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The Journal of Nutrition

Critical Review

Glucagon-Like Peptide 1 Interacts with Ghrelin
and Leptin to Regulate Glucose Metabolism and
Food Intake through Vagal Afferent
Neuron Signaling1,2

Charlotte C Ronveaux,3,4 Daniel Tomé,4 and Helen E Raybould3*

3Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and
4Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France

Abstract

Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in

regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs).

The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the

central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The

mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular

localization according to feeding status rather than their protein concentrations. It is possible that several gut

peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still

needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose

homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin

to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of

noninvasive antiobesity treatments. J Nutr 2015;145:672–80.
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Introduction

The gastrointestinal tract is an important site in which nutrients are
digested, absorbed, and assimilated. Enteroendocrine cells, found in
the gastrointestinal epithelial layer, are the first level of integration of
information from the gut lumen. They secrete hormones in response
to nutrient stimuli such as carbohydrates, lipids, and proteins.

Gut hormones influence gastrointestinal function and feeding
behavior by either directly acting on target tissues via the
circulation or activating intrinsic and extrinsic neurons in a
paracrine manner. A major target for gut-derived hormones is
the vagal afferent neurons (VANs)5. The vagus nerve is a major

link between the gastrointestinal tract and central nervous
system (CNS); its nerve endings lie in the mucosa of the gut and
terminate in the nucleus of the solitary tract. The vagus nerve
expresses receptors for many gut hormones and there is strong
evidence that gut-derived hormones can act on VANs to regulate

food intake. Studies have demonstrated that ablation of VANs
abolishes cholecystokinin (CCK)-induced inhibition of food
intake (1, 2), highlighting the importance of VANs in the control
of food intake.

Among the gut hormones, glucagon-like peptide 1 (GLP-1) is
released in response to a meal from enteroendocrine cells, and

GLP-1 receptors (GLP-1Rs) are found in both the periphery and
the CNS. GLP-1 has an extremely short half-life, possibly
suggesting a peripheral site of action on vagal afferent fiber
endings. Considerable attention has focused on GLP-1 as an
incretin hormone, and GLP-1 analogs regulate glucose homeo-
stasis in patients with type 2 diabetes. Emerging evidence
suggests a possible physiologic role for GLP-1 in regulating food
intake. Exogenous administration of GLP-1 or its long-acting
analogues dose-dependently inhibits food consumption and
administration of a GLP-1R antagonist has been shown, under

certain conditions such as after a meal preload, to increase food
intake (3). In addition, GLP-1 concentrations in the plasma are
increased after bariatric surgery, and this is associated with
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elevated satiating signals leading to weight loss and ameliora-
tions in glycemia.

This review is focused on the current understanding of GLP-
1 signaling on VANs and outlines the phenotypic changes
induced by gut-derived hormones on VANs according to feeding
status. It reviews the interaction of GLP-1 with ghrelin and
leptin and the interaction of these peptides in mediating energy
homeostasis. Understanding the mechanisms by which periph-
eral GLP-1 regulates glucose metabolism and food intake can
help in developing noninvasive antiobesity treatments.

GLP-1 Secretion in the Gastrointestinal

Tract

GLP-1 is derived from the expression of the transcriptional
product of the preproglucagon gene in intestinal L cells and
pancreatic A cells. Preproglucagon is cleaved into several
fragments; the main translational products are glucagon-
containing glicentin, GLP-1, and glucagon-like peptide 2 in the
gastrointestinal tract, and glucagon and glicentin-related poly-
peptide in the pancreas (4, 5).

GLP-1 is released by L cells in response to nutrient ingestion
(6). L cells are an open type of endocrine cell whose base lies on
the basement membrane and cytoplasmic processes project into
the gut lumen. These processes have microvilli, and it is
hypothesized that the microvilli are part of the nutrient-
sensing machinery in these cells, resulting in the sensing of the
luminal content discharge of granules on the basolateral side.
Once stimulated, L cells secrete peptides into the interstitial space.
They are found in close proximity to both neurons and the systemic
circulation in the intestine, which allows them to be influenced by
both neural and humoral signals (7, 8). L cells are found
throughout the gut; the highest expression is found in the ileum and
distal colon, with fewer cells in the proximal gut (9). GLP-1 is
colocalized in intestinal L cells with peptide YY, glucose-dependent
insulinotropic peptide (GIP), and insulin-like peptide 5 (10–12).

Once secreted, GLP-1 is released into the lamina propria and
enters the capillary bed or lymphatics. Preprandial plasma
concentrations of GLP-1 are very low and increase with nutrient
ingestion. Multiple studies have demonstrated that GLP-1 is
quickly degraded into its inactive form by dipeptidylpeptidase
IV (DDP-IV) (13). DDP-IV is abundant in the brush border and
endothelial cells that line the capillaries (14, 15). It is estimated
that ;50% of GLP-1 released into the capillaries in vivo is
transformed into its inactive form,N-terminally truncated GLP-
1 9–36 amide, before it reaches the hepatic portal vein. Further
degradation takes place in the liver, leaving only 10–15% of
intact GLP-1 by the time it reaches the systemic circulation. In
the circulation, GLP-1 has a 2–3min half-life due to the presence
of DDP-IV (13). Inhibiting DDP-IV prevents GLP-1 degradation
in the porcine ileum by 46% at baseline (16, 17). GLP-1 can
cross the blood–brain barrier (18) but given that it is degraded so
quickly, it is unlikely that a substantial amount of active GLP-
1 released from the periphery can reach the brain. In addition,
GLP-1 concentrations are higher in intestinal lymphatics than in
the hepatic portal vein, likely because lymph flow is lower than
portal blood flow and there is less DDP-IV in lymphatics than in
blood vessels (19). The concentration of GLP-1 in the intestinal
lymphatics reflects interstitial concentrations and is increased after
meal ingestion (19). This evidence supports the hypothesis that
GLP-1 acts in a paracrine way on VANs (20). Indeed, Punjabi et al.
(21) demonstrated that systemic active GLP-1 concentrations do
not increase in response to a regular unpurified diet meal in rats.

GLP-1 and its receptor are found at central and peripheral
sites. Currently there is only one knownGLP-1R, which has high
single binding affinity for GLP-1 (22). The GLP-1R was
originally cloned from pancreatic islet cells (23). It is a G
protein–coupled receptor that is distributed in various tissues,
both centrally and peripherally (24, 25). It is most abundant in
the lungs, brain, taste cells, and the distal gastrointestinal tract.
There are 2 different signaling pathways downstream of the
GLP-1R. In the hindbrain and the pancreas, GLP-1 binds to its
receptor and activates adenylyl cyclase to induce the cAMP
pathway (26, 27). In muscle and liver, the GLP-1R may activate a
cAMP independent pathway (28, 29). Thus, although there is
evidence for a single receptor for GLP-1, there are differences in
signal transduction in different tissues. The biological activities of
GLP-1 include maintaining glucose homeostasis, regulating
cardiovascular function, and regulating gastric motility and food
intake. The insulinotropic effect of GLP-1 is mainly mediated
through the pancreas, whereas the satiating effect of GLP-1 is
mainly mediated through the vagus nerve.

The Insulinotropic Activity of GLP-1

GLP-1 is a major player in regulating glucose homeostasis. It is
partly responsible for inducing the incretin effect, in which an
oral glucose load substantially increases plasma insulin concen-
trations compared with the same amount of glucose adminis-
tered intravenously (30, 31). The incretin effect is regulated by
both GLP-1 and GIP. GIP is released from K cells in the
duodenum in response to nutrients and activates insulin secre-
tion in a glucose-dependent manner (32). The release of GLP-
1 and GIP from the gut after an oral glucose load accounts for
60% of insulin secretion (33). GLP-1 and GIP are both released
in response to nutrient stimuli and degraded by DDP-IV in the
circulation. These 2 peptides work synergistically to potentiate
glucose-stimulated insulin secretion. This is confirmed through
GLP-1R and glucose-dependent insulinotropic peptide receptor
(GIPR) knockout mice. GLP-1R knockout mice exhibit rather
modest perturbations in glucose homoeostasis; they have mild
hyperglycemia, glucose intolerance, and abnormal glycemic
excursions in response to glucose (34). Isolated pancreatic b cells
from GLP-1R knockout mice preserve insulin storage and
glucose-dependent insulin secretion (35). GLP-1R knockout
mice exhibit a compensatory mechanism by which glucose
homeostasis is maintained. GIP and GLP-1 signaling is substan-
tially upregulated in the pancreatic b cells of knockout mice,
possibly explaining why GLP-1R knockout mice only have a mild
change in phenotype (31). Likewise, GIPR knockout mice display
a mild change in phenotype with reduced glucose tolerance and
glucose-induced insulin secretion. In contrast with GLP-1R
knockout mice, GIPR knockout mice have normal glycemia when
deprived of food and normal glucose excursion (31, 34, 36).
Together these studies demonstrate the compensatory mecha-
nisms that exist between GLP-1 and GIP in vivo. To date, GLP-
1 and GIP are the only hormones that fulfill the definition of an
incretin hormone in rodents and humans.

The GLP-1R is expressed in b-pancreatic islet cells; this has
been demonstrated by immunohistochemistry (37, 38). Pancreatic-
specific GLP-1R knockoutmice have normal glucose tolerance after
oral and intraperitoneal glucose tolerance tests. Pancreatic GLP-1R
signaling was restored in pancreatic-specific GLP-1R ex vivo islet
extracts compared with whole-body GLP-1R knockout islet
extracts (39). GLP-1 regulates glucose homeostasis by inhibiting
glucagon, stimulating insulin release, increasing insulin biosyn-
thesis, increasing b cell proliferation, and decreasing b cell
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apoptosis in rodents (40). In b cells, GLP-1 binds to its receptor
to stimulate adenylate cyclase and cAMP. Subsequently, cAMP
activation leads to protein kinase A and cAMP-regulated
guanine nucleotide exchange factor II, which elevates intracel-
lular calcium concentrations, leading to exocytosis of insulin-
containing granules (4, 41). As with other G protein–coupled
receivers, the GLP-1R undergoes ligand-induced internaliza-
tion by complex and numerous mechanisms. In vitro studies
have demonstrated that the GLP-1R in mouse insulinoma 6
cells (MIN6), a pancreatic cell line, is endocytosed upon
activation via both clathrin-coated–dependent and caveolin-
1–dependent mechanisms (42). In resting MIN6 cells, the
receptor is constitutively cycled between the plasma mem-
brane and the cytoplasm (42).

The idea that the incretin effect of GLP-1 is predominantly
mediated by its effect on pancreatic b cells has been debated. The
fact that GLP-1 is rapidly metabolized and its postprandial
concentrations are considerably lower than GIP concentrations
brings into question how much intact peptide actually reaches
the pancreas. Studies demonstrate that the activation of
extrapancreatic GLP-1Rs may be necessary in maintaining
glucose homeostasis. For example, activation or attenuation of
the GLP-1R in the CNS exerts profound effects on glucose-
dependent insulin secretion. Of interest, GLP-1Rs have been
localized in the portal vein, and a blockade of these GLP-1Rs
substantially impairs glucose tolerance in rodents (43). Periph-
eral GLP-1 administration potently stimulates insulin secretion
and improves glucose tolerance in rodents and humans (44, 45).
In vitro studies indicate that GLP-1 and its agonist can act
directly on pancreatic b cells (46, 47). In vivo, GLP-1 and its
receptor agonist also modulate glucose metabolism (48, 49). In
addition, GLP-1 acts through sensory nerves to regulate glucose
homeostasis. Infusions of the active form of GLP-1 into the
hepatic vein stimulate vagal afferent and efferent fibers inner-
vating the pancreas; this effect is attenuated by ganglion blockade
(50). Furthermore, infusions of a low dose of GLP-1 in mice with
intact vagal fibers induces insulin secretion; this effect is attenuated
in capsaicin-treated mice (51). Together, these studies provide
evidence that the peripheral insulinotropic effect of GLP-1 is at
least partly mediated through VANs.

GLP-1 and the Control of Food Intake

Plasma GLP-1 concentrations are low in fasting conditions and
rapidly increase postprandially, especially in the presence of
carbohydrates and fat (20). There is evidence that exogenous
GLP-1 inhibits food intake. Acute peripheral GLP-1R activation
by exendin-4 (Ex-4) and native GLP-1 inhibits food intake in a
dose-dependent manner in rodents and humans (52, 53). Indeed,
a daily dose of liraglutide, a GLP-1 agonist, to obese patients led
to substantial and sustained weight loss (54). Results from
studies that made use of GLP-1 analogues such as Ex-4 and
liraglutide may be enhanced by longer half-life and additional
actions on central sites after crossing the blood–brain barrier.
Studies in rodents indicate that peripheral administrations of
native GLP-1 induce satiation but require higher doses than
synthetic long-acting GLP-1R agonists (55, 56). Several lines of
evidence also support the notion that native gut-derived GLP-
1 plays a physiologic role in satiety. Peripheral administrations
of native GLP-1 that mimic its release from the gastrointestinal
tract under physiologic conditions decrease food intake in a
dose-dependent manner (57–59). Blockade of peripheral GLP-
1Rs attenuates satiation after a nutrient preload or peripheral
GLP-1 administration (60). However, there are discrepancies in

the literature regarding whether endogenous gut-derived GLP-
1 plays a functional role, because no effect from various doses of
peripheral native GLP-1 on food intake was observed in some
studies (61), whereas others show a substantial decrease in food
intake at a lower dose in rats (62). In addition, GLP-1R
knockout mice exhibit normal body weight and no change in
overall food intake. However, a thorough analysis of meal
pattern has not been done and it is possible that GLP-1 can have
effects on meal size and duration, consistent with other gut
peptides, such as CCK. Consistent with other studies, we have
recently demonstrated that peripheral, native GLP-1 requires
either a postprandial state or an ongoing meal to induce
satiation (59, 63–65). Prolonged fasting attenuates the satiating
effects of GLP-1. This concept could explain the discrepancies in
the literature regarding the satiating effects of peripheral GLP-1.
Consequently, rodents in a postprandial phase will respond to
GLP-1, whereas rodents deprived of food for 24 h and 48 h do
not respond to various doses of native acute GLP-1 (56, 57).
GLP-1 inhibits food intake in mice consuming food ad libitum
up to 30 min before GLP-1 administration (66) and a short bout
of eating before administration of GLP-1 decreases food intake
in rats.

The site of action of GLP-1 with respect to its effect on food
intake remains to be discussed. Central mechanisms are impor-
tant in regulating the anorexigenic effects of GLP-1 and activa-
tion of central pathways that affect behavior is necessary to
mediate the downstream responses irrespective of the site of
action of GLP-1. Peripheral native GLP-1 administration acti-
vates c-fos expression in the hindbrain and hypothalamus in
rodents (66–68), indicating that peripheral GLP-1 actions are
activating central circuits. Blockade of either the central or
peripheral GLP-1R attenuates GLP-1–induced satiation (60,
69, 70). Likewise, central administration of native GLP-1 and
its agonist, Ex-4, substantially reduces food intake in rodents
(26, 71). Activation of central GLP-1Rs plays a role in
mediating food intake; intracerebroventricular administrations
of Ex-4 into the third ventricle induces satiation and activates
c-fos expression in hypothalamic regions (72). Lesions to the
brainstem–hypothalamic pathway attenuate GLP-1–induced
satiation in rats, indicating the importance of central regions
mediating the effect of systemic GLP-1 (73). GLP-1Rs are
colocalized with pro-opiomelanocortin (POMC) neurons
located in the hypothalamus (72). Central administrations of
GLP-1 prevent fasting-induced upregulation of hypothalamic
neuropeptide Y (NPY) and agouti-related peptide (AgRP) and
fasting-induced downregulation of POMC and cocaine and
amphetamine–regulated transcript (CART) (74, 75). Altogether,
these studies highlight the important role in which central
pathways are necessary tomediate the inhibitory effects of GLP-1.

It is likely that endogenous gut-derived GLP-1 suppresses
food intake by acting in a paracrine manner on adjacent GLP-
1Rs expressed on vagal afferents (Figure 1). Evidence to support
this hypothesis includes the following: 1) active GLP-1 is rapidly
degraded, resulting in an extremely short half-life (76), and 2)
subdiaphragmatic vagal deafferentation prevents GLP-1 from
inhibiting food intake (65, 73). Ruttimann et al. (65) demon-
strated that intraperitoneal rather than intravenous administra-
tion, which more accurately mimics the endogenous route of
action of GLP-1, requires intact vagal afferent fibers to induce
satiation. In addition, administration of GLP-1 will increase the
electrophysiologic activity of VANs in vitro and in vivo (77, 78).
GLP-1Rs are present in VANs; indirect evidence through mRNA
levels, as well as histologic and most recently direct immuno-
histochemical evidence, demonstrates that VANs express 42%

674 Ronveaux et al.



of the GLP-1R (64, 78). GLP-1Rs are functional in VANs;
however, their mechanism is unlike other G-coupled protein
receptors. Gut-derived hormones induce neurochemical changes
in VANs by regulating a phenotypic ‘‘switch.’’ VANs exist in
states that either promote orexigenic or anorexigenic pheno-
types (79, 80). In a food-deprived condition, anorexigenic
receptor expression decreases as orexigenic receptor expression
increases. Conversely, these changes are reversed by refeeding
through a CCK-dependent mechanism. However, we have
demonstrated that GLP-1Rs are constitutively expressed and
that GLP-1Rs alter cellular localization according to feeding
status. Under fasting conditions, the majority of GLP-1Rs are
located in the cytoplasm, whereas, in a postprandial state, there
is a 42% increase in GLP-1Rs at the plasma membrane (64).
However, the exact mechanism of the translocation of GLP-
1 remains unknown. We hypothesize that either the satiating
effect of GLP-1 and its receptor translocation to the plasma
membrane is either inhibited in a fasted state or potentiated in a
refed state.

Gut-derived hormones interact with each other at the level of
VANs in order to regulate energy homeostasis. Specifically, several
studies indicate that GLP-1 interacts with several gut peptides to
regulate energy homeostasis and glucose homeostasis.

Evidence that Ghrelin Modulates GLP-1–

Induced Actions

Ghrelin is a circulating orexigenic hormone. Ghrelin is a 28–
amino acid polypeptide produced mainly by endocrine A-like
cells in the gastric epithelium (81). Although the stomach is
the main site of secretion, ghrelin is also secreted by the
pituitary, hypothalamus, lungs, heart, and pancreas. Native
ghrelin undergoes a unique post-translational acylation of the
third serine residue, converting it into its active form. The
enzyme responsible for the acylation of ghrelin is the ghrelin
O-acyltransferase (GOAT) enzyme. Acetylated ghrelin is an
endogenous ligand for growth hormone secretagogue receptor
(GHS-R), which is constitutively expressed. GHS-R is prin-
cipally found in the pituitary and hypothalamus. The highest

density of GOAT mRNA expression is found in gastric gastrin
cells, indicating a high association between ghrelin and GOAT
(82). The biological functions of ghrelin are widespread; it
plays a role in lipid metabolism, glucose homeostasis, and
growth hormone release. Additionally, ghrelin stimulates
appetite, body weight gain, and adiposity. The acylated form of
ghrelin has been recognized as the major active orexigenic
molecule. Circulating concentrations of acylated ghrelin do not
increase with prolonged fasting, whereas deacylated ghrelin
accounts for up to 90% of the majority of circulating ghrelin
(83). Endogenous acylated ghrelin serves as a gastric sensor and
increases appetite and food intake, which indicates that ghrelin
acts as a physiologic hunger signal (84).

Plasma concentrations of ghrelin are high during fasting and
robustly decrease in a postprandial state, suggesting that ghrelin
is a main player in meal initiation. Exogenous ghrelin is known
to stimulate food intake; central and peripheral administrations
of ghrelin will increase energy consumption and body weight in
rodents (85). Intravenous injections of ghrelin will stimulate
appetite and food consumption in humans (86). In rats, ghrelin
enhances weight gain by decreasing energy expenditure. The
regulation of food intake by ghrelin is dependent on feeding
status; exogenous ghrelin will stimulate food intake in rats
consuming food ad libitum but not in food-deprived rats (87).
Ghrelin acts centrally in the arcuate nucleus (ARC) of the
hypothalamus, a region known to regulate feeding behavior.
Intracerebroventricular administrations of ghrelin in the third
ventricle will increase food intake and activate c-fos expression
in the hypothalamus (88). Immunohistochemical evidence has
found ghrelin-expressing neurons in multiple regions of the
hypothalamus. Evidence supports the notion that mRNA levels
of AgRP and NPY are increased in response to an injection of
ghrelin into the third ventricle (85). Given that there are central
and peripheral distributions of ghrelin, several mechanisms have
been proposed in which ghrelin will activate its receptor in the
hypothalamus, including crossing the blood–brain barrier,
activating VANs, or synthesizing locally. The rate at which
peripheral ghrelin crosses the blood–brain barrier is very low,
further supporting the concept that ghrelin may act both at
peripheral and central sites (89).

FIGURE 1 A schematic representation of peripheral endogenous GLP-1 acting in a paracrine way on VANs. (A) In response to a meal, GLP-1 is

released from L cells into the lamina propria and enters the capillaries, where it is quickly degraded into its inactive form. GLP-1 can act in a

paracrine manner on nearby vagal afferent fibers expressing GLP-1Rs. (B) Endogenous gut-derived GLP-1 suppresses food intake by acting in a

paracrine manner on adjacent GLP-1Rs expressed on vagal afferents. DPP-IV, dipeptidylpeptidase IV; FI, food intake; GLP-1, glucagon-like

peptide 1; GLP-1R, glucagon-like peptide 1 receptor; VAN, vagal afferent neuron.
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GHS-R is expressed in 40% of VANs and is colocalized with
the orexigenic melanin-concentrating hormone (MCH) and
cannabinoid-1 (CB-1) receptors, which are involved in food
initiation (90). Date et al. (91) found that the destruction of
vagal afferent fibers by capsaicin or lesions to subdiaphragmatic
vagal fibers abolished ghrelin-induced feeding and substantially
decreased c-fos expression in the ARC, where vagal afferents
terminate, in response to ghrelin in capsaicin-treated rats.
Furthermore, ghrelin increased vagal electrophysiologic activity
in isolated vagal segments (91). It is well established that ghrelin
influences changes in the phenotypic switch of VANs. The
administration of ghrelin to rats deprived of food before
refeeding prevents the downregulation of MCH and CB-1
receptors in VANs, suggesting that ghrelin mediates the expres-
sion of orexigenic receptors to induce food intake (90).
Moreover, exogenous ghrelin inhibits the CCK-stimulated
upregulation of CART by inhibiting phosphorylation of cAMP
response element–binding protein in the nucleus of VANs (92).
Taken together, these studies support the idea that that ghrelin
can influence VAN activity induced by CCK to modulate food
intake. Studies have demonstrated that ghrelin interacts with
other gut peptides to control energy balance as well as glucose
homeostasis. GHS-Rs are expressed on VANs and coexpress
with other gut peptides such as CCK. Ghrelin interacts with
numerous gut-derived peptides on VANs. For example, CB-1
andMCH expression levels decrease in a refed state; ghrelin will
attenuate the decrease of expression in refed rats (90, 93).
Electrophysiologic studies reveal that as CCK increases vagal
activity, ghrelin attenuates it (91). Systemic infusions of ghrelin
dose-dependently attenuate the anorexigenic effects of GLP-1 in
rats (94). Conversely, native GLP-1 infusions in humans
inhibited postprandial increase in ghrelin plasma concentrations
(95). In rats deprived of food for 72 h, GLP-1R activation
potently reduced ghrelin plasma concentrations (56). Together,
these studies indicate that there is a clear interaction between
ghrelin and GLP-1 to regulate food intake; however, the exact
mechanism of action is unknown.

Insulin secretion from pancreatic cells is modulated by gut
peptides such as ghrelin and GLP-1. GLP-1 induces insulin
secretion and ghrelin attenuates the release and increases blood
glucose concentrations. There is evidence that there is an
interaction between ghrelin and GLP-1 to regulate the
insulinotropic effects. In the pancreas, GLP-1 has been shown
to counteract the endogenous and exogenous actions of
ghrelin. GLP-1 stimulated glucose-induced insulin release,
and cAMP production in b cells is attenuated by ghrelin.
Furthermore, the presence of Dly3GHRP6, a ghrelin receptor
antagonist, markedly enhances the insulinotropic effects of
GLP-1 (96). We have preliminary data to support the fact that
ghrelin inhibits GLP-1R translocation according to nutrient
availability in vitro. Under fed conditions, ghrelin brings the
GLP-1R into the cytoplasm in VAN cell cultures; prior
blockade of ghrelin blocks this effect. It is well established
that ghrelin has the ability to block VANs from responding to
anorexigenic signals. For example, CCK increases electrophys-
iologic activity of the vagus, whereas ghrelin attenuates the
neuronal excitation. We have demonstrated that peripheral
administration of a GSH-R antagonist, DLy3GHRP6, before
GLP-1 administration will substantially decrease food intake
in rats deprived of food. Given that GLP-1 requires a refed
state in order to induce satiation, it is likely that ghrelin plays a
role in mediating the satiating effects of GLP-1; GLP-1 will
induce satiation in animals deprived of food when ghrelin is
blocked before administration of GLP-1 (CC Ronveaux,

G DeLartigue, and HE Raybould, unpublished results, 2014)
and, we have preliminary evidence to suggest that ghrelin
restricts GLP-1Rs on VANs to the cytoplasm and that CCK will
move GLP-1Rs to the plasma membrane (Figure 2).

Evidence that Leptin Interacts with GLP-1

Actions

Leptin is a 127–amino acid peptide mainly secreted by adipo-
cytes and to a lesser degree from the stomach (97). Leptin is
known to suppress appetite, body weight gain, and adiposity in
humans, rodents, and monkeys (83, 98, 99). Circulating
concentrations of leptin correlates with body adiposity. In
rodents and humans, leptin signaling in the brain results in
decreased energy intake and increased energy expenditure to
maintain the body fat store (83, 100). Leptin acts on leptin
receptors (LepRs) which are abundantly found in the hypothal-
amus. Leptin easily crosses the blood–brain barrier through a
saturable transport and acts on hypothalamic neurons; it inhibits
expression of orexigenic AgRP, NPY, and MCH and stimulates
anorexigenic POMC and CART (101).

Studies demonstrate that peripheral acute administrations
of leptin substantially inhibit food intake (99, 102). Plasma
concentrations of leptin increase hours after a meal and, in
humans, several days after overfeeding, suggesting that leptin
acts both at short term and long term on food intake. Leptin
concentrations exhibit a circadian rhythm pattern in which the
highest concentrations of circulating leptin are at night (83).
Leptin deficiency in ob/ob mice leads to an obesogenic pheno-
type. The ARC is required for leptin-induced anorexia because
ARC-lesioned ob/obmice are irresponsive to central infusions of
leptin (103). Deficiency in leptin signaling leads to altered
expression hypothalamic neuropeptides. For example, ob/ob
mice have increased degrees of orexigenic AgRP expression and
decreased anorexigenic POMC expression (104, 105). Mice
lacking LepRs in POMC neurons are mildly obese, have
hyperleptinemia, and surprisingly have decreased orexigenic
AgRP and NPYmRNA levels (106). Leptin replacement restores
energy homeostasis in ob/obmice but not db/dbmice that have a
mutation of the LepR (107). Similarly, in humans, obese individ-
uals have increased fat mass and elevated leptin concentrations.

FIGURE 2 Ghrelin mediates GLP-1R localization on VANs. (A) In a

fasted state, ghrelin restricts GLP-1Rs on VANs to the cytoplasm;

therefore, exogenous GLP-1 cannot access its receptors and has no

effect on food intake. (B) In a refed state, when ghrelin concentrations

are low, GLP-1Rs are present in the plasma membrane; therefore,

exogenous GLP-1 can bind to its receptor and induce satiation. FI,

food intake; GLP-1, glucagon-like peptide 1; GLP-1R, glucagon-like

peptide 1 receptor; VAN, vagal afferent neuron.
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However, individuals continue to overeat and increase body
weight regardless of their elevated leptin concentrations (83).
Likewise, high fat diet–induced obesity in mice leads to
hyperleptinemia and hyperphagia (108). Leptin resistance is
the inability of obese individuals or diet-induced obese models
to respond to exogenous and endogenous leptin. In most
models of obesity, leptin concentrations are elevated, indicat-
ing the importance of leptin resistance in the pathogenesis of
obesity.

In addition, LepR is expressed in other tissues such as the
stomach and the vagus nerve. In the vagus nerve, leptin receptor
is expressed in the nodose ganglion. Leptin signaling in VANs
has been demonstrated to play an important role in regulating
energy homeostasis. Leptin increases the electrophysiologic
activity of VANs and increases calcium release in culture
(109). We have demonstrated that leptin resistance in VANs
leads to an obese phenotype. First, we found that there was a
substantial increase in body weight and food intake in parallel
with a decrease in phosphorylation of signal transducer and
activator of transcription 3, a marker of leptin signaling, in
VANs in response to leptin (111). Leptin resistance in the ARC
did not develop until after the onset of the obesogenic pheno-
types. Whether leptin resistance in VANs drives hyperphagia and
eventually leads to an obese phenotype was addressed by
specifically knocking down LepR from sensory neurons in mice.
The LepR-sensory neuron knockout mice exhibited an increase
in body weight, food intake, and adiposity compared with their
control littermates (102). Furthermore, LepR-sensory neuron
knockout mice have a constitutive upregulation of orexigenic
receptors (MCH and CB-1 receptors) and downregulation of
anorexigenic receptors (Y2 receptor and CART) on VANs.
These studies indicate that disruption of leptin signaling on
VANs leads to hyperphagia and obesity. Together, these studies
highlight the importance of leptin signaling on VANs in regulating
energy homeostasis.

Leptin has been found to enhance the inhibitory effects of
various anorexigenic gut hormones. For example, in VANs,
CCK stimulates the expression of CART peptide, which induces
its inhibitory effects. CCK in the presence of leptin will stimulate
CART peptide concentrations at significantly lower concentra-
tions than when CCK acts alone (92). It seems that the
interaction of leptin with other gut hormones is necessary in
order to induce short-term satiation. Specifically, leptin has been
demonstrated to interact with GLP-1 and its receptor antagonist
to induce satiation. Leptin receptors are found in endocrine L
cells and neurons secreting GLP-1 (112), and leptin was found to
stimulate GLP-1 release in L cells. In brain centers, LepRs were
found in GLP-1R–expressing neurons in the nucleus of the
solitary tract and leptin was found to stimulate these neurons
(113, 114). Food deprivation decreases leptin plasma concentra-
tions concurrently with GLP-1 expression in the hypothalamus,
and it is possible that GLP-1 released from leptin-stimulated
neurons modulates hypothalamic brain centers involved in
appetite. Peripheral sites of mechanism of action of leptin
interaction with GLP-1 seem to play an important role in
modulating appetite. Peripheral blockade of the GLP-1R will
attenuate leptin-induced satiation and body weight gain in rats
(115). GLP-1 inhibitory effects are abolished in leptin-deficient
rats. In normal rats, leptin alone has no effect on food intake;
however, leptin together with Ex-4 and GLP-1 substantially
potentiates its anorexigenic effect. Furthermore, the inhibitory
actions of native GLP-1 and Ex-4 are attenuated in rats deprived
of food; however, pretreatment with leptin restored the satiating
effects of GLP-1 and Ex-4 (59).

Conclusion

This review focused on the mechanism of the action of GLP-1 on
VANs and its relation with glucose metabolism and the control
of food intake. Numerous studies have shown that GLP-1Rs are
present in VANs and that GLP-1 stimulates electrophysiological
activity on VANs. Interestingly, GLP-1Rs change their cellular
localization according to feeding status rather than their protein
expression levels, and the translocation of GLP-1Rs on VANs in
response to feeding is likely to be mediated by other gut-derived
hormones. We have evidence suggesting that ghrelin inhibits the
satiating effect of GLP-1 in a fasted state by acting on the
translocation of GLP-1Rs on VANs. However, it is plausible that
ghrelin is not the only peptide modulating GLP-1R transloca-
tion, given that studies have highlighted the interaction of GLP-
1 and leptin. The mechanism of GLP-1R translocation is still
unclear and needs to be elucidated further. To date, there are
limited studies that use native GLP-1. Synthetic GLP-1 analogues
escape degradation and are effective in decreasing food intake
through an additional mechanism, which native GLP-1 does not
induce. It is necessary to understandwhich GLP-1Rs are activated
under physiologic conditions in order to effectively design
noninvasive antiobesity treatments.
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37. Hörsch D, Goke R, Eissele R, Michel B, Goke B. Reciprocal cellular
distribution of glucagon-like peptide-1 (GLP-1) immunoreactivity and
GLP-1 receptor mRNA in pancreatic islets of rat. Pancreas
1997;14:290–4.

38. Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger
ribonucleic acid encoding the rat glucagon-like peptide-1 receptor.
Endocrinology 1996;137:2968–78.

39. Lamont BJ, Li Y, Kwan E, Brown TJ, Gaisano H, Drucker DJ.
Pancreatic GLP-1 receptor activation is sufficient for incretin control
of glucose metabolism in mice. J Clin Invest 2012;122:388–402.

40. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP.
Gastroenterology 2007;132:2131–57.

41. Holz GG. Epac: A new cAMP-binding protein in support of glucagon-
like peptide-1 receptor-mediated signal transduction in the pancreatic
beta-cell. Diabetes 2004;53:5–13.

42. Syme CA, Zhang L, Bisello A. Caveolin-1 regulates cellular trafficking
and function of the glucagon-like Peptide 1 receptor. Mol Endocrinol
2006;20:3400–11.

43. Vahl TP, Tauchi M, Durler TS, Elfers EE, Fernandes TM, Bitner RD,
Ellis KS, Woods SC, Seeley RJ, Herman JP, et al. Glucagon-like
peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal
vein mediate the effects of endogenous GLP-1 on glucose tolerance in
rats. Endocrinology 2007;148:4965–73.

44. Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on
glucose-stimulated insulin secretion: effects on beta-cell sensitivity in
type 2 and nondiabetic subjects. Diabetes 2003;52:380–6.

45. Smith EP, An Z, Wagner C, Lewis AG, Cohen EB, Li B, Mahbod P,
Sandoval D, Perez-Tilve D, Tamarina N, et al. The role of beta cell
glucagon-like peptide-1 signaling in glucose regulation and response to
diabetes drugs. Cell Metab 2014;19:1050–7.

46. Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I
(7–37) co-encoded in the glucagon gene is a potent stimulator of insulin
release in the perfused rat pancreas. J Clin Invest 1987;79:616–9.

47. Gedulin BR, Nikoulina SE, Smith PA, Gedulin G, Nielsen LL, Baron
AD, Parkes DG, Young AA. Exenatide (exendin-4) improves insulin
sensitivity and {beta}-cell mass in insulin-resistant obese fa/fa Zucker
rats independent of glycemia and body weight. Endocrinology
2005;146:2069–76.

48. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course
of glucagon-like peptide 1 on glycaemic control, insulin sensitivity,
and beta-cell function in type 2 diabetes: a parallel-group study.
Lancet 2002;359:824–30.

49. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA,
Taylor K, Kim D, Aisporna M, Wang Y, et al. Synthetic exendin-4
(exenatide) significantly reduces postprandial and fasting plasma
glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab
2003;88:3082–9.

50. Balkan B, Li X. Portal GLP-1 administration in rats augments the
insulin response to glucose via neuronal mechanisms. Am J Physiol
Regul Integr Comp Physiol 2000;279:R1449–54.

51. Ahrén B, Holst JJ, Mari A. Characterization of GLP-1 effects on beta-
cell function after meal ingestion in humans. Diabetes Care 2003;26:
2860–4.

52. Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR. The
role of nausea in food intake and body weight suppression by
peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neu-
ropharmacology 2012;62:1916–27.

53. Gutzwiller JP, Goke B, Drewe J, Hildebrand P, Ketterer S, Handschin
D, Winterhalder R, Conen D, Beglinger C. Glucagon-like peptide-1: a
potent regulator of food intake in humans. Gut 1999;44:81–6.

54. Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM,
Aronne L. Weight maintenance and additional weight loss with
liraglutide after low-calorie-diet-induced weight loss: the SCALE
Maintenance randomized study. Int J Obes (Lond) 2013;37:1443–51.

678 Ronveaux et al.



55. Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen
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