Cpe1 Cte5	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum	795 738 650	115249322 110800762 28211582	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes	в	5F 5F 5F
139 140	Cpe1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium	795 738	115249322 110800762 28211582	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	в	5F 5F
139 140	Cpe1 Cte5	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824	795 738 650	115249322 110800762 28211582	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes	B B	5F 5F 5F
139 140 141	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu	795 738 650 699	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	B B B	SF SF SF SF
139 140 141	Cpe1 Cte5	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824	795 738 650	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes	B B	5F 5F 5F
139 140 141	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu	795 738 650 699	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	B B B	SF SF SF SF
139 140 141	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu	795 738 650 699	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	B B B	SF SF SF SF
139 140 141	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Miab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu	795 738 650 699	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	B B B	SF SF SF SF
139 140 141	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu	795 738 650 699	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+)	B B B	SF SF SF SF
139 140 141	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z	795 738 650 699	115249322 110800762 28211582 15895509	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota	B B B	SF SF SF SF
139 140 141 142	Cpe1 Cte5 Cac1 Mia1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium	795 738 650 699 626	115249322 110800762 28211582 15895509 124363426	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes	B B A	5F 5F 5F 5G
139 140 141 142	Cpe1 Cte5 Cac1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15	795 738 650 699	115249322 110800762 28211582 15895509 124363426	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota	B B B	SF SF SF SF
139 140 141 142	Cpe1 Cte5 Cac1 Mia1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase Putative heavy metal-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus	795 738 650 699 626	115249322 110800762 28211582 15895509 124363426	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+)	B B A	5F 5F 5F 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- translocating P-type ATPase Putative heavy metal- transporting P-type	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp.	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus	795 738 650 699 626	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+)	B B A	5F 5F 5F 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase;Heavy metal- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase ATPase ATPase, E1-E2	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp.	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp.	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp.	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp.	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp. sakei 23K	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp.	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes	B B B A	5F 5F 5F 5G 5G
139 140 141 142 143 144	Cpe1 Cte5 Cac1 Mia1 Esi1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal-	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp. sakei 23K	795 738 650 699 626 707	115249322 110800762 28211582 15895509 124363426 68055013 81428039	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes (LowGC G+)	B B B A	5F 5F 5F 5G 5G
139 140 141 142 143 144	Cpe1 Cte5 Cac1 Mia1 Esi1 Lsa1	putative heavy-metal- transporting ATPase cadmium- translocating P-type ATPase Zinc-transporting ATPase Cation transport P- type ATPase hypothetical protein Mlab_1065 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase Putative heavy metal- transporting P-type ATPase ATPase, E1-E2 type:Heavy metal- translocating P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal- translocating P-type	Clostridium difficile 630 Clostridium perfringens ATCC 13124 Clostridium tetani E88 Clostridium acetobutylicum ATCC 824 Methanocorpuscu lum labreanum Z Exiguobacterium sibiricum 255-15 Lactobacillus sakei subsp. sakei 23K Halothermothrix	795 738 650 699 626 707 696	115249322 110800762 28211582 15895509 124363426 68055013 81428039	(LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Euryarchaeota Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes (LowGC G+) Firmicutes	в в в А в	5F 5F 5G 5G

		cation transport	Methanococcus					
147	Mma4	ATPase	maripaludis S2	691	45357779	Euryarchaeota	А	5H
		putative	Symbiobacterium					
		zinc/cadmium-	thermophilum			Actinobacteria		
148	Sth3	transporting ATPase	IAM 14863	710	51892763	(HighGC G+)	в	5I
		Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-	Moorella thermoacetica			Firmicutes		
149	Mth1	translocating P-type ATPase	ATCC 39073	700	83591026	(LowGC G+)	в	51
142	PILLITZ.	heavy metal	Desulfitobacteriu	/00	00001020	(201102 01)	<u> </u>	51
		translocating P-type	m hafniense DCB-			Firmicutes		
150	Dha2	ATPase	2	800	109648787	(LowGC G+)	в	5I
		hypothetical protein	Desulfitobacteriu			Firmicutes		
151	Dha3	DSV4631	m hafniense Y51	808	89897377	(LowGC G+)	в	51
101	01100	5514651	Nostoc		0,0,,0,,	(201100 0 - )	<u> </u>	
		COG2217: Cation	punctiforme PCC					
152	Npu2	transport ATPase	73102	664	23126943	Cyanobacteria	в	5I
1.5.5	Cee7	hypothetical protein	Synechocystis sp.	704	16334000	Currente and	_	51
153	Ssp7	slr0798	PCC 6803	721	16331908	Cyanobacteria	В	51
154	Obr1	P type ATPase BXA1	Oscillatoria brevis	660	22506637	Cyanobacteria	в	5I
							-	1
		hypothetical protein	Lyngbya sp. PCC					
155	Lsp2	L8106_12725	8106	651	119486614	Cyanobacteria	В	5I
		cation-transporting	Cytophaga					1
		ATPase; possible zinc-						1
156	Chu1	transporting ATPase	ATCC 33406	664	110637914	Bacteroidetes	в	53
			Cytophaga					
		cation-transporting	hutchinsonii				_	
157	Chu2	ATPase ATPase, E1-E2	ATCC 33406	667	110637474	Bacteroidetes	В	5J
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
		ATPase:Heavy metal	Flavobacterium					
150	Fjo1	translocating P-type ATPase	johnsoniae UW101	663	00507500	Bacteroidetes	в	53
129	701	AiPase	01101	003	9038/329	bacteroidetes	D	55
		heavy metal	Ornithobacterium					1
159	Orh1	transporting ATPase	rhinotracheale	675	47059343	Bacteroidetes	в	53
		Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)- translocating P-type						1
		ATPase:Heavy metal	Shewanella					1
		translocating P-type	putrefaciens CN-			Gamma-		1
160	Spu1	ATPase	32	682	77815133	proteobacteria	в	5J
		cation-transporting ATPase, P-type,	Leeuwenhoekiella					1
		putative zinc-	blandensis					1
161	Lbl2	transporting ATPase	MED217	653	86141422	Bacteroidetes	в	53
			Tenacibaculum					1
		cation-transporting	sp. MED152					1
		ATPase, P-type, putative zinc-	(Polaribacter dokdonensis MED					1
162	Tsp1	transporting ATPase	152)	651	86133069	Bacteroidetes	в	53
2.52		a chaptering rerease		551	00100000	- Seter Brockes	1	
		cation-transporting						1
		ATPase, P-type,	Robiginitalea					1
163	pl.:•	putative zinc- transporting ATPase	biformata	654	00004161	Ra et avaidatas	в	53
163	Rbi1	transporting ATPase heavy metal-	HTCC2501	654	88804161	Bacteroidetes	в	21
		(Cd/Co/Hg/Pb/Zn)-						1
		translocating P-ty pe	Gramella forsetii					1
164	Gfo2	ATPase	KT0803	656	120434396	Bacteroidetes	в	53
_				+				

		1	Cellulophaga sp.						1
		cation-transporting	MED134						
		ATPase, P-type,	(Dokdonia						
		putative zinc-	donghaensis MED						
165	Csp5	transporting ATPase	134)	655	86130586	Bacteroidetes	В	5J	4
		cation-transporting							
		ATPase, P-type,	Leeuwenhoekiella						
		putative zinc-	blandensis			-	L		
166	LbI3	transporting ATPase putative	MED217	643	86141940	Bacteroidetes	В	5J	4
		transmembrane	Bacteroides						
		cation transport P	fragilis NCTC						
167	Bfr1	type ATPase	9343	648	60680801	Bacteroidetes	в	5J	
		cation-transporting ATPase, P-type,	Bacteroides						
		putative zinc-	thetaiotaomicron						
168	Bth2	transporting ATPase	VPI-5482	652	29347922	Bacteroidetes	в	5J	
		cadmium-	Treponema						]
160	Tde1	translocating P-type ATPase	denticola ATCC 35405	643	42526902	Spirochaetes	в	5K	
103	Idel	ATPase ATPase, E1-E2	33403	643	42326692	Spirochaetes	P	JK.	-
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-							
		translocating P-type							
		ATPase:Heavy metal translocating P-type	Caldicellulosirupt or saccharolyticus			Firmicutes			
170	Csa2	ATPase	DSM 8903	698	82499949	(LowGC G+)	в	5K	
			Helicobacter			(	-		1
		cation transport	hepaticus ATCC			Epsilon-			
171	Hhe1	ATPase	51449 Helicobacter	695	32266085	proteobacteria	В	5L	4
		heavy metal-	acinonychis str.			Epsilon-			
172	Hac1	transporting ATPase	Sheeba	686	109947461	proteobacteria	в	5L	
		Cadmium, zinc and							1
		cobalt-transporting				Epsilon-	L		
173	Hfe1	ATPase	Helicobacter felis	681	10720043	proteobacteria	в	5L	
			1						1
		Hma1 cadmium/zinc-							
		transporting ATPase,	Ostreococcus						
174	Ota1	transporting ATPase, putative (IC)	tauri	1052	119358808	Viridiplantae	E	6	989.33 ± 175.06
		transporting ATPase, putative (IC) Cof protein; ATPase,	tauri Medicago						
	Otal Mtr1	transporting ATPase, putative (IC)	tauri	1052 829		Viridiplantae Viridiplantae	E	6	
		transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc-	tauri Medicago truncatula Arabidopsis						
175	Mtr1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative	tauri Medicago truncatula Arabidopsis halleri subsp.	829	92875650	Viridiplantae	E	6	989.33 ± 175.06
175		transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3	tauri Medicago truncatula Arabidopsis halleri subsp. halleri		92875650				
175	Mtr1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal	tauri Medicago truncatula Arabidopsis halleri subsp.	829	92875650 37665197	Viridiplantae Viridiplantae	E	6	
175 176	Mtr1 Aha2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis	829	92875650 37665197	Viridiplantae	E	6	
175 176 177	Mtr1 Aha2 Ath1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi	829 757 951	92875650 37665197 20384833	Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177	Mtr1 Aha2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens	829	92875650 37665197 20384833	Viridiplantae Viridiplantae	E	6	
175 176 177	Mtr1 Aha2 Ath1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis	829 757 951	92875650 37665197 20384833	Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177 178	Mtr1 Aha2 Ath1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens	829 757 951 1186	92875650 37665197 20384833 46361991	Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177 178	Mtr1 Aha2 Ath1 Tca2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting ATPase P1B-type ATPase 4 ATPase, E1-E2	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp.	829 757 951	92875650 37665197 20384833 46361991	Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177 178	Mtr1 Aha2 Ath1 Tca2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting ATPase P1B-type ATPase 4 ATPase, E1-E2 type:Heavy metal-	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp.	829 757 951 1186	92875650 37665197 20384833 46361991	Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177 178	Mtr1 Aha2 Ath1 Tca2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting ATPase P1B-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp.	829 757 951 1186	92875650 37665197 20384833 46361991	Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177 178	Mtr1 Aha2 Ath1 Tca2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter P1B-type heavy metal transporting ATPase P1B-type ATPase 4 ATPase, E1-E2 type:Heavy metal-	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp.	829 757 951 1186	92875650 37665197 20384833 46361991	Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6	
175 176 177 178	Mtr1 Aha2 Ath1 Tca2 Aha1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6	all 7: 640.14 ±
175 176 177 178	Mtr1 Aha2 Ath1 Tca2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs	829 757 951 1186	92875650 37665197 20384833 46361991 63056225	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6	all 7:
175 176 177 178	Mtr1 Aha2 Ath1 Tca2 Aha1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6 6 6	all 7: 640.14 ±
175 176 177 178	Mtr1 Aha2 Ath1 Tca2 Aha1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc mesenteroides	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6 6 6	all 7: 640.14 ±
175 176 177 178	Mtr1 Aha2 Ath1 Tca2 Aha1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae	E E E	6 6 6	all 7: 640.14 ±
175 176 177 178 179	Mtr1 Aha2 Ath1 Tca2 Aha1	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc mesenteroides subsp.	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225 106894562	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae Firmicutes (LowGC G+)	E E E	6 6 6	all 7: 640.14 ±
175 176 177 178 179	Mtr1 Aha2 Ath1 Tca2 Aha1 Csp2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225 106894562	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae Firmicutes (LowGC G+)	Е Е Е В	6 6 6 7A	all 7: 640.14 ±
175 176 177 178 179	Mtr1 Aha2 Ath1 Tca2 Aha1 Csp2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase Cation transport ATPase	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 Lactobacillus	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225 106894562	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae Firmicutes (LowGC G+)	Е Е Е В	6 6 6 7A	all 7: 640.14 ±
175 176 177 178 179	Mtr1 Aha2 Ath1 Tca2 Aha1 Csp2	transporting ATPase, putative (IC) Cof protein; ATPase, E1-E2 type putative cadmium/zinc- transporting ATPase 3 putative heavy-metal transporter PIB-type heavy metal transporting ATPase PIB-type ATPase 4 ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase Cation transport ATPase	tauri Medicago truncatula Arabidopsis halleri subsp. halleri Arabidopsis thaliana Thlaspi caerulescens Arabidopsis halleri subsp. gemmifera Clostridium sp. OhILAs Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293	829 757 951 1186 1161	92875650 37665197 20384833 46361991 63056225 106894562	Viridiplantae Viridiplantae Viridiplantae Viridiplantae Viridiplantae Firmicutes (LowGC G+)	Е Е Е В	6 6 6 7A	all 7: 640.14 ±

		1							т
		cation-transporting P-	uncultured methanogenic						
183	met2	type ATPase	archaeon	647	116077934	Euryarchaeota	A	7B	
100		cadmium	Haloarcula	0.7	1100//001	Laryarenacota			1
		transporting P-type	marismortui						
184	Hma5	ATPase	ATCC 43049	639	55376427	Euryarchaeota	A	7B	
			Corynebacterium						t
		cation transport	glutamicum ATCC			Actinobacteria			
185	Cgl2	ATPase	13032	625	19552400	(HighGC G+)	В	7C	1
			Corynebacterium						
100	C - 11	cation transport ATPase	glutamicum ATCC 13032	625	10554164	Actinobacteria		70	
186	Cgi	AllPase	13032	623	19554164	(HighGC G+)	В	7C	ł
		putative copper-	Corvnebacterium			Actinobacteria			
187	Cef2	transporting ATPase	efficiens YS-314	578	25026633	(HighGC G+)	в	7C	
		heavy metal				(	-		t
		translocating P-type	Nocardioides sp.			Actinobacteria			
188	Nsp4	ATPase	JS614	656	119715897	(HighGC G+)	в	7C	
	-	COG2217: Cation	Brevibacterium			Actinobacteria			Ī
189	Bli3	transport ATPase	linens BL2	666	62422868	(HighGC G+)	В	7C	l
		Heavy metal	Rubrobacter			Antinghama	1		
100	R×v2	translocating P-type ATPase	xylanophilus DSM 9941	639	100004625	Actinobacteria (HighGC G+)	в	7C	
190	Rxy2	Heavy metal-	9941	639	108804635	(HighGC G+)	в	<i>/</i> C	ł
		(Cd/Co/Ha/Pb/Zn)-							
		translocating P-type							
			Paracoccus						
			denitrificans			Alpha-			
191	Pde3	ATPase	PD1222	687	69937554	proteobacteria	В	7C	
		ATPase, E1-E2							
		type:Copper-							
		translocating P-type							
		ATPase:Heavy metal-							
		(Cd/Co/Ha/Pb/Zn)-							
		translocating P-type							
			Alkaliphilus						
		translocating P-type	metalliredigenes			Firmicutes			
192	Ame1	ATPase	QYMF	636	77683982	(LowGC G+)	В	7C	ļ
		Heavy metal	Herpetosiphon						
107	Hau1	translocating P-type ATPase	aurantiacus ATCC 23779	699	113940140	Chloroflavi	в	7C	
175	TIAUL		Enterococcus		113340140	Firmicutes		~~	639.46 ±
194	Efa4	exporter	faecium	645	42521343	(LowGC G+)	в	8A	14.22
		ATPase, E1-E2			12022010	(201100 0 1)	-		
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-							
		translocating P-type							
		ATPase:Heavy metal translocating P-type	Euleus he stavium			Firmicutes			
195	E-:2	ATPase	Exiguobacterium sibiricum 255-15	649	60054670	(LowGC G+)	в	8A	
195	ESIZ	cation-transporting	Bacillus clausii	649	68034678	(LowGC G+)	в	8A	ł
196	Bcl2	ATPase	KSM-K16	637	56965111	(LowGC G+)	в	8A	
200						(	-		t
			Bacillus			Firmicutes			
		cadmium-			15612207	(LowGC G+)	в	SA	
197	Bha2	cadmium- transporting ATPase	halodurans C-125	637	12013307	(LOWOC GY)	-		1
197	Bha2	transporting ATPase	halodurans C-125	637	13613307	. ,	-		t
		transporting ATPase cadmium-	halodurans C-125 Bacillus sp. NRRL			Firmicutes			
	Bha2 Bsp6	transporting ATPase cadmium- transporting ATPase	halodurans C-125	637 678		. ,	в	8A	
		transporting ATPase cadmium- transporting ATPase ATPase, E1-E2	halodurans C-125 Bacillus sp. NRRL			Firmicutes		8A	•
		transporting ATPase cadmium- transporting ATPase ATPase, E1-E2 type:Heavy metal-	halodurans C-125 Bacillus sp. NRRL			Firmicutes		8A	-
		transporting ATPase cadmium- transporting ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	halodurans C-125 Bacillus sp. NRRL			Firmicutes		8A	
		transporting ATPase cadmium- transporting ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	halodurans C-125 Bacillus sp. NRRL			Firmicutes		8A	-
		transporting ATPase cadmium- transporting ATPase ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type	halodurans C-125 Bacillus sp. NRRL B-14911			Firmicutes		8A	-

		1	Bacillus						т
200	Bth1	cation-transporting ATPase, P-type	thuringiensis str. Al Hakam	641	118476163	Firmicutes (LowGC G+)	в	8A	
201	Bsu3	hypothetical protein BSU13850	Bacillus subtilis subsp. subtilis str. 168	637	16078449	Firmicutes (LowGC G+)	в	8A.	
202	Bli2	YkvW	Bacillus licheniformis ATCC 14580	635	52785356	Firmicutes (LowGC G+)	в	8A.	
		heavy metal- translocating P-type	Listeria welshimeri serovar 6b str.			Firmicutes			
203	Lwe1	ATPase cadmium-	SLCC5334 Listeria	625	116872028	(LowGC G+)	В	8A	ł
204	Lmo2	translocating P-type ATPase	monocytogenes str. 4b H7858	626	47091600	Firmicutes (LowGC G+)	в	8A.	
205	Ffa3	Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Enterococcus faecium DO	642	69247967	Firmicutes (LowGC G+)	в	8A.	
200	2105	lead, cadmium, zinc and mercury	Streptococcus pyogenes	012	0,247,907	Firmicutes			ţ
206	Spy1	transporting ATPase	MGAS9429	620	94988846	(LowGC G+)	в	8A	820.5 ±
207	Ath2	HMA1; copper- exporting ATPase	Arabidopsis thaliana	819	15235511	Viridiplantae	E	8B	820.5 ± 2.12
208	Osa1	Os06g0690700	Oryza sativa (japonica cultivar- group) Chlamvdia	822	115469636	Viridiplantae	E	8B	
209	Ctr1	Metal Transport P- type ATPase	trachomatis D/UW-3/CX	659	15605460	Chlamydiae	в	8C	664 ± 12.70
210	Cpn1	cation-transporting ATPase, E1-E2 family	Chlamydophila pneumoniae AR39	683	16752171	Chlamydiae	в	8C	
211	Cab1	putative cation transport related membrane protein	Chlamydophila abortus S26/3	657	62185469	Chlamydiae	в	8C	
212	Cfe1	cadmium/zinc cation transporting ATPase	Chlamydophila felis Fe/C-56	657	89897922	Chlamydiae	в	8C	
213	Cef1	putative cadmium- transporting atpase	Corynebacterium efficiens	695	23578015	Actinobacteria (HighGC G+)	в	9	793.72 ± 81.68
214	Lb 1	cadmium translocating P-type ATPase	Leeuwenhoekiella blandensis MED217	850	86141933	Bacteroidetes	в	9	
215	Gfal	heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-ty pe ATPase	Gramella forsetii KT0803	661	120424626	Bacteroidetes	в	9	
	Sru1	cadmium efflux ATPase	Salinibacter ruber DSM 13855	824		Bacteroidetes	в	9	ł
	Asp5	heavy metal translocating P-type ATPase	Arthrobacter sp. FB24	851		Actinobacteria (HighGC G+)	в	9	ţ
		Al Pase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type	Caulobacter sp.			Alpha-			
218	Csp1	ATPase	K31	873	113933097	proteobacteria	в	9	ł
219	Ccr1	cation transporting ATPase heavy metal	Caulobacter crescentus CB15	677	16126959	Alpha- proteobacteria	в	9	ļ
220	Asp4	translocating P-type ATPase heavy metal	Acidovorax sp. JS42 Burkholderia	880	121594240	Beta- proteobacteria	в	9	ļ
221	Bmu2	translocating P-type ATPase	multivorans ATCC 17616	861	118721130	Beta- proteobacteria	в	9	

		cadmium	Erythrobacter					
	-1-4	translocating P-type	litoralis			Alpha-	L	
222	EII	ATPase	HTCC2594	831	85373712	proteobacteria	В	9
		cadmium				-	1	
	David		Pseudomonas		20000700	Gamma-	L.	
223	Ppu3	ATPase Heavy metal	putida KT2440 Sphingopyxis	665	26986/86	proteobacteria	В	9
						Alaba		
224	Sal1	translocating P-type ATPase	alaskensis RB2256	830	103499060	Alpha- proteobacteria	в	9
224	Salt	Heavy metal	Raistonia	830	103488060	proteobacteria	ь	9
		translocating P-type	metallidurans			Beta-		
225	Rme4	ATPase	CH34	829	04152272	proteobacteria	в	9
223	Kme4	Heavy metal	СПЗ4	029	94132372	proteobacteria	в	9
		translocating P-type	Rhodopseudomon			Alpha-		
226	Rpa4	ATPase	as palustris BisB5	853	91976614	proteobacteria	в	9
220	прач	heavy metal	Parvibaculum	000	51570014	proceobacceria	-	-
		translocating P-type	lavamentivorans			Alpha-		
227	Pla1	ATPase	DS-1	809	121525714	proteobacteria	в	9
		ATPase, E1-E2			111010/11	proteopacterie	-	-
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type						
		ATPase:Heavy metal					1	
		translocating P-type	Bradyrhizobium			Alpha-	1	
228	Bsp7	ATPase	sp. BTAi1	840	78692489	proteobacteria	в	9
		AlPase, E1-E2						
		type:Heavy metal-					1	
		(Cd/Co/Hg/Pb/Zn)					1	
		translocating P-type						
			Xanthobacter					
		translocating P-type	autotrophicus			Alpha-		
229	Xau2	ATPase	Py2	835	89362164	proteobacteria	В	9
		ATPase, E1-E2						
		type:Heavy metal-						
		(Cd/Co/Hg/Pb/Zn)-						
		translocating P-type ATPase:Heavy metal	Xanthobacter					
		translocating P-type	autotrophicus			Alpha-		
220	Xau3	ATPase	Pv2	834	00260771	proteobacteria	в	9
230	Aaus	Heavy meta	Py2	0.54	09360//1	proteobacteria	В	5
		translocating P-type	Sphingomonas			Alpha-		
221	Ssp4	ATPase	sp. SKA58	833	94497154	proteobacteria	в	9
201	Joph	heavy metal	spi 5KA50	000	5445/154	proceobacceria	-	-
		translocating P-type	Mesorhizobium			Alpha-		
232	Msp5	ATPase	sp. BNC1	833	110347229	proteobacteria	в	9
		heavy metal	Delftia				F	<u> </u>
		translocating P-type	acidovorans SPH-			Beta-	1	
233	Dac2	ATPase	1	638	118730278	proteobacteria	в	9
							F	
		Heavy metal	Novosphingobium				1	
		translocating P-type	aromaticivorans			Alpha-	1	
234	Nar1	ATPase	DSM 12444	826	87200161	proteobacteria	в	9
		ATPase, E1-E2						
		type:Heavy metal-					1	
		(Cd/Co/Hg/Pb/Zn)-					1	
		translocating P-type					1	
		ATPase:Heavy metal					1	
		translocating P-type	flavescens PYR-			Actinobacteria	1	
235	Mfl2	ATPase	GCK	870	89337470	(HighGC G+)	В	9
		cadmium						
		translocating P-type	Sulfitobacter sp.			Alpha-		
		ATPase	NAS-14.1	682	83956091	proteobacteria	В	9
236	Ssp6							
236	Ssp6	cadmium-	Hyphomonas				1	1
		cadmium- translocating P-type	neptunium ATCC			Alpha-		
	Ssp6 Hne1	cadmium- translocating P-type ATPase		663	114799122	Alpha- proteobacteria	в	9
		cadmium- translocating P-type ATPase cation-transporting	néptunium ATCC 15444	663	114799122		в	9
237		cadmium- translocating P-type ATPase	neptunium ATCC	663 642			в	9

		cation-transporting	1 1					1	т
		ATPase; E1-E2	Lyngbya sp. PCC						
239	Lsp1	ATPase	8106	672	119483255	Cyanobacteria	в	10	
		Cd/Co/Hg/Pb/Zn-	Nodularia						1
		translocating P-type	spumigena				_		
240	Nsp2	ATPase	CCY9414 Nostoc	641	119509/88	Cyanobacteria	В	10	+
		COG2217: Cation	punctiforme PCC						
241	Npu1	transport ATPase	73102	656	23130381	Cyanobacteria	в	10	
						,	+	<u> </u>	1
		cadmium-	Nostoc sp. PCC						
242	Nsp3	transporting ATPase	7120	694	17230653	Cyanobacteria	В	10	4
			Symbiobacterium						
		putative cadmium-	thermophilum			Actinobacteria			
243	Sth2	transporting ATPase ATPase, E1-E2	IAM 14863	656	51894011	(HighGC G+)	в	10	
									1
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)- translocating P-type							
			Chloroflexus						
		translocating P-type	aurantiacus J-10-						
244	Cau2	ATPase	fl	914	76258037	Chloroflexi	в	10	
		Heavy metal	Chloroflexus						T
245	0-02	translocating P-type	aggregans DSM 9485	6.45	118048714	Chlander		10	
245	Cag2	ATPase Heavy metal	9485 Roseiflexus	640	118048/14	Chloroflexi	В	10	-
		translocating P-type	castenholzii DSM						
246	Rca2	ATPase	13941	723	118063539	Chloroflexi	в	10	
		ATPase, E1-E2							1
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)- translocating P-type							
		ATPase:Heavy metal							
		translocating P-type	Roseiflexus sp.						
247	Rsp5	ATPase	RS-1	724	106892616	Chloroflexi	в	10	
			Legionella pneumophila						
			subsp.						
		cadmium efflux	pneumophila str.			Gamma-			
248	Lpn3	ATPase	Philadelphia 1	635	52841244	proteobacteria	в	11	635
249	Nfa1	putative cation- transporting ATPase	Nocardia farcinica IFM 10152	615	54027681	Actinobacteria (HighGC G+)	в	12A	653.15 ± 13.35
245	NIGT	ATPase, E1-E2	1111 10132	015	3402/001	(nighter ov)		120	13.35
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)							
		translocating P-type							
		ATPase:Heavy metal translocating P-type	Mycobacterium			Actinobacteria			
250	Msp6	ATPase	sp. JLS	669	92908829	(HighGC G+)	в	12A	
		heavy metal	Mycobacterium		12110021	(g	-		†
		translocating P-type	vanbaalenii PYR-			Actinobacteria			
251	Mva1	ATPase ATPase, E1-E2	1	656	120404609	(HighGC G+)	В	12A	1
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-							
		translocating P-type							
		ATPase:Heavy metal	Mycobacterium						
252	140.4	translocating P-type	flavescens PYR-		00242022	Actinobacteria		124	
252	MI14	ATPase putative cadmium	GCK	655	89342038	(HighGC G+)	В	12A	+
		resistance protein	Rhodococcus			Actinobacteria			
					22047107	(HighGC G+)	в	12A	
253	Rer1	(CadA)	erythropolis	671	3300/10/				1
253	Rer1	(CadA) ATPase, E1-E2	erythropolis	671	3300/10/	(Inglide d · )			+
253	Rer1	(CadA) ATPase, E1-E2 type:Heavy metal-	erythropolis	671	3306/16/	(mgnoc c · )			+
253	Rer1	(CadA) ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	erythropolis	671	3300/10/	(inglice or )	5		+
253	Rer1	(CadA) ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type		671	3306/16/	(Ingride e - )			
253	Rer1	(CadA) ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)-	erythropolis Mycobacterium flavescens PVR-	671	3306/16/	Actinobacteria			

									1
255	Jsp1	putative cation- transporting ATPase	Janibacter sp. HTCC2649	656	84496041	Actinobacteria (HighGC G+)	в	12A	
256	Nsp5	heavy metal translocating P-type ATPase	Nocardioides sp. JS614	656	119716436	Actinobacteria (HighGC G+)	в	12A	
257	Asp8	heavy metal translocating P-type ATPase	Arthrobacter sp. FB24	650		Actinobacteria (HighGC G+)	в	12A	]
258	Mar1'	putative cation- transporting ATPase	marine actinobacterium PHSC20C1	649	88856664	Actinobacteria (HighGC G+)	в	12A	
259	Aau2	cadmium- translocating P-type ATPase	Arthrobacter aurescens TC1	652	119952482	Actinobacteria (HighGC G+)	в	12A	
260	Aau1	cadmium- translocating P-type ATPase	Arthrobacter aurescens TC1	651	119952630	Actinobacteria (HighGC G+)	в	12A	
261	Asp7	heavy metal translocating P-type ATPase	Arthrobacter sp. FB24	651	116662126	Actinobacteria (HighGC G+)	в	12A	
262	Gwe1	CadA protein	Gordonia westfalica	730	40445315	Actinobacteria (HighGC G+)	в	12B	715.83 ± 9.15
263	Rer2	putative cadmium resistance protein (CadA) ATPase, E1-E2	Rhodococcus erythropolis	715	33867146	Actinobacteria (HighGC G+)	в	12B	
264	Mf17	ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Mycobacterium flavescens PYR- GCK	705	89337462	Actinobacteria (HighGC G+)	в	12B	
		Heavy metal translocating P-type	Mycobacterium			Actinobacteria	-		1
265	Msp7	ATPase ATPase, E1-E2	sp. MCS	723	108798440	(HighGC G+)	в	12B	-
266	Mfl3	type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Mycobacterium flavescens PYR- GCK	712	89340253	Actinobacteria (HighGC G+)	в	12B	
	Mf15	ATPase, E1-E2 type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Mycobacterium flavescens PYR- GCK	710		Actinobacteria (HighGC G+)	в	12B	
268	Mar2`	putative cadmium- transporting ATPase	marine actinobacterium PHSC20C1	632	88856732	Actinobacteria (HighGC G+)	в	12C	638 ± 24.62
269	Cje1	putative cadmium- transporting ATPase	Corynebacterium jeikeium K411	630	68536524	Actinobacteria (HighGC G+)	в	12C	
270	BII4	COG2217: Cation transport ATPase	Brevibacterium linens BL2	606	62422742	Actinobacteria (HighGC G+)	в	12C	
271	Cef3	putative cation- transporting ATPase	Corynebacterium efficiens YS-314	650	25026566	Actinobacteria (HighGC G+)	в	12C	
272	Cef4	putative cation- transporting atpase	Corynebacterium efficiens	672	23578013	Actinobacteria (HighGC G+)	в	12C	
273	Nph1	transport ATPase 2 (probable substrates zinc/cadmium)	Natronomonas pharaonis DSM 2160	730	76800784	Euryarchaeota	A	13A	all 13: 813.43 ± 60.18
274	Hsp2	ZntA	Halobacterium sp. NRC-1	757	15789464	Euryarchaeota	A	13A	
275	Hma3	zinc-transporting ATPase	Haloarcula marismortui ATCC 43049	859	55377209	Euryarchaeota	A	13A	

		1	Haloarcula						1
276	Hma1	zinc-transporting ATPase	marismortui ATCC 43049	894	55376485	Eurvarchaeota	A	13A	
		cadmium-	Haloquadratum walsbyi DSM			,			1
	Hwa1	transporting ATPase zinc-transporting	16790 Haloarcula marismortui	861		Euryarchaeota	A	13A	1
278	Hma2	ATPase cation-transporting	ATCC 43049 Haloarcula marismortui	806	55380298	Euryarchaeota	A	13B	-
279	Hma4	ATPase	ATCC 43049 Methanosphaera	787	55376530	Euryarchaeota	A	13B	
280	Mst1	predicted cation transport ATPase ATPase, E1-E2	stadtmanae DSM 3091	731	84488951	Euryarchaeota	A	14	678 ± 65.34
281	Mma2	type:Heavy metal- (Cd/Co/Hg/Pb/Zn)- translocating P-type ATPase:Heavy metal translocating P-type ATPase	Methanoculleus marisnigri JR1 Methanothermob	698	110603920	Euryarchaeota	A	14	
282	Mth2	cadmium efflux ATPase	acter thermautotrophic us str. Delta H	605	15678439	Euryarchaeota	A	14	
283	Gst1	cadmium efflux pump protein	us .	727	16753175	Firmicutes (LowGC G+)	в	15A	all 15: 730.67 ± 54.52
284	Gka2	cation-transporting ATPase	Geobacillus kaustophilus HTA426	708	56419285	Firmicutes (LowGC G+)	в	15A	
285	Bha1	cadmium- transporting ATPase	Bacillus halodurans C-125	707	15616598	Firmicutes (LowGC G+)	в	15A	
286	Bcl1	cadmium- transporting ATPase Probable cadmium-	Bacillus clausii KSM-K16	709	56962051	Firmicutes (LowGC G+)	в	15A	
287	Sau1	transporting ATPase (Cadmium efflux ATPase) Probable cadmium-	Staphylococcus aureus	804	584870	Firmicutes (LowGC G+)	в	15A	
288	Bps1	transporting ATPase (Cadmium efflux ATPase)	Bacillus pseudofirmus	723	231677	Firmicutes (LowGC G+)	в	15A	
289	Sep1'	cadmium resistance protein B	Staphylococcus epidermidis ATCC 12228	802	27466993	Firmicutes (LowGC G+)	в	15A	]
290	Lmo1	Probable cadmium- transporting ATPase (Cadmium efflux ATPase)	Listeria –	711	3121832	Firmicutes (LowGC G+)	в	15A	
291	Sth1	cadmium efflux ATPase	Streptococcus thermophilus	707	46019880	Firmicutes (LowGC G+)	в	15A	
292	Lla1	cadmium resistance protein	Lactococcus lactis subsp. cremoris	705	71024887	Firmicutes (LowGC G+)	в	15A	
293	Oih1	cadmium- transporting ATPase	Oceanobacillus iheyensis HTE831	711	23097731	Firmicutes (LowGC G+)	в	15A	
294	Bsp1	cadmium- transporting ATPase	Bacillus sp. NRRL B-14911 Geobacillus	603	89097714	Firmicutes (LowGC G+)	в	15A	
295	Gka1	cadmium- transporting ATPase	kaustophilus HTA426	712	56419120	Firmicutes (LowGC G+)	в	15A	
296	Sag1	cation-transporting ATPase, E1-E2 family		709	22537407	Firmicutes (LowGC G+)	в	15A	
297	Gsu1	cadmium- translocating P-type ATPase	Geobacter sulfurreducens PCA	713	39997245	Delta- proteobacteria	в	15B	
298	Tca1	heavy metal translocating P-type ATPase	Thermosinus carboxydivorans Nor1	691	121535981	Firmicutes (LowGC G+)	в	15B	

		1	Syntrophomonas						т
			wolfei subsp.						
		cadmium-	wolfei str.			Firmicutes	1		
299	Swo1	transporting ATPase	Goettingen	735	114567595	(LowGC G+)	в	15C	
		AlPase, E1-E2	obetangen	,	11400/050	(201100 0.1)	-		+
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)							
		translocating P-type							
		ATPase:Heavy metal							
		translocating P-type	Desulfotomaculu			Firmicutes			
300	Dre1	ATPase	m reducens MI-1	783	88944312	(LowGC G+)	В	15C	
		putative Cd(2+)-	uncultured						
		translocating P-type	methanogenic				Ι.	150	
301	met1	ATPase ATPase, E1-E2	archaeon	708	1160//933	Euryarchaeota	А	15C	4
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-					1		
		translocating P-type					1		
		ATPase:Heavy metal	Bacillus				1		
		translocating P-type	weihenstephanen			Firmicutes			
302	Bwe1	ATPase	sis KBAB4	833	89208250	(LowGC G+)	в	15D	
			Staphylococcus						1
			saprophyticus						
			subsp.						
		cadmium resistance	saprophyticus			Firmicutes			
303	Ssa1	protein	ATCC 15305	843	73662912	(LowGC G+)	В	15D	
		Cd/Co/Hg/Pb/Zn-	Anabaena variabilis ATCC						all 16: 759.29 :
204	Ava1	translocating P-type ATPase	29413	751	75007249	Cyanobacteria	в	16A	759.29 = 56.30
304	Avai	cation-transporting	Nostoc sp. PCC	/51	/350/340	cyanobacteria	8	104	30.30
305	Nsp1	ATPase	7120	879	17158758	Cyanobacteria	в	16A	
		cadmium-	Mariprofundus			-,	-		4
		translocating P-type	ferrooxydans PV-			unclassified			
306	Mfe1	ATPase	1	769	114776637	Proteobacteria	в	16B	
		Heavy metal	Rubrobacter						1
		translocating P-type	xylanophilus DSM			Actinobacteria			
307	Rxy1	ATPase	9941	711	108803439	(HighGC G+)	В	16B	
		Heavy metal	Roseiflexus				1		
200	Rca1	translocating P-type	castenholzii DSM	750	110005300	Children Rent		16C	
308	RCal	ATPase Heavy metal	13941 Chloroflexus	750	118065328	Chiorofiexi	В	100	+
		translocating P-type	aggregans DSM						
309	Cag1	ATPase	aggregans DSM 9485	734	118045776	Chloroflexi	в	16C	
505	2091	ATPase, E1-E2			1100.0770	Sector Sector	1		+
		type:Heavy metal-							
		(Cd/Co/Hg/Pb/Zn)-					1		
		translocating P-type					1		
		ATPase:Heavy metal	Chloroflexus				1		
		translocating P-type	aurantiacus J-10-				1		
310	Cau1	ATPase	fl	721	76261326	Chloroflexi	В	16C	
			L.				1		
	The s	cation-transporting	Thermus				_	4.7	60.6
311	ithl	ATPase	thermophilus HB8	684	55980675	Deinococci	В	17	684

	Motif 1	Motif 2	Motif 3	Motif 4	Motif 5	Motif 6	Motif 7	Motif 8	Motif 9
	PGD	PAD	TGES	PEGL	DKTGTKT	KGAPE	DPPR	MVTGD	VAVTGDGVNDSPALKKADIGVAM
	100	r nu	1020	FLOE	BRIGHRI	NONFE	DEFIC	100	TATIODOTIDOPALITADIOTAL
	*	*	****	****	******	* *			
1	PG(D)	P(A)D	TGES	PCAL	DKTGTKT	HPLG(A)	D(E)(P)R	MLTGD	(VAM)VGDGINDAPAL(AA)A(D)IGIAM
-	729-331	734-736	752-755	857-860	900-906	907-9911		1092-1096	1137-1159
	*	+	****	****	******	* *	* *		
2	PG(E)	(AL)D	TGES	PCAL	DKTGTKT	(H)G(K)P(V)	D(TV)R	MLTGD	(V)GM(V)GDGINDAPALA(R)A(D)IGFA
	572-574	577-579	595-598	700-703	742-749	750-754	889-902	921-925	972-994
	*:	* - *	****	****	*****	* *	* ::	:::**	******:**:
3	(P)GD	PLD	TGES	PCAL	DKTGTLT	(E)G(E)P(E)	D(R)IR	MLTGD	(V)AMVGDGVNDAPAM(AR)A(DV)GIA
	522-524	528-560	546-549	662-665	705-711	712-716	834-837	857-861	901-923
	**:	* *	***.	****	*** ***	:* :	* **	:*:**	* *.***:****** :**:*
- 4	PGE	P(V)D	TGES	PCAL	DKT(G)TLT	KG(EP)E	D(V)IR	MLTGD	V(I)MVGDGINDAPALA(A)ADAGIAM
	220-222	225-227	243-246	348-350	391-397	398-402	522-525	544-548	588-610
	*	*	****	**.:	*****:::	.: :	*	:.:**	* ***: .: .
- 5		(PL)D	TGES	PCAL	DKTGTLT	(K)GF(E)V	D(EIK)	MVTGD	(VA)F(V)GDGINDA(P)VL(AR)A(DV)GI
	496-498	501-503	519-522	637-640	681-687	688-692	813-816	838-840	886-908
	.*:	* - *	***.	**.*	*****:*	:* :	* *	*:****	*:***:*****: **:*::*
6	AGE	PID	TGES	PCGL	DKTGTIT	RGEF(I)V	D(AC)R	MLTGD	(TA)MVGDGINDAPALA(T)ADIGISM
	479-481	484-486	502-505	607-610	650-656	657-570	794-797	816-820	876-898
			***		*****-*				
	*	.**	•	. ::	-	*	• •	: :**	****:*******************************
- 7	(P)G(E)	PVD	TGES	P(G)AL	DKTGTLT	(E)G(RPE)	D(TI)R	M(L)TGD	VAMVGDGVNDAPALA(A)AD(I)GIAM
	250-252	256-268	274-277	370-373	414-420	421-425	581-584	604-608	648-670
			**	****	*****				
	*	*				*	*	::***	*:*:*:*****
8	(P)G(E)	(PA)D	TGE(S)	PCAL	DKTGTLT	(K)G(KPV)	D(TPR)	MVTGD	(VA)MVGDGINDAPAL(AA)A(T)VG(I)A
	286-288	291-293	309-312	420-423	464-470	471-475	621-624	644-648	689-711
			****	****					
	* *	*			******	* *.	• •	*::**	***************************************
9	(V)GD	(PA)D	TGES	PCAL	DKTGTLT	(E)G(K)PR	D(TP)R	MISGD	(V)AVGDGVNDAPAMA(NT)VGIAM
	419-421	432-434	450-453	571-574	614-620	621-625	747-750	770-774	814-836
	*	*	****	****	******	*.	* *	::***	*** :***:******
10	P(GE)	(PT)D	TGES	PCAL	DKTGTLT	(T)GK(PQ)	D(RV)R	MLTGD	VAMVGDGINDAPALA(A)ATVGIAM
	476-478	481-483	499-502	605-608	648-654	655-659	831-834	854-858	898-920
				L					
	PGE	ATD	TGES	PCAL	DKTGTLT	QGKPK	DPLR	MLTGD	VMMVGDGVNDAPALATADIGIAM
seq	161-163	166-168	184-187	288-291	331-337	338-342	459-462	482-486	526-548
	***	- + +	****	****	******		* - * *	*****	***** ********* ****
		-					DELR		
12		ATD	TGES	PCAL 210,222	DKTGTLT	(R)N(QPA)		MLTGD	(T)AMGDGVNDAPALATAD(I)GIAM 548-570
	193-195	198-200	216-219	319-322	362-368	369-373	483-486	505-509	340-370
	* ·	*		****	******	*	* -*		
				PCAF	DETOTIC				
13	PGE 388-390	P(T)D 393-395	TGES 411-414	PCAF 531-534	DKTGTLT 574-580	(K)G(ELA) 581-585	D(E)LR 744-747	MLTGD 767-771	VAMVGDGINDAPALA(T)A(D)VGIAM 811-833
	300-390	050-050	411-414	331-334	074-000	001-000	/44-/4/	101-111	011-000
	***	***	****	****	******	** *		*****	**** - ******* ** - **
1.4	PGD	PLD	TGES	PCAL	DKTGTLT	(E)GR(L)E	D(VI)R	MLTGD	VVMGDGVNDAPALA(R)ANVGIAM
:4	252-254	257-259	275-278	380-383	423-429	430-434	550-553	572-576	616-638
	202-204	201-209	210-210	300-303	420429	400-404	300-355	512-510	010-000
	*	.:*	****	****	******		* • *	**	**********
15	PG(Q)	AMD	TGES	PCAL	DKTGTLT	(K)G(V)PV	D(E)VR	MLTGD	VAMVGDGVNDAPALA(A)S(T)VGIAM
10	383-385	388-390	406-409	511-514	554-560	561-565	689-692	712-716	756-778
	303-305	300-330	400-409	011-014	004-000	361-365	009-092	/12-/10	100-110
	* -	· *	****	****	******		* • •	****	***** ** ** ** **
15	(P)GE	PVD	TGES	PCAL	DKTGTLT	(T)G(K)P(V)	DUTUR	MLTGD	VGMVGDGINDAPALAA(DV)GIAM
10		439-441		569-572			D(T)IR 754-757	ML1GD 777-781	
	434-436	403-441	458-461	309-572	612-618	619-623	/54-/5/	111-161	821-843
	<b>—</b>	<b>—</b>							
		1				1.01007	0.700	LLTGD	
17	DOE	DAD	TGED	DCAL	DKTGT T				
	PGE 219-221	PAD 224-226	TGEP 242-245	PCAL 346-349	DKTGTLT 389-395	LGKPT 396-400	DTPR 509-512	530-534	VAMVGDGVNDAPALARATVGLAV 576-598

**Table 6.** Motif analyses of the seventeen clusters representing the Heavy Metal P-type ATPases

**Table 7.** The prokaryotic organisms whose16S rRNAs were used to construct a phylogenetic tree representing each genus found among the 311 protein sequences representing the Heavy Metal P-type ATPases.

	Abb.	Description	Organism	Length	Gi#
		B.kaustophilus 16S			
1	Gka1	ribosomal RNA	Geobacillus kaustophilus	1432	39549
		Mycobacterium			
_		marinum 16S rRNA	Musebasterium marinum	1 400	44450
2	Mma1	gene V.cholerae gene	Mycobacterium marinum	1489	44459
		for 16S ribosomal			
3	Vch1	RNA	Vibrio cholerae	1452	49417
		Agrobacterium tumefaciens 16S	Agrobacterium		
4	Atu1	rRNA gene	tumefaciens	1489	142272
		Aeromonas			
_		hydrophila 16S	A		170600
5	Ahy1	ribosomal RNA	Aeromonas hydrophila	1492	173692
		Listeria			
		monocytogenes			
6	Lmo1	16S ribosomal RNA	Listeria monocytogenes	1553	175140
		Legionella			
		pneumophila 16S			
7	Lpn1	ribosomal RNA Methanococcus	Legionella pneumophila	1544	175168
		thermolithotrophic			
		us 16S ribosomal	Methanothermococcus		
8	Mth1	RNA	thermolithotrophicus	1452	175445
		P.aeruginosa 16S			
9	Pae1	ribosomal RNA	Pseudomonas aeruginosa	1517	175722
		Treponema			
10	Tpa1	pallidum 16S ribosomal RNA	Treponema pallidum	1573	176249
10	ipar			15/5	170245
		Thermoanaerobact			
		er finii (DSM 3389)	Thermoanaerobacter		
11	Tbr1	(16S rRNA) gene	brockii subsp. finnii	1523	349568
		, í ě			
		Leeuwenhoekiella marinoflava gene			
		for 16S ribosomal			
		RNA, partial			
		sequence, strain:	Leeuwenhoekiella marinoflava		
12	Lma1	NCIMB 397	marmonava	1257	425727

		Chloroflexus aurantiacus gene for 16S ribosomal RNA, partial	Chloroflexus aurantiacus		
13	Cau1	sequence	J-10-fl	1401	550527
14	Bsp1	Bradyrhizobium spec. (LMG 9980) gene for 16S rRNA	Bradyrhizobium sp.	1441	563846
		Staphylococcus aureus 16S ribosomal RNA			
15	Sau1	(16S rRNA) gene	Staphylococcus aureus	1500	576603
16	Vno1	Yersinia pestis 16S ribosomal RNA (16S rRNA) gene	Yersinia pestis	1467	576926
10	Ype1	Rhodococcus sp.	reisinia pestis	1407	570920
17	Rsp1	(P6) 16S rRNA gene	Rhodococcus sp.	1446	577792
		Pyrococcus furiosus 16S small subunit ribosomal			
18	Pfu1	RNA Pelobacter	Pyrococcus furiosus	1495	643670
		carbinolicus 16S ribosomal RNA gene, partial			
19	Pca1	sequence	Pelobacter carbinolicus	1414	727426
20	Eac1	Exiguobacterium acetylicum 16S rRNA gene, partial sequence	Exiguobacterium acetylicum	1482	893364
21	Esp1	Enterobacter sp. 16S rRNA gene, partial sequence	Enterobacter sp.	1500	1072242
21	CSPI	E.coli (ATCC 11775T) gene for	Enterobacter sp.	1500	1073242
22	Eco1	16S rRNA	Escherichia coli	1450	1240022
23	Hor1	Halothermothrix orenii ribosomal RNA sequence	Halothermothrix orenii	1534	1256954
		Desulfotomaculum sp. strain T93B 16S-like ribosomal			
24	Dsp1	RNA Lawsonia	Desulfotomaculum sp.	1392	1353384
	1	intracellularis 16S ribosomal RNA gene, partial	Lawronia intracollulario	1450	1200670
25	Lin1	sequence	Lawsonia intracellularis	1468	1389678

<u> </u>		M.defluvii 16S	Methanothermobacter	I	
	14-1-1		defluvii	1445	1420056
20	Mde1	rRNA gene G.hirsuta 16S	denuvn	1445	1430856
	- · ·		Gordonia hirsuta		44444
27	Ghi1	rRNA gene	Gordonia nirsuta	1461	1666638
		Ornithobacterium			
		rhinotracheale 16S			
		ribosomal RNA			
			Omithebactarium		
		gene, complete	Ornithobacterium rhinotracheale		4040050
28	Orh1	sequence	rninotracheale	1421	1842059
		Salmonella typhi			
		16S ribosomal RNA			
		gene, complete			
	Ch.1	5	Calmonella tunhi	1541	1057065
29	Sty1	sequence Chlamydophila	Salmonella typhi	1541	1857865
		psittaci gene for			
		16S rRNA,	Chlamydophila psittaci		
20	Cps1	strain:6BC	6BC	1507	1902841
30	Cpsi	Desulfitobacterium	050	1507	1902041
		sp. 16S rRNA			
21	Dsp2	gene, clone 2	Desulfitobacterium sp.	1616	1915888
51	Dapz	gene, cione z	Desuncobacterium sp.	1010	1913000
		Moorella glycerini			
		16S small subunit			
		ribosomal RNA			
		gene, complete			
32	Mgl1	sequence	Moorella glycerini	1513	1916225
		C.perfringens 16S	<u> </u>		
33	Cpe1	rRNA gene	Clostridium perfringens	1504	2058294
		Bordetella			
		bronchiseptica 16S			
34	Bbr1	rRNA gene	Bordetella bronchiseptica	1532	2174260
		_			
		Klebsiella oxytoca			
		gene for 16S			
		ribosomal RNA,			
35	Kox1	partial sequence	Klebsiella oxytoca	1441	2209046
			Caldicellulosiruptor		
36	Cla1	rRNA gene	lactoaceticus	1505	2222664
		Syntrophobacter			
		sp. 16S ribosomal			
37	Ssp1	RNA	Syntrophobacter sp.	1484	2463455
		Lactobacillus			
		johnsonii 16S rRNA			
38	Ljo1	gene	Lactobacillus johnsonii	1487	2597958
		Caulobacter			
		fusiformis gene for			
		16S rRNA, partial	Coulaborton (		
39	Cfu1	sequence	Caulobacter fusiformis	1385	2754583

<u> </u>		Horneteeinhen			]
		Herpetosiphon geysericola 16S			
		ribosomal RNA			
			Llownetesinhen		
		gene, partial	Herpetosiphon		
40	Hge1	sequence	geysericola	1417	2760922
		Nodularia sp. 16S			
			No dela sia an		
		rRNA gene, isolate	Nodularia sp. BCNOD9427	4 4 9 9	
41	Nsp1	BCNOD9427	BCN0D9427	1489	2920730
		Photobacterium			
		profundum gene for 16S ribosomal	Photobacterium		
10	D		profundum SS9	1510	0004604
42	Ppr1	RNA, strain:SS9	prorundum 559	1518	2924634
		Nostoc ATCC53789			
		16S ribosomal RNA			
		gene, partial			
42	Non 2	sequence	Nostoc sp. ATCC 53789	1481	3132717
43	Nsp2	Lyngbya sp. 16S	Nostoc sp. ATCC 55789	1461	3132/1/
		rRNA gene, strain	Lyngbya aestuarii PCC		
	1 1	PCC 7419	7419	1451	2242226
44	Lae1	Nitrosomonas	/419	1451	3242226
		europaea 16S			
		ribosomal RNA			
4.5		gene, complete		4 5 9 9	
45	Neu1	sequence	Nitrosomonas europaea	1520	3414677
		Haloarcula sp.			
46	Hsp1	gene for 16S rRNA	Haloarcula sp.	1470	4115513
0	пэрт	gene for 105 fixing		1470	4115515
		Fusobacterium			
		nucleatum subsp.			
		nucleatum 16S	Fusobacterium		
		ribosomal RNA	nucleatum subsp.		
47	Fnu1	gene	nucleatum	1479	4490387
		gono	nacioacani	10.5	1150507
		Halobacterium sp.			
		AUS-1 DNA for 16S			
48	Hsp2	ribosomal RNA	Halobacterium sp. AUS-1	1465	4580005
	11502	Serratia		1405	4300003
		marcescens 16S			
		ribosomal RNA			
		gene, partial			
49	Sma1	sequence	Serratia marcescens	1494	4883843
	Sindi			1124	10000 10
		Cytophaga fucicola			
		16S rRNA gene,			
		type strain			
50	Cfu2	NN015860, partial	Cellulophaga fucicola	1472	5701823
		-7			

		<b>F</b> -t			
		Enterococcus			
		faecalis 16S			
		ribosomal RNA			
		gene, partial			
51	Efa1	sequence	Enterococcus faecalis	1510	5732229
		Oscillatoria sancta			
		PCC 7515 16S			
		ribosomal RNA			
		gene, partial	Oscillatoria sancta PCC		
52	Osa1	sequence	7515	1409	5771438
		Du han ha share			
		Rubrobacter			
		xylanophilus partial			
53	Rxy1	16S rRNA gene	Rubrobacter xylanophilus	1509	6006622
		Anabaena bergii			
		16S ribosomal RNA			
		gene, partial	Anglassa kansii		
54	Abe1	sequence	Anabaena bergii	1399	8571953
		Marinomonas			
		communis 16S			
		ribosomal RNA			
		ribosomal RNA			
		gene, partial			
55	Mco1	sequence	Marinomonas communis	1448	9622547
		Symbiobacterium			
		thermophilum DNA	Symbiobacterium		
56	Sth1	for 16S rRNA	thermophilum	1479	11079170
		Leuconostoc			
		mesenteroides			
		DNA for 16S			
		ribosomal RNA,	Leuconostoc		
57	Lme1	strain NCFB 529	mesenteroides	1449	11602800
		Salinibacter ruber			
		strain M1 16S			
		ribosomal RNA			
		gene, partial			
58	Sru1	sequence	Salinibacter ruber	1491	12007478
		Cellulophaga sp.			
		ACEM20 16S			
		ribosomal RNA			
		gene, partial			
59	Csp1	sequence	Cellulophaga sp. ACEM20	1425	14517332
		Synechocystis			
		PCC6805 gene for			
		16S rRNA, partial	Synechocystis sp. PCC		
60	Ssp2	sequence	6805	1437	16215699
		Alkaliphilus			
		crotonoxidans 16S			
		ribosomal RNA			
		gene, partial	Alkaliphilus		
61	Acr1	sequence	crotonatoxidans	1553	19072573

		1	1		
		Streptococcus			
		pyogenes			
		MGAS8232,	Streptococcus pyogenes		
62	Spy1	complete genome	MGAS8232	1895017	19745201
		Chromobacterium			
		sp. 70 16S			
		ribosomal RNA			
		ribosomal RNA			
		gene, complete	Chromobacterium sp. 70		
63	Csp2	sequence Xanthobacter	chromobacterium sp. 70	1455	21898816
		polyaromaticivoran			
		s gene for 16S			
		ribosomal RNA,	Xanthobacter		
64	Xpo1	partial sequence	polyaromaticivorans	1460	29335757
		Methanocorpusculu			
		m labreanum			
		strain DSM 4855			
		16S ribosomal RNA			
		gene, partial	Methanocorpusculum		
65	Mla1	sequence	labreanum	1409	29373912
		Candidatus			
		Fritschea eriococci			
		strain Elm 16S			
		ribosomal RNA and			
		23S ribosomal RNA			
		genes, complete	Candidatus Fritschea eriococci		
66	CFr1	sequence	enococci	4531	31747860
		Azotobacter			
		vinelandii DSM576			
		16S ribosomal RNA			
		gene, partial			
67	Avi1	sequence	Azotobacter vinelandii	1398	33242483
		Mathanacullaur			
		Methanoculleus	Methanoculleus		
60	Mth2	thermophilus gene for 16S rRNA	thermophilus	1421	33342024
08	muiz	Robiginitalea	and mophilds	1431	33342024
		biformata strain			
		HTCC2501 16S			
		ribosomal RNA			
		gene, partial	Robiginitalea biformata		
69	Rbi1	sequence	HTCC2501	1434	37912049
		Janibacter sp.			
_		NSA5-4 gene for			
70	Jsp1	16S rRNA	Janibacter sp. NSA5-4	1516	46575825

		IM - Em - II-			
		Wolinella			
		succinogenes			
		strain ATCC 29543			
		16S ribosomal			
		RNA, partial			
71	Wsu1	sequence	Wolinella succinogenes	1481	47558942
		Oceanobacillus			
		iheyensis strain			
		MSU3110 165			
		ribosomal RNA			
		gene, partial			
72	Oih1	sequence	Oceanobacillus iheyensis	1455	50980367
		Corynebacterium			
		glutamicum strain			
		CICC10226 16S			
		ribosomal RNA			
		gene, partial	Corynebacterium		
73	Cgl1	sequence	glutamicum	1472	55735425
	- 3.2		5		
		Photorhabdus			
		luminescens subsp. luminescens strain			
		ATCC 29999 165			
		ribosomal RNA	Photorhabdus		
		gene, partial	luminescens subsp.		
74	Plu1	sequence	luminescens	1475	58042756
		Sodalis glossinidius			
		strain GP-SG1 16S			
		ribosomal RNA			
		gene, partial			
75	Sgl1	sequence	Sodalis glossinidius	1506	58761272
		Bacillus subtilis			
		partial 16S rRNA gene, isolate SMF7	Bacillus cubtilis	4 5 9 9	
76	Bsu1	5	Bacilius subulis	1522	60098072
		Tenacibaculum sp. CL-TF13 16S			
		ribosomal RNA			
	<b>TI:</b> 1	gene, partial	Tanaciha sukum literatum	1446	60101505
//	Tli1	sequence	Tenacibaculum litoreum	1446	62131505
		Gramella			
		portivictoriae strain			
		UST040801-001			
I		16S ribosomal RNA			
	1				
		gene, partial sequence	Gramella portivictoriae		

		Burkholderia			
		pyrrocinia isolate			
		RG6-5 16S			
		ribosomal RNA			
		gene, partial			
79	Bpy1	sequence	Burkholderia pyrrocinia	1387	63020470
		Paracoccus			
		ferrooxidans strain			
		BDN-1 16S			
		ribosomal RNA			
		gene, partial			
80	Pfe1	sequence	Paracoccus ferrooxidans	1418	63020950
		Chlamydia			
		trachomatis strain			
		A/Har-1 clone 1			
		16S ribosomal RNA			
		gene, partial			
81	Ctr1	sequence	Chlamydia trachomatis	1550	63354709
		Deinococcus sp. CC FR2-10 16S			
		ribosomal RNA			
~	DE1	gene, partial	Deinococcus ficus	1452	66204740
82	Dfi1	sequence	Demococcus ficus	1453	66394748
		Polaromonas			
		aquatica 16S rRNA			
		gene, strain CCUG			
83	Paq1	39797	Polaromonas aquatica	1407	68051131
		Magnetospirillum		2.07	
		sp. PM2411 gene			
		for 16S ribosomal	Magnetospirillum sp.		
84	Msp1	RNA	PM2411	1455	68533196
		Geobacter sp.			
		CLFeRB 16S			
		ribosomal RNA			
		gene, complete	Carbon and Cl Capp		7000000
85	Gsp1	sequence	Geobacter sp. CLFeRB	1485	70906126
		Hyphomonas taiwanensis strain			
		HYP1 16S			
		ribosomal RNA			
		gene, partial			
86	Hta1	sequence	Hyphomonas taiwanensis	1418	75265811
50	ntar	Jequence	ryphononas taiwanensis	1410	75205011
		Polynucleobacter			
		sp. MWH-			
		BledIIIW10 partial			
		16S rRNA gene,			
		100 HARA gene,	'		
		strain MWH- BledIIIW10	Polynucleobacter sp. MWH-BledIIIW10		

<u> </u>					
		Rhodoferax sp. PIC-			
		C33 16S ribosomal			
		RNA gene, partial			
88	Rsp2	sequence	Rhodoferax sp. PIC-C33	1473	77994459
	Ropz			11/5	77551155
		Nitrobacter			
		vulgaris partial 16S			
		rRNA gene, type			
89	Nvu1	strain DSM 10236T	Nitrobacter vulgaris	1441	78271519
		Synechococcus			
		elongatus PCC			
		7942, complete	Synechococcus		
90	Sel1	genome	elongatus PCC 7942	2695903	81167692
		Sediminicola luteus			
		gene for 16S			
		ribosomal RNA,			
		partial sequence,			
91	Slu1	strain:CNI-1-5	Sediminicola luteus	1440	82568484
		Francisella sp.			
		2005/50/F292-6C			
		16S ribosomal RNA			
		gene, partial	Francisella philomiragia		
02	Fph1	sequence	subsp. noatunensis	1416	83031476
32	1 pii 1	bequence	Subspi noucunensis	1410	03031470
		Methylobacillus			
		flagellatus strain			
		KT 16S ribosomal			
		RNA gene, partial	Methylobacillus		
93	Mfl1	sequence	flagellatus	1400	83272653
		Haloquadratum			
		walsbyi clone 2B08			
94	Hwa1	sequence	Haloquadratum walsbyi	38670	85680316
		Erwinia persicina			
		strain GS04 16S			
		ribosomal RNA			
		gene, partial			
95	Epe1	sequence	Erwinia persicina	1470	86161535
		Delftia			
		tsuruhatensis			
		strain P18 16S			
		ribosomal RNA			
0.6	Dto1	gene, partial sequence	Delftia tsuruhatensis	1406	96450325
90	Dts1	sequence		1406	86450325

		Aurantimonas altamirensis strain S21B 16S ribosomal RNA gene, partial	Aurantimonas		
97	Aal1	sequence	altamirensis	1366	8704494
98	Rsp3	Ralstonia sp. PHD- 12 16S ribosomal RNA gene, partial sequence	Ralstonia sp. PHD-12	1493	8731260
99	Rsp4	Rhodopseudomona s sp. TUT3627 gene for 16S rRNA, partial sequence	Rhodopseudomonas sp. TUT3627	1482	8860668
100	Aav1	Acidovorax avenae strain FC-501 16S ribosomal RNA gene, partial sequence	Acidovorax avenae	1462	8921412
101	Bdo1	Bacteroides dorei gene for 16S rRNA, partial sequence, strain:JCM 13472	Bacteroides dorei	1490	8924210
		Roseobacter sp. LOB-8 16S ribosomal RNA gene, partial			
	Rsp5	sequence Sulfitobacter sp. SPB-4 16S ribosomal RNA gene, partial	Roseobacter sp. LOB-8	1404	8925847
103	Ssp3	sequence Dechloromonas sp. EMB 269 16S ribosomal RNA gene, partial	Sulfitobacter sp. SPB-4 Dechloromonas sp. EMB	1398	8925848
104	Dsp3	sequence Sphingopyxis sp. EMB 355 16S ribosomal RNA gene, partial	269 Sphingopyxis sp. EMB	1458	8934812
105	Ssp4	sequence	355	1407	8934812

		Rhodobacter			
		azotoformans			
		strain S3 16S			
		ribosomal RNA			
		gene, partial	Rhodobacter		
106	Raz1	sequence	azotoformans	1459	89357194
100	Ruzi	bequeince	azotorormano	1.00	0,00,101
		Oceanicola sp. 20			
		16S ribosomal RNA			
		gene, partial			
107	Osp1	sequence	Oceanicola sp. 20	1427	89520386
			•		
		Rhizobium sp. As-2			
		16S ribosomal RNA			
		gene, partial			
108	Rsp6	sequence	Rhizobium sp. As-2	1391	89953754
		Rhizobium sp.			
		Lv6.1Se 16S			
		ribosomal RNA			
		gene, partial			
109	Rsp7	sequence	Rhizobium sp. Lv6.1Se	1446	89954503
		Psychrobacter sp.			
		AM11 partial 16S			
		rRNA gene, isolate			
110	Psp2	AM11	Psychrobacter sp. AM11	1501	90071222
		Mesorhizobium			
		tianshanense			
		strain RCAN08 16S			
		ribosomal RNA			
		gene, partial	Mesorhizobium		
111	Mti1	sequence Helicobacter	tianshanense	1479	90186421
		canadensis strain			
		L231 16S ribosomal RNA			
		gene, partial			
110	Hca1	sequence	Helicobacter canadensis	1407	90194336
112	HCal	Brucella cetaceae	Helicobacter canaderisis	1407	90194336
		partial 16S rRNA			
		gene, strain NCTC			
112	Bce1	12891	Brucella cetaceae	1430	90818672
113	DCGT	Proteus mirabilis		1430	50010072
		strain O 16S			
		ribosomal RNA			
		gene, partial			
	Pmi1	sequence	Proteus mirabilis	1451	90856205

		Syntrophomonas			
		wolfei subsp.			
		methybutyica			
		strain 5J-1 16S			
		ribosomal RNA			
		gene, partial	Syntrophomonas wolfei		
115	Swo1	sequence	subsp. methylbutyratica	1602	00002520
115	SWOI	Comamonas sp.	subsp. methybutyratica	1002	90903520
		Dant 3-8 16S			
		ribosomal RNA			
		gene, partial	Comamonas sp. Dant 3-		
110	C - m 2	-	8	1452	01701740
110	Csp3	sequence	0	1453	91701740
		Arthrobacter sp.			
		m3 16S ribosomal			
		RNA gene, partial			
117	Asp1	sequence	Arthrobacter sp. m3	1484	91771955
11/	ASPI	Sphingomonas sp.	Arthrobacter sp. ms	1404	91//1955
		B9LA 16S			
		ribosomal RNA			
		gene, partial			
110	ComE		Sphingomonas sp. B9LA	1260	01005100
118	Ssp5	sequence Erythrobacter sp.	Sphingomonas sp. B9LA	1369	91805180
		CNU001 16S			
		ribosomal RNA			
		gene, partial	Erythrobacter sp.		
110	Esp2	-	CNU001	1480	91982998
119	сэр2	sequence	CN0001	1400	91902990
		Novosphingobium			
		subarcticum gene			
		for 16S rRNA,			
		partial sequence,	Novosphingobium		
120	Nre1	strain:T7b	resinovorum	1400	92019078
120	MIET	Brevibacterium sp.	resinovorum	1400	92019076
		CNJ737 PL04 16S			
		ribosomal RNA			
		gene, partial	Brevibacterium sp.		
1.21	Ben2	sequence	CNJ737 PL04	1493	92091011
121	Bsp2	Nocardia sp.		1493	92091011
		CNS044 PL04 16S			
		ribosomal RNA			
		gene, partial	Nocardia sp. CNS044		
122	Nsp3	sequence	PL04	1484	92091036
122	nap3	Nocardioides sp.		1404	92091030
		CNJ892 PL04 16S			
		ribosomal RNA			
		gene, partial	Nocardioides sp. CNJ892		
122	Nsp4	sequence	PL04	1482	02001040
123	изрч	ocquerice	1.201	1402	92091040

		Shewanella sp.			
		BSi20587 16S			
		ribosomal RNA			
		gene, partial			
124	Ssp6	sequence	Shewanella sp. BSi20587	1504	93009053
		Uncultured			
		Blastopirellula sp.			
		clone 6P2-75 16S			
		ribosomal RNA			
		gene, partial	uncultured Blastopirellula		
125	uBl1	sequence	sp.	1428	126143007
		Mariprofundus			
		ferrooxydans strain			
		JV-1 16S ribosomal			
		RNA gene,	Mariprofundus		
126	Mfe1	complete sequence	ferrooxydans	1528	145226686
		Roseiflexus sp. RS-			
107		1, complete	Dessificities on DC 1	5004500	1 40 6 5 4 4 0 0
127	Rsp8	genome	Roseiflexus sp. RS-1	5801598	148654188
		Dinoroseobacter			
		shibae DFL 12,	Dinoroseobacter shibae		
128	Dsh1	complete genome	DFL 12	3789584	157910316
120	Doni	Thermosinus		5765561	157510510
		carboxydivorans	Thermosinus		
129	Tca1	Nor1	carboxydivorans Nor1	349669	121307835
		Parvibaculum		0.0000	12100/000
		lavamentivorans			
		DS-1, complete	Parvibaculum		
130	Pla1	genome	lavamentivorans DS-1	3914745	154250456
		Thermus			
		thermophilus			
		HB27, complete	Thermus thermophilus		
131	Tth1	genome	HB27	1894877	46198308
		Natronomonas			
		pharaonis DSM			
		2160 complete	Natronomonas pharaonis		
132	Nph1	genome	DSM 2160	2595221	76556520
		Carboxydothermus			
		hydrogenoformans	Carboxydothermus		
		Z-2901, complete	hydrogenoformans Z-		
133	Chy1	genome	2901	2401520	78042616
100	2.1.12	Rhodospirillum		2101020	,0012010
		rubrum ATCC			
		11170, complete	Rhodospirillum rubrum		
134	Rru1	genome	ATCC 11170	4352825	83591340

135	Mst1	Methanosphaera stadtmanae DSM 3091, complete genome	Methanosphaera stadtmanae DSM 3091	1767403	84488831
136	Lla1	L.lactis ribosomal RNA operon encoding 16S, 5S, and 23S ribosomal RNA, transfer RNA- Ala and transfer RNA-Asn	Lactococcus lactis	5953	44070

Table 8: An overview of the sequence characteristics of the clusters representing Copper
P-type ATPase Family. ³

	# of Sequences found within Cluster	Ave. AA length for cluster	Standard Deviations	Phylogenetic groups	Extra Domains
1	4	771	52	TM, EP, CR	None
2		769	53	AC	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ). COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter),
			<b></b>		
3	26	806	16	AD, DP, CB, GP, BP, EP, unclassified proteobacteria	None
3	20	000	10	proteobacteria	None
4	20	706	41	FI, AQ, BP, EA, DP, D, CH	None
		•			
5	5	829	18	D, AP, AC,	None
				-	
6	47	788	52	BP, GP, AP, EP, P	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), pfam04945 (YHS domain), cd01057 (AAMH_A, Aromatic and Alkene Monooxygenease Hydroxylases, subunit A), COG3350 (uncharacterized conserved protein), smart00746 (TRASH, metallochaperone- like domain),
7	1	807	807	unclassified Proteobacteria	None
					·
8	27	816	52	GP, BP, AP, CN, D, one unknown organism	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter),
9	24	849	84	GP	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter),
					•

³ TM = Thermotogae (B), EP = ε-proteobacteria (B), AP = α-proteobacteria (B), DP = Δproteobacteria (B), GP = γ-proteobacteria (B), BP = β-proteobacteria (B), AC = Actinobacteria (B), FI = Firmicutes (B), F = Fusobacteria (B), D = Deinococci (B), AD = Acidobacteria (B), CB = Chlorobi (B), BC = Bacteroidetes (B), SP = Spirochaetes (B), AQ = Aquificae (B), EA = Euryarchaeota (A), CR = Crenarchaeota (A), CH = Chloroflexi (B), P = Planctomycetes (B), CN = Cyanobacteria, V = Viridiplantae (E), FN = Fungi (E), MY = Mycetozoa (E), MZ = Metazoa (E), CL = Chlamydiae, (E) = Eukaryota, (B) = Bacteria; (A) = Archaea

10	39	813	84	CH, AC, DP, AD, BC, FI, EA, CB	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter), pfam04945 (YHS domain), cd01057 (AAMH_A, Aromatic and Alkene Monooxygenease Hydroxylases, subunit A), COG3350 (uncharacterized conserved protein), smart00746 (TRASH, metallochaperone-like domain), PRK00807 (50S ribosomal protein L24e),
11	9	831	71	AC, EA, CB, FI, DP	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter), cd5062_PTKc_IGF-1R, (Protein-Tyrosine-like Kinase Family, Insulin-like Growth Factor-1 Receptor; catalytic domain),
					1
12	7	658	41	FI	COG4633, uncharacterized protein conserved in bacteria
13	45	1206	214	V, MY, MZ, FN	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter),
14	9	826	76	V, CN	None
14	9	020	70	v, ch	None
15	19	786	63	FI, SP, EP, FU, DB, DP	None
16	3	806	26	BP, GP	None
10	5	0.50	20	5., 51	1010
17	17	757	34	CL, AP, DP, GP, BP, one unknown organism	None
18	3	725	4	FI	None
	0				
19	22	796	49	SP, FI, AC	pfam00115 (COX2, Cytochrome C oxidase subunit II, periplasmic domain), COG2131 (Sufl, Putative multicopper oxidases)
20	30	812	92	gp, bp, ap	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671 (copper transporter),

## **Table 9:** An overview of the sequence characteristics of the clusters representing the Heavy Metal P-type ATPase Family.⁴

	# of				
	Sequences				
	found within	Ave AA length	Standard	Phylogenetic	
Cluster#	Cluster	for cluster	Deviations	Groups	Extra Domains
1A	18	760	59	BP, AP, GP, D,	
1B	16	1		AP	cd00371 (HMA),
1C	21	1		GP	pfam00403 (HMA),
		1			COG2608 (CopZ),
					COG2217 (ZntA),
				GP	PRK11033 (zntA), PRK10671
1D	3			GP	PRK10071
2A	1	all 2: 776	all 2: 63	BP	
2B	1	1		BP	-
2C	27	+		BP, DP, GP	+
2D	3	†		GP, BP	1
2E	3	+		DP, BP	cd00371 (HMA),
2F	9	+		CB, BP	pfam00403 (HMA),
2G	2	+		GP	COG2608 (CopZ),
20	2			0F	CO02000 (C0p2),
3	9	all 3: 775	all 3: ± 98	P, GP, DP, AP	None
			-	-	
4	2	664	32	FI, CL	None
5A	1	all 5: 695	all 5: 60	DP	
5B	1			FI	+
50 5C	1	+		EP	+
50 5D	2	+		FI	4
5E	1	+		F	-
5E 5F	19	+		FI	-
5G	3	+		EA, FI	-
	3	-		FI, EA	-
5H		+			4
51	8	+		AC, FI, CN	4
53	13	-		BC, GP	4
5K	2	-		SP, FI	4
5L	3		1	EP	None
6	6	989	175	V	None
6	6	989	175	V	None
	6	989 all 7: 640	175 all 7: 31	V FI	None
7A		•	-	-	None
7A 7B	3	•	-	FI	None
7A 7B 7C	3 2 9	all 7: 640	all 7: 31	FI EA AC, FI, AP, CH	
7A 7B 7C 8A	3 2 9 13	all 7: 640	all 7: 31	FI EA AC, FI, AP, CH FI	
6 7A 7B 7C 8A 8B 8C	3 2 9	all 7: 640	all 7: 31	FI EA AC, FI, AP, CH	

⁴ **TM** = Thermotogae (B), **EP** = ε-proteobacteria (B), **AP**= α-proteobacteria (B), **DP**= Δproteobacteria (B), **GP** = γ-proteobacteria (B), **BP**= β-proteobacteria (B), **AC** = Actinobacteria (B), **FI** = Firmicutes (B), **F** = Fusobacteria (B), **D** = Deinococci (B), **AD**= Acidobacteria (B), **CB**= Chlorobi (B), **BC** = Bacteroidetes (B), **SP** = Spirochaetes (B), **AQ** = Aquificae (B), **EA** = Euryarchaeota (A), **CR** = Crenarchaeota (A), **CH** = Chloroflexi (B), **P** = Planctomycetes (B), **CN** = Cyanobacteria, **V** = Viridiplantae (E), **FN** = Fungi (E), **MY**= Mycetozoa (E), **MZ** = Metazoa (E), **CL**= Chlamydiae, (E) = Eukaryota, (B) = Bacteria; (A) = Archaea

				AC, BC, AP, GP,	
9	25	793	82	BP,	None
5	25	755	02	DF,	None
10	10	696	83	CN, AC, CH	pfam019878 (TrmB), COG3355 (Predicted transcriptional regulator), COG1378 (predicted transcriptional regulators)
10	10	050	00	en, ne, en	regulatorsy
11	1	635	635	GP	None
	-				
12A	13	653	13	AC	
12B	6	716	9	AC	1
12C	5	638	25	AC	None
13A 13B	2	all 13: 813	all 13: 60	EA	cd00371 (HMA), pfam00403 (HMA), COG2608 (CopZ), COG2217 (ZntA), PRK11033 (zntA), PRK10671
14	3	678	65	EA	None
14	3	078	05	EA	None
15A	14	all 15: 731	all 15: 55	FI	
15B	2		un 15. 55	DP, FI	+
15C	3			FI, EA	†
15D	2			FI	None
			-		
16A	2	all 16: 759.29 ± 56.30	all 16: 759.29 ± 56.30	CN	
16B	2			AC, unclassified Proteobacteria	
16C	3			CH	None
17	1	684	684	D	None

## **References**

- Anthonisen A.N., Clausen J.D., Andersen J.P. (2006). Mutational Analysis of the Conserved TGES Loop of Sacroplasmic Reticulum Ca2+ -ATPases. *Journal of Biological Chemistry*, Vol. 281, No 42 31572-31582
- Axelsen K., Palmgren M.G., (1998) Evolution of substrate specificities in the P-type ATPase superfamily. *J Mol Evol* **46**: 84-101
- Barabote R.D., Tamang D.G., Abeywardena S.N., Fallah N.S., Fu J.Y.C., Lio J.K., Mirhosseini P., Pezeshk R., Podell S., Salampessy M.L., Thever M.D., Saier, M.H. (2006). Extra domains in secondary transport carriers and channel proteins. *Biochimica et Biophysica Acta*. 1758: 1557 – 1579.
- Benito B., Garciadeblás B, Roderíguez-Navarro A, (2000) Molecular cloning of the calculum and sodium ATPases in *Neurospora crassa*. *Molecular Microbiology* 35(5), 1079-1088.
- Dosztányi Z., Magyar C., Tusnády G.E., Cserző M., Fiser A., Simon I., (2003) Servers for sequence–structure relationship analysis and prediction. *Nucleic Acids Research*, Vol. 31, No. **13** 3359–3363
- Geourjon C., Deleage G. (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. *Comput Appl Biosci.* Dec; **11**(6):681-4.
- Kyte J., Doolittle R.F. (1982) A simple method for displaying the hydropathic character of a protein. *Journal of Molecular Biology*. **157**: 105-132.
- Møller J.V., Juul B., le Maire M. (1995). Structural organization, ion transport, and energy transduction of P-type ATPases. *Biochimica et Biophysica Acta*. **1286**: 1-51.
- Mukherjee T., Mandal D., Bhaduri A., (2000) Leishmania plasma membrane Mg2+ -ATPase is a H+/K+ -antiporter involved in glucose symport. Studies with sealed ghosts and vesicles of opposite polarity. *J Biol Chem.* Feb 23; **276** (8):5563-9.

- Thever M.D., M.S. thesis, P-type ATPase Homologues in Eukaryotes, University of California, San Diego, La Jolla, CA, 2007.
- Yamaguchi A., Tamang D.G., Saier M.H. (2007). Mercury Transport in Bacteria. *Water, Air, & Soil Pollution.* **182**: 219-234.