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RESEARCH

Methylation differences in Alzheimer’s 
disease neuropathologic change in the aged 
human brain
Anna‑Lena Lang1*  , Tiffany Eulalio4, Eddie Fox2, Koya Yakabi2, Syed A. Bukhari2, Claudia H. Kawas5,7, 
Maria M. Corrada5,6, Stephen B. Montgomery2,3,4, Frank L. Heppner1,8,9, David Capper1, Daniel Nachun3† and 
Thomas J. Montine2† 

Abstract 

Alzheimer’s disease (AD) is the most common cause of dementia with advancing age as its strongest risk factor. AD 
neuropathologic change (ADNC) is known to be associated with numerous DNA methylation changes in the human 
brain, but the oldest old (> 90 years) have so far been underrepresented in epigenetic studies of ADNC. Our study 
participants were individuals aged over 90 years (n = 47) from The 90+ Study. We analyzed DNA methylation from 
bulk samples in eight precisely dissected regions of the human brain: middle frontal gyrus, cingulate gyrus, entorhinal 
cortex, dentate gyrus, CA1, substantia nigra, locus coeruleus and cerebellar cortex. We deconvolved our bulk data into 
cell‑type‑specific (CTS) signals using computational methods. CTS methylation differences were analyzed across dif‑
ferent levels of ADNC. The highest amount of ADNC related methylation differences was found in the dentate gyrus, a 
region that has so far been underrepresented in large scale multi‑omic studies. In neurons of the dentate gyrus, DNA 
methylation significantly differed with increased burden of amyloid beta (Aβ) plaques at 5897 promoter regions of 
protein‑coding genes. Amongst these, higher Aβ plaque burden was associated with promoter hypomethylation of 
the Presenilin enhancer 2 (PEN-2) gene, one of the rate limiting genes in the formation of gamma‑secretase, a mul‑
ticomponent complex that is responsible in part for the endoproteolytic cleavage of amyloid precursor protein into 
Aβ peptides. In addition to novel ADNC related DNA methylation changes, we present the most detailed array‑based 
methylation survey of the old aged human brain to date. Our open‑sourced dataset can serve as a brain region refer‑
ence panel for future studies and help advance research in aging and neurodegenerative diseases.
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Introduction
Alzheimer’s disease (AD) is the most common form 
of dementia. AD Neuropathological changes (ADNC) 
include extracellular aggregates of the amyloid beta (Aβ) 
peptides into plaques, intraneuronal formation of hyper-
phosphorylated paired helical filament (PHF) tau into 
neurofibrillary tangles, and neuritic plaques that are 
composed of both extracellular Aβ and PHF tau in neu-
ronal processes. Moreover, neuroinflammation mainly 
characterized by an activation of glial cells is known 
to be yet another pathogenetic component of AD. In 
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cohorts with mean age of 78–89 years, there is growing 
evidence of DNA methylation and hydroxymethylation 
changes related to ADNC, especially in the frontal cortex 
[1–8]. Given the short life expectancy, epigenomic data 
from people with ADNC over the age of 90 is rare and 
they are underrepresented in most epigenomic studies. 
The relation of DNA methylation changes and ADNC at 
such old age is therefore unknown. Further, AD related 
methylation changes were so far mainly analyzed using 
whole-tissue homogenates (‘bulk’) of cerebral cortical 
regions [1–6] with only a few studies analyzing smaller 
brain regions thought to be critical to disease progres-
sion, like the entorhinal cortex [7, 8]. To develop a more 
comprehensive understanding of the brain DNA methyl-
ome in older individuals, we analyzed bulk samples from 
eight different brain regions important in the progres-
sion of ADNC. Previous studies that analyzed sorted cells 
instead of bulk samples have shown that cell type propor-
tions of tissue homogenates highly influence methylation 
changes [5, 9]. Instead of cell sorting, we used cell type 
deconvolution methods that can extract cell-type-specific 
(CTS) signals from bulk data [10–12]. Most AD methyl-
ome studies focus on the identification of methylation 
changes related to neurofibrillary tangles or Aβ burden 
[1–8]. In this study, we focused on methylation changes 
related to three key measures of ADNC: Aβ plaques, neu-
rofibrillary tangles, and neuritic plaques. We used this 
approach to identify novel cell-type- and region-specific 
associations of methylation with ADNC that could not be 
readily found in bulk data.

Materials and methods
Study population
We processed samples from eight brain regions of par-
ticipants from The 90+ Study, a longitudinal study of 
aging and dementia conducted at the University of Cali-
fornia, Irvine [13]. Participants were required to be aged 
90 years or older to enter the study. Over the course of 
the study they underwent evaluations including neu-
rological exams and neuropsychological tests every 
6 months until the end of life. Approximately 1 in 5 mem-
bers of this cohort consented to donating their brains for 
post-mortem research, making a combination of longi-
tudinal clinical and post-mortem neuropathological data 
available to investigators. We observed low DNA con-
centrations and poor DNA quality in brain samples from 
formalin-fixed paraffin-embedded (FFPE) blocks that 
were prepared before 2017 so we only used consecutive 
samples prepared between 2017 and 2019. Only cases 
available to the lab at time of processing were included, 
cases were not pre-selected based on ADNC scores. Two 
cases were excluded due to low DNA quality as indi-
cated by high delta CT values in quantitative polymerase 

chain reaction (qPCR). Four cases were excluded due to 
non-AD related neuropathology: two cases with a diag-
nosis of Parkinson’s Disease (PD), one case with glioma 
and one case with extensive bilateral hemorrhage, lead-
ing to a total of 53 cases that underwent methylation 
array processing. We did not exclude individuals based 
on neuropathological burden of Lewy Bodies, TDP-43 or 
microvascular lesions. As previously reported, the post 
mortem interval (PMI) has little effect on DNA methyl-
ation [14] so we did not have any exclusion criteria for 
samples based on PMI.

Neuropathological assessment and clinical diagnosis
All cases were scored by a neuropathologist following 
the National Institute on Aging–Alzheimer’s Associa-
tion (NIA-AA) guidelines for the neuropathologic assess-
ment of Alzheimer’s disease [15, 16]. Neuropathological 
diagnoses were blinded to all data collected during life, 
including sex, clinical diagnosis, and neuropsychological 
test results. We included Aβ plaques (NIA-AA A score), 
neurofibrillary tangles (NIA-AA B score), and neuritic 
plaques (NIA-AA C score) in our assessment [15–17]. 
These scores are not brain region specific. Following the 
NIA guidelines, an overall AD severity score (ADSS) 
of not, low, intermediate, or high was determined. For 
downstream analyses, we grouped individuals with NIA-
AA scores of 0 and 1 and individuals with ADSS of not 
and low. Available clinical information included inform-
ant questionnaires [18–20], medical records, longitudinal 
neuropsychological testing including the Mini-Mental 
State Examination (MMSE) [21], neurological examina-
tions, and neuroimaging when available. Blinded to path-
ological evaluation, this combined clinical information 
was used in a multidisciplinary consensus conference 
after death (mean time between last clinical assessment 
and death was 7.1 months) to determine cognitive status 
following the Diagnostic and Statistical Manual of Mental 
Disorders 4th edition criteria [22], scoring 0 for normal, 1 
for cognitive impairment, no dementia (CIND), and 2 for 
dementia. Further details on the 90+ Study design and 
methods can be found in [13, 23].

Methylation array processing
To focus on brain regions that are most relevant to com-
mon neurodegenerative diseases and memory impair-
ment, for each case we dissected samples from the 
middle frontal gyrus (cortex), cingulate gyrus (cortex), 
substantia nigra, locus coeruleus, cerebellar cortex 
and the three hippocampal subregions: CA1, dentate 
gyrus and entorhinal cortex (Fig.  1a). All samples ana-
lyzed in this study were derived from FFPE tissue stored 
for 0–3  years. Cores were extracted from FFPE blocks 
with a biopsy punch needle 1–1.5  mm in diameter and 
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2–3  mm in length, assuring accurate dissection of very 
fine regions from FFPE. For larger cortical regions, mul-
tiple cores were extracted from the same region to ensure 
pan-cortical coverage. For small regions like the dentate 
gyrus or locus coeruleus, often only one core could be 
extracted. To guarantee high regional accuracy, Luxol 
fast blue hematoxylin and eosin (LFB-H&E) staining was 
carried out before and after extraction and the accuracy 
of the dissection was evaluated by a neuropathologist. 

DNA was extracted from FFPE cores using the Zymo 
Research Quick DNA FFPE Miniprep kit [24] following 
the manufacturer’s instructions with one minor modifi-
cation. During overnight digestion with proteinase K at 
55  °C, intermittent vortexing every 20 min at 2000 rpm 
for 1  min was used to facilitate more complete diges-
tion of tissue chunks. Double stranded DNA concentra-
tion was measured using the Qubit™ dsDNA BR Assay 
Kit [25]. Following the manufacturer’s protocol, we used 

Fig.1 Overview of study concept a We selected post mortem Formalin Fixed Paraffin Embedded (FFPE) samples from eight different brain 
regions from individuals of the 90 + Study, aged 90 and older. All consecutive cases available to the lab from 2017 to 2019 were considered. After 
removing cases based on co‑pathologies and data quality, a total of 47 individuals were included in the final analyses for this paper (see Methods). 
b Neuropathological scoring was carried out to define the Alzheimer’s Disease (AD) severity score as well as its three subscores: NIA‑AA A (amyloid 
beta), B (neurofibrillary tangles), and C Score (neuritic plaques). c Small biopsy punches were used to assure precision tissue dissection from FFPE. 
Before and after LFB‑H&E staining was carried out to control the accuracy of the dissected region. d After DNA extraction and bisulfite conversion, 
we used the Illumina 850 k EPIC BeadChip and followed the manufacturer’s protocol to determine DNA methylation. e Data analysis focused on 
cell type deconvolution from bulk data. AD Alzheimer’s disease, LFB-H&E Luxol fast blue hematoxylin and eosin, NIA-AA National Institute of Aging 
Alzheimer’s Association, Olig Oligodendrocytes, OPC Oligodendrocyte Precursor Cells
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the Illumina Infinium HD FFPE QC assay to assess DNA 
quality prior to bisulfite conversion. Depending on DNA 
concentration, 250  ng to 1000  ng of high-quality DNA 
were bisulfite converted using the Zymo EZ DNA Meth-
ylation Kit (Zymo Research, CA, USA). After bisulfite 
conversion, the entire yield (8 µl) was restored with the 
Infinium HD FFPE DNA Restore Kit. Samples were fur-
ther processed as per the manufacturer’s standard pro-
tocol for FFPE samples on the Illumina Infinium Human 
MethylationEPIC BeadChip (Illumina, CA, USA). We 
processed up to four arrays simultaneously with 8 sam-
ples assayed per array, constituting one processing batch. 
Samples that underwent the same bisulfite conversion 
cycle together belonged to the same bisulfite batch. 
Prior to hybridization, samples were randomized so that 
samples from one individual were randomly distributed 
across the arrays. Where possible, samples from one indi-
vidual were processed in different batches and replicates 
were also assayed in different batches.

Data preprocessing
All analysis was carried out in R and python, using R ver-
sion 4.2 and python version 3.9.5. Sample-level quality 
control was performed jointly on samples from all eight 
brain regions, whereas quality control on a probe level 
was performed individually within each brain region 
dataset, as well as the removal of samples based on detec-
tion p-value > 0.01 in more than 10% of all probes. A 
flowchart showing the numbers of samples and probes 
removed for each brain region dataset can be found in 
Additional File 1: Fig. S1. We assessed sample quality by 
evaluating bisulfite conversion efficiency as implemented 
by minfi [26], beta value density distribution plots, vari-
ous Illumina control metrics [27] as well as SNP cluster-
ing and the fraction of successfully detected probes per 
sample. Examining each brain region individually, we 
removed samples that exceeded > 10% of probes with a 
detection p-value > 0.01. Probes were removed if they 
failed any of these quality control criteria: probes with 
detection p-value > 0.01, probes associated with single 
nucleotide polymorphisms of minor allele frequency 
(MAF) ≥ 0.05 [28], cross reactive probes [29, 30], probes 
with a bead-count < 3 in ≥ 5% of samples as well as probes 
showing low variability (SD < 0.01) [31]. As our dataset 
includes male and female participants, we also filtered 
out probes targeting X and Y chromosomes. Data was 
normalized using noob implemented by minfi [26] and 
BMIQ [32] implemented by ChAMP [33]. We kept the 
first processed sample and removed all replicates from 
the datasets after normalization. All samples from six 
individuals did not pass the described quality control 
measures, removing the full case from all downstream 
analyses. The final dataset consisted of 321 samples 

from 47 individuals. Demographic, clinical, and neuro-
pathological details for all 47 individuals are available in 
Table 1.

Cell type deconvolution
To estimate cell type heterogeneity in our bulk data, we 
used an existing cell-type-specific DNA methylation 
reference matrix for brain tissue from EpiSCORE [12]. 
EpiSCORE is designed to construct reference datasets 
of tissue-specific DNA methylation derived from single 
cell RNA-sequencing data. It already contains 13 tissue-
specific DNA methylation reference matrices that can 
be used for cell type deconvolution from bulk data [34]. 
Bulk data was processed for each brain region separately. 
First, CpGs were mapped to Entrez IDs using the con-
stAvBetaTSS function from the EpiSCORE package. Cell 
type proportions were estimated using the wRPC func-
tion, using weights in the regression, setting the thresh-
old on the weights to select the most informative genes to 
0.4 and the maximum number of iterations in the robust 
linear regression to 300. The brain reference matrix for 
EpiSCORE can be used to estimate cell type proportions 
for neurons, astrocytes, endothelial cells, microglia, oli-
godendrocytes, and oligodendrocyte precursor cells 
(OPCs). Because we detected relatively small propor-
tions for oligodendrocytes and OPCs and the cell types 
are highly related, we combined those proportions into 
one value for oligodendrocytes/OPCs. The resulting esti-
mated cell type proportions for the five cell types served 
as input for cell type deconvolution.

Cell type deconvolution was performed using the Ten-
sor Composition Analysis (TCA ) package in R [11]. Given 
the estimated cell type proportions, TCA  uses a tensor 
generalization of matrix factorization to estimate CTS 
methylation profiles for each of the five cell types we con-
sidered. The resulting deconvolved data consists of a CTS 
methylation value for each CpG and sample. We decon-
volved the five cell types within each of the eight brain 
regions separately producing forty datasets for down-
stream analyses. Within each CTS methylation profile, 
we collapsed probe-level methylation to three genomic 
region types (promoters, genes, and CpG islands) using 
the RnBeads annotations [31], by calculating the average 
methylation value across all CpGs within the respective 
genomic region. A promoter was defined as the region 
spanning 1500 bases upstream and 500 bases down-
stream of the transcription start site of the correspond-
ing gene [31]. Gene bodies were defined as the region 
from the transcription start site to the end of 3’ UTR, and 
CpG islands in RnBeads are downloaded from the UCSC 
Genome Browser [31]. Together with CpG-level meth-
ylation, these three regional summaries resulted in four 
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datasets for each combination of brain region and cell 
type.

Batch correction
We found that batch was significantly confounded with 
neuropathology and clinical measures using the Kruskal–
Wallis test for continuous outcomes and the G-Test for 
categorical outcomes (Additional File 2). Because the 
batches in our study were small when considering an 
individual brain region, supervised removal of the batch 
effects directly with linear regression performed poorly 
because of high uncertainty in estimating the effects 
of individual batches. Instead, we used singular value 
decomposition (SVD) to identify surrogate variables that 
capture the variance associated with batch, similar to 
approaches used in previous studies [35]. In each brain 
region, we used the inverse logit transformation imple-
mented in RnBeads to convert methylation beta values to 
M-values [31], which gives them a Gaussian distribution 
more suitable for downstream analyses such as SVD and 
linear regression [36]. We used SVD to obtain eigenvec-
tors and eigenvalues that capture global signals shared 
across all CpGs, which can include batch effects, cell 
type heterogeneity and disease pathology. The intrinsic 
dimensionality of each dataset was estimated using the 
EstDimRMT function from the iSVA R package, which 
uses the Marcenko-Pastur distribution [37] to determine 
how many eigenvectors have eigenvalues that exceed 

those expected from Gaussian white noise. Datasets with 
an estimated dimensionality less than six were excluded 
from downstream analyses to avoid spurious results (34 
datasets excluded). These excluded datasets were mainly 
represented by regions with low estimated cell counts 
for microglia and in the cerebellar cortex, astrocytes and 
oligodendrocytes/OPCs (Additional File 3). The associa-
tion of each eigenvector with pathology scores, clinical 
measures and batch variables was tested using the non-
parametric Kruskal–Wallis or Spearman rank correlation 
tests for categorical or numeric variables, respectively. 
We adjusted each dataset for all of its corresponding 
eigenvectors using residualization with the removeBatch-
Effect function from limma [38], except for eigenvectors 
which were significantly associated with pathology scores 
or clinical measures and not with batch. This approach 
removes technical effects from batch, while preserving 
disease-associated signals if they are not confounded 
with batch.

Data visualization
We used the Uniform Manifold Approximation and 
Projection (UMAP) algorithm to visualize the two-
dimensional embedding of our bulk and CTS methyla-
tion profiles from each brain region. As input to UMAP, 
we computed principal components on the M-values of 
the combined set of bulk and CTS methylation profiles, 
using the Marcenko-Pastur distribution [37] to choose 

Table 1 Characteristics of study participants

Demographics and results of the neuropathological and clinical assessment of all individuals. Categorical variables are displayed as full numbers with percentage (%), 
continuous variables are displayed as mean with standard deviation (SD). Abbreviations: AD Alzheimer’s Disease, CIND cognitive impairment, no dementia, NIA-AA 
National Institute of Aging Alzheimer’s Association, APOE Apolipoprotein E, TDP-43 TAR DNA-binding protein 43, MVL microvascular lesions

Demographics AD neuropathologies Copathologies

Sex AD severity score Braak lewy body staging

Male 12 (25.53%) Not 2 (4.26%) 0 31 (65.96%)

Female 35 (74.47%) Low 2 (4.26%) 1 4 (8.51%)

Age at death Intermediate 15 (31.91%) 2 1 (2.13%)

Mean (SD) 97 (± 3.5) High 28 (59.57%) 3 3 (6.38%)

Education NIA‑AA A score 4 0 (0.0%)

Not college 21 (44.68%) 0 2 (4.26%) 5 2 (4.26%)

Minimum college 26 (55.32%) 1 4 (8.51%) 6 6 (12.77%)

Clinical diagnosis 2 6 (12.77%) TDP‑43

Normal 19 (40.43%) 3 35 (74.47%) 0 29 (61.70%)

CIND 15 (31.91%) NIA‑AA B score 1 4 (8.51%)

Dementia 13 (27.66%) 2 17 (36.17%) 2 12 (25.53%)

APOE genotype 3 30 (63.83%) 3 2 (4.26%)

2,3 5 (10.94%) NIA‑AA C score MVL burden

2,4 3 (6.38%) 0 3 (6.38%) 0 38 (80.85%)

3,3 24 (51.06%) 1 4 (8.51%) 1 5 (10.64%)

3,4 5 (10.64%) 2 8 (17.02%) 2 1 (2.13%)

Missing 10 (21.3%) 3 32 (68.09%) 3 3 (6.38%)
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the number of PCs as previously described. We used the 
uwot package to estimate the UMAP embeddings for 
the principal components and visualized the embedding 
using ggplot2 [39].

Differential methylation analysis
To explore brain region and cell-type-specific methyla-
tion differences associated with Alzheimer’s disease, we 
examined both neuropathological scores as well as clini-
cal measures (see Methods  section “Neuropathological 
assessment  and clinical diagnosis”). Neuropathological 
scores were defined following the NIA-AA guidelines 
and were case specific, but not brain region specific. 
We used limma [38] to fit linear models for differential 
methylation analysis, treating the neuropathological 
scores as continuous variables and the clinical diagno-
sis as a categorical variable. Sex and age at death were 
added as covariates to the linear models. To account for 
the removal of variables in the batch correction step, we 
subtracted the number of eigenvectors removed from the 
sample during batch correction from the residual degrees 
of freedom used to compute the t-statistics. We consid-
ered sites or summarized regions with an empirical Bayes 
False discovery rate (FDR) adjusted p-value < 0.05 and an 
absolute log fold change (logFC) ≥ 0.0001 to be differen-
tially methylated. We used biomaRt [40] to annotate gene 
biotypes of promoter regions and gene bodies to identify 
protein-coding genes.

Immunohistochemistry (IHC) staining
Sections were derived from FFPE blocks, baked for 
1  h at 70  °C, then deparaffinized and rehydrated with 
1-min washes in xylene (3 ×), 100% ethanol (2 ×), 95% 
ethanol (2 ×), 80% ethanol (1 ×), 70% ethanol (1 ×) and 
H2O (3 ×). Antigen retrieval was carried out in citrate 
buffer pH 6.0 (Dako, cat# S1699) at 95 °C for 25 min and 
allowed to cool to room temperature for 40  min. Slides 
were then washed twice for 5  min each in PBS-T IHC 
Wash Buffer (Cell Marque, cat# 934B-09) with 0.1% 
bovine serum albumin. Endogenous peroxidase activity 
was quenched for 30 min with 3% H2O2. Sections were 
washed with a wash buffer for 5  min and then blocked 
for 1-h at room temperature in TBS-T with 3% normal 
horse serum, 0.1% cold fish gelatin, 0.1% triton x-100, 
and 0.05% sodium azide. Primary antibody (PSENEN, 
Sigma-Aldrich, cat# HPA047435) for Presenilin Enhancer 
2 (PEN-2) was used at 0.5ug/mL and diluted with 3% nor-
mal horse serum and incubated overnight at 4 °C. Follow-
ing overnight incubation, slides were washed twice for 
5 min, and sections were incubated in ImmPRESS HRP 
Horse Anti-Rabbit IgG Peroxidase (Vector Laboratories, 
cat# MP-7401) for 30  min at room temperature. Slides 
were then washed twice for 5 min each and subsequently 

developed using the ImmPACT DAB kit (Vector Labo-
ratories, cat# SK-4105). Tissue was counterstained with 
hematoxylin and blued with Scott’s Tap Water Substi-
tute prior to dehydration and mounting with Mounting 
Media (Thermo-Scientific cat# 22-110-610).

Results
We analyzed DNA methylation in eight brain regions 
from a unique cohort of participants aged 90  years and 
older in order to identify DNA methylation differences 
related to the endophenotypes of the three hallmark neu-
ropathologic lesions of AD (Fig.  1a, b). Using the Illu-
mina 850k platform, we assayed methylation of 853,307 
CpGs in eight regions of the human brain: middle fron-
tal gyrus (MFG), cingulate gyrus (CG), entorhinal cortex 
(EC), hippocampus dentate gyrus (DG), hippocampus 
CA1 (CA1), substantia nigra (SN), locus coeruleus (LC) 
and cerebellar cortex (CBM). Computational cell type 
deconvolution was used to investigate differential meth-
ylation in CTS data (Fig. 1d, e).

Characteristics of study participants
After removing samples from individuals with failed 
methylation array processing (see Methods), our final 
cohort consisted of 321 samples from 47 individuals 
(Fig.  1a). Eight brain regions were processed from each 
individual. Characteristics of study participants are 
shown in Table  1. The mean age was 97.4 ± 3.5  years, 
with little difference in age observed between sexes. The 
majority of individuals were females (n = 35), reflecting 
the overall demographics of people aged over 90 [41]. 
Amongst all individuals, 17.32% are heterozygous carri-
ers of the APOE ɛ4 allele; data from 10 individuals were 
missing due to problems in sequencing. Concerning clin-
ical diagnosis, 40.43% of our participants were diagnosed 
as cognitively normal, 31.9% had cognitive impairment, 
no dementia (CIND) and 27.66% were diagnosed with 
dementia. Only 4 individuals (8.51%) had an overall low 
neuropathological burden of AD as measured by the AD 
severity score (see Methods), 15 were classified as inter-
mediate (31.91%) and 28 individuals had a high burden 
of AD neuropathology (59.57%). Detailed demographics 
and neuropathological data for each case can be found in 
Additional File 4.

Computationally deconvoluted cell type proportions 
unveil regional differences
We estimated cell type proportions of our samples using 
a cell type decomposition method that utilizes an exist-
ing reference panel from EpiScore [12] (see Methods). As 
expected, neurons were the most abundant cell type in 
most brain regions (Additional File 1: Fig. S2) and pre-
dicted proportions were consistent with observations 
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from previously published epigenome wide association 
studies [2, 7, 42–45]. Cell composition varied between 
brain regions, with the highest proportion of neuronal 
signal in the cerebellar cortex, followed by regions in the 
forebrain, midbrain, and finally pons. Similar to previous 
findings, the proportion of neurons also varied within the 
same brain region between individuals (Additional File 1: 
Fig. S2) [46, 47]. Microglia were the least abundant glial 
cell type, only being detected consistently in SN and LC. 
Microglia account for 0.5%-16.6% of cells across brain 
regions, with the pons and basal ganglia showing higher 
amounts of microglia than cerebral cortical regions [48], 
but our average proportions of 3.2% ± 4.4 in the SN and 
6.8% ± 5.1 in LC were modestly lower than previously 
reported proportions greater than 10% [48]. Our pre-
dicted proportions of oligodendrocytes/OPCs varied 
from 0% (in the cerebellum) to up to ~ 40% and were con-
sistent with proportions found in the adult mouse brain 
(0–40%) [49]. The low estimated proportion of glial cells 
in the cerebellum also matched previous findings [50]. 
Similar to existing literature, we did not find any signifi-
cant correlations of cell composition with neuropatho-
logical traits or age at death [42–45].

Cell‑type‑specific methylation profiles differ across brain 
regions
We recovered CTS methylation signals using cell type 
deconvolution with TCA  [11], which relies on the cell 
type proportions estimated with EpiScore [12] (see Meth-
ods). Although these CTS profiles were imputed from 
bulk data and not obtained through sorting, for simplic-
ity, we will refer to them as data from their respective 
cell types. In addition to analyzing the CpG level data, 
we also aggregated our deconvolved data by averaging 
methylation across individual CpGs within promoters, 
gene bodies and CpG islands. We used principal com-
ponent analysis (PCA) and random matrix theory to 
identify CTS methylation profiles with sufficiently non-
random signals. We computed the full set of eigenvectors 
and eigenvalues for each cell type and aggregation type, 
and excluded CTS profiles where the number of eigen-
values which exceeded the theoretical limit expected 
under the Marcenko-Pastur distribution [37] for a matrix 
of random noise was less than or equal to 5 (Additional 
File 3). Most microglial profiles were excluded, except in 
the LC and the CpG and gene level data in the SN. We 
further excluded all datasets of oligodendrocytes/OPCs 
and astrocytes in the CBM, and the CpG islands dataset 
of astrocytes in the EC. Except for astrocytes in the EC, 
these profiles corresponded to cell types with very low 
average estimated proportions in their respective regions, 
ranging between 0 and 1.2%. We used the UMAP algo-
rithm [51] to visualize the latent space in two dimensions 

across CpGs for all cell types and brain regions (Addi-
tional File 1: Fig. S3) and found that the bulk profiles 
from different brain regions embedded closely together 
relative to the CTS profiles, indicating high homogene-
ity across regions. With the exception of nigral neurons, 
neuronal profiles were embedded in proximity to bulk 
data, reflecting the predominance of the neuronal signal 
in bulk data. The clear separation of CTS methylation 
profiles from bulk profiles shows that cell type decon-
volution is an effective strategy for disentangling signals 
from distinct cell types in tissue homogenates (Addi-
tional File 1: Fig S3). Figure  2 displays a UMAP plot of 
CTS profiles across brain regions and cell types and 
visualizes that cell type and not brain region is the main 
driver of variance in our data. Neurons and astrocytes of 
the SN were embedded further from similar cell types 
in other brain regions. Among the non-neuronal CTS 
profiles (astrocytes, oligodendrocytes/OPCs, microglia 
and endothelial cells), we found that profiles from the 
same cell type were usually embedded more closely to 
each other than to other samples from the same region 
(Fig. 2). This observation is broadly consistent with find-
ings reported in single cell ATAC-Seq data, where non-
neuronal cell types showed greater homogeneity across 
regions than neurons [52].

Cell type deconvolution uncovers ADNC related 
methylation differences not present in bulk data
We used differential methylation to associate bulk and 
CTS methylation profiles with ADNC endophenotypes in 
all brain regions and clinical measures (see Methods). We 
chose to highlight results for associations with averaged 
promoter methylation in protein-coding genes because 
these associations are more readily interpretable. Gener-
ally, promoter methylation is negatively correlated with 
gene expression, and limiting the analysis to protein-cod-
ing genes avoids concerns about poorly-annotated gene 
models for non-coding genes. We found no association 
between ADSS and bulk methylation in any brain region 
(Additional File 1: Fig. S4). In contrast, numerous associ-
ations were found between ADSS and CTS profiles, espe-
cially in the dentate gyrus (DG) where we identified 911 
differentially methylated promoters (DMPTs) in neurons, 
all of which were unique to the DG (Fig. 3).

We wanted to perform a more granular analysis of the 
association of ADNC endophenotypes with methylation 
by examining differential methylation for Aβ plaques 
(NIA-AA A score), neurofibrillary tangles (NIA-AA 
B score) and neuritic plaques (NIA-AA C score). No 
associations were seen between the individual scores 
and bulk methylation profiles in any region except for 2 
DMPTs associated with NIA-AA C score in the cerebel-
lum. In the CTS profiles, the largest numbers of DMPTs 
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Fig. 2 UMAP plot displaying clustering of brain region and cell‑type‑specific methylation data. We used the Uniform Manifold Approximation 
and Projection (UMAP) technique for dimension reduction to visualize similarities across cell type and brain‑region‑specific methylation data. 
Dimensionality reduction is performed with all brain regions and cell types combined. Each dot represents one individual sample. Colors reflect the 
cell types. Olig Oligodendrocytes, OPC Oligodendrocyte Precursor Cells, MFG Middle Frontal Gyrus, CG Cingulate Gyrus, CA1 Hippocampus CA1, DG 
Dentate Gyrus, EC Entorhinal cortex, SN Substantia nigra, LC Locus coeruleus, CBM Cerebellar cortex

Fig. 3 Overview of the number of differentially methylated promoter‑associated protein‑coding regions for dentate gyrus and cingulate gyrus 
by cell type. Barplots display the number of significant (FDR p‑value < 0.05) differentially methylated promoter regions of protein‑coding genes. 
Each barplot shows the results for one brain region and neuropathological score combination. Color coding of the bars reflects the different cell 
types. The dentate gyrus (DG) and cingulate gyrus (CG) were the two regions with the highest amount of differentially methylated promoters 
(DM promoters, DMPTs) across neuropathological scores. We did not discover any DM promoters across different NIA‑AA C scores, and there were 
no differentially methylated sites found in bulk data. FDR False discovery rate, Olig Oligodendrocytes, OPCs Oligodendrocyte Precursor Cells, CG 
Cingulate Gyrus, DG Dentate Gyrus, NIA-AA National institute of Aging Alzheimer’s Association, AD Alzheimer’s Disease
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were found in neurons of the CG in association with neu-
rofibrillary tangles and in neurons of the DG in associa-
tion with amyloid burden (Fig. 3). The DG was the only 
brain region where NIA-AA A score was associated with 
a substantial number of DMPTs in neurons (n = 5897 
DMPTs), astrocytes (n = 1096 DMPTs), endothelial cells 
(n = 255 DMPTs), or oligodendrocytes/OPCs (n = 85 
DMPTs). Another 4 DMPTs associated with NIA-AA A 
score were found in neurons of the MFG.

The NIA-AA B score, a measure of neurofibrillary tan-
gle (NFT) burden, is most commonly used as a measure 
of AD neuropathology in epigenome-wide association 
studies (EWAS) of AD. In our study, the CG showed the 
highest number of DMPTs in association with neurofi-
brillary tangles, found mainly in neurons (n = 556) but 
also in astrocytes (n = 11) and oligodendrocytes/OPCs 
(n = 211) of the CG (Fig.  3). Only a few DMPTs were 
found in neurons of the DG (n = 55) and no other brain 
regions showed significant DMPTs in association with 
neurofibrillary tangles. The DMPTs of neurons in the GG 
are visualized in Fig. 4a, with the top 20 hyper-and hypo-
methylated genes labeled accordingly. Most differentially 
methylated promoter regions were hypomethylated with 
increasing NIA-AA B score.

For the NIA-AA C score, only a small number of 
DMPTs were found in microglia of the LC (n = 3, Addi-
tional File 1: Fig. S4), and no significant DMPTs were 
identified in the other brain regions (CBM, EC, SN, CA1).

We examined several copathologies and did not find 
any significant DMPTs associated with TDP-43 bur-
den or Braak staging for Lewy bodies in any of the brain 
regions in the CTS profiles (Additional File 1: Fig. S5). 
We found very few significant (FDR p < 0.05) DMPTs 
associated with microvascular lesions in neurons of the 
locus coeruleus (n = 5, F2, CISD2, WFDC6, LYPLAL1, 
GPR33) and substantia nigra (n = 1, KLHL14 hypometh-
ylation, logFC = 0.70) and in astrocytes of the locus coer-
uleus (n = 1, PPP1RC hypermethylation, logFC = 0.58) 
and entorhinal cortex (n = 1, SCML4 hypomethylation, 
logFC = 0.60). One DMPT was associated with microvas-
cular lesions in oligodendrocytes/OPCs of the substantia 
nigra (MYL6B hypermethylation, logFC = 0.84).

Hypomethylation at promoter regions of known AD 
risk loci with increasing burden of AD neuropathology 
is mainly found in neurons of the dentate gyrus
We identified several significantly hypomethylated pro-
moters among the top 33 AD risk loci previously iden-
tified in AD GWAS studies [53]. In neurons of the CG, 
the promoter region of the UNC5CL gene was hypo-
methylated with increasing burden of neurofibrillary 
tangles (logFC = 0.71, FDR p < 0.05). In astrocytes of 
the CG, promoter regions of the SPI1 and CR1 genes 

were hypomethylated with increasing burden of amy-
loid plaques (SPI1 logFC = 0.56, CR1 logFC = 0.55, FDR 
p < 0.05). In neurons of the DG, 12 out of the top 33 
AD GWAS risk loci were hypomethylated with increas-
ing amyloid plaque burden (SPI1 logFC = 0.53, WNT3 
logFC = 0.64, CLNK logFC = 0.37, CLU logFC = 0.46, 
UNC5CL logFC = 0.31, BIN1 logFC = 0.36, SORL1 
logFC = 0.37, IL34 logFC = 0.52, ACE logFC = 0.45, 
INPP5D logFC = 0.59, PLCG2 logFC = 0.49, CD2AP 
logFC = 0.27; FDR p < 0.05). CLU and ACE promoter 
hypomethylation was also seen in association with the 
overall AD Severity Score in neurons of the DG (CLU 
logFC = 0.42, ACE logFC = 0.38, FDR p < 0.05).

Promoter hypomethylation of PEN‑2 with increasing 
burden of amyloid plaques is unique to neurons 
of the dentate gyrus
We identified the largest number of DMPTs in the 
DG, predominantly in neurons, but also in astrocytes, 
endothelial cells and oligodendrocytes/OPCs (Fig.  3). 
All 911 DMPTs found in neurons were specific to the 
DG. The DG has been underrepresented in methyla-
tion studies of the human brain, prompting us to explore 
further the DMPTs associated with NIA-AA A score in 
this region. The results are visualized in Fig. 4b, with the 
top 20 hyper- and hypomethylated promoter regions 
labeled accordingly. Similar to DMPTs associated with 
NIA-AA B score in the CG (Fig.  4a), DMPTs associ-
ated with increased Aβ plaque load in promoter regions 
of neurons of the DG were mostly hypomethylated 
(Fig.  4b). This also holds true for global methylation at 
overall non-averaged CpGs. We saw a negative correla-
tion of global methylation levels with NIA-AA A score 
in neurons (spearman rho =  − 0.58, FDR p = 0.005), 
astrocytes (rho =  − 0.49, FDR p = 0.019) and microglia 
(rho =  − 0.55, FDR p = 0.007) in DG. These results are 
consistent with previous findings where overall neuronal 
DNA-methylation in the hippocampus was negatively 
correlated with AD burden [54]. The top 20 DMPTs 
(based on log fold change (logFC)) found in the DG 
included several genomic regions that are known to be 
altered in AD [55–58] like presenilin enhancer 2 (PEN-
2, logFC =  − 0.80, FDR p = 0.001), solute carrier family 
22 member 6 (SLC22A6, logFC = -0.94, FDR p < 0.001), 
lipopolysaccharide binding protein (LBP, logFC =  − 0.81, 
FDR p < 0.001), and S100 calcium binding protein A13 
(S100A13, logFC =  − 0.81, FDR p < 0.001). A complete 
summary of DMPT statistics is available in Additional 
File 5. Across these four genes, promoter hypometh-
ylation in neurons with increasing burden of Aβ plaques 
was unique to the dentate gyrus (Additional File 1: Fig. 
S6). Focusing on PEN-2, hypomethylation was also signif-
icantly associated with ADSS (FDR p = 0.016, Additional 
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Fig.4 Manhattan mirror plot of differentially methylated promoter regions (DMPTs) in the dentate gyrus. Manhattan plots visualizing a the results 
from differential methylation analysis in promoter associated regions in neuronal signals of the dentate gyrus across NIA‑AA A scores (Aβ plaque 
burden) and b the results from differential methylation analysis in promoter associated regions in neuronal signals of the dentate gyrus comparing 
individuals with different NIA‑AA B scores (neurofibrillary tangle burden). Each dot represents the averaged methylation across all CpGs within a 
specific promoter region. The top part of each plot contains all promoters that are hypermethylated with a higher Aβ plaque burden or b higher 
burden of neurofibrillary tangles, and the bottom plot respectively shows all promoters that are hypomethylated. The x‑axis displays chromosomes 
from 1 to 22 from the left to the right. The y‑axis is displaying the‑log10 FDR p‑value as a significance measure for the methylation difference 
across neuropathological scores. The red dotted line marks the significance threshold of p < 0.05. The blue dots highlight the top 20 significant 
protein‑coding promoters as ranked by log fold change of the methylation beta value. Labels display the name of the associated protein‑coding 
gene for each of the top 20 differentially methylated promoters. DMPT differentially methylated promoter region, NIA-AA National institute of Aging 
Alzheimer’s Association
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File 1: Fig. S7), reflecting the influence of the amyloid 
burden in this aggregated score. In the DG, the associa-
tion of NIA-AA A score with PEN-2 hypomethylation 
was only found in neurons, and, crucially, could not be 
identified in the bulk methylation profile (Fig.  5a). As 

promoter methylation is often expected to reduce gene 
expression [59–61], we could expect the hypomethyla-
tion we observed to lead to higher expression of PEN-2 
and perhaps contribute to proteolytic processing of amy-
loid precursor protein along the gamma(γ)-secretase 

Fig. 5 Cell‑type‑specific promoter methylation of the PEN-2 gene in dentate gyrus (DG) across individuals with different NIA‑AA A scores. a 
Scatterplots with smoothers showing the relationship between neuronal methylation of the promoter region of the PEN-2 gene (y‑axis) across 
the five different cell types and bulk data from individuals with different Aβ plaque burden (NIA‑AA A scores, x‑axis). Methylation beta values 
are displayed on the y‑axis and the categories of the NIA‑AA A score on the x‑axis. Each individual plot shows data from the dentate gyrus (DG) 
for different cell types. Each dot represents one individual sample. The standard linear regression was plotted as smoothers on top of the data: 
Smoothers curves are showing the relationship (solid line) between the NIA‑AA A score and the methylation beta‑value. Shaded areas indicate 
the 95% confidence interval of the smooth curve. We saw significant hypomethylation (**FDR p = 0.001, logFC = 0.80) in the promoter region of 
the PEN-2 gene with increasing Aβ plaque burden in the dentate gyrus. b Immunohistochemistry (IHC) of PEN-2 in the hippocampal region Cornu 
Amonis 3 (CA3) of an individual with high Alzheimer’s disease neuropathological changes (AD severity score = 3). IHC Scoring 3+ . The respective 
participant was Participant 44; for extended phenotype data of this individual see Additional File 4. Olig/OPCs Oligodendrocytes/Oligodendrocyte 
Precursor Cells. DG Dentate gyrus, Aβ Amyloid beta
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pathway [62, 63]. Indeed, downregulation of the PEN-2 
gene directly impairs γ-secretase activity, and overexpres-
sion has been found to increase activity of the γ-secretase 
[64, 65]. Other subunits of the γ-secretase complex are 
the presenilins (PSEN1 and PSEN2), aph-1 homolog A 
(APH-1A) and nicastrin (NCSTN). Numerous mutations 
in PSEN1 and PSEN2 have been identified in cases of 
familial early onset AD [66], but less is known about the 
regulation of the γ-secretase complex in late onset AD. 
Among the four subunits of the γ-secretase complex, in 
addition to PEN-2, hypomethylation of NCSTN was also 
associated with higher Aβ plaque burden in the DG neu-
ron profile (Additional File 1: Fig. S8).

Immunohistochemistry staining for PEN‑2 shows regional 
expression in the dentate gyrus and substantia nigra
In our cohort, the hypomethylation of PEN-2 with an 
increasing burden of Aβ plaques was unique to neurons 
of the dentate gyrus. As there is little known about the 
regional expression of PEN-2 in the human AD brain, we 
conducted immunohistochemistry (IHC) staining on one 
case with high ADNC (AD severity score of 3) across all 
eight brain regions that were prior sampled for methyla-
tion analysis. The positivity for PEN-2 by IHC was strong-
est in the hippocampus (Fig.  5b) and substantia nigra 
with robust positivity and very specific staining, followed 
by the periaqueductal gray with intermediate positivity, 
and cingulate and middle frontal gyrus both showed the 
weakest positivity with diffuse staining in the gray mat-
ter. Cerebellum and pons were both negative (Figures 
not shown). IHC is a localizing and not a robustly quan-
titative technique because of pre-analytic and analytical 
variability [67]. Furthermore, the correlation between 
gene methylation and protein abundance is poor, reflect-
ing the multiple layers of regulation between these two 
events. With these cautions in mind, we performed PEN-
2 IHC on the hippocampus of two cases with high and 
two cases with low ADNC and observed variation across 
cases that was independent of ADNC status (Additional 
File 1: Fig. S9). Nevertheless, our small IHC experiment 
showed that in a brain with ADNC, PEN-2 was highly 
expressed in the hippocampus and substantia nigra. In 
contrast to findings in mouse models of AD, we did not 
see expression in cerebellum and pons [68].

Differential promoter methylation of clathrin‑mediated 
endocytosis genes associates with increasing burden of Aβ 
plaques in neurons of the dentate gyrus
In addition to findings in genes of the γ-secretase com-
plex, amongst the top 20 DMPTs in neurons of the den-
tate gyrus, the promoter region of clathrin light chain 
A (CLTA) was hypermethylated with increasing bur-
den of Aβ plaques (Fig.  4b). CLTA encodes one of two 

clathrin light chain proteins, which form part of the 
regulatory function of the clathrin protein, an important 
protein for endocytotic processes in synaptic trafficking 
[69]. Clathrin-mediated endocytosis (CME) of amyloid 
precursor protein is of great relevance to AD pathol-
ogy because it impacts the production of Aβ [70, 71]. 
Although not amongst the top 20 DMPTs, we found two 
more genes that are involved in CME to be significantly 
(FDR p < 0.05) hypomethylated with increasing amyloid 
burden: BIN1 and CD2AP. These genes were previously 
found to be associated with AD in both epigenome and 
genome wide association studies [2, 72–75]. In our study, 
the differential methylation of the promoter regions of 
CLTA, CD2AP and BIN1 with increasing amyloid burden 
was unique to neurons of the dentate gyrus and could 
not be found in any other brain region or cell type (Addi-
tional File 1: Figs. S10, S11). Notably, we did not see any 
association with AD neuropathological scores other than 
amyloid plaque burden.

Differential methylation in the dentate gyrus is related 
to neuropathology but not cognitive performance
In addition to neuropathologic changes, we assessed 
whether methylation differences were also associated 
with cognitive performance in old age. We tested differ-
ential methylation at promoters of protein-coding genes 
across individuals with one of three cognitive statuses: 
normal, cognitive impaired not dementia (CIND), or 
dementia. In contrast to the results from neuropatho-
logic features, we did not detect any DMPTs in the 
dentate gyrus. The ERC was the only region showing 
cell-type-specific methylation differences across clinical 
groups, with a small number of DMPTs found in neurons 
(n = 6) distinguishing cognitively normal from demented 
individuals and in astrocytes (n = 6, Additional File 1: 
Fig. S12) distinguishing individuals with CIND and nor-
mal cognitive status, none of which overlapped. Further, 
treating the clinical status as a continuous rather than a 
categorical variable yielded no significant associations 
that might indicate a continuous methylation change 
related to cognitive decline.

Discussion
With this dataset, we provide the most detailed meth-
ylation microarray-based study of the oldest old human 
brain to date, providing a valuable reference for future 
studies on brain aging and neurodegeneration. Our pre-
cise dissection protocol enabled the study of smaller 
brain regions that have been implicated in neurodegen-
erative diseases but are rarely studied at such a granular 
scale. Notably, this is the first methylation study specifi-
cally examining small brain regions like the locus coer-
uleus, substantia nigra, and the hippocampal subregions 
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CA1 and dentate gyrus (DG). Prior studies of methylation 
in AD have mainly focused on cortical regions [1–6] or 
analyzed the entire hippocampus [76], treating the CA1, 
entorhinal cortex and dentate gyrus as a single entity, 
while we analyzed them separately. We showed that “digi-
tal sorting” with cell type deconvolution can uncover 
methylation signals that are otherwise obscured in bulk 
data, suggesting that cell type heterogeneity should 
always be considered when interpreting the results of 
methylation studies in bulk tissue. Within our CTS pro-
files, neurons of the cingulate gyrus and neurons of the 
dentate gyrus had the largest number of associations 
between methylation and increased burden of ADNC. 
In neurons of the cingulate gyrus, promoter methylation 
was mainly decreased with increasing burden of neurofi-
brillary tangles. Amongst others, UNC5CL as a known 
risk gene for AD was hypomethylated with increased bur-
den of neurofibrillary tangles. In neurons of the dentate 
gyrus, a substantial amount of known AD risk loci were 
hypomethylated at promoter regions with increasing Aβ 
burden. Since we did not make as many discoveries in 
other brain regions or cell types, we focused our further 
analyses on neurons of the dentate gyrus. In particular, 
two components of the γ-secretase complex, PEN-2 and 
NCSTN, were hypomethylated with increased Aβ burden 
(Additional File 1: Fig. S8). PEN-2 is known to be the rate 
limiting protein for the formation of the γ-secretase com-
plex, initiating the sequential endoproteolytic cleavage of 
amyloid precursor protein into amyloid β [63]. A PEN-2 
missense mutation is linked to familial AD in humans 
[77], knockdown of PEN-2 in zebrafish leads to neuronal 
loss and apoptosis [78], and loss of PEN-2 causes astro-
gliosis, enhanced inflammatory responses, age-depend-
ent cortical atrophy, and neuronal loss in mice [79]. Our 
small IHC experiment showed a regional expression of 
PEN-2 in the hippocampus and substantia nigra in a par-
ticipant with high ADNC. As multiple mechanisms other 
than methylation can impact gene expression, we cannot 
predict the direct impact of PEN-2 and NCSTN promoter 
hypomethylation on the activity of their respective pro-
teins or the γ-secretase complex and further investiga-
tions will be needed to validate and better understand 
this novel discovery. Similar to our findings in genes of 
the γ-secretase complex, differential methylation of the 
promoter regions of genes involved in clathrin-mediated 
endocytosis (CLTA, BIN1 and CD2AP) was also unique 
to neurons of the dentate gyrus. We cannot confidently 
predict the effect of promoter hypermethylation in 
CLTA and hypomethylation in BIN1 and CD2AP on the 
expression of the respective proteins. Nevertheless, these 
results are interesting and support previous findings 
about the involvement of clathrin-associated endocytic 
proteins in Alzheimer’s disease [80–83]. Notably, these 

results could not be identified in the bulk methylation 
data (Fig. 5 and Additional File 1: Fig. S10), implying that 
cell type deconvolution can enable the discovery of novel 
molecular pathologic changes of AD. Our finding should 
motivate cell-type-specific re-analysis of previously pub-
lished bulk methylation datasets to investigate what new 
insights into AD molecular pathology can be gleaned 
through the use of deconvolution. The lack of any clear 
association between bulk or CTS methylation and cogni-
tive status is not surprising since major CTS methylation 
findings were related to Aβ, which is notoriously poorly 
correlated with clinical diagnosis of dementia.

Limitations
Although we identified novel methylation differences 
in the oldest old that were associated with ADNC, our 
study had several limitations. We used the Illumina 850k 
platform, which only captures a small fraction of the 
human methylome and is not designed to capture DNA 
hydroxymethylation or other types of epigenetic changes. 
A general limitation of the 90 + Study cohort is the lack 
of ethnic diversity and the relatively higher education 
compared to the general oldest-old population in the US. 
Problems with DNA quality preserved in FFPE tissue fur-
ther limited us in selecting a representative cohort, the 
cohort therefore did not reflect the overall distribution of 
ADNC and cognitive status of the full 90+ Study cohort. 
While our cohort was uniquely old with a mean age of 97 
(SD ± 3.5) years, we only had a limited sample size of 47 
individuals, out of which only 4 individuals had low or no 
ADNC as measured by AD severity score (see Table 1). 
This possibly reduced our ability to replicate AD related 
methylation differences that were previously reported 
in several other studies [1, 2, 7, 8, 84]. Nevertheless, the 
discoveries we made in the DG were detectable despite 
the low sample size. Previous papers primarily described 
methylation differences in cerebral cortical regions 
(mainly frontal cortex) related to Braak stage for neurofi-
brillary degeneration, the strongest neuropathologic cor-
relate of dementia. In our oldest old cohort, we did not 
have any individuals with low burden of neurofibrillary 
tangles as represented by an NIA-AA B score of 0 or 1 
(similar to Braak stage II or less). Comparing individuals 
with NIA-AA B scores of 2 and 3, we did not detect any 
associations of methylation with neurofibrillary tangles 
in the frontal cortex, but detected some DMPTs in the 
dentate gyrus and cingulate gyrus. The cell type decon-
volution approach used in our study allowed us to inves-
tigate cell-type-specific associations in bulk homogenate 
without the need to sort nuclei to obtain CTS profiles 
[10–12]. However, we were not able to recover CTS 
profiles for all cell types across every brain region, espe-
cially microglia, due to their relatively low estimated cell 
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type proportions. This underscores the need to generate 
sorted CTS data for low abundance cell types, as recent 
studies have done for gene expression [85]. While we 
found several functionally relevant associations between 
altered DNA methylation and ADNC, future studies 
should validate our findings experimentally using sorted 
CTS data and high dimensional imaging. We also cannot 
determine whether the associations we found are causal 
or merely correlative, but they do provide interesting 
mechanistic hypotheses to test experimentally.

Conclusion
We presented a novel dataset of bulk methylation at 
eight precisely dissected brain regions in the old-aged 
human brain. We applied computational deconvolution 
as a powerful method to recover cell-type-specific signals 
without the need for actual cell sorting. With a total of 47 
cases, our unique old-aged cohort was small and skewed 
towards higher burdens of AD neuropathology. We 
were therefore not able to replicate findings from previ-
ous studies where differential methylation was related to 
Braak stages in the frontal cortex. Nevertheless, we dis-
covered a high amount of biologically meaningful meth-
ylation differences related to AD neuropathology mainly 
in the dentate gyrus and cingulate gyrus. Both regions 
have previously been underrepresented in methylation 
studies of AD. In neurons of the dentate gyrus, increased 
Aβ plaque burden was associated with promoter hypo-
methylation of two important genes of the γ-secretase 
complex (PEN-2, NCSTN), a complex that is involved 
in the cleavage of amyloid precursor protein into Aβ. 
Our dataset was made publicly available and can serve 
as a brain region reference panel for future studies and 
help advance research in aging and neurodegenerative 
diseases.
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