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We review the calculation of the spectrum of glueball masses in non-supersymmetric Yang-Mills 
theory using the conjectured duality between supergravity and large N gauge theories. The glueball 
masses are obtained by solving the supergravity wave equations in a black hole geometry. The 
glueball masses found this way are in unexpected agreement with the available lattice data. We also 
show how to use a modified version of the duality based on rotating branes to calculate the glueball 
mass spectrum with some of the Kaluza-Klein states of the supergravity theory decoupled from the 
spectrum. 

I. INTRODUCTION 

Maldacena's conjecture [1] relates N= 4 supersymmetric SU(N) gauge theories in the large N limit to Type lIB 
string theory on an AdSs x SS background, where AdSs is a five dimensional anti-de Sitter space. The metric of this 
space is given by 

(1) 

'l :t where is is the string length related to the superstring tension, 9s is the string coupling constant and dOs is the line 
~ element on SS. The Xl.2.3.4 directions in AdSs correspond to R4 where the gauge theory lives. The gauge coupling 
3 constant 94 of the 4D theory is related to the string coupling constant 9s by 9~ = 9s. In the 't Hooft limit (N --+ 00 

'" with 9~N = 9sN fixed), the string coupling constant vanishes 9s --+ O. Therefore we can study the 4D theory using the 
~ first quantized string theory in the AdS space (1). Moreover if 9s N » 1, the curvature of the AdS space is small and 
~ the string theory is approximated by classical supergravity. Witten extended this proposal to non-supersymmetric 
I theories [2]. In his setup supersymmetry is broken by heating up the .N = 4 theory, which corresponds to putting the 
if four dimensional theory on a circle and assigning anti-periodic boundary conditions to the fermions. In this case the 
~ 
'""'I fermions will get a supersymmetry breaking mass term of the order T = 1 j27r R, where R is the radius of the compact 

coordinate and T is the corresponding temperature, while the scalars (not protected by supersymmetry anymore) will 
get masses from loop corrections. Thus in the T --+ 00 limit this should reproduce a pure (3 dimensional) SU(N) 
theory in the large N limit, which we will refer to as QCD3. On the string theory side this corresponds to replacing 
the anti-de Sitter metric by a Schwarzschild metric describing a black hole in the anti-de Sitter space. This metric is 
given by 

(2) 

where 7' parameterizes the compactifying circle and the Xl.2.3 direction corresponding to the R3 where QCD3 lives. 
The horizon of this geometry is located at p = b with 

*Based on two talks presented at DPF '99, UCLA, Los Angeles, CA, 5-9 January, 1999. 
t Research fellow, Miller Institute for Basic Research in Science. 
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1 
b = 2R = rrT. (3) 

The supergravity approximation is valid for this theory when the curvature of the space is small, thus when 9sN --+ 00. 

However, in order to obtain the pure gauge theory we have to take the temperature to infinity. In order to keep the 

intrinsic scale 9~N = 9~N/ R of the resulting theory at the scale of QCD, we simultaneously would need to take 
9~N = 9sN --+ O. Here 93 is the dimensionful gauge coupling of QCD3 . This is exactly the opposite limit in which the 
supergravity approximation is applicable! Thus as expected for any strong-weak duality, the weakly coupled classical 

supergravity theory and the QCD3 theory are valid in different limits of the 't Hooft coupling 9~N. 
From the point of view of QCD3 , the radius R of the compactifying circle provides the ultraviolet cutoff scale. 

Therefore, with the currently available techniques, the Maldacena-Witten conjecture can only be used to study large 

N QCD with a fixed ultraviolet cutoff R- 1 in the strong ultraviolet coupling regime, and hope that the results one 
obtains this way are not very sensitive to removing the cutoff, that is on going from one limit to the other. Since the 

theory is non-supersymmetric, there is a priori no reason to believe that these two limits have anything to do with 
each other, since for example there might very well be a phase transition when the 't Hooft coupling is decreased from 
the very large values where the supergravity description is valid to the small values where the theory should describe 
QCD3 . Nevertheless, Witten showed that the supergravity theory correctly reproduces several of the qualitative 
features of a confining 3 dimensional pure gauge theory correctly [2]. In particular, he showed that there is an area 
law in the Wilson loop and that there is a mass gap in the spectrum, both of which are expected features of a confining 
gauge theory. Here we will address the question of whether any of the quantitative features of the gauge theories are 
reproduced as well. In particular, we will calculate the glueball mass spectrum of the theory, and find, that it is in 

reasonable agreement with recent lattice simulations [3]. 

II. THE GLUEBALL SPECTRUM IN 3 DIMENSIONS 

In this section we will show how to calculate the glue ball spectrum of some of the glue balls in the supergravity 
approximation in the· 3 dimensional case. In the following we will use the notation jPc for the glueballs, where 
J is the glueball spin, and P, C refer to the parity and charge conjugation quantum numbers respectively. In the 
field theory, one can find operators that have the quantum numbers corresponding to the given glue ball states. For 
example, an operator with quantum numbers 0++ is given by 0 4 = TrF2, or an operator with quantum numbers 
0-- is given by 0 6 . = dabc F;aFba(3 F3v. According to the refinement of the Maldacena conjecture given in [4], one 

should find a supergravity state corresponding to the chiral primary operators of the original ./II = 4 conformal theory, 
which will couple to the supergravity states on the boundary of the AdS space. Assuming this coupling is maintained 
while heating the system, we can find the supergravity operators coupling to 0 4 and 0 6 • The dilaton and the R-R 
scalar of the supergravity theory combine into a complex massless scalar field. Its real and imaginary parts couple 
to the dimension 4 scalar operators 0 4 = tr F2 and 04 = tr F 1\ F. The NS-NS and R-R two-forms combine into a 

complex-valued antisymmetric field AI'''' polarized along the R4. Its (AdS mass)2 = 16 and thus one can show that 
it couples to a dimension 6 two-form operator of the .N = 4 theory. This operator has been identified as the operator 
0 6 [5,6]. With this knowledge we would like to calculate the actual glueball mass spectrum corresponding to these 
operators 0 4 and 06. In field theory, in order to calculate the masses of these states one would need to evaluate the 

correlators (04(X)04(Y)) = 2:; c;e-mdx-yl, where the mi's are the gluebal~ masses. According to the refinement of 

the Maldacena conjecture [4], this just amounts to solving the supergravity wave equations for the fields that couple 
to these operators on the boundary. In the case of the 0++ glueballs, we need to find the solutions of the dilaton 
equations of motion of the form <I> = f(p )eikx . This is because in the supergravity theory on AdS5 x 8 5 , the Kaluza
Klein modes on the S5 can be classified according to the spherical harmonics of the 8 5 , which form representations of 
the isometry group 50(6) (which is the R-symI1}etry group of the .N = 4 theory). When we put the theory at finite 
temperature, the states carrying non-trivial 50(6) quantum numbers should eventually decouple from the spectrum, 
thus the glueballs should be identified with the 50(6) singlet states, which implies a solution of the form <I> = f(p)e;kx 
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for the dilaton as mentioned above. Thus we will look for normalizable regular solutions to the dilaton equation of 

motion which will give a discrete spectrum with the glueball masses determined as kf = -Ml-
In the supergravity· description we have to solve the classical equation of motion of the massless dilaton, 

(4) 

on the AdSs black hole background (2). Plugging the ansatz <P = f{p)e ikx into this equation and using the metric of 
(2) one obtains the following differential equation for f: 

(5) 

Since the glueball mass M2 is equal to _k2, the task is to solve this equation as an eigenvalue problem for k 2. In 
the following we set b = 1, so the masses are computed in units of b. We need to find normalizable solutions to this 
equations which are also regular at the horizon. For large p, the black hole metric (2) asymptotically approaches the 
AdS metric, and the behavior of the solution for a p-form for large p takes the form pA, where .A is determined from 
the mass m of the supergravity field: 

m 2 = .A(~ + 4 - 2p) . (6) 

Indeed both (5) and (6) give the asymptotic forms f '" 1, p-4, and only the later is a normalizable solution [2]. 
Changing variables to f = 'I/J/ p4 we have: 

(7) 

For large p this equation can be solved by series solution with negative even powers: 

(8) 

Since the normalization is arbitrary we can set ao = 1. The first few coefficients are given by; 

k2 1 k4 7k2 k6 

a2 = 12' a4 = 2" + 384' a6 = 120 + 23040· (9) 

For n ~ 5 the coefficients are given by the recursive relation: 

(10) 

Since the black hole geometry is regular at the horizon p = 1, k2 has to be adjusted so that f is also regular at p = 1 
[2]. This can be done numerically in a simple fashion using a "shooting" technique as follows. For a given value of 
k2 the equation is numerically integrated from some sufficiently large value of p (p» k2) by matching f{p) with the 
asymptotic solution set by (8) and (9). The glueball mass M is related to the eigenvalues of k2 by M2 = _k2 in units 
of b2

• The results obtained this way, together with the results of the lattice simulations [7] are displayed in Table I. 
Since the lattice results are in units of string tension, we normalize the supergravity results so that the lightest 0++ 

state agrees with the lattice result. One should also expect a systematic error in addition to the statistical error 
denoted in Table I for the lattice computations. Similar numerical results have been obtained in [8], while a WKB 

approximation for the eigenvalues of (5) has been obtained in [9]. 
The 0-- glueballs can be dealt with similarly by considering the two-form of the supergravity theory, which couples 

to the operator 06. The supergravity equation of motion for the s-wave component of this field is given by 

(11) 

where [ ] denotes antisymmetrization with strength one. For the pseudoscalar component of Aij the equation reduces 
to 
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TABLE I. 0++ glueball masses in QCD3 coupled to tr F/-I V P'" . The lattice results are in units of the square root of the 
string tension. The denoted error in the lattice results is only the statistical one. 

state lattice, N = 3 lattice, N -t 00 supergravity 
0 4.329 ± 0.041 4.065 ± 0.055 4.07 (input) 
0++* 6.52 ± 0.09 6.18 ±0.13 7.02 
O++u 8.23 ± 0.17 7.99 ± 0.22 9.92 
O++u* 12.80 
O++uu 15.67 
0++***** 18.54 

(12) 

in units where b = 1. This can be solved similarly as for the case ofthe 0++ glueballs, and the results are displayed in 

Table II. Since the supergravity method and the lattice gauge theory compute the glueball masses in different units, 

one cannot compare the absolute values of the lowest glueball mass obtained using these methods. However it makes 

sense to compare the lowest glueball masses of different quantum numbers. Using Tables I and II, we find that the 

supergravity results are in good agreement with the lattice gauge theory computation [7]: 

( ZQU ) = 1.50 
0++ supergravity 

(
MO-- ) 
Mo++ lattice 

= 1.45 ± 0.08 (13) 

TABLE II. 0-- glueball masses in QCD3 coupleP. to 0 6 • The lattice results are in units of square root of the string tension. 
The normalization of the supergravity results is the same as in Table I. 

state lattice, N = 3 lattice, N -t 00 supergravity 
0 6.48 ± 0.09 5.91 ± 0.25 6.10 
0--* 8.15 ±0.16 7.63 ± 0.37 9.34 
O--u 9.81 ± 0.26 8.96 ± 0.65 12.37· 
0--*** 15.33 
0--**** 18.26 
0--****· 21.16 

One can see, that the glueball inass ratios obtained from the supergravity calculation are iIi reasonable agreement 

with the lattice results, even though as explained in the introduction these two calculations are in the opposite limits 

for the 't Hooft coupling. Therefore, it is important to see, how the ratios are modified once corrections due to string· 

theory are taken into account. The leading string theory corrections can be calculated by using the results of [10], 

who calculated the first 0./ corrections to the AdS black-hole metric (2). The details ofthe calculation can be found 

in [3], here we just give the results for the 0++ state: 

Mg++ = 11.59 x (1 - 2.78((3)o./3)A~v 

Mg++. = 34.53 x (1 - 2.43((3)o./3)A~v 

Mg++ .. = 68.98 x (1 - 2.28((3)o./3)A~v 

Mg++ ... = 114.9 x (1 - 2.23((3)o./3)A~v 

Mg++ .... = 172.3 x (1 - 2.21((3)o./3)A~v 

Mg++ ..... = 241.2 x (1 - 2.20((3)o./3)A~v , (14) 

where Auv = 2k and the correction to the hor,izon is given by b = (1 - 1;((3)0./3 ) 2k. One can see that the string 

theory corrections are somewhat uniform for the different excited states of the 0++ glueball, and therefore one could 

hope that these corrections to the ratios of the glueball masses are small. However, it can be seen that this is probably 
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a too optimistic assumption, by considering the Kaluza-Klein partners of the glueball states. As explained above, 

the glueball states do not carry quantum numbers under the SO(6) isometry, and are also singlets under the U(l) 

symmetry corresponding to the corripact direction T. The Kaluza-Klein modes however do carry quantum numbers 
under SO(6) x U(l), and they do not correspond to any state in the QCD theory, but rather they should decouple in 

the R -+ 0, g~N -+ 0 limit from the spectrum. However, in the supergravity limit of finite R, g~N -+ 00 these states 
have masses comparable to the light glueballs [11]. This is simply a consequence of the fact, that the masses of the 
fermions and scalars carrying the SO(6) x U(l) quantum numbers is of the order of the temperature T, thus their 
bound states are expected to also have masses of the order of the temperature. However, since the temperature is 

the only scale in the theory, and so this will also be the cutoff scale of the QCD theory, and thus the mass scale for 
the glueballs. In particular, the masses of the KK modes onhe 0++ glueballs obtained from the dilaton equation by 

using the ansatz <P = !(p)eikxYi(n5) are given by [11] 

o 123 
M, 11.59 19.43 29.26 41.10 

M,. 2 34.53 48.07 63.60 81.11 ' 
M, •• 2 68.98 88.24 109.5 132.7 

where we have displayed the unnormalized values of the masses of the different KK modes. 
One can explicitly see, that the masses of these KK modes are as expected of the same order as the masses of the 

glueball states. One might hope that even" though the supergravity approximation of these masses is of the same order 
as for the glueballs, string theory corrections will increase the masses of these states compared to the glueball states. 
Unfortunately, at least the leading string theory corrections calculated in [11,3] do not support this conclusion. The 
corrections to the first few KK modes are 

'MJ = 11'.59 x (1- 2.78«(3)a /3 )A&v 

M'f = 19.43 x (1 - 2.73«(3)a/3 )A&v 

Mi. = 29.26 x (1- 2.74«(3)a/3 )A&v (15) 

Thus one can see 'that the masses of these KK modes in fact do need large a' corrections to remove them from the 
spectrum of states. Then it is not clear why one would get large corrections to the masses of the KK modes but not 

to the masses of the glueball states. This situation is clearly unsatisfactory, therefore one may try to improve on it 
by introducing a different supergravity background, where some of these KK modes are automatically decoupled. We 
will consider this possibility iN the next section where we discuss the construction based on rotating branes [12-14]. 

III. THE GLUEBALL SPECTRUM IN 4 DIMENSIONS AND THE CONSTRUCTION BASED ON 
ROTATING BRANES 

Results similar to the the ones presented in the previous seCtion can be obtained for the glueball mass spectrum 
in QCD4 by starting from a slightly different construction where the M-theory 5-brane is wrapped on two circles [2]. 
The details of these results can be found in [3,15]. Here we will review only the generalized construction based on the 
rotating M5 brane with one angular momentum, first constructed in [12], and explored in [13]. The metric for this 

background is given by 

2 21r>'A 1/2[ 2( 2 2 2 2) 4A22( ug 2 4du
2 

dSIIA = -3--ULl 4u - dxo + dX 1 + dX2 + dX3 + -9 2 u 1- 6 A )dlJ2 + 6 

Uo U o U U u2(1 _ ~ _ ~) 
" u 4 u 6 

- " 2 2 
2 Ll. 2 2 1 2 2 4a Auo . 2 ] + dO + Ll sm Odip + Ll cos lJdn2 - 3u4Ll sm OdlJ2dip , (16) 

where XO,l,2,3 are the coordinates along the brane where the gauge theory lives, u is the "radial" coordinate of the 
AdS space, while the remaining four coordinates parameterize the angular variables of S4, a is the angular momentum 

parameter, and we have introduced 
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(17) 

UH is the location of the horizon, and the dilaton background and the temperature of the field th~ory are given by 

8rr A3 ,A3U3 ~ 1/2 1 A 
e

2
¢=27 ug N2' R=(2rrTH)-1= 3uo' (18) 

Note, that in the limit when a/uo » 1, the radius of compactification R shrinks to zero, thus the KK modes on this 
compact direction are expected to decouple in this theory when we increase the angular momentum a. In order to 
find the mass spectrum of the 0++ glueballs, we need to again solve the dilaton equations of motion as a function of 
a. This can be done by plugging the background (16) into the dilaton equation of motion 

OJ.! [y'ge-2~gJ.!lIoIlCP] = O. 

For a dilaton ansatz of the form CP = f(u)e ikx we obtain the differential equation 

Ou [u(u6 
- a4u2 

- ug)f'(u)] - k2u3 f(u) =.0, 

(19) 

(20) 

which can be solved the same way as explained in the previous section, where the eigenvalues are now a function of 
the angular momentum parameter a. The results of this are summarized in Table III. Note, that while some of the 
KK modes decouple in the a -t 00 limit, the 0++ glueball mass ratios change only very slightly, showing that the 

supergravity predictions are robust for these ratios against the change of the angular momentum parameter. 

TABLE III. Masses of the first few 0++ glueballs in QCD4 , in GeV, from supergravity compared to the available lattice 
results. The first column gives the lattice result [7,16,17], the second the supergravity result for a = 0 while the third the 
supergravity result in the a -t 00 limit. The change from a = 0 to a = 00 in the supergravity predictions is tiny. Note, that 
for the excited state the supergravity calculation c,ame before the lattice results. 

state lattice, N = 3 supergravity a = 0 
o 1.61 ±O.15 1.61 (input)· 
0++· 2.48 ± 0.18 2.55 

3.46 
4.36 

supergravity a -+ 00 

1.61 (input) 
2.56 
3.48 
4.40 

One can similarly calculate the mass ratios for the 0-+ glue balls, by considering the equations of motion of the RR 
I-form in the background (16), since on the D4 brane worldvolume this couples to the operator TrF F. To find the 
glueball spectrum we have to solve the supergravity equation of motion of the RR I-form 

Oil [y'ggJ.!PgIIU(opAu - ouAp)] = 0 

in the background (16). Using the ansatz A02 = f(u)e ikx leads to the differential equation 

(u 6 
- a4 u2 

- ug)ou [U3(U~ - a4 )f'(u)] - k2u5
(U

4 
- a4 )f(u), 

(21) 

(22) 

which we solve using the same numerical methods as in the previous section. The results are summarized in Table 
IV. Note, that the change in the 0:-+ glueball m~s is sizeable when going from a = 0 to a -t 00, and is in the right 
direction as suggested by lattice results [16,17]. 

One can also calculate the masses of the different Kaluza-Klein modes in the background of (16). One finds, that 

as expected from the fact that for a -t 00 the compact circle shrinks to zero, the KK modes on this compact circle 
decouple from the spectrum, leading to a 4 dimensional field theory in this limit. However, the KK modes of the sphere 
54 do not decouple from the spectrum even in the a -:+ 00 limit. These conclusions remain unchanged even in the case 

when one considers the theory with the maximal number of angular momenta (which is two for the case of QCD4 ) 

[14,18]. In the limit when the angular momentum becomes large, a/uo» 1, the theory approaches asupersymmetric 
limit [12,14] since the supersymmetry breakingJermion masses get smaller with increasing angular momentum [19]. 
Therefore, the limit of increasing angular momentum on one hand does decouple some of the KK modes which makes 

the theory four dimensional, but at the same time reintroduces the light fermions into the spectrum [19]. 
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TABLE IV. Masses of the first few 0-+ glueballs in QCD4 , in GeV, from supergravity compared to the available lattice 
results. The first column gives the lattice result, the second the supergravity result for a = 0 while the third the supergravity 
result in the a -+ 00 limit. Note that the change from a = 0 to a = 00 in the supergravity predictions is of the order'" 25%. 

state lattice, N = 3 supergravity a = 0 supergravity a -+ 00 

0 2.59 ±0.13 2.00 2.56 
0-+· 3.64 ±0.18 2.98 3.49 
0-+" 3.91 4.40 
0-+"· 4.83 5.30 

IV. CONCLUSIONS 

We have seen how the Witten extension of Maldacena's conjecture can be used to study pure Yang-Mills theories 
in the large N limit. These theories reproduce several of the qualitative features of QCD, and one can also study the 
predictions for the glueball mass spectra. One finds, that the supergravity calculations are in a reasonable agreement 
with the lattice results, even though they are obtained in the opposite limit of the 't Hooft coupling. It would be very 
important to understand, whether this unexpected agreement is purely a numerical coincidence or whether there is 
any deeper reason behind it. 
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