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Summary

Bistable autoactivation has been proposed as a mechanism for cells to adopt binary fates during 

embryonic development. However, it is unclear whether the autoactivating modules found within 

developmental gene regulatory networks are bistable, unless their parameters are quantitatively 

determined. Here, we combine in vivo live imaging with mathematical modeling to dissect the 

binary cell fate dynamics of the fruit fly pair-rule gene fushi tarazu (ftz), which is regulated 

by two known enhancers: the early (non-autoregulating) element and the autoregulatory element. 

Live imaging of transcription and protein concentration in the blastoderm revealed that binary 

Ftz fates are achieved as Ftz expression rapidly transitions from being dictated by the early 

element to the autoregulatory element. Moreover, we discovered that Ftz concentration alone is 
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insufficient to activate the autoregulatory element, and that this element only becomes responsive 

to Ftz at a prescribed developmental time. Based on these observations, we developed a dynamical 

systems model and quantitated its kinetic parameters directly from experimental measurements. 

Our model demonstrated that the ftz autoregulatory module is indeed bistable and that the 

early element transiently establishes the content of the binary cell fate decision to which the 

autoregulatory module then commits. Further in silico analysis revealed that the autoregulatory 

element locks the Ftz fate quickly, within 35 min of exposure to the transient signal of the 

early element. Overall, our work confirms the widely held hypothesis that autoregulation can 

establish developmental fates through bistability and, most importantly, provides a framework for 

the quantitative dissection of cellular decision-making.

eTOC Blurb

Bistability has been hypothesized to stabilize cellular expression fates. Zhao et al. tests this 

hypothesis using live imaging and theoretical modeling and reveals that ftz expression fate is 

bistable in fly development. This work sets the stage for quantitatively dissecting the robustness 

and precision of cellular decision-making in development.

Graphical Abstract:

Introduction

One of the central questions in developmental biology concerns how cells precisely and 

irreversibly adopt distinct cellular fates. It has been argued that cells assume their unique 

gene expression profiles through a sequence of decisions among branching paths,1, 2 

famously encapsulated by “Waddington’s landscape” of peaks and valleys delineating the 

possible trajectories that a cell can follow.3 Genetic networks that lock a cell into one of 

these trajectories may be thought of as “memory modules” that guide cells through valleys 

in the landscape to their ultimate fates. In the simplest case, where a decision is made 

between two alternative developmental fates, the memory module is binary and referred to 

as a switch. The state of the switch is set by the action of transient upstream regulatory 

signals.

Several genetic motifs, including autoactivation and mutual repression, are capable of 

maintaining binary cell fates.4, 5 However, the mere presence of these motifs is insufficient 

to guarantee that a network can remember its expression state once upstream regulators have 
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degraded. The ability to lock onto high or low expression levels results from bistability (see 

“A primer on bistability” in STAR Methods), a systems-level property that depends upon the 

quantitative details of the kinetics of the involved chemical reactions.6, 7, 8

Though bistability is widely invoked to explain cell fate decisions,5 relatively little 

quantitative data exist to confirm bistability in gene expression modules within developing 

embryos. Previous studies in cell culture and fixed embryos have provided evidence 

for bistability in hematopoietic differentiation,9, 10 the Shh network,11 the vertebrate 

hindbrain,12 between the BMP and FGF morphogens,13 and within the Notch-Delta 

signaling system.14 Quantitative evidence for multistability in fruit fly embryos has also 

been derived from fitting the parameters of high-dimensional network models to fixed 

tissue measurements.15, 16, 17, 18, 19, 20 While these models are capable of reproducing the 

observed phenomenology, there is no guarantee that the optimal set of inferred parameter 

values reflects actual biophysical quantities.21, 22, 23, 24 Thus, it is important to verify 

that the conclusions drawn from computational modeling and in vitro experiments apply 

to developmental systems in vivo in the context of models that quantitatively capture the 

molecular interactions that underlie cellular decision-making. To the best of our knowledge, 

evidence for the bistability of a genetic module based on these molecular interactions in an 

intact multicellular organism has not yet been demonstrated.

The early development of the fruit fly Drosophila melanogaster is an ideal model system for 

studying binary cell fate determination, due to the presence of pair-rule genes such as fushi 
tarazu that form discrete stripes at the cellular blastoderm stage prior to gastrulation (2.5 – 

3.5 hours after fertilization; 25, 26, 27, 28, 29). The expression of ftz is regulated by two main 

enhancers: the early, or zebra, element and the autoregulatory element (Figure 1A; Figure 

S1; 30). The early element responds to upstream transcription factors such as the gap genes 

to establish the initial expression pattern of seven stripes.31 This element is functionally 

distinct from the autoregulatory element, which contains multiple Ftz binding sites that 

allow Ftz to activate its own expression (Figure S1; 32, 33, 34). This autoactivation network 

motif is theoretically capable of exhibiting bistability and has therefore been hypothesized to 

act as a binary memory module.4, 35

Whether a cell possesses a memory module determines whether observed states of gene 

expression are transient in the absence of continued external signaling, or whether these 

states can be locked into permanent cell fates that can be maintained without further 

intervention. Specifically, if the autoregulatory module is bistable, then it maintains high 

ftz expression driven by the transient presence of upstream factors (Figure 1B, case 1), even 

once those factors degrade (or until further regulatory mechanisms intervene). If, instead, 

the autoregulatory element is monostable, then the observed separation of Ftz concentration 

into high and low levels persists only as long as upstream factors are present to regulate 

expression. In their absence, Ftz expression would revert to a single fate for all cells (Figure 

1B, case 2). It is important to note, however, that in this case, the transiently high or low 

trajectory of Ftz concentration could still be instructive for regulating downstream genes.

Here, we characterize the ftz autoregulatory module in vivo through quantitative real-time 

measurements in living fruit fly embryos. Focusing on stripe 4 expression, we observe that 
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Ftz expression separates into discrete high and low levels at the blastoderm stage during 

the 20 min prior to gastrulation, concurrent with a transition in regulatory control from the 

early to the autoregulatory element. We discover that autoregulation is triggered at a specific 

time point in development—presumably through the action of “timer genes” 36, 37, 38—

rather than through a readout of Ftz concentration alone. Based on these observations, 

we develop a dynamical systems model and quantitate its parameters from simultaneous 

real-time measurements of ftz transcription and Ftz protein dynamics in single cells of 

living embryos. Our model predicts binary Ftz expression levels at gastrulation with high 

accuracy and demonstrates that, indeed, the ftz autoregulatory module is bistable. We 

conclude that the ftz autoregulatory element acts as a memory module to commit cells to 

binary fates that are otherwise transiently defined by the early element, thereby validating a 

long-standing hypothesis in developmental and systems biology that bistability underlies 

cell fate determination. Simulations further make it possible to quantitatively define a 

developmental commitment window, which shows that the autoregulatory module requires 

about half an hour to establish a memory of the transient signal from the early module. Thus, 

our work provides a framework for the dissection of other regulatory modules in the gene 

regulatory networks that dictate development based on this interplay between dynamical 

systems models and real-time experiments.

Results

Binary Ftz expression states are established in early development

To understand the role of autoactivation in deciding Ftz expression levels, we first visualized 

Ftz protein dynamics over time. We used CRISPR-mediated recombination 39 to fuse a 

LlamaTag, a fluorescent probe that reports on the fast protein dynamics that characterize 

early embryonic development, to the C-terminus of the endogenous Ftz (Figure 2A; 40). An 

examination of the fluorescently labeled Ftz in the early embryo shows that, around 15 min 

before gastrulation, Ftz is expressed in a seven-stripe pattern with clear, smooth boundaries 

(Figure 2B, left). This expression pattern refines over the following 15 min into sharp stripe 

boundaries by the start of gastrulation (Figure 2B, right). The result shows that cells express 

either high or low levels of Ftz, as pictured in Figure 2C for the anterior boundary of stripe 

4, consistent with results from previous studies.41, 42, 40 Note that, throughout this work, we 

focus on the anterior boundary of stripe 4 because it is the only Ftz stripe that has been 

demonstrated to be driven exclusively by the early and autoregulatory elements and not by 

other enhancers in the gene’s vicinity (Figure S1; 41).

Our live imaging measurements allowed us to quantitatively examine the dynamics with 

which binary cell states are established by calculating the Ftz protein distribution in 

individual nuclei at different time points in development (Figure 2D). Our analysis revealed 

that the expression level is initially unimodal across all cells (Figure 2D, top and E) and then 

evolves into a bimodal distribution within 15 min (Figure 2D, bottom and E). Consistent 

with our qualitative observations in Figure 2B and C, cells at these later times can be 

quantitatively classified into distinct “high-Ftz” and “low-Ftz” cell states using a single 

threshold chosen by a visual inspection of the distribution (Figure 2D, bottom and E), which 

indicates that binary cell states are already established prior to the onset of gastrulation. 
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Moreover, though the two cell states are clearly distinguishable from each other, there is 

significant cell-to-cell variability within the high-Ftz state (Figure 2D, bottom and E).

Previous studies have established that autoregulation plays a key role during ftz expression: 

a lack of the ftz autoregulatory element or mutated Ftz binding sites within the element 

results in the loss of Ftz expression at later developmental stages.30, 33 However, it is unclear 

at what developmental time ftz autoregulation is initiated in response to the Ftz expression 

stemming from the early element. Specifically, is the autoregulatory element active before 

stripes of Ftz expression emerge, or is autoregulation invoked after the early element has 

already established this pattern? To distinguish between these two scenarios, we decoupled 

the transcriptional dynamics driven by the early and autoregulatory elements by creating 

two separate reporter constructs, each containing only the early or autoregulatory elements 

followed by MS2 stem-loops that enable the direct visualization of transcriptional dynamics 

(Figure 3A; Figure S1; 43, 44). All constructs were inserted in the same genomic location.

We observed that the early element already drives a relatively constant gene expression level 

around 20 min prior to gastrulation (Figure 3B and C). Then, at 15 min before gastrulation, 

its transcriptional activity decreases significantly, resulting in a 60% reduction within the 

next 20 min of development (Figure 3B and C). Conversely, autoregulation is initiated 20 

min prior to gastrulation, with its activity increasing until gastrulation starts (Figure 3C). 

This transition between the early and autoregulatory elements occurs while binary cell states 

are being established (Figure 2).

ftz autoactivation is triggered at a specific developmental time

Previous studies have established that ftz is autoactivated through a specialized enhancer 

referred to as the autoregulatory element.30, 32, 33, 34 The autoregulatory element cannot 

drive transcription in the absence of Ftz, but it is unclear whether the mere presence of 

high Ftz concentrations is sufficient to initiate autoactivation, or whether other factors must 

also be present to trigger the observed transition in ftz expression between the early and 

autoregulatory elements (Figure 3C).

To further investigate the nature of the regulatory transition that initiates autoactivation, 

we quantified the gene regulatory function of the ftz autoregulatory element at distinct 

developmental times. The gene regulatory function—also called the input-output function—

describes the relationship between Ftz protein concentration and the rate of ftz transcription 

driven by the autoregulatory element. Since Ftz is autoactivating, we expect the gene 

regulatory function to be S-shaped (i.e., sigmoidal, see Figure 4E, inset), with no 

transcription in the absence of Ftz, a steep increase in transcription as Ftz levels approach 

a “threshold” level, and maximal transcription for high concentrations of Ftz. If Ftz is the 

only factor that regulates transcription levels from the autoregulatory element, then the gene 

regulatory function should remain unchanged even as the concentrations of other regulatory 

factors evolve over time; that is, a fixed concentration of Ftz should correspond to the same 

transcription rate regardless of the time of measurement. Alternatively, if other time-varying 

factors also contribute to ftz expression from the autoregulatory element, then we expect 
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the gene regulatory function to change over time such that the same level of Ftz will drive 

different levels of transcription depending on developmental time.

We measured the gene regulatory function of the autoregulatory element at different time 

points by constructing an experimental system that permits simultaneous monitoring of 

input Ftz concentration and corresponding output transcriptional dynamics driven by the 

autoregulatory element. We used tagged endogenous Ftz as the input and introduced a 

transgenic reporter with MS2 loops under the control of the ftz autoregulatory element 

as the output (Figure 4A). To prevent the reporter from expressing unlabelled Ftz, which 

could feed back into the autoregulatory element and interfere with the measurement of the 

gene regulatory function, we created a new autoregulatory construct by combining the ftz
autoregulatory element with the coding region of the yellow gene. Control experiments 

confirmed that the autoregulatory constructs used in Figure 3 and Figure 4 show the 

same temporal dynamics prior to gastrulation (Figure S2). Live imaging of the anterior 

boundary of Ftz stripe 4 showed that, initially, around 25 min prior to gastrulation, both 

Ftz expression and the autoregulatory response were relatively low, and later increased as 

development progressed (Figure 4B). Just before gastrulation, the Ftz protein pattern refined 

into a discrete boundary, with the ftz autoregulatory response clearly following the stripe 

boundary (Figure 4B).

To calculate the regulatory function, we restricted our analysis to the cells at the anterior 

boundary of stripe 4 as a means to minimize the influence of other position-dependent 

transcription factors that might also contribute to ftz autoactivation.34 We first extracted two 

rows (high and low) of boundary cells. Then, we separated the input Ftz concentration 

and output transcription from the autoregulatory element in the data corresponding to 

each individual cell (Figure 4C) into ten quantiles and fit a Hill function to the quantile 

averages to get the gene regulatory function of ftz autoregulation within a defined temporal 

range (for example, −10 min to −5 min for Figure 4D). Our analysis revealed a sharp 

regulatory relationship between Ftz concentration and autoregulatory response shortly 

before gastrulation, with a Hill coefficient of 3.3 ± 0.8 (Figure 4D). Such Hill coefficient 

is comparable to those estimated in the context of autoactivation in vertebrate hindbrain 

development 12 as well as those observed in simpler regulatory motifs that do not feature 

feedback. 45

We repeated the process described above at multiple developmental times to measure the 

temporal dynamics of the regulatory function for ftz autoactivation. The results, shown in 

Figure 4E, revealed that the regulatory function is clearly distinct at different time points. 

Around −25 min to −20 min, the ftz autoregulatory element drives almost no transcription 

regardless of Ftz concentration, as can be appreciated by the fact that the gene regulatory 

function is almost flat near 0 during this time interval (Figure 4E, red line). However, 

within 15 min, Ftz levels above a threshold of about 1 au are sufficient to drive Ftz 

transcription from the autoregulatory element, with higher input Ftz concentrations resulting 

in progressively higher transcription rates at later times (Figure 4E, green line). The fact 

that Ftz levels above a threshold result in high transcription rates at gastrulation but produce 

no transcription −20 min earlier is a clear indicator that the autoregulatory element is not 
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always equally responsive to input Ftz. Instead, its capacity to drive ftz expression is 

enabled at a specific developmental time, presumably by upstream transcription factors.

Dynamical systems modeling of ftz regulation

The fact that Ftz can exhibit a high state at one point in time does not imply that this high 

state will persist in the absence of upstream regulation (Figure 1B). Determining whether 

the autoregulatory module is bistable requires turning the schematic in Figure 1A (including 

both early and autoregulatory elements) into an explicit dynamical systems model with 

empirically determined parameter values.

We begin by mathematically describing the expression dynamics driven by the ftz early 

enhancer. We assume that upstream regulators binding to the early enhancer dictate the 

transcription rate r t  (Figure 5A). Our measurements (Figure 3C; Figure 5I and J; STAR 

Methods “Early element transcriptional activity decay rate β”) revealed that, after the 

onset time for the autoregulatory enhancer ton = − 20 min (Figure 4E), r t  follows an 

approximately exponential decay with a decay constant 1/β. This allows us to represent 

r t , the mRNA Rearly t , and protein Pearly t  produced from the early module as

dr
dt = − βr(t)

dRearly

dt = r(t)
synthesis − γRRearly(t)

degradation
t ≥ ton,

dP early

dt = αRearly(t)
synthesis

− γPP early(t)
degradation

,

(1)

where α is the translation rate and γR, γP are the mRNA and protein degradation rates, 

respectively. Regardless of the choice of parameter values or initial conditions, all three 

quantities r t , Rearly t , and Pearly t  converge to 0 as t goes to infinity (STAR Methods 

“Modeling - Early element”), indicating that the early module is monostable and signaling 

from upstream factors is transient. Since embryos at this stage in nc14 are still undergoing 

cellularization and cell membranes have not fully formed, we assume that diffusion of 

mRNA and protein is negligible. 16, 46, 20

As shown in Figure 4E, after the onset time ton, the autoregulatory element becomes 

responsive to Ftz. Building on the simple model introduced in STAR Methods “A primer on 

bistability”, we describe the mRNA Rlate t  and protein P late t  dynamics dictated by this 

element as

dRlate

dt = cf P early(t) + P late(t)
synthesis

− γRRlate(t)
degradation

dP late

dt = αRlate(t)
synthesis

− γPP late(t)
degradation

, t ≥ ton . (2)
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Here, f P  is the gene regulatory function describing the output rate of mRNA production 

as a function of the total input Ftz concentration (the sum of the protein produced by the 

early and autoregulatory elements) as measured for the transgene in Figure 5B. Because 

f P  was measured for a transgene and not for the endogenous autoregulatory element, we 

also assume a scaling factor c. As indicated in Equation 2, we assume that the autoregulatory 

element is only active for t ≥ ton. Our model produced nearly identical results whether we 

assumed that this transition to full responsiveness occurred instantaneously at time ton as 

shown here, or whether we assumed a gradual increase in responsiveness over time (STAR 

Methods “Simulations - Best predicted nuclei).

Given quantitative parameter values and initial conditions (r ton , Rearly ton , and Pearly ton ), the 

full model for ftz regulation described by Equation 1 and Equation 2 can be used to 

simulate the trajectory of total Ftz concentration in a nucleus over time. Specifically, we 

calculate Ftz expression levels (low or high) at gastrulation as well as at long times (i.e., 

t ∞). We will refer to the predicted stable concentration of Ftz at long times as the 

ultimate fate of the cell, as distinct from the (possibly transient) binary expression state at 

gastrulation (Figure 5C).

Quantifying model parameters shows that the autoregulatory module is bistable

The first step toward testing our model is to obtain numerical values for the parameters. 

The mRNA and protein decay rates γR and γP were drawn from existing measurements in 

the literature.47,40 The gene regulatory function f P  was already measured as described in 

the previous section (Figure 4D). The remaining free parameters (β, α, and c) were directly 

measured through a set of independent experiments.

First, we determined the decay rate β for transcription from the early element by fitting an 

exponential function to the average transcription dynamics of the early element construct 

within individual embryos (Figure 5I and J). Averaging the resulting decay rates per embryo 

resulted in β = 0.048 ± 0.0021 1/min. Second, we measured the translation rate α using a 

reporter transgene that combined MS2 and LlamaTag such that ftz transcription rate and Ftz 

concentration could be simultaneously measured (Figure 5D). We estimated R t , the total 

amount of mRNA produced by individual nuclei up until time t, by integrating the MS2 

fluorescence over time (Figure 5E and F; 43). Next, we integrated R t  for different values 

of the translation rate α to estimate protein dynamics P t  (Figure 5G). We calculated the 

best-fitted α for each nucleus and averaged them for each embryo (Figure 5H). Averaging α
over two embryos yielded α = 0.082 ± 0.004 protein/(mRNA · min) (Table S1).

Using these parameters, together with the inferred scaling factor c (Figure S3; see STAR 

Methods “Modeling - Intersection test for bistability” for details), we analyzed the 

autoregulatory module and determined that it is indeed bistable once upstream regulatory 

factors have degraded and the early element ceases to contribute to transcription (Pearly = 0). 

As illustrated by the phase portrait in Figure 5K (and introduced in STAR Methods “A 

primer on bistability”), the nullclines intersect at three points that define two attractors 

separated by an unstable steady state. Thus, our model indicates that the ftz autoregulatory 
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module is capable of maintaining high or low levels of ftz expression indefinitely, and hence 

that there are two fates for Ftz on long time scales. Which fate a cell ultimately adopts will 

therefore depend on the protein initially produced by the early module.

Ftz expression state is instructed by the early element rather than by the autoregulatory 
element

Our model does not only predict that the Ftz autoregulatory module acts as a bistable switch. 

Because no free parameters remain, given initial conditions to the system, the model can 

also predict how Ftz concentration changes over time. Therefore, a critical test for the 

accuracy of the model is whether it can predict Ftz expression state at gastrulation.

To predict Ftz dynamics, we measured the initial transcription rate r ton = r−20 , mRNA 

level (Rearly ton = R−20 ), and protein level (Pearly ton = P−20) from the early module at the 

onset time ton = − 20 min (Figure 6A) in embryos expressing endogenous Ftz labeled with 

LlamaTag (Figure 2A, STAR Methods “Extracting initial conditions”). Since, prior to onset, 

the autoregulatory element has not yet produced any mRNA or protein, knowing these 

three initial conditions is sufficient to calculate the trajectory for total Ftz concentration 

P total t = Pearly t + P late t  within the corresponding nucleus using our model (Figure 6B).

For each simulated trajectory, we determined binary Ftz expression state at gastrulation 

based on whether total Ftz concentration exceeded the threshold empirically determined 

in Figure 2D, as shown in Figure 6B. Comparing our predictions and experimental 

measurements revealed that our model predicts binary Ftz expression state at gastrulation 

with an accuracy of 86.4% (102 of 118 nuclei) across N = 3 embryos (Figure 6C). 

The majority of classification errors were derived from a single embryo, with stochastic 

simulations suggesting the remainder may be attributed to noisy gene expression dynamics 

(STAR Methods “Stochastic simulations”, Figure S6). Thus, our model appears to capture 

the essential deterministic components of Ftz dynamics.

While it is clear that the autoregulatory element establishes developmental memory of Ftz 

expression over long time scales, our simulations show that a stripe pattern is already 

evident at gastrulation from the contribution of the early protein alone, ignoring the 

autoregulatory contribution (Figure 6D). Indeed, predictions of Ftz state at gastrulation 

based on thresholding the early protein concentration alone were 84.7% accurate (100 of 

118 nuclei) — only 1.7% less accurate than when the autoregulatory contribution is also 

taken into account (Figure 6C). Thus, it appears that the anterior boundary of stripe 4 at 

gastrulation is predominantly defined by the regulatory activity of upstream factors binding 

the early element independent of autoregulatory activity. This result supports the conclusion 

that the autoregulatory module primarily serves to commit cells to fates predetermined by 

the early element.

Ultimate Ftz fate is robustly specified in half an hour

Although the autoregulatory element becomes active 20 min before gastrulation, our model 

suggests that Ftz expression state at gastrulation is nevertheless primarily determined by 

the early element. It is therefore conceivable that some cells transiently express high Ftz 
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at gastrulation without committing to stably expressing high Ftz in the long term. To 

explore this possibility, we compared the binary classification of nuclei at gastrulation 

with the final high or low expression fate predicted by the model at long time scales. 

Specifically, we analyzed a subset of nuclei, which we call the “best predicted nuclei”, 

whose quantitative expression levels—including their expression state at gastrulation—were 

successfully predicted using our model (Figure 6C and D; STAR Methods “Simulations - 

Best predicted nuclei). We found that 93.7% (74 of 79 nuclei) were predicted to maintain 

their binary state at gastrulation and adopt the corresponding Ftz expression fate in steady 

state (e.g., cell 3 in Figure 7A). The remaining 6.3% of nuclei (5 of 79), despite having a 

high Ftz expression state at gastrulation, were predicted to drop to a low Ftz fate (e.g., cell 

2 in Figure 7A). No nuclei classified as low Ftz at gastrulation were predicted to express 

high Ftz after gastrulation. Thus, in principle, the autoregulatory element ensures that the 

vast majority of cells adopt a fate matching the transient state at gastrulation (Figure 7B).

What are the features of the transient early Ftz dynamics that determine whether the 

autoregulatory module commits to a high or low fate? We can address this question by 

looking at the relationship between the initial conditions, which dictate the dynamics of the 

early module, and the fate predicted by the model. Specifically, because increasing any one 

of the three initial conditions can only increase Ftz concentration at subsequent points in 

time, the regions of parameter space r−20, R−20, P−20  resulting in high fates are separated from 

the region of parameters resulting in low fates by a surface called the switching separatrix,48 

so named because if the initial conditions of a cell are above the surface, then the bistable 

autoregulatory module will switch on.

Figure 7C illustrates the initial conditions for all nuclei at the anterior of stripe 4 alongside 

the switching separatrix (green surface). The separatrix indicates that a combination of all 

three initial conditions define Ftz fate. Particularly noteworthy is that the initial amount of 

early protein P−20 is not the strongest predictor of fate. Cells with comparable levels of P−20, 

even at the highest concentrations we measured, are partitioned between ON and OFF fates 

by the values of r−20 and R−20 (Figure 7C). Thus, the autoregulatory element does not simply 

perform an instantaneous readout of Ftz concentration at the time of onset to determine 

cell fate. Rather, a combination of high initial transcription r−20 and high initial mRNA R−20—

which together lead to a bump in Ftz concentration after the onset of autoregulation—seems 

to be essential for adopting the high fate.

Given this observation, we asked how long it takes for the autoregulatory element to 

establish developmental memory of Ftz levels. We posit that this timespan corresponds to 

the classical notion of a commitment window, defined as the period of time during which a 

cell integrates information from external factors to decide its fate.49, 50 It can be difficult to 

access temporal features of development such as the commitment window in vivo, in part 

due to the technical challenge of measuring and systematically manipulating input signals 

while simultaneously monitoring the resulting gene expression programs in individual cells 

within intact tissues or organisms. 51, 52

Our mathematical model provided us with a unique opportunity to examine the commitment 

window by altering the timing of developmental events in silico. Because the low Ftz fate at 
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steady state is the default expression state—the autoregulatory module will always produce 

zero protein in the absence of a transient signal from the early module—the commitment 

window primarily determines whether the cell has enough time to detect if transient Ftz 

concentrations are high and, if so, to adopt a trajectory destined for a high steady-state 

expression fate. Thus, we analyzed only the subset of the best predicted nuclei that were 

predicted to adopt the high fate according to the switching separatrix analysis (N = 21; 

Figure 7C, green surface).

We define the commitment window as toff − ton, where ton indicates the start of autoregulatory 

responsiveness (Figure 7D) and toff is the time when the early element ceases transcription 

(Figure 7E). The commitment window represents the total amount of time during which both 

the early and autoregulatory modules dictate ftz expression, and serves as an estimate for 

how long the autoregulatory module has to establish a memory of transient Ftz state.

To determine how long of a commitment window allows cells to convert transiently high 

Ftz concentrations into permanently high Ftz fates, we asked whether our analyzed subset of 

nuclei still reached the high fate as we systematically varied the commitment window. We 

solved the dynamical system from Equation 2 and Equation 1 with commitment windows 

of increasing length and recorded which nuclei reached the high Ftz fate. Our results are 

reported in Figure 7F in terms of the fraction of nuclei within the subset that adopted 

the high Ftz fate for each timing condition. For example, assuming ton ≤ − 13 min, a 

commitment window of 34 min results in 95% of nuclei achieving high steady-state Ftz 

levels (Figure 7F). Our results reveal that there is a gradual dropoff in the fraction of cells 

that do not commit to the high fate as the commitment window is shortened or ton is delayed. 

This suggests that slight temporal perturbations during development are unlikely to cause 

catastrophic patterning failures in which all cells suddenly adopt the low Ftz fate. Rather, we 

expect small changes in timing to affect the fates of only a small percentage of cells.

Our analysis of the commitment window suggests that about half an hour suffices for the 

vast majority of high-fated cells to stably commit to that fate (see also STAR Methods 

“Modeling - Convergence rate estimates and basin of attraction”). Proper fate specification, 

however, does not guarantee similarity in the temporal trajectories of Ftz concentration, as 

evidenced by the wide range of dynamics observed in simulated traces for varying ton and 

toff with the same initial conditions for the early module (Figure 7G; Figure S5D). Thus, 

if the transient Ftz trajectory, not just its ultimate fate, is instructive for downstream genes, 

then the need for proper regulation of these genes may place stricter constraints on the 

relative timing of the early and autoregulatory elements than those that are imposed by the 

specification of Ftz fate alone.

Discussion

For decades, developmental biologists have used the concept of Waddington’s landscape 

to conceptualize cellular decision-making. Under this framework, cells roll down valleys 

in a predetermined landscape to adopt their ultimate fates. This framework has been 

repeatedly mathematicized using dynamical systems theory.53, 54, 55, 56, 57 Many of these 

studies have hypothesized that autoactivation 58 helps establish and maintain binary cell 
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fates through bistability, 1, 2 which can be thought of as introducing forks in Waddington’s 

landscape. Though experiments in cell culture and fixed tissue have provided evidence for 

the bistability of various autoregulatory modules found within gene regulatory networks, 

until now, these results have not been confirmed by direct examination of dynamics in intact, 

living embryos.

In this work, we utilized live imaging to quantitatively characterize the dynamics of the fruit 

fly ftz regulatory system in vivo. We elucidated tight temporal coordination between the two 

enhancer elements that regulate ftz expression (Figure 3) and combined dynamical systems 

modeling with biophysical measurements to show that the bistability of the autoregulatory 

module can maintain otherwise transient expression levels driven by upstream factors 

(Figure 7). Based on the prevalence of autoregulatory motifs in nature,59, 5 we speculate 

that the approach employed by the Ftz system to decide cell fate is not limited to fruit flies, 

but might also be widely adopted during development in other organisms.

One of our central discoveries is that ftz autoregulation is triggered at a specific 

developmental time rather than being triggered when Ftz reaches a certain threshold 

concentration. Recent work has suggested candidates for “timer genes” that are expressed 

at distinct developmental time points and appear to facilitate the expression of other 

genes.60, 36, 37, 61, 38 We speculate that timer genes might also bind the ftz autoregulatory 

element to trigger its responsiveness to Ftz.

We relied on quantitative modeling with no free parameters to provide strong evidence 

demonstrating that the Ftz autoregulatory module is bistable. Dynamical systems models 

such as the one employed here are advantageous for this approach since the parameters are 

biophysically interpretable, which is not true in, for example, more coarse-grained Boolean 

models of genetic networks.62 Although the model in the main text is deterministic, in 

preliminary work we also considered a stochastic chemical reaction network simulated by 

the Gillespie algorithm, as well as a stochastic differential equation model (STAR Methods 

“Simulations - Stochastic simulations”). Aside from introducing noise to Ftz expression 

levels, and in contrast to other patterning networks where noise appears crucially to drive 

fate determination,63, 64 these models did not exhibit any unique behaviors that better 

accounted for our experimental observations compared to the deterministic model.

The results presented in this work were derived from experiments paired with mathematical 

analysis of our theoretical model. The conclusions could be further supported —or 

challenged—by experiments where Ftz initial conditions are altered through, for example, 

heat shock or optogenetic approaches. Future research on Ftz autoregulation would also 

benefit from technological advancements that extend quantitative live imaging capabilities 

beyond gastrulation in order to monitor Ftz concentrations over extended timescales, from 

the onset of autoregulation to the final adoption of cellular fate.

A basic assumption of the approach employed here is that the behavior of the whole network 

can be predicted from the behavior of the parts (modules) in isolation.65, 66, 67 In our 

model, we divided the early and late populations of Ftz into two separate modules. The 

early module produces the early protein Pearly , which acts as an input to the autoregulatory 
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module responsible for producing the late protein P late . Positive feedback arises because P late

also activates its own expression (Figure 5 and Figure S4). This is not the only way to define 

the module; for example, if we knew which regulatory factors rendered the autoregulatory 

element responsive, then we could include those as inputs instead of describing their 

activity implicitly through the parameter ton. Similarly, if we knew the dynamics of the 

upstream regulatory factors for the early element, we could replace β, the phenomenological 

temporal decay in the early transcription rate, with a mathematical expression relating the 

concentrations of these regulatory factor inputs to the early Ftz transcription rate.

Our representation of the autoregulatory module can predict the fate of ftz expression from 

arbitrary trajectories of early Ftz. As a result, we can predict the effect of modifications 

to upstream signaling on the resulting gene expression patterns. This allows us to ask 

what forms of input are appropriate to achieve particular patterning outcomes. Such ability 

to reverse engineer the process of cellular decision-making could facilitate designing 

perturbations to manipulate the system, identifying constraints placed on upstream modules 

by the needs of downstream modules, and analyzing whether biologically evolved signals 

match those that are mathematically “optimal” for such needs as patterning speed 68 or 

information transmission.69 Different methods of generating predictions may be appropriate 

depending on the types of inputs under consideration. In this paper, the fact that increasing 

any one of the parameters that define the early Ftz input r−20, R−20, P−20  increases total 

Ftz concentration at all points in time (a property known as monotonicity; 7, 48) made it 

possible to analyze our model using a switching separatrix. However, this may not be true 

for other regulatory systems, as in the case where a gene within a module represses its own 

production.

Throughout developmental biology, the concept of a commitment window has been 

repeatedly utilized to describe the amount of time cells need to be exposed to upstream 

signals in order to decide their developmental fates.49, 50 Our quantitative dynamical systems 

model enabled us to conduct a detailed examination of this commitment window, and to 

identify what fraction of cells adopt certain fates as developmental timing is varied. From 

an engineering perspective, we may consider a gene expression pattern as an objective that 

must be achieved with a prescribed level of precision (i.e., as a design specification), and 

work backwards to see what inputs satisfy this requirement. Our approach complements 

existing work on precision that emphasizes how tightly protein concentrations are controlled 
45 and how accurately cells can locate their position by reading out concentrations of 

upstream factors. 70, 71 In particular, the latter approaches indicate what level of precision is 

actually achieved by a patterning network, while our framing focuses rather on what range 

of parameters allow a system to attain a predefined level of precision. A combination of the 

two perspectives could help elucidate what biophysical and evolutionary factors influence 

stochastic variation in phenotypes, including how precise expression patterns must actually 

be to produce functional, healthy organisms.

In summary, by turning widespread schematic models of autoactivation modules into 

precise mathematical statements and experimentally testing the resulting predictions, we 

have provided support for a widely held hypothesis about how developmental fates are 

established in embryos. In the future, combining quantitative measurements with precise 
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spatiotemporal perturbations 72 and synthetic reconstitution methods 73 promises to enable 

yet another iteration of the dialogue between theory and experiment that constitutes the basis 

of our work, ultimately leading to a predictive understanding of function in developmental 

networks and the myriad forms and fates to which they give rise.

STAR Methods

Resource availability

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Hernan G. Garcia 

(hggarcia@berkeley.edu)

Materials availability—All plasmids produced and fly lines generated in this paper will 

be shared by the lead contact upon request.

Data and code availability

• All imaging data reported in this paper will be shared by the lead contact upon 

request.

• All original code has been deposited on GitHub and is publicly available as of 

the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Subject

The experimental model used in this study is Drosophila melanogaster. Embryos were 

allowed to develop at room temperature.

Fly strains/Genotypes

The fly lines used in this study were generated by inserting transgenic reporters into 

the fly genome or by CRISPR-Cas9 genome editing, as described below. See the KEY 

RESOURCES TABLE for detailed information on the plasmid sequences used in this study.

Creation of tagged fushi tarazu (ftz) gene using CRISPR-Cas9—Ftz-EGFP-

LlamaTag fusion design is based on previously published transgenic line.40 To tag 

endogenous ftz locus with EGFP-LlamaTag, we used CRISPR-mediated homology-directed 

repair with donor plasmid synthesized by Genscript. gRNA was designed using the target 

finder tool from flyCRISPR (https://flycrispr.org), and cloned based on the protocol from.39 

yw;nos-Cas9(II-attP40) transgenic line was used as the genomic source for Cas9 and the 

embryos were injected and screened by BestGene Inc.

Creation of ftz early and autoregulatory element reporter—The ftz
autoregulatory element sequence was based on the 4.4kb DNA segment described in.29 The 

ftz early and autoregulatory element reporters driven by the ftz promoter were constructed 

by combining the respective enhancer sequence with an array of 24 MS2 stem loops inserted 
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into the ftz coding sequence D. melanogaster yellow gene.40 The ftz autoregulatory 

element reporter driven by the eve promoter was constructed by combining the enhancer 

sequence with an array of 24 MS2 stem loops inserted into the D. melanogaster yellow 
gene.40 The constructs were synthesized by Genscript and injected by BestGene Inc into D. 
melanogaster embryos with a Φ C31 insertion site in chromosome 3 (Bloomington stock 

#9750; landing site VK00033; cytological location 65B2).

Transgenes expressing EGFP and MCP-mCherry—The fly line maternally 

expressing MCP-mCherry (chromosome 3) was constructed as described in.40 The fly line 

maternally expressing vasa-EGFP (chromosome 2 ) was constructed as described in.75 To 

simultaneously image protein dynamics using LlamaTags and transcription using MCP-MS2 

system, we combined the vasa-EGFP transgene with MCP-mCherry to construct a new line 

(yw;vasa-EGFP;MCP-mCherry) that maternally expresses both proteins.

Fly lines

To measure Ftz transcription and protein levels simultaneously, we performed crosses 

to generate virgins carrying transgenes that drive maternal EGFP, MCP-mCherry, 

the LlamaTagged Ftz locus along with ftz autoregulatory element reporter (yw; 
vasa − EGFP

CyO ; MCP − mCherry
FtzAuto − MS2 − Yellow, Ftz − LlamaTag ). These flies were then crossed with 

males having both the ftz autoregulatory element reporter and the LlamaTagged Ftz 

locus (yw; +; FtzAuto-MS2-Yellow, Ftz-LlamaTag). This resulted in the embryo carrying 

maternally deposited EGFP, MCP-mCherry, and two copies of the LlamaTagged Ftz locus 

and ftz autoregulatory element reporter.

Method Details

A primer on bistability—We model ftz regulation as a dynamical system represented by 

ordinary differential equations. Typically, in such models, the rate of change in mRNA and 

protein concentrations is given by a combination of their synthesis and degradation rates. 

For example, a model of the ftz autoregulatory module in isolation (ignoring regulation by 

the early element) describes the rate of change in ftz mRNA concentration R and protein 

concentration P  as

dR
dt = f(P ) − γRR

dP
dt = αR − γPP

. (3)

In the first equation, f P  is the gene regulatory (or input-output) function that describes 

how input Ftz concentration controls the rate of ftz transcription, and γR is the ftz mRNA 

degradation rate. Since Ftz promotes its own production, f P  increases with P . In the 

second equation, α is the translation rate and γP corresponds to the Ftz protein degradation 

rate.
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We can represent this dynamical system using a phase portrait, which is a two-dimensional 

plot that shows how the trajectory of mRNA and protein concentrations evolves over time. 

Specifically, the phase portrait has the mRNA and protein concentrations on its axes. At each 

point in the phase portrait we plug the corresponding mRNA and protein concentrations 

into Equation 3 in order to calculate dR
dt  and dP

dt . The values of these derivatives determine 

how quickly and in which direction the mRNA and protein concentrations will change over 

a small time period. This direction is encoded in the phase portrait by drawing an arrow. 

By following arrows throughout the phase portrait, we can qualitatively predict where the 

trajectory will travel. Hence, given initial concentrations of mRNA and protein, we can 

predict an entire trajectory by following the arrows.

Phase portraits for the isolated autoregulatory module described by Equation 3 show how 

mRNA and protein concentrations change over time. Sample trajectories (red) starting at 

different points follow the gray arrows encoding dR
dt  and dP

dt  to converge toward attractors 

(solid gray circles) and away from unstable steady states (open gray circle). The numerical 

values of the model parameters determine whether the module is monostable (left and 

right) or bistable (center), as visualized by the change in the number of intersections of 

the nullclines (dotted black lines). Parameters for all plots are given in Table S1 except for 

c = 0.3 on the left and c = 0.65, n = 0.7 on the right, which were chosen for the purpose of 

illustrating monostability.

We can draw a line on the phase portrait to indicate all points where the mRNA does not 

change concentration during a small time period (i.e., the arrows are vertical at these points). 

This line is defined by dR
dt = 0 and is called a nullcline. We can similarly identify a nullcline 

for protein concentration, defined by dP
dt = 0 and along which all arrows point horizontally. 

Trajectories become “stuck” where both dR
dt = 0 and dP

dt = 0, since concentrations do not 

change for either molecular species. Such points are called steady states and are found at the 

intersections of the nullclines. Crucially, the shapes of the nullclines depend on the shape 

of f as well as the quantitative values of the translation and decay rates, implying that the 

number of steady states also depends on these parameters.

All trajectories eventually converge to one or more steady states called attractors, so 

named because they “attract” trajectories toward them. Attractors are stable, meaning that 

if concentrations are perturbed slightly away from the attractor, they will return to the 

attractor. Alternatively, a steady state can be unstable, such that, after a small perturbation, 

the chemical concentrations evolve away from that steady state; in this case the state is not 

an attractor because trajectories in the vicinity tend to leave rather than approach it. The 

stability and number of steady states also depend on the system’s quantitative parameter 

values.

For models of the kind we consider here, there are either 1 or 3 steady states, such that the 

autoregulatory module is either monostable, meaning it possesses one attractor and possibly 

one unstable steady state, or bistable, meaning it possesses two attractors and one unstable 
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steady state between these attractors. In the monostable case, all trajectories eventually reach 

the same attractor, whereas in the bistable case, the attractor reached by a given trajectory 

depends on the initial concentrations of mRNA and protein.

In Section Dynamical systems modeling of ftz regulation of the main text, we discuss how 

to model ftz regulation by a combination of the early and autoregulatory elements, as it 

occurs in the wild-type embryo. The early element eventually stops driving ftz transcription, 

at which point we can use Equation 3 to describe the evolution of the Ftz mRNA and 

protein concentrations starting from the values they assumed at the time the early element 

shut down. Thus, if the autoregulatory module is bistable, then contributions from the 

early element will determine whether the steady-state Ftz concentration in a given nucleus 

(trajectory) is high or low, while if the autoregulatory module is monostable, then the 

steady-state Ftz concentration will always converge toward the same point regardless of 

the transient activity owing to the early element. Throughout the text, we will refer to the 

steady-state Ftz concentration that is reached by a trajectory as the Ftz fate, to distinguish it 

from the instantaneous state of its concentration at any given point in time.

Embryo preparation and data collection—The embryos were prepared following 

procedures described in.43, 40, 74 Embryos were collected and mounted in halocarbon oil 

27 between a semipermeable membrane (Lumox film, Starstedt, Germany) and a coverslip. 

Confocal imaging on a Zeiss LSM 780 microscope was performed using a Plan-Apochromat 

40x /1.4NA oil immersion objective. EGFP and MCP-mCherry were excited with laser 

wavelengths of 488 nm (25.0 μW laser power) and 594 nm (15.0 μW laser power), 

respectively. Fluorescence was detected using the Zeiss QUASAR detection unit. Image 

resolution was 512 × 512 pixels, with pixel size of 0.231 μm. Sequential z-stacks separated 

by 0.5 μm were acquired. Specimens were imaged from mid nuclear cycle 14 until the start 

of gastrulation.

Modeling

Autoregulatory element—We use Rearly t  to describe the concentration of ftz mRNA 

transcribed from the early element, which is translated into protein Pearly t . We define Rlate t
as the ftz mRNA transcribed from the autoregulatory element and translated into protein 

P late t . The total Ftz in the cell at time t is given by P total t = Pearly t + P late t . The dynamical 

equations describing the temporal evolution of mRNA and protein are

autoregulatory element :

dRlate

dt = cf t, P total(t) − γRRlate(t)

dP late

dt = αRlate(t) − γPP late(t)
, (4)

where γR and γP are the decay rates of mRNA and protein respectively, α is the translation 

rate, and c is a scaling factor equivalent to the ratio of maximum production rate from 

the endogenous locus vs. the transgene (where f is measured). Note that f t, ⋅ , the gene 

regulatory function for the autoregulatory element, is time dependent. Unless otherwise 

stated, we will assume
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f(t, P ) = 0, t < ton,
f P , t ≥ ton

, (5)

where

f(P ) = aPn

Kn + Pn + l (6)

is the sigmoid describing the autoregulatory relationship at maximum amplitude. Using the 

definition of P total t  we will then write Equation 4 as

autoregulatory element :

dRlate

dt = cf P early(t) + P late(t) − γRRlate(t)

dP late

dt = αRlate(t) − γPP late(t)
, t ≥ ton . (7)

Thus, Pearly t  acts as the sole time-varying input to the autoregulatory element. Since 

autoregulation does not begin until time ton, the initial conditions for Equation 7 are fixed at 

Rlate ton = 0 and P late ton = 0.

Early element—From our empirical measurements, we observed that the production rate 

r t  of early ftz mRNA is well approximated by an exponential decay (Figure 5I and J), 

allowing us to model Rearly t  and Pearly t  through the dynamical system

dr
dt = − βr(t)

dRearly

dt = r(t) − γRRearly(t)

dP early

dt = αRearly(t) − γPP early(t)

. (8)

As before, α is the translation rate and γR and γP are the decay rates of mRNA and protein. 

Because Equation 8 is linear, it can be equivalently written as

d x (t)
dt =

−β 0 0
1 −γR 0
0 α −γP

x (t) = :A x (t), (9)

where

x (t) =
r(t)
Rearly(t)
P early(t)

. (10)

The analytical solution is then given by
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x (t) = c1eλ1t v 1 + c2eλ2t v 2 + c3eλ3t v 3, (11)

where λ1, λ2, λ3 are the eigenvalues of A corresponding to eigenvectors v 1, v 2, v 3

respectively. In particular,

x (t) =

1
1

γR − β
α

γR − β γP − β

c1e−βt +

0
1

α
γP − γR

c2e−γRt +
0
0
1

c3e−γPt
(12)

where

c1 = r ton , c2 = Rearly ton − r ton

γR − β , c3 = P early ton − α
γP − γR

c2

− α
γR − β γP − β c1.

(13)

Thus, the input Pearly(t) to the autoregulatory element is completely characterized by three 

parameters r ton , Rearly ton , Pearly ton  corresponding to the initial conditions for Equation 8. 

Since every term in the solution is multiplied by an exponential that decays in time, all state 

variables will tend to 0 as t goes to infinity.

Intersection test for bistability—Here, we describe how to use an intersection test to 

identify steady states such as those introduced in STAR Methods: “A primer on bistability” 

for our model of the autoregulatory module. To reiterate, our dynamical system Equation 7 

is described by

autoregulatory element :

dRlate

dt = cf P early(t) + P late(t) − γRRlate(t)

dP late

dt = αRlate(t) − γPP late(t)
, t ≥ ton. (14)

Steady states are system states at infinite time. Since we know that Pearly(t) goes to 0 at long 

times, the steady states for Equation 7 are equivalent to the steady states of

autoregulatory element :

dRlate

dt = cf P late(t) − γRRlate(t)

dP late

dt = αRlate(t) − γPP late(t)
, (15)

which has no time-varying parameters and can therefore be analyzed for steady states by 

standard methods.

By definition, at steady state the derivative of the different molecules species with respect to 

time equals zero, allowing us to write
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autoregulatory element :
0 = cf P late

* − γRRlate
*

0 = αRlate
* − γPP late

* (16)

where Rlate
* , P late

*  is a steady state. Then, we rearrange the bottom equation to get

Rlate
* = γP

α P late
* , (17)

which we plug into the top equation to get

0 = cf P late
* − γRγP

α P late
* . (18)

From here, we rearrange terms to recover

γPP late
* = αc

γR
f P late

* . (19)

Hence, the intersections of a line of slope γP with the right-hand side give the steady-state 

late protein concentrations P late
* , from which we can recover Rlate

*  through Equation 17. These 

intersections can be estimated graphically or through computational methods.

Convergence rate estimates and basin of attraction—In this section, we show our 

calculation for the local convergence rate to the high Ftz steady state. The convergence 

rate is an estimate for how quickly a cell approaches the high fate, expressed as the time 

constant for an exponential decay of the distance between a trajectory and the steady state 

in the phase space. This section assumes familiarity with linear stability analysis, which is 

introduced in most nonlinear systems textbooks such as the classic.76

Assume we combine Equation 7 and Equation 8 to obtain the full model

dr
dt = − βr(t)

dRearly

dt = r(t) − γRRearly(t)

dRlate

dt = cf0 P tot(t) − γRRlate(t)

dP tot

dt = α r(t) + R(t) − γPP tot(t)

(20)

where P tot(t) = Pearly(t) + P late(t) and we have used the assumption that

f t, P = f0 P (21)

for t ≥ 0.

The Jacobian of this system about a steady state r*, Rearly
* , Rlate

* , P tot
*  is
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J =

−β 0 0 0
1 −γR 0 0
0 0 −γR cf′ P*
0 α α −γP

. (22)

Since J is a lower triangular block matrix, its eigenvalues are the eigenvalues of the diagonal 

blocks. The upper left block has eigenvalues

λ1 = − β, λ2 = − γR (23)

and the lower block has eigenvalues

λ+ = − γP + γR + γP + γR
2 − 4 γRγP − αcf′ P*

2 , (24)

λ− = − γP + γR − γP + γR
2 − 4 γRγP − αcf′ P*

2 . (25)

If αcf′ P* > γRγP, the eigenvalue λ+ is positive, hence the system is bistable and the 

identified steady state is the unstable middle point. Otherwise the real parts of all 

eigenvalues are negative and the steady state is (marginally) stable.

Locally to a stable steady state (for which αcf′ P* < γRγP ), the convergence rate ξ is 

determined by the slowest of the decay rates along the eigenvectors, i.e.,

ξ = min b, γR, ℜ λ+ ∣ (26)

where

ℜ λ+ < γR + γP

2 . (27)

The bound is determined by the point at which the imaginary components of λ+, λ− become 

nonzero. Thus, if γP < γR, then ℜ λ+ < γR, which means that the local convergence rate will 

be slower than the mRNA decay rate.

The (nonnormalized) eigenvectors associated with each eigenvalue are

v 1 =

− 1
α αcf′ P* − β − γP β − γR

1
α β − γR

αcf′ P* − β − γP β − γR

− cf′ P*
β − γR

1

, v 2 =

0
−1
1
0

,
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v + =

0
0

1
α γP + − γP + γR + γP + γR

2 − 4 γRγP − αcf′ P*
2

1

=

0
0
1
α γP + λ+

1

,

v − =

0
0

1
α γP + − γP + γR − γP + γR

2 − 4 γRγP − αcf′ P*
2

1

=

0
0
1
α γP + λ−

1

.

(28)

As expected, locally the convergence rate associated with λ2 = − γR (decay rate of mRNA) 

has no component in the “protein direction” (i.e., 0001 ⋅ v2 = 0 ), so if we are only interested 

in the local convergence rate of protein concentration we may ignore λ2 and instead take

ξP = min b, ℜ λ+ . (29)

For the parameters measured in our system, we estimate convergence to the low steady state 

at the same rate as protein decay and to the high steady state at a rate of approximately 33.6 

min, on par with the timescale over which the early element must remain active in order for 

fate to be appropriately specified.

Parameter estimation

Regulatory function f P  of the ftz autoregulatory element—We calculated 

the regulatory function f P  of the ftz autoregulatory element (shown in Figure 4D) for 

the anterior boundary of stripe 4. To make this possible, we identified the boundary in a 

manually selected image frame prior to gastrulation by extracting two adjacent columns of 

cells, each corresponding to high or low Ftz concentration. For each cell, we obtained the 

MS2 signal, which is a proxy for the instantaneous rate of transcription,43, 77, 74 and the 

Ftz fluorescence for each time point. Next, we binned data points within a specific temporal 

window into ten quantiles. We averaged the MS2 and Ftz signals belonging to the same 

quantile, then fit a Hill function to the resulting values to obtain the regulatory function of 

the ftz autoregulatory element within that time window. We repeated the process in four 

temporal windows (−20 to −15, −15 to −10, −10 to −5, and −5 to 0 min) to obtain the trend 

shown in Figure 4E).
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Translation rate α—To calculate the translation rate, we simultaneously imaged the ftz
transcription rate and the resulting Ftz concentration in a Ftz-MS2-LlamaTag construct 

(Figure 5D). We focused on nuclei lacking initial Ftz transcription, meaning that for these 

nuclei, no MS2 spots were detected prior to the experiment’s initiation. For these nuclei, we 

measured the MS2 signal (see Figure 5E for a sample trace), which is an approximation of 

the ftz mRNA production rate,43, 74, 40 and integrated this signal in order to obtain the total 

amount of mRNA produced (see Figure 5F;43). This integration was done by solving the 

differential equation for the mRNA R(t) given by

dR
dt = r t − γRR t , (30)

where r(t) is the transcription rate (i.e., the mRNA production rate reported by MS2 

fluorescence), and γR = 0.099 1/min (see Table S1). An example of a resulting prediction 

for the amount of mRNA as a function of time is shown in Figure 5F.

Next, we performed a parameter sweep for the translation rate α and, for each value of α, we 

integrated R(t) to predict the protein dynamics P (t) using the following equation.

dP
dt = αR(t) − γPP (t) . (31)

Examples of these predicted protein dynamics traces for different values of α are shown as 

black lines in Figure 5G.

The translation rate that results in the best fit (Figure 5G, yellow line) is recorded for each 

nucleus. We then calculated α values for each embryo by averaging best-fitted α for each 

single cell (Figure 5H). These values are averaged across N = 129 cells (embryo 1) and 

N = 119 cells (embryo 2), respectively. Then we averaged the resulting value of α between 

two embryos, giving us α = 0.082 ± 0.004 protein AU /(mRNA AU min) (see Table S1), 

which is used in our dynamical systems model in the main text.

It is important to note that the correlation between these mRNA dynamics and the protein 

dynamics, as determined by the translation rate, is independent of which enhancer element 

drove mRNA expression initially. Furthermore, to calculate α, we utilized a construct that 

includes both the early and autoregulatory elements rather than focusing solely on the 

autoregulatory element.

Early element transcriptional activity decay rate β—To determine the decay rate β
for mRNA production from the early element, we utilized fluorescence measurements of the 

early element MS2 reporter construct (Figure 5I). For each embryo, an exponential fit was 

applied to its average trajectory (Figure 5J). Subsequently, we calculated the mean decay 

rate across all embryos (see Table S1, N = 2 embryos) for incorporation into the dynamical 

systems model.
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Scaling factor c—We estimated c, the ratio of maximum production rate from the 

endogenous locus vs. the transgene, by approximating the solution to the dynamical system 

in Equation 7 between two time points for which we have empirical data. In particular, we 

began from the experimental observation that f t, P  plateaus shortly before gastrulation 

for nuclei with total Ftz levels above about P∞
tℎresℎ = 1.5 × 106 a.u. Therefore, for nuclei that 

satisfy Pearly(t) ≥ P∞
tℎresℎ during this time (Figure S3A), we can approximate the nonlinear 

system for the autoregulatory element by the following linear system

dR
dt = cf P∞

tℎresℎ − γRR(t)

dP
dt = αR(t) − γPP (t)

, (32)

where f P∞
tℎresℎ  is now a constant. This system of equations has an analytical solution given 

by

R(t) = cR(0)e−γRt + cf P∞
tℎresℎ

γR
1 − e−γRt

P (t) = P (0)e−γPt + α
γP − γR

R(t) − R(0)e−γPt − cf P∞
tℎresℎ

γP
1 − e−γPt .

(33)

Rearranging these expressions gives

c = γP

f P∞
tℎresℎ 1 − e−γPt R(t) − R(0)e−γPt − γP − γR

α P (t) − P (0)e−γPt . (34)

Note that here t = 0 is assigned to the beginning of the time window over which the 

simulation is performed.

We calculated the solution to Equation 34 for the individual boundary nuclei in the 

same embryos as used to fit the gene regulatory function (Figure 4D). We restricted 

our estimations to the 3 min before gastrulation based on personal observations that the 

prediction accuracy of the simulation of this linearized system tended to fall after ∼3 min. 

We derived the initial conditions R(0), P (0)  from estimates of the late protein obtained by 

subtracting simulated early protein from the total protein trace (where the autoregulatory 

element was assumed to begin contributing at −20 min before gastrulation). We estimated c
in a windowed approach whereby, for each nucleus, we simulated only over one empirical 

sample interval (10 s) for all intervals from 3 min before gastrulation (Figure S3B). We 

pooled all samples for individual time windows across all nuclei (Figure S3C and D) and 

averaged them to give a final estimate of c ≊ 0.45 ± 0.02 across the 3 min before gastrulation 

(where the error range is the standard error).
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Simulations

Extracting initial conditions—Initial conditions for all nuclei were drawn from 

measurements of the endogenous Ftz protein tagged with LlamaTag. In particular, 

we assumed the autoregulatory element was unresponsive before ton (corroborated by 

simultaneous measurement of MS2 for the late element transgene in these constructs), such 

that all protein and mRNA up until 20 min before gastrulation was contributed by the early 

element. Therefore, our measurements until gastrulation give us the trace Pearly(t) for t < ton.

Protein traces were smoothed before use and provided P−20 directly. The early mRNA 

concentration Rearly(t) was calculated from the third equation in Equation 1 by plugging in 

measurements from the smoothed trace to

Rearly(t) = α−1 dP early

dt + γPP early(t) , (35)

from which R−20 could be extracted. The early transcription rate r(t) was then estimated from 

the derivative of the estimated mRNA trace Rearly(t) evaluated at t = − 20.

Best predicted nuclei—In order to be assured of the accuracy of our conclusions 

concerning the dynamics of the commitment process, in Figure 7 we decided to restrict 

our analysis to sets of nuclei whose simulated trajectories well matched the empirical traces. 

From our dataset, we identified such “best predicted” nuclei based on the cumulative error 

between a measured trajectory Rt, P t  at discrete time points t and a simulated trajectory 

R̂t, P̂ t  at the same time points as

ϵ = ∑
t

Rt − Rt
2 + P t − P t

2 . (36)

From a histogram of the errors (Figure S7A), which was roughly bimodal, we identified a 

threshold of 7×107 to identify the 79 best predicted nuclei out of 118 nuclei total. Some 

sample traces from these best predicted nuclei are shown in Figure S7B while traces for 

nuclei with high cumulative error are shown in Figure S7C.

We also calculated the cumulative error when simulations were conducted for a gradual 

increase in autoregulatory responsiveness described by

f̂(t, P ) = 1 − e−ξ* t − ton f P , t > ton, (37)

where f P  is as defined in Equation 6 and ξ = 0.14 1/min corresponds to a half-life of 5 min 

(from the observation that the autoregulatory element transitions from unresponsive to fully 

responsive over 10 min; see Figure 4E). The resulting sample traces are shown in Figure 

S7B–C. Compared to the case where we assume that the autoregulatory element becomes 

active instantaneously at ton (Figure S7A), there was a slight shift in the distribution toward 

lower error (88 best predicted with the same cutoff as before in Figure S7A), but the binary 
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classification accuracy at gastrulation was the same. Therefore we opted to use f P  rather 

than f̂(t, P ) for the main analysis.

Whole-embryo simulations—We were curious about how accurately our model, which 

is based on measurements at the anterior boundary of stripe 4, would predict Ftz state 

for all nuclei spanning stripes 3, 4 and 5 measured during our experiments. Assuming all 

nuclei follow the same dynamics as given in Equation 1 and Equation 7, we repeated the 

analysis from Figure 6 to predict Ftz concentration at gastrulation. We achieved a binary 

classification accuracy of (74.6%, or 763 of 1036 nuclei). Interestingly, this is worse than 

the accuracy achieved from thresholding early protein alone (84.3%, or 873 of 1036 nuclei), 

which is itself comparably accurate to the predictions for the anterior boundary of stripe 4 

(with or without the autoregulatory contribution). The bulk of classification errors for the 

whole-embryo simulations, whether from thresholding full simulations or thresholding early 

protein alone, were false positives at the posterior boundaries of stripes, as in the example 

plotted in Figure S5B. This indicates that something differs in the regulation of Ftz at the 

anterior boundaries of stripes as compared to the posterior boundaries. For example, it has 

been noted that the posterior, but not the anterior, boundaries of Ftz stripes are repressed by 

sloppy paired (slp).42

Delaying the onset of responsiveness of the autoregulatory element—From 

a mathematical standpoint, we can treat a delay in ton as a change in the starting time 

of the simulation, which introduces a corresponding change to the initial conditions 

r ton , Rearly ton , Pearly ton  of the early module. In this way, the time at which the trajectory 

of the early module r(t), Rearly(t), Pearly(t)  crosses the switching separatrix is the latest time 

at which the autoregulatory element can become responsive and still commit a cell to the 

appropriate (high) fate (Figure S5C). This follows from three conditions: (1) the early 

element is time invariant, (2) the early element is independent of the autoregulatory module 

(the same is not true for the autoregulatory module, which takes the output of the early 

module as its input), and (3) Ftz fate corresponds to the Ftz concentration state at infinite 

time. (1) and (2) ensure that, even if we delay the autoregulatory element, we can continue 

to use Equation 1 to simulate early protein by just changing the initial conditions, while 

(3) ensures that the delayed start of the autoregulatory element will not change the location 

of the switching surface (which is relative to steady state, not to a transient state of the 

trajectory at a fixed point in time). Intriguingly, the trajectories of early protein run parallel 

to the separatrix before converging to cross it in a restricted region of parameter space 

(Figure S5C).

In Figure 7 we analyze the commitment window by varying toff at the same time as ton. In 

Figure S5D we report full results for simultaneous variation in ton and toff. The strictness with 

which cell fate must be specified determines the variation in timing that can be tolerated. 

For example, if the early element ceases production at or after gastrulation toff > 0 , the 

autoregulatory element can delay responsiveness until −15 min and still guide at least 75% 

of cells to the appropriate fate. If the early element does not cease production until 20 min, 

then the autoregulatory element may turn on just after −6 min and still direct 75% of cells to 
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the correct fate. From these results, we see that almost no cells commit to the high fate when 

ton > toff. For this reason, in the main text we always set toff > ton.

Stochastic simulations—Stochasticity in gene expression during embryonic 

development can compromise or improve system function depending on the context.63, 64 

We sought to investigate whether stochasticity in gene expression (1) was sufficient to 

explain the prediction error rates of our deterministic models, and (2) could drive stochastic 

switching at appreciable rates. We examined these questions using stochastic differential 

equations (SDEs), assuming that the noise in our data arises solely from stochastic dynamics 

within the cells rather than from measurement noise. Generally, we expect this method to 

overestimate the error.

In a stochastic differential equation model, changes in the amount of late RNA dRlate and 

total protein dP total over a time interval dt are given by

dRlate(t) = cf P total(t) − γRRlate(t) dt + σR Rlate(t) dW
dP total(t) = αRtot(t) − γPP total(t) dt + σP P total(t) dW , (38)

where dW  is Gaussian with mean 0 and variance dt.78 The terms σR Rlate  and σP P late  scale 

the variance of the noise from one time increment to the next.

For this analysis, we used our experimental setup featuring endogenous Ftz-LlamaTag 

driving an autoregulatory element transgene tagged with MS2 as introduced in Figure 4. 

Because, over a small time interval where mRNA degradation is negligible, the MS2 signal 

reports on the rate of mRNA production, this signal gave us direct access to dRlate ti  at 

discrete time points ti. As a result, we can use this measure of dRlate(t) to estimate for the late 

mRNA Rlate(t) by integrating the MS2 signal following

Rlate ti = Rlate ti − 1 + dRlate ti ti − ti − 1 (39)

under the assumption that Rlate ton = 0 (meaning that the autoregulatory element only 

becomes responsive at time ton . Since we also have direct measurements of P total(t), this 

allows us to rearrange Equation 38 so as to estimate the noise contribution σR Rlate(t) dW
from

σR Rlate(t) dW = dRlate(t) − cf P total(t) − γRRlate(t) dt . (40)

If we further assume that Rearly(t) is noiseless and therefore given by the deterministic 

solution in Equation 12, we can estimate the total mRNA as Rtotal(t) = Rearly(t) + Rlate(t). Then, 

since we have simultaneous measurements of total Ftz P total, we can also rearrange the lower 

equation in Equation 38 to estimate σP P total(t) dW  from

σP P total(t) dW = dP total(t) − αRtotal(t) − γPP total(t) dt . (41)
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We can perform the above analysis on individual measured traces to produce a large number 

of sample points of σR Rlate dW  and σP P total dW . With these data we will aim to estimate 

σR R  and σP P . We assume the noise characteristics are time invariant, which allows us 

to pool all samples at all time points and bin them by the corresponding Rlate or P total. For 

example, for protein, we treat each protein concentration bin k as a population of samples of 

σP P‾ total
k dW  where P‾ total

k  is the mean of the samples in bin k (Figure S6A). Since we assume 

dW  is normally distributed with variance dt, we divide all sample values by dt and fit a 

normal distribution to the resulting distribution within each protein concentration bin (Figure 

S6B). We found that the variances σP(P )2 are quite well approximated by a linear relation 

σP(P )2 = aP + b (Figure S6C, right). The mRNA variance was estimated similarly and also 

found to fit a linear relation (Figure S6C, left). Noise was estimated from all available 

trajectories, regardless of whether they were part of the stripe 4 anterior boundary.

Having estimated the noise, we investigated whether stochasticity could explain the 

error rate in our predictions of Ftz expression state at gastrulation. We simulated 

Nsim = 100 experiments, each consisting of Nnuc = 118 nuclei evenly split between those 

deterministically predicted to be on and those deterministically predicted to be off. 

Specifically, we found the convex hull defined by the experimentally measured initial 

conditions for nuclei at the stripe 4 anterior boundary, and drew random initial conditions for 

the stochastically simulated nuclei from a uniform distribution within this hull. We assigned 

to each simulated experiment Nnuc
2  points below the blue surface in Figure 7C and Nnuc

2  above 

the surface without replacement (i.e., every nucleus in every simulated experiment has a 

unique set of initial conditions). Individual stochastic trajectories were generated using the 

Euler-Maruyama method, with the modification that protein and mRNA concentrations were 

forcibly lower bounded at 0 (i.e., random fluctuations that would bring concentrations to 

negative values were capped to instead bring the concentration to zero). Trajectories were 

simulated for 20 min until gastrulation and thresholded with the same value as for our 

deterministic simulations (Figure S6D).

From our Nsim = 100 simulated experiments, we calculated a distribution of error rates given 

by

total false positives + total false negatives
total number nuclei , (42)

where we compare the predicted outcomes from deterministic simulations to the “ground 

truth” of the stochastic simulations.

In Figure S6E we plot the cumulative distribution of error rates for our simulations (black), 

broken down into false negatives (red) and false positives (green). The dashed vertical 

lines indicate the experimentally measured error rates with the same color code. Where the 

vertical lines intersect the corresponding cumulative distributions indicates the probability of 

measuring an error rate up to that rate. If the system is really described by the stochastic 

dynamics we have inferred, then the most likely error rates are those that intersect the curves 

where their slope is highest.
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We found that the empirical error rate across 3 embryos was roughly twice that of the most 

likely error rates from our stochastic simulations corresponding to the middle of calculated 

cumulative distribution functions (Figure S6E, top), with the majority of errors being false 

negatives. We knew from observation that one embryo had a large number of false negative 

predictions, and, interestingly, if we exclude this embryo from analysis, then the empirical 

error rate aligns well with what the stochastic model predicts to be most likely (Figure S6E, 

bottom). This result suggests that many of our prediction errors can likely be attributed to 

stochastic fluctuations.

Having determined that the error of the model in predicting Ftz expression state at 

gastrulation is comparable to the error expected when considering gene expression 

stochasticity, we next turned to the question of whether gene expression stochasticity is 

expected to play a large role in the long-term Ftz fate of cells in which the early element 

is no longer active. We ran N = 100 simulations beginning from the high steady state and 

calculated the distribution of first-passage times to particular protein values (Figure S6F, 

left) or to within some Euclidean distance of the opposite steady state (Figure S6F, right). 

These measures give an approximation of the switching rate depending upon how stringently 

one defines a threshold for switching.

Both trends indicate that switching from high to low occurs at a much faster rate than low 

to high, with conservative rates of stochastic switching between the high and low Ftz fates 

of around 2 hr and between low and high fates of approximately 3 hr. For comparison of 

timescales, Ftz stripes are no longer experimentally detected before the end of germband 

extension,26, 79 which occurs approximately 1.5 hours after gastrulation.80 Thus, we find 

no strong evidence that stochastic switching should contribute significantly to Ftz stripe 

patterning.

Quantification and statistical analysis

Image processing—Image analysis of live embryo videos was performed based on the 

protocol in,43, 81 which included nuclear segmentation, spot segmentation, and tracking. In 

addition, the nuclear fluorescence of Ftz was calculated based on a nuclear mask generated 

from the MCP-mCherry channel. Ftz concentration for individual nuclei was extracted based 

on the integrated amount from maximum projection along the z-stack. The GFP background 

was calculated based on a control experiment and subsequently subtracted from the data.

Numerical analysis and simulations—Numerical analysis and simulations were 

carried out using custom scripts in MATLAB (2017b). The switching separatrix was 

estimated using a modification of the algorithm in,48 which employs a combination of 

bisection and random sampling to estimate the upper and lower bounds of the separatrix 

surface. Stochastic differential equations were simulated using the Euler-Maruyama method. 

More detailed descriptions of the procedures are available in the Supplementary Text.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights (each point no longer than 85 characters)

• Bistable network motifs have been proposed to stabilize cell fate commitment

• This hypothesis is tested in the context of ftz expression fate in fly embryos

• Live imaging is used to quantitively measure all parameters in a mathematical 

model

• Theory-experiment demonstratesthat bistability mediates ftz expression fate
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Figure 1: The bistability of the autoregulatory module can determine cell fate.
(A) The autoregulatory architecture consists of an early element to which upstream factors 

bind to transiently upregulate gene expression of an activator, and an autoregulatory element 

to which the activator binds to, under certain circumstances, promote its own expression 

even once the upstream factors have degraded. (B) The total activator concentration (green) 

is a sum of the protein produced by the early (blue) and autoregulatory (red) modules. If 

the autoregulatory module is bistable, it possesses binary memory that permits transiently 

high concentrations of early protein to be locked into permanent high expression levels (high 

cell fate) as shown in Case 1. If, in contrast, the autoregulatory module is monostable, then 

it may transiently boost protein levels from the early module, but over time all cells will 

ultimately revert to the same low fate as depicted in Case 2.
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Figure 2: Binary cell states are rapidly established prior to gastrulation.
(A) A fusion of endogenous Ftz to a LlamaTag visualizes highly dynamic Ftz protein 

patterning in the early fly embryo. Once Ftz protein is translated in the cytoplasm, LlamaTag 

binds to maternally deposited EGFP and is transported into the nucleus, increasing nuclear 

fluorescence to produce a direct readout of Ftz concentration. (B) Snapshots from a video 

capturing Ftz concentration dynamics. The embryo is oriented with the anterior towards the 

left. Time is given relative to gastrulation. (C) Ftz expression along the anterior boundary 

of stripe 4 shows a discrete transition between cell states. (D) Histograms of single-nucleus 

fluorescence values at different developmental time points show that a threshold can be 

used to classify cells into high Ftz and low Ftz cell states at gastrulation. (E) Single-cell 

trajectories of nuclei at the anterior boundaries of Ftz stripe 4. Green and red lines are 

averages for nuclei determined to have high and low Ftz levels at gastrulation, respectively, 

as defined in (D).
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Figure 3: A sequential transition in Ftz regulation from the early to the autoregulatory element 
occurs while discrete cell states are established.
(A) Imaging transcriptional dynamics of the early and autoregulatory elements using the 

MS2 system. Maternally deposited MS2 coat protein (MCP) fused to mCherry binds to MS2 

stem-loops in the nascent RNA of the reporter construct. (B) Snapshots of sites of nascent 

transcript formation labeled by MS2 from reporters of the early and autoregulatory elements 

at different time points. Transcription from the early element significantly decreases, and 

transcription from the autoregulatory element increases shortly before gastrulation. (C) 
Quantification of the transcriptional activity reported by the MS2 fluorescence from the 

early (N = 3 embryos) and autoregulatory (N = 6 embryos) elements as a function of time 

confirms that, within 20 min, ftz gene expression transitions from originating mainly 

from the early element to being dominated by the autoregulatory element. MS2 traces are 

smoothed using a moving average of 5 min. The transcription rate is calculated from the 

measured MS2 signal, which is an approximation of the mRNA production rate.43, 74, 40 

(Shaded region indicates standard errors over multiple embryos.) See also Figure S1.
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Figure 4: Two-color live imaging reveals that ftz autoregulation is initiated at a specific 
developmental time.
(A) Two-color tagging permits in vivo simultaneously visualizes input Ftz concentration 

using LlamaTag and output autoregulatory transcriptional dynamics using a reporter 

carrying the MS2 system. (B) Representative frames from live-imaging data. Green and 

magenta channels correspond to Ftz concentration and transcriptional output from the 

ftz autoregulatory element, respectively. Outlines indicate cells expressing high (light 

gray) or low (dark gray) levels of Ftz protein. (C) Illustrative single-cell trace of Ftz 

and autoregulatory activity. Green and magenta lines correspond to the Ftz protein and 

transcriptional activity of the autoregulatory element, respectively. Both protein and MS2 

traces are smoothened using a moving average of 1 min. (D) Experimentally measured 

gene regulatory function of the ftz autoregulatory element between −10 min to −5 min 

relative to gastrulation. Grey points correspond to simultaneous measurements of Ftz and 

MS2 fluorescence at individual time points from single-cell traces at the anterior boundary 

of stripe 4 (N = 211 nuclei). These points were grouped into quantiles, and a Hill function 

(red line) was fit to the quantile means. (E) The autoregulatory input-output function evolves 
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over time, as the ftz autoregulatory element transitions from an unresponsive to a responsive 

state within 15 min, indicating that Ftz autoregulation is initiated through a developmental 

time-based mechanism. The transcription rate is calculated from the measured MS2 signal, 

which is an approximation of the mRNA production rate.43, 74, 40 (Error bars shown indicate 

standard errors. All data are from N = 7 embryos.) See also Figure S2 and Video S1.

Zhao et al. Page 39

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Quantifying dynamical systems model parameters reveals that ftz autoregulation is 
bistable.
(A) The early element drives ftz transcription at a rate r(t) that drops exponentially over 

time with rate β, producing early mRNA Rearly(t) that is translated at rate α into Ftz protein 

Pearly(t). (B) The autoregulatory element drives Ftz expression starting at time ton with a 

rate determined by the gene regulatory function f P , where P  is the total Ftz produced 

from both the early and autoregulatory modules, Pearly + P late. (C) The model can be used 

to predict traces for the mRNA and protein concentrations over time based on initial 
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transcription rates and molecular concentrations at ton. We use the term “state” to refer to 

the whether Ftz expression is high or low at gastrulation, and “fate” with regard to the total 

Ftz concentration at long time scales t = ∞ . (D-H) Estimating the translation rate α. (D) 

We used the Ftz-MS2-LlamaTag transgenic construct for estimating the translation rate α. 

(E) Illustrative example of a single-cell raw MS2 trace that reports on the instantaneous ftz
transcription rate. MS2 traces are smoothed using a moving average of 1 min. Ftz traces are 

smoothened using a moving average of 5 min. (F) We integrate the MS2 traces to estimate 

the mRNA dynamics in individual nuclei. (G) For a given value of the translation rate α, 

and known degradation rates γR and γP,47, 40 we integrate the estimated mRNA dynamics 

to predict Ftz dynamics in individual nuclei. We then choose the value of α that leads to 

the best agreement between our prediction (gold line) and experiment (purple line). Gray 

lines show suboptimal fits. (H) Histogram distribution of best-fitted α values for individual 

cells within two embryos. (I-J) Inferring the decay rate of the early element transcription 

rate β. (I) The early element regulates the transcription rate r(t). (J) The exponential fit of 

early element transcription (n = 2 embryos). Gray dots represent the averaged early element 

transcription rate at individual time points from a single embryo. Red and blue lines are 

the exponential fits that are used to estimate the early element decay rate β. (K) Given the 

measured model parameters, our model shows that the autoregulatory module is bistable. A 

phase portrait (as described in Box 1) illustrates that the autoregulatory module represented 

by Equation 2 is bistable in the absence of early protein. This implies that the autoregulatory 

enhancer is capable of maintaining high or low levels of Ftz indefinitely. The transcription 

rate is calculated from the measured MS2 signal, which is an approximation of the mRNA 

production rate.43, 74, 40 The numerical values of experimentally measured parameters are 

reported in Table S1. See also Figure S3 and Figure S4.
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Figure 6: Model reveals that the early element alone is sufficient to accurately predict binary Ftz 
expression states at gastrulation.
(A) The mRNA production rate r−20, mRNA concentration R−20, and protein concentration 

P−20 from the early element are measured at 20 min before gastrulation for each nucleus 

(filled circle). These measurements are used to set the initial conditions for simulations of 

Ftz concentration at all times after ton in each individual cell. Circle color corresponds to the 

measured total Ftz concentration at gastrulation. (B) Measured (dark green) vs. simulated 

(light green) total Ftz for three representative cells corresponding to the circled points in 

panel A. We can classify a nucleus as in the high Ftz state (ON) or the low Ftz state (OFF) 

at gastrulation (t = 0 min  depending on whether the total Ftz levels are above or below the 

empirically identified threshold (gray dashed line) (Figure 2D). Predicted simulated traces 

are also shown for early (blue) and late (red) Ftz contributions. Note that, for cell 2, the blue 

and green curves substantially overlap. (C) Measured fraction of cells in the ON or OFF 

expression state at gastrulation (left) compared to predictions based on thresholding total Ftz 

(center) or early Ftz alone (right). Predictions using total Ftz concentration or Ftz produced 

by the early element lead to similar accuracy in comparison to empirical results (total Ftz: 

102 of 118 nuclei; early Ftz: 100 of 118 nuclei). (D) Results from a representative embryo 

show that the experimentally measured stripe pattern (left) is recapitulated by simulation 

Zhao et al. Page 42

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(middle). A stripe pattern is still evident at gastrulation even from the predicted early Ftz 

concentration alone (right). Nuclear intensities at all time points are normalized to the 

predicted steady-state high Ftz concentration. Red triangles denote nuclei predicted to be 

ON that were OFF (downward) and nuclei predicted to be OFF that were empirically ON 

(upward). Parameters for all simulations were experimentally measured as reported in the 

main text; numerical values are reported in Table S1. See also Figure S5 and Figure S6.
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Figure 7: In silico analysis reveals the window of commitment of cells to Ftz fate.
(A) Simulated Ftz concentration over long time scales (total: light green, early: blue, late: 

red) for the same cells shown in Figure 6B (circled again here in panel C). Empirical 

measurements until gastrulation are plotted in dark green for comparison. (B) Bar charts 

for the best predicted subset of nuclei (N = 79; see STAR Methods “Simulations - Best 

predicted nuclei”) show that most analyzed cells are predicted to adopt an ultimate fate 

(right) that matches the measured binary Ftz expression state at gastrulation (left). (C) The 

switching separatrix (green surface) separates nuclei predicted to adopt the high Ftz fate 

(green circles above the surface) from those predicted to adopt the low Ftz fate (black circles 

below the surface) given their initial conditions. Top and bottom subpanels show the same 

plot from two different viewing angles. See also Figure S5. (D–E) Schematic illustrating 

(D) ton, the time the autoregulatory element becomes responsive, and (E) toff, the time the 

early element ceases production. We define toff such that r t ≥ toff = 0, where r(t) is the 

mRNA production rate of the early element. Before toff, r(t) follows the usual exponential 

decay observed experimentally with rate β−1 = 21 min. The commitment window toff − ton is 

the timespan during which both upstream factors and autoactivation dictate Ftz expression, 

and serves as an estimate for how long the autoregulatory module has to establish a memory 

of the signal from the early module. (F) Simulated Ftz concentrations resulting from the 

timing pictured in C and D. (G) Contour plot showing what percentage of the subset of 

analyzed nuclei (N = 21; STAR Methods “Simulations - Best predicted nuclei”) that reach 

the high Ftz fate under wild-type conditions still reach that fate as the commitment window 

toff − ton is varied and ton is delayed relative to the measured −20 min (see text). (H) Simulated 
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single-nucleus traces of total Ftz for varying values of ton with initial conditions held constant 

at r−20 = 1.8 a.u., R−20 = 1.1 a.u., P−20 = 2.6 a.u. The simulations show that the commitment 

window can cause the transient dynamics to vary quite dramatically. Dashed lines denote the 

toff (gold) and ton (gray) values used for each plot. The parameters are as in Table S1. See also 

Figure S5, Figure S6 and Figure S7.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

D. melanogaster: y[1]w[1118];+; P{w[+mC]=nos:MCP-mCherry-
NLS}

Bothma et al.40 N/A

D.melanogaster: y[1]w[1118];+; P{w[+mC]=vasa:eGFP} Kim et al.75 N/A

D. melanogaster: y[1]w[1118];+; Ftz-LlamaTag This study N/A

D. melanogaster: y[1]w[1118];+; PBac{y[+mDint2]w[+mC]=Ftz-
MS2-LlamaTag}VK00033

Bothma et al.40 N/A

D. melanogaster: y[1]w[1118];+; 
PBac{y[+mDint2]w[+mC]=FtzEarly-MS2}VK00033

This study N/A

D. melanogaster: y[1]w[1118];+; 
PBac{y[+mDint2]w[+mC]=FtzAutoregulatory-MS2}VK00033

This study N/A

D. melanogaster: 
y[1]w[1118];+; PBac{y[+mDint2]w[+mC]=FtzAutoregulatory-
MS2-Yellow}VK00033

This study N/A

Recombinant DNA

pBPhi-Ftz-MS2-LlamaTag This study https://benchling.com/s/seq-
x2q87tXdJe9pqYEOSq9g?m=slm-
RjKRHFGZEaS8G81UViCo

pBPhi-FtzEarly-MS2 This study https://benchling.com/s/seq-
T1ED2Irkh23F57tKLsfw?m=slm-
Jz5JH1ORpR5uLQFfEbUM

pBPhi-FtzAuto-MS2 This study https://benchling.com/s/seq-
fe9YzhCIfA2Yk0Lf0q3x?m=slm-
pZkVyejK52rJaRg2jPP0

pBPhi-FtzAuto-MS2-Yellow This study https://benchling.com/s/seq-bb0p47yyxCkh4q9E626j?
m=slm-ddvdLwvG9pengxc50ZFp

pUC57-Ftz-LlamaTag-dsRed This study https://benchling.com/s/
seq-7GGWtE4Q9S2WhOMd4ILA?m=slm-
WEm4XxVI0m3LN9e0SuQf

pU6-3-gRNA-Ftz-1 This study https://benchling.com/s/seq-
aB8jmNquZrehNgnMjAJz?m=slm-
ZjKjLl37mNPTJ7zryjv3

pU6-3-gRNA-Ftz-2 This study https://benchling.com/s/seq-
qo0zUxMPWECOXdDXyLbN?m=slm-
Bjt3A3FEXVTwrSzq29dp

pU6-3-gRNA-Ftz-3 This study https://benchling.com/s/seq-
VtOSIvTNGIWCFsPj2QOu?m=slm-
HlvLmtreuEYPthMEN7Gg

Software and algorithms

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

Custom code This study
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