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Abstract

Essays on Productivity and Consumption Smoothing Under Imperfect Markets

by

Jedediah Silver

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Ethan Ligon, Chair

Perhaps the most central insight of development economics is that, absent a complete set of
perfect markets, households’ economic activities cannot be neatly “separated” into those of a
profit-maximizing firm and a utility-maximizing consumer (Singh et al., 1986). In particular,
risk-averse farm households face a tradeoff between maximizing farm profits and smoothing
consumption across states of the world. Balancing these motives is important not only for
these households, who constitute a massive share of the world’s poor, but for aggregate
productivity as well. However, little is known about how to diagnose the market failures
that create these tradeoffs, quantify their costs, and prescribe robust policies to address
them. This dissertation seeks to provide methodological and empirical progress from the
micro to the macro levels.

Chapter 1 focuses on identifying how distinct market failures affect aggregate productivity
in Thai agriculture. Agricultural markets often fail to allocate resources efficiently across
farm households in developing countries. However, policymakers require knowledge of which
markets fail and how the distortions they generate are correlated. In this chapter, I use data
from rural Thailand to characterize how distortions in land, labor, credit, and insurance
markets each contribute to factor misallocation. I use moments in household consumption
and production data to separately identify these distortions and then quantify their impacts
on aggregate productivity through an equilibrium model of misallocation. I find that the
efficient allocation would increase aggregate productivity by 31% relative to the status quo,
while only 15% (7%) gains could be achieved by eliminating financial (input) distortions
in isolation. Positive interaction effects from addressing multiple distortions simultaneously
account for the remaining 9% TFP gains. Meanwhile, other common methods would produce
larger estimates of misallocation and suggest that a financial market intervention would
decrease aggregate productivity. Accounting for multiple correlated distortions is therefore
crucial for measuring misallocation and designing policies to address it.

In Chapter 2, coauthored with Ethan Ligon, we move from Thailand to Northeastern Nigeria
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and move from the growing season to the lean season spanning harvests to study another
important tradeoff between consumption smoothing and investment. In particular, we con-
duct a randomized control trial offering postharvest loans (PHLs) to farm households in
Gombe State.1 The purpose of these loans is to enable households to shift from exhausting
grain stocks and buying them back at high prices to becoming net arbitrageurs. While such
programs have increased household incomes in Kenya (Burke et al., 2019) and Tanzania
(Channa et al., 2022), their theory of change relies on grain prices rising, which is a highly
uncertain proposition across sub-Saharan Africa. During our study period, prices of maize
and other major crops stayed flat. While we find that the loans induced households to store
more crops later into the season, we do not find significant effects on sales or overall welfare.
While this is an example of the downside risk of PHLs being realized, we also use a simple
model of intertemporal arbitrage to show how ex ante risk can have ambiguous effects on
the demand for PHLs, depending on whether households are more vulnerable in states with
high vs. low prices.

Chapter 3, based in part on work coauthored with Ethan Ligon, focuses on production
function estimation when input choices are distorted. These estimators, which are used to
estimate the production function in Chapter 1, extend the canonical approach in industrial
organization (Ackerberg et al., 2015; Gandhi et al., 2020) to risk-averse producers facing
imperfect markets. In particular, they proxy for unobserved productivity by inverting the
demand function for a flexible input from the setting with profit-maximizing firms in compet-
itive markets to risk-averse households, possibly facing distorted input markets. The method
involves combining consumption and production data to model input demands as a function
of unobserved productivity and a stochastic discount factor, which includes the covariance
between production shocks and consumption at harvest. Essentially, the consumption side of
the household’s problem provides information to help us identify the production side. Three
main specifications are considered: the canonical Cobb-Douglas with Hicks-neutral shocks,
a heteroskedastic generalization of Cobb-Douglas that allows for differentially risky inputs,
and a dynamic multi-stage Cobb-Douglas featuring sequential shocks. The differences across
specifications show the importance of accounting for risk, both overall and input- and stage-
specific, to consistently estimate production functions and draw inferences about efficiency
and misallocation.

Together, these three chapters show how better understanding households’ tradeoffs between
productivity and consumption smoothing can improve policies to address both micro-level
food insecurity and macro-level productivity.

1This study was registered in the American Economics Association RCT registry as AEARCTR #8022.
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Chapter 1

Farm Household Misallocation

1.1 Introduction

Farm households in developing countries face many different market failures, but how does
each matter for aggregate productivity? Decades of research in development economics
has provided robust empirical evidence of incomplete credit, insurance, land, labor, fertil-
izer, equipment, seed, and other markets, often occurring simultaneously.1 However, these
market failures rarely operate in a vacuum; in equilibrium, they combine to misallocate re-
sources across farms. While the resulting misallocation may be extremely costly (Restuccia
and Rogerson, 2008; Adamopoulos and Restuccia, 2014), how can policymakers distinguish
between its many possible sources?

Doing so is especially important, yet challenging, because distortions generated by dif-
ferent market failures may compound or offset each other in equilibrium. The theory of the
second best implies that the effects of reducing distortions in any market are ambiguous and
depend on the underlying distribution of distortions in all markets (Lipsey and Lancaster,
1956). What determines a policy’s effectiveness is not how much it reduces a particular dis-
tortion, but whether it moves producers closer to or further from the efficient allocation. For
example, correcting distortions in land markets may have limited or negative effects if the
households that expand their landholdings are already inefficiently large due to preferential
access to credit. Since considering a single market failure in isolation can lead to inefficient
and even harmful policy recommendations, it is important to distinguish them empirically.

This paper separately identifies a wide range of distortions in Thai agriculture and char-
acterizing how they combine to generate misallocation in equilibrium. Such a task requires
a structural model:2 Specifically, I estimate distortions in input (e.g. land, labor, and equip-

1See Magruder (2018) and Suri and Udry (2022) for recent overviews.Goldstein and Udry (2008); Breza
et al. (2021); Karlan et al. (2014); Mobarak and Rosenzweig (2013); Diop (2023); Caunedo and Kala (2021);
and Bold et al. (2017) provide excellent examples of each of these market failures, respectively. Emerick
et al. (2016) and Jones et al. (2022) are examples providing experimental evidence on how these market
failures can compound each other.

2If there are K potential (binary) market failures, the ideal experiment would require 2K treatment
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ment) and financial (credit and insurance) markets.3 Under general production and utility
functions, distortions in these markets each affect households’ input demands through dis-
tinct wedges. However, the full set of input and financial wedges cannot be separately
identified using solely production data (Hsieh and Klenow, 2009) — there generally is no
way to tell whether a household uses less of an input because it cannot obtain it at the
market price or because it is financially constrained. In particular, analyses that treat farm
households as profit-maximizing firms cannot separately identify the distortions induced by
uninsured risk.

However, unlike typical firms, farm households are also consumers. Under imperfect mar-
kets, household consumption enters their investment decisions and thus contains information
about how production is distorted (Benjamin, 1992). I leverage this information to identify
how credit constraints and uninsured risk distort households’ productive choices distinctly
from frictions in input markets. In particular, credit constraints enter as a wedge between
the marginal utilities of consumption at planting and at harvest (reflecting the inability to
smooth consumption across time by borrowing against future harvests). Meanwhile, unin-
sured risk enters through the covariance between production shocks and the marginal utility
of consumption at harvest (reflecting the dependence of consumption on realizations of out-
put when households cannot use insurance to smooth consumption across states of the world).
On the other hand, input frictions function like a tax or subsidy and can be identified from
dispersion in input composition across households.

I then estimate the production function using a novel structural method, which I in-
troduce in Chapter 3. I use these estimates of the production function and distortions to
calculate aggregate TFP under the observed allocation, the efficient allocation, and counter-
factual distributions of distortions. Crucially, my estimation strategy is only possible when
both input and financial distortions are well-specified. Otherwise, the common alternative
is to calibrate the production function using revenue shares from a setting in which perfect
markets are assumed to hold, such as the US or Canada (e.g. Adamopoulos and Restuc-
cia, 2020; Chen et al., 2023), or use lagged inputs as instruments (e.g. Shenoy, 2017, 2021;
Manysheva, 2021).

I implement my approach with the Townsend Thai Data, which is a 196-month panel
of rural households in 16 Thai villages (with annual surveys in another 48 villages over
the same period) from 1998 to 2014. Many studies have used the Townsend Thai Data to
provide evidence of credit constraints (Kaboski and Townsend, 2011, 2012) and imperfect
risk-sharing (Kinnan and Townsend, 2012; Karaivanov and Townsend, 2014; Samphantharak
and Townsend, 2018; Kinnan et al., 2024). Shenoy (2017) also estimates a lower bound on
input misallocation of about 11% of TFP. I interpret these findings as evidence of both
imperfect financial and input markets in Thailand and view this paper as the first full
decomposition of their costs.

arms, at the village (or higher) level of aggregation.
3These are the distortions I find to be most relevant in the Thai context. In general, the model I develop

in Section 1.2 can accommodate distortions in financial markets and K − 1 input markets if there are K
inputs.



1.1. INTRODUCTION 3

However, many of the institutional features common in other studies of misallocation,
such as restrictive land policy and absence of credit markets, do not apply.4 This makes
Thailand a useful benchmark for less developed countries; finding nontrivial amounts of
misallocation suggests that favorable institutions alone do not guarantee efficiency. The level
of misallocation in Thailand may therefore be a more realistic counterfactual for institutional
reforms in these settings than full efficiency.

I present four main empirical findings: First, I find that going from the observed to
efficient allocation increases aggregate TFP by 31%. This is similar to estimates of total
misallocation of 19% in Shenoy (2017) from Thailand (albeit using different methodologies
and data), but substantially lower than estimates of 53% from China (Adamopoulos et al.,
2022b), 97% from Ethiopia (Chen et al., 2022), 259% from Malawi (Chen et al., 2023),
and 286% from Uganda (Aragon et al., 2022). These gains increase to about 35% when
allowing the aggregate supply of tradable inputs to respond to increased aggregate TFP, as
in Donovan (2021).

Second, I decompose these gains into the effects of eliminating either friction in isolation
and the interaction effect from eliminating them simultaneously. I find that removing finan-
cial distortions while holding observed input wedges fixed would achieve 15-18% TFP gains
relative to the observed allocation while removing input distortions alone would achieve 7-
11% gains. Thus, TFP can be increased by a further 5–9% (relative to baseline) by addressing
both sets of distortions together. While the sign of these interaction effects is theoretically
ambiguous, in the data it is positive because more financially constrained households are
relatively subsidized in input markets.5

Third, I model the effects of incrementally reducing distortions in one or more markets.
This may represent a more realistic policy scenario when budgetary, political, or feasibil-
ity constraints make it impossible to eliminate some distortions entirely. While reducing
both input and financial distortions simultaneously yields large complementarities relative
to reducing either in isolation, most of these complementarities are only unlocked after large
improvements to both sets of markets. In contrast, small reductions to one or both sets
of input and financial frictions would have modest effects on aggregate productivity. This
suggests that there are diminishing returns to addressing a single distortion in isolation and
locally increasing returns from “big-push” policies that achieve major improvements from
multiple markets simultaneously.

Finally, I analyze some distributional implications of reducing distortions. In the data,
wealthier households tend to have much larger farm sizes. Each counterfactual leads to
a more concentrated farm size distribution in which most households contract, but which
households expand depends on which distortions are reduced. Reducing financial frictions
weakens the correlation between farm size and baseline income by reallocating from the

4Thai agriculture features important distortions at the sectoral level, including heavy price supports for
rice and fertilizer. However, this would only affect conclusions from the model in Section 1.2 to the extent
it creates variation in prices across households in the same location, which is unlikely to be the case.

5This is consistent with evidence that poorer households over-supply labor to their own farms because
the shadow value of their time is lower (Dillon et al., 2019; Jones et al., 2022).
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wealthiest households to those at the middle of the income distribution. However, removing
input frictions alone further concentrates resources towards wealthier households, exacerbat-
ing inequality. Under the efficient allocation, the progressivity of financial reform outweighs
the regressivity of input reform, reducing the correlation between farm size and baseline
wealth.

This paper’s main contribution is developing a framework and estimation strategy to
attribute misallocation to failures in distinct markets. Doing so is important not only for
understanding where misallocation comes from but for developing policies to address it.
This is because unmodeled distortions can bias estimates of misallocation and even suggest
harmful policies, depending on how the measured distortions are correlated with unmea-
sured ones. Recent advances in the misallocation literature (e.g. Carrillo et al., 2023; Sraer
and Thesmar, 2023; Hughes and Majerovitz, 2023) show how misallocation can nonparamet-
rically be estimated from (quasi-)experimental variation but are generally unable to trace
misallocation to its different sources. There is also a growing literature applying quantita-
tive misallocation models to microdata in agriculture (Adamopoulos and Restuccia, 2020;
Adamopoulos et al., 2022a,b; Aragon et al., 2022; Chari et al., 2021; Chen et al., 2017, 2022,
2023; Donovan, 2021; Gottlieb and Grobovšek, 2019; Manysheva, 2021; Shenoy, 2017). How-
ever, these papers typically model a single distortion in isolation or combine all distortions
into a composite wedge. Notable exceptions are Manysheva (2021), who models the explicit
dependence of credit constraints and land distortions through the collateral channel, and
Shenoy (2017) who derives bounds for input and financial misallocation under assumptions
on the joint distribution of distortions in Thailand. In contrast, I estimate a more complete
range of distortions and model how the effects of counterfactual policies depend on their
underlying distribution. Importantly, I show how my results differ substantially from the
conclusions one would draw using other methods.

An important advantage of this framework is that it allows me to remain agnostic towards
the specific institutions that generate distortions. These distortions have many potential,
possibly simultaneous, causes and conclusions may depend on which ones a model spec-
ifies. For example, recent empirical work has identified expropriation risk (Goldstein and
Udry, 2008), incomplete contracting (Burchardi et al., 2019), an explicit cap on landholdings
(Adamopoulos and Restuccia, 2020), lack of titling (Chen et al., 2022), land fragmentation
(Bryan et al., 2022), and others, as contributing to imperfect land markets. It would be
impossible to capture all of these explicitly in a single model. Instead, my method allows
me to diagnose how distortions in each market affect aggregate productivity without strong
assumptions about their root causes.

I also contribute to the recent literature on how measurement error can inflate estimates
of misallocation by using a model to separate between financial frictions and input mis-
measurment. Rotemberg and White (2021) and Bils et al. (2021) find large upward biases
due to measurement error in U.S. and Indian manufacturing. Meanwhile, Gollin and Udry
(2021) argue that up to 70% of observed productivity dispersion in Ugandan and Tanzanian
agriculture is due to measurement error and unobserved heterogeneity. This is supported by
evidence of large and systematic measurement error in survey measures of agricultural land,
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labor, and output (e.g. Arthi et al., 2018; Desiere and Jolliffe, 2018; Abay et al., 2019, 2021).
Estimating a wider range of distortions helps me overcome these concerns and avoid

having to infer them from a noisy residual. In particular, observed productivity dispersion
is a (nonlinear) function of true misallocation and measurement error. When estimating a
model with only a subset of distortions, e.g. only input distortions, the residual contains
both financial distortions and measurement error. In other words, measurement error looks
like a distortion in the data — and will tend to inflate estimates of misallocation.6 However,
directly estimating financial distortions allows me to distinguish between measurement error
and true misallocation in this residual.7 Without estimating both input and financial distor-
tions, one would not be able to make this distinction.8 I find that this would produce slightly
larger estimates of misallocation than my model does and would suggest that eliminating
financial distortions would lower aggregate productivity. This occurs due to the correlation
between financial distortions and measurement error.

The rest of this chapter is organized as follows: In Section 1.2, I present the theoretical
framework and derive expressions for financial and input wedges at the household level, show-
ing how they map to aggregate misallocation. Section 1.3 provides more information about
the Thai data and context. Section 1.4 presents the estimation framework I develop and the
results. Section 1.5 shows the counterfactuals that I evaluate and Section 1.6 concludes.

1.2 Model

I propose a dynamic farm household model to characterize how frictions in financial and
input markets generate distinct wedges in households’ input demands. In equilibrium, these
create dispersion in marginal revenue products (TFPR in the language of Hsieh and Klenow
(2009)) across households, lowering aggregate TFP relative to the case of perfect markets.
The model is dynamic and features many possible sources of distortions, but allows their
effects on each market to be separately identified from three sets of first-order conditions.

While this allows me to estimate distortions while remaining agnostic towards the specific
institutions that generate them I cannot prescribe specific policies without further assump-
tions on the root causes of distortions in each market. Doing so would require distinguishing
between, for example, limited commitment or asymmetric information in risk-sharing net-
works and expropriation risk and lack of titling in land markets. While further research is

6The effect of measurement error on misallocation is theoretically ambiguous, but measurement error
would need to be sufficiently negatively correlated with true distortions to create a downward bias.

7Of course, estimated quantities (TFP and wedges) contain error as well. However, TFP estimates (by
design) remove much of the error in raw input measurements and are therefore less noisy. Moreover, having
estimates of financial frictions allows me to compute both TFP-based and input-based estimates of aggregate
productivity under any allocation.

8In the expression I derive for misallocation in Section 1.2, mismeasurement in inputs appears like a
distortion in the sense that moves inputs either away from or closer to the efficient allocation. If it is
correlated with other distortions and household productivity, the effects on measured misallocation are
ambiguous, much like with two correlated “true” distortions.
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required to further distinguish between these sources of distortions, quantifying the misallo-
cation within each market may nonetheless be useful for policymakers.

1.2.1 Environment

There are V villages9 and time, indexed by t, is discrete. For simplicity, each village v has a
fixed number of households Nv, indexed by j. Agriculture is the only sector in the villages
and uses K ≥ 3 inputs to produce a single numéraire good10 I assume for simplicity that
the supply of land Q̄1vt and labor Q̄2vt is fixed within villages. There is an urban sector
with stand-in firms that produce a vector of other consumption goods, indexed by i, and the
remaining K − 2 inputs used in agriculture.11 Each of these can be imported to the village
at exogenous prices pivt for goods i and w̄kvt for inputs k. However, households may face
different (effective) prices for each input, as I describe below.

1.2.2 Production

Production is given by
Yjt+1 = F (qjt, φjt+1) (1.1)

where qjt is a vector ofK inputs applied by householdj at time t, and φjt+1 is a shock realized
at t+1, prior to harvesting output Yjt+1. As is standard, I assume that Fk > 0, Fφ > 0 ,and
Fkk < 0 for each k. I assume that F is common across households and fixed over time, but
households may have heterogeneous time-varying productivity. Note that I treat all inputs
as static – in a benchmark economy with complete rental markets, households’ input use at
time t would not depend on their endowments or previous seasons’ input choices.

I assume that w̄vkt is the (endogenously determined) market price of each input k in
village v at time t. However, households may face idiosyncratic taxes or subsidies such that
they face prices sjktw̄vkt. Households may also be subject to upward or downward rations
on inputs such that q

jkt
≤ qjkt ≤ q̄jkt.

While I only directly model the agricultural sector, allowing households to earn income
from other sources is important to match the income diversification observed in the data.
Households can invest in a portfolio of assets bjmt with uncertain returns rjmt+1. They may
also be subject to borrowing constraints such that

∑
m bjmt ≥ B̄jt. bjmt should also be

thought of as capturing formal and informal insurance with state-contingent payouts. As
with inputs, frictions in the asset market can be modeled by writing returns as rjmt+1 ≡
χjmtr̄vmt+1, where r̄vmt+1 is the (endogenously determined and possibly stochastic) average

9I use the word villages for exposition but the unit of analysis I use in the empirical section is the tambon
(township) (see Samphantharak and Townsend, 2018).

10This implicitly assumes that all farmers face the same output price, which I show in Section 1.4 is a
reasonable approximation in the Thai setting.

11The urban sector plays no substantive role in the model but captures that many goods are not produced
in the village.
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return in village v.12 Let Bjt denote a household’s portfolio of assets and Rjt+1 be the
return to that portfolio. I denote the set of primitive taxes and rations that generate the
distortions I derive below as D ≡ {χ, s, q, q̄, B̄}.13 Note that the estimation strategy I develop
in section 1.4 does not depend on which frictions in D generate λ and τ . In section 1.5,
I discuss how whether input frictions act as taxes or rations affects counterfactuals and
compute results both ways.

1.2.3 Dynamic Program

I assume households j have time-separable, von Neumann-Morgenstern preferences with
discount factor δ and per-period utility function u(c, l), which I assume is continuously
differentiable, strictly increasing, and concave in consumption c and leisure l. At time t,
they maximize

Et

[
∞∑
s=t

δs−tu(cjs, ljs)

]
subject to the following budget constraint, in which M is total assets.

Mjt+1 =Mjt + Yjt+1 − w′
jtqjt − p′tcjt +Rjt+1Bjt+1 −Bjt (1.2)

which holds in each state of the world.
The household’s value function satisfies the Bellman equation

V (Y,M,w, p, φ,R,D) = max
c,q,B

u(c) + δEtV (Y ′,M ′, w′, p′, φ′, R′,D′) (1.3)

subject to the budget constraint (1.2), borrowing constraint B̄, and possible rations on hiring
inputs in or out, q, q̄. Taking first-order conditions with respect to the choice variables c, q,
and B:

(c) ui(c) = λpi (1.4)

(q) δE
[
∂V

∂Y
(Y ′, k′, w′, p′, φ′, R′,D)Fk(q, φ

′)

]
= λwk + µ

k
− µ̄k (1.5)

(B) δRE
[
∂V

∂B
(Y ′, k′, w′, p′, φ′, R′,D′)

]
+ µB = λ (1.6)

where λ, µB, µ
k
, and µ̄k are the Lagrange multipliers on the budget constraint, borrowing

constraint B̄, and rations on hiring inputs in and out, q, q̄, respectively. The first FOC simply
states that households equate the marginal utility of expenditure on each good consumed
within a period to a common Lagrange multiplier λ. The second implies that households
equate the marginal utility of expenditure on each input to the expected marginal utility of
its marginal product, unless an input ration binds. The third is simply the Euler equation
with the possibility of binding borrowing constraints.

12χjmt = −∞ implies a household never purchases asset m.
13While the elements of D cannot be separately identified without many additional assumptions, they

microfound the distortions the markets in credit, insurance and the k input markets I derive below.
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1.2.4 Input Demands and Wedges

Applying the envelope theorem to the first-order condition (FOC) for q with simple substi-
tutions yields the following expression for input demands:

w̄vktτjkt = δEt [Fk(qjt, φjt+1)]Λjkt (1.7)

in which

τjkt ≡ sjkt +
µ
jkt

− µ̄jkt

λjtw̄vkt

(1.8)

Λjkt ≡
Et[λjt+1]

λjt
+
covt(λjt+1, Fk(qjk, φjt+1))

λjt
(1.9)

(1.7) simply states that households equate the marginal utility of expenditure on input k to
the discounted expected marginal utility of its marginal product. Under input frictions, the
(shadow) cost of each input k differs from the common market price by τjkt as defined by
(1.8). Meanwhile, Λ captures how credit constraints and uninsured risk affect input demands
through the two terms in (1.9), respectively. When credit constraints bind, (1.5) implies that
λjt > Et[λjt+1] since households cannot borrow against expected future earnings. Likewise,
absent full insurance, consumption at t + 1 will depend on the realization of production
shocks, creating a non-zero covariance between λjt+1 and (stochastic) marginal products,
Fk(qjt, φjt+1). This covariance may differ across inputs for a general production function.
However, it will be negative if households are prudent (u′′′(c) > 0), input k does not reduce
risk (Fkφ ≥ 0), and agriculture is not a hedge against overall portfolio risk. In this case, both
mechanisms would reduce input demands relative to the case of perfect financial markets.

Λjkt and τjkt fully characterize the distortions generated by D in the markets for each
input k. To see this, compare (1.7) to the benchmark of perfect markets, in which it reduces
to expected profit maximization.

w̄vkt = δEt[Fk(qjt, φjt+1)] (1.10)

This is identical to (1.7) when Λjkt = τjkt = 1 for all j, k, t. In this case, ratios of marginal
utilities λ are constant across households and cancel out and all households equalize expected
marginal products to the common price of each input (τ = 1). The equalization of marginal
products across households implies the allocation is efficient. Note how deviations from
efficiency are completely characterized by Λjkt and τjkt, which together define the distortions
in the market for each input k.

I have thus far kept the model as general as possible to illustrate how financial and input
frictions create distinct wedges under very general conditions. However, estimating the
model requires functional form assumptions for F and u. While I discuss functional forms
for utility in Section 1.4, I assume output is determined by the following Cobb-Douglas
production function:

F (q, ϕ) = Ajtφjt+1

∏
k

qαk
jkt (1.11)
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where Ajt is (possibly time-varying) household-specific TFP that is known ex-ante and φjt+1

is an unanticipated shock with mean 1 realized after input decisions are made.14 I assume
decreasing returns to scale with γ ≡

∑
k αk < 1.15

Under the Cobb-Douglas assumption. I can rewrite (1.7) to obtain the demand function
for each input k.

qjkt =
δαk

w̄vktτjkt

Et[λjt+1Yjt+1]

λjt
(1.12)

(1.12) can also be expressed as

qjkt =
δαk

w̄vktτjkt
Et[Yjt+1]Λjt (1.13)

where Λjt =
Et[λjt+1φjt+1]

λjt
is now constant across inputs k.16

Meanwhile, distortions in the market for each input k enter through τjkt. In contrast,
financial frictions Λjt distort the scale of production while the composition of inputs is only
distorted by τ . To see this, take the ratio of demands for any two inputs, k and l:

qjkt
qjlt

=
αk

αl

w̄vlt

w̄vkt

τjlt
τjkt

(1.14)

Input ratios are solely a function of technology and relative market prices, which under
perfect markets are constant across households in the same village-year. Thus any dispersion
in input ratios can be attributed to τ .17 This is a feature of any homothetic production
function.18

14This is equivalent to writing

Yjt+1 = Ãjte
ϕ
jt+1

K∏
k=1

qαk

jkt

where Ajt = ÃjtEt[e
ϕjt+1 ] and and φjt+1 ≡ eϕjt+1

Et[eϕjt+1 ]
. The normalization I use more clearly delineates the

expected and unexpected components of TFP and guarantees that φ is strictly positive with mean 1.
15If γ ≥ 1, then the efficient allocation is degenerate with only the most productive producer producing.
16To see this, it is useful to write the expectation in the numerator as Et[λjt+1]+ covt(λjt+1, φjt+1) (since

φ is mean 1 by construction). Also note that (1.13) can be written in closed-form by substituting (1.11) for
Yjt+1 and solving the system of equations implied by (1.12)

qjkt =
αk

w̄vktτjkt

(
AjtΛjt

∏
l

(
αl

w̄vltτjlt

)αl
)η

where η ≡ 1
1−γ

17Note that s, q, q̄, B̄, and χ are the primitives that determine the distortions τ and Λ.
18Note that under CES production, the ratio of τs on the right-hand side of (1.14) is raised to the elasticity

of substitution σ.
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1.2.4.1 Nonhomothetic Production

While the misallocation literature typically assumes a homothetic production function with
Hicks-neutral shocks, this implies that all inputs contribute proportionally to the variance as
outputs. Maintaining this assumption not only increases tractability but allows me to directly
compare my results to others in the literature, showing how modeling the consumption
side produces drastically different conclusion, holding the model fixed. However, a stark
implication of homotheticity is that households facing the same input prices would use the
same input mix and financial distortions would only affect the scale of production. To relax
this assumption, I assume production takes the following generalized Cobb-Douglas form
following Just and Pope (1978, 1979).

Yjt+1 = Ajt

K∏
k

qαk
jkt + φjt+1Bt

K∏
k

qβk

jkt (1.15)

where Yt+1 is output realized the period following production, qkt is the quantity of input k
at time t, A is TFP, and φt+1 is a mean 0 shock realized before harvest and consumption
at t + 1. I assume that expected returns to scale γ ≡

∑
k αk < 1 to ensure the socially

optimal allocation is nondegenerate. The main difference between this and the workhorse
Cobb-Douglas specification is that the variance of output now depends on input composition.
Inputs are differentially risky if α ̸∝ β. In particular, αk can be thought of as the elasticity
of the expectation of output with respect to input k, while βk is the elasticity of the standard
deviation of output with respect to input k.19

qjkt =
αkEt[Yjt+1]Et[λjt+1] + βkcovt(λjt+1, Yjt+1)

λjtw̄kvtτjkt
(1.16)

Note how when α = β this reduces to (1.12). The only difference is that (1.16) assigns
different coefficients to the expected and stochastic components of Et[λjt+1Yjt+1]. Inputs
with higher β contribute more to the variability of output, causing their demand to be
disproportionately affected by imperfect insurance. In contrast, the separability of the shocks
in the standard Cobb-Douglas means that the same Λjt applies to demand for each input.20

The first term can be thought of as the wedge created by the inability to intertemporally
smooth consumption and is constant across inputs. For example, if a household faces a
binding borrowing constraint, then Et[λt+1] would generally be lower than λt+1. The second
term captures how uninsured risk affects demand. Again, one would expect the covariance
term to be negative,21 but this is amplified by how risky a given input is.

19I prefer this specification to that recently introduced by Bohr et al. (2023), since this functional form
allows for a first order effect of uninsured risk on input demand as shown below. Note that this functional
form nests the workhorse Cobb-Douglas specification Yt+1 = Ate

ϕt+1
∏K

k=1 q
αk

kt if α = β and B = A/E[eϕ].
20This is true for any homothetic production function.
21unless u′′′(c) ≤ 0 or returns from agriculture are sufficiently negatively correlated with those from other

investments
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However, this no longer allows the straightforawrd identification of τ from (1.14), requir-
ing an alternative set of identification assumptions, which I discuss in Appendix A.2. I also
show results from this more general specification and the results are broadly similar to those
under the standard Cobb-Douglas.

1.2.5 Equilibrium

I now show how this model of farm-household distortions maps to aggregate misallocation.
Let η ≡ 1

1−γ
, which is a nonlinear transformation of returns to scale that approaches ∞ as

production approaches CRS. In what follows, I drop time subscripts to ease notation. A
decentralized allocation yields the following expression for the share of factor k in a given
location allocated to household j.22

ωjk ≡
1
τjk

(
AjΛj

∏
l τ

−αl
jl

)η∑Nv

h=1
1

τhk

(
AhΛh

∏
l τ

−αl
hl

)η (1.17)

(1.17) is obtained by aggregating household first-order conditions (1.13) and implies that any
allocation can be defined as a function of technology α, household TFP A, and distortions
Λ and τ .23

An important distinction is whether factor stocks are fixed within locations or determined
through general equilibrium.24 In the base case, I assume that stocks of all inputs are fixed
at the township level. I then continue to assume that land and labor are fixed but allow
fertilizer, equipment, and seeds to be supplied from outside the village at an exogenous
price while maintaining fixed stocks of land and labor at the township level.25 In this case,
which essentially treats villages as small open economies, demand for each input is pinned
down by exogenous import prices w̄ rather than endowments Q̄. Definition 1 formalizes an
equilibrium in either case.

Definition 1. A decentralized equilibrium is defined by a set of prices {w̄vkt, pit, Rvt}, an
input allocation {qjkt}, and a consumption allocation {cjt} such that

1. Households choose inputs, consumption and borrowing following (1.4)-(1.6) given ini-
tial asset holdings, prices, initial productivity and beliefs over future shocks.

2. Input demands qjkt equal ωjktQ̄vkt, where ωjkt is given by (1.17) and
∑Nv

j=1 ωjkt = 1 for
each v

22Note that both the constant market price of each input w̄vkt and aggregate supply Q̄kvt are constants
that cancel out of (1.17).

23Again, note that τ and Λ capture how primitive distortions D affect the equilibrium input allocation.
24The latter is the mechanism through which uninsured risk generates dispersion in fertilizer intensity

even with perfect input markets in Donovan (2021).
25In a full spatial model, trade costs would determine the response of market-level demand to changes

in within-market aggregate TFP, while migration costs would also be needed to determine counterfactual
reallocation of labor across villages.
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3. Λjt and τjkt are defined as in (1.8) and (1.13)

given a set of initial asset holdings Mjt and primitive distortions D.

This also implies that when there are no distortions (i.e. Λj = τjk = 1 for all inputs and
households), the optimal allocation is

ω∗
j ≡

Aη
j∑Nv

i=1A
η
j

∀k ∈ {1, . . . , K}. (1.18)

In this case, each input is allocated proportionally to household TFP, transformed by returns
to scale.26

However, deviations of Λ and τ away from 1 in either direction lead to misallocation.
In equilibrium, expected aggregate productivity in a given village is:

E[TFPv] =
Nv∑
j=1

Aj

∏
k

ωαk
jk =

∑
j

(
AjΛ

γ
j

∏
l τ

−αl
jl

)η∏
k

(∑
j∈v

Λjk

τjk

(
AjΛ

γ
j

∏
l τjk

−αl

)η)αk
(1.19)

as opposed to the case of perfect markets in which this reduces to

E[TFP ∗
v ] =

(
Nv∑
j=1

Aη
j

) 1
η

(1.20)

My base definition of misallocation is the percentage by which aggregate TFP would
need to be increased to attain the efficient allocation, summed across locations and time
periods.27 Formally:

M ≡
∑V

v=1

∑T
t=1 E[TFP ∗

vt]∑V
v=1

∑T
t=1 E[TFPvt]

− 1 (1.21)

1.3 Empirical Setting and Data

I use monthly survey data from the Townsend Thai Monthly Survey, which covers 196
months of production and consumption in 16 villages from four tambons (townships), each
in a different changwat (province). Two changwats (Chachoengsao and Lobpuri) are located
in relatively developed Central Thailand and the other two (Buriram and Sisaket) are in
the more rural North. The data span 1998 to 2014, during which substantial growth and
structural change occurred after the Asian financial crisis. Table A.1.1 and Table A.1.2

26This is a standard result in the misallocation literature.
27Note that in the case where all inputs are in fixed supply within each location, aggregate TFP is

proportional to aggregate output. Otherwise, aggregate demand for intermediate inputs is increasing in
allocative efficiency, which further augments aggregate TFP.
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provide some summary statistics of household demographics and agricultural production.
There are a total of 791 households in the data, of which 568 engage in agriculture during
the sample period. Over 68% of plots are grown with rice. In addition to crop production,
households also earn income from wages, livestock and aquaculture, and other businesses.
The average agricultural household sample in the household earns slightly less than half
its income from crop cultivation. Importantly, the estimation procedure I develop in the
following section can account for this feature of the data. In particular, it is robust to
households endogenously selecting into production in a given year and does not impose a
1-to-1 mapping between farm income and consumption.

The data in Table A.1.2 show that markets for land, labor, equipment (mainly tractors,
power tillers, and pumps), fertilizer, and seed exist. However, land and labor markets are
much more active in the Central region and appear quite thin in the North. The average
farm (defined as all of a household’s plots in a given year) hires about 28% of its labor input,
although more than two-thirds of farms hire some labor in a given season. Fertilizer, com-
mercial seed, and mechanization use is widespread and is frequently acquired from outside
the tambon. Land market participation is fairly low, with about 16% of farms renting any
plots in a given season. However, this masks substantial regional heterogeneity: nearly 40%
of farms rent land in Chachoengsao while only 2.5% rent land in Sisaket. About 89% of
farms use fertilizer and over 90% of farms use equipment, which can be owned or hired.

There is quite active participation in both formal and informal finance, with people
obtaining loans from government banks and credit schemes as well as neighbors and informal
lenders. However, only 5.7% of loans are collateralized. The data include input quantities
and expenditures (for transacted inputs), which allows me to calculate prices even though
I do not observe them directly.28 With this in mind, the data show a large degree of price
dispersion in land and labor transacted on the market in all tambons, while the law of one
price appears to hold for other inputs and output. In Table A.1.3, I plot the coefficients of
variation for the price of each input and output for the average year in each tambon. There
is very little variation in the prices of fertilizer, seed, and rice, but large variation in wages,
land rents and tractor rental rates.29 This lends support to my assumption that output,
fertilizer, and seed are perfectly tradable within townships while other factors are not.30

For the main analysis, I treat the township as the level of aggregation, since villages
within townships are often quite integrated (Kaboski and Townsend, 2011; Samphantharak
and Townsend, 2018). I focus on the sample of households cultivating annual crops during the
main season, which I define as crops taking fewer than 8 months from planting to harvesting

28I discuss how I value households’ own inputs in the following section. While it is unclear to what extent
input market frictions are pecuniary distortions that show up in these expenditures, I do not need to take a
stand on this to estimate the homothetic production function. I discuss

29Much of this variation may also be coming from imputing prices as expenditures divided by quantities
and averaging across months.

30Thailand did not have a targeted fertilizer subsidy during the sample period. While price controls were
enacted in 2008 and 2011 (with the latter not binding), these would not violate my assumption since price
controls would apply equally to all farmers in a township.
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I drop all plots that do not report using land or labor.
In the main analysis, I also differentiate between labor at different stages of the production

process, essentially treating planting, weeding, and harvest labor as separate inputs.31 While
stopping short of a fully sequential production function, this allows me to capture some of the
seasonality in rural labor markets, where there may be tightness in planting and harvesting
seasons but slack at other times. This gives me a total of 7 inputs: land, fertilizer, equipment,
seed, and planting, weeding, and harvesting labor. I then aggregate inputs up to the farm-
season level, since the model implies that the shadow prices of inputs and consumption
apply to all plots cultivated by a household at a given time.32 This gives me a panel of 6,223
farm-level observations across 16 years. Marginal utilities of consumption, λ are estimated
using the procedure I describe in Section 1.4.1 from monthly expenditures on 47 food and
non-food goods. I merge these estimates into the production panel to match the months of
input use and harvests.

1.3.1 Evidence of Imperfect Markets in Thailand

Other authors have used the Townsend Data to study imperfect risk-sharing, borrowing
constraints, and factor market imperfections. Kaboski and Townsend (2011, 2012) find that
a microcredit expansion that occurred during the sample period partially relaxed binding
credit constraints. Meanwhile, several papers suggest that kinship networks manage to
share idiosyncratic risk fairly well (Kinnan and Townsend, 2012; Karaivanov and Townsend,
2014; Samphantharak and Townsend, 2018) but far from perfectly, as idiosyncratic shocks
propagate through labor supply and financial networks (Kinnan et al., 2024). Meanwhile,
Shenoy (2017) argues that input frictions reduce aggregate productivity by at least 6%.

Additionally, I implement two canonical tests of complete markets before imposing the
structure of my model. First, Townsend (1994) provides a test of full insurance, under which
a regression of log consumption on log income with household and village-year fixed effects
should yield a coefficient of 0. Second, Benjamin (1992) tests the null hypotheses of a full set
of complete markets, under which households’ production decisions should be fully separable
from their consumption decisions. In this case, household composition (and other variables
associated with households’ preferences) should be independent of labor use. While rejection
of this null hypothesis does not identify which market fails, the common interpretation in
Benjamin (1992) and related papers (Dillon et al., 2019, e.g.) is frictions in labor markets
causing households with larger labor endowments to use more farm labor. Column (1) of
Table A.1.4 presents the results of the Townsend (1994) test while columns (2) and (3)
present the results of the Benjamin (1992). The former rejects at all levels of significance
while the latter rejects at the 10% level when using household size as the single right-hand

31I use “weeding” as a shorthand for all midseason labor tasks, including fertilizing, irrigating, and pest
control.

32See Gollin and Udry (2021) and Aragón et al. (2022) for further discussion of aggregation at different
levels and its advantages/disadvantages with regard to measurement error. For robustness, I also compute
all results using plots as the unit of aggregation.



1.4. ESTIMATION FRAMEWORK 15

side variable and at the 5% level when using the counts of household members in different
age-sex bins.

While the regression coefficients in these tests do not have structural interpretations, it is
useful to examine whether consumption is more or less sensitive to income shocks in villages
where labor intensity depends more on household endowments. To test this, I run both tests
cutting the sample into 64 village×4-year blocks and plot each of the coefficients against
each other in Figure A.1.1. The coefficients appear negatively correlated with each other,
suggesting that the joint distribution of distortions merits further structural analysis.

1.4 Estimation Framework

I now describe how each of the key components of the model λ, τ , α, A, and Λ are estimated in
four steps. First, I estimate realized marginal utilities λs from the full sample of expenditure
data in Section 1.4.1. I do so under the assumption of CRRA preferences as well as under
the more flexible Constant Frisch Elasticity system of Ligon (2020). Second, I estimate input
wedges τ from dispersion in input ratios within a township-year, as in (1.14), in Section 1.4.2.
While inferring input distortions from factor ratios is standard in the misallocation literature,
I discuss additional steps I take to avoid misattributing measurement error and unobserved
heterogeneity to τ . Having estimated λ and τ , the production coefficients α are now identified
from the moment conditions for input demands (1.12). In Section 1.4.3, I use the linear GMM
specification derived in Chapter 3 to estimate α from these moment conditions and show the
robustness of results to several alternative specifications. This allows me to back out TFP
A and production shocks φ. The last step, which I discuss in Section 1.4.4 is to estimate the
composite financial wedge Λjt, which depends on the covariance between the realizations of
φjt+1 and the marginal utility of consumption at harvest λjt+1.

1.4.1 Estimating marginal utilities (λ)

While the model in Section 1.2 doesn’t require any particular structure on preferences over
goods, estimation requires mapping disaggregated expenditure data into a measure of welfare,
λjt.

33 This requires choosing a functional form for utility. To place as minimal structure as
possible on preferences, I use the constant Frisch elasticity (CFE) demand system proposed
by Ligon (2020). I discuss the theoretical properties and estimation of this demand system
in section A.2. An advantage of the CFE demand system is that it flexibly accounts for
non-homotheticity and can be estimated from incomplete data on expenditures and prices.
However, I obtain very similar results when estimating λ assuming CRRA preferences, which,
like many other commonly used demand systems, are a special case of CFE.

33Since all households are assumed to face constant prices for output and other goods, what matters for
misallocation in the model are intertemporal and risk preferences. How different consumption goods are
aggregated matters for accurately mapping disaggregated expenditures into MUEs, but does not otherwise
influence misallocation.
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I estimate λ using the full 196-month panel featuring 47 food and non-durable consump-
tion goods.34 The estimation also allows demands to vary with household composition, as
measured by the counts of members in different age-sex bins. Figure A.2.1, which plots the
time series of the average log λ in each township, shows that the estimates capture substantial
variation in the MUE across tambons, over time, and across seasons. I also compute results
using CRRA for robustness. Figure A.2.2 plots estimated log λ against log consumption
expenditure, controlling for month fixed-effects. The elasticity of λ to total consumption
value is (minus) the coefficient of relative risk aversion under von Neumann-Morgenstern
preferences. Imposing CRRA preferences leads to an estimate of θ = 1.5. To ensure that
my results are not being driven by the choice of demand system, I compute all results using
both CFE and CRRA λs. Reassuringly, the estimates of both the production function and
counterfactuals are extremely similar.

1.4.2 Identifying factor frictions

I now describe how I use the dispersion in input ratios to separately identify τ .35 Recall that
Λjt is common across all inputs and plots used by a household in a given period. Therefore,
it affects the overall scale of production but not input composition and cancels out of relative
input demands (1.14). However, input ratios may be measured with error ν, such that we
observe

q̃jkt
q̃jlt

=
αk

αl

w̄vlt

w̄vkt

τjlt
τjkt

eνjkt−νjlt (1.22)

where q̃ denotes measured inputs and ν may include misreported quantities of inputs or
heterogeneous input quality.36 Since αk and w̄kvt are not household-specific, (1.22) shows
that any dispersion in input ratios across households is either due to differences in the ratio of
τs, unobserved quality or measurement error. However, (1.22) also highlights two challenges
for identifying τ .

First, τs for K inputs cannot be identified with K − 1 ratios. Because of this, most
papers in the misallocation literature are only able to identify the relative distortion of land
to labor (Hsieh and Klenow, 2009; Adamopoulos et al., 2022a). However, if at least one
input, say K, were perfectly tradable within townships such that τjKt = 1 for all households,
the remaining K − 1 τs are identified. This appears plausible for both seed and fertilizer
in the Thai context. The survey asks households whether they have had trouble acquiring
any inputs. Fewer than 1% of households answer yes for fertilizer or seed in a given year.
Additionally, Table A.1.3 shows minimal price dispersion for both fertilizer and seed within
a given township-year.37 This allows me to compute results using either fertilizer or seed as

34While consumption of durable goods may be a concern in other cases, the CFE demand system can be
consistently estimated from only a subset of goods.

35While this approach leverages the assumption of a homothetic production function, I discuss an alter-
native method that relaxes this assumption in Appendix A.2.

36It may be useful to think of q as a measure of effective input quantity.
37Much of this dispersion may also come from imputing prices by dividing expenditures by quantities.
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the normalizing input. I use fertilizer in the main specifications, since it is less susceptible
to unobservable quality but show that results are quite similar when using seed.38

I now describe my approach to distinguish true input distortions, unobserved heterogene-
ity, and noise. Results in both the micro and macro literatures recognize the potential for
heterogeneous land quality to bias estimation (Benjamin, 1995; Gollin and Udry, 2021). I
address this issue using a hedonic approach. Specifically, I train a model to predict rental val-
ues from observed plot features on a random sample of rented plots. These features include
area, soil type, and quality, histories of drought, flood, erosion, and fertilizer application,
proximity to water sources, roads, and the household, and (self-reported) sale values.39 I use
cross-validated boosted trees and test the model’s fit on a holdout sample, achieving an R2

of 0.54. I then use the model to assign rental values to plots that were cultivated by the
owner, for which no rental price is observed. I then use observed and predicted rental prices
as a measure of quality-adjusted land quantities.

There are some caveats to this procedure. First, distorted land markets may not accu-
rately reflect true land quality in prices. While this approach allows for land distortions to
take the form of either an implicit tax or a ration, it essentially assumes that there is no
distortion to the relative prices of observable plot attributes, such as soil and proximity to
water sources. Nevertheless, there is no a priori reason to assume that relative prices of
different attributes should be distorted in a particular direction. Another concern is that
transacted plots may be selected on unobservable physical attributes. However, the model
would capture the value of these attributes to the extent they are correlated with observable
attributes.

I then turn to input measurement. There is evidence of considerable misreporting of
inputs in household surveys (e.g. Beegle et al., 2012; Carletto et al., 2013, 2015; Arthi et al.,
2018; Abay et al., 2019, 2021). However, other papers in the misallocation literature either
attribute all variation in observed input ratios to τ or only attribute the time average of
distortions for each household in a panel to τ .40 I therefore take a more intermediate approach
and attempt to capture only the systematic variation in τs.41 Although τs are unlikely to be
fixed over time, they are likely to be highly serially correlated and also depend on household
composition.42 I therefore model τ as following an AR(1) process, conditional on household

38Although farmers use different varieties of fertilizer, for simplicity I use the market value of the total
fertilizer used by households to compute τs. Note that since τs are computed relative to the village-year
average, this does not affect the results under the model’s assumptions as long as farmers’ mix of fertilizer
varieties is not distorted.

39A similar approach is applied by Gordeev and Singh (2023).
40While more conservative with respect to measurement error, the latter approach discards the time-

varying components of true distortions. If τ represents a binding input ration, then the shadow price
implied by the ration will depend on other time-varying state variables even if the ration itself stays fixed.
Moreover, household fixed effects may pick up permanent differences in land quality in addition to average
input distortions.

41This exercise is in a similar spirit to Bils et al. (2021), who leverage time-series variation to isolate the
predictable part of distortions.

42LaFave and Thomas (2016) show that even mechanical changes to household composition in Indonesia
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characteristics Xjt, with the following equation of motion.

τjkt = ρτjkt−1 + κkXjt + ξjkt (1.23)

The AR(1) model can be thought of as a coarse way of capturing how τ depends on unob-
served market institutions and household state variables that may evolve over time. Substi-
tuting into (1.14) implies that log τjkt can be written:

log τjkt = log

(
w̄KvtqjKt

w̄kvtqjkt

)
+ log(αk/αK) + νjkt

= ρk

(
log

(
w̄Kvt−1qjKt−1

w̄kvt−1qjkt−1

)
+ log(αk/αK) + κk∆Xjt + νjkt

)
+ ξjkt

(1.24)

This simply states that τ , net of measurement error, is proportional to the ratio of the
market value of input K to k used by household j at time t,43 which can be expressed
as a lagged dependent variable model after moving measurement and constants νjkt to the
right-hand side.

log(qjKt/qjkt) = ρk log (qjKt−1/qjkt−1) + κk∆Xjt + ιkvt + υkvt (1.25)

where ιkvt is a location-input-time fixed effect that combines constants and υkvt is the com-
posite error term corresponding to ρνjkt−1 − νjkt + ξjkt.

I estimate this using both 2SLS and standard dynamic panel GMM approaches (Blundell
and Bond, 1998). I use the predicted values of

qjKt

qjkt
— normalizing by their location year

averages — as my estimate of τjkt.
44

1.4.2.1 τ Estimation Results

In Figure A.2.3 and Figure A.2.4, I plot kernel densities of the estimated τs for land and
labor alongside those derived from raw input measurements, using the time-series average
input ratio for each household as time-invariant measure of τ , and for the estimated τ for
land not accounting for heterogeneous land quality. Each specification reduces the variation
in measured input ratios relative to the raw data. The standard deviations of the estimated
τs for land and labor are about one-third of those calculated from raw input ratios. Much
of this difference is likely due to error in raw input measurements. Overall, my preferred
estimates may offer a more robust approach to dealing with measurement error in inputs

due to the aging of members significantly predict land/labor ratios.
43Note that since w̄kvt is constant across households in the same location-year by construction, they can

also be subsumed into location-time fixed effects.
44This normalization implies that τ is the deviation from village-average factor ratios. While this is

consistent with a one-sector model, it rules out common cases in which the shadow wage for farm-households
is below the market wage, such as labor rationing (Breza et al., 2021; Agness et al., 2022). In this case,
the τs I estimate would be too high and this would bias the production function coefficients upward in the
procedure I describe in Chapter 3. However, the coefficients I estimate for labor are already quite low,
suggesting that this may not be a major issue in my sample.
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without discarding time variation in input wedges. Nevertheless, it is possible that they
do not capture all of the idiosyncratic variation in the true underlying τ . However, the
estimation and counterfactual results are quite robust across various specifications.

1.4.3 Production function estimation

A reasonable estimate of the production function is crucial for any analysis of misallocation.
As in similar models, the elasticity of aggregate output to wedges is η ≡ 1

1−γ
, which goes

to infinity as returns to scale approach 1. This means that even small biases in production
can greatly affect estimates of misallocation. The challenge is that the usual identification
concerns that plague production function estimation can be even more severe when input
choices are subject to multiple distortions. However, the literature has typically calibrated
the production function using input shares from settings where markets are assumed to
function well, (Chen et al., 2023; Adamopoulos and Restuccia, 2020; Adamopoulos et al.,
2022b), or used lagged instruments to estimate the production function in-sample (Shenoy,
2017; Manysheva, 2021). The issues with the former approach are that the underlying
production function may be different in the U.S. and Canada than in Sub-Saharan Africa
and Southeast Asia. The latter approach is valid in theory (Shenoy, 2021) but relies on
strong assumptions about the nature of unobserved shocks (i.e. autoregressivity).

Meanwhile, structural methods in the spirit of Olley and Pakes (1996) overcome endogene-
ity concerns by using the firm’s optimal choice of a flexible input to proxy for anticipated
productivity shocks, both observable and unobservable. However, this requires the firm’s
optimization problem to be well-defined. Commonly, this amounts to assuming that firms
maximize profits in competitive input markets (Gandhi et al., 2020) or under certain types
of markups (Asker et al., 2019). Section 1.3 already shows evidence that these conditions do
not hold in Thai agriculture.

To estimate the production function for farm households, I adapt the structural approach
to directly account for the ways in which input and financial frictions distort households’
input choices, through the λs and τs that I’ve estimated. In Chapter 3, I show how the
first-order conditions for input demands provide moment conditions that can be exploited to
recover the production function parameters under rational expectations using linear GMM
in the spirit of Hansen and Singleton (1982). In Chapter 3, I further show how this es-
timator can be applied to the generalized non-homothetic Cobb-Douglas specification in
subsubsection 1.2.4.1 and a dynamic multi-stage Cobb-Douglas with sequential shocks.

1.4.3.1 Production Function Estimates

With estimates of λ and τ , I am able to estimate the production function following the pro-
cedure in Chapter 3. In the main specification, I use continuously updated GMM (Hansen
et al., 1996) with planting, weeding, and harvesting labor, land, fertilizer, equipment, and
seed as inputs, with lags of λ from the previous 5 months and tambon dummies as instru-
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ments.45 Given that the estimator relies on generated variables, I compute standard errors
by block bootstrapping the entire estimation procedure, including estimates of λ and τ , at
the household level.

I compute the main results assuming the annual time-preference discount factor δ = .95.
I also show robustness to Kaboski and Townsend (2011)’s estimate of δ = .926 using the
same data and 1. Since the median season covers 5 months, I convert the annual δ to its
5-month equivalent. Note that δ doesn’t affect the results qualitatively, since it is constant
across households and cancels out of (1.17). However, lower values of δ would lead to higher
estimates of returns to scale and larger estimates of misallocation across specifications.46

The results are presented in Table 1.1. Column 1 presents the main results, using the
CFE demand system to estimate λs and fertilizer as the normalizing input, restricting the
sample to rice plots and aggregating to the farm level. The coefficients all take reasonable
values for agricultural production functions and together imply returns to scale γ ≈ 0.83,
which is larger than other papers in the literature.47 I test the overidentifying restrictions of
the full model against one with a single lag of λ and tambon dummies as instruments. While
I reject the null hypothesis that all instruments are exogenous, this appears to arise from
the Cobb-Douglas specification struggling to capture heterogeneity across regions. I fail to
reject the validity of the lagged λs as instruments when applying a difference-in-J test (what
Hayashi (2011) calls a C test). In Table A.2.1, I also show robustness to using seed rather
than fertilizer as the normalizing input for τ , using CRRA to estimate λs instead of the more
general CFE specification, restricting to rice plots, treating all labor as a single input, and
aggregating to the plot rather than farm level. All specifications produce extremely similar
results.

In Columns 2 and 3, I show the estimates of α and β from the generalized Cobb-Douglas
specification in Appendix A.2. The αs are quite similar across specifications, suggesting
that standard Cobb-Douglas would fit the data well if households were fully insured or risk-
neutral. This suggests that the bias from failing to account for differentially risky inputs is
relatively small. Nevertheless, there are important differences between the two specifications.
Recall that the generalized production function reduces to Hicks-neutral Cobb Douglas when
α = β, meaning that the elasticity of expected output with respect to input k is the same that
of the standard deviation of expected output(Just and Pope, 1978, 1979). Inputs with larger
βk relative to αk can be considered relatively “risk-augmenting.” The results in Table 1.1
suggest that inputs chosen at planting (land, seed, fertilizer and planting labor) appear to
be risk augmenting (although I cannot reject equality of α and β for land). The difference
between β and α is most striking for planting labor, suggesting that its returns are highly
variable. Meanwhile, other inputs appear neither risk-enhancing or risk-reducing, based on

45Given that t corresponds to a season in the model in Section 1.2, the lagged λs should be thought of as
occurring within different subperiods prior to planting.

46I show in Section 1.5 that while a lower δ increases my estimates of misallocation by a few percentage
points, it doesn’t alter any of the qualitative conclusions.

47Note that a lower value of γ would lower estimated misallocation because inputs are optimally allocated
proportionally to 1/(1− γ).
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the similarities between α and β.48

1.4.4 Recovering TFP and financial wedges

With the production coefficients in hand, the next step is to recover household TFP A and
financial wedges Λ. This is substantially more challenging than estimating the production
function because it requires taking a more explicit stance on what households do and do not
anticipate in each period, as opposed to relying on sample averages. Notably, these issues
affect any quantitative analysis of misallocation. I first take the average of realized TFP,
computed using the estimated αs as Āj ≡ 1

T

∑T
t=1 Yjt+1/

∏
k q

αk
jkt. I then try and predict

deviations of realized household TFP in each period from Ā using variables in households’
information sets Ijt. Both ridge regressions and boosted trees using a rich set of features
achieve an R2 of close to zero, suggesting that Āj is a good approximation to anticipated
TFP. Using this approximation means that production shocks φjt+1 = Yjt+1/

∏
k Ājq

αk
jkt.

Recall from Section 1.2 that

Λjt =
Et[λjt+1φjt+1]

λjt

While the denominator of Λjt has already been estimated, the numerator is an (unobserved)
subjective expectation conditional on time t information. λjt+1 is a function of φjt+1 as well as
households’ other sources of income (including returns from other investments and payouts
from insurance networks) which may be correlated with realizations of φjt+1. Therefore
Et[λjt+1φjt+1] can also be thought of as a function of households’ state variables at time t
integrated over the distribution of φjt+1.

49 I use supervised machine learning to approximate
this function as flexibly as possible using the rich set of time t information. This is a valid
approximation under rational expectations under similar conditions as in Section 1.4.3 —
essentially realized shocks must be uncorrelated on average with the state variables used as
predictors. Dividing these predictions by the observed λjt identifies Λjt.

50

48One might expect harvest labor to be fairly insensitive to risk. However, there is still substantial
uncertainty over the value of output due to price fluctuations and postharvest losses in developing country
agriculture (Aggarwal et al., 2018; Omotilewa et al., 2018; Burke et al., 2019; Channa et al., 2022). Also refer
to 2. While this paper uses a static production function that does not permit attributing risk to different
stages of production, see (Felkner et al., 2012) and 3 for estimates of a sequential production function that
permits this.

49For example, under CRRA utility

Et[λjt+1Yjt+1] =

∫
φ

φ

(Rjt+1(φ)Bjt +Ajtφ
∏

k q
αk

jkt −Bjt+1(φ)−
∑

k wjkt+1(φ)qjkt+1(φ))θ
dφ

where the possible dependence of t+ 1 variables on realizations of φ is made explicit.
50An alternative would be to model Λ as a function of returns to agriculture, other assets, and state-

contingent transfers integrated over the distribution of the shocks. However, this would require further
assumptions on preferences and the distribution of shocks, which is beyond the scope of this paper.
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I predict Λjt with gradient boosted trees (Friedman, 2001), using estimates of Aj, the
lagged λs used as instruments in Section 1.4.3, and a rich set of information from household’s
balance sheets as features. This includes agricultural and non-agricultural assets, cumulative
income from agricultural and non-agricultural investments. The R2 of this prediction is 0.35,
while the R2 when predicting λjt+1 alone is 0.63. Of course, a perfect model of households’
subjective expectations of future consumption shouldn’t have an R2 close to 1 under in-
complete insurance. Nevertheless, the results suggest that consumption is fairly predictable
despite substantial uncertainty in production (the R2 when predicting φ is negligible). I also
obtain similar results when using a ridge regression instead of boosted trees.

In Tables A.2.2 and A.2.3, I show that these estimates of Λ are correlated with untargeted
observables in the data on borrowing, saving and mutual gift-giving (insurance) networks.
In particular, it appears that those with higher Λ (less constrained) have larger loans and
make larger informal transfers (referred to as “gifts” in the survey) in typical years. This
holds across specifications of Λ and also when splitting it into credit and risk wedges. I also
show that positive (negative) production shocks are associated with gift outflows (inflows).51

Figure 1.1 shows the distribution of Λ. The mean of Λ in the main specification is
0.86, with a median of 0.77. While these estimates are close to 1, as would be the case
under perfect financial markets, raising them to the elasticity η ≈ 6 implies that the average
(median) household only produces at 42% (23%) of its desired scale. This is consistent with
evidence of functional but incomplete credit markets and risk-sharing in this setting (Kaboski
and Townsend, 2011; Karaivanov and Townsend, 2014; Samphantharak and Townsend, 2018;
Kinnan et al., 2020). It also suggests that for the 27% of households with Λjt > 1, agriculture
is a hedge against other sources of income, which is also consistent with evidence from
other countries that households use off-farm labor to smooth consumption (Kochar, 1999)
or substitute on-farm for off-farm labor when seasonal consumption constraints bind (Fink
et al., 2020). Moreover, households in my sample have fairly diversified income streams that
may be negatively correlated with returns to crop production.52

1.5 Results and Counterfactuals

Estimates of financial distortions Λ, input wedges τ , production coefficients α, and TFP A
allow misallocation to be computed using the expression for aggregate TFP (1.19) relative
to the efficient allocation (1.20). The model in Section 1.2 implies that overall misallocation
depends on the joint distribution of Λ, τ and A.53 Before delving into counterfactuals, I
provide some descriptive graphical evidence to characterize this distribution.

51By remaining agnostic to the primitives that cause distortions, it is unclear which moments in the data
the wedges I estimate should map to. While taking such a stand may help discipline the model, it may rule
out other important channels.

52Imposing that Λ ≤ 1 does not change the qualitative conclusions in the counterfactuals in Section 1.5,
although it lowers estimates of misallocation.

53This is an extension of results in Hsieh and Klenow (2009) and Adamopoulos et al. (2022b). regarding
the covariance between wedges as a sufficient statistic for misallocation.
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Descriptive Results

Figure 1.2 plots 2D histograms of TFP-weighted input and financial distortions and reports
their correlation coefficients.54 The top left panel plots the Cobb-Douglas price index of τs,∏

l τ
αl
jlt against the estimates of financial distortions Λ, each weighted by TFP A. The top

right panel plots the τ for land against Λ while the bottom left plots the index of τ for
the three types of labor (planting, weeding, and harvesting) considered. The bottom right
panel plots the unweighted histogram of the τ price index and Λ. The positive correlation
between τ and Λ suggests that, on average, more financially constrained households are
relatively subsidized on inputs. More productive households also appear to be less finan-
cially constrained and more taxed on inputs. This corresponds to the conventional wisdom
that poorer households oversupply labor to their own farms under imperfect labor markets
(LaFave and Thomas, 2016; Breza et al., 2021; Jones et al., 2022).

This implies that the observed distortions partially offset each other — relaxing credit
constraints would disproportionately direct capital toward farms that are effectively subsi-
dized on inputs. The direct gains from relaxing credit constraints are large enough to swamp
this effect but are smaller than they would be if credit constraints were uncorrelated with
input distortions.55 The results also show that distortions for land and labor are positively
correlated. Most of the misallocation literature rules this out by assumption, modeling τ
as a distortion in the relative price of land and labor. However, I am able to relax this
assumption by using fertilizer and seed as normalizing inputs when estimating τs.

Main Counterfactuals

I now proceed to compute counterfactual expected aggregate productivity following (1.21)
under the following four scenarios: (1) the first best allocation; (2) the baseline allocation,
with all of the distortions I measure; (3) an allocation with perfect financial markets and
the observed input wedges; (4) an allocation with perfect input markets and the observed
financial wedge. I consider counterfactual allocations within township-years and then sum
up these gains across townships in each of the 16 years of the sample.

I provide four main sets of results. First I characterize overall misallocation in Thailand.
Second, I decompose misallocation into input distortions, financial distortions, and interac-
tions between them. I then show other methods that are more susceptible to measurement
error in inputs yield starkly different results. Finally, I use the model to approximate the
marginal returns to incremental reductions in one or both sets of distortions. Note that the
results below all refer to expected TFP since the realizations of ex-post shocks cannot be
considered misallocation.

54In equilibrium, the influence of each of these distortions is weighted by household TFP.
55TFP governs the incidence of these distortions; since it is the sole determinant of scale under the efficient

allocation, multiplicative wedges such as Λ or τ exert a large influence on the aggregate economy when it
affects firms that command more inputs. In ??, I show that results are similar without weighting distortions
by TFP.
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The gains from reallocation depend on whether one assumes that the stock of tradable
inputs is held fixed or can respond to changes in counterfactual demand. The results also
depend on whether one assumes input frictions take the form of implicit taxes or rations. I
show how results depend on each of these cases below.

Baseline Misallocation

Figure 1.3 plots the gains from reallocation under each counterfactual as a percentage of
(expected) aggregate TFP in the observed allocation. The three counterfactuals I consider
are (1) eliminating financial distortions (i.e. setting Λ = 1) holding input frictions τ fixed;
(2) eliminating input distortions (setting τ = 1) while holding Λ fixed; and (3) eliminating
all distortions. The blue (left) bars show results holding the aggregate supply of all inputs
fixed, as if villages are in autarky. In this case, aggregate TFP is directly proportional to
aggregate output. This is a relatively conservative assumption because it excludes gains
from the increased aggregate demand for tradable inputs. The green (right) bars allow
intermediate inputs (fertilizer, seed, and equipment) to be imported from outside the village
at a constant price (as if the village were a small open economy). Confidence intervals from
200 bootstrap replications are shown for each specification.

The gains from full reallocation are 31% in the baseline case and 35% when aggregate
supply of tradable inputs is allowed to adjust. The baseline estimates are similar to Shenoy
(2017)’s estimates from Thailand, which I discuss below. On the other hand, my results
are an order of magnitude lower than some estimates from Africa of up to 286% gains from
reallocation (Chen et al., 2023; Aragon et al., 2022). The additional gains from allowing the
aggregate supply of tradable inputs to adjust are much smaller than those in Carrillo et al.
(2023), where they account for almost all the estimated misallocation.56

Decomposing Misallocation

It is clear from the first two groups of bars in Figure 1.3 that both sets of markets contribute
significantly to misallocation in isolation. Perfecting financial markets while holding observed
input distortions intact achieves about 48% of the possible efficiency gains, or 15% of observed
TFP. Similarly, removing input distortions holding observed financial frictions intact achieves
about 23% of these gains (7% of TFP).

Notably, these two gains sum to less than 100%, meaning the gains from full reallocation
are more than the sum of its parts. This is because Λ and τ are positively correlated (when
weighted by TFP). In other words, the most financially constrained households are relatively
subsidized in input markets, especially labor, as shown in Figure 1.2 and ??.57 The effect of
relaxing financial constraints is thus attenuated — but not offset — by reallocating resources
to farms made inefficiently large by other distortions. Overall, these patterns suggest that

56See Donovan (2021) for a more detailed discussion of this channel where the price of intermediates is
endogenous in general equilibrium.

57This reflects the common finding that poorer households tend to oversupply labor to their own plots.
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the effects of policies targeting a single market failure would be attenuated, rather than
amplified, by failures in other markets.

I also compute counterfactuals relaxing the distortions for some inputs but not others.
Table 1.2 shows the results of removing wedges from each of these markets, with and without
relaxing financial constraints. Reducing frictions in labor markets is slightly more effective
than for land markets, despite them accounting for roughly equal expenditure shares. The
sum of gains from reducing individual frictions is also more than the gains from reducing
all of them simultaneously. While input frictions are negatively correlated with financial
distortions, they are positively correlated with each other. In other words, reducing frictions
in land markets also indirectly addresses labor market distortions by reallocating resources
toward households that are relatively taxed.

Intermediate Policies

The results above consider the gains from completely eliminating one set of distortions while
holding others fixed at observed values. However, while policymakers have a menu of policy
instruments to choose from, they may not be able to fully eliminate distortions. The model
allows me to estimate aggregate TFP under any values of Λ and τ . I therefore conduct a
simple illustrative exercise in Figure 1.4, in which I plot the TFP gains from uniform partial
reductions in τs and λs. This approximates the marginal returns to reductions in distortions.
However, modeling the effects of a specific policy would require assumptions on the specific
institutions underlying the distortions I measure, which also govern the second-order effects
of how a change in τ affects Λ (and vice versa).

Figure 1.4 illustrates the complementarities between policies that reduce both sets of
distortions. In particular, it shows that the marginal returns to reducing either distortion
alone limited, moving along either horizontal axis. However, the marginal returns are much
higher after both sets of distortions have been reduced substantially, suggesting that small
reductions to one or both sets of distortions may have limited effects and that significant
improvements to both sets of markets may be required to unlock large large gains. If one
knew the relative costs of reducing each distortion, the gradient of Figure 1.4 would define
an expansion path for the social planner in terms of which distortions to target as its budget
shifts out. Additionally, Figure 1.4 shows that these marginal returns are not monotonic: at
baseline levels of input (financial) distortions, going from 10% of observed financial (input)
distortions to perfect financial (input) markets actually worsens efficiency.

1.5.1 Methodological Differences and Measurement Error

I now describe how estimating both Λ and τ helps alleviate concerns about measurement
error. With both Λ and τ , counterfactual aggregate productivity can be computed in two
ways: taking the observed allocation and then “removing” a distortion or taking the first-
best allocation and “adding a distortion”. To see this, note that the efficient allocation
(1.18), which is just a function of Ajt, can also be written as a function of observed input
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demands and wedges by inverting (1.12) as a function of A and dividing out constants

ω∗
jt =

qjktτjkt

(∏
l τ

αl
jlt

Λjt

)1−γ

∑Nvt

h=1 qjktτjkt

(∏
l τ

αl
jlt

Λjt

)1−γ . (1.26)

Likewise, under the status quo, rewriting (1.17) should simply yield

ωjkt =
qjkt∑Nvt

h=1 qjkt
(1.27)

This allows me to compute TFP using either (1.17) or (1.26) and then aggregating using
1.19) for any counterfactual values of Λ and τ . However, this requires estimates of both Λ
and τ .

If inputs were measured perfectly and τ and Λ were estimated without error, then these
two approaches should produce identical estimates. The difference is that the former ap-
proach (1.17 and 1.18) uses estimated TFP while the latter (1.26 and 1.27) uses raw input
measurements. Which estimate is preferable depends on how severe measurement error in
inputs is relative to the errors in estimated objects. Given that estimates of TFP are less
noisy than the raw inputs used to estimate them, one would therefore expect estimates us-
ing the TFP-based measures in (1.17) and (1.18) to be more reliable than the input-based
measures in (1.26) and (1.27). I confirm this using Monte Carlo simulations in Figure A.3.1,
which shows that the TFP-based measure is approximately unbiased and less noisy than the
input-based measure, which is biased upwards.

How different are the conclusions these measures produce in the data? To make this
comparison, it will be useful to denominate misallocation by the attainable output (equivalent
to TFP when aggregate input supply is fixed) forgone due to distortions in each scenario.
Figure 1.5 compares results from the TFP-based results in the solid bars and the input-based
results in the shaded bars. The solid bars simply recast the estimates from Figure 1.3. The
blue bars show the percent of attainable output foregone in the observed allocation, while
the orange (green) bars show allocations with only the observed input (financial) frictions.
By definition, the optimum allocation achieves all the attainable output so there is no solid
purple bar.

Now contrast these TFP-based results with the shaded bars, which are computed using
the input-based measure. As discussed in Section 1.2, these two panels would yield identical
results if there were no measurement error and the model was perfectly specified. However,
the differences between the two panels are quite striking when comparing bars of the same
color in Figure 1.5. First, measured misallocation in the status quo is 59% larger using the
input-based rather than the TFP-based measure. Second, it appears that perfecting finan-
cial markets would worsen misallocation. Most strikingly though, the implied “optimum”
allocation is not only suboptimal but actually performs worse than the observed allocation.
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How is this possible? Recall that counterfactuals using the input-based measure are
computed by adding distortions to the observed allocation, which includes mismeasured
inputs. The shaded green bar is calculated by equalizing factor ratios in a way that preserves
scale across farmers: this is the model of an exchange economy that serves as a lower bound
on factor misallocation in Shenoy (2017). The purple bar is then calculated by reweighting
those demands by 1/Λ, removing estimated financial frictions.58 The input-based estimates
are higher across the board than those using only estimated quantities. The conflicting
result that removing financial frictions would worsen misallocation can be explained by their
negative correlation with input measurement error. In other words, measurement error looks
like a distortion that is partially offset by financial frictions — removing financial wedges
thus makes this spurious distortion appear worse.59

Second, if there were no measurement error, then estimates of misallocation should be
similar at the plot and farm level. Aragón et al. (2022) argue that plot-level data amplifies
the potential for measurement error. Meanwhile Gollin and Udry (2021) argue that since
optimization implies that households should be indifferent between allocating marginal ex-
penditures towards one plot or another, differences in input intensity across plots of the same
crop grown by the same farmers are likely to be either measurement error or unobserved het-
erogeneity. This suggests, that if households, or at least individuals, are truly optimizing
and measurement error is not a concern, then plot-level data should not increase estimates
of misallocation.

Figure A.3.2 shows the main results using the plot rather than the household as the
unit of analysis. This assumes that the same input and financial wedges apply equally to
all plots a household cultivates simultaneously as in Gollin and Udry (2021). Table A.2.1
shows that this produces nearly identical estimates of the production function as the farm-
level specifications. Naturally, the solid bars in Figure A.3.2 show slightly lower estimates of
misallocation than the farm-level analysis in Figure 1.5. This is because the joint distribution
of wedges and TFP is the same as in the farm-level analysis, except that the estimate of
η is higher using plot-level data and that households with more plots (which tend to be
less distorted) are oversampled. However, in the shaded bars, the estimates of misallocation
using raw inputs nearly double. The reason for this is switching from farm-level aggregates
to raw plot-level measurements introduces additional measurement error. Notably, there is
no longer a significant difference between estimates from the observed allocation and when
removing financial distortions.

These differences between the TFP and input-based measures are quite robust across

58Note that the same wedges are used in each set of results but for different specifications. Input wedges
are used to compute the orange and blue solid bars and the green and purple bars in the right panel.
Meanwhile, financial wedges are used to compute the blue and green solid bars and the purple and orange
shaded bars.

59Arthi et al. (2018) find that labor inputs are more upwardly biased for smaller farms. Since Figure 1.2
shows that these households are more financially constrained, financial constraints would then be negatively
correlated with the measurement bias. Counterfactually relaxing these constraints would therefore allocate
more resources to farms that appear artificially large in the raw data.
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specifications. Together, these results underscore the importance of separately identifying
both input and financial distortions. Without a credible estimate of financial distortions, one
would need to rely on noisily measured inputs and arrive at qualitatively different conclusions
about the effects of counterfactual policies.

1.5.2 Alternative specifications and robustness checks

In Figures A.3.3-A.3.5, I show results under the alternative assumptions about the normal-
izing input for τ , the demand system used to estimate λ and sample restrictions. While the
magnitudes of misallocation differ slightly across specifications, the qualitative results are
broadly consistent.

Taxes vs. Rations

While the estimation procedure doesn’t require taking a stand on whether input wedges
operate as taxes or rations, this affects how households adjust different inputs under coun-
terfactuals. In particular, a household facing a downward labor ration, as in Breza et al.
(2021), would not use additional credit to hire more labor. The results in Figure 1.3 treat all
inputs as flexible, as if input frictions functioned as taxes. Figure A.3.6 shows the counter-
factual gains from reallocation if land were a fixed factor or labor were rationed from below,
relative to the case where both factors are mobile yet subject to distortions. The blue (left)
bars in each group reproduce the results from the baseline case of Figure 1.3. The green
(middle) bars show the results assuming land is a fully fixed factor in all specifications. How-
ever, the differences relative to the case of a tax are fairly small and statistically insignificant,
as can be seen from the left-most group of bars in the figure. Even though households facing
a downward labor ration would use additional credit to acquire other inputs until the ration
no longer binds, the price of these other inputs also increases in equilibrium.

Levels of aggregation

So far I have assumed that reallocation occurs within townships, in which stocks of land and
labor are fixed. I argue that this is a realistic level of aggregation since village boundaries
within townships are fairly arbitrary (Kaboski and Townsend, 2011). However, I now con-
sider how these results would change if reallocation could only occur within villages, or if
reallocation could also take place across regions of Thailand. The latter should be viewed as
an upper bound on the gains from reallocation since fundamental trade and migration costs
cannot be considered misallocation. However, if these gains are large, it suggests that invest-
ments in roads and other infrastructure that promotes market integration may be effective
at reducing misallocation.
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Figure A.3.7 shows the potential gains from full reallocation if allocation only occurs
within villages or occurs at the national level.60 The gains from reallocation across regions
are more than three times as large as those from reallocation within townships. However,
there appears to be very little misallocation across villages within townships, consistent with
other evidence that villages in the same area are fairly integrated.

1.5.3 Distributional Effects

The above counterfactuals only consider efficiency gains. What are the distributional impli-
cations of reallocation? Although a full treatment of welfare impacts is beyond the scope of
this paper, Figure A.3.8 and Figure 1.6 show how the distribution of land changes under the
main counterfactuals. First, wealthier households tend to have much larger landholdings.
While eliminating financial frictions makes the land distribution more equal across levels
of baseline welfare, reducing frictions in land markets alone strengthens the correlation be-
tween welfare and farm size. This is because input frictions disproportionately affect wealthy
households, who may wish to explain their landholdings but be unable to do so. However,
many of these households are already inefficiently large ex-ante because of their position in
financial markets. Second, the concentration of farmland increases in all scenarios, meaning
that the average household contracts its landholdings. This causes many farms to become
infinitesimal, effectively exiting agriculture.61 About 33% of households produce less than 1
rai (.125 ha) under perfect input markets and about 16% do under perfect financial markets.
This is only 8% of farmers under the efficient allocation, in which the land distribution is
more equal relative to reducing input frictions alone. This suggests that a single-market
intervention may also induce inefficient levels of exit from agriculture. Nevertheless, I note
that a richer model is required to fully capture the welfare effects of these channels.

1.6 Conclusion

In this paper, I estimate distinct distortions affecting farm households in Thailand and
quantify how they each contribute to misallocation. This is necessary for policymakers to
consider, as the welfare effects of interventions in a single market are ex-ante ambiguous.
First, the model yields a novel, theory-consistent production function estimation approach
that holds when input choices are distorted. My approach flexibly allows for TFP shocks
unobserved to the econometrician. Empirically, I find relatively low levels of misallocation
in Thai agriculture: In my preferred specification, the gains from optimal reallocation are
31%. Perfecting financial markets while leaving input distortions unchanged would achieve
48% of these gains while perfecting financial markets holding input distortions fixed would

60Note that since only 16 villages from 4 tambons are included in the sample, this should not be considered
representative of a national-level reallocation.

61In the model, these households would continue to earn their non-agricultural income. However, I do
not capture the potential entry by previously constrained households.
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achieve 23% of them. These gains sum to less than one because more financially constrained
farmers are relatively subsidized in input markets, particularly for labor. This suggests that
policies that seek to alleviate both distortions may be more effective than those targeted
towards a single one.

Directly estimating financial distortions rather than inferring them from a residual al-
lows me to avoid attributing measurement error in inputs to misallocation. I find that not
accounting for measurement error using the full model would lead to 59% larger estimates
of misallocation and, in contrast to my preferred approach, suggest that removing financial
frictions alone would worsen misallocation. While the model explicitly allows for such a
possibility, my preferred results show that this is not the case.

This paper leaves many additional topics for future research. In particular, more work
is required to understand the distributional implications of productivity-enhancing policies.
Another open question is how misallocation in agriculture interacts with climate change,
given that it increases production uncertainty but increasing agricultural production may
create climate externalities. Finally, while the paper provides a broad framework for di-
agnosing the effects of a general set of distortions, more research is needed to understand
specific policies to address the relevant institutions in different contexts.
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1.7 Figures and Tables
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Figure 1.1: Histogram of Λ

This figure plots the distribution of the estimated Λjt as described in Section 1.4.4. Perfect financial markets
would imply a value of 1 for all households, while lower values reduce demand for risky inputs. Values above
1 suggest that agriculture is a hedge against some other income stream. Values are trimmed at the 5% upper
and lower tails.



1.7. FIGURES AND TABLES 33

Figure 1.2: Joint distribution of TFP-weighted τ and Λ

This figure plots TFP-weighted histograms of Λ and τ in 25×25 bins and reports their correlation coefficients.
The top left panel plots the Cobb-Douglas price index of τs,

∏
l τ

αl

jlt against the estimates of financial
distortions Λ, each weighted by TFP A. The top right panel plots the τ for land against Λ while the bottom
left plots the index of τ for the three types of labor (planting, weeding, and harvesting) considered. The
bottom right panel plots the price index of τs against Λ without weighting by TFP.
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Figure 1.3: Counterfactual TFP gains from reallocation

The figure shows the aggregate TFP gains from the main counterfactuals summed up across years, as a

percentage of status quo aggregate TFP. The first group of columns shows results under perfect financial

markets but with the observed input frictions. The second shows results under perfect input markets but

with the observed financial distortions. The third shows the results under a full set of perfect markets.

The blue (left) bars in each group show the gains holding aggregate supply fixed at the township level

for all inputs while the green (right) bars show the gains allowing the aggregate supply of seed, fertilizer,

and equipment to increase (holding their prices constant). The results are computed using fertilizer as the

normalizing input for τ , CFE demands, and all crops, aggregated to the farm level.
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Figure 1.4: Gains from partial reductions of τ and Λ

The figure shows counterfactual gains from reallocation using the TFP-based measure under different reduc-

tions of input and financial wedges. I compute aggregate TFP under each scenario shrinking Λ and τ towards

unity by increments of .05. The origin corresponds to the status quo allocation and (1,1) corresponds to the

efficient allocation. The vertical axis shows the percent increase in aggregate TFP relative to the status quo

allocation. The figure uses fertilizer as the normalizing input for τs, CFE demands and includes all crops ,

aggregating to the farm level.
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Figure 1.5: Aggregate TFP relative to optimum, with and without input mismeasurement

The figure shows the percentage of foregone attainable output from the four main counterfactuals (observed

allocation, efficient allocation, perfect financial markets with input wedges intact, and perfect input markets

with financial wedges intact). The solid bars compute these using the TFP-based measure of misallocation,

using (1.17). The shaded bars are calculated by taking raw input observed in the data and augmenting

them by the estimated τ and Λ, where relevant. 95% confidence intervals from 200 bootstrap replications

are plotted. Results are computed using CFE demands, fertilizer as the normalizing input for τs, all crops,

and aggregating to the farm level.
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Figure 1.6: Changes in Land Distribution

The left panel shows the distribution of land under the baseline, denominated in rai (.125 ha), as a function

of baseline welfare, which is the negative of the log MUE. The right panel shows the log ratio of land under

the main counterfactuals to land at baseline. The plots show a lowess fit. This is shown for the closed

economy case, using fertilizer as the normalizing input, CFE demands, andall crops at the farm level.



1.7. FIGURES AND TABLES 38

Table 1.1: GMM results

α CD α NH β NH

Equip. 0.084 0.161 0.144
(0.005) (0.013) (0.048)

Fert. 0.089 0.103 0.110
(0.002) (0.004) (0.016)

Harv. Labor 0.225 0.175 0.181
(0.006) (0.028) (0.077)

Land 0.208 0.219 0.362
(0.004) (0.069) (0.208)

Plant. Labor 0.117 0.120 0.210
(0.004) (0.045) (0.430)

Seed 0.092 0.087 0.130
(0.002) (0.005) (0.028)

Weed. Labor 0.013 0.041 0.050
(0.001) (0.017) (0.029)

J-stat 35.06 36.41
p-val 0.465 0.132
γ 0.828 0.906
s.e. (0.01) (0.09)

This table presents results from the main GMM specifications used to esti-
mate the production function under both the Hicks-neutral Cobb-Douglas
specification in the main text and the generalized Cobb-Douglas in Ap-
pendix A.2. Column 1 shows the estimates of the Cobb-Douglas coefficients
α from (3.17) The second and third columns show estimates of α and β from
(3.20), which are the elasticities of the mean and standard deviation of out-
put with respect to each input. All specifications use tambon dummies and
lags of λjt from the 5 months before input k is first applied as instruments.
An annual discount factor of δ = .95 is assumed. Results are computed
using fertilizer and seed as the reference input for the estimation of τ from
(1.25) (only relevant for Column 1), using rice plots only and CFE λs at
the farm level. The J-statistic and p-values reported are from a test of the
model with the full instrument set against one with only tambon dummies
and a single lag of λjt. γ is the returns to scale parameter implied by the
sum of the production coefficients. Standard errors are computed from 234
bootstraps of the full estimation procedure at the household level.
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Table 1.2: Decomposition of Gains by Input Market

Financial Constraints Perfect Financial Markets

All 0.095 0.313
Land 0.047 0.234
Labor 0.068 0.273
Plant. Labor 0.020 0.191
Weed Labor 0.003 0.161
Harv. Labor 0.055 0.248
Equip 0.011 0.174
None 0.000 0.157

This table shows the gains from removing distortions τjkt in individual input
markets, both with the observed financial constraints and under perfect
financial markets. This is shown for the closed economy case, using fertilizer
as the normalizing input, CFE demands, and all cropsat the farm level.
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Chapter 2

The Welfare Effects of Postharvest
Loans Under Price Risk

2.1 Introduction

Consumption is highly seasonal for poor farmers in developing countries, where hungry
seasons are characterized by acute poverty and malnutrition. Seasonal hunger does not only
create immediate deprivation, but its level and variability negatively affect long-run outcomes
such as health and human capital formation (Christian and Dillon, 2018). While we know
this is a severe problem, typical poverty measures often underestimate the seasonality of
poverty and hunger (Merfeld and Morduch, 2023). Focusing on the seasonality of hunger is
especially important in agricultural settings, where farmers typically receive lumpy income
from harvests and have to smooth it over the lean season, choosing when to optimally
consume or sell crops. This is especially challenging because both consumption needs and
the value of stored crops can change unexpectedly over time. In particular, farmers frequently
sell their harvests during peak seasons and buy back those crops at much higher prices during
subsequent lean seasons after depleting their stocks – or in the words of Burke et al. (2019)
“sell low and buy high.”

A number of studies, most prominently Burke et al. (2019) but also Basu and Wong
(2015); Aggarwal et al. (2018); Omotilewa et al. (2018); and Channa et al. (2022), have
found generally positive effects of postharvest loan (PHL) and storage RCTs in sub-Saharan
Africa. However, a simple model of intertemporal consumption smoothing—which is not
spelled out in any of these studies—suggests that these results are far from obvious. This is
because seasonal price increases vary heavily from year to year, making borrowing against
them a risky proposition. Cardell and Michelson (2022) illustrate using price data from many
sub-Saharan African grain markets and simulations to show that even a mild level of risk
aversion would rationalize the observed lack of arbitrage. Empirically, there are also concerns
that the treatment effects these studies find on profits do not neatly map to welfare improve-
ments across the season. There are also supply-side concerns over the sustainability of such
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programs: if prices are spatially correlated, then lenders may be exposed to simultaneous
default when prices fail to rise.

It is important for academics, policymakers and donors to view these programs through a
broad and theory-consistent model of consumption smoothing and intertemporal arbitrage.
We therefore partnered with the Taimaka Project, an NGO in Gombe State, Nigeria, that
was implementing a postharvest loan program modeled after the One Acre Fund scheme
studied in Burke et al. (2019). Taimaka randomly assigned offers of either a cash loan, a
similarly-valued in-kind loan of maize, or no loan to groups of applicants. We collected 8
rounds of high-frequency consumption, investment, and storage data over a 12 month period
(pre- and post-treatment) from a sample of 935 farmers in Gombe State. In addition, we
experimentally elicited households’ intertemporal marginal rates of substitution, by offering
one-month “bonds“ at different interest rates. Together with consumption data, this gives
us two (independent) ways to measure households’ welfare at each point throughout the
season. We also have highly localized price data for the full range of crops grown and stored
by sample households at the local market level within Gombe and the time series of prices
over a longer period across several markets in Nigeria from USAID’s FEWS project.

First, we estimate the treatment effects of Taimaka’s loan program, which contained
both a cash loan and a similarly-valued in-kind loan of maize grain. Unlike in other studies,
we find large effects on grain storage, but insignificant effects on sales, consumption, and
welfare. In particular, households that received the cash treatment appear to have increased
their storage by up to 100,000 Naira, (twice the loan value) although the results are noisy.
In contrast, we find a null effect of the in-kind loan on stocks, including for maize. However,
we find no significant effects of either treatment on crop sales. Unlike in other contexts in
which PHLs have been studied, prices stayed flat between when the loans were disbursed
after the 2021 harvest and when repayment was due in mid-2022. It instead appears that
these (cash) loans induced households to reschedule their consumption over the season as
opposed to becoming arbitrageurs. As a result, many households defaulted on their loan and
Taimaka decided not to continue the program the following year.

We also find minimal effects of the program on various measures of welfare. In particular,
we detect no significant changes to average consumption, estimated welfare (marginal util-
ity of expenditure or MUE), self-reported hunger, or experimentally elicited intertemporal
marginal rates of substitution (IMRS). However, when breaking these results out by pe-
riod, we find that estimated household MUEs are significantly higher for households in both
treatments at endline, consistent with repaying loans or forfeiting assets after defaulting.

While the results from our RCT show that PHL programs do not always lead to major
increases in profits and welfare, we would like to say something more general about their
expected returns under price uncertainty. The data we’ve collected allow us to estimate
a simple yet general model of seasonal consumption smoothing and arbitrage and test the
simpler version of the model suggested by other papers in which price risk doesn’t affect
demand for postharvest loans.

First, we reject the null hypothesis that households could not increase ex-ante welfare
by holding different portfolios of stocks. We find that the average household underinvests
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in arbitraging grain, relative to what a risk-neutral household would choose to invest. In
particular, we find a positive (and statistically significant) correlation between crop price
increases and the marginal utility of consumption, even for households holding positive
stocks. In other words, these households are worse off when their assets appreciate, consistent
with them expecting to deplete their stocks in future periods and become net consumers.
This creates an important selection channel that limits the impacts of PHLs — exposure to
price risk limits the demand for credit, possibly among the most vulnerable households that
such programs seek to target.

However, we also do not find any significant effects of holding these additional stocks on
households’ (realized) intertemporal marginal rates of substitution (or ex-post welfare) due
to the PHL treatment. In other words, even though households would have liked to increase
their stocks ex-ante, this would not have increased their welfare given the observed (lack of)
price increases.

These results primarily contribute to a large literature on the seasonality of income and
consumption in agricultural settings, including several papers on PHL and storage interven-
tions. Basu and Wong (2015) find that providing households with storage drums and in-kind
staple food loans leads to increases in expenditure and income, but that only credit led to
smoother lean season consumption. Aggarwal et al. (2018) and Omotilewa et al. (2018) find
that pure storage interventions using hermetic PICS bags increase maize storage volumes,
duration, and revenues in Kenya and Uganda, respectively. Channa et al. (2022) also include
a treatment arm that only provided PICS bags and find slightly smaller and insignificant
positive effects on maize storage than for households who received both credit and PICS bags
(but cannot reject equality of the effects). Channa et al. (2022) and Burke et al. (2019) find
that access to postharvest credit improves farmers’ incomes, but do not detect any effects
on consumption. We not only provide a cautionary tale about the effects of PHLs in years
with minimal price increases, but use high-frequency consumption data to test for effects on
welfare throughout the season.

We also contribute to a growing literature on the external validity of experimental es-
timates in a stochastic world (Rosenzweig and Udry, 2020). In particular, we verify that
a PHL program similar to others studied in the literature is not effective in a season when
prices do not rise. We further use the structure of the model to conclude that despite the
risk of prices not increasing, even treated households would have liked to hold more stocks ex
ante. This suggests that there is still a role for policies that relax seasonal credit constraints,
even if price risk reduces demand for them somewhat.

These results have important implications for our understanding of seasonal poverty and
policies to reduce them. First, they provide a cautionary tale of PHLs as a specific policy.
More broadly, the result that even treated households nevertheless could have improved
ex ante welfare by storing more, despite low ex post returns, suggests that risk may not
have been the binding constraint against arbitrage. Instead, credit constraints appear more
relevant, despite the treatment effects of the loans. Future analysis could consider alternative
policies that help address both risk and credit constraints, In particular, a loan combined with
a forward contract could perhaps provide liquidity while indemnifying households against
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the risks of prices not rising.

2.2 Theoretical Framework

We consider the context of a single agricultural season with T periods. Assume a household
has per-period utility function u(ct, xt) over an agricultural good ct that can be bought and
sold at price pt (which is a random variable as of t − 1) or stored and a non-agricultural
good xt that is purchased on spot markets with price 1. The household harvests an amount
H > 0 of grain in period 0, of which it can choose to store amount s ∈ [0, H] or sell for price
p0 to finance consumption or purchase a safe asset a with return R the next period. Assume
the household cannot borrow so at ≥ 0 ∀t.

The household’s budget constraint in each period (with H replacing st−1 in period 0) is

pt(st−1 − st − ct) +Rat−1 = xt + at (2.1)

which simply states that (net) sales of stock plus the returns to the last period’s safe asset
equal current consumption and investment expenditure. Note that this budget constraint
holds for any realization of pt, with an associated Lagrange multiplier λt that is also a random
variable.

The household solves

max
a,s,c,x

V (t, s, a) = u(ct, xt) + βEt[V (t+ 1, s′,′ a′)] (2.2)

subject to the budget constraint, the credit constraint at ≥ 0, and a non-negativity constraint
on stocks st ≥ 0.

This yields the first-order conditions

uc(ct, xt)/pt = ux(ct, xt)λt ∀ t, (2.3)

where λt is the Lagrange multiplier on the household’s budget constraint in each period, plus

λt = β
R

pt
Et[Vs(t+ 1, s′, a′)] + µa

t (2.4)

where µa
t is the Lagrange multiplier on the borrowing constraint, and

ptλt = βEt[pt+1Va(t+ 1, s′, a′)] + µs
t (2.5)

where µt
s is the Lagrange multiplier on the non-negativity constraint for stocks.

Applying the envelope theorem implies that when the household is at an interior solution

REt[
λt+1

pt+1

] =
1

pt
Et[pt+1λt+1] (2.6)
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Simple comparative statics illustrate that the effects of pt+1 on welfare at harvest depends
on st. In particular, if households enter period 1 with large stocks of s, then a positive shock
to pt+1 simply earns them higher returns on their assets. In contrast, if a household has
small stocks of s, this makes supplementing their food consumption with purchases more
costly, which can swamp the benefits of higher returns to their small investments.

Now assume a lender is willing to offer the household a loan h at period 0 to be repaid
with interest τ ∈ (R,E[p1/p0]) at period 0. As such, the loan is unattractive when the
household can borrow at R but is profitable in expectation if it cannot. We are interested in
how uncertainty over p1 affects demand for this loan. The simple model yields the following
three facts.

Proposition 1. 1. A risk-neutral credit-constrained household would always take the loan

2. Risk over p makes the loan less attractive to a (prudent) household when it expects to
be a net seller

3. Risk over p makes the loan more attractive to a (prudent) household when it expects to
be a net buyer

(a) follows direction from the assumptions. To verify (b) and (c) note that the sign of the
covariance between λt+1 and pt+1 depends on st. To see this, first note that

∂s0
∂h

> 0, otherwise
the household would never be able to repay. Also note that staple consumption in period T
cT = RaT−1

pT
+pT sT−1−xT . As sT−1

sT−1+aT−1
→ 0, ∂cT

∂pT
< 0 and as sT−1

sT−1+aT−1
→ 1, ∂cT

∂pT
> 0. Similar

logic holds iterating forward to earlier periods. This means that if households are prudent,
cov(λt+1, pt+1) is increasing in st and positive (negative) for households with low (high) st
relative to at. Since the loan increases s, ∂cov(λt+1,pt+1)

∂h
< 0. Meanwhile, a mean-preserving

increase in the variance of pt+1 increases the absolute value of cov(λt+1, pt+1). This therefore
reduces risk for households with low s and increases risk for households with high s

1 states that in addition to being a profitable investment in expectation, the loan can be
either risk-reducing or risk-augmenting for households depending on how much they expect
to store. In other words, when the loan moves households into the net-seller regime (as in
Burke et al., 2019), price risk reduces the welfare effects of the loan by causing the most
vulnerable to select out. On the other hand, when households expect to remain in the
net-buyer regime, poor households increasingly select in because of the insurance motive it
provides. Furthermore, the importance of these channels also depends on the skewness of
price shocks. If, as in the data we observe for Gombe, positive price shocks are extreme but
negative price shocks are relatively mild (and the cost of default is low), this strengthens the
insurance motive of the loan for prudent households. This is because prudent households
place more weight on states with with extremely high marginal utilities of expenditure.
This makes them more averse to having to purchase from the market when prices skyrocket
relative to the potential windfall from being able to sell stocks in these cases (the opposite
would hold for imprudent households, i.e. with u′′′ < 0). Therefore, while PHLs have been
marketed as a way to increase commercial activity for the moderately poor, price risk reduces
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the potential for this channel but creates an additional insurance motive that may benefit
even poorer households.

We have direct data on demand for credit from two distinct sources. First, our experi-
mental sample is comprised of households who applied for the Taimaka loan, so comparing
characteristics of these households to the broader population (e.g., households in the Nige-
rian Household Survey) tells us something about loan demand. However, we can do better
at characterizing demand for credit within our experimental sample, as we elicit households’
intertemporal marginal rates of substitution in each survey wave, which captures their de-
mand for smaller amounts of credit at a more frequent scale. We also have the consumption
and investment data to test the null that households are behaving as profit-maximizing arbi-
trageurs, and whether their behavior is consistent with the net-buyer or the net-seller regime.
With further structure, we can estimate the marginal propensity to invest (vs. consume),
which we can then use to estimate the ex ante welfare effects of post-harvest loans and other
policies to combat seasonal hunger. In future work, we also aim to evaluate counterfactuals
such as forward contracts, which essentially indemnify borrowers against states of the world
in which prices fail to rise.1

2.3 Experimental Design and Data

2.3.1 Sample Frame and Household Selection

Communities were selected from the 10 percent poorest locations in Gombe state as predicted
by satellite data following Aiken et al. (2020) (about 50 sites). Of these, 20 were randomly
selected for a rapid rural appraisal by Taimaka. Half (10) of these sites were chosen for
household listing based on perceived need and accessibility. Then six of these sites were
selected for program implementation based on the household listing.

In each of the six sample sites, households were selected as follows. Taimaka visited
the sites to advertise the loan program and met with traditional leaders after obtaining
their assent to move forward to the program. After two days, they returned to hold an
informational session designed to emphasize the terms of the loan, the loan’s theory of
change, and group indemnity. They then advised interested farmers to start forming groups
of 5 and that they would return in a few days to begin taking applications.

Each group completed an enrollment form, which included the 10 questions from the
Poverty Probability Index (PPI) for Nigeria, some brief questions about farming, and demo-
graphic information and included pictures of farmers. After receiving applications, Taimaka
developed a ranked list of groups in order of desirability, based on ability to repay and need
for the loan.

1Karlan et al. (2011) piloted an experiment offering price-indemnified production loans in Ghana but
found no differential takeup relative to ordinary loans. However, price risk may be a much more important
concern for PHLs than production loans.
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Taimaka then met with traditional leaders to verify that the members of groups were
indeed residents of that location, were indeed farmers, and were known to be creditworthy.
If a single member was deemed unqualified, groups were given an opportunity to choose
a replacement individual. If more than two candidates were deemed unqualified, then the
group was struck. The ranked list was then updated accordingly.

Loan officers were then given a target number of clients to enroll in the program in
each site. They went down the ranked list, visiting three farmers’ households in each group
to verify the information given on their applications. If any farmer was found to have
made material misrepresentations in their application, the group was dropped from the list.
Otherwise, the group was enrolled, which made them eligible to be selected for the sample.

The ordered list was then partitioned into strata of 6 adjacently ranked groups. A
randomly selected pair of groups in each stratum was assigned to receive the cash loan,
another was assigned to receive the in-kind maize loan, while the remaining pair was assigned
to a control group. This draws on the idea of a finely stratified assignment mechanism
advocated by Athey and Imbens (2017). This led to a sample of 935 individuals from 187
groups.

2.3.2 Treatment

The treatments were an offer of a joint-liability loan of up to 50,000 Naira (approximately
USD 100) in value to each of the 5 group members. The terms for the maize and cash loan
were slightly different.

For the cash loan, each farmer was asked to commit up to 4 bags to store until July
15th, 2022, the due date of the loan. Farmers received 11,900 Naira in cash plus a hermetic
PICS bag priced at 600 Naira for each bag they committed. The vast majority of farmers
in this arm chose to commit 4 bags and received the maximum loan value of 50,000 Naira
(approximately $100). The loans were to be repaid with a 15% user fee in July 2022. Delivery
of the loans took place between September 16th and October 10th, 2021. Farmers were also
required to make monthly repayments of at least 3,000 Naira starting in December 2021.

For the in-kind maize loan, all farmers were offered a loan of 3 100kg bags of maize.
Farmers in this arm were also required to repay the loan in July 2022 with a 15% user
fee. The amount required to pay was equal to the value of the price at which Taimaka
purchased the maize, plus the cost of transporting to the household plus the cost of 3 PICS
bags. In total, this ranged from 62,000 to 63,000 Naira, depending on the group’s distance
from the market. Due to logistical issues on Taimaka’s end, these loans were disbursed in
late November 2021 and repayment was required to begin in January 2022. Otherwise, the
conditions of the loan were identical.

Members of the control group were not offered any loan by Taimaka.
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2.3.3 Survey Data

We collected 8 rounds of household surveys at approximately two-month intervals between
August 2021 and November 2022. Each survey included modules on household composition,
grain stocks, food acquisitions, other expenditures, and measures of seasonal hunger. During
baseline and endline surveys, we also asked questions about agricultural inputs and output
from the previous season, and assets, including livestock.

2.3.3.1 Food Acquisition and Stocks

In each wave, we elicited information on recent acquisitions of a list of 22 different goods
that households in this setting consume. However, while many of these acquisitions are fairly
clearly for consumption (e.g., milk, sugar) in the fairly near future, others may be held for
some combination of present consumption and investment. In particular, households often
hold positive stocks of maize, millet, beans, guinea corn (sorghum), and less frequently hold
stocks of rice, Bambara nut, and groundnut. A few households also reported holding stocks
of cassava. During each wave, we asked households for information on these stocks. At
baseline, we asked for the amount of each crop that the household had stored. In waves 1-3,
we also asked how much of each crop they had harvested, purchased in bulk, and sold (or
given away) since the previous visit, in addition to asking them about their stocks. After
wave 3, enumerators informed us that households appeared to consider questions about their
stocks sensitive. Therefore, for waves 4-6 we asked about how much of households’ stocks
they had consumed since the previous visit instead of asking about their current position.
This gives us an account of households’ grain flows at each period, allowing us to impute
stocks. At endine, we added back in the question about stocks.

Unsurprisingly, households’ reported stocks and flows over time do not always balance
over time in an accounting sense. As a result, we had to make substantial imputations,
which we describe in Appendix B.1.

2.3.3.2 IMRS Elicitation

We also attempted to measure individuals’ intertemporal marginal rates of substitution by
measuring willingness to pay for bonds at different interest rates. After each survey wave,
enumerators asked individuals whether they would be willing to invest 500 Naira during the
following survey to receive 500(1 + x) Naira for each x between -0.1 and 1 in increments of
0.1. The enumerator then used an app to randomly select an interest rate. If the individual
had agreed to the selected rate, then they were required to bring at least 500 but up to
2,500 Naira during the following survey wave. The money was then given to the enumerator
and the money was repaid with interest the following survey wave. Otherwise, no deal was
implemented. Households who had agreed to the interest rate that was drawn were told that
they would be barred from future payouts if they failed to honor the deal. These real-stakes
choices identify the range of households’ intertemporal marginal rates of substitution during
each survey round.
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2.3.3.3 Other variables

We also asked whether households had made any large non-food purchases of at least 10,000
Naira ($20), whether they engaged in another business, and if so, what their expenses and
revenues were, and whether and how much money they borrowed and repaid. We also
pre-specified the Reduced Coping Strategies Index (RCSI) Maxwell et al. (2014), which asks
households questions about the number of days in a month they restricted food consumption
because of lack of resources, as a measure of seasonal hunger.

2.3.4 Other Data sources

We use two sources of price data for our analysis. Taimaka collected prices of staple com-
modities from local markets in Gombe State on a (roughly) monthly basis. We also use
weekly price data from the Famine Early Warning System Network (FEWS-Net) for Nige-
ria, which covers major regional markets, including Gombe Town. We also use Taimaka’s
administrative records on loan applications (including the scoring of groups), disbursement,
and repayment.

2.4 Descriptive Statistics

2.4.1 Prices

Using over 10 years of monthly price data from FEWS Network, as well as data collected from
markets in Gombe State during 2021-22, Figure 2.1 shows that the magnitude of seasonal
price increases is highly variable. While on average they increase by 61% from floor to peak,
in the median year, the increase is 38%. This difference is driven by extreme price increases
of 239% and 187% in 2016 and 2020, respectively. On the other hand, price increases
were lower than Taimaka’s interest rate of 15% in three of 11 years. Thus, intertemporal
arbitrage typically yields moderate positive returns but is highly influenced by tail events at
both extremes. As Cardell and Michelson (2022) argue, it appears that moderate degrees of
risk aversion could rationalize the lack of intertemporal arbitrage.

Notably, maize prices in the 2021-2022 season increased by about 20% (from 16,500 to
22,000 Naira per 100kg bag) between November and January, then stayed between 18,000
and 20,000 Naira, where they stayed throughout the loan period. At least 2/3 of the maize in
the sample was sold after the January peak, meaning that households would have obtained
a return on harvested maize stored between 11 and 23%, depending on the week they sold,
not factoring in depreciation. In practice, 33% of maize sold in the sample was sold below
18,000 Naira per bag and 83% was sold for below 20,000 Naira per bag. Overall, few people
made significant profits from arbitrage and many made negative profits net of Taimaka’s
interest.

The price data also exhibit strong spatial correlation, both within Gombe and across
markets in Nigeria, suggesting there is minimal scope for spatial arbitrage. Using FEWS
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data on prices at weekly frequencies we can reject the null hypothesis of no spatial correlation
in maize prices (using a Skillings-Mack test; p=0.035); when prices go up in one location
they are very likely to go up in another. This can be seen from Section 2.8. This can also be
seen for and for smaller markets within Gombe throughout the study period. The wedges
between prices in rural markets and Gombe town also stay roughly constant throughout the
season, likely reflecting transport costs (Figure 2.3). This implies that despite high potential
returns to intertemporal arbitrage, there is little scope for spatial arbitrage. These patterns
are also not unique to maize as can be seen from Figure 2.3 and section 2.8.

One implication is that a lender operating within a single state, such as Taimaka, is
exposed to correlated default risk across lending sites. Indeed, nearly 40% of Taimaka’s
borrowers did not complete their repayments by the deadline of August 1st, with 18% of
total balances outstanding. As of May 2023, 23% of borrowers had not paid the full amount,
accounting for 6.4% of the total balance. Avoiding the risk for such default would have
required spreading their portfolio across a much wider geographic range.

2.4.2 Prices and Intertemporal Marginal Rates of Substitution

The conventional account is that in rural sub-Saharan Africa seasonality in crop production is
reflected not just in prices for those seasonal crops, but also in consumption— with increasing
hunger and scarcity until the next harvest. Such a story is consistent with the variation in
maize prices described in Figure 2.1, but not implied by it. Variation in local grain prices
will depend on a mix of both supply and demand factors, and even if prices are high because
supply is low and demand is high, this need not imply great need, as people faced with a
shortage of grain may simply substitute toward other foods.

Figure 2.4 provides some evidence on this point. Here we see (log) returns (i.e., log pt+1/pt)
to holding maize over roughly six-week intervals. The planting season in Northern Nigeria
roughly coincides with the period of highest prices, in April through June, while the harvest
period is in late summer, and is slightly anticipated by the period of sharpest decline in maize
prices. At the same time, the average intertemporal marginal rate of substitution, m̄, signals
relative need in periods that largely coincide with higher maize prices. In this economy in
which the staple crop of maize plays a central role, we do see evidence of economic need in
periods when maize prices are signaling a shortage.

2.4.3 Sample

Table B.2.1 shows some summary statistics for the sample and tests for balance between
each treatment arm and the control group. Overall, the results are largely balanced, and
where there are baseline differences, they are largely washed out by strata fixed effects in the
main analysis in Section 2.5 and by the controls selected by Double Post LASSO (Belloni
et al., 2012) in robustness checks (Section 2.5.5).

Households have an average size of 6 members and heads are on average slightly below 40
years old, 93% male, and 60% have no education. Households report owning an average of
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5.3 hectares of land and an average of 2 cows and 5 goats. Around 18% operated a business
and 19% had outstanding loans at baseline. Nevertheless, households were quite poor at
baseline, which was conducted right before the 2021 harvest, at least relative to subsequent
periods. The estimated marginal utility of expenditure was much higher than other periods
and households also reported high levels of food insecurity, although this may include some
strategic (mis)reporting.

2.5 RCT results

Below, we estimate average treatment effects of Taimaka’s cash and maize loans. Overall,
the takeaway is that the loans enabled households to reschedule consumption to later periods
but did not have large effects on overall income and welfare.

We define the treatment variables as follows:

1. Cashi is a dummy variable equal to 1 if household i was offered the cash loan.

2. Maizei is a dummy variable equal to 1 if household i was offered the maize loan.

The main analysis is based on the following intent to treat specification

Yist = βt
1Cashi + β2Maizei +Xiγ + δt + δs + εist

where Yist is outcome Y for household i in stratum s at time t, δt and δs are survey wave
and stratum fixed effects, respectively, and T = 7.

To examine outcomes at higher frequency, we also run the following dynamic specification
to estimate separate treatment effects for each period

Yist =
7∑

τ=0

βτ
1Cashi +

7∑
τ=0

βτ
2Maizei +Xiγ + δt + δs + εist

2.5.1 Effects on Stocks

2.5.1.1 Cumulative Results

First, we find that both the cash and maize loan treatments had negligible effects on the
total amount of grain sold, consumed, and harvested. In our main specification, the total
increase in the value of grain sold was about 18,000 Naira (approximately the value of one
bag of maize) for the cash loan group and less than 2,000 Naira ($4) for the maize loan
group (Table 2.1). However, both figures are imprecisely estimated. From Table 2.2 there
appears to be a large, increase in the consumption value of own grain for the cash arm of
about 92,000 Naira ($180). While this estimate is noisy, the increases are mostly driven by
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statistically significant increases in millet and bean consumption.2 However, these estimates
are much smaller and insignificant for the maize arm. Finally, we also see large increases in
the value of grain households in the cash arm reported bringing back home from the field of
about 112,000 Naira and 47,000 Naira in the control group. However, these results are not
statistically significant for any crop. Nevertheless, the large point estimates are perplexing,
since is not likely that the treatment caused households to harvest more grain (although
anecdotally the loans were often used to pay for harvest labor) given that they were not
aware of the treatment assignment when they planted.3 Rather, we believe that this reflects
that households were less likely to sell off grain immediately after harvesting (e.g. to repay
debts) or from maize cribs in the field.4

2.5.1.2 Within-season results

We also use the high-frequency data to shed light on households’ asset positions throughout
the season. First, we find that total stocks increase by large amounts for the cash loan group
relative to the control group throughout the season. The treatment effect on the value of
total stocks peaks at about 100,000 Naira (twice the value of the loan) in March 2022 but
remains large throughout the season. Interestingly, this is not driven by maize, but by beans
and to some extent millet. This is also not driven by the crowding in of additional purchases
for the purposes of arbitrage (Figure 2.10), but rather by reducing the outflows of grain. For
the maize loan group, the point estimates on maize stocks in later waves are close to 0, albeit
with wide confidence intervals.5 Together, these results suggest that households preferred
investing their loans in a fairly diversified portfolio of crops and that offering in-kind loans
of a single crop is less effective for encouraging arbitrage.

Further results shed light on what treated households did with their stocks. From Fig-
ure ??, we see small insignificant increases in sales of maize and other crops in the in-kind
loan group at the start of the planting season in March (although this does not translate into
significantly higher input expenditures). For the cash loan group, we instead see increases in
the consumption of own grain at this point (Figure 2.9), which dwarf the marginally signif-
icant increases in sales towards the end of the lean season. This is consistent with the idea
that the loan helped farmers maintain positive stocks further into the lean season but did
not lead them to become net arbitrageurs in a season in which prices did not appreciate.

2Consumption of own stocks was only directly elicited following wave 3, and was imputed as a residual
between previous stocks and other flows prior to that.

3Indeed, the sample is balanced on area planted and production expenditures from the prior season.
4The survey question specifically asked about grain brought home from one’s field, which may not have

captured any transactions that did not first involve bringing grain home, which are common in Gombe. In
this case, increases in reported harvests may also capture postponed sales.

5It is surprising that we do not observe significant increases in the quantity of maize stored for the in-kind
loan group, which suggests that these households either disposed of it immediately after receiving it or that
cash and control households contemporaneously acquired similar amounts of maize. However, we do see an
increase in overall sales right after treatment (Figure B.3.2.
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While the stock data relies heavily on imputations, these effects can also be seen from the
consumption data. Households receiving the maize loan increase their consumption of own-
produced crops shortly after treatment, but this effect fades by the lean season. Meanwhile,
we see households in the cash arm consuming fewer of their own crops until the start of the
lean season, and then consuming more during the lean season (Figure 2.11). Together, these
results suggest that the loan helped farmers maintain positive stocks further into the lean
season but did not lead them to become net arbitrageurs in a season in which prices did not
appreciate.

2.5.2 Effects on Consumption

We now evaluate the program’s effect on consumption and welfare. We use four main mea-
sures: the log of monthly expenditure, the IMUE as estimated from Ligon (2020), and our
experimentally elicited IMRS.

We find no significant effects of either treatment on the average values of any of these
measures for households across the sample period.6 None of the point estimates suggest a
change in welfare of greater than 5% and we can rule out large effects on the IMUE, seasonal
hunger index, and elicited IMRS.

We also see few significant effects when breaking coefficients out by treatment wave,
except for an increase in the IMUE at endline for both treatment arms. While the results
on the IMUE are inconclusive for other periods, this is consistent with treated households
reducing their consumption when repaying loans or forfeiting assets after defaulting.

Our data also allow us to look at whether households are consuming from their own
stocks or the market. Consistent with this, households in the cash treatment arm consumed
significantly more crops from their own stock compared to both the maize and control arms
throughout the lean season, also mostly driven by beans, guinea corn, and millet. In contrast,
households receiving the in-kind loan start consuming additional maize immediately, but the
effects disappear by the start of the lean season. By the end of the lean season, households
in both treatment arms are more likely to consume purchased beans, but households in the
in-kind treatment arm are less likely to consume purchased millet or guinea corn. Given that
consumption of own-produced millet and guinea corn are not higher for these households,
this indicates that they were less likely to consume these crops. This further supports the
conclusion that the cash treatment helps households reschedule consumption but not become
arbitrageuers while the in-kind treatment had null or negative impacts on late-season welfare.

2.5.3 Effects on Other Outcomes

Other pre-specified outcomes of interest include farm investment and profits from the 2022
planting season, non-agricultural business expenditures, borrowing and lending, and semi-

6The p value on the coefficient for the effect of the cash treatment on the elicited IMRS is 0.108, but
this is only the case when imputing the maximum interest rate in the choice set (100%) as the IMRS for
households who didn’t choose any rate.
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durable/durable purchases. Treatment effects are presented
In Table 2.6, we see some significant increases in business revenues for both treatment

arms earlier in the season, but these effects fade towards the end of the season. We also see
that households in both arms spend more on durable goods towards the end of the season.
We do not see any significant effects on whether or how much households borrowed (apart
from Taimaka), but the point estimates are positive, especially towards the end of the season,
consistent with some households borrowing to repay their Taimaka loans. In Table 2.5, we
also do not see any significant effects on agricultural investment for the 2022 planting season
but the point estimates are positive for the cash loan arm and negative for in-kind loan arm.
Harvest values are also higher for the both arms but not significantly so.

2.5.4 Heterogeneity

We pre-specified two dimensions of heterogeneity: gender and baseline wealth. In Ap-
pendix B.3 we report results interacting each treatment with a dummy for female household
head and a standardized index of baseline assets, respectively. Since only 7% of household
heads in the sample are female, the results are quite noisy. Nevertheless, we find that the
maize loan significantly increases female-headed households’ expenditure and reduces their
IMRS (Table B.3.15, even though the point estimates on stocks grain flows are negative
(Table B.3.14). We also see negative interaction effects between the cash treatment and
baseline assets on grain sales and significantly higher log λs ( seeTables B.3.20 and B.3.21).

2.5.5 Robustness

We also pre-specified robustness checks using the Double Post LASSO method of Belloni
et al. (2012) to select controls, as well as controlling directly for the score Taimaka assigned
to groups rather than using the strata fixed effects. We also show robustness to controlling
for baseline outcomes in an ANCOVA specification following McKenzie (2012). The results,
none of which alter the main conclusions, are presented in Appendix B.3.

2.6 Structural Estimation

In the previous section, we established that while the cash treatment may have helped house-
holds smooth consumption, neither treatment led to an actual significant increase in average
arbitrage profits. But could households have made themselves better off ex ante by holding
more maize? Though price changes in maize during 2021–22 were not large by historical
standards, a purchase of maize in April 2022 followed by a sale in August would have given
a return of about 10% over four months, or an annualized yield of 33%. It would have been
profitable to finance this using the loans offered by Taimaka (15% interest) or commercial
banks. But of course, these are ex post returns. We would like to say something about the
expected welfare effects of investing in stocks of grain given the uncertainty over seasonal
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price increases. We now turn to testing the predictions of a simple model of intertemporal
arbitrage with our high-frequency consumption and storage data.

Let ptj denote the price of a storable or financial asset j ∈ {1, . . . , J} at time t. For
any household holding a positive stock of asset j at time t (i.e., not at a corner), changes
in the price of the asset will affect the household’s budget and so its marginal utility of
expenditures λt. The optimal portfolio for household i at time t will satisfy the Euler asset
pricing equation

βEt

[
λit+1

λit

pjt+1

pjt

]
= 1 for all j. (2.7)

We have observations of prices pjt , assumed to be common, and have measures of log λit
estimated from each household’s consumption portfolio.

Then a direct idea is to work directly with the orthogonality conditions implied by the
Euler equation. Let δjit ∈ {0, 1} indicate whether household i holds positive stocks of asset
j at time t. Let mit denote i’s intertemporal marginal rate of substitution at time t, and let
m̄j

t denote the average IMRS of those hold positive stocks of the asset. In the aggregate we
have Et−1[m̄

j
tR

j
t ] = 1. In this form, this is the standard asset pricing condition. And then in

the cross-section we have E[t− 1; (mitR
j
t − 1)δjit−1] = 0, and (via substitution)

Et−1[(mit − m̄j
t)R

j
tδ

j
it−1] = 0.

Interpreting this, focus first on the factor (mit − m̄j
t). If all households were fully insured

this term would always be equal to zero—though aggregate shocks to Gombe might change
IMRSs, they would change in precisely the same way for every household. Where i’s IMRS
differs from the aggregate we might think this was because he held a different portfolio of
assets from other households. If, for example, a household held proportionally more maize in
its portfolio than did others, then (mit − m̄j

t) would be negatively correlated with returns to
maize. Thus, we’re looking for evidence that some households have IMRSs which predictably
respond differently to returns than does the average household.

The central prediction is that realizations of yit = (mit − m̄j
t)R

j
tδ

j
it−1 should be uncorre-

lated with any variable zjit−1 in the time t− 1 information set. One particular variable that
should be uncorrelated under the null, but not under some important alternative hypothesis
is lagged IMRS. If, for example, credit constraints were important for some households then
the IMRSs would be lower than for other households, and the credit constraint would alter
the portfolio of investments. Another is the assignment to treatment: does giving a bag
of maize to a farmer make that farmer better off when prices rise? And a third is lagged
stocks—it seems natural to suppose that there’s considerable persistence in stocks held, so if
a farmer held more maize last period then we might expect his IMRS differently to changes
in maize prices than for the average farmer in Gombe.
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2.6.1 Test of Euler Equation

Table 2.9 reports results of this test. We are interested in testing the null hypothesis that
forecast errors yit are orthogonal to a variety of different variables that are in the time t− 1
information set. The first column asks whether or not treatment status (receiving a loan of
cash or kind) is correlated with these errors; there is no evidence at all of such a correlation.
The second asks whether or not twice-lagged mit−2 is orthogonal—one might think that
having more or fewer resources in the past might help to predict the forecast error, but
again, it does not. We next consider the experimental measures of IMRS we elicited, lagged
one period. There is some weak evidence of such a correlation, but not enough for us to
reject the null hypothesis (p = 0.15). Then finally we put all of these variables together;
unsurprisingly, we again fail to reject the null.

2.7 Conclusion

PHLs have gained attention as a potential way to help farm households earn additional
income and smooth consumption across the season. However, this theory of change rests on
grain prices rising enough to cover the loans’ interest rate, which is a highly risky proposition
in sub-Saharan Africa. This has ambiguous implications for the expected returns to PHL
programs. In addition to the possibility of low returns and high default when prices fail
to rise ex post, loans also shift ex ante risk from states of the world with extremely high
prices to those with low prices. As such, demand for the loans can be influenced by how the
household expects its consumption to covary with grain prices.

Our results from an RCT of a PHL in Gombe State Nigeria, in a year in which prices did
not rise, show that the loan induced households offered a cash loan to store more grain for
longer, but those offered an in-kind loan. However, neither treatment led to large increases in
profits or welfare according to most measures – apart from a marginally significant reduction
in the experimentally elicited IMRS. Over the course of the season, we also see small increases
in business investment and livestock holdings in the cash loan group. This is consistent with
relaxing credit constraints allowing households to store more, but these investments not
paying off.

We attempt to use our model of intertemporal arbitrage to say something more broadly
about the expected returns to storing grain, particularly whether households could be better
off ex ante by holding different portfolios. We do so by testing whether variation in house-
holds’ realized IMRS is correlated with variables in their prior period’s information set. We
fail to reject the null that treatment assignment, lagged (estimated) IMRS, stocks, and ex-
perimentally elicited IMRS are uncorrelated with this variation, although we are nearly able
to for the latter case. This suggests that while the integration of Gombe with the broader
economy is poor, we find little evidence that farmers are failing to respond optimally to local
prices and returns. Nevertheless, this by no means rules out that significant market failures
are at play.
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Taken together, the unfavorable (for arbitrageurs) realizations of prices, the lack of evi-
dence against the ex ante optimality of portfolios, and the potential adverse selection chan-
nels suggest that PHLs may not be the optimal policy to improve seasonal welfare. As a
practical matter, further research could consider alternatives such as forward contracts, which
would provide farmers liquidity without exposing them to price risk later in the season. More
broadly, There is poor evidence against the efficiency of allocation and production within
Gombe given local prices. However, there is solid evidence that the integration of Gombe
with the broader economy seems to be poor. On the consumption side, this is supported
by the evidence of a ”lean season” and seasonal variation in average IMRSs, indicating that
Gombe is poorly integrated with broader credit markets. On the production side though,
there’s considerable uncertainty regarding local grain prices. This would be fine if variation
in these prices was mirrored by world prices in these commodities, but the correlation here,
while significant, is quite weak. The consequence is that local supply shocks affect prices
more than they would were the economy better integrated; these highly variable prices lead
to high variation in IMRSs and limit incentives for investment.
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2.8 Figures and Tables

Figure 2.1: Maize price increases in Gombe, by year

This figure contains data from FEWS-Net 2023 on the prices of white maize in Gombe market relative to
November 1st in each 12-month period at a weekly frequency. The bold line corresponds to prices during
the study period while the dotted line shows the evolution of the median price collected by Taimaka from

markets across Gombe state. The dashed line shows Taimaka’s interest rate of 15%.
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Figure 2.2: Maize prices in Nigeria, 2021-22

This figure contains data from FEWS-Net 2023 on the prices of white maize in markets across Nigeria from
November 1st, 2021 to October 31st, 2022 at a weekly frequency. Prices for Gombe are bolded.
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Figure 2.3: Prices in local markets collected by Taimaka, 2021-22

This figure contains data from Taimaka on the median prices of various crops in markets across Gombe
from November 1st, 2021 to October 31st, 2022 at a weekly frequency.
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Figure 2.4: Maize returns and IMRS
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Time series of logarithms of maize returns in Gombe and the average intertemporal
marginal rate of substitution m̄. The latter series is scaled to have the same standard
deviation as the former. The region around log m̄ series indicates standard errors of the
estimated mean.

Figure 2.5: Prices of major crops in Gombe, 2021-22, relative to November 1st 20221

This figure contains data from FEWS-Net 2023 on the prices of various crops in Gombe from November 1st
2021 to October 31st 2022 at a weekly frequency, relative to November 1st.
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Figure 2.6: Treatment effects on value of grain in stock by wave

This figure shows the average treatment effects of the cash and maize loans on the value of households’ stocks
of all crops in 000’s of Naira. To the left of the solid vertical line is the average effect on stocks, controlling
for wave and strata fixed effects. To the right, coefficients are broken out by survey wave, where September
2021 is the baseline period. Standard errors are clustered at the stratum level. Stocks are imputed as the
cumulative sum of grain flows when not directly reported.
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Figure 2.7: Treatment effects on value of grain sold by wave

This figure shows the average treatment effects of the cash and maize loans on the value of households’ sales
of all crops in thousands of Naira. To the left of the solid vertical line is the effect on total sales over the
season, controlling for strata fixed effects. To the right, coefficients are broken out by survey wave, where
September 2021 is the baseline period. Standard errors are clustered at the stratum level. Sales are imputed
following the procedure in Appendix B.1.
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Figure 2.8: Treatment effects on value of grain harvested by wave

This figure shows the average treatment effects of the cash and maize loans on the value of households’
harvests of all crops in 000’s of Naira. Note that in the survey, harvests were asked as the amount of grain
brought back to the homestead from the field, which excludes any sales that may have taken place directly
from the field. To the left of the solid vertical line is the effect on total harvests over the season, controlling
for strata fixed effects. To the right, coefficients are broken out by survey wave, where September 2021 is
the baseline period. Standard errors are clustered at the stratum level. Harvests are imputed following the
procedure in Appendix B.1.



2.8. FIGURES AND TABLES 65

Figure 2.9: Treatment effects on value of grain consumed from own stock, by wave

This figure shows the average treatment effects of the cash and maize loans on the value of households’
consumption of their stored crops in 000’s of Naira. Note that in the survey, consumption from own stocks
was only directly elicited after the third survey wave, and is otherwise imputed following the procedure
in Appendix B.1. To the left of the solid vertical line is the effect on total consumption over the season,
controlling for strata fixed effects. To the right, coefficients are broken out by survey wave, where September
2021 is the baseline period. Standard errors are clustered at the stratum level.
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Figure 2.10: Treatment effects on grain purchased to store, by wave

This figure shows the average treatment effects of the cash and maize loans on the value of households’
purchases of crops for the purposes of storage. To the left of the solid vertical line is the effect on total
purchases over the season, controlling for strata fixed effects. To the right, coefficients are broken out by
survey wave, where September 2021 is the baseline period. Standard errors are clustered at the stratum
level. Sales are imputed following the procedure in Appendix B.1.
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Figure 2.11: Treatment effects on number of crops consumed from own stock, by wave

This figure shows the average treatment effects of the cash and maize loans on the number of crops households
consumed from their own stocks in a given month. To the left of the solid vertical line is the effect on the
average number of crops consumed over the season, controlling for wave and strata fixed effects. To the
right, coefficients are broken out by survey wave, where September 2021 is the baseline period. Standard
errors are clustered at the stratum level.
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Figure 2.12: Treatment effects on dummy for consuming own-produced maize, by wave

This figure shows the average treatment effects of the cash and maize loans on whether households consumed
own-produced maize in a given month. To the left of the solid vertical line is the average effect over the
course of the season, controlling for wave and strata fixed effects. To the right, coefficients are broken out
by survey wave, where September 2021 is the baseline period. Standard errors are clustered at the stratum
level.
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Figure 2.13: Treatment effects on log IMUE, by wave

This figure shows the average treatment effects of the cash and maize loans on our estimate of the marginal
utility of expenditure, log λ, following Ligon (2020). To the left of the solid vertical line is the average effect
over the course of the season, controlling for wave and strata fixed effects. To the right, coefficients are

broken out by survey wave, where September 2021 is the baseline period. Standard errors are clustered at
the stratum level.
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Figure 2.14: Effects on business expenditure, by wave

This fig-
ure shows the average treatment effects of the cash and maize loans on business expenditures. To the
left of the solid vertical line is the effect on total expenditures over the course of the season, controlling for
wave and strata fixed effects. To the right, coefficients are broken out by survey wave, where September
2021 is the baseline period. Standard errors are clustered at the stratum level.
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Figure 2.15: Effects on semi-durable expenditure, by wave

This figure shows the average treatment effects of the cash and maize loans on durable and semi-durable
nonfood expenditures. To the left of the solid vertical line is the effect on total expenditures over the course
of the season, controlling for strata fixed effects. To the right, coefficients are broken out by survey wave,
where September 2021 is the baseline period. Standard errors are clustered at the stratum level.
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Table 2.1: Sales value by crop

Sales Value (’000s Naira)
Total Maize Millet Beans Guinea Corn Rice

Cash Loan 18.255 7.652 14.220 -0.234 -9.650 4.389
(49.521) (13.339) (35.016) (25.278) (6.863) (4.937)

Maize Loan 1.725 5.791 0.004 -10.152 -4.615 3.021
(36.602) (9.950) (11.025) (18.878) (6.762) (7.076)

Fixed Effects Stratum Stratum Stratum Stratum Stratum Stratum
R2 0.329 0.219 0.163 0.375 0.050 0.129
Control mean 323.698 54.631 71.143 147.828 14.436 15.473
Observations 930 930 930 930 930 930

This table contains estimates of the treatment effects of cash and maize loans on the total
sales of each crop. Sales values are imputed following the procedure in Appendix B.1.
Standard errors are clustered at the stratum level.

Table 2.2: Consumption of own stocks value by crop

Value of Stock Consumed (’000s Naira)
Total Maize Millet Beans Guinea Corn Rice

Cash Loan 92.490 6.279 44.007* 48.228*** 3.275 -15.513
(78.486) (35.889) (24.756) (17.032) (11.653) (14.510)

Maize Loan 22.825 3.765 9.105 32.867 -1.815 -18.590
(85.620) (36.671) (22.567) (21.075) (6.990) (20.425)

Fixed Effects Stratum Stratum Stratum Stratum Stratum Stratum
R2 0.303 0.299 0.339 0.222 0.111 0.443
Control mean 673.146 305.729 133.176 94.621 46.285 86.109
Observations 930 930 930 930 930 930

This table contains estimates of the treatment effects of cash and maize loans on the consump-
tion of own grain stocks by crop. Consumption values are imputed following the procedure
in Appendix B.1. Standard errors are clustered at the stratum level.
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Table 2.3: Harvest value by crop

Value of Harvest (’000s Naira)
Total Maize Millet Beans Guinea Corn Rice

Cash Loan 112.548 13.535 46.186 43.521 5.570 -7.531
(117.218) (43.409) (53.608) (31.572) (8.571) (15.084)

Maize Loan 47.392 20.536 3.908 16.533 4.042 -1.748
(105.324) (41.252) (34.433) (26.685) (6.906) (22.641)

Fixed Effects Stratum Stratum Stratum Stratum Stratum Stratum
R2 0.309 0.266 0.338 0.382 0.188 0.299
Control mean 949.036 320.456 255.228 228.499 43.415 74.778
Observations 930 930 930 930 930 930

This table contains estimates of the treatment effects of cash and maize loans on the amounts
of each crop brought home from the field (“harvested”). Harvest values are imputed follow-
ing the procedure in Appendix B.1. Standard errors are clustered at the stratum level.

Table 2.4: Treatment effects on household consumption

Log exp. Log non-. log λ Elicited Seasonal hunger
storable exp. IMRS index

Cash Loan -0.028 -0.004 0.016 -0.035 0.009
(0.084) (0.055) (0.024) (0.022) (0.019)

Maize Loan 0.000 0.020 0.000 -0.041* 0.020
(0.084) (0.066) (0.028) (0.020) (0.031)

Fixed Effects Strat+Wv Strat+Wv Strat+Wv Strat+Wv Strat+Wv
R2 0.045 0.129 0.243 0.191 0.006
Control mean 7.750 6.619 0.324 1.691 -0.010
Observations 6404 6404 6404 6404 6404

This table contains estimates of the treatment effects of cash and maize loans on measures of house-
hold consumption and welfare, pooled across periods. The outcome in the first column is the log
of households’ most recent food expenditures. The second is the log of expenditure on foods that
are not commonly stored. Column 3 is the estimated (log) marginal utility of expenditure, follow-
ing Ligon (2020). The final column is the Reduced Coping Strategies Index for seasonal hunger
developed by Maxwell et al. (2014). All specifications contain stratum + survey wave fixed effects.
Standard errors are clustered at the stratum level.
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Table 2.5: Effects on agricultural outcomes

Ag. exp . Planted Dry season Dry season Harvest
(’000 Naira) area (ha) ag. exp. area (ha) value

Cash Loan 13.51 0.124 0.125 0.001 163.7
(20.82) (0.608) (0.138) (0.008) (152.9)

Maize Loan -0.043 -0.374 -0.147 -0.012 72.87
(22.24) (0.576) (0.838) (0.019) (112.6)

Fixed Effects Stratum Stratum Stratum Stratum Stratum
R2 0.247 0.170 0.070 0.071 0.137
Control mean 144.122 5.482 .894 0.024 784.949
Observations 829 829 829 829 808

This table contains estimates of the treatment effects of cash and maize loans on measures
of agricultural investment in the 2022 planting season. The outcome in the first column
is total expenditure, including land, labor, fertilizer, seed, and equipment during the 2022
rainy season in 000’s of Naira. The second column is the total area planted in hectares.
The next two columns repeat the same outcomes for the 2022 dry season. The fifth
column reports the value of the 2022 harvest in 000’s of Naira, which includes actual
and anticipated harvests as not all households had completed harvesting at endline. All
specifications contain stratum fixed effects. Standard errors are clustered at the stratum
level.
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Table 2.6: Effects on business and borrowing

(Semi-) Biz. Amount Any Biz Any
Durable Exp. Exp. Borrowed Activity Borrowing

Cash Loan 1.047 4.181** 0.866 0.005 0.028*
(1.692) (1.970) (0.901) (0.015) (0.015)

Maize Loan 0.213 -0.042 -0.434 -0.004 0.017
(1.457) (1.401) (0.614) (0.019) (0.012)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.027 0.030 0.023 0.057 0.065
Control mean 13.810 5.396 2.540 0.121 0.099
Observations 6404 6404 6404 6404 6404

This table contains estimates of the treatment effects of cash and maize loans on mea-
sures of monthly business expenditure and borrowing. The outcome in the first column
is total expenditure, including land, labor, fertilizer, seed, and equipment during the
2022 rainy season in 000’s of Naira. The second column is the total area planted in
hectares. The next two columns repeat the same outcomes for the 2022 dry season.
The fifth column reports the value of the 2022 harvest in 000’s of Naira, which includes
actual and anticipated harvests as not all households had completed harvesting at end-
line. All specifications contain stratum + survey wave fixed effects. Standard errors are
clustered at the stratum level.

Table 2.7: Effects on livestock holdings

Cows Goats Sheep Chickens Donkeys

Cash Loan 0.538 0.947 0.415 1.710* -0.004
(0.441) (0.581) (0.538) (0.885) (0.012)

Maize Loan -0.305 -0.527 -0.564 0.119 -0.005
(0.281) (0.403) (0.424) (0.689) (0.011)

Fixed Effects Stratum Stratum Stratum Stratum Stratum
R2 0.134 0.230 0.127 0.162 0.035
Control mean 1.528 3.843 2.472 2.262 0.010
Observations 829 829 829 829 829

This table contains estimates of the treatment effects of cash and maize loans
on livestock holdings at endline. All specifications contain stratum fixed effects.
Standard errors are clustered at the stratum level.
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Table 2.8: Effects on land holdings

Land owned (ha) Land rented out (ha) Land rented in (ha)

Cash Loan 2.871 0.161 -0.340
(2.634) (0.209) (0.422)

Maize Loan -0.597 -0.015 -0.558
(0.577) (0.117) (0.413)

Fixed Effects Strat Strat Strat
R2 0.060 0.086 0.331
Control mean 5.785 0.187 2.395
Observations 829 829 829

This table contains estimates of the treatment effects of cash and maize loans on landholdings
at endline. All specifications contain stratum fixed effects. Standard errors are clustered at
the stratum level.

Table 2.9: Tests of the Euler asset pricing equations.

Treatment L2Stocks L2m x loan IMRS All
χ2 2.19 6.97 9.83 8.06 30.59
df 11.00 17.00 17.00 5.00 35.00
p-value 1.00 0.98 0.91 0.15 0.68

Different columns involve tests of the orthogonality of errors to different
sets of variables. Column 1 uses a dummy for assignment to either the
cash or maize treatment arms. L2 denotes the second lag of the IMRS,
mit−2, which is interacted with the value of stocks and the treatment
dummy. Column 4 uses the elicited IMRS and Column 5 tests these
restrictions jointly.
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Chapter 3

Enter Sandmo: Production Function
Estimation for Firms that Consume

3.1 Introduction

Small family farms employ and feed a massive share of the world’s poor. Therefore, under-
standing productivity and welfare requires reliable estimates of their production functions.
However, production function estimation is always wrought with identification challenges,
which can be especially problematic when producers are not profit-maximizing firms but
expected utility-maximizing households. A classic result by Sandmo (1971) posits that if
firms are risk-averse, (expected) output will be lower under risk than under certainty. Yet,
the implications of risk aversion for production function estimation are still not completely
understood. In this chapter, I introduce a class of novel production function estimators for
farm households and other enterprises undertaken by risk-averse producers. This includes
the homothetic and generalized Cobb-Douglas estimators used in Chapter 1, as well as a
multi-stage production function in which shocks are realized sequentially within a season. I
apply these approaches to data from farm households in rural Thailand.

The main challenge to production function identification in general is that observed input
choices are likely to be correlated with unobservable factors, such as (anticipated) produc-
tivity, unobserved inputs, measurement error, and perhaps most importantly in the farm
household context, distortions in input and financial markets. This is particularly problem-
atic for approaches that involve regressing output on inputs, given the challenges of finding
a suitable instrument for input use that’s uncorrelated with these unobservables. Structural
approaches in the spirit of Olley and Pakes (1996) offer an appealing alternative, using pro-
ducers’ optimal behavior to essentially proxy for unobservables known to or anticipated by
the firm. In practice, this is done by inverting demand for a flexible input (Levinsohn and
Petrin, 2003). However, this requires the firm’s optimization problem to be well-specified.
In particular, productivity must be a scalar unobservable in firms’ input demands. The
logic is that firms take all available information into account when choosing their inputs,
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including information unobservable to the econometrician.1 In the most common applica-
tions (e.g. Ackerberg et al., 2015; Gandhi et al., 2020), this requires assuming that firms
are risk-neutral profit maximizers facing competitive markets. While this may or may not
be a reasonable approximation for manufacturing firms in advanced economies, it is almost
certainly not for farm households in developing countries. Absent a full set of complete
markets for inputs, credit, and risk, the household’s consumption and production problems
are non-separable (Benjamin, 1992), meaning that the marginal utility of expenditure, along
with input wedges, enters input demands. In such settings, making productivity a scalar
unobservable requires explicitly accounting for these deviations from the benchmark of profit
maximization under complete markets.

This has been done in previous work to address adjustment costs (Asker et al., 2014),
input price dispersion (De Loecker et al., 2016; Grieco et al., 2016), and markups (De Loecker
and Warzynski, 2012; Asker et al., 2019; Cairncross et al., 2023), but not the types of
distortions that farm households are likely to face, such as uninsured risk. My approach
builds on the simple theory-consistent model of households’ constrained optimal behavior laid
out in Chapter 1 to identify the production function given how input and financial frictions
enter first-order conditions. Doing so ensures unobserved shocks’ effects on input demands
are subsumed by households’ constrained-optimal choices of consumption and investment.

Expanding on this theoretical framework, I develop a novel method to structurally esti-
mate the production function from households’ first-order conditions, even when frictions are
present. My estimates of input and financial distortions, as described in Chapter 1, account
for exactly how input and financial distortions affect input demands, making structural ap-
proaches valid again. Estimating the production function then amounts to identifying the
parameters that rationalize these constrained optimal choices, as in a portfolio choice prob-
lem. To do so, I develop a linear Generalized Method of Moments (GMM) estimator in the
spirit of Hansen and Singleton (1982) under the assumption of rational expectations.2 To
my knowledge, this is the first use of moments in consumption data to estimate a physical
production function.

In contrast, the agricultural misallocation literature has typically calibrated the produc-
tion function using input shares from settings where markets are assumed to function well,
(Chen et al., 2023; Adamopoulos and Restuccia, 2020; Adamopoulos et al., 2022b), or used
lagged instruments to estimate the production function in-sample (Shenoy, 2017; Manysheva,
2021). The issues with the former approach are that the underlying production function may
be different in the U.S. and Canada than in Sub-Saharan Africa and Southeast Asia. The
latter approach is valid in theory (Shenoy, 2021) but relies on strong assumptions about the

1The simplest example of this is calibrating Cobb-Douglas coefficients to observed revenue shares. How-
ever, these are not valid under imperfect markets because firms do not maximize expected profits and do
not face common prices.

2Much like a Consumption Capital Asset Pricing Model (C-CAPM) problem, I treat inputs as risky
assets whose (marginal) returns covary with the return to a household’s overall portfolio, captured by the
marginal utility of expenditure. However, in my case, the returns rather than marginal utilities (which have
been estimated in the previous step) are the estimands of interest.
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nature of unobserved shocks (i.e. autoregressivity).3 In Table C.1.1, I replicate the Anderson
and Hsiao (1981) estimation strategy used by Shenoy (2017) with the monthly (rather than
annual) Townsend Thai dataset. First, the coefficients are implausibly low for labor and
high for land. Second, I reject the overidentifying restrictions of the model when exploiting
the panel structure of the data and the assumption that shocks are AR(1). This suggests
that an alternative approach to estimating the production function may be required. Instead
of trying to work around the endogeneity of inputs through instrumentation, I attempt to
directly model it using the household’s consumption problem. The main difference between
my estimator and the dynamic panel estimators used elsewhere in the literature (e.g. Shenoy,
2017; Manysheva, 2021) is that the bulk of my assumptions rests on household optimization
rather than the dynamics of unobserved shocks.

I also go beyond the homothetic CES specifications, Cobb-Douglas in particular, that
remain the workhorse in many strands of literature, including the modern misallocation
literature (Hsieh and Klenow, 2009; Adamopoulos et al., 2022b). The multiplicatively het-
ereoskedastic generalization that I consider, first introduced by Just and Pope (1978, 1979)
in the spirit of Harvey (1976), simply relaxes the common restriction that the elasticity of
the standard deviation of output equal the elasticity of the mean of output with respect to
each input. In other words, this allows for some inputs to be “riskier” than others, allowing
for risk to affect both the scale and composition of production in a tractable manner. This
helps fill the gap is ruled out by construction in much of the empirical literature, despite
the evidence on the importance of uninsured risk (Karlan et al., 2014; Emerick et al., 2016;
Donovan, 2021).4 While empirical work (e.g. Just and Pope, 1979; Antle, 1983; Di Falco
and Chavas, 2009) has estimated production functions that allow for inputs to contribute
differentially to higher moments of output, these analyses remain subject to the usual endo-
geneity concerns. This is particularly concerning if the input demands of the most risk-averse
producers are differentially sensitive to shocks. In contrast, this analysis is the first, to our
knowledge, to address these concerns in a theory-consistent manner, using the structure of
input demands under risk aversion.

The third part of this chapter, which focuses on multi-stage production functions with
sequential shocks, captures how farmers make input decisions at different points in the season

3Shenoy (2017)’s application of the Anderson and Hsiao (1981) estimator assumes that productivity
shocks are AR(1) and that, when estimated with 2SLS, the first-stage coefficients on lagged inputs are
homogeneous (Heckman and Vytlacil, 1998). Gollin and Udry (2021) accommodate heterogeneous first stages
across plots within households by instrumenting for inputs with shocks to other plots and households in a
correlated random coefficient model following Masten and Torgovitsky (2016). Note that by inverting input
demands in the first stage, this approach also invokes the scalar unobservable, which does not theoretically
hold but appears to generate negligible bias in their application. However, their results rely on differences
across simultaneously cultivated plots by the same producer for identification; see Aragón et al. (2022) for a
discussion of some of the pitfalls of using plot-level data, including fixed factors at the household level and
increased susceptibility to measurement error.

4This differs from the analysis by Donovan (2021), in which the composition of production changes
through supply-side channels in general equilibrium, rather than through inputs contributing differentially
to risk.
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with different information sets. In particular, inputs chosen later in the season are made
after more of the uncertainty in production has been resolved. While a similarly dynamic
production function has been introduced by Felkner et al. (2012), we are the first to our
knowledge to estimate it allowing for risk-averse producers, capturing the importance of
both overall and within-season risk on productivity and misallocation.

I find that this broad class of estimators performs well, both in Monte Carlo simulations
and when applied to the Thai data. In the baseline Cobb-Douglas case it produces more
plausible, precise, and robust estimates than the dynamic panel method used by Shenoy
(2017) and Manysheva (2021) in similar contexts. There are much fewer applications of
the generalized Cobb-Douglas specification based on Just and Pope (1978, 1979) in the
modern empirical literature to compare against. However, comparing my estimates to those
from the homothetic Cobb-Douglas specification highlights important takeaways. I find that
while the elasticities of the mean of output with respect to each input are similar across both
specifications, inputs applied earlier in the season are in fact riskier than those applied later.

While even a static non-homothetic framework captures this notion, the dynamic speci-
fication extends it to a much more realistic setting.

The rest of this chapter is organized as follows.

3.2 The Farm-Household Problem

We first introduce the basic setup of production featuring a general production function
F and preferences U . I then derive estimators for three specifications of F : homothetic,
heteroskedastic, and sequential Cobb-Douglas.

3.2.1 Setup

Time consists of discrete periods indexed by t and households indexed by j are infinitely-
lived. Production takes place over S distinct stages indexed by s, after which output is
harvested. In each stage, farmers apply Ks inputs qks prior to the realization of a shock φs.
As such, final output Yt+S ∈ X is given by

Yt+S = F (q, φ) (3.1)

Note that we assume that technology F is common across households but that households
may differ in productivity (captured by anticipated components of φ.

We assume households have time-separable, von-Neumann-Morgenstern preferences, which
may depend on characteristics z, over a vector c ∈ C ⊆ X of consumption goods and discount
factor δ (note that leisure may be an element of c). As such, they maximize

∞∑
s=t

δs−tu(cs, z)
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where u is continuously differentiable, strictly increasing and concave in c,5 subject to the
following budget constraint.

kt+1 = kt + pt(HtYt − ct)− wstqst +Rt(Bt −Bt−1) + xt (3.2)

Here, k is total assets, pt is the price of the vector of consumption goods ct, and wst

are input prices. Bt is an asset that households may borrow and save at interest rate R,
although they may face a borrowing constraint Bt ≤ B̄ and xt is an endowment that may
yield uncertain (net) income in each state.

As a slight modification of Equation 1.7 in Chapter 1, the general first order condition
for investment under uncertainty is

λjrwjkr = δREt [λjRFkt(qj, φj)] (3.3)

where qj is a vector of K inputs in each of R periods
t denotes the current period, R denotes the harvest period, and

Production

Suppose that a farmer begins cropping operations at time t, and chooses to harvest S periods
later. We assume that final output Yt+S is given by

Yt+S =
S∏

s=0

Fs(qs, φs)

where Fs is the stage s-specific production function, q is a vector of Ks inputs applied at
each stage s, and φ is an S vector of stage-specific shocks realized after qs is determined.6,7

Since the farmer has to make decisions in a given stage in a state of ignorance regarding
subsequent shocks, it’s convenient to give state the problem recursively. Given any vectors
of inputs qs and any realized sequence of shocks ϵs, we have

As+1 = AsFs(qs, φs),

so that As summarizes the influence of all earlier shocks and inputs on production.

5The empirical implementation will require that preferences can be represented by the broad class of
constant Frisch elasticity demands (Ligon, 2020).

6The assumption of multiplicative separability across stages is hardly general, but trivially holds for
single stage production functions and will be assumed for the dynamic Cobb-Douglas specification discussed
later.

7Allowing for different crops and plots is conceptually simple, but notationally complex, and we avoid
doing this here. But the idea would be to treat A as a vector with each element corresponding to a single
plot, with corresponding changes made to inputs q and shocks ϵ. Differences in stages across plots could be
accommodated by similarly treating s as a vector, and the analysis below would go through.



3.2. THE FARM-HOUSEHOLD PROBLEM 82

Budget constraints

The farm-household enters the period with liquid assets k, crop progress A, and observes
a stage/period shock ϵ. Out of the stock of assets the farm-household must purchase any
consumption goods or services, as well as finance any crop operations.

Within any given period t the following happens. First, the farmer can purchase some
costly vector of input qs suitable to the current stage of production s at a price ws, and also
purchase a vector of consumption goods c. Note that prices of both inputs and consumption
may also be random variables, in which case assets in the subsequent period are given by

k′ = k − p⊤t c− w⊤
s qs.

Alternatively, the farmer can decide that it’s time to harvest the crop. In this case, the
farmer realizes harvest revenue yt(ω,A) = pt(ω)A. This leaves the decision of how much
land q0 to rent or set aside for production in the next season, at a price w0(ω).

In this case, assets in the next period are given by

k′ = k − pt(ω)
⊤c+ yt(ω,A)− w0(ω)q0.

These two cases can be combined by defining a harvest decision variable H ∈ {0, 1}, where
H = 1 indicates a decision to harvest, with

k′ = k − pt(ω)
⊤c+Hyt(A, ω)− ws(ω)

⊤qs. (3.4)

Note here that prices for consumption goods depend on the month t as well as the aggregate
shock ω, while the cost of inputs ws(ω) depends on the aggregate shock and the stage of
production.

Preferences

The preferences of the farm household may depend on a set of characteristics z, and are
assumed to be both time-separable and von Neumann-Morgenstern. Then given z, the
within-period utility function for the household is denoted U(c; z); the function U is assumed
to be continuously differentiable, strictly increasing, and concave in c.

Dynamic Program

At the beginning of any period, the relevant state for the household is given by the tuple
(s, t, A, k, φ), where s is the current stage of production, t is the name of the month, A is
the current crop state, k is the stock of liquid assets available to the household, and φ is a
shock, which may contain both aggregate and idiosyncratic components.

V (s, t, A, k, φ) = max
c,q,H

U(c; z) + δ

{
Et [V (s+ 1, t′, AFs(q, φ), k

′, φ′)) |φ] if H = 0

Et [V (0, t′, A0, k
′, φ′) |φ] if H = 1

(3.5)
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such that seasons advance in their periodic fashion, with t′ = (t + 1) mod 12, and such
that the budget constraint is satisfied. Note that A0 denotes the initial condition at which
production begins at stage 0.

First order conditions

First, consider the first-order conditions with respect to the choice of consumption good i:

ui(c; z) = piλ, (3.6)

where ui denotes the marginal utility of good i, and where λ is the multiplier associated with
the budget constraint.

Second, the remaining first-order conditions correspond to different input quantities qks,
chosen at period t for stage s:

Fsk(qs, φs)δEt

[
∂V

∂A
(s′, t′, A′, φ′)

]
= wlsλ, (3.7)

where it’s understood that if this is a harvest period then s′ = 0 and A′ = A0, and otherwise
s′ = s+ 1.

Envelope condition

The partial derivative ∂V/∂A is of particular interest, given the role it plays in the first-
order conditions for productive inputs in Equation (3.7). Applying the envelope theorem to
the dynamic program Equation (3.5), we obtain, again conditional on the discrete harvest
decision H:

∂V

∂A
(s, t, A, k, φ) = λHpt + (1−H)δEt

[
A′

A

∂V

∂A
(s′, t′, A′, φ′)

]
. (3.8)

Production Result

We wish to obtain a condition that allows us to relate current input decisions to future harvest
revenue, even if we don’t observe all inputs or stages of production. The following result
provides this condition, relating current expenditures on productive inputs to the expected
product of the household’s intertemporal marginal rate of substitution and eventual crop
revenue.

Proposition 2. For any input k at any stage s in period t, the farm-household will choose
expenditures on the input to satisfy

wks = Et

[(
δS−tλt+S

λt

)
Fsk(qs, φs)

Fs(qs, φs)
Yt+S

]
. (3.9)
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Proof. Equation Equation (3.7) relates the expected marginal benefit of supplying an input
k in stage s in month t to the marginal cost, expressing the marginal benefit in terms of
the partial derivative of the value function with respect to A in the subsequent period. But
Equation (3.8) gives gives us an expression of this partial derivative in terms of either the
value marginal revenue of the harvest, or in terms of future partial derivatives.

Evaluating the left hand side of Equation (3.8) at (s + 1, t + 1), substituting the right-
hand-side into Equation (3.7), and noting that ∂A′/∂A = A′/A yields

AsFsk(qs, φs)
As+2

As+1

δ2Et

[
∂V

∂A
(s+ 2, (t+ 2) mod 12, As+2, φt+2)

]
= wlsλt.

Further forward-substitution for ∂V/∂A proceeds until the farmer chooses to harvest, say S
periods hence. Though r is a random variable, taking H = 1 implies from Equation (3.8)
that ∂V/∂A = λp. Noting that As+1 = AsFs(qs, φs),

wksλt = Et

[
Fsk(qs, φs)At+S

Fs(qs, φs)
δSλt+Spt+S

]
. (3.10)

Rearranging this equation and noting that pt+SAt+S = Yt+S yields the result.

In this chapter, we consider three functional forms for Fs

F (q, φ) ≡ Aφ
∏
k

qαk
k (3.11)

F (qs, φs) ≡ A
K∏
k

qαk
k + φB

K∏
k

qβk

k (3.12)

F (qs, φs) ≡ Asφs

∏
k

qαks
ks (3.13)

in which S = 1 for Equations (3.11) and (3.12). Equation 3.11 is simply the static, homo-
thetic Cobb-Douglas with Hicks-neutral shock φ.8 Equation 3.12 is the generalized Cobb-
Douglas introduced by Just and Pope (1979), in which αk is the elasticity of the mean of
output with respect to qk and βk is the elasticity of the standard deviation of output with
respect to qk. Finally, Equation 3.13 is the dynamic extension of Equation 3.11 in which
production is Cobb-Douglas both within and across stages

Substituting for F in these respective cases, Equation (3.10) becomes

λtwktqkt = δαkEt [λt+1Yt+1] (3.14)

λtwktqkt = δαkEt [λt+1]Et [Yt+1] + βkcov(λt+1Yt+1) (3.15)

λtwksqks = αksEt

[
δSλt+SYt+S

]
(3.16)

Each of these provides a set of moment conditions that can be exploited to estimate the
parameters α and β.

8Note that in this case, φ can be thought of as eϕ

E[eϕ] such that E[φ] = 1
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3.3 Estimation Framework

Estimating these moment conditions requires knowledge of the (shadow) prices households
face for each input wjkt, which may be household-specific, and the marginal utilities of
expenditure λjt. I describe how these can be estimated in the Thai data in Chapter 1.

The first-order conditions for input demands provide moment conditions that can be
exploited to recover the production function parameters under rational expectations using
linear GMM in the spirit of Hansen and Singleton (1982). In a sense, I treat inputs as assets
in a C-CAPM problem whose returns covary with a household’s overall portfolio captured
by the marginal utility of expenditure, λ. The intuition behind this approach is simple. If
all markets are perfect, then all households maximize expected profits and choose inputs
to equate marginal revenue products with the common input price. However, households
generally maximize expected utility rather than expected profits and may not face common
(shadow) prices for all inputs. However, Equations 3.14-3.16 capture how households’ opti-
mal choices differ from those under the perfect markets benchmark — through the marginal
utility of expenditure λjt and possibly household-specific (shadow) prices of each input, wjkt.
As in Chapter 1, I write these prices without loss of generality as w̄kvtτjkt, where w̄kvt is
the average price of input k in village v at time t and τjkt the wedge between household j’s
shadow price and the market price.9 Estimates of λ and τ account for how input choices are
distorted and allow the production coefficients to be identified from the correctly-specified
first-order conditions for input demands (1.12).

Estimating λ and τ are both non-trivial. The former requires assuming a utility function
— in Chapter 1 I show how it can be estimated for both CRRA and the more flexible
constant Frisch elasticity functional forms using disaggregated expenditure data. This does
not depend on any assumptions about the production function, as it is simply a way of
mapping consumption expenditures into a scalar welfare measure.

In contrast, estimating τ does depend on the properties of the production function. In
particular, I show in Chapter 1 how if F is homothetic and at least one input (say, K) is
perfectly tradable such that τK = 1 for all households, then the remaining K − 1 τs can
be inferred from input ratios, even without knowledge of the production function. I discuss
alternatives for estimating τ in the nonhomothetic static and dynamic cases below. For what
follows, I assume that one has obtained consistent estimates of λ and τ (in the homothetic
case) following the procedures in Chapter 1.

For all three specifications considered, the additional assumption of rational expectations
is required. The intuition is that since Equations (3.12) and (3.16) hold by virtue of op-
timization, any deviations between expected and realized λjt+1Yjt+1 are mean-zero forecast
errors. The catch is that households’ subjective expectations over λ and Y , based on their
time t information sets, at harvest aren’t observed. However, as I show in Proposition 3, the
key to estimation is to be able to replace these subjective expectations with data. If expecta-

9Note that this makes no assumptions about the source of these distortions or whether they act as a tax
or a ration. Likewise, absent full insurance, λjt is a random variable.



3.3. ESTIMATION FRAMEWORK 86

tions are rational, then on average, they equal the observed data as the sample grows large.
Replacing these subjective expectations with data makes it simple to recover the parameters
α (and β).

3.3.1 Homothetic Cobb-Douglas

Let xjkt ≡ w̄kvtτktqjkt. xjkt can be interpreted as household j’s “shadow” expenditure on
input k at time t. This can either represent actual expenditure under possibly household-
specific prices or as the cost of input k such that the household would choose qjkt under perfect
markets. Let Ijt denote household j’s information set at time t. Rearranging constrained-
optimal input demands (1.12) and making the dependence on households’ time t information
sets explicit yields the moment condition

δαkE[λj,t+1Yj,t+1|Ijt]− λjtxjkt = 0 (3.17)

for each input k where input xjkt = w̄vtτ̂jktqjkt is (shadow) expenditure on input k is applied
at time t and τ̂ is estimated as described in Section 1.4.2. Note that both λt+1 and Yt+1 are
unknown as of time t, as they both depend on the yet-to-be-realized φt+1.

While xjkt, λjt, λjt+1, and Yjt+1 are all either observed or estimated, using (3.17) to iden-
tify the αk requires mapping the unobserved subjective expectation E[λjt+1Yjt+1|Ijt] to data.
Proposition 3 states that α can be estimated from (3.17) (up to the time-preference discount
factor δ with a simple linear GMM procedure under rational expectations. The intuition
is that if expectations are rational, then subjective expectations E[λjt+1Yjt+1|Ijt] will on
average equal the observed λjt+1Yjt+1. Substituting realized λjt+1Yjt+1 into (3.17) identifies
the αk up to the time-preference discount factor δ. Moreover, optimization implies that any
element of Ijt should be mean-independent of forecast errors, creating a large set of potential
overidentifying instruments. In particular, lagged values of λjt are natural candidates.

Proposition 3. Assume production is given by Equation (3.11) and that households have
rational expectations and let h(zjt) be a measurable function of variables zjt ∈ Ijt. Then the
estimator defined by

argmin
a
J(a) ≡ gNTK(a)

′WgNTK(a)

where

gNTK(a) ≡
1

NT

∑
t

∑
j

∑
k

δa(λj,t+1Yj,t+1 − λjtxjkt − ψkvt)⊗ h(zjt),

where ψkvt is an input by village by year fixed-effect, is a consistent estimator of the vector of
coefficients α up to the time-preference discount factor δ for a symmetric and positive-definite
weighting matrix W , for large N and T .

Proof. The proof is an application of Hansen and Singleton (1982) with a few modifications.
Let ζjt+1 ≡ E[λjt+1Yt+1|Ijt], which is the difference between household j’s subjective

expectation of λjt+1Yjt+1 conditional on time t information Ijt. Under rational expectations,
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differences between expectations and realizations of random variables are mean 0 forecast
errors. Therefore E[ζjt+1] = 0, where E denotes unconditional population expectations.
Furthermore, let zjt ∈ Ijt be a vector of observed elements of household j’s time t information
set with finite second moments and let h(zjt) be a measurable function of z. Rational
expectations then implies that E[ζjt+1] ⊗ h(zjt) = 0, where ⊗ is the Kronecker product.
Substituting ζjt+1 + λj,t+1Yt+1 for Et[λjt+1Yjt+1] implies

E[(δαλj,t+1Yj,t+1 + ζjt+1 − λjtxjkt)⊗ h(zjt)] (3.18)

The sample counterpart of is

gNTK(a) ≡
1

NTK

∑
j

∑
t

∑
k

δa(λj,t+1Yj,t+1 + ζjt+1 − λjtxjkt − ψkvt+1)⊗ h(zjt) (3.19)

where ψjkt+1
1
N

∑N
j=1 ζjt+1 itself can be thought of as the aggregate shock within each period.

Let ψt+1 ≡ 1
N

∑N
j=1 ζjt+1 ⊗ h(zjt), which is the sample covariance of unanticipated shocks in

each period with the lagged instruments in each period.
Since (by definition) idiosyncratic forecast errors by household are on average equal to

the common forecast error, gNTK(a) → 1
T

∑T
t=0 ψt+1 as N → ∞. If shocks are purely

idiosyncratic, then the average forecast error is zero in each period ψt+1 → 0 ∀t as N → ∞.
However, even there are aggregate shocks within each period, rational expectations still
imply that are they are mean-zero. Therefore 1

T

∑T
t=0 ψt+1 → 0 as T → ∞. In this case, the

GMM estimate of α is

argmin
a
J(a) ≡ gNTK(a)

′WgNTK(a) = 0

where W is a symmetric and positive-definite weighting matrix. The efficient choice of W is
E[gNTK(a)gNTK(a)

′]−1.

In practice, including ψkvt as a fixed effect directly imposes the weaker restriction that
the average forecast error in the (marginal utility-weighted) returns to each input in each
village-year is a mean-zero random variable as opposed to 0 itself. This random variable can
be thought of as capturing the effects of aggregate unanticipated shocks.

3.3.2 Generalized Cobb-Douglas

Applying similar logic as in Section 3.3.1 to the moment condition 3.15, where xjkt again
captures shadow input expenditure w̄kvtτjkt and Ijt again denotes time t information sets,
yields.

αkE[λj,t+1|Ijt]E[Yj,t+1|Ijt] + βkcov(λj,t+1,Yj,t+1|Ijt)− λjtxjkt = 0 (3.20)

where covt(λj,t+1Yj,t+1) = Et[λj,t+1Yj,t+1−Et[λj,t+1]Et[Yj,t+1]] can be thought of as a measure
of how households expect their utility at harvest to depend on the realizations of production
shocks, conditional on their time t information.
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The main difference between Equation (3.20) and Equation (3.17) is that estimation now
requires distinguishing between E[λjt+1|Ijt]E[Yjt+1|Ijt] and E[λjt+1Yjt+1|Ijt] before applying
the logic of Proposition 3. More formally, Differences between the expected and realized
products of output and marginal utilities can be expressed as:

λj,t+1Yt+1 − E[λj,t+1Yt+1|Ijt] = ζj,t+1 (3.21)

One approach is to projecting realizations of λjt+1 and Yjt+1 on to functions of Ijt, say

l(Ijt) and y(Ijt), and using the predicted values, l̂(Ijt) and ŷ(Ijt),to substitute for E[λjt+1|Ijt]
and E[Yjt+1|Ijt], respectively. In this case

λjt+1 = E[λjt+1|Ijt] + πL
jt+1

Yjt+1 = E[Yjt+1|Ijt] + πY
jt+1

λjt+1 = l̂(Ijt) = +υLjt+1

Yjt+1 = ŷ(Ijt) + υYjt+1

(3.22)

The household’s prediction errors π are mean zero by rational expectations and the
estimation errors υ are mean 0 by construction. This means that the difference these two
errors ψY

jt ≡ πL
jt− υLjt and ψ

Y
jt ≡ πLY jt− υYjt are each mean zero by linearity of expectations.

However substituting the product of subjective E[λjt+1|Ijt]E[Yjt+1|Ijt] for realizations implies:

E[δαk(l̂(Ijt) + υLjt+1)(ŷ(I) + υYjt+1)

+ δβk(λjt+1Yjt+1 − (l̂(Ijt) + υLjt+1)(ŷ(I) + υYjt+1)− λjtxjkt)⊗ h(Ijt)]

= (αk − βk)(ψ
L
jt+1ŷ(Ijt) + ψY

jt+1l̂(Ijt) + ψL
jt+1ψ

Y
jt+1 ⊗ h(Ijt)) = 0

(3.23)

Assuming l̂(Ijt) and ŷ(Ijt) provide accurate predictions of the true subjective expectations,
E[λjt+1|Ijt] and E[Yjt+1|Ijt], α is identified as the coefficient on the product of these estimated
expectations and β is identified as the coefficient on the difference between these expectations
and realizations.

Lemma 1. Assume production is given by Equation (3.12) and that households have rational
expectations and let h(zjt) be a measurable function of variables zjt ∈ Ijt. Further assume

that l̂(Ijt) and ŷ(Ijt) are consistent estimators of E[λjt+1|Ijt] and E[Yjt+1|Ijt], respectively,
with associated errors terms υLjt+1 and υ

Y
jt+1. If the differences between these error terms and

the household’s corresponding forecast errors, then the estimator defined by

argmin
a
J(a) ≡ gNTK(a, b)

′WgNTK(a, b)

where

gNTK(a, b) ≡
1

NTK

(
N∑
j=1

T∑
t=1

K∑
k=1

δ(ak − bk)l̂(Ijt)ŷ(Ijt) + δbk(λj,t+1Yj,t+1)− λjtxjkt

)
⊗h(Ijt),
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is a consistent estimator of the vectors of coefficients α and β up to the time-preference
discount factor δ for a symmetric and positive-definite weighting matrix W , for large N and
T .

Proof. The proof is extremely similar to that of Proposition 3, with additional housekeeping
required due to the error terms of l̂(Ijt) and ŷ(Ijt).

Let υYjt+1 and υLjt+1 be the error terms associated with the regressions of Yjt+1 and λjt+1

on Y (Ijt) and l(Ijt), respectively

λjt+1 = l̂(Ijt) + υLjt+1

Yjt+1 = ŷ(Ijt) + υYjt+1

(3.24)

E[υLjt+1] = E[υYjt+1] = 0 by construction. Likewise, realized λjt+1 and Yjt+1 equal households’
time t conditional expectations plus forecast errors πL

jt+1 and πL
jt+1, respectively.

λjt+1 = E[λjt+1|Ijt] + πL
jt+1

Yjt+1 = E[Yjt+1|Ijt] + πY
jt+1

(3.25)

Under rational expectations E[πL
jt+1] = E[πY

jt+1] = 0. This means that the difference these
sets of two errors ψY

jt ≡ υLjt − πL
jt and ψY

jt ≡ υYjt − πY
jt are each mean zero by linearity of

expectations. Substituting (3.25) into (3.20) yields:

E[(αk(λjt+1 + πL
jt+1)(y + πY

jt+1) + β(λjt+1Yjt+1 − (λjt+1 + πL
jt+1)(Yjt+1 + πY

jt+1))

− λjt+xjkt)⊗ h(Ijt)] = 0
(3.26)

Under what conditions will using l̂(Ijt) and ŷ(Ijt) to proxy for E[λjt+1|Ijt] and E[Yjt+1|Ijt]
produce consistent estimates of α and β?

E
[(
αk l̂(Ijt)ŷ(I) + βk(λjt+1Yjt+1 − l̂(Ijt)(ŷ(Ijt)))− λjtxjkt

)
⊗ h(Ijt)

]
= E

[
(αk − βk)

(
λjt+1 + υLjt+1)(Yjt+1 + υYjt+1) + βkλjt+1Yjt+1 − λjtxjkt

)
⊗ h(Ijt)

] (3.27)

Since Equation 3.26 equals 0 by optimality, simple subtraction implies that if

E
[(
(αk − βk)(ψ

L
jt+1Yjt+1 + ψY

jt+1λjt+1 + πL
jt+1π

Y
jt+1 − υLjt+1υ

Y
jt+1)

)
⊗ h(Ijt) = 0

]
(3.28)

then Equation 3.27 also equals 0. Essentially this amounts to assuming that the differences
between the household’s forecast errors and the econometrician’s estimation errors are mean
independent of the instrument set.

In this case, taking sample averages,

gNTK(a, b) ≡
1

NTK

(
N∑
j=1

T∑
t=1

K∑
k=1

δ(ak − bk)l̂(Ijt)ŷ(Ijt) + δbk(λj,t+1Yj,t+1)− λjtxjkt

)
⊗ h(Ijt),

(3.29)
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converges to 0 with large NT under similar conditions as in Proposition 3. Thus, the
GMM estimate of α is

argmin
a,b

J(a, b) ≡ gNTK(a, b)
′WgNTK(a, b) (3.30)

where W is the standard optimal weighting matrix.

A second challenge is separately identifying τ , since households facing common technology
and prices will no longer necessarily have the same input ratios. To make progress, I draw
on empirical IO methods to estimate product-level production functions with unobserved
input prices. In the case of De Loecker et al. (2016), they observe single- and multi-product
firms producing the same goods but only observe inputs at the firm level. Their solution is
to estimate the production function restricting the sample to single-product firms, and then
apply a selection correction to control for unobservable differences between these two types
of firms.

The problem in my case is that τ is not necessarily observed. Depending on the nature
of input distortions, τ may correspond to the difference between the market price of an
input and the price actually paid by a household that purchases this input, or it may be a
shadow price that a household faces when rationed. I observe both input expenditures and
quantities in the data. I assume that when households hire labor or rent land, any distortion
is reflected in the observed price they pay. In this case, τjkt is included in the xjkt I observe,
which is the appropriate variable for (3.29). Thus I restrict the sample to transacted inputs
when estimating α and δ, which I then use to recover τs for the households that do not
transact these inputs. Note that I do not have to make such assumptions about the nature
of τs when production is homothetic, as I can estimate these directly from factor ratios.10

3.3.3 Dynamic Production with Sequential Shocks

In the dynamic Cobb-Douglas case, the production function can be estimated consistently
in a similar matter to the static case, essentially treating each inputs at different stages as
separate inputs. This is because Equation (3.16) hholds for any input at any stage, only that
households have different information sets and face different prices at each stage. Rational
expectations still implies that households’ forecast errors are mean-zero, only that their
variance decreases as the season progresses.11

10This approach relies on some strong assumptions — namely that there is no selection into hiring inputs,
that transacted inputs have the same returns as those owned by the household, and that households who
purchase positive amounts of inputs do not come up against a ration. To provide support for the first
assumption, I can apply the control function approach in De Loecker et al. (2016). I can also restrict the
sample to households that use their own inputs in some seasons and purchase inputs in others. To address
the second, I observe individual laborer and plot identifiers and can test whether their observed productivity
differs when they are used by their respective households or hired. The third assumption is more difficult to
test, but I can attempt to restrict the sample to households that appear less likely to face a binding ration.

11The proof follows that of Proposition 3 only that inputs are indexed by ks instead of ss. This may
nevertheless pose some challenges for efficiency that I do not address in this chapter.
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Some practical challenges include dealing with zeroes. Naturally, inputs such as land and
seed can be assumed to only be relevant to the first stage. However, inputs such as labor,
fertilizer and equipment may be applied at different times throughout the season.

Relatedly, the length of the season, S, is endogenous. Since harvests are determined by
crop maturity, it may be inappropriate to assume that households who harvest at stage s
would have obtained the same returns at stage s + 1 as a household that chooses not to
harvest at s.

A reasonable solution may be to coarsen stages of production into planting midseason
and harvest. Nevertheless, the bias from naively estimating Equation (3.16) without λjt
and λjt+1 for any (non-zero) input is informative about the effects of financial constraints

on production. The ratio of these two estimates would be
Et[λjt+1φjt+1]

λjt
. While this bias

term would equal 1 under complete markets, under imperfect insurance we would expect
it to shrink towards 1 over the course of the season as uncertainty over λjt+1 and φjt+1 is
sequentially realized.

3.4 Results

I apply these three approaches to the Townsend Thai Data, discussed in detail in Section 1.3.
Table 3.1 reproduces the main results of the two static specifications from Chapter 1,

with standard errors from 200 bootstrap replications. Column 1 produces estimates that are
in line with the rest of the literature, implying returns to scale of 0.82. In Table A.2.1, I show
robustness to various alternative cuts of the sample and specifications of λ and τ . Columns
2 and 3 of Table 3.1 relax the restriction that αk, the elasticity of the mean of output with
respect to input k, is equal to the elasticity of the standard deviation of output with respect
to k, βk. While the αs and βs are similar for most inputs, they are much higher for the three
inputs applied only at the beginning of the seasons — land, planting labor, and seed. This is
consistent with the idea that uninsured risk causes households to underinvest in production,
but this channel weakens as shocks are realized over the course of the season.

The dynamic specification in Equation (3.16) provides a more direct micro-foundation
for this phenomenon. While production is homothetic within stages, the covariance between
marginal products of each input and the IMRS is larger (in absolute value) at earlier stages of
production. This suggests that the bias from naively calibrating coefficients from expenditure
shares should be decreasing over time. In addition, if risk causes households to underinvest in
production, then the naive calibration should be biased downwards. Intuitively, households
have inefficiently low expenditures on each input so observed expenditure is lower than the
coefficient.

As discussed in Section 3.3.3, estimating this specification requires some non-trivial as-
sumptions about the nature of observed 0 expenditures, and whether the elasticity of sub-
stitution of each input across different stages is truly 1. However, the bias from the naive
calibration vs. the estimates using the IMRS is unlikely to be dependent on what stance
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one takes on these issues. Therefore Table 3.3, which presents estimates of Equation (3.16)
with and without weighting input expenditures and output by λjt and λjt+S, respectively,
should be interpreted as a purely descriptive exercise. Nevertheless, the results confirm the
intuition that the “raw” estimates of αks are downward biased, but decreasingly so over the
course of the season.

3.5 Conclusion

This section introduces new methods for estimating the production function for firms that
are also consumers — most commonly farm households. The advantage of the estimator we
develop is that it uses information from the household’s consumer problem to identify how
financial frictions affect input demands. This allows us to identify the production function as
that which rationalizes constrained optimal input choices and lends itself to a straightforward
linear GMM procedure.

We apply these methods to data from farm households in rural Thailand using three speci-
fications of the production function: the workhorse Cobb-Douglas with Hicks-Neutral shocks,
a generalized Cobb-Douglas with differentially risky inputs, and a multi-stage Cobb-Douglas
with shocks realized sequentially. In addition to producing reasonable estimates, these spec-
ifications highlight the importance of accounting for the effects of risk on input demands
throughout the season. In particular, the results suggest that the ubiquitous calibration of
Cobb-Douglas coefficients from input expenditure shares would produce downward-biased
estimates when risk reduces input demands. Moreover, both the generalized static and the
dynamic specifications highlight that households face greater uncertainty when applying
inputs earlier in the seasons. In the former, we find that land, planting labor and seed dis-
proportionately contribute to the variance of output, which reduces their demand. In the
latter case, we show suggestive evidence that the downward bias from naively assuming away
risk decreases over the course of the season.

Together, these results show the importance — and usefulness — of accounting for house-
holds’ dual roles as producers and consumers. As shown in Chapter 1, this has important
implications for understanding micro- and macro-level outcomes. Nevertheless, relaxing the
functional form and rational expectations assumptions required for such procedures may be
a fruitful avenue for future research.

3.6 Tables
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Table 3.1: Static production function
estimates reproduced from Chapter 1

α CD α NH β NH

Equip. 0.084 0.161 0.144
(0.005) (0.013) (0.048)

Fert. 0.089 0.103 0.110
(0.002) (0.004) (0.016)

Harv. Labor 0.225 0.175 0.181
(0.006) (0.028) (0.077)

Land 0.208 0.219 0.362
(0.004) (0.069) (0.208)

Plant. Labor 0.117 0.120 0.210
(0.004) (0.045) (0.430)

Seed 0.092 0.087 0.130
(0.002) (0.005) (0.028)

Weed. Labor 0.013 0.041 0.050
(0.001) (0.017) (0.029)

J-stat 35.06 36.41
p-val 0.465 0.132
γ 0.828 0.906
s.e. (0.01) (0.09)

This table presents results from the main GMM specifications used to esti-
mate the production function under both the Hicks-neutral Cobb-Douglas
specification in the main text and the generalized Cobb-Douglas in Ap-
pendix A.2. Column 1 shows the estimates of the Cobb-Douglas coefficients
α from (3.17) The second and third columns show estimates of α and β from
(3.20), which are the elasticities of the mean and standard deviation of out-
put with respect to each input. All specifications use tambon dummies and
lags of λjt from the 5 months before input k is first applied as instruments.
An annual discount factor of δ = .95 is assumed. Results are computed
using fertilizer and seed as the reference input for the estimation of τ from
(1.25) (only relevant for Column 1), using rice plots only and CFE λs at
the farm level. The J-statistic and p-values reported are from a test of the
model with the full instrument set against one with only tambon dummies
and a single lag of λjt. γ is the returns to scale parameter implied by the
sum of the production coefficients. Standard errors are computed from 234
bootstraps of the full estimation procedure at the household level.
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Table 3.2: Static production function estimates repro-
duced from Chapter 1

Fert τ Seed τ CRRA Rice only

Equip. 0.084 0.080 0.165 0.094
(0.005) (0.004) (0.005) (0.005)

Fert. 0.089 0.089 0.100 0.084
(0.002) (0.002) (0.002) (0.002)

Harv. Labor 0.225 0.255 0.124 0.243
(0.006) (0.017) (0.006) (0.006)

Land 0.208 0.208 0.190 0.222
(0.004) (0.004) (0.004) (0.004)

Plant. Labor 0.117 0.125 0.050 0.121
(0.004) (0.003) (0.004) (0.004)

Seed 0.092 0.092 0.080 0.100
(0.002) (0.002) (0.002) (0.002)

Weed. Labor 0.013 0.014 0.016 0.019
(0.001) (0.001) (0.001) (0.001)

J-stat 35.06 45.53 36.64 37.93
p-val 0.465 0.11 0.393 0.337
γ 0.828 0.864 0.724 0.882
s.e. (0.010) (0.019) (0.010) (0.010)

This table presents results from the main GMM specifications
used to estimate the production function, reproduced from
Chapter 1. An annual discount factor of δ = .95 is assumed.
Columns (1) and (2) present results using fertilizer and seed as
the reference input for the estimation of τ from (1.25), using
rice plots only and CFE λs at the farm level. Column (3)
presents results under CRRA preferences with a coefficient
of relative risk aversion equal to 1.5. Column (4) includes all
upland crops in the sample. Column (5) presents results using
the plot rather than the farm level as the unit of aggregation.
All specifications use tambon dummies and lags of λjt from
the 5 months before input k is first applied. The J-statistic
and p-values reported are from a test of the model with the
full instrument set against one with only tambon dummies
and a single lag of λjt. γ is the returns to scale parameter
implied by the sum of the production coefficients. Standard
errors are computed from 234 bootstraps of the full estimation
procedure at the household level.
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Table 3.3: GMM estimates of Dynamic Cobb-Douglas Coeffi-
cients

Raw α̂ s.e. IMRS-weighted s.e.
α̂

Input

Equip: Stage 0 0.061 (0.000) 0.068 (0.001)
Equip: Stage 1 0.007 (0.001) 0.007 (0.001)
Equip: Stage 2 0.003 (0.001) 0.003 (0.001)
Equip: Stage 3 0.009 (0.001) 0.009 (0.001)
Equip: Stage 4 0.021 (0.001) 0.022 (0.001)
Equip: Stage 5 0.019 (0.002) 0.021 (0.002)
Equip: Stage 6 0.011 (0.002) 0.011 (0.003)
Equip: Stage 7 0.001 (0.005) 0.001 (0.005)

Fert: Stage 0 0.014 (0.001) 0.014 (0.001)
Fert: Stage 1 0.023 (0.001) 0.031 (0.001)
Fert: Stage 2 0.016 (0.001) 0.023 (0.002)
Fert: Stage 3 0.008 (0.002) 0.010 (0.003)
Fert: Stage 4 0.002 (0.004) 0.002 (0.005)
Fert: Stage 5 0.000 (0.003) 0.000 (0.003)
Fert: Stage 6 0.000 (0.002) 0.000 (0.000)

Labor: Stage 0 0.040 (0.001) 0.059 (0.001)
Labor: Stage 1 0.012 (0.000) 0.015 (0.001)
Labor: Stage 2 0.017 (0.001) 0.016 (0.001)
Labor: Stage 3 0.033 (0.002) 0.032 (0.002)
Labor: Stage 4 0.042 (0.002) 0.047 (0.003)
Labor: Stage 5 0.036 (0.003) 0.032 (0.003)
Labor: Stage 6 0.018 (0.004) 0.017 (0.004)
Labor: Stage 7 0.002 (0.006) 0.002 (0.008)

Land: Stage 0 0.227 (0.002) 0.264 (0.003)

Seed: Stage 0 0.087 (0.001) 0.093 (0.001)
Seed: Stage 1 0.001 (0.003) 0.001 (0.006)
Seed: Stage 2 0.000 (0.004) 0.000 (0.002)

This table contains estimates of the dynamic Cobb-Douglas specifica-
tion in Equation 3.16. The first two columns contain the coefficients
and standard errors using raw input expenditures and output values
instead of weighting them by λjt and λjt+S , respectively. The second
two columns use the λs corresponding to each month of production.
Both specifications use two-step linear GMM with 5 monthly lags of
λjt and a constant as instruments. Data are disaggregated at the crop-
plot level and all inputs are valued at the market price. Coefficients
on inputs at each stage are weighted by proportion of crop-plots using
non-zero amount of the input at that stage. No standard error adjust-
ments are made.
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A.1 Appendix to Section 1.3

Figure A.1.1: Comparison of Test Coefficients Across Villages

This figure contains a scatter plot of the coefficients from the Townsend (1994) and Benjamin (1992) tests,
run separately for each village in each 48-month block of the full panel. For the Townsend coefficients on
the x-axis, the full monthly sample of households (agricultural and non-agricultural) and monthly measures
of total income and consumption are used. Data from the full sample of producers aggregated to the
household-year level are used to estimate the Benjamin coefficients on the y-axis.
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Table A.1.1: Summary statistics for agricultural households by township

All Chachoengsao Buriram Lopburi Sisaket

HH Size 5.564 5.827 5.622 5.03 5.923
(2.333) (2.857) (2.214) (2.018) (2.389)

Age Head 56.037 59.792 53.295 53.756 59.597
(13.259) (13.515) (13.275) (12.387) (12.745)

Sex Head 0.804 0.757 0.821 0.842 0.769
(0.397) (0.429) (0.383) (0.365) (0.422)

Head Primary Educ 0.87 0.951 0.699 0.948 0.938
(0.337) (0.215) (0.459) (0.223) (0.241)

Head Secondary Educ 0.1 0.07 0.08 0.121 0.115
(0.3) (0.255) (0.271) (0.326) (0.319)

Formal Loan 0.341 0.149 0.432 0.368 0.307
(0.519) (0.361) (0.573) (0.493) (0.519)

Any Loan 0.733 0.566 0.716 0.77 0.788
(0.442) (0.496) (0.451) (0.421) (0.409)

Years in Ag 10.535 8.798 9.672 10.199 12.507
(5.514) (6.438) (5.4) (5.081) (5.026)

N Households 568 71 174 161 162

This table shows summary statistics for agricultural households by township. The table dis-
plays means and standard deviations for each variable averaged across household-year obser-
vations.
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Table A.1.2: Summary statistics for agricultural households by township

All Chachoengsao Buriram Lopburi Sisaket

Rice 0.691 0.884 0.966 0.007 0.937
(0.462) (0.32) (0.182) (0.081) (0.243)

Maize 0.09 0.009 0.004 0.328 0.001
(0.286) (0.097) (0.059) (0.47) (0.03)

Farm size 4.797 6.837 2.293 9.663 2.489
(7.892) (5.602) (1.631) (13.237) (1.836)

# plots 3.227 3.078 2.097 4.704 3.026
(2.787) (2.424) (1.28) (4.069) (1.944)

Any plot rented 0.16 0.395 0.144 0.267 0.025
(0.367) (0.489) (0.351) (0.443) (0.155)

Any labor hired 0.682 0.76 0.781 0.849 0.461
(0.466) (0.427) (0.414) (0.358) (0.499)

% labor hired 0.287 0.194 0.284 0.539 0.127
(0.318) (0.194) (0.268) (0.362) (0.211)

Any fert. 0.89 0.929 0.92 0.803 0.92
(0.313) (0.256) (0.271) (0.398) (0.271)

Any equip. 0.907 0.904 0.939 0.923 0.873
(0.29) (0.294) (0.239) (0.267) (0.333)

Profit share 0.228 1.056 0.176 0.039 0.172
(0.688) (0.905) (0.564) (0.606) (0.585)

N Households 578 73 177 165 163

This table shows summary statistics for agricultural households by township. The
table displays means and standard deviations for each variable averaged across
household-year observations.
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Table A.1.3: Coefficients of variation in factor and output prices by
township

Chachoengsao Lopburi Srisaket

Land rent (per rai) 0.5197 0.4376 0.4552
Wage (hourly) 0.7179 0.5652 0.9919
Planting wage (hourly) 0.6822 0.4718 0.8543
Weeding wage (hourly) 0.5899 0.5312 0.5830
Harvest wage (hourly) 0.6151 0.5480 0.9213

Price of rice seed (per kg) 0.2663 0.2069 0.1096
Price of chem. fert. (per kg) 0.1780 0.1413 0.0946
Power tiller rental (per rai) 0.2749 0.4121 0.6040
Large tractor rental (per rai) 0.2093 0.3669 0.2870
Output price of rice (per kg) 0.0944 0.1148 0.0853

This table shows the coefficients of variation of input and output prices within
each township averaged across years. The top panel shows the inputs that
I assume are distorted, while the bottom panel shows those that I assume
are freely traded. The coefficients of variation are computed at the township-
year level after trimming outlier per-unit plot-level expenditures at the upper
and lower 2.5% tails and restricting the sample to inputs/outputs with at
least 20 observations within a township-year. The three townships shown
are those that nearly universally produce rice. The data do not contain
the number of days that tractors or power tillers are used — therefore the
unit prices I compute are the total expenditure for each type of machinery
at the plot level divided by the plot area. Therefore, much of the price
dispersion depicted is likely to result from number of days used, machine
sizes, or measurement error. Since a more diverse range of crops is grown
in Buriram, there is additional heterogeneity due to varieties of seed and
fertilizers used for different crops (which I observe). When accounting for
this heterogeneity, similar patterns of high price dispersion in land and labor
but low price dispersion for traded inputs and outputs emerge.



A.1. APPENDIX TO SECTION 1.3 109

Table A.1.4: Diagnostic Tests for Market Failures

log Consumption Val. log Labor Hrs.
(1) (2) (3)

log Income 0.0547∗∗∗

(0.0037)
HH Size 0.0211∗

(0.0112)
Male adults 0.0257

(0.0258)
Female Adults 0.0269

(0.0253)
Male children 0.0121

(0.0217)
Female Children 0.0165

(0.0210)

Household FE Yes
Village-month FE Yes
Village-year FE Yes Yes
F-stat 11.61∗∗

p-val 0.0205
Observations 83,384 5,689 5,689

This table presents the results for two of the canonical tests of incomplete
markets in the literature. Column (1) shows the results of a regression
of (log) consumption on income with household and village-month fixed
effects as in Townsend (1994). The full monthly sample of households
(agricultural and non-agricultural) and monthly measures of total income
and consumption are used. Column (2) shows the results of the Benjamin
(1992) test of separability, which regresses (log) household labor hours
on household characteristics, controlling for farm size. For simplicity,
household size is the only measured included. Data from the full sample
of producers aggregated to the household-year level are used.
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A.2 Appendix to Section 1.4

I provide additional details on the CFE demand system of Ligon (2020) used for the main
results. CFE demands satisfy the condition that log pici = ai(p) + bi(z) − βi log λ, where
expenditures on good i depend on functions of the price vector p and household character-
istics z and are log-linear in λ. βi is the eponymous constant elasticity, which imposes that
the elasticity of expenditure on good i with respect to the marginal utility of expenditure
(as opposed to total expenditure) is a constant. This allows for highly non-linear Engel
curves and an unrestricted rank of the demand system. Ligon (2020) shows that CFE is
the only globally regular demand system in which identical households with different bud-
gets’ demands for goods differ only through a common aggregator. The paper also derives
an estimator for the MUE that uses disaggregated consumption data. The key assumption
for estimation is that observed 0 expenditures can essentially be treated as a missing data
problem. While this may appear strong, the assumption essentially requires that welfare can
be inferred from observed expenditures and the Frisch elasticities of those goods. See Ligon
(2020) for more detail.

What matters for the model in Section 1.4 is the curvature of utility. The elasticity of λ
with respect to total consumption is (minus) the coefficient of relative risk aversion. If this
elasticity is constant, then CFE reduces to the nested CRRA case. The slope of Figure A.2.2
shows that while there does appear to be some curvature in relative risk aversion, there is
not a huge difference from CRRA. Accordingly, the results in Table A.2.1 are similar across
specifications.
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Figure A.2.1: Time series plots of log λ by tambon

This figure plots the time series of the mean log λ, estimated from the CFE demand system of Ligon (2020)
over the 196-month sample period in each tambon (township).
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Figure A.2.2: Relative risk aversion under CFE demands

The figure plots estimated log λs against the log of consumption after partialing out month fixed-effects.
The slope of the graph at any point is (minus) the coefficient of relative risk aversion under von Neumann-
Morgenstern preferences. The red line is the estimate of relative risk aversion when imposing CRRA pref-
erences, while the blue line is a Lowess fit of the relative risk aversion implied by CFE demands.
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Figure A.2.3: Kernel density estimation of τ by input (fertilizer)

This figure plots kernel density estimates of τ for land and each labor input using fertilizer as the normalizing
input. The blue lines show the density of raw input ratios relative to the township-year mean, the green
lines show the density of household average input ratio relative to the township means and the orange lines
show the estimated τs following (1.25). The black line in the left panel shows the density for τLAND when
not adjusting for land quality. An Epanechnikov kernel is used.
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Figure A.2.4: Kernel density estimation of τ by input (seed)

This figure plots kernel density estimates of τ for land and total labor input using seed as the normalizing
input. The blue lines show the density of raw input ratios relative to the township-year mean, the green
lines show the density of household average input ratio relative to the township means and the orange lines
show the estimated τs following (1.25). The black line in the left panel shows the density for τLAND when
not adjusting for land quality. An Epanechnikov kernel is used.
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Figure A.2.5: Monte Carlo Simulations of Estimation with Aggregate Shocks

This figure presents a histogram of the regression coefficients of 1,000 Monte Carlo simulations of the GMM
estimator. I develop a simulated data-generating process under a single-input production function with
α = 0.8 and CRRA preferences with θ = 1.5. I simulate an N = 1, 000 by T = 16 year panel. For each
t, I draw ϕjt ∼ N (µt, σ) where the µt’s themselves are drawn from a N (0, σ) distribution. In the main
simulations, I choose σ = 0.4 (to match the variance of the residuals in Section 1.4.3.1). I then apply the
GMM estimator to each simulated dataset. The distribution of coefficients is centered near the true value
of 0.8 (indicated by the red line in the figure) with a mean of 0.8024 and standard error of 0.0087.
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Table A.2.1: GMM results

Fert τ Seed τ CRRA Rice only

Equip. 0.084 0.080 0.165 0.094
(0.005) (0.004) (0.005) (0.005)

Fert. 0.089 0.089 0.100 0.084
(0.002) (0.002) (0.002) (0.002)

Harv. Labor 0.225 0.255 0.124 0.243
(0.006) (0.017) (0.006) (0.006)

Land 0.208 0.208 0.190 0.222
(0.004) (0.004) (0.004) (0.004)

Plant. Labor 0.117 0.125 0.050 0.121
(0.004) (0.003) (0.004) (0.004)

Seed 0.092 0.092 0.080 0.100
(0.002) (0.002) (0.002) (0.002)

Weed. Labor 0.013 0.014 0.016 0.019
(0.001) (0.001) (0.001) (0.001)

J-stat 35.06 45.53 36.64 37.93
p-val 0.465 0.11 0.393 0.337
γ 0.828 0.864 0.724 0.882
s.e. (0.010) (0.019) (0.010) (0.010)

This table presents results from the main GMM specifications
used to estimate the production function. An annual discount
factor of δ = .95 is assumed. Columns (1) and (2) present
results using fertilizer and seed as the reference input for the
estimation of τ from (1.25), using rice plots only and CFE λs
at the farm level. Column (3) presents results under CRRA
preferences with a coefficient of relative risk aversion equal
to 1.5. Column (4) includes all upland crops in the sample.
Column (5) presents results using the plot rather than the
farm level as the unit of aggregation. All specifications use
tambon dummies and lags of λjt from the 5 months before
input k is first applied. The J-statistic and p-values reported
are from a test of the model with the full instrument set
against one with only tambon dummies and a single lag of
λjt. γ is the returns to scale parameter implied by the sum
of the production coefficients. Standard errors are computed
from 234 bootstraps of the full estimation procedure at the
household level.
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Table A.2.2: Correlation between time-varying financial wedges and financial participation

Dependent variable:

Savings bal. Debt bal Credit bal. Gifts made Gifts rec’d. Net gifts

(1) (2) (3) (4) (5) (6)

log Λ 0.33∗∗∗ 0.11∗ 0.12 0.29∗∗∗ 0.16∗∗∗

(0.09) (0.07) (0.20) (0.10) (0.05)

Λ −10,425.33
(9,330.07)

Vil.+ Time FE Yes Yes Yes Yes Yes
Obs. 5,442 4,951 561 4,966 5,808 5,830
Adj. R2 0.17 0.20 0.19 0.03 0.27 0.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2.3: Production shocks’ effect on interhousehold transfers

Dependent variable:

Gifts made log gifts made Gifts recieved log gifts recieved Net gifts

(1) (2) (3) (4) (5)

Shock (s.d) 1,504.34 −326.86∗∗∗ −1,831.20
(1,883.43) (88.54) (1,871.36)

log shock 0.003 −0.10∗∗∗

(0.06) (0.02)

Vil. + Time FE Yes Yes Yes Yes Yes
Obs. 5,830 4,966 5,830 5,808 5,830
Adj. R2 0.02 0.14 0.09 0.27 0.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.3 Appendix to Section 1.5
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Figure A.3.1: Comparison of errors from input- and TFP-based estimates

These figures show the distribution of estimates of misallocation from 2,000 Monte Carlo
simulations of the model. The model consists of 500 households observed for 16 years using
a two-input production function with γ = 0.7. TFP, Λ and τ are drawn from a multivariate
lognormal distortion with µ = 0 and positively correlated distortions. Measurement error
in inputs and production shocks are drawn from log-normal distributions with σ = .5. The
blue lines show the densities of estimates using the input-based measure from (1.26) and
the orange lines show the densities using the TFP-based measure from (1.18). In all four
scenarios, the TFP-based estimates have negligible bias while the input-based estimates are
biased upwards and have larger variance. Similar patterns hold for other distributions of
shocks and distortions.



A.3. APPENDIX TO SECTION 1.5 120

Figure A.3.2: Plot-level estimates of misallocation

The figure shows results from the main counterfactuals in Figure 1.3 and Figure 1.5 in panels (a) and
(b), respectively, using plot-level rather than farm-level data. Results are computed using CFE demands,
and fertilizer as the normalizing input for τs, restricting the sample to rice plots. The measure of misalloca-
tion is the difference between aggregate TFP under a given allocation and the efficient one, expressed as a
percent of modeled TFP. The solid bars compute these using the TFP-based measure of misallocation, using
(1.17). The shaded bars are calculated by taking raw input observed in the data and augmenting them by
the estimated τ and Λ, where relevant. 95% confidence intervals from 200 bootstrap replications are plotted.

Figure A.3.3: Main results with CRRA preferences

The figure shows results from the main counterfactuals in Figure 1.3 and Figure 1.5 in panels (a) and
(b). Results are computed using CFE demands, fertilizer as the normalizing input for τs, only rice plots,
and aggregating to the farm level. The measure of misallocation is the difference between aggregate TFP
under a given allocation and the efficient one, expressed as a percent of modeled TFP. The solid bars com-
pute these using the TFP-based measure of misallocation, using (1.17). The shaded bars are calculated by
taking raw input observed in the data and augmenting them by the estimated τ and Λ, where relevant. 95%
confidence intervals from 200 bootstrap replications are plotted.
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Figure A.3.4: Results using only rice

The figure shows results from the main counterfactuals in Figure 1.3 and Figure 1.5 in panels (a) and
(b). Results are computed using CFE demands, fertilizer as the normalizing input for τs, restricting the
sample to rice plots, and aggregating to the farm level. The measure of misallocation is the difference be-
tween aggregate TFP under a given allocation and the efficient one, expressed as a percent of modeled TFP.
The solid bars compute these using the TFP-based measure of misallocation, using (1.17). The shaded bars
are calculated by taking raw input observed in the data and augmenting them by the estimated τ and Λ,
where relevant. 95% confidence intervals from 200 bootstrap replications are plotted.

Figure A.3.5: Main results using seed as the reference input

The figure shows results from the main counterfactuals in Figure 1.3 and Figure 1.5 in panels (a) and
(b). Results are computed using CFE demands, seed as the normalizing input for τs, only rice plots, and
aggregating to the farm level. The measure of misallocation is the difference between aggregate TFP under a
given allocation and the efficient one, expressed as a percent of modeled TFP. The solid bars compute these
using the TFP-based measure of misallocation, using (1.17). The shaded bars are calculated by taking raw
input observed in the data and augmenting them by the estimated τ and Λ, where relevant. 95% confidence
intervals from 200 bootstrap replications are plotted.
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Figure A.3.6: Counterfactual gains from reallocation under input rations

The figure shows the gains from reallocation under the main counterfactuals depending on which factors
are mobile within townships. The blue (left) bars reproduce the baseline scenario, in which all factors are
mobile and can be reallocated. The green (middle) bars show results holding land fixed at observed levels in
all three scenarios, even when relaxing other input frictions. The purple (right) bars show results assuming
households with τ < 1 for each labor input face a binding downward ration. Results are computed using
CFE demands, fertilizer as the normalizing input for τs, all crops, and aggregating to the farm level. 95%
confidence intervals from 200 bootstrap replications are plotted.
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Figure A.3.7: Potential gains from full reallocation

This figure shows the total gains from the efficient allocation as a percent of status quo aggregate TFP

when aggregating at the village, township, and national levels.
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Figure A.3.8: Land Distribution

This figure shows the distribution of land under the baseline and main counterfactuals as a function of

baseline welfare, which is the negative of the log MUE. The scatter plots are shown with a lowess fit. This

is shown for the closed economy case, using fertilizer as the normalizing input, CFE demands, and

restricting the sample to rice crops at the farm level.
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B.1 Appendix to Section 2.3

B.1.1 Algorithm for imputing stocks and flows

It is very clear that the raw data is not always an accurate accounting of farmers’ inventory.
Common inconsistencies include:

• Households will report selling or consuming goods that we don’t see in previous stocks,
purchases, or harvests

• Households will report purchasing or harvesting goods that we never see them dispose
of, but at endline they report having less than the acquired amounts in stock

• In later rounds, households’ answers to whether they have consumed a good from their
own stock in the inventory module do not match their answers to whether they have
acquired the good from their own production or purchased it.

To resolve these issues, we apply the following algorithm, which allows us to compute a
number of different indicators of stocks, with higher indices corresponding to more impu-
tation. We proceed until baseline stocks plus the cumulative sum of flows matches endline
stocks, with the restriction that stocks never fall below 0 at any point in the period. We
use responses from the consumption module as an additional source of information about
whether households had positive stocks at a given period.

1. Save reported stocks (which are only available in waves 1-3 and at baseline). Assign
dummy value of 1 if positive

2. Then compute stocks as the cumulative sum of report flows (purchases + harvest -
sales - consumption). Replace 0 dummy with 2 if this is positive. Add reported initial
stocks (positive for only a few HH) and replace 0 dummy with 3 if this is positive

3. Replace 0 dummy with 4 if the household reports consuming crop from own stock in
consecutive waves.

4. For waves 1-3, impute consumption as the difference between the change in stocks
between the previous and current period net of flows (harvest + purchases for storage
- sales). Update flows accordingly (updating stocks is trivial)

5. If the household has harvested a positive amount between waves 1-3, add the residual
between reported stocks and harvests to the harvest. Assign dummy value of 6 when
this turns stocks positive. Update flows and stocks accordingly. Note that we need to
do this iteratively (because if a household meets this condition for multiple waves but
has activity in the interim, one iteration won’t account for this.)
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6. Still have some people who sell/consume crops they’ve harvested after period 3 that
are unaccounted for. For example, one household claims to harvest and sell 400kg
of beans in period 2 but then sells another 200 in period 4 and 100 in period 5. It
seems more likely that these came from the harvest rather than purchases. Likewise
for consumption that’s reported as being own-produced. We are going to want to
attribute these to the latest feasible harvest (between waves 1-3). Assign dummy value
of 7 when this turns stocks positive. Update stocks and flows again.

7. Where there is unaccounted-for sales/consumption in later waves for crops that a
household never harvests, attribute these to purchases. Assign dummy value of 8

8. When households have excess positive stocks in excess of the endline stocks they report,
attribute the maximum amount that will not cause subsequent stocks to go negative
at any point to current period consumption. This again needs to be done iteratively.
Assign dummy value of 9 and update accordingly.

9. When households don’t report consuming these crops from own production, attribute
to sales and assign dummy value of 10.

10. Assume any remaining discrepancy is stock carried over to endline.

B.2 Appendix to Section 2.4

This table shows baseline summary statistics by treatment arm and reports p-values for the test of equality of means across
arms.
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Table B.2.1: Treatment Balance

Control Cash Kind p-value p-value
Variable Cash-Control Kind-Control

Age Head 39.24 38.84 37.96 0.73 0.22
Rainy Seed Exp 11.43 10.09 11.26 0.53 0.93
Rainy Fert Exp 62.26 58.14 67.58 0.43 0.35
Rainy Chem Exp 6.76 4.87 5.78 0.04 0.30
Rainy Mech Exp 4.15 4.27 4.64 0.90 0.62
Rainy Labor Exp 18.40 15.93 17.95 0.43 0.88
Any Dry 0.01 0.00 0.01 0.23 0.94
Dry Labor Exp 0.33 0.30 0.22 0.88 0.58
Chickens 7.68 8.43 7.42 0.43 0.77
Goats 5.31 5.63 5.25 0.45 0.89
Sheep 3.52 3.97 3.80 0.25 0.45
Cows 2.35 2.75 2.69 0.34 0.42
Donkeys 0.03 0.07 0.03 0.27 0.77
Large Item Exp 23.97 21.38 22.05 0.43 0.55
Biz Exp 17.37 39.46 23.05 0.01 0.17
Biz Rev 10.46 17.13 13.34 0.01 0.09
Borrow Amt 10.54 19.98 10.33 0.34 0.81
Land Own Ha 5.37 6.20 5.25 0.13 0.79
Land In Ha 2.51 2.11 3.17 0.18 0.62
Land Out Ha 0.28 0.43 0.22 0.26 0.46
Rainy Area Ha 5.53 5.59 6.14 0.89 0.42
Dry Area Ha 0.07 0.03 0.10 0.13 0.53
Largest Rainy Beans 0.03 0.02 0.02 0.44 0.16
Largest Rainy Maize 0.43 0.55 0.50 0.00 0.08
Largest Rainy Millet 0.27 0.19 0.19 0.02 0.02
Educ Head Comppri 0.17 0.11 0.12 0.05 0.10
Educ Head Compsec 0.12 0.07 0.10 0.05 0.54
Educ Head Somepri 0.10 0.10 0.10 0.94 0.94
Educ Head Tert 0.01 0.06 0.07 0.00 0.00
Female Head 0.08 0.06 0.06 0.39 0.26
Any Biz 0.18 0.19 0.20 0.80 0.29
Any Borrow 0.19 0.27 0.25 0.24 0.29
Loglambda 0.63 0.70 0.66 0.63 0.72
Males 0-5 0.46 0.45 0.42 0.82 0.54
Females 0-5 0.41 0.34 0.42 0.28 0.85
Males 5-10 0.67 0.66 0.60 0.83 0.34
Females 5-10 0.54 0.55 0.47 0.92 0.25
Males 10-15 0.47 0.44 0.36 0.67 0.07
Females 10-15 0.42 0.44 0.38 0.73 0.52
Males 15-20 0.45 0.38 0.44 0.24 0.79
Females 15-20 0.35 0.35 0.36 0.97 0.89
Males 20-30 0.61 0.56 0.63 0.48 0.76
Females 20-30 0.52 0.51 0.48 0.86 0.48
Males 30-50 0.56 0.63 0.60 0.13 0.33
Females 30-50 0.37 0.40 0.30 0.62 0.15
Males 50-60 0.19 0.13 0.14 0.08 0.11
Females 50-60 0.06 0.06 0.05 0.86 0.88
Males 60-100 0.12 0.13 0.10 0.67 0.46
Females 60-100 0.06 0.04 0.04 0.50 0.44
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B.3 Appendix to Section 2.5

Figure B.3.1: Extensive and intensive margin effects on stocks

This figure supplements Figure 2.6, showing the extensive and intensive margin effects of the cash and
maize treatment on overall grain stocks. The left panel uses the log of stock values (conditional on being
positive) as the dependent variable while the right panel uses a dummy variable for whether a household

had positive stocks in the given wave
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Figure B.3.2: Extensive and intensive margin effects on sales

This figure supplements Figure ??, showing the extensive and intensive margin effects of the cash and
maize treatment on overall grain sales. The left panel uses the log of sales values (conditional on being
positive) as the dependent variable while the right panel uses a dummy variable for whether a household
had positive sales in the given wave.
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Figure B.3.3: Extensive and intensive on own stock consumption

This figure supplements Figure 2.9, showing the extensive and intensive margin effects of the cash and
maize treatment on the value of grain consumed from own stocks. The left panel uses the log consumption
value (conditional on being positive) as the dependent variable while the right panel uses a dummy variable
for whether a household had positive consumption. This figure supplements Figure 2.6, showing the effect
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Figure B.3.4: Effects on maize stocks

of both treatment arms on the value of maize stocks. The top panel shows the effects on the level value of
stocks, measured in thousands of Naira. The left panel uses the log of stock values (conditional on being
positive) as the dependent variable while the right panel uses a dummy variable for whether a household
had positive stocks in the given wave.



B.3. APPENDIX TO SECTION 2.5 133

Figure B.3.5: Effects on bean stocks

This figure supplements Figure 2.6, showing the effect of both treatment arms on the value of bean
stocks. The top panel shows the effects on the level value of stocks, measured in thousands of Naira. The
left panel uses the log of stock values (conditional on being positive) as the dependent variable while the
right panel uses a dummy variable for whether a household had positive stocks in the given wave.
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Figure B.3.6: Effects on Millet stocks

This figure supplements Figure 2.6, showing the effect of both treatment arms on the value of millet
stocks. The top panel shows the effects on the level value of stocks, measured in thousands of Naira. The
left panel uses the log of stock values (conditional on being positive) as the dependent variable while the
right panel uses a dummy variable for whether a household had positive stocks in the given wave.
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Table B.3.1: Agricultural outcomes: Ancova

Ag. exp . Planted Dry season Dry season
(’000 Naira) area (ha) ag. exp. area (ha)

Cash Loan 16.007 0.180 0.119 0.001
(19.709) (0.577) (0.138) (0.008)

Maize Loan -1.043 -0.442 -0.152 -0.011
(21.529) (0.564) (0.841) (0.019)

Baseline Value 0.610*** 0.132 -0.010 0.001
(0.163) (0.090) (0.010) (0.001)

Fixed Effects Strat Strat Strat Strat
R2 0.306 0.207 0.070 0.072
Control mean 144.122 5.482 0.894 0.024
Observations 829 829 829 829

This figure replicates Table 2.5 controlling for the baseline values of each outcome.

Table B.3.2: Agricultural outcomes: Double post LASSO

Ag. exp . Planted Dry season Dry season Harvest
(’000 Naira) area (ha) ag. exp. area (ha) value

Cash Loan 13.511 0.124 0.126 0.001 1.637E+05
(20.817) (0.608) (0.139) (0.008) (1.529E+05)

Maize Loan -0.044 -0.374 -0.148 -0.012 7.287E+04
(22.242) (0.576) (0.838) (0.019) (1.126E+05)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.247 0.170 0.070 0.071 0.137
Control mean 146.166 5.559 0.907 0.025 796.083
Observations 829 829 829 829 808

This figure replicates Table 2.5 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)
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Table B.3.3: Consumption outcomes: Ancova

Log exp. Log non-. log λ Elicited Seasonal hunger
storable exp. IMRS index

Cash Loan 0.011 0.063 0.004 -0.035 0.011
(0.069) (0.046) (0.027) (0.022) (0.022)

Maize Loan 0.019 0.021 -0.003 -0.041* 0.023
(0.072) (0.055) (0.026) (0.020) (0.037)

Baseline Value 0.060*** 0.104*** 0.092*** 0.030 0.918
(0.011) (0.021) (0.014) (0.020) (0.565)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.061 0.061 0.278 0.138 0.007
Control mean 7.750 6.619 0.324 1.691 -0.010
Observations 5474 5474 5474 5474 5474

This figure replicates ?? controlling for the baseline values of each outcome.

Table B.3.4: Consumption outcomes: Double post LASSO

Log exp. Log non-. log λ Elicited Seasonal hunger
storable exp. IMRS index

Cash Loan 0.002 0.031 0.016 -0.038 0.013
(0.071) (0.041) (0.024) (0.024) (0.020)

Maize Loan 0.013 0.029 0.004 -0.044* 0.023
(0.078) (0.066) (0.026) (0.022) (0.034)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.063 0.068 0.281 0.145 0.007
Control mean 7.750 6.619 0.324 1.691 -0.010
Observations 5809 5809 5809 5809 5809

This figure replicates Table 2.4 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)
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Table B.3.5: Business and financial outcomes: Ancova

(Semi-) Biz. Amount Any Biz Any
Durable Exp. Exp. Borrowed Activity Borrowing

Cash Loan 1.748 -0.898 -0.318 0.003 0.019
(1.719) (1.003) (0.423) (0.014) (0.014)

Maize Loan 0.678 -1.192 -0.395 -0.011 0.012
(1.364) (0.923) (0.353) (0.016) (0.011)

Baseline Value 0.132*** 0.213*** 0.158*** 0.119*** 0.036**
(0.024) (0.032) (0.007) (0.018) (0.015)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.052 0.196 0.154 0.078 0.053
Control mean 13.810 5.396 2.540 0.121 0.099
Observations 5474 5474 5474 5474 5474

This figure replicates Table 2.6 controlling for the baseline values of each outcome.

Table B.3.6: Business and financial outcomes: Double post LASSO

(Semi-) Biz. Amount Any Biz Any
Durable Exp. Exp. Borrowed Activity Borrowing

Cash Loan 1.777 -0.595 -0.005 0.000 0.024*
(1.540) (1.203) (0.336) (0.016) (0.014)

Maize Loan 0.928 -1.503 -0.322 -0.013 0.015
(1.284) (0.895) (0.296) (0.019) (0.011)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.065 0.206 0.145 0.079 0.053
Control mean 13.810 5.396 2.540 0.121 0.099
Observations 5809 5809 5809 5809 5809

This figure replicates Table 2.6 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)
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Table B.3.7: Land outcomes: Ancova

Land owned (ha) Land rented out (ha) Land rented in (ha)

Cash Loan 2.776 0.078 -0.344
(2.602) (0.107) (0.423)

Maize Loan -0.554 0.004 -0.563
(0.562) (0.106) (0.414)

Baseline Value 0.182 0.546** 0.011
(0.112) (0.235) (0.011)

Fixed Effects Strat Strat Strat
R2 0.062 0.340 0.332
Control mean 5.785 0.187 2.395
Observations 829 829 829

This figure replicates Table 2.8 controlling for the baseline values of each outcome.

Table B.3.8: Land outcomes: Double post LASSO

Land owned (ha) Land rented out (ha) Land rented in (ha)

Cash Loan 2.485 0.218 -0.290
(1.956) (0.213) (0.369)

Maize Loan -0.140 0.023 -0.516
(0.638) (0.103) (0.363)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr
R2 0.142 0.111 0.387
Control mean 1.639 0.059 0.733
Observations 829 829 829

This figure replicates Table 2.8 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)
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Table B.3.9: Livestock outcomes: Ancova

Cows Goats Sheep Chickens Donkeys

Cash Loan 0.503 0.924* 0.404 1.890** -0.007
(0.377) (0.506) (0.399) (0.760) (0.012)

Maize Loan -0.349 -0.387 -0.532 0.528 -0.005
(0.251) (0.392) (0.374) (0.674) (0.010)

Baseline Value 0.302*** 0.377*** 0.485*** 0.268*** 0.089
(0.079) (0.069) (0.073) (0.081) (0.069)

Fixed Effects Strat Strat Strat Strat Strat
R2 0.277 0.340 0.336 0.288 0.107
Control mean 1.528 3.843 2.472 2.262 0.010
Observations 829 829 829 829 829

This figure replicates Table 2.7 controlling for the baseline values of each outcome.

Table B.3.10: Livestock outcomes: Double post LASSO

Cows Goats Sheep Chickens

Cash Loan 0.564* 0.997* 0.352 1.906**
(0.312) (0.510) (0.374) (0.772)

Maize Loan -0.269 -0.303 -0.534 0.572
(0.239) (0.407) (0.396) (0.638)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.321 0.369 0.364 0.297
Control mean 1.550 3.894 2.496 2.294
Observations 829 829 829 829

This figure replicates Table 2.7 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)
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Table B.3.11: Sales: Double post LASSO

Sales Value (’000s Naira)
Total Maize Millet Beans Guinea Corn Rice

Cash Loan 1.926 3.721 13.180 -4.399 -9.924 5.007
(36.504) (12.038) (28.645) (19.446) (6.879) (4.732)

Maize Loan 9.364 5.578 5.915 -6.203 -4.780 2.427
(32.866) (9.156) (13.169) (17.911) (7.020) (7.124)

Fixed Effects Stratum Stratum Stratum Stratum Stratum Stratum
R2 0.472 0.302 0.265 0.495 0.064 0.142
Control mean 323.698 54.631 71.143 147.828 14.436 15.473
Observations 922 922 922 922 922 922

This figure replicates Table 2.1 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)

Table B.3.12: Consumption Double post LASSO

Value of Stock Consumed (’000s Naira)
Total Maize Millet Beans Guinea Corn Rice

Cash Loan 83.775 0.237 36.181* 45.471*** 0.569 -16.635
(63.283) (33.219) (19.105) (14.161) (11.357) (14.817)

Maize Loan 15.814 0.542 8.233 31.023 -2.480 -20.008
(72.105) (32.729) (18.846) (19.612) (6.450) (20.420)

Fixed Effects Stratum Stratum Stratum Stratum Stratum Stratum
R2 0.495 0.441 0.508 0.334 0.175 0.470
Control mean 673.146 305.729 133.176 94.621 46.285 86.109
Observations 922 922 922 922 922 922

This figure replicates Table 2.2 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)
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Table B.3.13: Harvest: Double post LASSO

Value of Harvest (’000s Naira)
Total Maize Millet Beans Guinea Corn Rice

Cash Loan 79.920 4.855 44.531 40.084* 3.117 -0.201
(84.860) (37.413) (37.390) (23.634) (6.591) (11.827)

Maize Loan 47.582 17.818 12.253 20.255 4.498 1.082
(90.404) (36.529) (28.850) (22.991) (6.720) (19.914)

Fixed Effects Stratum Stratum Stratum Stratum Stratum Stratum
R2 0.532 0.430 0.522 0.541 0.285 0.377
Control mean 949.036 320.456 255.228 228.499 43.415 74.778
Observations 922 922 922 922 922 922

This figure replicates Table 2.3 controlling for covariates selected by the double post LASSO method of
Belloni et al. (2012)

Table B.3.14: Heterogeneity by Gender: Grain Flows

Sales Value Harvest Value Value of Stock Consumed

Cash Loan 13.334 103.192 90.476
(53.364) (125.587) (84.089)

Cash Loan×Female Head 59.408 90.665 -7.259
(83.697) (256.772) (159.497)

Maize Loan 3.572 50.379 21.192
(38.572) (112.634) (92.345)

Maize Loan×Female Head -55.731 -126.199 -23.386
(62.323) (148.111) (140.835)

Female Head -56.859 -173.678 -114.275
(41.646) (106.185) (81.534)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr
R2 0.330 0.311 0.304
Control mean 323.698 949.036 673.146
Observations 930 930 930

This figure replicates outcomes for grain flows interacting each treatment with a dummy for whether the
household head is female
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Table B.3.15: Heterogeneity by Gender: Consumption

Log exp. Log non-. log λ Elicited Seasonal hunger
storable exp. IMRS index

Cash Loan -0.045 -0.017 0.017 -0.032 0.010
(0.087) (0.053) (0.027) (0.020) (0.020)

Cash Loan×Female Head -0.056 -0.090 0.013 -0.008 -0.027
(0.165) (0.221) (0.094) (0.057) (0.029)

Maize Loan -0.063 -0.042 -0.003 -0.033 0.019
(0.077) (0.057) (0.029) (0.020) (0.033)

Maize Loan×Female Head 0.743*** 0.733*** 0.097 -0.087* 0.006
(0.211) (0.149) (0.067) (0.051) (0.040)

Female Head -0.686*** -0.645*** 0.064** 0.102** -0.020
(0.113) (0.093) (0.026) (0.047) (0.029)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.050 0.135 0.244 0.194 0.006
Control mean 7.750 6.619 0.324 1.691 -0.010
Observations 6404 6404 6404 6404 6404

This figure replicates Table 2.4, interacting each treatment with a dummy for whether the household head
is female

Table B.3.16: Heterogeneity by Gender: Business and Financial Outcomes

(Semi-) Biz. Amount Any Biz Any
Durable Exp. Exp. Borrowed Activity Borrowing

Cash Loan 0.766 4.583** 0.596 0.002 0.025
(1.833) (2.131) (0.977) (0.015) (0.016)

Cash Loan×Female Head 3.258 -5.963** 3.506* 0.031 0.037
(4.075) (2.922) (1.942) (0.040) (0.035)

Maize Loan 0.238 0.079 -0.520 -0.007 0.019
(1.525) (1.554) (0.677) (0.019) (0.013)

Maize Loan×Female Head -2.409 -2.114 0.590 0.016 -0.047
(2.504) (2.925) (1.255) (0.045) (0.031)

Female Head -2.696 0.083 -1.402 -0.040 -0.028*
(2.062) (1.557) (1.044) (0.031) (0.015)

Fixed Effects Strat Strat Strat Strat Strat
R2 0.028 0.031 0.023 0.057 0.066
Control mean 18.484 3.252 4.659 0.087 0.098
Observations 6404 6404 6404 6404 6404

This figure replicates Table 2.6, interacting each treatment with a dummy for whether the household head
is female
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Table B.3.17: Heterogeneity by Gender: Agricultural Outcomes

Ag. exp . Planted Dry season Dry season Harvest
(’000 Naira) area (ha) ag. exp. area (ha) value

Cash Loan 16.291 0.215 0.135 0.000 170.1
(21.695) (0.637) (0.159) (0.009) (162.2)

Cash Loan×Female Head -65.591** -2.053 -0.152 -0.001 -321.046*
(29.538) (1.807) (0.162) (0.009) (179.1)

Maize Loan -0.757 -0.358 -0.153 -0.013 73.16
(22.895) (0.543) (0.901) (0.021) (116.7)

Maize Loan×Female Head -39.130 -2.013* 0.120 0.010 -303.440
(42.439) (1.058) (0.990) (0.022) (202.3)

Female Head -59.251** -1.747** -0.016 -0.005 -266.772**
(28.784) (0.739) (0.406) (0.011) (123.3)

Fixed Effects Strat Strat Strat Strat Strat
R2 0.256 0.184 0.070 0.071 0.141
Control mean 144.122 5.482 0.894 0.024 784.949
Observations 829 829 829 829 808

This figure replicates Table 2.5, interacting each treatment with a dummy for whether the household head
is female

Table B.3.18: Heterogeneity by Gender: Livestock Outcomes

Cows Goats Sheep Chickens

Cash Loan 0.547 1.004 0.468 1.791*
(0.482) (0.612) (0.578) (0.962)

Cash Loan×Female Head -0.490 -1.205* -0.850 -1.052
(0.672) (0.679) (0.854) (1.896)

Maize Loan -0.359 -0.593 -0.581 0.049
(0.287) (0.430) (0.447) (0.719)

Maize Loan×Female Head 0.458 0.822 0.349 2.183
(0.463) (0.965) (1.023) (1.468)

Female Head -0.812** -0.764 -0.089 0.511
(0.386) (0.745) (0.589) (0.736)

Fixed Effects Strat Strat Strat Strat
R2 0.137 0.232 0.128 0.163
Control mean 1.528 3.843 2.472 2.262
Observations 829 829 829 829

This figure replicates Table 2.7, interacting each treatment with a dummy for whether the household head
is female
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Table B.3.19: Heterogeneity by Gender: Land Outcomes

Land owned (ha) Land rented out (ha) Land rented in (ha)

Cash Loan 2.941 0.140 -0.486
(2.861) (0.211) (0.448)

Cash Loan×Female Head -1.401 0.218 1.708
(3.526) (0.351) (1.625)

Maize Loan -0.506 -0.030 -0.553
(0.547) (0.123) (0.375)

Maize Loan×Female Head -3.081 0.141 -1.481*
(1.896) (0.250) (0.872)

Female Head -1.077 -0.198 -1.236*
(1.352) (0.198) (0.657)

Fixed Effects Strat Strat Strat
R2 0.060 0.086 0.337
Control mean 5.785 0.187 2.395
Observations 829 829 829

This figure replicates Table 2.8, interacting each treatment with a dummy for whether the household head
is female

Table B.3.20: Heterogeneity by Baseline Wealth: Grain Flows

Sales Value Harvest Value Value of Stock Consumed

Cash Loan 6.392 65.010 68.138
(48.641) (121.755) (78.282)

Cash Loan×BL Asset Index -96.338** -94.210 9.820
(45.022) (114.952) (100.867)

Maize Loan 10.773 47.475 25.328
(35.758) (99.358) (81.479)

Maize Loan×BL Asset Index -3.696 -10.820 18.193
(48.793) (137.014) (107.839)

BL Asset Index 57.139* 63.697 109.647**
(28.165) (64.035) (41.568)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr
R2 0.362 0.362 0.337
Control mean 323.698 949.036 673.146
Observations 930 930 930

This figure replicates outcomes for grain flows, interacting each treatment with an index comprising the
first principal component of baseline assets.
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Table B.3.21: Heterogeneity by Baseline Wealth: Consumption

Log exp. Log non-. log λ Elicited Hunger
storable exp. IMRS index

Cash Loan -0.013 0.013 0.021 -0.036 0.016
(0.087) (0.057) (0.024) (0.022) (0.020)

Cash Loan×BL Asset Index 0.117* 0.053 0.052** -0.023 0.001
(0.059) (0.050) (0.025) (0.016) (0.029)

Maize Loan 0.017 0.040 -0.002 -0.043** 0.018
(0.080) (0.062) (0.029) (0.020) (0.029)

Maize Loan×BL Asset Index 0.003 -0.027 0.014 -0.014 -0.052*
(0.059) (0.056) (0.027) (0.015) (0.026)

BL Asset Index 0.085 0.128*** -0.023 -0.007 0.023
(0.061) (0.046) (0.019) (0.012) (0.018)

Fixed Effects Strat-Yr Strat-Yr Strat-Yr Strat-Yr Strat-Yr
R2 0.048 0.134 0.245 0.194 0.008
Control mean 7.750 6.619 0.324 1.691 -0.010
Observations 6404 6404 6404 6404 6404

This figure replicates Table 2.4, interacting each treatment with an index comprising the first principal
component of baseline assets.

Table B.3.22: Heterogeneity by Baseline Wealth: Business and Financial Outcomes

(Semi-) Biz. Amount Any Biz Any
Durable Exp. Exp. Borrowed Activity Borrowing

Cash Loan 0.832 4.428** 0.833 0.008 0.026*
(1.645) (2.080) (0.840) (0.016) (0.015)

Cash Loan×BL Asset Index -0.047 4.057 -1.840 0.011 0.007
(1.577) (3.887) (1.184) (0.016) (0.013)

Maize Loan 0.561 0.072 -0.392 -0.005 0.016
(1.453) (1.347) (0.570) (0.018) (0.011)

Maize Loan×BL Asset Index -0.210 -2.329 -1.254 -0.023* -0.003
(1.323) (1.508) (0.880) (0.012) (0.011)

BL Asset Index 1.016 1.224 1.050 0.012 -0.011
(1.041) (0.765) (0.875) (0.011) (0.010)

Fixed Effects Strat Strat Strat Strat Strat
R2 0.031 0.035 0.024 0.060 0.067
Control mean 18.484 3.252 4.659 0.087 0.098
Observations 6404 6404 6404 6404 6404

This figure replicates Table 2.6, interacting each treatment with an index comprising the first principal
component of baseline assets.
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Table B.3.23: Heterogeneity by Baseline Wealth: Agricultural Outcomes

Ag. exp . Planted Dry season Dry season Harvest
area (ha) ag. exp. area (ha) value

Cash Loan 11.617 0.081 0.175 0.001 170.1
(21.111) (0.631) (0.227) (0.008) (150.3)

Cash Loan×BL Asset Index 7.771 0.013 0.692 0.015 -146.101
(19.900) (0.632) (1.127) (0.030) (129.1)

Maize Loan 1.407 -0.325 -0.248 -0.014 85.32
(22.856) (0.571) (0.897) (0.020) (121.7)

Maize Loan×BL -7.998 -0.219 0.303 0.005 54.04
(24.390) (0.515) (0.347) (0.011) (228.9)

BL Asset Index 14.862 0.532** -0.627 -0.003 71.60
(11.502) (0.258) (0.714) (0.017) (64.42)

Fixed Effects Strat Strat Strat Strat Strat
R2 0.260 0.183 0.076 0.075 0.141
Control mean 144.122 5.482 0.894 0.024 784.949
Observations 829 829 829 829 808

This figure replicates Table 2.5, interacting each treatment with an index comprising the first principal
component of baseline assets.

Table B.3.24: Heterogeneity by Baseline Wealth: Livestock Outcomes

Cows Goats Sheep Chickens

Cash Loan 0.509 0.940 0.366 2.081**
(0.428) (0.609) (0.538) (0.822)

Cash Loan×Baseline Asset Index 0.092 0.323 0.056 0.319
(0.508) (0.543) (0.507) (1.061)

Maize Loan -0.268 -0.505 -0.554 0.511
(0.262) (0.397) (0.437) (0.533)

Maize Loan×Baseline Asset Index 0.089 0.267 -0.259 -0.860
(0.480) (0.481) (0.390) (0.630)

Baseline Asset Index 0.113 -0.024 0.165 0.824
(0.277) (0.270) (0.362) (0.567)

Fixed Effects Strat Strat Strat Strat
R2 0.139 0.235 0.133 0.206
Control mean 1.528 3.843 2.472 2.262
Observations 829 829 829 829

This figure replicates Table 2.7, interacting each treatment with an index comprising the first principal
component of baseline assets.
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Table B.3.25: Heterogeneity by Baseline Wealth: Land Outcomes

Land owned Land rented Land rented
(ha) out (ha) in (ha)

Cash Loan 2.975 0.176 -0.373
(2.677) (0.209) (0.441)

Cash Loan×BL Asset Index 3.637 0.062 -0.174
(4.082) (0.256) (0.342)

Maize Loan -0.404 0.019 -0.578
(0.538) (0.086) (0.403)

Maize Loan×BL Asset Index 0.118 -0.227 0.135
(0.879) (0.195) (0.307)

BL Asset Index 0.556 0.134 0.071
(0.479) (0.144) (0.250)

Fixed Effects Strat Strat Strat
R2 0.068 0.099 0.334
Control mean 5.785 0.187 2.395
Observations 829 829 829

This figure replicates Table 2.8, interacting each treatment with an index comprising the first principal
component of baseline assets.
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C.1 Appendix to Section 3.1

Table C.1.1: Dynamic Panel Production Estimates

Dependent Variable: ∆log Ouptut
Model: Just IDed OverIDed 2SLS OverIDed GMM

Variables
∆log Land 0.4641∗∗∗ 0.5239∗∗∗ 0.4314∗∗∗

(0.0399) (0.0471) (0.0480)
∆log Labor 0.1033∗∗∗ 0.0604∗∗∗ 0.0839∗∗∗

(0.0225) (0.0225) (0.0217)
∆log Equipment 0.0854∗∗∗ 0.1044∗∗∗ 0.1291∗∗∗

(0.0222) (0.0265) (0.0239)
∆log Fertilizer 0.0561∗∗∗ 0.0452∗∗ 0.0273

(0.0176) (0.0182) (0.0225)
∆log Seed 0.0934∗∗∗ 0.1178∗∗∗ 0.1216∗∗∗

(0.0238) (0.0253) (0.0314)

Lagged instruments 1st 1st and 2nd 1st and 2nd
Observations 3,289 2,937 3,209
Within R2 0.4579 0.4715
Sargan test, p-value 0.0122 0.0027
AR(2) test, p-value 0.0001

Clustered (j) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

This table provides estimates of α following the Anderson and Hsiao (1981) (AH)
procedure used by Shenoy (2017). To be consistent with Shenoy (2017), I group
inputs into land, labor, and materials, where materials are the sum of expendi-
tures on fertilizer, seed, and equipment. The first column shows the just-identified
AH specification, in which the log differences in inputs are instrumented with
their lagged values. The second shows the same specification with two first and
second lags of inputs as instruments, estimated using two-stage least squares.
The third estimates the same specification with GMM. The Sargan test rejects
the null that both sets of lags are exogenous with p-values of 0.0122 and 0.0027,
respectively and the Arellano-Bond test rejects the null of no second-order auto-
correlation with a p-value of 0.0001 .


	Contents
	List of Figures
	List of Tables
	Farm Household Misallocation
	Introduction
	Model
	Environment
	Production
	Dynamic Program
	Input Demands and Wedges
	Nonhomothetic Production

	Equilibrium

	Empirical Setting and Data
	Evidence of Imperfect Markets in Thailand

	Estimation Framework
	Estimating marginal utilities ()
	Identifying factor frictions
	 Estimation Results

	Production function estimation
	Production Function Estimates

	Recovering TFP and financial wedges

	Results and Counterfactuals
	Methodological Differences and Measurement Error
	Alternative specifications and robustness checks
	Distributional Effects

	Conclusion
	Figures and Tables

	The Welfare Effects of Postharvest Loans Under Price Risk
	Introduction
	Theoretical Framework
	Experimental Design and Data
	Sample Frame and Household Selection
	Treatment
	Survey Data
	Food Acquisition and Stocks
	IMRS Elicitation
	Other variables

	Other Data sources

	Descriptive Statistics
	Prices
	Prices and Intertemporal Marginal Rates of Substitution
	Sample

	RCT results
	Effects on Stocks
	Cumulative Results
	Within-season results

	Effects on Consumption
	Effects on Other Outcomes
	Heterogeneity
	Robustness

	Structural Estimation
	Test of Euler Equation

	Conclusion
	Figures and Tables

	Enter Sandmo: Production Function Estimation for Firms that Consume
	Introduction
	The Farm-Household Problem
	Setup

	Estimation Framework
	Homothetic Cobb-Douglas
	Generalized Cobb-Douglas
	Dynamic Production with Sequential Shocks

	Results
	Conclusion
	Tables

	Bibliography
	Appendices
	Farm Household Misallocation — Appendix
	Appendix to Section 1.3
	Appendix to Section 1.4
	Appendix to Section 1.5

	The Welfare Effects of Postharvest Loans Under Price Risk — Appendix
	Appendix to Section 2.3
	Algorithm for imputing stocks and flows

	Appendix to Section 2.4
	Appendix to Section 2.5

	Enter Sandmo: Production Function Estimation for Firms that Consume — Appendix
	Appendix to Section 3.1




