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Abstract 

Occupant behavior (OB) in buildings is a leading factor influencing energy use in buildings. Quantifying

this influence requires the integration of OB models with building performance simulation (BPS). This

study reviews approaches to representing and implementing OB models in today’s popular BPS programs,

and discusses weaknesses and strengths of these approaches and key issues in integrating of OB models

with  BPS programs.  Two key findings  are:  (1)  a  common data  model  is  needed to  standardize  the

representation of OB models,  enabling their  flexibility and exchange among BPS programs and user

applications; the data model can be implemented using a standard syntax (e.g.,  in  the form of XML

schema), and (2) a modular software implementation of OB models, such as functional mock-up units for

co-simulation, adopting the common data model, has advantages in providing a robust and interoperable

integration with multiple BPS programs. Such common OB model representation and implementation

approaches help standardize the input structures of OB models, enable collaborative development of a

shared library of OB models, and allow for rapid and widespread integration of OB models with BPS

programs to improve the simulation of occupant behavior and quantification of their impact on building

performance.
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1. Introduction

Occupant behavior (OB) in buildings refers to occupants’ presence and movement, and interactions with

building systems that have an impact on building performance (thermal, visual, acoustic, and indoor air

quality). The interactions include adjusting thermostat settings, opening or closing windows, dimming or

turning on/off lights, pulling up or down window blinds, switching on or off plug loads, and consuming

domestic  hot  water.  Energy-related OB in buildings is  one of the six  influencing factors  of building

performance  (Yoshino, 2013), including climate, building envelope, building equipment, operation and

maintenance, OB, and indoor environment conditions. People spend most of their time in buildings; their

daily interactions with building systems strongly influence building energy use. Occupants’ expectations

of desired comfort, including economic, physiological, and psychological needs, drive their actions to

adjust their surrounding environment (e.g., indoor temperature, humidity level, lighting, CO2). 
Technologies  alone  do  not  necessarily  guarantee  low  energy  use  in  buildings.  Low-cost  behavioral

solutions have demonstrated significant potential energy savings  (Navigant Consulting, 2016). Clearly,

understanding and accurately modeling OB in buildings are crucial to reducing the gap between design

and actual building energy performance, especially for low-energy buildings relying more on passive

design features, occupant-controlled technologies, and occupant engagement. 
Building performance simulation (BPS) programs are applied extensively to appraise the performance of

building  energy  systems  and  technologies.  Presently,  there  is  a  significant  disagreement  between

simulated  results  and  actual  building  energy  consumption  (Bordass  et  al.,  2004),  which  limits  the

application and potential impact of BPS programs. The core issues are not with deterministic factors, such

as the physical characteristics of building envelope, HVAC systems, or lighting and electrical equipment,

which have been investigated for the past several decades. Discrepancies mainly arise from a lack of

quantitative research truthfully representing energy-related OB in buildings. 
Advances in BPS over the last decades envisioned a switch from a deterministic approach to a stochastic

approach in considering OB in buildings  (Cowie, Hong, Feng, & Darakdjian, 2017; Parys, Saelens, &

Hens, 2011). Traditionally, OB is represented as oversimplified and predefined  deterministic or static

schedules or fixed settings and rules (Cowie et al., 2017) which are input into BPS programs resulting in

deterministic and homogeneous results—ignoring the stochastic nature, dynamics, and diversity of OB

(Parys, Saelens, Roels, & Hens, 2011). For example, shading devices are closed if a space has too much

solar heat gain causing thermal discomfort or too much glare causing visual discomfort, windows are

opened if the indoor temperature is high and outdoor temperature is lower than the indoor temperature,

and electrical  lighting is  dimmed or completely turned off  if  a  space has  adequate  daylight  to  meet

occupant  visual  comfort  needs.  However,  occupants  may  interact  with  a  control  system—i.e.,  open

windows—for a variety of reasons: (1) feeling hot, as a thermal comfort response, (2) feeling stuffy, as an
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indoor air quality consequence, or (3) arriving in a space, as an event driven situational driver (O’Brien &

Gunay, 2014). 
Field-measured data and large-scale surveys confirmed that stochastic occupant presence and adaptive

behaviors can be represented as probabilistic models of behavior (Wang et al., 2016). Probabilistic models

of behavior can be derived from historical data of the indoor and outdoor environment conditions (e.g., air

temperature  and  relative  humidity,  illuminance  levels,  CO2 concentration),  occupancy  presence  and

movements, and the operating conditions of the building systems (e.g., windows, lighting, plug loads,

thermostat,  HVAC,  shades,  blinds).  Through  the  machine  learning  process,  the  correlations  can  be

established between some observed physical or situational environmental conditions and the observed

human-building interaction. The final outputs of the behavioral models are probabilities of occupants

being present  in  a space or performing a  certain  action  when triggered by various environmental  or

situational  conditions.  In  this  view,  probabilistic  models  provide  structural  solutions  to  organize  the

random and stochastic phenomena of OB in buildings. Accordingly, data-driven models have been widely

developed by the  research community and adopted by several  BPS programs to  improve  simulation

assumptions  on  occupancy  presence  and  adaptive  interactions  (Hong,  Taylor-Lange,  D’Oca,  Yan,  &

Corgnati, 2015).
Quantifying OB influence on building performance requires energy-related OB models to be integrated

with BPS programs. Popular BPS programs, including EnergyPlus (and its various user interfaces, such as

DesignBuilder), IDA ICE, ESP-r, DeST, TRNSYS, and DOE-2 use various approaches at various levels

of fidelity to represent occupant-related input and to implement OB models for simulation. Typically, OB

models are developed as probabilistic regression equations  based on independent variables and metrics.

The selection of different influencing variables for similar OB models makes it difficult to compare the

models and incorporate them into BPS programs. OB models also tend to be located all over the code of

BPS programs, making it difficult to change. A recent review of modeling and simulation approaches for

OB in buildings (Gunay, O’Brien, & Beausoleil-Morrison, 2013) discussed the problem of transferability

of occupant models developed based on a selected observation study to different building models. Also,

one of the key takeaways drawn from previous studies (Hong, D’Oca, Taylor-Lange et al., 2015) is the

deficiency of a standardized method for representing and implementing energy-related OB models in BPS

programs. 
Shortcomings in the diffusion of OB models implementation in current BPS programs are exacerbated by

the non-trivial environment of common simulation engines, which have unfriendly interfaces and require

programming  knowledge  and  specific  code  validation  procedures  to  incorporate  custom  behavioral

models. Further, when a behavioral model allows its embedding via source-code alteration, idiosyncratic

data syntax and file format/structure issues do not permit flexibility or a standardized way to achieve

transferability of behavioral models between simulation engines. 
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This study critically reviewed approaches to the implementation and representation of OB models in eight

popular  BPS  programs  among  the  engineering  and  simulation  community.  Approaches  to  modeling

occupant  behavior  have  been  reviewed  (Yan  et  al.,  2015),  such  as  (1)  Average  value  models

(deterministic), Bernoulli models, Survival models, and agent-based models are used to predict state, and

(2) Markov models and Survival  models are used to predict  events (state-transitions).  Therefore,  OB

modeling approaches are not covered in this study. The goal of this study is to provide insight into the

following important questions:

(1) What approaches are employed in BPS programs to implement OB models (i.e., what will enable

users to model OB)?
(2) What approaches are used in BPS programs to represent the inputs of OB models?
(3) What  are  the  strengths  and  weaknesses  of  different  implementation  and  representation

approaches?
(4) What are the challenges of enabling the interoperability of OB models for BPS programs?

2. Implementation of OB models in BPS programs

This study identified and reviewed four approaches to implementing OB models in BPS programs. The

implementation of OB models in BPS programs, in this context,  refers to simulation users or energy

modelers choosing certain approaches and preparing inputs for the OB models to be included as part of a

building  energy  model  using  a  particular  BPS  program.  These  OB  models  can  be  either

deterministic/static or stochastic by nature. For example, a deterministic occupant-driven control would

determine  occupant  actions  based  on  indoor  and/or  outdoor  environmental  conditions  using  a

deterministic  correlation function. On the other hand,  a stochastic  OB model  is  related to  occupants

performing specific actions with a probability related to environmental conditions (e.g., occupants feeling

hot and opening a window) or events (e.g., entering or leaving a space). This section describes each of the

four approaches and categorizes them based on the BPS program supporting their implementation. The

strengths and weakness of each approach are discussed. 

2.1. Four implementation approaches of OB models 
2.1.1.       Direct input or control 

The direct input or control approach defines occupant-related inputs using BPS program semantics—just

as other model inputs (building geometry,  constructions, internal heat gains,  and HVAC systems) are

defined. 
In this approach,  the user defines and inputs temporal schedules for thermostat  settings (cooling and

heating temperature set points), occupants, lighting, plug loads, and the HVAC system. Direct input is

supported by almost all BPS programs. Some BPS programs also allow users to specify deterministic or
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static rules governing the operation of building components and systems based on indoor and outdoor

environmental parameters. 
The direct input or control approach requires users to pre-calculate the schedules based on the correlations

between the environmental conditions and the occupant actions of the OB models, as illustrated in Figure

1. There is no runtime communication between the pre-calculation module and the BPS program. The

outputs of occupant behavior pre-calculations are based on pre-defined rules or default values, or assumed

environmental conditions, rather than those generated by the BPS. Users may need to manually adjust the

pre-calculation  assumptions  based  on  the  simulated  results  several  times  to  ensure  the  results  are

reasonable. It is a challenge, especially when some dynamic indoor parameters (i.e., air temperature) are

used in both sides of the correlation function (e.g., turn on or off air conditioners when feeling hot or

cold). Static set points (i.e., temperature set point) are typically used as an approximate to determine the

occupant actions and generate the schedules in this approach, which may reduce OB model accuracy.

Figure 1. Workflow for the direct input or control approach

2.1.2.       Built-in OB models

The second method is to use the OB models already implemented in the BPS programs (Figure 2), usually

in a dedicated software module. The built-in OB models approach provides a simple way to model the

specific OB models; however, currently, there are only limited built-in OB models in few BPS programs,

which affects the flexibility of this approach. 

Figure 2. Workflow for the built-in OB models approach
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2.1.3.       User function or custom code 

In the user function or custom code approach, the user can write functions or custom code, as part of a

building energy model input file, to implement new building operation and supervisory controls or to

overwrite  existing  or  default  ones  (Figure  3).  For  example,  EnergyPlus  has  the  energy management

system feature and DOE-2 has the user function feature that implements such functionality  (Yan et al.,

2015). This approach provides flexibility by enabling users to change how a BPS program simulates a

building energy model without having to recompile the source code of a BPS program. This approach

allows both deterministic and stochastic OB models using built-in or user-defined stochastic mathematical

functions. 

 

Figure 3. Workflow for the user function or custom code approach

2.1.4.       Co-simulation

Co-simulation is a simulation methodology that allows distinct components to be simulated by different

simulation tools running simultaneously and switching information in a combined routine (Wetter, 2011). 
As an example, today’s most advanced visual comfort and blind control models are based on image-based

annual glare analysis of multiple viewpoints in a scene using a combination of RADIANCE, DAYSIM,

and EVALGLARE (Reinhart and Wienold, 2011; Gunay et al., 2014). Assuming that BPS developers do

not want or do not have enough expertise to fully implement those visual comfort  and blind control

models, co-simulation becomes a feasible option to integrate those models with the BPS program for a

fully consistent analysis.  Similar examples can be described for computational fluid dynamics (CFD)

based natural ventilation studies predicting the performance of natural ventilation in large-scale naturally

ventilated  buildings  (Wang  and  Wong,  2008;  Wang  and  Wong,  2009;  Tan  and  Glicksman,  2005).

Typically, current BPS programs do not implement multi-zone CFD models for large openings or atrium
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configurations simulation to improve natural ventilation prediction and optimize design methods. Once

again, co-simulation between dedicated CFD models and BPS program emerges as one of the plausible

ways to evaluate their integrated performance. 
Co-simulation  allows BPS to be carried out  in  an  integrated manner,  running modules  developed in

different programming languages or in different physical computers. Co-simulation can be performed in

EnergyPlus using two methods. The first is to use the building control virtual test bed (BCVTB) as a

master for the simulation, controlling the execution and exchange of data between other tools  (Wetter,

2011). For example, using this method, both an indoor air quality analysis tool and EnergyPlus can be the

slaves of the BCVTB, and the outdoor air flow rate in EnergyPlus can be determined based on the indoor

air quality analysis at each time step of the simulation (Chen, Gu, & Zhang, 2015). This is also the case of

the MLE+ toolbox  (Bernal,  Behl,  Nghiem, & Mangharam, 2012), which provides a set of MATLAB

functions  and  classes,  as  well  as  a  Simulink  library,  for  performing  co-simulation  with  EnergyPlus

(version 8.3). This method uses a specific interface defined by BCVTB and EnergyPlus, rather than a

standardized  interface,  to  exchange  data  among  the  tools.  A  tool  developed  to  co-simulate  with

EnergyPlus via BCTVB cannot be reused by other BPS programs. The second method overcomes such

limitations by adopting a standardized way of using the functional mock-up interface (FMI), which is a

tool-independent standard for the exchange of dynamic models and for co-simulation. In this case, all

models implementing FMI can be integrated with all the BPS programs adopting the FMI standards. For

example, the OB functional mock-up unit (obFMU) (Hong, Sun, Chen, Taylor-Lange, & Yan, 2016) can

be used by both EnergyPlus and ESP-r for co-simulation. Figure 4 illustrates a co-simulation approach

using the BPS program as a master and the co-simulation module as a slave.
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Figure 4. Workflow for the co-simulation approach

2.2.  Which implementation approach to choose for different OB model types

Given these four approaches to simulating OB models in BPS programs, energy modelers (i.e., simulation

users) must decide which is the most appropriate to select. Table 1 illustrates a qualitative evaluation

(based on the authors’ experience using various BPS programs) of ease of use of the four implementation

approaches for the two types of OB models: deterministic and stochastic. Typically, direct input or control

logics and built-in OB models take the form of deterministic model types. Modelers may also choose to

implement a data-driven deterministic control logic or customized code for the specific purpose of the

simulation study. It is inconvenient and rare for users to develop a complex co-simulation environment for

the limited purpose of implementing deterministic OB rules. However, this is still one option modelers

can exploit when existing co-simulation environments are already in place.
Probabilistic models typically are implemented as user functions or customized codes, or in a dedicated

co-simulation environment. Interestingly, some OB models are appearing as built-in models in certain

BPS programs, as described below. This enhancement enables even non-expert modelers to initiate the

process of implementing advanced behavioral inputs to model and evaluate the impact of OB on building

energy performance—namely energy and comfort—to the same extent of other indoor and outdoor input

variables of their simulation models. 
Overall the direct input or control is the approach most frequently used by most simulation users. The

built-in OB models approach is limited to a few BPS programs (e.g., DeST and ESP-r). The user function

approach is also limited to a few BPS programs (e.g., EnergyPlus, DOE-2, IDA ICE, and TRNSYS). The

co-simulation approach is emerging as a more robust and interoperable approach to simulating OB, as

more BPS programs (e.g., EnergyPlus and ESP-r) are adopting this approach. 

Table 1. Qualitative evaluation of the implementation of deterministic and probabilistic OB models using four 
approaches in BPS programs.

Model Type
Direct input or 
control 

Built-in OB 
models

User function or custom 
code

Co-
simulation

Deterministic / static *** ** * *
Probabilistic / 
stochastic ** * ***
Note: * applicable, but not convenient; ** commonly used; *** most often used

2.3. The implementation approaches used in the eight BPS programs

This section provides an overlook of the most common implementation approaches adopted by the state-

of-the-art research and practices among the simulation community, focusing on the eight popular BPS

programs. Table   summarizes which of the four implementation approaches are supported in the eight
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BPS programs. To compile this table, authors used their modeling experience and interviews with BPS

software developers.
Table 2. OB model implementation approaches in the eight BPS programs

DOE-2 EnergyPlus DeST ESP-r
IDA
ICE

TRNSYS
IES
VE

TRACE

Direct input or 
control x x x x x x x x

Built-in OB models   x x  
User function or 
custom code x x  x x

Co-simulation  x  x

The  direct  input  or  control  approach  is  implemented  in  all  eight  BPS  programs.  The  other  three

approaches show significant diversity within the BPS programs. Currently, EnergyPlus and ESP-r support

co-simulation.  Only  DeST and ESP-r  provide  built-in  OB models.  User  function  or  custom code  is

supported in EnergyPlus, DOE-2, IDA ICE, and TRNSYS.
DOE-2 v2.1E (DOE-2, 2017) uses deterministic time schedules to represent the number of occupants in

spaces and the operation conditions of lighting, windows, internal gains, plug loads, and HVAC systems.

Lighting  and  windows  can  be  controlled  based  on  indoor  or  outdoor  environmental  parameters.  A

probability can be specified to represent the likelihood of occupants operating the blinds, assuming other

conditions  (e.g.,  solar  radiation,  glare)  are  met.  Also,  advanced users  can  develop  user  functions  to

overwrite all the controls listed above. 
In  EnergyPlus  v8.7  (U.S.  DOE  BTO,  2017),  occupancy,  internal  loads,  and  HVAC  operation  is

determined by deterministic schedules and set points. However, it allows windows to be opened or closed

and shading to be operated based on indoor and outdoor environmental parameters (e.g., air temperatures,

enthalpy, and wind velocity for windows). Also, datasets and schedules can be imported as inputs to

certain  controls.  For  example,  the  room-level  occupancy data  simulated in  the  Occupancy Simulator

(Chen, Luo, & Hong, 2016; Luo, Lam, Chen, & Hong, 2017) using the stochastic Markov-chain processes

can be exported as part of an EnergyPlus input file in input data file (IDF) format. The airflow network

model  allows  more  comprehensive  ventilation  controls.  Lighting  can  be  controlled  by  deterministic

schedules and daylighting levels. EnergyPlus has a dynamic clothing model based on ASHRAE Standard

55 (Schiavon & Lee, 2013), as well as an adaptive comfort model based on US ASHRAE Standard 55 (de

Dear & Brager, 1998) and EU ISO Standard 15251 (EN 15251:2008). Advanced users can use the energy

management system feature to write code to implement OB models. Another possibility is to use the

external interface that provides FMI to co-simulate with an external OB tool obFMU (Hong et al., 2016).

A few researchers  already have successfully  implemented these approaches for modeling OB  (Chen,

Liang, Hong, & Luo, 2017; Gunay, O’Brien, & Beausoleil-Morrison, 2015; Langevin, Wen, & Gurian,

9



2014). In one case, OB models were implemented into EnergyPlus using an energy management system

and a program written in Ruby to allow BPS users to select OB models to be used during the EnergyPlus

simulation  with a  user-friendly  graphic  interface  called  OpenStudio  (O’Brien  & Gunay,  2016).  This

approach significantly  simplifies  the  use  of  stochastic  OB models  since  the  integration  with  energy

models are implemented automatically.
DeST v2.0 (Yan et al., 2008) users can define deterministic schedules and choose stochastic OB models

already implemented for occupant movement between rooms, as well as lighting, window opening, and

HVAC operation. The occupancy is simulated by a Markov chain model (Wang et al., 2011; Feng et al.,

2015) which  describes  the  transition  probability  for  each  occupant  among  spaces.  The  operation  is

modeled as a probabilistic variable under a generalized framework, related to both the events occupants

are involved in and the environmental conditions (Ren, Yan, & Wang, 2014; C. Wang, 2014). Occupant

use of appliances is currently controlled by simple schedules.
ESP-r v12.3 (EPS-r, 2017) can represent occupants both with built-in schedules and direct data import.

For lighting and blind control, the Lightswitch 2002 (Reinhart, 2004); for lighting, Hunt  (Hunt, 1979);

and  for  windows  and  fans,  Rijal  et  al.  (2008) adaptive  control  algorithms  are  implemented.  These

algorithms use SHOCC  (Bourgeois 2005),  a sub-hourly occupancy-based control  model, via  a  hard-

coded interface for coupling with ESP-r  (Cowie et al., 2017). With the same method,  ESP-r can gain

functionality to link equipment use (and associated small power loads) to occupant presence through

advanced power management profiles. The co-simulation module is under development right now. 
IDA ICE v4.7 (EQUA Simulation AB, 2017) provides flexibility for users via the input and control rule

definition. Predefined default schedules can be used, or the user can build up a control macro using a

user-friendly graphic interface. Here rules can be defined using various inputs, including data import,

sensors output, and other environmental parameters. Also, users can access the semantics of the software

to code algorithms to model OB. Some research projects have used this approach (R. V. Andersen, 2009;

Buso, Fabi,  Andersen, & Corgnati,  2015; D’Oca,  Fabi,  Corgnati,  & Andersen,  2014; Fabi,  Andersen,

Corgnati, & Venezia, 2012).
For TRNSYS v17  (TRNSYS, 2017), stochastic models can be linked via DLL software components.

Also,  TRNSYS and CSTB provide a library,  called TESS,  which allows users  to  develop  stochastic

models  (language  W).  TRNSYS  allows  environmental  parameter-based  controls  but  cannot  model

daylighting (can only import results from tools such as Radiance or Daysim). One study represented OB

models in  Modelica and connected them to TRNSYS  (Baetens & Saelens,  2011). TRNSYS does not

adopt FMI or other data exchange framework for users to implement co-simulation directly. However, as

a component/module based tool, TRNSYS allows advanced users to develop their own middleware for

exchanging data with other tools. For example, Beausoleil-Morrison et al.  (Beausoleil-Morrison et al.,

2012) develop a middleware to demonstrate the ESP-r and TRNSYS co-simulation for modeling solar
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buildings.  For  Integrated  Environmental  Solutions  (IES)  Virtual  Environment  (VE)  (IES  VE,  2017),

custom controls  can  be  created  in  the  program’s  interface  even with  user-defined  formulas,  so  it  is

possible to implement more advanced OB controls, but it is not integrated yet. Also, measured data can be

fed in at a 1-second time step. IES VE does not allow the user access to the software code.
In Trane Air Conditioning Economics (TRACE) 700 v6.3 (Trane, 2017) users can use schedules to define

times for events based on input schedules. There is no specific algorithm for opening windows, but input

and schedule are available for infiltration. The user could enter the maximum air flow rate of infiltration

and use a schedule to decrease or increase that number during certain hours when the window is expected

to be open. This is not directly tied to occupancy. Also, the user is unable to modify the software code.

2.4. Strengths and weaknesses of the implementation approaches

Strengths and weaknesses of each of the implementation approaches are discussed as follows, using four 

qualitative metrics: ease of implementation, flexibility, reusability, and accuracy.

 Ease of implementation or application refers to the degree of knowledge required from the 

modeler to implement the OB model into the BPS environments. 
 Flexibility is an indicator of the capability of the implementation approach to cover different 

control logics or model types.
 Reusability hinges on the capability of one implementation approach to reiterate OB models for 

different uses, studies, or purposes. 
 Finally, accuracy invokes the extent to which the simulation outcomes derived from the OB 

models implementation conform to the actual measurements or benchmark.

The direct input or control approach is straightforward to  implement and easy to use. Because of this

reason, this implementation approach emerges today as the most commonly used among the engineering

community. However, it is limited in terms of OB model representation, since the specific BPS program’s

semantics for input determine a lack of reusability among simulation tools. Further, direct input or control

approach has  low  flexibility because  it  is  usually  not  robust  enough to  represent  complex  logics  or

algorithms for certain OB models. This approach often associates occupant controls with building systems

or components rather than the occupants themselves. For example, occupant actions (opening or closing

windows) can be performed when occupants are not even present. This typically leads to low prediction

accuracy during  the  validation  process,  contributing  to  significant  discrepancies  between  simulation

results and actual measured performance. 
In the case of built-in models, the stochastic nature, complexity, and diversity of OB in buildings can be

represented in BPS. With the built-in OB models approach, OB results more flexibly represented with a

good degree of ease of implementation. However, one of the drawbacks of this implementation approach
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is that users cannot create new types (equation forms or new input variables) of OB models or use new

algorithms for the built-in OB models. Moreover, users can only choose those OB models that are already

embedded in the simulation tool—hindering reusability of models and accuracy of simulation results. 
Regarding  ease of  implementation,  the  user-customized code and functions approach usually requires

advanced user experience and deep knowledge of a particular BPS program to use such features correctly

and efficiently. Another limitation—which hinders usability and reusability—is that most BPS programs

are supporting user-written code that lacks a comprehensive debugging mechanism. Typically, modelers

can call new codes and functions only at certain predefined points within a BPS program, allowing little

flexibility for creating customized control options. Although some user-customized codes and functions

have been developed and employed among the simulation community (IEA-EBS Annex 66, 2016), only

very few attempts have been made to investigate the  accuracy  of this simulation approach, providing

reliable validation procedures and results (Langevin et al., 2014; Schweiker et al., 2012).
The co-simulation approach provides the maximum flexibility regarding implementation of complex OB

models in a separate software module that is independent of and interoperable with BPS programs. One

unique requirement is that BPS programs have to implement FMI to support the co-simulation feature.

Developing and testing OB models in FMUs for co-simulation also requires detailed knowledge of FMU

and FMI, which are factors hindering the ease of implementation and the usability among modelers in the

engineering and simulation community. The real-time exchange of information between BPS programs

and the co-simulation modules leads to computing overhead,  which can slow the simulation process.

Besides  the  co-simulation  approach  using  obFMU  with  EnergyPlus  (Hong  et  al.,  2016),  there  are

advanced users who started to use the co-simulation approach using a different framework. For example,

multi-agent  simulation  (MAS)  is  used  in  CitySim  (Robinson  et  al.,  2011) and  MATSim  (MATSim

Community, 2017). 

2.5. Application of OB models with BPS programs

Deterministic OB models are handled as fixed inputs of the BPS programs, to the same extent as other

variables of the building energy models—i.e., thermos-physical characteristics of walls, roofs, windows,

lighting system power and schedules, as well as HVAC system and equipment efficiency. For stochastic

OB models in BPS programs, the simulation process consists of three main steps. First, the OB model is

implemented  as  probabilistic  inputs  of  the  BPS  programs,  according  to  one  of  the  four  selected

approaches (direct input, built-in model, user function or custom code, and co-simulation). The simulation

is then run a set of times (i.e., 20 or 100 times) with the BPS programs. For each run the simulated

probability  of  behavior  is  paired  with  a  uniformly  distributed  set  of  generated  random  numbers  to

determine  the  actual  behavior  condition—i.e.,  a  space  being  occupied  or  an  adaptive  action  being
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performed. To maintain the stochastic patterns of OB, only when the simulated probability is higher than

the randomly generated number is the behavior action activated and simulated. 
This methodological approach for simulating probabilistic OB models needs to consider several important

factors. First, the number of simulation runs necessary to ensure a statistically relevant representation of

the stochastic nature of OB depends on the use cases which have been discussed  (R. Andersen, Fabi,

Toftum, Corgnati, & Olesen, 2013; Buso et al., 2015; D’Oca et al., 2014; Fabi, Andersen, Corgnati, &

Olesen, 2012; Feng, Yan, & Wang, 2016). Second, each simulation run calculates a different value of the

building performance (either energy use, peak demand, or comfort level). All simulation runs provide a

probabilistic distribution of the building performance rather than single values. This reflects the nature

uncertain impact of OB on the building performance in reality. Explicitly, this opens a collateral issue on

how to better communicate probabilistic results of the simulations to clients.
Applications  of  the  results  of  the  simulated  OB on  building  energy  performance  are  manifold  and

heterogeneous. Application and impact of OB models are starting to be seen in a multidisciplinary and

multiscale perspective of energy efficiency, over the entire building life cycle. 
Results of OB simulations in BPS—without regard to the implementation or representation approach—

find pertinence during the building and control system design phase, from the early schematic to the

detailed design stages. Operating conditions of the building performance (i.e., via building management

and control of the HVAC and plant systems) can be improved by enabling data-driven (i.e., from smart

meter data and building automation systems) and machine-learned (i.e., by employing big data analytics

and data mining techniques) OB model predictive controls. This is attained by optimizing HVAC systems

and equipment sizing, precooling spaces or avoiding unnecessary conditioning in unused spaces,  and

predicting  occupancy  schedules  for  presence  and  movements  (e.g.,  time  of  the  first  arrival  and  last

departure, time of intermediate absences at the zone level, number of people at the building level). Also,

BPS programs enabling OB models can be adopted for the evaluation of different retrofit strategies, both

at the building- and city-scale level, with better assessment of the variation of retrofit benefit (e.g., energy

savings, energy cost savings). On the one hand, the diverse OB model application perspectives open a

broad  spectrum  of  simulation  opportunities.  On  the  contrary,  the  complexity  of  the  OB  simulation

process, from the selection of the most appropriate model and approach to the choice of the most suitable

application into a BPS program, can lead to the dangerous possibility of misleading simulation results.

These aspects need to be considered when appraising the wider diffusion of the OB simulation among

current BPS programs. 

3. Representation of OB models in BPS programs

OB models are currently represented using either the specific syntax of particular BPS programs or a

common semantic data model,  e.g.,  in the form of XML (eXtensible Markup Language). Section 3.1
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focuses on illustrating the fragmentation in specific semantic input format adopted for BPS programs

(Table 3). Section 3.2 introduces the IFC (Industry Foundation Class) based data models. Section 3.3

describes the XML-based data models, including the Green Building XML (gbXML), a de-facto industry

standard used to  represent  buildings and systems for energy modeling,  and the obXML standardized

language to represent OB models in BPS programs. Finally, a graphical summary is provided to link

content introduced in various sections and discuss further research development requirements. 
JSON  (JavaScript  Object  Notation)  is  an  open-standard format that  uses  human-readable text  to

transmit data objects consisting of  attribute–value pairs and array data types (wikipedia). It is easy for

humans to read and write. It is easy for machines to parse and generate.  YAML is  a human-readable

data serialization language (wikipedia). It is commonly used for configuration files, but could be used in

many applications where data is being stored (e.g. debugging output) or transmitted (e.g.  document

headers). Although JSON and YAML are similar to XML, they have not been used yet to represent OB

models in the literature. 

3.1. Specific input semantics in BPS programs

The eight BPS programs use their syntax to represent OB models in either ASCII text format or binary

format.
EnergyPlus  supports  input  files  written  in  its  native  IDF  format.  IDF  files  conform  to  the  ASCII

(American Standard Code for Information Interchange) text-based data format written using the Input

Data  Dictionary (IDD) semantics.  To enhance the flexibility of EnergyPlus’ OB modeling capability,

Lawrence Berkeley National Laboratory (LBNL) recently developed a co-simulation software (Hong et

al., 2016). Accordingly, co-simulation in EnergyPlus is performed by using an FMI to allow for direct

coupling with various programs. 
IDA ICE employs equation-based models based on the Modelica-like  Neutral  Model  Format (NMF),

making it straightforward to quickly expand the software with built-in models or by more complex user-

customized functions. However, newly created NMF OB models can only be shared with other IDA ICE

users. NMF is an ASCII text-based semantics system for IDA ICE.
DeST enables users to input parameters related to occupant behavior through a graphical user interface,

where there are several typical behavior patterns for users to select from, and customized settings are also

supported. The inputs are stored in a binary-based SQL database. The SQL database allows the use of

multiple data tables to represent user inputs for building components and systems, as well as OB models.

Different  tables  are  linked together  using  unique  IDs or  keys.  The  inputs  can  also  be imported  and

exported as XML files for potential communications with other tools.
The  ESP-r  simulation  engine—namely  “bps”—formulates,  by  default,  binary  results  libraries  in  the

ASCII text format. With the condition of a GNU libxml2 library available on the system, BPS can export
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the results directly into ASCII XML and comma-separated-value formats. If the GNU libxmlt library is

available, BPS can be configured to translate the XML result file into any user-specified ASCII format.

Using the BCVTB, users can link ESP-r with OB models implemented in other tools such as MATLAB,

Simulink, Dymola, and Radiance.
TRNEdit, the TRNSYS Editor, allows users to create stand-alone models having the TRNSED input file

(.trd  extension)  format  and syntax.  The TRNSYS simulation  engine is  written  using the  FORTRAN

programming language and uses a dynamically linked library (DLL) system architecture to allow for a

modular structure that can be extended around the core simulation engine called “IISiBat,” by adding new

DLLs  to  the  system.  This  allows  TRNSYS  users  to  create  quite  a  straightforward  custom  model

components  (e.g.,  to  represent  a  new  type  of  heating  module)  using  a  choice  of  DLL compiling

programming languages including FORTRAN, Pascal, C, C++, etc. 
DOE-2  supports  the  building  description  language  (BDL)  ASCII  text-based  input  syntax,  which  is

compatible  with  the  conventions  defined  in  both  the  C  and  FORTRAN  programming  languages.

Expressions can include elements such as special BDL functions, math and logical operators, and logical

structures. Manual entry of user-customized BDL expressions requires a relatively detailed knowledge of

the BDL text data structure. 
IES VE’s input files are in the MIT/MTD native binary format. However, the IES codes are not public,

and modelers cannot gain direct access to MIT/MTD files in a text editor.
TRACE supports data serialized into closed-source binary BLOBs (binary large objects). Binary data are

stored as a single entity in a Sybase relational database. One of the drawbacks of binary BLOBs is that,

since the data source code is not available, inputs cannot be freely improved upon by modelers, and input

formats cannot be translated into different software architecture—nor can codes be adapted or modified to

operate user-customized variants of the simulation software.
Table 3. Input semantics in the eight BPS programs 

Simulation engine Native input format
DOE-2 BDL (text)

EnergyPlus IDF (text)
DeST SQL (binary)
ESP-r bps (text)

IDA ICE NMF (text)
TRNSYS TRANSED/DDL (text)
IES VE MIT/MTD (binary)

TRACE Sybase Database (binary)

3.2. The IFC data models

The IFC is an open and neutral ISO-certified (according to ISO 16739:2013) standard format for Building

Information Modeling (BIM) data (Thein, 2011). The IFC data files use the STEP physical file structure
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according to ISO 10303-21, and must be validated according to the IFC-EXPRESS specification. The IFC

data format has been used over the last 20 years to represent data models having different natures and

domains. Currently, a limited number of software applications support, import, and or export IFC file

formats to describe building and construction industry data (Hong, Zhang, & Jiang, 1997). Significantly,

IFC never gained momentum among the simulation community due to its complexity and lack of human-

and-machine  readability.  To  partially  overcome  this  drawback,  since  2004,  the  XML-based  ifcXML

schema  has  been  regulated  by  the  international  standard  ISO  10303-28.  The  ifcXML format  is  an

interoperability format to exchange 3-D building models  among XML tools.  The ifcXML language’s

purpose is to make data accessible to a broader audience, focusing on representing the built environment

and related services. One of the ifcXML application areas is a mapping between the IFC object model and

document-based representations such as schedules and quantity datasheets. Also, the ifcXML provides

communication with other XML-based domains, such as the GIS object models based on the GML3

standards.  The  ifcXML representation  is  also  expected  to  facilitate  the  extraction,  transmission,  and

merging  of  partial  building  models  during  AEC-FM  processes  in  parallel  and  collaborative  design

processes.  Despite  its  enabling data  transferability  capacity,  the  ifcXML is  only partially  diffused in

practice, due to the large size of typical ifcXML building model (an ifcXML file dimension is usually

300%–400% greater than an IFC file). At the current stage of development, IFC file format has not been

used to represent any OB models. 

3.3. The XML-based data models

Some data formats were considered appropriate for providing a data structure to describe OB model input

into BPS programs. Similar to other markup languages such as HTML, XML uses tags to separate data

items from one another  (Fourer  et  al.,  2009).  Tags are  nested in  a  tree  structure,  but  the  definition,

position, and order of tags is left to the user and can be described in a schema file (which is itself an XML

document). 
One of the advantages of working in XML is the vast availability of tools such as parsers, visualization

tools, and development environments. Originally designed to change the context of large-scale electronic

publishing, in its general form, XML is a meta-markup language providing a standard data format for

representing structured information. Typically, XML files take the form of human- and machine-readable

documents  conveying transferability  characteristics  (1) among applications  of  the  same software and

(2) between different software tools. Well-formed XML language follows some basic standardized syntax

rules: (1) The XML language is case sensitive, (2) No spaces are allowed between content and markup,

and (3) The attribute values must appear in a “value” format.
The XML language has the great advantage of being a neutral exchange language able to represent data

and models in a way that can easily be integrated into a diverse software environment. In the field of
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building engineering, several existing standards, and data models make use of the XML data format and

structure to describe data content from heterogeneous sources among applications of the same software.

Among an extensive array of XML data standard protocol development, first examples are the gbXML

(an industry de-facto BIM standard) and obXML (an emerging XML schema to standardize representation

and exchange of energy-related OB models in buildings).

3.3.1. The gbXML

Early in  1999 the California Energy Commission’s Public Interest Energy Research (PIER) Program,

Pacific Gas and Electric, and Green Building Studio funded the development of gbXML. The gbXML’s

primary goal was to enable the transmission of building information stored in CAD building models

(Ioannidis et al., 2012). By doing so, the gbXML aims to enable a two-way integrated interoperability and

communication between a broad range of design and engineers’ building models. The gbXML has the

advantage of representing one of the most  widespread standard schemas for data standardization and

exchange among the BPS programs. The gbXML is now an open source schema available to everyone. 

3.3.2. The obXML

Although gbXML provides an XML-based standard representation of buildings and systems, it represents

occupant  activities  and  models/controls  in  very  simplified  approaches.  There  is  a  strong  need  for  a

standardized  language  to  represent  and  exchange  OB models  over  BPS programs.  A previous  study

developed a  homogeneous semantic  information  model  for the  representation of  occupant  behavioral

models that enables interoperability of inputs and transferability of simulation outputs  (Hong, D’Oca,

Taylor-Lange et al.,  2015; Hong, D’Oca, Turner, & Taylor-Lange, 2015). This consistent schema and

language  was designed to  provide enough flexibility  for  existing and future  OB to be captured  and

implemented into BPS programs consistently.
A unifying format to express a broad range of behavioral models would help to optimize modeling in the

building simulation community. Researchers (Hong, D’Oca, Taylor-Lange et al., 2015) selected XML as

the most  appropriate choice to resolve behavioral data standardization in  building energy simulation.

LBNL developed  obXML,  a  standardized  XML schema based  on  the  DNAS framework  for  OB in

buildings. . The purpose of the XML representation of OB data and models is to enable the international

research  community  to  access  a  unified  schema  that  represents  the  OB  phenomena  in  the  built

environment at a large scale.
The  obXML schema  is  grounded  on  an  ontology  of  energy-related  behavior  in  buildings  integrally

embedded into a DNAS framework, described in (Hong, D’Oca, Taylor-Lange et al., 2015). The topology

of  the  DNAS framework  was  implemented  in  the  obXML schema  based  on  the  main  root  element
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OccupantBehavior branching into five  sub-elements  (1)  Behaviors,  (2)  Buildings,  (3)  Occupants,  (4)

Seasons,  and (5)  TimeofDay (Figure  5).  The OccupantBehavior root  element has  an  ID and version

attribute, indicating a unique ID and version. For a more detailed description of the obXML structure,

refer to  (Hong, D’Oca, Taylor-Lange et al., 2015). Efforts have been made to build an obXML library,

translating the existing OB models published over the last 30 years in international journals into the XML

language (Belafi et al., 2016). When decoded into the obXML semantics, OB models developed for one

tool  and  application  can  be  used  for  any  other  tools  and  applications.  When  implanted  into  a

co-simulation approach, any obXML translated model can be co-simulated with a BPS program such as

EnergyPlus,  enabling  model  validation  and  outcome  comparison.  In  recent  years,  several  studies

attempted to co-simulate separate occupant behavioral software modules with BPS programs (Gunay et

al., 2015; Langevin et al., 2014; Lee and Malkawi, 2014; Andrews et al., 2013).

Figure 5. The main topology of the obXML structure, based on the Drivers, Needs, Actions, and Systems (DNAS) 
framework

With the purpose of ensuring transferability of OB models among BPS programs, the obXML schema

generates XML data-structured OB models that can be shared with various BPS programs. In EnergyPlus,

OB models represented in obXML files are consumed by a dedicated FMU obFMU (Hong et al., 2016)

which co-simulates with EnergyPlus at each simulation time step according to the FMI. The FMI is an

independent standard that allows for component development and tool coupling, using a combination of

XML and compiled C code. The FMI standard  (Blochwitz et al., 2009) encompasses two main issues.

First, it provides an explanation of how a modeling environment can generate C code and be utilized.

Second,  it  technically  describes  the  interface  standard  for  coupling  in  a  co-simulation  environment

(Nouidui et al., 2014). By adhering to the obXML content and syntax in representing OB models, the
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simulation community will benefit from an internationally established data exchange format which has

been widely approved in several domains of building modeling tools. The obXML schema is designed to

provide enough flexibility for existing and future OB models to be captured and implemented into the

diverse BPS programs consistently (Figure 6).

 

Figure 6. Specific input format of OB models in BPS programs and interoperability with the XML data schema

Figure 6 also shows the status of these BPS programs supporting XML-based data models. The gbXML is

supported directly through import by IES VE and TRACE, and through OpenStudio and Green Building

Studio for EnergyPlus. DOE-2 supports gbXML via the Green Building Studio. IFC is supported directly

by IDA ICE and IES VE, and through Simergy (Haves et al., 2014) for EnergyPlus. 

3.4. Strengths and weaknesses of the representation approaches

The  text-  or  binary-based  representation  of  OB models  in  BPS programs  does  not  require  separate

semantics to describe OB models. However, it is subject to the limitations of inherent input semantics of

each BPS program, which may not be adequate to describe complex OB models using diverse driving

factors.  Furthermore,  OB models  coded for a  specific  BPS program cannot be reused by other BPS

19



programs. It is also difficult for these models to share with users of the same BPS program as they are

embedded and scattered in  the  whole  input  file  of  a  building energy model.  XML-based OB model

representation,  although requiring the use of an XML schema, provides  more flexibility  for users  to

develop their OB models that can be shared with a wide community of users and multiple BPS programs. 

4.  Discussion

First, to capture the complexity of OB models and to quantify their impact on building performance, a

common semantic approach to representing OB models—one that can be shared with different building

performance simulation programs— is critical. The common data model must be universally machine and

human readable and implemented in the common neutral syntax of XML, JSON, or YAML. The recent

XML-based  OB  model  representation  obXML,  although  requiring  knowledge  of  an  XML schema,

appeared to provide the maximum flexibility for users to develop their OB models that can be shared with

a wide community of users and multiple BPS programs. In such a view, a library of 52 OB models has

been developed and shared across  the  building simulation community  (Belafi  et  al.,  2016) using the

obXML.
Second,  such common OB model  protocol  must  overcome weaknesses of actual  implementation and

representation approaches, as shown in Figure 6. Synthetically, it must be as easy to implement as direct

input or control, allowing enough flexibility to capture several variables to be applied as model inputs.

Among the various approaches to implementing OB models in BPS programs, the co-simulation approach

emerges today as the one offering a wider spectrum of unique advantage under this last perspective.

Moreover, it must ensure  reusability of models among various simulation tools adopting a standardized

data syntax, as well as ensure accuracy by avoiding the danger of implementing circumstantial models for

diverse or non-appropriate simulation purposes. 
Moreover, as a general remark, despite the selected approach to implementing and representing behavior

models in BPS programs, researchers conducting occupant behavior studies tend to have backgrounds in

engineering  and  architecture.  Accordingly,  few  behavior  researchers  having  a  background  in  the

environmental psychology and sociology are likely to be able to implement their OB models into BPS

programs and understand their impact on simulation accuracy. This aspect puts a limit on the type of

variables and factors already implemented or included as direct input or control in most widespread BPS

programs, not directly correlated to building consumption or comfort (e.g., behavior attitudes, motivation,

perceptions) and similar ways to implement and represent social, behavior models into BPS programs.
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5.  Conclusions

Today’s  building  performance  simulation  programs  use  different  approaches  to  representing  and

implementing OB models, making it difficult for their reuse across different BPS programs or different

user applications. A common occupant behavior data model implemented in the form of XML, JSON, or

YAML is needed to provide a standardized representation of OB models, enabling their exchange between

different BPS programs. A modular software implementation of OB models, such as functional mock-up

units for co-simulation, adopting the standardized data model of occupant behavior, has advantages in

providing a robust and interoperable integration with multiple BPS programs.
The  common  data  model  representation  and  the  co-simulation  implementation  approaches  help

standardize the input structures of OB models, enable collaborative development of a shared library of

OB models,  and allow for rapid and widespread integration of OB models in  various BPS programs

among the engineering and research community as a whole.  Future studies can focus on refining the

standard representation of OB models to  better  reflect  the  dynamic,  stochastic,  and multidisciplinary

nature of energy-related OB in buildings. Also, the co-simulation interface should be supported by more

BPS programs to integrate the standardized OB models in the form of functional mock-up units. 
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