
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Deep Learning with Estimation and Complexity Guarantees for Signal Processing

Permalink
https://escholarship.org/uc/item/2kb8c30s

Author
Chen, Kuan-Lin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kb8c30s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Deep Learning with Estimation and Complexity Guarantees for Signal Processing

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Kuan-Lin Chen

Committee in charge:

Bhaskar D. Rao, Chair
Sanjoy Dasgupta
Harinath Garudadri
Philip E. Gill
Piya Pal
Xiaolong Wang

2024

Copyright

Kuan-Lin Chen, 2024

All rights reserved.

The Dissertation of Kuan-Lin Chen is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my family and teachers.

iv

EPIGRAPH

Stay hungry. Stay foolish.

Steve Jobs

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xvi

Abstract of the Dissertation . xviii

Introduction . 1
0.1 Deep neural networks . 1

0.1.1 ReLU and continuous piecewise linear functions . 3
0.1.2 Architectures and skip connections . 4

0.2 New learning-based methodologies for signal processing . 5
0.3 Outline and contributions of the dissertation . 6

Chapter 1 Improved Bounds on Neural Complexity for Representing Piecewise Linear
Functions . 9

1.1 Introduction . 10
1.1.1 Key results and contributions . 13

1.2 Preliminaries . 15
1.3 Upper bounds on neural complexity for representing CPWL functions 17

1.3.1 Upper bounds in prior work . 18
1.3.2 Improved upper bounds . 19
1.3.3 Limitations . 25

1.4 Representations of CPWL functions have different implications on depth 25
1.4.1 Constrained depth . 26
1.4.2 Proof sketch for the unconstrained depth . 26

1.5 Broader impact . 28
1.6 Appendix . 29

1.6.1 Lemmas . 29
1.6.2 Proofs . 32
1.6.3 Algorithms and time complexities . 50
1.6.4 Software implementation and run time of Algorithm 1 59

vi

1.7 Acknowledgements . 59

Chapter 2 ResNEsts and DenseNEsts: Block-based DNN Models with Improved
Representation Guarantees . 61

2.1 Introduction . 62
2.2 ResNEsts and augmented ResNEsts . 67

2.2.1 Dropping nonlinearities in the final representation and expanding the
input space . 67

2.2.2 Basis function modeling and the coupling problem 68
2.2.3 Finding reference models: bounding empirical risks via augmentation . . 71
2.2.4 Necessary condition for strictly improved residual representations 72

2.3 Wide ResNEsts with bottleneck residual blocks always attain ERLBs 73
2.3.1 Improved representation guarantees . 74
2.3.2 How to design architectures with representational guarantees? 75
2.3.3 Guarantees on saddle points . 76

2.4 DenseNEsts are wide ResNEsts with bottleneck residual blocks equipped with
orthogonalities . 77

2.5 Related work . 80
2.6 Broader impact . 81
2.7 Appendix . 82

2.7.1 Proofs . 82
2.7.2 Empirical results . 98

2.8 Acknowledgements . 101

Chapter 3 Subspace Representation Learning for Sparse Linear Arrays to Localize
More Sources than Sensors: A Deep Learning Methodology 102

3.1 Introduction . 103
3.2 Preliminaries . 106

3.2.1 Assumptions . 106
3.2.2 SCMs and the DoA estimation problem . 108
3.2.3 Neural network models . 108

3.3 Prior art . 109
3.3.1 The maximum likelihood problem . 109
3.3.2 Redundancy averaging and direct augmentation . 109
3.3.3 Direct SDP-based methods . 110
3.3.4 Majorization-Minimization . 111
3.3.5 Proxy covariance matrix estimation . 111
3.3.6 DNN-based covariance matrix reconstruction . 112

3.4 Subspace representation learning . 114
3.4.1 Subspace representations of different dimensions 115
3.4.2 Distances between subspace representations . 116
3.4.3 Approximation . 117
3.4.4 Learning with imperfect arrays . 118
3.4.5 Consistent rank sampling . 119

vii

3.5 A gridless end-to-end approach . 119
3.6 Numerical results . 121

3.6.1 Settings . 122
3.6.2 Results . 124
3.6.3 Comparison to the proposed gridless end-to-end approach 129
3.6.4 Robustness to array imperfections . 131

3.7 Conclusion . 132
3.8 Appendix . 134

3.8.1 Proof of Theorem 6 . 134
3.8.2 Proof of Lemma 14 . 136
3.8.3 Learning rates . 137

3.9 Acknowledgements . 138

Chapter 4 Conclusions and Future Work . 139
4.1 Neural complexity and dimension-independent bounds . 139
4.2 Interpretable neural building blocks with optimization guarantees 140
4.3 Subspace representation learning . 141
4.4 Future work . 142

Bibliography . 143

viii

LIST OF FIGURES

Figure 0.1. An illustration of a three-hidden-layer fully connected network. It has six
input neurons and one output neuron. 2

Figure 0.2. (a) The ReLU activation function ReLU(x) = max(x,0). (b) The sigmoid
function Sigmoid(x) = 1

1+e−x . (c) The hyperbolic tangent tanh(x) = ex−e−x

ex+e−x . 4

Figure 1.1. Any CPWL function Rn→R with q pieces or k distinct linear components
can be exactly represented by a ReLU network with at most h hidden
neurons. In Theorem 1 and 3, h = 0 when q = 1 or k = 1. The bounds
in Theorem 1 and the worst-case bounds in Theorem 3 are invariant to n.
(1.5) is used to infer h based on the depth and width given by Hertrich
et al. [2021]. The upper bounds given by Theorem 1 and 3 are substantially
tighter than existing bounds in the literature, implying that any CPWL
function can be exactly realized by a ReLU network at a much lower cost. 12

Figure 1.2. Left: The upper bound of h in Theorem 3 grows much slower when n
grows sufficiently slower than k, leading to a much better upper bound
compared to the worst-case asymptotic bound O (k · k!) in Theorem 3 when
n is sufficiently larger. Middle: the bound in (1.5) inferred from [Hertrich
et al., 2021]. Right: Theorem 5.2 in [He et al., 2020]. 24

Figure 1.3. The run time of Algorithm 1 is an average of 50 trials. Every trial runs
Algorithm 1 with a random CPWL function whose input dimension is n
and number of pieces is q. The code provided in the above link is run on a
computer (Microsoft Surface Laptop Studio) with the Intel Core i7-11370H. 60

Figure 2.1. The proposed augmented ResNEst or A-ResNEst. A set of new prediction
weights H0,H1, · · · ,HL are introduced on top of the features in the ResNEst
(see Figure 2.2). The A-ResNEst is always better than the ResNEst in terms
of empirical risk minimization (see Proposition 3). Empirical results of
the A-ResNEst model are deferred to Appendix 2.7.2 in the supplementary
material. 62

Figure 2.2. A generic vector-valued ResNEst that has a chain of L residual blocks (or
units). Redrawing the standard ResNet block diagram in this viewpoint
gives us considerable new insight. The symbol “+” represents the addition
operation. Different from the ResNet architecture using pre-activation
residual blocks in the literature [He et al., 2016b], our ResNEst architecture
drops nonlinearities at xL so as to reveal a linear relationship between
the output ŷResNEst and the features v0,v1, · · · ,vL. Empirical results of
the ResNEst model are deferred to Appendix 2.7.2 in the supplementary
material. 66

ix

Figure 2.3. A generic vector-valued DenseNEst that has a chain of L dense blocks
(or units). The symbol “©” represents the concatenation operation. We
intentionally draw a DenseNEst in such a form to emphasize its relationship
to a ResNEst (see Proposition 5). 77

Figure 2.4. An equivalence to Figure 2.3 emphasizing the growth of the input dimen-
sion at each block. 77

Figure 3.1. An illustration of the gridless end-to-end model, which consists of an
architecture and several output layers. The model simultaneously generates
DoAs for every possible number of sources so there are M−1 heads (affine
functions) at the output. The k-th head is picked when there are k sources. 120

Figure 3.2. An illustration of a 3-stage L-block ResNet model [He et al., 2016a]. In
the wide ResNet 16-8 (WRN-16-8) [Zagoruyko and Komodakis, 2016],
there are L = 2 blocks per stage, leading to 16 layers in total. The widening
factor is 8, meaning that WRN-16-8 is 8 times wider than the original
ResNet. See Section 3.6.1 for more details. 123

Figure 3.3. MSE vs. SNR. Our approach is in general superior to all of the baselines. In
most cases, it is significantly better than SPA, WDA, DCR-T, and DCR-G-
Fro. DCR-G-Aff is the most competitive baseline. For k > 3, our approach
outperforms DCR-G-Aff. In comparison to DCR-G-Aff at k = 2 or k = 3,
our approach is slightly better at low SNRs but worse at high SNRs. 125

Figure 3.4. MSE vs. number of snapshots. Although the DNN models are only trained
on a single number of snapshots T = 50, they are able to generalize to a
wide range of unseen scenarios from T = 10 to T = 100. Our approach is
consistently better than SPA, WDA, and DCR-G-Aff. 126

Figure 3.5. MSE vs. SNR. N = 4. M = 7. Our approach is significantly better than
all of the baselines when k > 2. For k = 2, it is better than all of the
DNN-based baselines but slightly worse than the SPA at 20 dB SNR. The
main results obtained for the 5-element MRA are similar to the 4-element
MRA. 127

Figure 3.6. MSE vs. SNR. N = 6. M = 14. These results, along with Figure 3.3
and 3.5, imply that the proposed method consistently outperforms all of
the baselines if k ≥ N. The proposed method is slightly inferior than
DCR-G-Aff at high SNRs when k < N. 128

Figure 3.7. MSE vs. number of snapshots. N = 4. M = 7. 129

Figure 3.8. MSE vs. number of snapshots. N = 6. M = 14. 129

x

Figure 3.9. MSE vs. SNR. N = 5. M = 10. For k < 8, the performance of the
gridless end-to-end approach saturates at a higher MSE than the subspace
representation learning method as the SNR increases. For k = 8 and k = 9,
the gridless end-to-end approach shows consistently better performance. . . 130

Figure 3.10. MSE vs. the array imperfection parameter ρ . Note that only one DNN
model is trained for our approach. Unlike model-based methods that give
significantly worse MSE as ρ increases, our approach is robust to array
imperfections without being given ρ or the knowledge about the degree of
imperfections. 133

Figure 3.11. MSE vs. the array imperfection parameter ρ . N = 4. M = 7. 133

Figure 3.12. MSE vs. the array imperfection parameter ρ . N = 6. M = 14. 134

Figure 3.13. Search of the best learning rates. Empirical risk on the validation set vs.
the maximum learning rate in the one-cycle learning rate scheduler. 137

Figure 3.14. Search of the best learning rate for the gridless end-to-end approach. 138

xi

LIST OF TABLES

Table 1.1. The running time of Algorithm 1 is upper bounded by poly(n,k,q,L). 50

Table 1.2. The time complexity of Algorithm 2 is O
(

m2 max(m log2 m,n)
)

. 55

Table 1.3. The time complexity of Algorithm 3 is O
(

d2kl max(d,k)
)

where d is
the maximum dimension of all the weight matrices in g1,g2, · · · ,gk and
l = max j∈[k] l j. 56

Table 1.4. The time complexity of Algorithm 4 is O
(

d3 max(l1, l2)
)

where d is the
maximum dimension of all the weight matrices in g1 and g2. 57

Table 1.5. The time complexity of Algorithm 5 is O(n2l). 58

Table 1.6. The time complexity of Algorithm 6 is O
(

nqmax(n2,q)
)

. 59

Table 2.1. CIFAR-10. 100

Table 2.2. CIFAR-100. 100

xii

ACKNOWLEDGEMENTS

It is my pleasure to express my deepest gratitude to my advisor, Prof. Bhaskar D. Rao,

for his invaluable guidance, patience, and unwavering support throughout my Ph.D. studies. His

mentorship extended beyond academic advice, offering encouragement and insights that have

profoundly impacted my professional development and personal growth. Thank you for being a

pivotal part of my academic journey. I am forever grateful.

I would also like to thank Prof. Sanjoy Dasgupta, Prof. Philip E. Gill, Prof. Piya Pal, Prof.

Xiaolong Wang, and Dr. Harinath Garudadri for serving on my doctoral committee. I am deeply

grateful to Prof. Pal for the teaching assistant opportunity in the undergraduate optimization

course, where I was honored to receive the 2023-2024 ECE Best TA Award. Her support and

advocacy have been invaluable in opening doors and providing me with opportunities that I

deeply appreciate. I extend special thanks to Dr. Garudadri for his guidance and support that

have been crucial to my research journey and my life at UC San Diego.

Additionally, I would like to express my gratitude to Prof. Nuno Vasconcelos, Prof. fred

harris, Prof. Behrouz Touri, and Prof. John Iversen, for their support and guidance.

It was my privilege to collaborate with brilliant graduate students during my PhD studies.

I am deeply grateful to Ching-Hua Lee for being an excellent mentor and true friend. His

guidance has not only enriched my research but also brought color to my life in San Diego. I

cherish the time we spent together at Atkinson Hall. I would also like to thank Ross Greer for

being an excellent collaborator. Our proposal won the Qualcomm Innovation Fellowship (QIF)

in 2022, of which I am immensely proud. In addition, I extend my gratitude to Tzu-Han Zoe

Cheng for her creativity and collaboration. Together, we won the Innovative Research Grants

(IRG) Award from the Kavli Institute for Brain and Mind (KIBM) in 2021. I also appreciate the

contributions of Dhiman Sengupta, Alice Sokolova, Mingchao Liang, and Wenyu Zhang. I have

learned so much from our insightful discussions.

It has been a pleasure to be a part of the UCSD DSP Lab. I would like to express my

gratitude to my labmates—Govind R. Gopal, Rohan R. Pote, Aditya Sant, Hitesh D. Khunti,

xiii

Gokce Sarar, Rushabha Balaji, and Vinay Kanakeri—for their valuable discussions, collaborative

brainstorming sessions, cherished friendship, and company during coffee hours and on walks to

Price Center.

I am grateful for the invaluable experiences gained during my internships at Meta and

Qualcomm. These opportunities provided me with useful skills and exposure to real-world

challenges. I extend my thanks to my intern managers, Daniel D. E. Wong, Sarmad Malik,

and Asif Mohammad, for their mentorship, guidance, and support throughout these enriching

experiences. Also, I would like to thank my collaborators and mentors, Ke Tan, Buye Xu, Anurag

Kumar, Vamsi Krishna Ithapu, Julien Pons, Xianwen Wu, and Srikar Sastry, for their constructive

feedback and fruitful discussions. The knowledge and insights gained during my internships

have been instrumental in shaping my career path and personal growth.

Finally, I am profoundly grateful to my family, A-Chu, Wen-Chung, Li-Fan, and Guan-

Hua, for their love, support, and encouragement throughout my academic journey, and my

partner, Yun, for her inspiration, care, and love. Their belief in me has been a constant source of

strength and motivation. I am deeply appreciative of the sacrifices they have made to help me

achieve my goals. Thank you for always being there for me and for believing in my dreams.

This work was supported in part by IEEE Signal Processing Society Scholarship, in part

by KIBM Innovative Research Grant Award, and in part by NSF under Grant CCF-2225617 and

Grant CCF-2124929.

Chapter 1, in full, is a reprint of the material as it appears in K.-L. Chen, H. Garudadri, and

B. D. Rao, “Improved bounds on neural complexity for representing piecewise linear functions,”

in Advances in Neural Information Processing Systems (NeurIPS), 2022. The dissertation author

was the primary investigator and author of this material.

Chapter 2, in full, is a reprint of the material as it appears in K.-L. Chen, C.-H. Lee,

H. Garudadri, and B. D. Rao, “ResNEsts and DenseNEsts: Block-based DNN models with

improved representation guarantees,” in Advances in Neural Information Processing Systems

(NeurIPS), 2021. The dissertation author was the primary investigator and author of this material.

xiv

Chapter 3, in part, is a reprint of the material as it appears in K.-L. Chen and B. D. Rao,

“Subspace representation learning for sparse linear arrays to localize more sources than sensors:

A deep learning methodology,” which was submitted to IEEE Transactions on Signal Processing

in 2024, with its preprint available at arXiv (https://arxiv.org/abs/2408.16605).

The dissertation author was the primary investigator and author of this material.

xv

https://arxiv.org/abs/2408.16605

VITA

2016 B.S.E. in Electrical Engineering, National Taiwan University, Taiwan

2019 M.S. in Electrical Engineering, University of California San Diego, USA

2024 Ph.D. in Electrical Engineering, University of California San Diego, USA

PUBLICATIONS

K.-L. Chen and B. D. Rao, “Subspace representation learning for sparse linear arrays to localize
more sources than sensors: A deep learning methodology,” submitted to IEEE Transactions on
Signal Processing, 2024. [Online]. Available: https://arxiv.org/abs/2408.16605.

K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri, “A DNN based normalized time-frequency
weighted criterion for robust wideband DoA estimation,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2023.

K.-L. Chen, D. D. E. Wong, K. Tan, B. Xu, A. Kumar, and V. K. Ithapu, “Leveraging het-
eroscedastic uncertainty in learning complex spectral mapping for single-channel speech en-
hancement,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023.

K.-L. Chen, H. Garudadri, and B. D. Rao, “Improved bounds on neural complexity for rep-
resenting piecewise linear functions,” in Advances in Neural Information Processing Systems
(NeurIPS), 2022.

K.-L. Chen, C.-H. Lee, H. Garudadri, and B. D. Rao, “ResNEsts and DenseNEsts: Block-based
DNN models with improved representation guarantees,” in Advances in Neural Information
Processing Systems (NeurIPS), 2021.

K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri, “Jointly leveraging decorrelation and
sparsity for improved feedback cancellation in hearing aids,” in European Signal Processing
Conference (EUSIPCO), 2020.

K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri, “A generalized proportionate-type
normalized subband adaptive filter,” in Asilomar Conference on Signals, Systems, and Computers,
2019.

T.-H. Cheng, K.-L. Chen, J. Schubert, Y.-P. Chen, T. Brown, and J. Iverson, “Similar hierarchical
representation of speech and other complex sounds in the brain and deep residual networks:
An MEG study,” in Conference of the International Speech Communication Association (Inter-
speech), 2023.

xvi

https://arxiv.org/abs/2408.16605

H. Garudadri, C.-H. Lee, K.-L. Chen, F. Harris, and B. D. Rao, “Mitigating acoustic feedback
in hearing aids with frequency warping by all-pass networks,” U.S. Patent No. 11,849,283, 2023.

A. Sokolova, D. Sengupta, K.-L. Chen, R. Gupta, B. Aksanli, f. harris, and H. Garudadri,
“Multirate audiometric filter bank for hearing aid devices,” in Asilomar Conference on Signals,
Systems, and Computers, 2021.

C.-H. Lee, K.-L. Chen, f. harris, B. D. Rao, and H. Garudadri, “On mitigating acoustic feedback
in hearing aids with frequency warping by all-pass networks,” in Conference of the International
Speech Communication Association (Interspeech), 2019.

xvii

ABSTRACT OF THE DISSERTATION

Deep Learning with Estimation and Complexity Guarantees for Signal Processing

by

Kuan-Lin Chen

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2024

Bhaskar D. Rao, Chair

This dissertation presents advancements in both the theory and applications of deep

learning. The objectives include reducing complexity, enhancing interpretability, and offering

superior methodologies for solving signal processing problems.

On the theoretical side, we develop two major advances: one for complexity and another

for interpretability. For complexity, we establish tighter upper bounds for the number of compu-

tational units required for a rectified linear unit (ReLU) neural network to represent or compute

any given continuous piecewise linear (CPWL) function. Specifically, we prove that any CPWL

function can be represented by a ReLU network whose number of hidden neurons is at most

a quadratic function of the number of pieces of the CPWL function. This quadratic bound is

xviii

independent of the input dimension and outperforms previous bounds exponentially, holding

the state-of-the-art in the literature. When the number of linear components is also known, this

bound reduces to a bilinear bound. On the other hand, a new upper bound on the number of

pieces in terms of the number of linear components is proved, enabling different descriptions of

neural complexity. In addition to existence, a polynomial-time algorithm is developed to identify

a neural network that satisfies these tighter bounds, shedding light on reverse-engineering and

network pruning. For interpretability, we prove that, the most popular building block in deep

learning, the skip connection, can guarantee to improve representations over residual blocks

when the expansion layer is sufficiently large. Its implications explain (a) why the residual

network (ResNet) can avoid the degradation problem and be scaled to thousands of layers, (b)

why the wide ResNet is superior than the ResNet, and (c) why the bottleneck blocks are more

economical than the basic block. We design a simplified architecture called the residual nonlinear

estimator (ResNEst) and propose a new architecture called the augmented ResNEst to develop

guarantees for the ResNet. Under mild assumptions, it is proved that every local minimizer in

the ResNEst can be a global minimizer, despite the nonconvex optimization landscape, implying

that any local minimizer can be provably better than the best linear predictor.

On the application side, we develop a new deep learning-based methodology, subspace

representation learning, for the classic direction-of-arrival (DoA) estimation problem in array

processing. The codomain of a deep learning model is defined as a union of Grassmannians

reflecting signal subspaces of different dimensions. A family of distance functions on Grassman-

nians is proposed. In particular, we use geodesic distances to train a model and prove that it is

possible for a ReLU network to approximate signal subspaces. Because a subspace is invariant

to the selection of its bases, our methodology enlarges the solution space of a model compared

to existing approaches learning covariance matrices. Furthermore, due to its geometry-agnostic

nature, our methodology is robust to array imperfections. Numerical results show that subspace

representation learning significantly outperforms existing semidefinite programming-based and

deep learning-based covariance matrix reconstruction approaches for a wide range of scenarios.

xix

Introduction

Over the past decade, machine learning-based methodologies have demonstrated impres-

sive accuracy and capabilities across various fields of signal processing, including audio and

speech processing [Lu et al., 2013, Chen et al., 2023b], medical imaging [Ronneberger et al.,

2015], data compression [Gregor et al., 2016], array processing [Papageorgiou et al., 2021, Chen

and Rao, 2024], and wireless communications [Gao et al., 2023]. Problems in signal processing

that were once addressed using linear techniques or handcrafted modeling approaches are now

being transformed by data-driven methods employing deep neural networks (DNNs), resulting in

significant performance gains. While DNN-based signal processing solutions are increasingly

popular, this paradigm shift also introduces many new challenges, such as high complexity and

limited interpretability. Unlike conventional signal processing, these challenges make DNN-

based solutions costly and occasionally less reliable, impeding their practical application and

accessibility. Therefore, the focus of this dissertation is to advance the fundamental theory of

DNN models and, based on these improved theoretical principles, develop state-of-the-art signal

processing methodologies.

0.1 Deep neural networks

The journey of DNNs began in 1943 with McCulloch and Pitts’ seminal work, where

they proposed a logical calculus of neural activity, laying the foundation for neural networks.

This conceptual framework was further advanced in 1958 by Rosenblatt who introduced the

perceptron model, a one-layer neural network for binary classification. Then, the multilayer

1

perceptron (MLP) was developed based on the perceptron. Figure 0.1 illustrate a three-hidden

layer MLP. While training an MLP or a convolutional neural network (CNN) with more than

Figure 0.1. An illustration of a three-hidden-layer fully connected network. It has six input
neurons and one output neuron.

one hidden layer had been studied for decades prior [Fukushima, 1980, LeCun et al., 1989,

1998], it was not until 2012 that DNNs or deep learning truly came into the spotlight with the

advent of AlexNet by Krizhevsky et al. [2012], which has seven hidden layers, including five

convolutional layers and two fully connected layers. This deep convolutional neural network

architecture revolutionized computer vision by significantly improving image classification

accuracy in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Russakovsky

et al., 2015]. The success of AlexNet marked a pivotal moment in the history of deep learning,

showcasing the potential of DNNs in machine learning and artificial intelligence (AI). Since

AlexNet, many models have been proposed, including VGG [Simonyan and Zisserman, 2015a],

U-Net [Ronneberger et al., 2015], ResNet [He et al., 2016a], DenseNet [Huang et al., 2017],

and Transformer [Vaswani et al., 2017], to name a few. Each of these models features specific

designs, arrangements, or types of layers used in a neural network model. The specific design of

a neural network model is commonly referred to as its architecture. Compared to architectures

developed prior to the advent of deep learning, the two fundamental differences are the activation

2

function and the number of hidden layers. Modern architectures use the rectifier linear unit

(ReLU) activation function and many hidden layers. For example, the commonly used ResNet

architecture uses the ReLU activation and can be scaled up to more than 1,000 layers without

degrading its performance [He et al., 2016b].

0.1.1 ReLU and continuous piecewise linear functions

The adoption of nonlinear activation functions is crucial for a neural network to be able

to learn a nonlinear function. For example, any number of compositions of affine mappings gives

an affine function, yielding the so-called deep linear network. A deep linear network is incapable

of learning nonlinear functions because it is within the family of affine mappings. Figure 0.2

shows three different activation functions. Before deep learning gained popularity, many neural

networks relied on smooth activation functions such as the sigmoid function and hyperbolic

tangent, which introduce nonlinearity and make it possible for a network to approximate any

continuous function on a compact subset of Rn [Hornik et al., 1989, Cybenko, 1989]. However,

these activations are limited in their effectiveness for very deep networks due to issues like

vanishing gradients [Goodfellow et al., 2016]. In contrast to smooth activation functions, modern

DNNs use the ReLU activation function, which is non-smooth due to being non-differentiable at

the origin. However, it does not suffer from the vanishing gradient problem, thus enabling the

training of very deep neural network models. Furthermore, DNNs using the ReLU activation

can be characterized by the family of continuous piecewise linear (CPWL) functions [Arora

et al., 2018], contrasting with neural networks using smooth activation functions, which belong

to a family of smooth functions. Because the family of CPWL functions is dense in the family

of continuous functions, every neural network using the ReLU activation can approximate

any continuous function on a compact subset of Rn if a sufficient number of hidden neurons

are provided. Hence, one can prove the following universal approximation theorem. For any

continuous function f : [0,1]n→ R, there exists a ReLU network g : Rn→ R with finitely many

3

−5 0 5
0

2

4

6

x

R
eL

U
(x
)

(b) ReLU

−5 0 5
0

0.5

1

x

Si
gm

oi
d(

x)
(b) Sigmoid

−5 0 5
−1

0

1

x

ta
nh

(x
)

(c) Hyperbolic tangent

Figure 0.2. (a) The ReLU activation function ReLU(x) = max(x,0). (b) The sigmoid function
Sigmoid(x) = 1

1+e−x . (c) The hyperbolic tangent tanh(x) = ex−e−x

ex+e−x .

hidden neurons such that

sup
x∈[0,1]n

| f (x)−g(x)|< ε (1)

for every ε > 0. Based on this result, a more interesting question is: How many hidden neurons

does a network require to approximate a continuous function or represent a CPWL function?

Regarding continuous functions, the question has been answered by Yarotsky [2018]. With

regard to CPWL functions, we develop a compact neural representation of CPWL functions and

provide dimension-independent bounds in Chapter 1.

0.1.2 Architectures and skip connections

Intuitively, a deeper network should always lead to better performance because of in-

creased expressivity. However, adding more layers to a model can lead to worse performance.

This is the so-called degradation problem in deep learning. This issue is primarily due to van-

ishing or exploding gradients, making it difficult for the network to learn effectively. From

the perspective of the optimization landscape, as the depth of a neural network increases, its

optimization landscape can transition from being nearly convex to being highly chaotic [Li et al.,

2018]. Residual networks (ResNets) address this problem through the use of skip connections,

also known as residual connections. These connections allow gradients to flow more easily

4

through the network by providing a shortcut around one or more layers, enabling the construc-

tion of very deep networks while improving performance [He et al., 2016b]. Many modern

architectures also adopt skip connections, such as those used in the Transformer [Vaswani et al.,

2017]. In fact, modern architectures often use building blocks or modules stacked in sequence,

rather than purely stacking layers. Each block is designed to perform specific operations on

a group of layers, helping the network scale its depth and learn better representations. This

approach enables improved optimization, resulting in better performance or reduced complexity.

For example, ResNet uses residual blocks, Transformer uses attention blocks, and SE network

uses Squeeze-and-Excitation (SE) blocks [Hu et al., 2018]. Among many block designs, the

residual block appears to be the most fundamental and widely used design. As the adoption

of skip connections is one of the key elements in deep learning, we study the ResNet architec-

ture by developing similar architectures, called ResNEst and augmented ResNEst, and provide

theoretical guarantees on the optimization landscape of these networks in Chapter 2.

0.2 New learning-based methodologies for signal processing

Many array signal processing problems involve estimating parameters based on given

observations. Conventional signal processing methods typically formulate these problems as

optimization tasks under a guiding principle, such as the well-known maximum likelihood,

while adhering to appropriate constraints. Since the original optimization problems are often

nonconvex and high-dimensional, traditional approaches generally rely on convex relaxation or

majorization-minimization techniques. However, deep learning offers an alternative. Because

data can be collected or generated based on statistical assumptions, the aforementioned problems

can be reformulated as supervised learning tasks. DNNs can be leveraged to model complex

relationships between observations and target parameters, learning the mapping between them.

Recently, many such learning-based methodologies have become increasingly popular.

For example, sparse Bayesian learning in sparse signal recovery [Tipping, 2001, Wipf and Rao,

5

2004] and the direction-of-arrival (DoA) estimation problem in array processing [Yang et al.,

2014, Pote and Rao, 2023], which traditionally rely on optimization techniques, are now being

revisited by learning-based methodologies [He et al., 2017, Barthelme and Utschick, 2021a,

Wu et al., 2022, Chen and Rao, 2024]. As these methodologies continue to evolve, they are

poised to revolutionize signal processing, offering more accurate and robust solutions to complex

challenges that were difficult to address within the conventional optimization paradigm. In

Chapter 3, we develop a novel methodology for DoA estimation in this context that achieves

state-of-the-art performance.

0.3 Outline and contributions of the dissertation

In Chapter 1, we provide new complexity results for a ReLU network to exactly represent

any given CPWL function. In this dissertation, we prove the first dimension-independent bounds

which are tighter than previous bounds in the literature and establish a polynomial time algorithm

to identify a network satisfying these tighter bounds for any given CPWL function. In particular,

we prove that the number of hidden neurons required to exactly represent any CPWL function is

O(q2) where q is the number of pieces. This upper bound is invariant to the input dimension n.

When the number of distinct linear components k of the CPWL function is given, we prove that

O(q2) reduces to O(kq), leading to a lower complexity since k ≤ q. In addition, a new upper

bound of q in terms of k is proved. If q is unknown, we prove that, in terms of k, the neural

complexity of a CPWL function is at most polynomial growth for small n and factorial growth

for the worst-case scenario.

In Chapter 2, we contribute to the interpretability and estimation properties of the widely

used ResNet architecture by constructing new networks called Residual Nonlinear Estimators

(ResNEsts) and augmented ResNEsts (A-ResNEsts). We prove that a ResNEst with a sufficiently

large first layer can guarantee that representations over residual blocks improve monotonically.

In addition, we prove that any local minimizer obtained from a ResNet outperforms any best

6

linear predictor in terms of training performance under mild conditions. These results not

only offer mathematical explanations for why ResNet architectures are immune to the well-

known degradation problem associated with stacking layers in a plain neural network (a network

without skip connections) but also provide ResNet architectures with optimization guarantees.

Furthermore, we prove that, under mild conditions, every local minimizer obtained for the

ResNEst architecture is a global minimizer despite the nonconvexity of its optimization landscape,

and every saddle point has at least one direction with strictly negative curvature, demonstrating

desirable optimization properties.

In Chapter 3, we propose a novel deep learning-based methodology called subspace

representation learning for DoA estimation [Chen and Rao, 2024]. Given a sparse linear array

(SLA), most existing methods for localizing more sources than sensors estimate the covariance

matrix of a uniform linear array (ULA) by formulating a constrained optimization problem and

solving its semidefinite programming (SDP) relaxation [Yang et al., 2014, Wang et al., 2019].

They then resolve the source directions via subspace methods such as the root-MUSIC algorithm

[Barabell, 1983, Rao and Hari, 1989]. In this dissertation, we estimate the matrix by evaluating a

learned function at a sample covariance and show that this approach can significantly outperform

conventional SDP-based methods such as the sparse and parametric approach (SPA) [Yang et al.,

2014] for a wide range of signal-to-noise ratios (SNRs), snapshots, and source numbers. Unlike

existing DNN-based methods that learn covariance matrices of a ULA via some distances such

as the Frobenius norm [Barthelme and Utschick, 2021a, Wu et al., 2022], our approach trains

a DNN to learn signal and noise subspace representations that are invariant to the selection of

bases. Due to this invariance, our loss functions expand the solution space and give the DNN

more freedom to learn the subspace structures. To learn such representations, we propose novel

loss functions that gauge the separation between the desired subspace and the predicted subspace

from the DNN. In particular, we propose losses that measure the shortest curve(s) between two

subspaces viewed on a union of Grassmannians and prove that a ReLU network can approximate

signal subspaces. Our approach is robust to array imperfections because it is geometry-agnostic.

7

Numerical results show that learning such subspace representations is more beneficial than

learning covariance matrices for both perfect and imperfect arrays under standard assumptions.

8

Chapter 1

Improved Bounds on Neural Complexity
for Representing Piecewise Linear Func-
tions

A deep neural network using rectified linear units represents a continuous piecewise

linear (CPWL) function and vice versa. Recent results in the literature estimated that the number

of neurons needed to exactly represent any CPWL function grows exponentially with the number

of pieces or exponentially in terms of the factorial of the number of distinct linear components.

Moreover, such growth is amplified linearly with the input dimension. These existing results

seem to indicate that the cost of representing a CPWL function is expensive. In this paper,

we propose much tighter bounds and establish a polynomial time algorithm to find a network

satisfying these bounds for any given CPWL function. We prove that the number of hidden

neurons required to exactly represent any CPWL function is at most a quadratic function of the

number of pieces. In contrast to all previous results, this upper bound is invariant to the input

dimension. Besides the number of pieces, we also study the number of distinct linear components

in CPWL functions. When such a number is also given, we prove that the quadratic complexity

turns into bilinear, which implies a lower neural complexity because the number of distinct linear

components is always not greater than the minimum number of pieces in a CPWL function.

When the number of pieces is unknown, we prove that, in terms of the number of distinct linear

components, the neural complexities of any CPWL function are at most polynomial growth for

9

low-dimensional inputs and factorial growth for the worst-case scenario, which are significantly

better than existing results in the literature.

1.1 Introduction

The rectified linear unit (ReLU) [Fukushima, 1980, Nair and Hinton, 2010] activation

has been by far the most widely used nonlinearity and successful building block in deep neural

networks (DNNs). Numerous architectures based on ReLU DNNs have achieved remarkable

performance or state-of-the-art accuracy in speech processing [Zeiler et al., 2013, Maas et al.,

2013], computer vision [Krizhevsky et al., 2012, Simonyan and Zisserman, 2015b, He et al.,

2016a], medical image segmentation [Ronneberger et al., 2015], game playing [Mnih et al.,

2015, Silver et al., 2016], and natural language processing [Vaswani et al., 2017], just to name a

few. Besides such unprecedented empirical success, ReLU DNNs are also probably the most

understandable nonlinear deep learning models due to their ability to be “un-rectified” [Hwang

and Heinecke, 2019].

The ability to demystify ReLU DNNs via “un-rectifying ReLUs” dates back to a seminal

work by Pascanu et al. in 2014. Because each of ReLUs in a hidden layer divides the space

of the preceding layer’s output into two half spaces whose ReLU response is affine in one half

space and exactly zero in the other, the layer of ReLUs can be replaced by an input-dependent

diagonal matrix whose diagonal elements are ones for firing ReLUs and zeros for non-firing

ReLUs. Based on this rationale, Pascanu et al. [2014] proved that a neural network using ReLUs

divides the input space into many linear regions such that the network itself is an affine function

within every region. Two excellent visualizations are shown in Figure 2 in [Hanin and Rolnick,

2019a] and [Hanin and Rolnick, 2019b]. At this point, it is quite evident that any ReLU network

exactly represents a CPWL function. Pascanu et al. also proved that the maximum number of

linear regions for any ReLU network with a single hidden layer is equivalent to the number

of connected components induced by arrangements of hyperplanes in general position where

10

each hyperplane corresponds to a ReLU in the hidden layer. Such a number can be computed

in a closed form by Zaslavsky’s Theorem [Zaslavsky, 1975]. Furthermore, they showed that

the maximum number of linear regions can be bounded from below by exponential growth in

terms of the number of hidden layers, leading to a conclusion that ReLU DNNs can generate

more linear regions than their shallow counterparts. In the same year, Montúfar et al. improved

such a lower bound and gave the first upper bound for the maximum number of linear regions.

These bounds and their assumptions were later improved by [Montúfar, 2017, Raghu et al., 2017,

Arora et al., 2018, Serra et al., 2018, Hinz and van de Geer, 2019], just to name a few. We refer

readers to Hinz’s doctoral thesis for a thorough discussion on the upper bound of the number of

linear regions. Because a CPWL function with more pieces can better approximate any given

continuous function and a ReLU DNN exactly represents a CPWL function [Arora et al., 2018],

a ReLU DNN with more linear regions in general exhibits stronger expressivity. In summary, this

“un-rectifying” perspective provides us a new angle to understand ReLU DNNs, and the results

in some ways align with advances in approximation theory demonstrating the expressivity.1

Despite these advancements in linear regions, the complexity of a ReLU DNN that

exactly represents a given CPWL function remains largely unexplored. One can find that this

question is the opposite direction of the above-mentioned line of research. Although Arora

et al. [2018] proved that any CPWL function can be exactly represented by a ReLU DNN with

a bounded depth, any estimates regarding the width or number of neurons of such a network

were not given. The resources required for a ReLU neural network to exactly represent a CPWL

function remained unknown until He et al. [2020] provided a bound to the complexity of a ReLU

network that realizes any given CPWL function. They proved that the number of neurons is

bounded from above by exponential growth in terms of the product between the number of pieces

and the number of distinct linear components of a given CPWL function. Such an exponential

bound also grows linearly with the input dimension. Because the number of pieces is an upper

1The approximation viewpoint is not the focus of this paper. The literature on approximation is vast and we
refer readers to [Vardi et al., 2021, Lu et al., 2017, Eldan and Shamir, 2016, Telgarsky, 2016, Hornik et al., 1989,
Cybenko, 1989], just to name a few.

11

n = 1

n = 2n = 1

invariant to n

1 5 10 15 20
101

105

109

1013

1017

Number of pieces q

N
um

be
ro

fh
id

de
n

ne
ur

on
s

h

n = 1
n = 1

n = 2

n = 1

n = 2

1 5 10 15 20

101

104

107

1010

Number of distinct linear components k

N
um

be
ro

fh
id

de
n

ne
ur

on
s

h Theorem 1 and 3
[Hertrich et al., 2021]

[He et al., 2020]

Figure 1.1. Any CPWL function Rn→ R with q pieces or k distinct linear components can be
exactly represented by a ReLU network with at most h hidden neurons. In Theorem 1 and 3,
h = 0 when q = 1 or k = 1. The bounds in Theorem 1 and the worst-case bounds in Theorem
3 are invariant to n. (1.5) is used to infer h based on the depth and width given by Hertrich
et al. [2021]. The upper bounds given by Theorem 1 and 3 are substantially tighter than existing
bounds in the literature, implying that any CPWL function can be exactly realized by a ReLU
network at a much lower cost.

bound of the number of distinct linear components for any CPWL function [Tarela and Martı́nez,

1999, He et al., 2020], the bound grows exponentially with the quadratic number of pieces, which

seems to imply that the cost for representing a CPWL function by a ReLU DNN is exceedingly

high.

The most recent upper bound can be inferred from a recent work by Hertrich et al. [2021]

although the number of hidden neurons was not directly given. Hertrich et al. [2021] proved a

width bound in terms of the number of distinct linear components under the same depth used

by Arora et al. [2018] and He et al. [2020].2 In particular, they proved that the maximum width

of a ReLU network that represents any given CPWL function can be polynomially bounded

from above in terms of the number of distinct linear components. However, the order of such a

polynomial is a quadratic function of the input dimension, which can be immensely large for

2The number of “affine pieces” used by Theorem 4.4 in [Hertrich et al., 2021] should be interpreted as the
number of distinct linear components to best reflect the upper bound for the maximum width. Such an interpretation
of “affine pieces” is different from the convention used by Pascanu et al. [2014], Montúfar et al. [2014], Arora et al.
[2018], Hanin and Rolnick [2019a], and this work.

12

a small number of pieces or linear components when the input dimension is large. This bound

grows larger with the input dimension even though the underlying CPWL function is just a

one-hidden-layer ReLU network using only one ReLU (see Figure 1.1 for the difference between

n = 1 and n = 2 when q = 2 or k = 2).

In this paper, we provide improved bounds showing that any CPWL function can be

represented by a ReLU DNN whose neural complexity is bounded from above by functions

with much slower growth (see Figure 1.1). Our results imply that one can exactly realize any

given CPWL function by a ReLU network at a much lower cost. On the other hand, in addition

to guaranteeing the existence of such a network, we also give a polynomial time algorithm to

exactly find a network satisfying our bounds. To the best of our knowledge, our results regarding

the computational resource for a ReLU network, i.e., the number of hidden neurons, are the best

upper bounds in the existing literature and the algorithm is the first tailored procedure to find a

network representation from any given CPWL function. Key results and main contributions of

this paper are highlighted below.

1.1.1 Key results and contributions

Quadratic bounds

We prove that any CPWL function with q pieces can be represented by a ReLU network

whose number of hidden neurons is bounded from above by a quadratic function of q. We also

give the corresponding upper bounds for the maximum width, i.e., the maximum number of

neurons per hidden layer, and the number of layers for such a network. The maximum width is

bounded from above by O(q2) and the number of layers is bounded from above by a logarithmic

function of q, i.e., O(log2 q). These bounds are invariant to the input dimension. For any affine

function, the upper bounds for the maximum width and the number of hidden neurons are zero.

Further improvements on neural complexity

When the number of distinct linear components k of any CPWL function is given along

with the number of pieces q, the quadratic bounds O(q2) for the number of hidden neurons and

13

the maximum width turn into bilinear bounds of k and q, i.e., O(kq). Such a change reduces

the neural complexity because k ≤ q, and q can be much larger than k. Still, these bounds are

independent of the input dimension.

Finding a network satisfying bilinear bounds

We establish a polynomial time algorithm that finds a ReLU network representing any

given CPWL function. The network found by the algorithm satisfies the bilinear bounds on the

number of hidden neurons and the maximum width, and the logarithmic bound on the number of

layers. Note that such an algorithm also guarantees that one can always reverse-engineer at least

one ReLU network from the function it computes. Compared to the general-purpose reverse-

engineering algorithm proposed by Rolnick and Kording [2020], our algorithm specializes in the

situation when pieces of a CPWL function are given.

Improved bounds from a perspective of linear components

When the number of pieces of a CPWL function is unknown and only the number of

linear components k is available, we prove that the number of hidden neurons and maximum

width are bounded from above by factorial growth. More precisely, O (k · k!). The number of

layers is bounded from above by linearithmic growth, or O(k log2 k). However, when the input

dimension n grows sufficiently slower than k, e.g., O
(√

k
)

, then bounds for the number of

hidden neurons and maximum width reduce to polynomial growth functions of order 2n+1; and

the linearithmic growth reduces to O
(
n log2 k

)
for the depth.

A new approach to choosing the depth

Instead of scaling the depth of a ReLU network with the input dimension [Arora et al.,

2018, He et al., 2020, Hertrich et al., 2021], we reveal that constructing a ReLU network whose

depth is scaled with the number of pieces of the given CPWL function is more advantageous.

Such a scaling turns out to be the key to deriving better upper bounds. This insight is provided

by the max-min representation of CPWL functions [Tarela et al., 1990]. The importance of this

14

scaling on the depth in ReLU networks has not been well recognized by existing bounds in the

literature. We discuss implications of different representations in Section 1.4.

1.2 Preliminaries

Notation and definitions used in this paper are set up and clarified in this section. The set

{1,2, · · · ,m} is denoted by [m]. I [condition] is an indicator function that gives 1 if the condition

is true, and 0 otherwise. The CPWL function is defined by Definition 1 below.

Definition 1. A function p : Rn→ R is said to be CPWL if there exists a finite number of closed

subsets of Rn, say {Ui}i∈[m], such that (a) Rn =
⋃

i∈[m]Ui; (b) p is affine on Ui,∀i ∈ [m].

A family of closed convex subsets, say {Xi}i∈[q], satisfying Definition 1 is also referred

to as a family of convex regions, affine pieces or simply pieces for a CPWL function in this

paper. Definition 1 follows the definition of CPWL functions by Ovchinnikov [2002]. Notice

that there are different definitions in the literature. For example, Chua and Deng [1988] and

Arora et al. [2018] defined a CPWL function on a finite number of polyhedral regions. However,

their definitions are essentially the same as Definition 1 because any family of closed subsets

satisfying Definition 1 can be decomposed into polyhedral regions. It is possible that some of the

closed subsets satisfying Definition 1 are non-convex even though the number of them reaches

the minimum (see Figure 2 in [Wang and Sun, 2005]). The continuity is implied by Definition 1

due to the subsets being closed.

Because the goal of this paper is to bound the complexity of a ReLU DNN that exactly

represents any given CPWL function, it is necessary to be able to measure the complexity of

a CPWL function. The complexity of a CPWL function can be described using two different

perspectives. One is the number of pieces q, which is the number of closed convex subsets

satisfying Definition 1. Because this number has a minimum and any finite number above the

minimum can be a valid m in Definition 1, the bounds become obviously loose when the number

of pieces is not the minimum. Without loss of generality, we are interested in the number q when

15

it is the minimum. The other is the number of distinct linear components k. A linear component

of a CPWL function is defined in Definition 2.

Definition 2. An affine function f is said to be a linear component of a CPWL function p if there

exists a nonempty subset M ⊆ [m] such that f (x) = p(x),∀x ∈ ⋃i∈M Ui where {Ui}i∈[m] is a

family of the minimum number of closed subsets satisfying Definition 1.

A greater q or k gives a CPWL function more degrees of freedom because a CPWL

function allowed to use q+ 1 pieces or k+ 1 arbitrary linear components can represent any

CPWL function with q pieces or k distinct linear components and still have the flexibility to

modify existing affine maps or increase the number of distinct affine maps of the CPWL function.

Although increasing them both leads to a CPWL function with greater flexibility, the speed of

upgrading degrees of freedom is different from each other. Note that a CPWL function with

q pieces can never have more than q distinct linear components and a CPWL function with k

distinct linear components can easily have more than k minimum number of pieces. Such a

difference in a 1-dimensional case can be clearly observed from Figure 1 in [Tarela and Martı́nez,

1999]. Note that it is possible for two disjoint subsets from a minimum number of closed subsets

satisfying Definition 1 to share the same linear component. In other words, a linear component

can be reused by multiple pieces. Hence, increasing k gives faster growth than increasing q for

the complexity and expressivity of CPWL functions.

We define the ReLU activation function in Definition 3. The ReLU network defined in

Definition 4 is a simple architecture which is usually referred to as a ReLU multi-layer perceptron.

Definition 5 defines the corresponding number of hidden neurons, depth, and maximum width.

Definition 3. The rectified linear unit (ReLU) activation function σ is defined as σ(x) =

max(0,x). The ReLU layer or vector-valued rectified linear activation function σk is defined as

σk(x) =
[

σ(x1) σ(x2) · · · σ(xk)

]T
(1.1)

16

where x =

[
x1 x2 · · · xk

]T
.

Definition 4. Let l be any positive integer. A function g : Rk0 → Rkl is said to be an l-layer

ReLU network if there exist weights Wi ∈ Rki×ki−1 and bi ∈ Rki for i ∈ [l] such that the input-

output relationship of the network satisfies g(x) = hl(x) where h1(x) = W1x+b1 and hi(x) =

Wiσki−1

(
hi−1(x)

)
+bi for every i ∈ [l]\ [1].

Definition 5. The sum ∑
L−1
l=1 kl and the maximum maxl∈[L−1] kl for L > 1 are referred to as the

number of hidden neurons and the maximum width of an L-layer ReLU network, respectively.

Any 1-layer ReLU network is said to have 0 hidden neurons and a maximum width of 0. An

l-layer ReLU network is said to have depth l and l−1 hidden layers.

1.3 Upper bounds on neural complexity for representing
CPWL functions

The correspondence between CPWL functions and ReLU networks was first clearly

confirmed by Theorem 2.1 in [Arora et al., 2018] although a weaker version of the correspondence

can be inferred from Proposition 4.1 in [Goodfellow et al., 2013]. Arora et al. [2018] proved that

every ReLU network Rn→ R exactly represents a CPWL function, and the converse is also true,

i.e., every CPWL function can be exactly represented by a ReLU network. One of the key steps

used by Arora et al. [2018] to construct a ReLU network from any given CPWL function relies

on an important representation result by Wang and Sun [2005], stating that any CPWL function

can be represented by a sum of a finite number of max-η-affine functions [Magnani and Boyd,

2009] whose signs may be flipped and η is bounded from above by n+1 where η is the number

of affine functions in the max-η-affine function. The implication of using this representation

is later discussed in Section 1.4.1 and its max-η-affine functions are given therein. The bound

η ≤ n+1 in the representation allowed Arora et al. [2018] to further prove that there exists a

ReLU DNN with at most ⌈
log2(n+1)

⌉
(1.2)

17

hidden layers to exactly realize any given CPWL function. However, the computational resource

required for a ReLU network to exactly represent any CPWL function had not been available in

the literature until the work by He et al. [2020].

1.3.1 Upper bounds in prior work

He et al. [2020] proved that a CPWL function Rn → R with q pieces and k linear

components can be represented by a ReLU network whose number of neurons is given by


O
(

n2kq+(n+1)(k−n−1)
)
, if k ≥ n+1,

O
(

n2kq
)
, if k < n+1.

(1.3)

The number of hidden layers in such a ReLU DNN is also bounded from above by
⌈
log2(n+1)

⌉
,

which is the same as the bound derived by Arora et al. [2018]. One of their significant contri-

butions in our view is that they utilize the number of pieces and linear components of a CPWL

function to bound the complexity of the equivalent ReLU network. He et al. [2020] also proved

the relationship

k ≤ q≤ k! (1.4)

for any CPWL function. Note that the bounds in (1.4) on the number of pieces q and linear

components k were first mentioned by Tarela and Martı́nez [1999] who developed the lattice

representation of CPWL functions. Asymptotically, the bounds in (1.3) for k≥ n+1 and k < n+1

are amplified linearly with the input dimension n for any fixed k. Due to (1.4), they can be further

bounded from above by O
(

n2q2+(n+1)(q−n−1)
)

and O
(

n2q2
)

in terms of q and n. On the other

hand, in terms of k and n, they can be further bounded from above by O
(

n2k·k!+(n+1)(k−n−1)
)

and O
(

n2k·k!
)

. Because these bounds grow much faster than exponential growth, they seem to

suggest that the cost of computing a CPWL function via a ReLU network is exceptionally high.

Hertrich et al. [2021] proved that any CPWL function Rn → R with k distinct linear

components can be represented by a ReLU network whose maximum width is O
(

k2n2+3n+1
)

18

under the same number of hidden layers
⌈
log2(n+1)

⌉
. Hence, the number of hidden neurons

must be bounded from above by

O
(

k2n2+3n+1 log2 (n+1)
)
. (1.5)

Note that we infer this bound by taking the product of the depth and the maximum width. Using

k ≤ q, the bound in (1.5) can be expressed in terms of q, leading to O
(

q2n2+3n+1 log2 (n+1)
)

.

Such a bound can grow slower than O
(

n2q2
)

, but it grows faster than O
(

n2q2
)

if the input di-

mension n grows sufficiently faster than the number of pieces q. Also, O
(

k2n2+3n+1 log2 (n+1)
)

grows faster than O
(

n2k·k!
)

when the input dimension n grows sufficiently faster than the num-

ber of distinct linear components k.

1.3.2 Improved upper bounds

We show that any CPWL function can be represented by a ReLU network whose number

of hidden neurons is bounded by much slower growth functions. We state our main results in

Theorem 1, 2 and 3, and focus on their impact in this subsection. Each one of them is tailored

to a specific complexity measure of the CPWL function. Their proof sketches are deferred to

Section 1.4.2. We first focus on the case when the number of linear components is unknown and

the complexity of the CPWL is only measured by the number of pieces q.

Theorem 1. Any CPWL function p : Rn → R with q pieces can be represented by a ReLU

network whose number of layers l, maximum width w, and number of hidden neurons h satisfy

l ≤ 2
⌈
log2 q

⌉
+1, (1.6)

w≤ I [q > 1]
⌈

3q
2

⌉
q, (1.7)

and

h≤
(

3 ·2⌈log2 q⌉+2
⌈
log2 q

⌉
−3
)

q+3 ·2⌈log2 q⌉−2
⌈
log2 q

⌉
−3. (1.8)

19

Furthermore, Algorithm 1 finds such a network in poly (n,q,L) time where L is the number of

bits required to represent every entry of the rational matrix Ai in the polyhedron representation

{x ∈ Rn|Aix≤ bi} of the piece Xi for every i ∈ [q].

Algorithm 1. Find a ReLU network that computes a given continuous piecewise linear function

Input: A CPWL function p with pieces {Xi}i∈[q] of Rn satisfying Definition 1.

Output: A ReLU network g computing g(x) = p(x),∀x ∈ Rn.

1: f1, f2, · · · , fk← run Algorithm 6 to find all distinct linear components of p

2: for i = 1,2, · · · ,q do

3: Ai← /0

4: for j = 1,2 · · · ,k do

5: if f j(x)≥ p(x),∀x ∈Xi then

6: Ai←Ai
⋃{ j}

7: end if

8: end for

9: vi← run Algorithm 2 with { fm}m∈Ai using the minimum type

10: end for

11: v← run Algorithm 3 with v1,v2, · · · ,vq ▷ Combine q ReLU networks in parallel

12: u← run Algorithm 2 with

{[
s1 s2 · · · sq

]T
7→ sm

}
m∈[q]

using the maximum type

13: g← run Algorithm 4 with v and u ▷ Find a ReLU network for the composition u◦ v

The proof of Theorem 1 is deferred to Appendix 1.6.2 in the supplementary material.

Algorithm 6, 2, 3, and 4 used by Algorithm 1 are deferred to Appendix 1.6.3 in the supplementary

material and will be discussed soon after the discussion on bounds. Because 2⌈log2 q⌉ < 2q, the

upper bound in (1.8) can be further bounded from above by 6q2+2
⌈
log2 q

⌉
q+3q−2

⌈
log2 q

⌉
−

3, leading to the asymptotic bound h = O(q2). Obviously, l = O(log2 q) and w = O(q2). Since

the bound given by Theorem 5.2 in He et al. [2020] can be lower bounded by O
(

n2q2
)

, it

grows exponentially faster than our bound of h given in Theorem 1. On the other hand, the

20

upper bound given by (1.5) is at least polynomially larger than our bound of h and the order of

this polynomial grows quadratically with the input dimension n. Note that such a polynomial

becomes an exponential function when the growth in n is not slower than q. Such differences

are illustrated by the figure on the left-hand side of Figure 1.1. The bounds in Theorem 1 are

independent of the input dimension n. Hence, one can realize any given CPWL function using a

relatively small ReLU network even though n is huge.

In terms of the maximum width, the upper bound given by (1.7) is at least polynomially

smaller than the one given by Hertrich et al. [2021]. In contrast to the bound for the number of

layers in [Arora et al., 2018, He et al., 2020, Hertrich et al., 2021] that grows logarithmically

with the input dimension n, our bound in Theorem 1 grows logarithmically with the number of

pieces q. Therefore, the ReLU network found by Algorithm 1 in general becomes deeper when

the CPWL becomes more complex for a fixed input dimension. On the other hand, the network

remains the same depth even for an arbitrarily larger n as long as q is fixed. Taking an affine

function for example, a 1-layer ReLU network with 0 hidden neurons is the solution given by

Theorem 1. However, the bound given by [Arora et al., 2018, He et al., 2020, Hertrich et al.,

2021] keeps increasing the depth for a larger n.

We briefly explain algorithms used by Algorithm 1. Algorithm 2 finds a ReLU network

that computes a max-affine or min-affine function [Magnani and Boyd, 2009]. Algorithm 3 con-

catenates two given ReLU networks in parallel and returns another ReLU network computing the

concatenation of two outputs. Algorithm 4 finds a ReLU network that represents a composition

of two given ReLU networks. These algorithms are basic manipulations of ReLU networks.

Algorithm 1 is a polynomial time algorithm, following from the proof of Theorem 2. Table 1.1

in Appendix 1.6.3 in the supplementary material gives a complexity analysis for Algorithm 1.

Notice that Algorithm 1 does not need to be given any linear components or completely

know the CPWL function because every distinct linear component can be found by Algorithm 6,

which only needs to be given a closed ε-ball in the interior of every piece of a CPWL function

p and observe the output of p when feeding an input. Algorithm 6 solves a system of linear

21

equations for every piece of p to find the corresponding linear component. Every system of linear

equations here has a unique solution because the interior of each of the pieces is nonempty. The

nonemptyness is guaranteed by Lemma 12(a) in Appendix 1.6.1 in the supplementary material.

The 5th step of Algorithm 1 can be executed by checking the optimization result of the

following linear programming problem

minimize f j(x)− p(x),

subject to x ∈Xi.

(1.9)

The condition in the 5th step can only be true when the optimal value is nonnegative. Because

every piece of p is given to Algorithm 1, the piece Xi is available for the linear program as a

system of linear inequalities. The objective function is also available since p is affine on Xi

and all distinct linear components are available from Algorithm 6. The corresponding linear

component of p on Xi can be found by first feeding at most n+1 affinely independent points

from the closed ε-ball to p and every candidate linear component, and then matching their output

values.

The ellipsoid method [Khachiyan, 1979], the interior-point method [Karmarkar, 1984],

and the path-following method [Renegar, 1988] are polynomial time algorithms for the linear

programming problem using rational numbers on the Turing machine model of computation.

These algorithms are also known to be weakly polynomial time algorithms. The strongly

polynomial time algorithm requested by Smale’s 9th problem [Smale, 1998], i.e., the linear

programming problem, is still an open question. Given that we run the 5th step of Algorithm 1

by solving the linear programming problem in (1.9), Algorithm 1 is a weakly polynomial time

algorithm. The question of whether it is a strongly polynomial time algorithm is not known.

The dependency on the number of bits L in the time complexity of Algorithm 1 directly comes

from using (1.9) to execute the 5th step. In practice, linear programming problems can be solved

very reliably and efficiently [Boyd and Vandenberghe, 2004]. We provide an implementation of

22

Algorithm 1 and measure its run time on a computer for different numbers of pieces and input

dimensions in Appendix 1.6.4 in the supplementary material.

Theorem 2 discusses the case when the number of linear components and pieces are both

known.

Theorem 2. Any CPWL function p : Rn→ R with k linear components and q pieces can be

represented by a ReLU network whose number of layers l, maximum width w, and number of

hidden neurons h satisfy l ≤
⌈
log2 q

⌉
+
⌈
log2 k

⌉
+1, w≤ I [k > 1]

⌈
3k
2

⌉
q, and

h≤
(

3 ·2⌈log2 k⌉+2
⌈
log2 k

⌉
−3
)

q+3 ·2⌈log2 q⌉−2
⌈
log2 k

⌉
−3. (1.10)

Furthermore, Algorithm 1 finds such a network in poly (n,k,q,L) time where L is the number of

bits required to represent every entry of the rational matrix Ai in the polyhedron representation

{x ∈ Rn|Aix≤ bi} of the piece Xi for every i ∈ [q].

The proof of Theorem 2 is deferred to Appendix 1.6.2 in the supplementary material.

The bounds in Theorem 2 are in general tighter and always no worse than those in Theorem

1 because q is never less than k but can be much larger than k. Asymptotically, l = O(log2 q),

w = O(kq), and h = O(kq). The bound given by Theorem 5.2 in He et al. [2020] increases

exponentially faster than the bound of h in Theorem 2.

When the number of linear components is the only complexity measure of the CPWL

function, we resort to Theorem 3 below.

Theorem 3. Any CPWL function p : Rn→ R with k linear components can be represented by a

ReLU network whose number of layers l, maximum width w, and number of hidden neurons h

satisfy l ≤
⌈
log2 φ(n,k)

⌉
+
⌈
log2 k

⌉
+1, w≤ I [k > 1]

⌈
3k
2

⌉
φ(n,k), and

h≤
(

3 ·2⌈log2 k⌉+2
⌈
log2 k

⌉
−3
)

φ(n,k)+3 ·2⌈log2 φ(n,k)⌉−2
⌈
log2 k

⌉
−3 (1.11)

23

1 2 3 4 5 6 7 8 9 10
101

105

109

1013

1017

k

U
pp

er
bo

un
d

of
h

1 2 3 4 5 6 7 8 9 10
101

105

109

1013

1017

k

U
pp

er
bo

un
d

of
h

1 2 3 4 5 6 7 8 9 10
101

105

109

1013

1017

k

U
pp

er
bo

un
d

of
h n = 1

n = 2
n = 3

n = 10

Figure 1.2. Left: The upper bound of h in Theorem 3 grows much slower when n grows
sufficiently slower than k, leading to a much better upper bound compared to the worst-case
asymptotic bound O (k · k!) in Theorem 3 when n is sufficiently larger. Middle: the bound in
(1.5) inferred from [Hertrich et al., 2021]. Right: Theorem 5.2 in [He et al., 2020].

where

φ(n,k) = min

(
n

∑
i=0

(k2−k
2
i

)
,k!

)
. (1.12)

The proof of Theorem 3 is deferred to Appendix 1.6.2 in the supplementary material.

Because φ(n,k) ≤ k!, the worst-case asymptotic bounds for l, w and h are l = O
(
k log2 k

)
,

w = O (k · k!), and h = O (k · k!), respectively. However, it holds that ∑
n
i=0
(k2−k

2
i

)
≤ k2n, so the

asymptotic bounds are l = O
(
n log2 k

)
, w = O

(
k2n+1

)
, and h = O

(
k2n+1

)
when n grows

sufficiently slower than k. For example, n = O
(√

k
)

. In this case, w and h are bounded from

above by a polynomial of order 2c
√

k+1 for some constant c, which grows slower than factorial

growth. Such an advantage for small n is illustrated by the figure on the left-hand side of Figure

1.2.

Since the bound given by Theorem 5.2 in [He et al., 2020] can be bounded from below by

O
(

n2k·k!
)

, it at the minimum grows exponentially larger than the upper bound of h in Theorem

3. Even for a small n, the relative order of growth is gigantic. The figure on the right-hand side of

Figure 1.2 illustrates such a large difference. For k = 5, n2k·k! ≈ 7.92×1028 when n = 1, while

our bound of h is at most 3615 for any n. The difference is extremely large even though k is

small under n = 1. The middle plot in Figure 1.2 shows that (1.5) increases much faster when n

becomes larger. For k = 3, k2n2+3n+1 log2 (n+1)≈ 8.20×10110 when n = 10, while our bound

24

of h is at most 95 for any n. The upper bound of h in Theorem 3 is much better than (1.5) for any

n and k.

Lemma 1. Let Pn,k be the set of all CPWL functions with exactly k distinct linear components

such that p : Rn→ R,∀p ∈Pn,k. Let Cn,k(p) be the collection of all families of closed convex

subsets satisfying Definition 1 for any p ∈Pn,k. Then, k ≤minQ∈Cn,k(p)|Q| ≤ φ(n,k).

The proof of Lemma 1 is deferred to Appendix 1.6.2 in the supplementary material.

Clearly, φ(n,k) is a better upper bound of q compared to the bound q ≤ k! given by He et al.

[2020]. When n grows sufficiently slower than k, the bound φ(n,k) can be exponentially smaller

than k!.

1.3.3 Limitations

Although these new bounds are significantly better than previous results, it is still possible

to find a ReLU network whose hidden neurons are fewer than the bounds in Theorem 2 to exactly

represent a given CPWL function. A tight bound for the case when n = 1 was first given by

Theorem 2.2 in [Arora et al., 2018]. However, it seems more difficult to bound the size of a

network from below for n > 1. To the best of our knowledge, we are not aware of any tight

bounds in the literature for the size of the ReLU network representing a general CPWL function

using an arbitrary input dimension.

1.4 Representations of CPWL functions have different
implications on depth

We reveal implications of using different representations of CPWL functions and their

impact on constructing ReLU networks. We first discuss the popular representation used by prior

work and the implicit constraint imposed by such a representation.

25

1.4.1 Constrained depth

Arora et al. [2018], He et al. [2020], and Hertrich et al. [2021] proved the same bound

for the number of layers, relying on the following representation of a CPWL function

p(x) =
J

∑
j=1

σ j max
i∈η(j)

fi(x) (1.13)

where σ j ∈ {+1,−1} and η(j) is a subset of [J] such that
∣∣η(j)

∣∣ ≤ n+1 for all j ∈ [J]. That

is, a sum of a finite number of max-η-affine functions whose signs may be flipped. (1.13) was

established by Theorem 1 in [Wang and Sun, 2005] which is essentially the same as Theorem 1

in [Wang, 2004] that emphasizes the difference between two convex piecewise linear functions.

This result was also used by Goodfellow et al. [2013] to prove Proposition 4.1 in the maxout

network paper.

The depth given by (1.2) does not scale with the complexity of a CPWL function. This

feature directly comes from using a ReLU network to realize each of max-η-affine functions in

(1.13) and concatenating all of them together. Because the size of η(j) is bounded from above

by n+1, the depth can be made to depend solely on n. Such a treatment seems to be the only

way if one considers a CPWL function represented by (1.13). As a result, the ReLU network is

forced to use a depth constrained by the input dimension to represent the given CPWL function,

which in turn requires more hidden neurons. Because we do not use (1.13), our networks are not

limited by such an implication.

1.4.2 Proof sketch for the unconstrained depth

We give a proof sketch in this subsection for our main results. By using a different

representation, the depth of a ReLU network is able to be scaled with the complexity measure,

i.e., the number of pieces, of any given CPWL function to accommodate the high expressivity.

By Theorem 4.2 in [Tarela and Martı́nez, 1999], any CPWL function p can be represented

26

as

p(x) = max
X ∈Q

min
i∈A (X)

fi(x) (1.14)

for all x ∈ Rn where A (X) =
{

i ∈ [k] | fi(x)≥ p(x),∀x ∈X
}

is the set of indices of linear

components that have values greater than or equal to p(x) for all x ∈X , and Q is any family of

closed convex subsets of Rn satisfying Definition 1. We have used f1, f2, · · · , fk to denote the k

distinct linear components of p. Notice that Theorem 4.2 in [Tarela and Martı́nez, 1999] was first

stated by Theorem 7 in [Tarela et al., 1990]. Both are essentially the same, but Theorem 4.2 in

[Tarela and Martı́nez, 1999] emphasizes the convexity of each of the regions in the domain. Both

theorems are also fundamentally equivalent to Theorem 2.1 in [Ovchinnikov, 2002]. Notice that

one of the concluding remarks in [Ovchinnikov, 2002] pointed out that the convexity of the input

space is an essential assumption. The entire space Rn satisfies such an assumption. In addition,

Ovchinnikov pointed out that the max-min representation also holds for vector-valued CPWL

functions. Hence, it is possible to generalize our bounds to vector-valued CPWL functions.

Using the representation in (1.14) and Lemma 2 below, we are able to prove Theorem 2

by bounding the size of Q and A (X). Theorem 1 and 3 can be proved by applying Lemma 1

to Theorem 2. Note that the size |Q| in (1.14) is the key for the depth of a ReLU network to be

able to scale with q.

Lemma 2. Let m be any positive integer. Define l(m) = ⌈log2 m⌉+1, w(m) = I [m > 1]
⌈

3m
2

⌉
,

and the following sequence for any positive integer k,

r(k) =


0, if k = 1,

3k
2 + r

(
k
2

)
, if k is even,

2+ 3(k−1)
2 + r

(
k+1

2

)
, if k ̸= 1 and k is odd.

(1.15)

Then, there exists an l(m)-layer ReLU network g : Rn → R with r(m) hidden neurons and a

maximum width of w(m) such that g computes the extremum of f1(x), f2(x), · · · , fm(x), i.e.,

27

g(x) = maxi∈[m] fi(x) or g(x) = mini∈[m] fi(x) for all x ∈ Rn under any m scalar-valued affine

functions f1, f2, · · · , fm. Furthermore, Algorithm 2 finds such a network in poly(m,n) time.

The proof of Lemma 2 is deferred to Appendix 1.6.2 in the supplementary material. One

can also view l(m), w(m), and r(m) as upper bounds for the number of layers, maximum width,

and the number of hidden neurons. Because r(m) < 6m− 3 by Lemma 6, the bound for the

number of hidden neurons r(m) is tighter than the bound 8m−4 given by Lemma D.3 in [Arora

et al., 2018] or Lemma 5.4 in [He et al., 2020] (these two lemmas are essentially the same). The

bound for the number of layers remains the same as the one given by Lemma D.3 in [Arora

et al., 2018]. By combining Lemma 2 with Lemma 3, Lemma 4, and Lemma 8, we can easily

perform the same job on computing the extremum of multiple scalar-valued ReLU networks as

Lemma D.3 does in [Arora et al., 2018]. Lemma 6, 3, 4, and 8 are given in Appendix 1.6.1 in the

supplementary material.

1.5 Broader impact

Our results guarantee that any CPWL function can be exactly computed by a ReLU

neural network at a more manageable cost. This assurance is crucial because CPWL functions

are important tools in many applications. Such an assurance also relates DNNs closer to CPWL

functions and allows researchers and engineers to understand the expressivity of DNNs from a

different perspective. We focus on simple ReLU networks (ReLU multi-layer perceptrons) in this

paper, but it may be possible to derive bounds for other activation functions and advanced neural

network architectures such as maxout networks [Goodfellow et al., 2013], residual networks [He

et al., 2016a], densely connected networks [Huang et al., 2017], and other nonlinear networks

[Chen et al., 2021], by making some (possibly mild) assumptions. Our contributions advance the

fundamental understanding of the link between ReLU networks and CPWL functions.

28

1.6 Appendix

1.6.1 Lemmas

Lemma 3. Let l be any positive integer. There exists an l-layer ReLU network g with 2n(l−1)

hidden neurons and a maximum width of 2n such that g(x) = x for all x ∈ Rn. Furthermore,

Algorithm 5 finds such a network in poly(n, l) time.

Proof. Appendix 1.6.2.

Definition 6. Let g(l,n,w) denote an l-layer ReLU network with n hidden neurons and a maximum

width bounded from above by w.

Lemma 4. There exists g(l1+l2−1,n1+n2,max(w1,w2)) that represents any composition of g(l1,n1,w1)

and g(l2,n2,w2). Algorithm 4 finds such a network computing the composition in poly (wmax, lmax)

time where wmax = max(w1,w2) and lmax = max(l1, l2).

Proof. Appendix 1.6.2.

Lemma 5. The sequence r(k) defined by (1.15) is a strictly increasing sequence.

Proof. Appendix 1.6.2.

Lemma 6. For any positive integer k, the sequence r(k) defined by (1.15) satisfies

r(k)≤ 3
(

2⌈log2 k⌉−1
)
< 6k−3. (1.16)

Proof. Appendix 1.6.2

Lemma 7. Let m1 and m2 be the output dimensions of g(l1,n1,w1) and g(l2,n2,w2), respectively.

Define

l = max(l1, l2), (1.17)

w = w j +max(wi,2mi), (1.18)

29

and

n = n1 +n2 +2mi|l1− l2| , (1.19)

where i = argmink∈[2] lk and j = [2]\{i}. Then, there exists g(l,n,w) such that

g(l,n,w)(x) =

g(l1,n1,w1)(x)

g(l2,n2,w2)(x)

 (1.20)

for all x ∈ Rn.

Proof. Appendix 1.6.2.

Lemma 8. Let m1,m2, · · · ,mk be the output dimensions of g(l1,n1,w1),g(l2,n2,w2), · · · ,g(lk,nk,wk),

respectively. Define

l = max
i∈[k]

li, (1.21)

w = ∑
i∈[k]

max(wi,2mi), (1.22)

and

n = ∑
i∈[k]

ni +2mi(l− li). (1.23)

Then, there exists g(l,n,w) such that

g(l,n,w)(x) =



g(l1,n1,w1)(x)

g(l2,n2,w2)(x)
...

g(lk,nk,wk)(x)


(1.24)

for all x ∈ Rn. Furthermore, Algorithm 3 finds such a network in poly
(

maxi∈[k]wi,k, l
)

time.

Proof. Appendix 1.6.2.

30

Lemma 9. Let f1, f2, · · · , fk be any affine functions such that fi : Rn→ R for all i ∈ [k]. Define

the set of feasible ascending orders as

S n
f1, f2,··· , fk =

{
(s1,s2, · · · ,sk) ∈S(k) | fs1(x)≤ fs2(x)≤ ·· · ≤ fsk(x),x ∈ Rn} (1.25)

where S(k) is the collection of all permutations of the set [k]. It holds true that

∣∣∣S n
f1, f2,··· , fk

∣∣∣≤min

(
n

∑
i=0

(k2−k
2
i

)
,k!

)
. (1.26)

Proof. Appendix 1.6.2.

Lemma 10. If Definition 1 is satisfied for a non-affine function, then every nonempty subset has

a nonempty intersection with the other subset or at least one of the other subsets.

Proof. Appendix 1.6.2.

Assumption 1. The number of closed connected subsets satisfying Definition 1 is a minimum.

The interior and frontier (boundary) of a set X are denoted as IntX and FrX , respec-

tively.

Lemma 11. Let fi denote the affine function associated with Xi for i ∈ [I] where {Xi}i∈[I] is a

family of closed connected subsets satisfying Assumption 1. Then, for any i ∈ [I], j ∈ [I] such

that i ̸= j and Xi
⋂

X j ̸= /0,

(a) fi and f j are different, and {x ∈ Rn| fi(x) = f j(x)} ̸= /0.

(b) {x ∈ Rn| fi(x) = f j(x)} is an affine subspace of Rn with dimension n−1.

(c) Xi
⋂

X j ⊆ {x ∈ Rn| fi(x) = f j(x)}.

(d) x ̸∈ IntXi and x ̸∈ IntX j for all x ∈Xi
⋂

X j.

Proof. Appendix 1.6.2, 1.6.2, 1.6.2, and 1.6.2.

31

Lemma 12. If a family of closed connected subsets {Xi}i∈[I] satisfies Assumption 1, then, for

all i ∈ [I],

(a) IntXi ̸= /0.

(b) FrXi =
⋃

k∈[I]\i Xk
⋂

Xi.

(c) IntXi
⋂

IntX j = /0 for all j ∈ [I] such that j ̸= i.

Proof. Appendix 1.6.2, 1.6.2, and 1.6.2.

Lemma 13. Let {Xi}i∈[m] be any finite family of subsets satisfying Assumption 1. Let {H j} j∈[k]

be any finite family of affine subspaces of Rn with dimension n−1. Then, for every i ∈ [m],

Xi
⋂Rn \

⋃
j∈[k]

H j

 ̸= /0. (1.27)

Proof. Appendix 1.6.2.

Proposition 1. For any family of closed connected subsets satisfying Definition 1, all subsets are

the largest closed connected subsets if and only if Assumption 1 is satisfied.

Proof. Appendix 1.6.2.

1.6.2 Proofs

Proof of Lemma 1

Proof. Let the family of closed connected subsets Q̄ = {Xi}i∈[I] satisfy Assumption 1 for any

p ∈Pn,k. Let the k distinct linear components of p be f1, f2, · · · , fk and Hlm be the intersection

between fl and fm for l ∈ [k],m ∈ [k], l ̸= m. Note that every Hlm is an affine subspace of

Rn with dimension n− 1 (a hyperplane) or an empty set. Because the linear components are

distinct, it must be true that k ≤ I by Definition 2. If p is an affine function, then it follows

that k = minQ̄∈Cn,k(p)

∣∣Q̄∣∣= φ(n,k) = 1, the claim holds. For the non-affine case, we must have

k > 1.

32

Let R = Rn \H where

H =
⋃

k∈[m],l∈[m],k ̸=l

Hkl. (1.28)

Note that H ̸= /0 according to Lemma 10 and 11(c). By Lemma 12(b), the boundary or frontier

of Xi for i ∈ [I] is given by

FrXi =
⋃

j∈[I]\i

(
Xi
⋂

X j

)
. (1.29)

Because every Xi
⋂

X j for i ∈ [I], j ∈ [I], i ̸= j is a subset of some Hlm for l ∈ [k],m ∈ [k], l ̸= m

by Lemma 11(c), it follows that the boundary of Xi, FrXi, satisfies

FrXi ⊆H (1.30)

for i ∈ [I]. The interior of Xi, IntXi, is a nonempty subset of Rn according to Lemma 12(a).

Furthermore, by Lemma 13,

Xi
⋂

R ̸= /0. (1.31)

Now, define

Zi = (IntXi)
⋂

R (1.32)

for i ∈ [I]. Note that Zi = Xi
⋂

R ̸= /0 due to (1.30) and (1.31). Let A be any subset of Rn and

λ (A) be the number of connected components of A in Rn. It must be true that

1 = λ (Xi)≤ λ (IntXi)≤ λ (Zi). (1.33)

By Lemma 12(c), IntXi
⋂

IntX j = /0 for i ∈ [I], j ∈ [I], i ̸= j. We have

I≤ λ

⋃
i∈[I]

IntXi

= ∑
i∈[I]

λ (IntXi)≤ ∑
i∈[I]

λ (Zi) = λ

⋃
i∈[I]

Zi

= λ

⋃
i∈[I]

Xi
⋂

R

 . (1.34)

33

Notice that ⋃
i∈[I]

Xi
⋂

R = Rn
⋂

R = R (1.35)

by the property
⋃

i∈[I]Xi = Rn in Definition 1. Plugging (1.35) into (1.34) leads to

I ≤ λ (R) (1.36)

which states that I is bounded from above by the number of connected components of R in Rn.

Notice that every component is an open convex set because every component is the intersection

of a finite number of open half spaces. Therefore,

I =
∣∣Q̄∣∣= min

Q′∈C ′n,k(p)

∣∣Q′∣∣≤ min
Q∈Cn,k(p)

|Q| ≤ λ (R) (1.37)

where C ′n,k(p) denotes the collection of all families of closed connected subsets satisfying

Definition 1 for any p ∈Pn,k. Because the ascending order of these k linear components does

not change within a connected component of R, λ (R) can be bounded from above by the

number of feasible ascending orders. Let S(k) be the collection of all permutations of the set [k].

It follows that

λ (R)≤
∣∣{(s1,s2, · · · ,sk) ∈S(k) | fs1(x)≤ fs2(x)≤ ·· · ≤ fsk(x),x ∈ Rn}∣∣ . (1.38)

Finally, Lemma 9 proves the statement by bounding the number of feasible ascending orders.

Proof of Lemma 2

Proof. It suffices to show that

g(x) = max
i∈[k]

xi. (1.39)

for all x =

[
x1 x2 · · · xk

]T
∈ Rk since the composition of affine functions is still affine. The

affine functions can be absorbed into the first layer of the ReLU network g. We prove the case

34

for taking the maximum of m real numbers since the same procedure below can be applied to

prove the case of taking the minimum due to the following identity

min
i∈[k]

fi(x) =−max
i∈[k]
− fi(x). (1.40)

Because max(x1,x2) = max(0,x2− x1)+max(0,x1)−max(0,−x1) for any x1 ∈ R and x2 ∈ R,

it holds true that

max
j∈[k]

x j =


max

j∈
[

k
2

]maxi∈{2 j−1,2 j} xi, if k is even

max
j∈
[

k+1
2

]α(j;x1,x2, · · · ,xk), if k is odd
(1.41)

for x j ∈ R, j ∈ [k] where

α(j;x1,x2, · · · ,xk) =


maxi∈{2 j−1,2 j} xi, if j ∈

[
k−1

2

]
max(0,xk)−max(0,−xk), if j = k+1

2

. (1.42)

Let r(k) be the number of operations of taking the maximum between a zero and a real number,

i.e., max(0,x),x ∈ R for computing the maximum of k real numbers using (1.41). One can

find r(2) = 3 and r(3) = 8 by expanding all operations in (1.41). Because we do not need any

maximum operations to compute the maximum over a singleton, we define r(1) = 0. For any

positive integer k such that k ≥ 2, we have the recursion

r(k) =


3k
2 + r

(
k
2

)
, if k is even

2+ 3(k−1)
2 + r

(
k+1

2

)
, if k is odd

(1.43)

according to (1.41). Note that r(n) is the number of ReLUs in a ReLU network g that computes

the maximum of n real numbers or a max-affine function. The number of ReLUs here is

equivalent to the number of hidden neurons according to Definition 4. We shall note that the

35

number of ReLU layers is equivalent to the number of hidden layers.

Obviously, we only need a 1-layer ReLU network with no ReLUs to compute the

maximum of a singleton. Suppose that we aim to compute the maximum of m = 2n real numbers

for any positive integer n. Then, every time the recursion goes to the next level in (1.43), the

number of variables considered for computing the maximum is halved. Hence, the number of

ReLU layers is n. When m is not a power of two, i.e., 2n < m < 2n+1, then we can always

construct a ReLU network with n+ 1 ReLU layers and 2n+1 input neurons, and set weights

connected to the 2n+1−m “phantom input neurons” to zeros. Because ⌈log2 m⌉ = n+ 1 for

2n < m < 2n+1, the number of ReLU layers is ⌈log2 m⌉ for any positive integer m. By Definition

5, we have l(m) = ⌈log2 m⌉+1.

By Lemma 5, r(k) is a strictly increasing sequence. Therefore, the maximum width of

the network is given by the width of the first hidden layer. When L = 1 or m = 1, the width is 0

due to Definition 5. When L > 1 or m > 1,

max
l∈[L−1]

kl =


3m
2 , if m is even

2+ 3(m−1)
2 , if m is odd

=

⌈
3m
2

⌉
.

(1.44)

Algorithm 2 directly follows from the above construction. Its complexity analysis is deferred to

Table 1.2 in Appendix 1.6.3.

Proof of Theorem 2

Proof. Let f1, f2, · · · , fk be k distinct linear components of p and Q be any family of closed

convex subsets of Rn satisfying Definition 1. By Theorem 4.2 in [Tarela and Martı́nez, 1999], p

can be represented as

p(x) = max
X ∈Q

min
i∈A (X)

fi(x) (1.45)

36

for all x ∈ Rn where

A (X) =
{

i ∈ [k] | fi(x)≥ p(x),∀x ∈X
}

(1.46)

is the set of indices of linear components that have values greater than or equal to p(x) for all

x ∈X . A thorough discussion of the representation (1.45) is given in Section 1.4.2.

According to (1.45), there are |Q| minima required to be computed where each of them

is a minimum of
∣∣A (X)

∣∣ real numbers. Then, the value of p can be computed by taking the

maximum of the resulting |Q| minima. We will show that these operations are realizable by

a ReLU network. By Lemma 2, an l(m)-layer ReLU network with r(m) hidden neurons and

a maximum width of w(m) can compute the extremum of m real numbers given by m affine

functions.

We realize (1.45) in three steps. First, we create |Q| ReLU networks where each of them

is an l
(∣∣A (X)

∣∣)-layer ReLU network with r
(∣∣A (X)

∣∣) hidden neurons and a maximum

width of w
(∣∣A (X)

∣∣) that computes mini∈A (X) fi(x) for X ∈ Q. Second, we parallelly

concatenate these |Q| networks, i.e., put them in parallel and let them share the same input

to obtain a ReLU network that takes x and outputs |Q| real numbers. Finally, we create an

l (|Q|)-layer ReLU network with r (|Q|) hidden neurons and a maximum width of w(|Q|) that

takes the maximum of |Q| real numbers.

The parallel combination of |Q| networks in the second step can be realized by Lemma 8.

The third step can be fulfilled by Lemma 4. With the above construction, we can now count the

number of layers, the upper bound for the maximum width, and the number of hidden neurons

for a ReLU network that realizes p. The number of layers is given by

l (|Q|)+ max
X ∈Q

l
(∣∣A (X)

∣∣)−1. (1.47)

37

The maximum width is bounded from above by

max

(
∑

X ∈Q
max

(
w
(∣∣A (X)

∣∣) ,2) ,w(|Q|)
)
. (1.48)

The number of hidden neurons is given by

r (|Q|)+ ∑
X ∈Q

r
(∣∣A (X)

∣∣)+2
(

max
Y ∈Q

l
(∣∣A (Y)

∣∣)− l
(∣∣A (X)

∣∣)) . (1.49)

Because A (X) for every X ∈Q is a subset of [k], it holds that

1≤
∣∣A (X)

∣∣≤ k (1.50)

for all X ∈Q. Therefore, the number of layers in (1.47) can be bounded from above by

l (|Q|)+ l (k)−1 =
⌈
log2|Q|

⌉
+
⌈
log2 k

⌉
+1 (1.51)

where we have used the definition of the function l in Lemma 2. Again, using (1.50), the upper

bound for the maximum width in (1.48) can be further bounded from above by

max

(
∑

X ∈Q
max

(
w(k) ,2

)
,w(|Q|)

)
= max

(
|Q|max

(
w(k) ,2

)
,w(|Q|)

)

≤max

|Q|max

(⌈
3k
2

⌉
,2

)
,

⌈
3|Q|

2

⌉
=

⌈
3k
2

⌉
|Q|

(1.52)

where we have used the definition of the function w in Lemma 2. Note that the maximum width

is zero when the number of layers is one. Finally, again, using (1.50), the number of neurons in

38

(1.49) can be bounded from above by

r (|Q|)−2l(k)+2l(1)+ ∑
X ∈Q

(
r (k)+2l (k)−2l(1)

)
= r (|Q|)−2l(k)+2l(1)+|Q|

(
r (k)+2l (k)−2l(1)

)
= r (|Q|)−2

⌈
log2 k

⌉
+|Q|

(
r (k)+2

⌈
log2 k

⌉)
≤ 3

(
2⌈log2|Q|⌉−1

)
−2
⌈
log2 k

⌉
+|Q|

(
3
(

2⌈log2 k⌉−1
)
+2
⌈
log2 k

⌉)
= 3

(
2⌈log2|Q|⌉−1

)
+3|Q|

(
2⌈log2 k⌉−1

)
+2(|Q|−1)

⌈
log2 k

⌉
(1.53)

where we have used Lemma 6 for the upper bound in the fourth line of (1.53). Expanding and

rearranging terms in (1.53) lead to (1.10).

Algorithm 1 directly follows from the above construction. Its complexity analysis is

deferred to Table 1.1 in Appendix 1.6.3.

Proof of Theorem 1

Proof. By Lemma 1, the number of distinct linear components k is bounded from above by the

number of pieces, i.e., k≤ q, implying that the bounds in Theorem 2 can be written in terms of q.

Substituting k with q in Theorem 2 proves the claim.

According to Theorem 2, the time complexity of Algorithm 1 is poly(n,k,q,L). Using

the bound k ≤ q proves the claim for the time complexity.

Proof of Theorem 3

Proof. By Lemma 1, the minimum number of closed convex subsets q of a CPWL function

p : Rn→ R can be bounded from above by φ(n,k), i.e.,

q≤ φ(n,k) = min

(
n

∑
i=0

(k2−k
2
i

)
,k!

)
. (1.54)

Substituting q with φ(n,k) in Theorem 2 proves the claim.

39

Proof of Lemma 3

Proof. Obviously, a one-layer ReLU network is an affine function whose weights can be set to

fulfill the identity mapping in Rn. We prove the case when the number of layers is more than one

in the next paragraph. We start with a scalar case, and then work on the vector case.

For any x ∈ R, it holds that max(0,x)−max(0,−x) = x. In other words, a hidden layer

of two ReLUs with +1 and −1 weights can represent an identity mapping for any scalar. For

any vector input in Rn, we can concatenate such structures of two ReLUs in parallel because the

identity mapping can be decomposed into n individual identity mappings from n coordinates.

Therefore, a two-layer ReLU network with 2n hidden neurons can realize the identity mapping

in Rn. Stacking such a hidden layer any number of times gives a deeper network that is still an

identity mapping. Algorithm 5 follows from the above construction. Its complexity analysis is

deferred to Table 1.5 in Appendix 1.6.3.

Proof of Lemma 4

Proof. Because a composition of two affine mappings is still affine, the first layer of either one

of the two networks can be absorbed into the last layer of the other one if their dimensions are

compatible. The resulting new network still satisfies Definition 4. The number of layers of the

new network is l1 + l2−1. The number of hidden neurons of the new network is n1 +n2. The

maximum width of the new network is at most max(w1,w2). Algorithm 4 follows from the above

construction. Its complexity analysis is deferred to Table 1.4 in Appendix 1.6.3.

Proof of Lemma 5

Proof. For any positive even integer k ≥ 4, it holds true that

r(k)− r(k−1) =
3k
2
+ r
(

k
2

)
−2− 3(k−2)

2
− r
(

k
2

)
= 1. (1.55)

40

For any positive odd integer k such that k ≥ 3, we have

r(k)− r(k−1) = 2+
3(k−1)

2
+ r
(

k+1
2

)
− 3(k−1)

2
− r
(

k−1
2

)

=


3, if k+1

2 is even

2+ r
(

k+1
2

)
− r
(

k+1
2 −1

)
, otherwise

(1.56)

which is strictly greater than zero. Note that (1.56) is greater than 0 because the equality in (1.56)

can be applied over and over again to reach (1.55) or the base case r(2)− r(1) = 3.

Proof of Lemma 6

Proof. By Lemma 5, r(k) is a strictly increasing sequence. Then, it must be true that

r(k) = r
(

2log2 k
)
≤ r
(

2⌈log2 k⌉) . (1.57)

According to the recursion (1.15), it holds that

r
(

2⌈log2 k⌉)= 3
2

⌈log2 k⌉
∑
i=1

2i

=
3
2

(
2⌈log2 k⌉+1−2

)
= 3

(
2⌈log2 k⌉−1

)
< 3

(
2(log2 k)+1−1

)
= 3(2k−1) .

(1.58)

Proof of Lemma 7

Proof. Two ReLU networks can be combined in parallel such that the new network shares the

same input and the two output vectors from the two ReLU networks are concatenated together. To

41

see this, we show that the weights of the new network can be found by the following operations.

Let W1
i and b1

i be the weights of the i-th layer in g(l1,n1,w1), and W2
i and b2

i are the weights of

the i-th layer in g(l2,n2,w2). Let Wi and bi be the weights of the new network. Now, we find the

weights for the new network. In the first layer, we construct

W1 =

W1
1

W2
1

 (1.59)

and

b1 =

b1
1

b2
1

 . (1.60)

For the i-th layer such that 1 < i≤min(l1, l2), we use

Wi =

W1
i 0

0 W2
i

 (1.61)

and

bi =

b1
i

b2
i

 . (1.62)

If l1 = l2, then the claim is proved. If l1 ̸= l2, then we stack a network that implements the identity

mapping to the shallower network such that the numbers of layers of the two networks are the

same. Because the network g(li,ni,wi) is shallower than the other network, we append |l1− l2|

hidden layers to g(li,ni,wi) such that the procedure in (1.61) and (1.62) can be used. By Lemma

3, there exists an (|l1− l2|+1)-layer ReLU network g(|l1−l2|+1,2mi|l1−l2|,2mi) with 2mi|l1− l2|

hidden neurons and a maximum width bounded from above by 2mi for representing the identity

mapping in Rmi . By Lemma 4, there exists a network g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) that

represents the composition of g(|l1−l2|+1,2mi|l1−l2|,2mi) and g(li,ni,wi). Now, (1.61) and (1.62) can be

used to combine g(l j,n j,w j) and g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) in parallel because the number

42

of layers in network g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) is equal to l j according to the fact that

li +|l1− l2|= max(l1, l2) = l j. Such a new network has max(l1, l2) layers and

n j +ni +2mi|l1− l2|= n1 +n2 +2mi|l1− l2| (1.63)

hidden neurons. The maximum width of the new network is at most w j +max(wi,2mi).

Proof of Lemma 8

Proof. The case k = 1 is trivial. The case k = 2 is proved by Lemma 7, which gives a tighter

bound on the maximum width. The number of layers and hidden neurons of the claim agree with

Lemma 7 when k = 2. The claim can be proved by following a similar procedure from the proof

of Lemma 7. By Lemma 3, we can stack an identity mapping realized by an (l− li +1)-layer

ReLU network with 2mi(l− li) hidden neurons and a maximum width of 2mi on the i-th network

for all i ∈ [k] such that li < l. In other words, we increase the number of hidden layers for any

network whose number of layers is less than l such that the cascade of the network and the

corresponding identity mapping has l layers. For all i ∈ [k] such that li < l, the extended network

has ni +2mi(l− li) hidden neurons and a maximum width at most max(wi,2mi) according to

Lemma 4. Because all the networks now have the same number of layers, we can directly

combine them in parallel. Hence, the resulting new network has maxi∈[k] li layers and

∑
i∈[k]

ni +2mi(l− li) (1.64)

hidden neurons and a maximum width at most

∑
i∈[k]

max(wi,2mi). (1.65)

Algorithm 3 directly follows from the above construction. Its complexity analysis is deferred to

Table 1.3 in Appendix 1.6.3.

43

Proof of Lemma 9

Proof. Because S n
f1, f2,··· , fk is a subset of S(k) and

∣∣S(k)
∣∣= k! is the number of permutations of

k distinct objects, it follows that ∣∣∣S n
f1, f2,··· , fk

∣∣∣≤ k!. (1.66)

On the other hand, the number of hyperplanes, or affine subspaces of Rn with dimension n−1,

induced by the distinct intersections between any two different affine functions is bounded from

above by (
k
2

)
. (1.67)

Let the arrangement of these hyperplanes be A , and |A | be the number of hyperplanes in the

arrangement. By Zaslavsky’s Theorem [Zaslavsky, 1975], the number of connected components

of the set

Rn \
⋃

H∈A
H (1.68)

is bounded from above by
n

∑
i=0

(|A |
i

)
(1.69)

Because there are at most
(k

2

)
hyperplanes in Rn, it follows that

∣∣∣S n
f1, f2,··· , fk

∣∣∣≤ n

∑
i=0

((k
2

)
i

)
. (1.70)

Combining (1.66) and (1.70) proves the claim. Notice that the ascending order does not change

within a connected component.

Proof of Lemma 10

Proof. Let X1,X2, · · · ,XI be a family of nonempty subsets satisfying Definition 1 for a non-

affine function. We prove the claim by contradiction. Suppose that there exists at least one

nonempty closed subset, say Xi, that is disjoint with every other closed subset X j, j ∈ [I]\ i. It

44

follows that

Xi
⋂ ⋃

j∈[I]\i
X j = /0 (1.71)

which implies (
Rn \Xi

)⋃Rn \
⋃

j∈[I]\i
X j

= Rn. (1.72)

Because the union of any finite collection of closed sets is closed, it must be true that
⋃

j∈[I]\i X j

is closed. Notice that Xi is never the whole space Rn because the CPWL function is assumed to

be non-affine.
⋃

j∈[I]\i X j must be nonempty due to Definition 1. Therefore, both Rn \Xi and

Rn \⋃ j∈[I]\i X j are nonempty and open. Since Rn is connected, it cannot be represented as the

union of two disjoint nonempty open subsets. It follows that the intersection between Rn \Xi

and Rn \⋃ j∈[I]\i X j is nonempty. In other words, there exists an element of Rn that is not in Xi

and
⋃

j∈[I]\i X j, contradicting Definition 1.

Proof of Lemma 11(a)

Proof. If the CPWL function is affine, then there are no intersecting closed subsets because the

only closed subset satisfying Assumption 1 is Rn. On the other hand, if the CPWL function is

non-affine, then there exist at least two intersecting closed subsets according to Lemma 10. For

any two intersecting closed subsets, say Xi and X j, we first show that

{x ∈ Rn | fi(x) = f j(x)} ̸= /0 (1.73)

where fi and f j are the affine functions corresponding to Xi and X j. We prove this statement by

contradiction. Suppose that the intersection is empty, i.e., the linear equation
(
ai−a j

)T x+bi−

b j = 0 does not have a solution where fi(x) = aT
i x+bi and f j(x) = aT

j x+b j for ai,a j ∈ Rn and

bi,b j ∈ R. Then, it is necessary that ai = a j and bi ̸= b j. In other words, the two affine functions

are parallel, implying that every point in Xi∩X j gives two different values, which cannot be

true for a valid function.

45

Next, we prove that there does not exist an intersection that is Rn by contradiction. Let

us assume that there exists at least one intersection that is Rn between the affine functions

corresponding to two intersecting closed subsets, say Xi and X j. Then, we can always replace

Xi and X j with their union. Such a replacement still satisfies Definition 1 but reduces the

number of closed (connected) subsets by at least one, contradicting the fact that the number of

closed subsets is a minimum. Because the two affine functions are identical if and only if the

intersection is Rn, the two affine functions must be different.

Proof of Lemma 11(b)

Proof. The claim follows from Lemma 11(a). Because the two affine functions have a nonempty

intersection, their intersection must be Rn or an affine subspace of Rn with dimension n− 1.

However, the two affine functions must be different, implying that Rn is never the intersection.

Proof of Lemma 11(c)

Proof. Let any given two intersecting subsets be Xi and X j. The intersection between their

corresponding affine functions, say fi and f j, is given by Hi j = {x∈Rn | fi(x) = f j(x)}. Suppose

that there exists a point a ∈Xi
⋂

X j such that a ̸∈Hi j, then it follows that fi(a) ̸= f j(a). Such

a result cannot be true for a valid function. We conclude that Xi
⋂

X j ⊆Hi j.

Proof of Lemma 11(d)

Proof. We prove the statement by contradiction. Suppose there exists a point c ∈ Rn in the

intersection of two intersecting closed connected subsets, say Xi and X j, such that c is an interior

point of Xi, then there exists an open ε-radius ball B(c,ε) such that x ∈Xi,∀x ∈ B(c,ε) for

some ε > 0. By Lemma 11(b), the intersection between the two affine functions corresponding to

Xi and X j must be an affine subspace of Rn with dimension n−1. Let such an affine subspace

be denoted as Hi j and its corresponding linear subspace be denoted as V (Hi j). Then, there

exists a nonzero vector d ∈ Rn such that αd⊥ v for all v ∈ V (Hi j) and any α ̸= 0. Therefore,

46

it follows that αd+ a ̸∈Hi j for any a ∈Hi j and any α ̸= 0. According to Lemma 11(c),

Xi∩X j ⊆Hi j, so we have αd+ c ̸∈Xi∩X j for any α ̸= 0. When α = ε

2∥d∥2
or α = −ε

2∥d∥2
,

αd+ c ∈ B(c,ε). However, one of them must satisfy αd+ c ̸∈Xi, contradicting the existence

of a point in Xi∩X j that is an interior point of Xi. The same procedure can be applied to prove

that there does not exist a point in Xi∩X j such that it is an interior point of X j. We conclude

that every element in Xi∩X j is not an interior point of Xi or X j.

Proof of Lemma 12(a)

Proof. The boundary or frontier of Xi is given by

FrXi = Xi
⋂

Rn \Xi

= Xi
⋂⋃

k∈[I]
Xk

\Xi

= Xi
⋂ ⋃

k∈[I]\i

(
Xk \Xk

⋂
Xi

)
= Xi

⋂ ⋃
k∈[I]\i

(
Xk \Xk

⋂
Xi

)
= Xi

⋂ ⋃
k∈[I]\i

Xk

= Xi
⋂ ⋃

k∈[I]\i
Xk

=
⋃

k∈[I]\i
Xk

⋂
Xi

(1.74)

where A denotes the closure of a subset A . We have used Lemma 11(d) for the equality

between the 4-th and 5-th line of (1.74). Now, we prove that the interior of Xi is nonemtpy by

contradiction. Suppose that the interior of Xi is empty, then it follows that Xi = Xi = FrXi

because the closure of Xi is the union of the interior and the boundary of Xi. Combining

that with (1.74), we have Xi =
⋃

k∈[I]\i Xk
⋂

Xi. which implies every element in Xi is at least

covered by one of the other closed subsets Xk for some k ∈ [I]\ i. In this case, we can delete Xi

47

from X1,X2, · · · ,XI; and the remaining I−1 closed subsets still satisfy Definition 1. Such a

valid deletion of Xi contradicts the fact that I is the minimum number of closed subsets. Hence,

the interior of Xi must be nonempty.

Proof of Lemma 12(b)

Proof. The statement is proved by (1.74) in Lemma 12(a).

Proof of Lemma 12(c)

Proof. By Lemma 12(a), the interior of every subset is nonempty. Next, by Lemma 11(d), every

point in the intersection between any two subsets is a boundary point of both subsets. It follows

that the interiors of any two subsets are disjoint.

Proof of Lemma 13

Proof. By Lemma 12(a), the interior of Xi is nonempty. Therefore, there exists an open ε-radius

ball B(c0,ε) such that x ∈Xi,∀x ∈ B(c0,ε) for some ε > 0 and c0 ∈Xi. Let us consider the set

⋂
j∈[k]

(
B(c0,ε)

⋂(
H +

j

⋃
H −

j

))
(1.75)

where H +
j and H −

j are two open half spaces created by H j. It suffices to show the nonemp-

tyness of the set in (1.75) to prove the claim. If H j and B(c0,ε) do not intersect, then B(c0,ε)

completely belongs to H +
j or H −

j . Without loss of generality, we can remove all j such that

H j does not intersect B(c0,ε) and assume there are k affine subspaces of Rn with dimension

n−1 intersecting B(c0,ε). Let us sequentially carry out the intersection in (1.75). Every time

before the operation of the j-th intersection between B(c j−1,
ε

2 j−1) and
(
H +

j
⋃

H −
j

)
, there

exists an open ε

2 j -radius ball B(c j,
ε

2 j) for some c j ∈ B(c j−1,
ε

2 j−1) such that it does not intersect

with H j. Therefore, at the end of the sequential process, there exists an open ball that does

not intersect any of these k affine subspaces of Rn with dimension n−1. The set in (1.75) is

nonempty, implying (1.27) holds true.

48

Proof of Proposition 1

Proof. We prove the claim by contraposition. If the number of closed connected subsets is

not a minimum, i.e., Assumption 1 is not satisfied, then such a number can be decreased by

merging some of the intersecting closed connected subsets that have the same corresponding

affine functions. Therefore, there exist at least two closed connected subsets that can be made

larger.

On the other hand, if the closed connected subsets, say X1,X2, · · · ,XI , have at least one

of the subsets that can be made larger, then there exist at least two intersecting closed connected

subsets, say Xi and X j, from X1,X2, · · · ,XI such that their corresponding affine functions are

the same. Otherwise, any closed connected subset cannot be made larger than itself. Therefore,

Xi and X j can be replaced with Xi
⋃

X j and these I−1 closed connected subsets still satisfy

Definition 1, implying that I is not the minimum.

49

1.6.3 Algorithms and time complexities

Table 1.1. The running time of Algorithm 1 is upper bounded by poly(n,k,q,L).

Line Operation count Explanation

1 O
(

nqmax(n2,q)
)

Algorithm 6 (see Table 1.6).

2 O(q) Repeat Line 3 to Line 9 q times.

3 O(1) Initialize an empty placeholder.

4 O(k) Repeat Line 5 to Line 7 k times.

5 poly (n,q,L) Solve a linear program [Vavasis and Ye, 1996].

6 O(1) Add an index.

7 - -

8 - -

9 O
(

k2 max(k log2 k,n)
)

Algorithm 2 (see Table 1.2).

10 - -

11 O
(

qmax(n,k)2 max(n,k,q) log2 k
)

Algorithm 3 (see Table 1.3).

12 O
(

q3 log2 q
)

Algorithm 2 (see Table 1.2).

13 O
(

q3 max(n,k)3 log2 q
)

Algorithm 4 (see Table 1.4).

50

Algorithm 2. Find a ReLU network that computes the extremum of affine functions
Input: Scalar-valued affine functions f1, · · · , fm on Rn and the type of extremum (max or min).
Output: Parameters of an l-layer ReLU network g computing g = maxi∈[m] fi or g = mini∈[m] fi.

1: A←
[
−1 1 −1
1 0 0

]T
,B←

[
1 1 −1

]
,C←

[
1
−1

]
▷ Constant matrices

2: ΨΨΨ(Y,Z)← diag(Y,Z), ΦΦΦ(Y,s)← diag(Y,Y, · · · ,Y) ▷ The latter repeats Y s times
3: l← ⌈log2 m⌉+1,k0← n,kl ← 1,c0← m ▷ l is the number of layers of g
4: for i = 1,2, · · · , l−1 do
5: if ci−1 is even then
6: ci← ci−1

2
7: ki← 3ci ▷ Output dimension of the i-th layer
8: else
9: ci← ci−1+1

2
10: ki← 3ci−1 ▷ Output dimension of the i-th layer
11: end if
12: end for
13: W1←

[
∇ f1 ∇ f2 · · · ∇ fm

]T
,b1←

[
f1(0) f2(0) · · · fm(0)

]T
14: if l > 1 then ▷ Find the weights of input and output layers, if any
15: if c0 is even then
16: W1←ΦΦΦ(A,c1)W1,b1←ΦΦΦ(A,c1)b1
17: else
18: W1←ΨΨΨ

(
ΦΦΦ(A,c1−1) ,C

)
W1,b1←ΨΨΨ

(
ΦΦΦ(A,c1−1) ,C

)
b1

19: end if
20: Wl ← B,bl ← 0kl

21: end if
22: if l > 2 then ▷ Find the weights of remaining layers, if any
23: for i = 2,3, · · · , l−1 do
24: if ci−1 is even then
25: T←ΦΦΦ(A,ci)
26: else
27: T←ΨΨΨ

(
ΦΦΦ(A,ci−1) ,C

)
28: end if
29: if ci−2 is even then
30: Wi← TΦΦΦ(B,ci−1)
31: else
32: Wi← TΨΨΨ

(
ΦΦΦ(B,ci−1−1) ,CT

)
33: end if
34: bi← 0ki

35: end for
36: end if
37: if type of extremum is the minimum then
38: W1←−W1,b1←−b1, Wl ←−Wl,bl ←−bl
39: end if ▷ See Table 1.2 in Appendix 1.6.3 for complexity analysis

51

Algorithm 3. Find a ReLU network that concatenates a number of given ReLU networks

Input: Weights of k ReLU networks g1,g2, · · · ,gk denoted by {W j
i ,b

j
i }

l j
i=1 for j ∈ [k].

Output: Parameters of an l-layer ReLU network g computing g(x) =


g1(x)
g2(x)

...
gk(x)

 ,∀x ∈ Rn.

1: l←max j∈[k] l j

2: W1←


W1

1
W2

1
...

Wk
1

 ,b1←


b1

1
b2

1
...

bk
1

 ▷ Weights of the input layer

3: for j = 1,2, · · · ,k do
4: if l j < l then ▷ Append an identity mapping network to the network if it is shallower
5: m← output dimsion of g j
6: gc

j← run Algorithm 5 with an input dimension m and a number of layers l− l j +1
7: g′j← run Algorithm 4 with g j and gc

j

8: {W j
i ,b

j
i }l

i=1← weights of g′j
9: end if

10: end for
11: for i = 2,3, · · · , l do ▷ Find the remaining weights

12: Wi←


W1

i 0 · · · 0
0 W2

i · · · 0
...

...
0 0 · · · Wk

i

 ,bi←


b1

i
b2

i
...

bk
i


13: end for ▷ See Table 1.3 in Appendix 1.6.3 for complexity analysis

Algorithm 4. Find a ReLU network computing a composition of two given ReLU networks

Input: Weights of two ReLU networks g1 and g2 denoted by {W1
i ,b1

i }l1
i=1 and {W2

i ,b2
i }l2

i=1.
Output: Parameters of an l-layer ReLU network g computing g(x) = g2

(
g1(x)

)
,∀x ∈ Rn.

1: l← l1 + l2−1
2: for i = 1,2, · · · , l do
3: if i < l1 then ▷ The first l1−1 layers are identical to the corresponding layers in g1
4: Wi←W1

i ,bi← b1
i

5: else if i = l1 then ▷ A composition of affine functions is still an affine function
6: Wi←W2

1W1
l1 ,bi←W2

1b1
l1 +b2

1
7: else ▷ The last l2−1 layers are identical to the corresponding layers in g2
8: Wi←W2

i−l1+1,bi← b2
i−l1+1

9: end if
10: end for ▷ See Table 1.4 in Appendix 1.6.3 for complexity analysis

52

Algorithm 5. Find a ReLU network that computes an identity mapping for a given depth
Input: The input dimension n and the number of layers l of the target ReLU network.
Output: Parameters of an l-layer ReLU network g computing g(x) = x,∀x ∈ Rn.

1: A←
[

1
−1

]
,B←

[
1 −1

]
,C←

[
1 −1
−1 1

]
▷ Constant matrices

2: ΦΦΦ(Y,s) =


Y(1) 0 · · · 0

0 Y(2) · · · 0
...

...
0 0 · · · Y(s)

 ▷ A block diagonal matrix with Y repeated s times

3: k0← n,kl ← n,bl ← 0n
4: for i = 1,2, · · · , l−1 do
5: ki← 2n ▷ The number of hidden neurons at the i-th hidden layer
6: bi← 0ki

7: end for
8: if l = 1 then ▷ Find the weights of input and output layers, if any
9: W1← In×n ▷ An identity matrix

10: else
11: W1←ΦΦΦ(A,k0)
12: Wl ←ΦΦΦ(B,kl)
13: end if
14: if l > 2 then ▷ Find the weights of hidden layers, if any
15: for i = 2,3, · · · , l−1 do
16: Wi←ΦΦΦ(C,n)
17: end for
18: end if ▷ See Table 1.5 in Appendix 1.6.3 for complexity analysis

53

Algorithm 6. Find all distinct linear components of a CPWL function
Input: An unknown CPWL function p whose output can be observed by feeding input from Rn

to the function. A center ci and radius εi > 0 of any closed εi-radius ball B(ci,εi) such that
B(ci,εi)⊂Xi for i = 1,2, · · · ,q where {Xi}i∈[q] are all pieces of p.

Output: All distinct linear components of p, denoted by F .
1: F ← /0 ▷ Initialize the set of all distinct linear components
2: for i = 1,2, · · · ,q do
3: x0← ci ▷ select the center of B(ci,εi)
4: y0← p(x0)

5:
[
s1 s2 · · · sn

]
← εiIn×n ▷ scale the standard basis of Rn

6: S←
[
s1 s2 · · · sn

]

7: z←


p(s1 +x0)− y0
p(s2 +x0)− y0

...
p(sn +x0)− y0


8: a← S−Tz ▷ Find the linear map by solving a system of linear equations
9: b← y0−aTx0 ▷ Find the translation

10: f ← x 7→ aTx+b ▷ The affine map on Xi
11: if f ̸∈F then ▷ Only add the affine map f to F if f is distinct to all elements of F
12: F ←F

⋃{ f}
13: end if
14: end for ▷ See Table 1.6 in Appendix 1.6.3 for complexity analysis

54

Table 1.2. The time complexity of Algorithm 2 is O
(

m2 max(m log2 m,n)
)

.

Line Operation count Explanation

1 O(1) Initialize constant matrices.

2 max
(

O
(

d2
1

)
,O(s2d2

1)

)
Let d1 be the maximum dimension of Y and Z.

3 O(1) Scalar assignments.

4 O(log2 m) Repeat Line 5 to Line 11 ⌈log2 m⌉ times.

5 O(1) Check a scalar is even or not.

6-12 O(1) Compute a scalar.

13 O(mn) Assign a matrix and a vector.

14 O(1) Check a scalar inequality.

15 O(1) Check a scalar is even or not.

16-19 O(m2n) Matrix creation and multiplication.

20-21 O(1) Assign a constant matrix and vector.

22 O(1) Check a scalar inequality.

23 O(log2 m) Repeat Line 24 to Line 34 ⌈log2 m⌉−1 times.

24 O(1) Check a scalar is even or not.

25-28 O(m2) Matrix creation.

29 O(1) Check a scalar is even or not.

30-32 O(m3) Matrix creation and multiplication.

33 - -

34 O(m) Assign a vector whose length is at most
⌈

3m
2

⌉
.

35-36 - -

37 O(1) Check the binary data type.

38-39 O(mn) Reverse the sign of W1 and b1, and constants.

55

Table 1.3. The time complexity of Algorithm 3 is O
(

d2kl max(d,k)
)

where d is the maximum
dimension of all the weight matrices in g1,g2, · · · ,gk and l = max j∈[k] l j.

Line Operation count Explanation

1 O(k) Find the maximum among k numbers.

2 O(d2k) Matrix concatenation and assignment.

3 O(k) Repeat Line 4 to Line 9 k times.

4 O(1) Check a scalar inequality.

5 O(1) A scalar assignment.

6 O(d2l) Algorithm 5 (see Table 1.5).

7 O(d3l) Algorithm 4 (see Table 1.4).

8 O(d2l) Assign weights of the network.

9 - -

10 - -

11 O(l) Repeat Line 12 l−1 times.

12 O(d2k2) Assign a matrix and a vector.

13 - -

56

Table 1.4. The time complexity of Algorithm 4 is O
(

d3 max(l1, l2)
)

where d is the maximum
dimension of all the weight matrices in g1 and g2.

Line Operation count Explanation

1 O(1) Assign a constant.

2 O(l) Repeat Line 3 to Line 9 l times.

3 O(1) Check a scalar inequality.

4 O(d2) Assign a matrix and a vector (at most d2 +d elements).

5 O(1) Check a scalar equality.

6 O(d3) Matrix multiplication and assignment.

7 - -

8 O(d2) Assign a matrix and a vector (at most d2 +d elements).

9 - -

10 - -

57

Table 1.5. The time complexity of Algorithm 5 is O(n2l).

Line Operation count Explanation

1 O(1) Initialize constant matrices.

2 O(s2d1d2) Create a block diagonal matrix from Y ∈ Rd1×d2 and s ∈ N.

3 O(n) Assign two constant scalars and one constant vector of length n.

4 O(l) Repeat Line 5 to line 6 l times.

5 O(1) Assign a scalar.

6 O(n) Assign a vector whose length ki is equal to 2n.

7 - -

8 O(1) Check a scalar equality.

9 O(n2) Assign an n-by-n matrix.

10 - -

11 O(n2) Assign a 2n-by-n block diagonal matrix.

12 O(n2) Assign an n-by-2n block diagonal matrix.

13 - -

14 O(1) Check a scalar inequality.

15 O(l) Repeat Line 16 l−2 times.

16 O(n2) Assign a 2n-by-2n block diagonal matrix.

17 - -

18 - -

58

Table 1.6. The time complexity of Algorithm 6 is O
(

nqmax(n2,q)
)

.

Line Operation count Explanation

1 O(1) Initialize an empty placeholder F .

2 O(q) Repeat Line 3 to line 13 q times.

3 O(1) Select an interior point. Use the center of the ball.

4 O(1) Evaluate the function on the point.

5 O(n2) Scale and assign an n-by-n matrix.

6 - -

7 O(n) Translate, evaluate, and subtract n points.

8 O(n3) Solve a system of n linear equations with n variables.

9 O(n) Solve the translation term in the affine map

10 - -

11 O(nq) Each affine map has n+1 parameters. F has at most q elements.

12 O(1) Add a distinct affine map to F .

13 - -

14 - -

1.6.4 Software implementation and run time of Algorithm 1

We implement Algorithm 1 in Python. Figure 1.3 shows that the run time of the algorithm

is greatly affected by the number of pieces q.

Code is available at https://github.com/kjason/CPWL2ReLUNetwork.

1.7 Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments,

Tai-Hsuan Chung for answering our mathematical questions, and Christoph Hertrich for his

thoughtful comments on the time complexity of Algorithm 1 and for clarifying Theorem 4.4 in

59

https://github.com/kjason/CPWL2ReLUNetwork

20 21 22 23 24 25
10−4

10−3

10−2

10−1

100

101

Number of pieces q

R
un

tim
e

(s
ec

on
ds

)
n = 1

n = 10
n = 100

Figure 1.3. The run time of Algorithm 1 is an average of 50 trials. Every trial runs Algorithm 1
with a random CPWL function whose input dimension is n and number of pieces is q. The code
provided in the above link is run on a computer (Microsoft Surface Laptop Studio) with the Intel
Core i7-11370H.

[Hertrich et al., 2021]. This work was supported in part by NSF under Grant CCF-2225617, Grant

CCF-2124929, and Grant IIS-1838897, in part by NIH/NIDCD under Grant R01DC015436, and

in part by KIBM Innovative Research Grant Award.

Chapter 1, in full, is a reprint of the material as it appears in K.-L. Chen, H. Garudadri, and

B. D. Rao, “Improved bounds on neural complexity for representing piecewise linear functions,”

in Advances in Neural Information Processing Systems (NeurIPS), 2022. The dissertation author

was the primary investigator and author of this material.

60

Chapter 2

ResNEsts and DenseNEsts: Block-based
DNN Models with Improved Representa-
tion Guarantees

Models recently used in the literature proving residual networks (ResNets) are better

than linear predictors are actually different from standard ResNets that have been widely used

in computer vision. In addition to the assumptions such as scalar-valued output or single

residual block, the models fundamentally considered in the literature have no nonlinearities at

the final residual representation that feeds into the final affine layer. To codify such a difference

in nonlinearities and reveal a linear estimation property, we define ResNEsts, i.e., Residual

Nonlinear Estimators, by simply dropping nonlinearities at the last residual representation from

standard ResNets. We show that wide ResNEsts with bottleneck blocks can always guarantee a

very desirable training property that standard ResNets aim to achieve, i.e., adding more blocks

does not decrease performance given the same set of basis elements. To prove that, we first

recognize ResNEsts are basis function models that are limited by a coupling problem in basis

learning and linear prediction. Then, to decouple prediction weights from basis learning, we

construct a special architecture termed augmented ResNEst (A-ResNEst) that always guarantees

no worse performance with the addition of a block. As a result, such an A-ResNEst establishes

empirical risk lower bounds for a ResNEst using corresponding bases. Our results demonstrate

ResNEsts indeed have a problem of diminishing feature reuse; however, it can be avoided by

61

x W0 +

G1 W1

+

G2 W2

· · · +

GL−1 WL−1

GLv0 x0

v1

x1

v2

xL−2

vL−1

H0 HLH1 H2 HL−1

+ + + + + ŷ· · ·

xL−1

vL

Figure 2.1. The proposed augmented ResNEst or A-ResNEst. A set of new prediction weights
H0,H1, · · · ,HL are introduced on top of the features in the ResNEst (see Figure 2.2). The
A-ResNEst is always better than the ResNEst in terms of empirical risk minimization (see
Proposition 3). Empirical results of the A-ResNEst model are deferred to Appendix 2.7.2 in the
supplementary material.

sufficiently expanding or widening the input space, leading to the above-mentioned desirable

property. Inspired by the densely connected networks (DenseNets) that have been shown to

outperform ResNets, we also propose a corresponding new model called Densely connected

Nonlinear Estimator (DenseNEst). We show that any DenseNEst can be represented as a wide

ResNEst with bottleneck blocks. Unlike ResNEsts, DenseNEsts exhibit the desirable property

without any special architectural re-design.

2.1 Introduction

Constructing deep neural network (DNN) models by stacking layers unlocks the field

of deep learning, leading to the early success in computer vision, such as AlexNet [Krizhevsky

et al., 2012], ZFNet [Zeiler and Fergus, 2014], and VGG [Simonyan and Zisserman, 2015a].

However, stacking more and more layers can suffer from worse performance [He and Sun, 2015,

Srivastava et al., 2015, He et al., 2016a]; thus, it is no longer a valid option to further improve

DNN models. In fact, such a degradation problem is not caused by overfitting, but worse training

performance [He et al., 2016a]. When neural networks become sufficiently deep, optimization

landscapes quickly transition from being nearly convex to being highly chaotic [Li et al., 2018].

As a result, stacking more and more layers in DNN models can easily converge to poor local

62

minima (see Figure 1 in [He et al., 2016a]).

To address the issue above, the modern deep learning paradigm has shifted to designing

DNN models based on blocks or modules of the same kind in cascade. A block or module

comprises specific operations on a stack of layers to avoid the degradation problem and learn

better representations. For example, Inception modules in the GoogLeNet [Szegedy et al., 2015],

residual blocks in the ResNet [He et al., 2016a,b, Zagoruyko and Komodakis, 2016, Kim et al.,

2016, Xie et al., 2017, Xiong et al., 2018], dense blocks in the DenseNet [Huang et al., 2017],

attention modules in the Transformer [Vaswani et al., 2017], Squeeze-and-Excitation (SE) blocks

in the SE network (SENet) [Hu et al., 2018], and residual U-blocks [Qin et al., 2020] in U2-Net.

Among the above examples, the most popular block design is the residual block which merely

adds a skip connection (or a residual connection) between the input and output of a stack of

layers. This modification has led to a huge success in deep learning. Many modern DNN models

in different applications also adopt residual blocks in their architectures, e.g., V-Net in medical

image segmentation [Milletari et al., 2016], Transformer in machine translation [Vaswani et al.,

2017], and residual LSTM in speech recognition [Kim et al., 2017]. Empirical results have

shown that ResNets can be even scaled up to 1001 layers or 333 bottleneck residual blocks, and

still improve performance [He et al., 2016b].

Despite the huge success, our understanding of ResNets is very limited. To the best

of our knowledge, no theoretical results have addressed the following question: Is learning

better ResNets as easy as stacking more blocks? The most recognized intuitive answer for

the above question is that a particular stack of layers can focus on fitting the residual between

the target and the representation generated in the previous residual block; thus, adding more

blocks always leads to no worse training performance. Such an intuition is indeed true for a

constructively blockwise training procedure; but not clear when the weights in a ResNet are

optimized as a whole. Perhaps the theoretical works in the literature closest to the above question

are recent results in an albeit modified and constrained ResNet model that every local minimum

is less than or equal to the empirical risk provided by the best linear predictor [Shamir, 2018,

63

Kawaguchi and Bengio, 2019, Yun et al., 2019]. Although the aims of these works are different

from our question, they actually prove a special case under these simplified models in which

the final residual representation is better than the input representation for linear prediction. We

notice that the models considered in these works are very different from standard ResNets using

pre-activation residual blocks [He et al., 2016b] due to the absence of the nonlinearities at the

final residual representation that feeds into the final affine layer. Other noticeable simplifications

include scalar-valued output [Shamir, 2018, Yun et al., 2019] and single residual block [Shamir,

2018, Kawaguchi and Bengio, 2019]. In particular, Yun et al. [2019] additionally showed that

residual representations do not necessarily improve monotonically over subsequent blocks, which

highlights a fundamental difficulty in analyzing their simplified ResNet models.

In this paper, we take a step towards answering the above-mentioned question by con-

structing practical and analyzable block-based DNN models. Main contributions of our paper

are as follows:

Improved representation guarantees for wide ResNEsts with bottleneck residual blocks

We define a ResNEst as a standard single-stage ResNet that simply drops the nonlin-

earities at the last residual representation (see Figure 2.2). We prove that sufficiently wide

ResNEsts with bottleneck residual blocks under practical assumptions can always guarantee

a desirable training property that ResNets with bottleneck residual blocks empirically achieve

(but theoretically difficult to prove), i.e., adding more blocks does not decrease performance

given the same arbitrarily selected basis. To be more specific, any local minimum obtained from

ResNEsts has an improved representation guarantee under practical assumptions (see Remark 2

(a) and Corollary 1). Our results apply to loss functions that are differentiable and convex; and

do not rely on any assumptions regarding datasets, or convexity/differentiability of the residual

functions.

64

Basic vs. bottleneck

In the original ResNet paper, He et al. [2016a] empirically pointed out that ResNets with

basic residual blocks indeed gain accuracy from increased depth, but are not as economical as

the ResNets with bottleneck residual blocks (see Figure 1 in [Zagoruyko and Komodakis, 2016]

for different block types). Our Theorem 4 supports such empirical findings.

Generalized and analyzable DNN models

ResNEsts are more general than the models considered in [Hardt and Ma, 2017, Shamir,

2018, Kawaguchi and Bengio, 2019, Yun et al., 2019] due to the removal of their simplified

ResNet settings. In addition, the ResNEst modifies the input by an expansion layer that expands

the input space. Such an expansion turns out to be crucial in deriving theoretical guarantees for

improved residual representations. We find that the importance on expanding the input space

in standard ResNets with bottleneck residual blocks has not been well recognized in existing

theoretical results in the literature.

Restricted basis function models

We reveal a linear relationship between the output of the ResNEst and the input feature

as well as the feature vector going into the last affine layer in each of residual functions. By

treating each of feature vectors as a basis element, we find that ResNEsts are basis function

models handicapped by a coupling problem in basis learning and linear prediction that can limit

performance.

Augmented ResNEsts

As shown in Figure 2.1, we present a special architecture called augmented ResNEst or

A-ResNEst that introduces a new weight matrix on each of feature vectors to solve the coupling

problem that exists in ResNEsts. Due to such a decoupling, every local minimum obtained from

an A-ResNEst bounds the empirical risk of the associated ResNEst from below. A-ResNEsts

also directly enable us to see how features are supposed to be learned. It is necessary for features

to be linearly unpredictable if residual representations are strictly improved over blocks.

65

x W0 +

G1 W1

+

G2 W2

· · · +

GL WL

WL+1

WL+1Nonlinear

ŷResNEst

ŷResNet

v0 x0

v1

x1

v2

xL−1

vL

xL

Figure 2.2. A generic vector-valued ResNEst that has a chain of L residual blocks (or units).
Redrawing the standard ResNet block diagram in this viewpoint gives us considerable new insight.
The symbol “+” represents the addition operation. Different from the ResNet architecture using
pre-activation residual blocks in the literature [He et al., 2016b], our ResNEst architecture drops
nonlinearities at xL so as to reveal a linear relationship between the output ŷResNEst and the
features v0,v1, · · · ,vL. Empirical results of the ResNEst model are deferred to Appendix 2.7.2 in
the supplementary material.

Wide ResNEsts with bottleneck residual blocks do not suffer from saddle points

At every saddle point obtained from a ResNEst, we show that there exists at least one

direction with strictly negative curvature, under the same assumptions used in the improved

representation guarantee, along with the specification of a squared loss and suitable assumptions

on the last feature and dataset.

Improved representation guarantees for DenseNEsts

Although DenseNets [Huang et al., 2017] have shown better empirical performance than

ResNets, we are not aware of any theoretical support for DenseNets. We define a DenseNEst

(see Figure 2.4) as a simplified DenseNet model that only utilizes the dense connectivity of

the DenseNet model, i.e., direct connections from every stack of layers to all subsequent

stacks of layers. We show that any DenseNEst can be represented as a wide ResNEst with

bottleneck residual blocks equipped with orthogonalities. Unlike ResNEsts, any DenseNEst

exhibits the desirable property, i.e., adding more dense blocks does not decrease performance,

without any special architectural re-design. Compared to A-ResNEsts, the way the features

are generated in DenseNEsts makes linear predictability even more unlikely, suggesting better

feature construction.

66

2.2 ResNEsts and augmented ResNEsts

In this section, we describe the proposed DNN models. These models and their new

insights are preliminaries to our main results in Section 2.3. Section 2.2.1 recognizes the

importance of the expansion layer and defines the ResNEst model. Section 2.2.2 points out

the basis function modeling interpretation and the coupling problem in ResNEsts, and shows

that the optimization on the set of prediction weights is non-convex. Section 2.2.3 proposes the

A-ResNEst to avoid the coupling problem and shows that the minimum empirical risk obtained

from a ResNEst is bounded from below by the corresponding A-ResNEst. Section 2.2.4 shows

that linearly unpredictable features are necessary for strictly improved residual representations in

A-ResNEsts.

2.2.1 Dropping nonlinearities in the final representation and expanding
the input space

The importance on expanding the input space via W0 (see Figure 2.2) in standard ResNets

has not been well recognized in recent theoretical results [Shamir, 2018, Kawaguchi and Bengio,

2019, Yun et al., 2019] although standard ResNets always have an expansion implemented by

the first layer before the first residual block. Empirical results have even shown that a standard

16-layer wide ResNet outperforms a standard 1001-layer ResNet [Zagoruyko and Komodakis,

2016], which implies the importance of a wide expansion of the input space.

We consider the proposed ResNEst model shown in Figure 2.2 whose i-th residual block

employs the following input-output relationship:

xi = xi−1 +WiGi (xi−1;θθθ i) (2.1)

for i = 1,2, · · · ,L. The term excluded the first term xi−1 on the right-hand side is a composition

67

of a nonlinear function Gi and a linear transformation,1 which is generally known as a residual

function. Wi ∈ RM×Ki forms a linear transformation and we consider Gi (xi−1;θθθ i) : RM 7→ RKi

as a function implemented by a neural network with parameters θθθ i for all i ∈ {1,2, · · · ,L}. We

define the expansion x0 =W0x for the input x∈RNin to the ResNEst using a linear transformation

with a weight matrix W0 ∈RM×K0 . The output ŷResNEst ∈RNo (or ŷL-ResNEst to indicate L blocks)

of the ResNEst is defined as ŷL-ResNEst (x) = WL+1xL where WL+1 ∈RNo×M. M is the expansion

factor and No is the output dimension of the network. The number of blocks L is a nonnegative

integer. When L = 0, the ResNEst is a two-layer linear network ŷ0-ResNEst (x) = W1W0x.

Notice that the ResNEst we consider in this paper (Figure 2.2) is more general than

the models in [Hardt and Ma, 2017, Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al.,

2019] because our residual space RM (the space where the addition is performed at the end of

each residual block) is not constrained by the input dimension due to the expansion we define.

Intuitively, a wider expansion (larger M) is required for a ResNEst that has more residual blocks.

This is because the information collected in the residual representation grows after each block,

and the fixed dimension M of the residual representation must be sufficiently large to avoid

any loss of information. It turns out a wider expansion in a ResNEst is crucial in deriving

performance guarantees because it assures the quality of local minima and saddle points (see

Theorem 4 and 5).

2.2.2 Basis function modeling and the coupling problem

The conventional input-output relationship of a standard ResNet is not often easy to

interpret. We find that redrawing the standard ResNet block diagram [He et al., 2016a,b] with

a different viewpoint, shown in Figure 2.2, can give us considerable new insight. As shown in

1For any affine function y(xraw) = Arawxraw +b, if desired, one can use y(x) =
[
Araw b

][xraw
1

]
= Ax where

A =
[
Araw b

]
and x =

[
xraw

1

]
and discuss on the linear function instead. All the results derived in this paper hold

true regardless of the existence of bias parameters.

68

Figure 2.2, the ResNEst now reveals a linear relationship between the output and the features.

With this observation, we can write down a useful input-output relationship for the ResNEst:

ŷL-ResNEst (x) = WL+1

L

∑
i=0

Wivi (x) (2.2)

where vi (x) = Gi (xi−1;θθθ i) = Gi

(
∑

i−1
j=0 W jv j;θθθ i

)
for i = 1,2, · · · ,L. Note that we do not

impose any requirements for each Gi other than assuming that it is implemented by a neural

network with a set of parameters θθθ i. We define v0 = v0(x) = x as the linear feature and regard

v1,v2, · · · ,vL as nonlinear features of the input x, since Gi is in general nonlinear. The benefit of

our formulation (2.2) is that the output of a ResNEst ŷL-ResNEst now can be viewed as a linear

function of all these features. Our point of view of ResNEsts in (2.2) may be useful to explain

the finding that ResNets are ensembles of relatively shallow networks [Veit et al., 2016].

As opposed to traditional nonlinear methods such as basis function modeling (chapter 3 in

the book by Bishop, 2006) where a linear function is often trained on a set of handcrafted features,

the ResNEst jointly finds features and a linear predictor function by solving the empirical risk

minimization (ERM) problem denoted as (P) on (W0, · · · ,WL+1,θθθ 1, · · · ,θθθ L). We denote R

as the empirical risk (will be used later on). Indeed, one can view training a ResNEst as a

basis function modeling with a trainable (data-driven) basis by treating each of features as a

basis vector (it is reasonable to assume all features are not linearly predictable, see Section

2.2.4). However, unlike a basis function modeling, the linear predictor function in the ResNEst

is not entirely independent of the basis generation process. We call such a phenomenon as a

coupling problem which can handicap the performance of ResNEsts. To see this, note that feature

(basis) vectors vi+1, · · · ,vL can be different if Wi is changed (the product WL+1Wivi is the linear

predictor function for the feature vi). Therefore, the set of parameters φφφ = {Wi−1,θθθ i}L
i=1 needs

to be fixed to sufficiently guarantee that the basis is not changed with different linear predictor

functions. It follows that WL+1 and WL are the only weights which can be adjusted without

changing the features. We refer to WL and WL+1 as prediction weights and φφφ = {Wi−1,θθθ i}L
i=1

69

as feature finding weights in the ResNEst. Obviously, the set of all the weights in the ResNEst is

composed of the feature finding weights and prediction weights.

Because Gi is quite general in the ResNEst, any direct characterization on the landscape

of ERM problem seems intractable. Thus, we propose to utilize the basis function modeling

point of view in the ResNEst and analyze the following ERM problem:

(Pφφφ) min
WL,WL+1

R (WL,WL+1;φφφ) (2.3)

where R (WL,WL+1;φφφ) = 1
N ∑

N
n=1 ℓ

(
ŷφφφ

L-ResNEst (x
n) ,yn

)
for any fixed feature finding weights

φφφ . We have used ℓ and {(xn,yn)}N
n=1 to denote the loss function and training data, respectively.

ŷφφφ

L-ResNEst denotes a ResNEst using a fixed feature finding weights φφφ . Although (Pφφφ) has less

optimization variables and looks easier than (P), Proposition 2 shows that it is a non-convex

problem. Remark 1 explains why understanding (Pφφφ) is valuable.

Remark 1. Let the set of all local minimizers of (Pφφφ) using any possible features equip with the

corresponding φφφ . Then, this set is a superset of the set of all local minimizers of the original

ERM problem (P). Any characterization of (Pφφφ) can then be translated to (P) (see Corollary 2

for example).

Assumption 2. ∑
N
n=1 vL (xn)ynT ̸= 0 and ∑

N
n=1 vL (xn)vL (xn)T is full rank.

Proposition 2. If ℓ is the squared loss and Assumption 2 is satisfied, then (a) the objective

function of (Pφφφ) is non-convex and non-concave; (b) every critical point that is not a local

minimizer is a saddle point in (Pφφφ).

The proof of Proposition 2 is deferred to Appendix 2.7.1 in the supplementary material.

Due to the product WL+1WL in R (WL,WL+1;φφφ), our Assumption 2 is similar to one of the

important data assumptions used in deep linear networks [Baldi and Hornik, 1989, Kawaguchi,

2016]. Assumption 2 is easy to be satisfied as we can always perturb φφφ if the last nonlinear feature

and dataset do not fit the assumption. Although Proposition 2 (a) examines the non-convexity for

70

a fixed φφφ , the result can be extended to the original ERM problem (P) for the ResNEst. That

is, if there exists at least one φφφ such that Assumption 2 is satisfied, then the objective function

for the optimization problem (P) is also non-convex and non-concave because there exists at

least one point in the domain at which the Hessian is indefinite. As a result, this non-convex loss

landscape in (P) immediately raises issues about suboptimal local minima in the loss landscape.

This leads to an important question: Can we guarantee the quality of local minima with respect

to some reference models that are known to be good enough?

2.2.3 Finding reference models: bounding empirical risks via augmenta-
tion

To avoid the coupling problem in ResNEsts, we propose a new architecture in Figure

2.1 called augmented ResNEst or A-ResNEst. An L-block A-ResNEst introduces another set of

parameters {Hi}L
i=0 to replace every bilinear map on each feature in (2.2) with a linear map:

ŷL-A-ResNEst (x) =
L

∑
i=0

Hivi (x) . (2.4)

Now, the function ŷL-A-ResNEst is linear with respect to all the prediction weights {Hi}L
i=0. Note

that the parameters {Wi}L−1
i=0 still exist and are now dedicated to feature finding. On the other

hand, WL and WL+1 are deleted since they are not used in the A-ResNEst. As a result, the

corresponding ERM problem (PA) is defined on (H0, · · · ,HL,φφφ). We denote A as the empirical

risk in A-ResNEsts. The prediction weights are now different from the ResNEst as the A-

ResNEst uses {Hi}L
i=0. Because any A-ResNEst prevents the coupling problem, it exhibits a

nice property shown below.

Assumption 3. The loss function ℓ(ŷ,y) is differentiable and convex in ŷ for any y.

Proposition 3. Let
(
H∗0, · · · ,H∗L

)
be any local minimizer of the following optimization problem:

(PAφφφ) min
H0,··· ,HL

A (H0, · · · ,HL;φφφ) (2.5)

71

where A (H0, · · · ,HL;φφφ) = 1
N ∑

N
n=1 ℓ

(
ŷφφφ

L-A-ResNEst (x
n) ,yn

)
. If Assumption 3 is satisfied, then

the optimization problem in (2.5) is convex and

ε
(
W∗L,W

∗
L+1;φφφ

)
= R

(
W∗L,W

∗
L+1;φφφ

)
−A

(
H∗0, · · · ,H∗L;φφφ

)
≥ 0 (2.6)

for any local minimizer
(

W∗L,W∗
L+1

)
of (Pφφφ) using arbitrary feature finding parameters φφφ .

The proof of Proposition 3 is deferred to Appendix 2.7.1 in the supplementary material.

According to Proposition 3, A-ResNEst establishes empirical risk lower bounds (ERLBs) for a

ResNEst. Hence, for the same φφφ picked arbitrarily, an A-ResNEst is better than a ResNEst in

terms of any pair of two local minima in their loss landscapes. Assumption 3 is practical because

it is satisfied for two commonly used loss functions in regression and classification, i.e., the

squared loss and cross-entropy loss. Other losses such as the logistic loss and smoothed hinge

loss also satisfy this assumption.

2.2.4 Necessary condition for strictly improved residual representations

What properties are fundamentally required for features to be good, i.e., able to strictly

improve the residual representation over blocks? With A-ResNEsts, we are able to straight-

forwardly answer this question. A fundamental answer is they need to be at least linearly

unpredictable. Note that vi must be linearly unpredictable by v0, · · · ,vi−1 if

A
(
H∗0,H

∗
1, · · · ,H∗i−1,0, · · · ,0,φφφ∗

)
> A

(
H∗0,H

∗
1, · · · ,H∗i ,0, · · · ,0,φφφ∗

)
(2.7)

for any local minimum
(
H∗0, · · · ,H∗L,φφφ∗

)
in (PA). In other words, the residual representation xi is

not strictly improved from the previous representation xi−1 if the feature vi is linearly predictable

by the previous features. Fortunately, the linearly unpredictability of vi is usually satisfied when

Gi is nonlinear; and the set of features can be viewed as a basis function. This viewpoint also

suggests avenues for improving feature construction through imposition of various constraints.

72

By Proposition 3, the relation in (2.7) always holds with equality, i.e., the residual representation

xi is guaranteed to be always no worse than the previous one xi−1 at any local minimizer obtained

from an A-ResNEst.

2.3 Wide ResNEsts with bottleneck residual blocks always
attain ERLBs

Assumption 4. M ≥ No.

Assumption 5. The linear inverse problem xL−1 = ∑
L−1
i=0 Wivi has a unique solution.

Theorem 4. If Assumption 3 and 4 are satisfied, then the following two properties are true in

(Pφφφ) under any φφφ such that Assumption 5 holds: (a) every critical point with full rank WL+1 is a

global minimizer; (b) ε = 0 for every local minimizer.

The proof of Theorem 4 is deferred to Appendix 2.7.1 in the supplementary material.

Theorem 4 (a) provides a sufficient condition for a critical point to be a global minimum of (Pφφφ).

Theorem 4 (b) gives an affirmative answer for every local minimum in (Pφφφ) to attain the ERLB.

To be more specific, any pair of obtained local minima from the ResNEst and the A-ResNEst

using the same arbitrary φφφ are equally good. In addition, the implication of Theorem 4 (b) is

that every local minimum of (Pφφφ) is also a global minimum despite its non-convex landscape

(Proposition 2), which suggests there exists no suboptimal local minimum for the optimization

problem (Pφφφ). One can also establish the same results for local minimizers of (P) under the

same set of assumptions by replacing “(Pφφφ) under any φφφ” with just “(P)” in Theorem 4. Such

a modification may gain more clarity, but is more restricted than the original statement due to

Remark 1. Note that Theorem 4 is not limited to fixing any weights during training; and it applies

to both normal training (train all the weights in a network as a whole) and blockwise or layerwise

training procedures.

73

2.3.1 Improved representation guarantees

By Remark 1 and Theorem 4 (b), we can then establish the following representational

guarantee.

Remark 2. Let Assumption 3 and 4 be true. Any local minimizer of (P) such that Assumption

5 is satisfied guarantees (a) monotonically improved (no worse) residual representations over

blocks; (b) every residual representation is better than the input representation in the linear

prediction sense.

Although there may exist suboptimal local minima in the optimization problem (P),

Remark 2 suggests that such minima still improve residual representations over blocks under

practical conditions. Mathematically, Remark 2 (a) and Remark 2 (b) are described by Corollary 1

and the general version of Corollary 2, respectively. Corollary 1 compares the minimum empirical

risk obtained at any two representations among x1 to xL for any given network satisfying the

assumptions; and Corollary 2 extends this comparison to the input representation.

Corollary 1. Let Assumption 3 and 4 be true. Any local minimum of (Pααα) is smaller than

or equal to any local minimum of (Pβββ) under Assumption 5 for any ααα = {Wi−1,θθθ i}Lα

i=1 and

βββ = {Wi−1,θθθ i}
Lβ

i=1 where Lα and Lβ are positive integers such that Lα > Lβ .

The proof of Corollary 1 is deferred to Appendix 2.7.1 in the supplementary material.

Because Corollary 1 holds true for any properly given weights, one can apply Corollary 1 to

proper local minimizers of (P). Corollary 2 ensures that ResNEsts are guaranteed to be no worse

than the best linear predictor under practical assumptions. This property is useful because linear

estimators are widely used in signal processing applications and they can now be confidently

replaced with ResNEsts.

Corollary 2. Let
(

W∗0, · · · ,W∗L+1,θθθ
∗
1, · · · ,θθθ ∗L

)
be any local minimizer of (P) and

φφφ
∗ = {W∗

i−1,θθθ
∗
i }L

i=1.

74

If Assumption 3, 4 and 5 are satisfied, then (a)

R
(
W∗0, · · · ,W∗L+1,θθθ

∗
1, · · · ,θθθ ∗L

)
≤ min

A∈RNo×Nin

1
N

N

∑
n=1

ℓ(Axn,yn) ;

(b) the above inequality is strict if A
(
H∗0,0, · · · ,0,φφφ∗

)
> A

(
H∗0, · · · ,H∗L,φφφ∗

)
.

The proof of Corollary 2 is deferred to Appendix 2.7.1 in the supplementary material. To

the best of our knowledge, Corollary 2 is the first theoretical guarantee for vector-valued ResNet-

like models that have arbitrary residual blocks to outperform any linear predictors. Corollary 2 is

more general than the results in [Shamir, 2018, Kawaguchi and Bengio, 2019, Yun et al., 2019]

because it is not limited to assumptions like scalar-valued output or single residual block. In fact,

we can have a even more general statement because any local minimum obtained from (Pφφφ) with

random or any φφφ is better than the minimum empirical risk provided by the best linear predictor,

under the same assumptions used in Corollary 2. This general version fully describes Remark 2

(b).

Theorem 4, Corollary 1 and Corollary 2 are quite general because they are not limited

to specific loss functions, residual functions, or datasets. Note that we do not impose any

assumptions such as differentiability or convexity on the neural network Gi for i = 1,2, · · · ,L in

residual functions. Assumption 4 is practical because the expansion factor M is usually larger

than the input dimension Nin; and the output dimension No is usually not larger than the input

dimension for most supervised learning tasks using sensory input. Assumption 5 states that

the features need to be uniquely invertible from the residual representation. Although such an

assumption requires a special architectural design, we find that it is always satisfied empirically

after random initialization or training when the “bottleneck condition” is satisfied.

2.3.2 How to design architectures with representational guarantees?

Notice that one must be careful with the ResNEst architectural design so as to enjoy

Theorem 4, Corollary 1 and Corollary 2. A ResNEst needs to be wide enough such that

75

M ≥ ∑
L−1
i=0 Ki to necessarily satisfy Assumption 5. We call such a sufficient condition on the

width and feature dimensionalities as a bottleneck condition. Because each nonlinear feature size

Ki for i < L (say L > 1) must be smaller than the dimensionality of the residual representation

M, each of these residual functions is a bottleneck design [He et al., 2016a,b, Zagoruyko and

Komodakis, 2016] forming a bottleneck residual block. We now explicitly see the importance of

the expansion layer. Without the expansion, the dimenionality of the residual representation is

limited to the input dimension. As a result, Assumption 5 cannot be satisfied for L > 1; and the

analysis for the ResNEst with multiple residual blocks remains intractable or requires additional

assumptions on residual functions.

Loosely speaking, a sufficiently wide expansion or satisfaction of the bottleneck condition

implies Assumption 5. If the bottleneck condition is satisfied, then ResNEsts are equivalent to

A-ResNEsts for a given φφφ , i.e., ε = 0. If not (e.g., basic blocks are used in a ResNEst), then

a ResNEst can have a problem of diminishing feature reuse or end up with poor performance

even though it has excellent features that can be fully exploited by an A-ResNEst to yield better

performance, i.e., ε > 0. From such a viewpoint, Theorem 4 supports the empirical findings in

[He et al., 2016a] that bottleneck blocks are more economical than basic blocks. Our results thus

recommend A-ResNEsts over ResNEsts if the bottleneck condition cannot be satisfied.

2.3.3 Guarantees on saddle points

In addition to guarantees for the quality of local minima, we find that ResNEsts can easily

escape from saddle points due to the nice property shown below.

Theorem 5. If ℓ is the squared loss, and Assumption 2 and 4 are satisfied, then the following

two properties are true at every saddle point of (Pφφφ) under any φφφ such that Assumption 5 holds:

(a) WL+1 is rank-deficient; (b) there exists at least one direction with strictly negative curvature.

The proof of Theorem 5 is deferred to Appendix 2.7.1 in the supplementary material.

In contrast to Theorem 4 (a), Theorem 5 (a) provides a necessary condition for a saddle point.

76

x ©

Q1

©

Q2

· · · ©

QL

WL+1 ŷDenseNEstv0

v1

x1

v2

xL−1

vL

xL

Figure 2.3. A generic vector-valued DenseNEst that has a chain of L dense blocks (or units).
The symbol “©” represents the concatenation operation. We intentionally draw a DenseNEst in
such a form to emphasize its relationship to a ResNEst (see Proposition 5).

x Q1 Q2 Q3 · · · QL WL+1 ŷDenseNEst

Figure 2.4. An equivalence to Figure 2.3 emphasizing the growth of the input dimension at each
block.

Although (Pφφφ) is a non-convex optimization problem according to Proposition 2 (a), Theorem 5

(b) suggests a desirable property for saddle points in the loss landscape. Because there exists

at least one direction with strictly negative curvature at every saddle point that satisfies the

bottleneck condition, the second-order optimization methods can rapidly escape from saddle

points [Dauphin et al., 2014]. If the first-order methods are used, the randomness in stochastic

gradient helps the first-order methods to escape from the saddle points [Ge et al., 2015]. Again,

we require the bottleneck condition to be satisfied in order to guarantee such a nice property

about saddle points. Note that Theorem 5 is not limited to fixing any weights during training;

and it applies to both normal training and blockwise training procedures due to Remark 1.

2.4 DenseNEsts are wide ResNEsts with bottleneck residual
blocks equipped with orthogonalities

Instead of adding one nonlinear feature in each block and remaining in same space RM,

the DenseNEst model shown in Figure 2.3 preserves each of features in their own subspaces by

a sequential concatenation at each block. For an L-block DenseNEst, we define the i-th dense

77

block as a function RMi−1 7→ RMi of the form

xi = xi−1©Qi (xi−1;θθθ i) (2.8)

for i = 1,2, · · · ,L where the dense function Qi is a general nonlinear function; and xi is the

output of the i-th dense block. The symbol © concatenates vector xi−1 and vector Qi (xi−1;θθθ i)

and produces a higher-dimensional vector
[

xT
i−1 Qi (xi−1;θθθ i)

T
]T

. We define x0 = x where

x ∈ RNin is the input to the DenseNEst. For all i ∈ {1,2, · · · ,L}, Qi(xi−1;θθθ i) : RMi−1 7→ RDi is a

function implemented by a neural network with parameters θθθ i where Di = Mi−Mi−1 ≥ 1 with

M0 = Nin = D0. The output of a DenseNEst is defined as ŷDenseNEst = WL+1xL for WL+1 ∈

RNo×ML , which can be written as

WL+1
(
x0©Q1 (x0;θθθ 1)© · · ·©QL (xL−1;θθθ L)

)
=

L

∑
i=0

WL+1,ivi (x) (2.9)

where vi (x) = Qi(xi−1;θθθ i) = Qi(x0©v1©v2© · · ·©vi−1;θθθ i) for i = 1,2, · · · ,L are regarded as

nonlinear features of the input x. We define v0 = x as the linear feature.

WL+1 =

[
WL+1,0 WL+1,1 · · · WL+1,L

]

is the prediction weight matrix in the DenseNEst as all the weights which are responsible for

the prediction is in this single matrix from the viewpoint of basis function modeling. The ERM

problem (PD) for the DenseNEst is defined on (WL+1,θθθ 1, · · · ,θθθ L). To fix the features, the set

of parameters φφφ = {θθθ i}L
i=1 needs to be fixed. Therefore, the DenseNEst ERM problem for any

fixed features, denoted as (PDφφφ), is fairly straightforward as it only requires to optimize over a

single weight matrix, i.e.,

(PDφφφ) min
WL+1

D (WL+1;φφφ) (2.10)

78

where D (WL+1;φφφ) = 1
N ∑

N
n=1 ℓ

(
ŷφφφ

L-DenseNEst (x
n) ,yn

)
. Unlike ResNEsts, there is no such cou-

pling between the feature finding and linear prediction in DenseNEsts. Compared to ResNEsts

or A-ResNEsts, the way the features are generated in DenseNEsts generally makes the linear pre-

dictability even more unlikely. To see that, note that the Qi directly applies on the concatenation

of all previous features; however, the Gi applies on the sum of all previous features.

Different from a ResNEst which requires Assumption 3, 4 and 5 to guarantee its supe-

riority with respect to the best linear predictor (Corollary 2), the corresponding guarantee in a

DenseNEst shown in Proposition 4 requires weaker assumptions.

Proposition 4. If Assumption 3 is satisfied, then any local minimum of (PD) is smaller than or

equal to the minimum empirical risk given by any linear predictor of the input.

The proof of Proposition 4 is deferred to Appendix 2.7.1 in the supplementary material.

Notice that no special architectural design in a DenseNEst is required to make sure it always

outperforms the best linear predictor. Any DenseNEst is always better than any linear predictor

when the loss function is differentiable and convex (Assumption 3). Such an advantage can

be explained by the WL+1 in the DenseNEst. Because WL+1 is the only prediction weight

matrix which is directly applied onto the concatenation of all the features, (PDφφφ) is a convex

optimization problem. We point out the difference of WL+1 between the ResNEst and DenseNEst.

In the ResNEst, WL+1 needs to interpret the features from the residual representation; while the

WL+1 in the DenseNEst directly accesses the features. That is why we require Assumption 5 in

the ResNEst to eliminate any ambiguity on the feature interpretation.

Can a ResNEst and a DenseNEst be equivalent? Yes, Proposition 5 establishes a link

between them.

Proposition 5. Given any DenseNEst ŷL-DenseNEst, there exists a wide ResNEst with bottleneck

residual blocks ŷφφφ

L-ResNEst such that ŷφφφ

L-ResNEst(x)= ŷL-DenseNEst(x) for all x∈RNin . If , in addition,

Assumption 3 and 4 are satisfied, then ε = 0 for every local minimizer of (Pφφφ).

79

The proof of Proposition 5 is deferred to Appendix 2.7.1 in the supplementary material.

Because the concatenation of two given vectors can be represented by an addition over two

vectors projected onto a higher dimensional space with disjoint supports, one straightforward

construction for an equivalent ResNEst is to sufficiently expand the input space and enforce the

orthogonality of all the column vectors in W0,W1, · · · ,WL. As a result, any DenseNEst can be

viewed as a ResNEst that always satisfies Assumption 5 and of course the bottleneck condition

no matter how we train the DenseNEst or select its hyperparameters, leading to the desirable

guarantee, i.e., any local minimum obtained in optimizing the prediction weights of the resulting

ResNEst from any DenseNEst always attains the lower bound. Thus, DenseNEsts are certified as

being advantageous over ResNEsts by Proposition 5. For example, a small M may be chosen and

then the guarantee in Theorem 4 can no longer exist, i.e., ε > 0. However, the corresponding

ResNEst induced by a DenseNEst always achieves ε = 0. Hence, Proposition 5 can be regarded

as a theoretical support for why standard DenseNets [Huang et al., 2017] are in general better

than standard ResNets [He et al., 2016b].

2.5 Related work

In this section, we discuss ResNet works that investigate on properties of local minima

and give more details for our important references that appear in the introduction. We focus

on highlighting their results and assumptions used so as to compare to our theoretical results

derived from practical assumptions. The earliest theoretical work for ResNets can be dated back

to [Hardt and Ma, 2017] which proved a vector-valued ResNet-like model using a linear residual

function in each residual block has no spurious local minima (local minima that give larger

objective values than the global minima) under squared loss and near-identity region assumptions.

There are results [Li and Yuan, 2017, Liu et al., 2019] proved that stochastic gradient descent can

converge to the global minimum in scalar-valued two-layer ResNet-like models; however, such a

desirable property relies on strong assumptions including single residual block and Gaussian

80

input distribution. Li et al. [2018] visualized the loss landscapes of a ResNet and its plain

counterpart (without skip connections); and they showed that the skip connections promote

flat minimizers and prevent the transition to chaotic behavior. Liang et al. [2018] showed that

scalar-valued and single residual block ResNet-like models can have zero training error at all

local minima by making strong assumptions in the data distribution and loss function for a

binary classification problem. In stead of pursuing local minima are global in the empirical risk

landscape using strong assumptions, Shamir [2018] first took a different route and proved that a

scalar-valued ResNet-like model with a direct skip connection from input to output layer (single

residual block) is better than any linear predictor under mild assumptions. To be more specific,

he showed that every local minimum obtained in his model is no worse than the global minimum

in any linear predictor under more generalized residual functions and no assumptions on the

data distribution. He also pointed out that the analysis for the vector-valued case is nontrivial.

Kawaguchi and Bengio [2019] overcame such a difficulty and proved that vector-valued models

with single residual block is better than any linear predictor under weaker assumptions. Yun

et al. [2019] extended the prior work by Shamir [2018] to multiple residual blocks. Although

the model considered is closer to a standard ResNet compared to previous works, the model

output is assumed to be scalar-valued. All above-mentioned works do not take the first layer

that appears before the first residual block in standard ResNets into account. As a result, the

dimensionality of the residual representation in their simplified ResNet models is constrained to

be the same size as the input.

2.6 Broader impact

One of the mysteries in ResNets and DenseNets is that learning better DNN models

seems to be as easy as stacking more blocks. In this paper, we define three generalized and

analyzable DNN architectures, i.e., ResNEsts, A-ResNEsts, and DenseNEsts, to answer this

question. Our results not only establish guarantees for monotonically improved representations

81

over blocks, but also assure that all linear (affine) estimators can be replaced by our architectures

without harming performance. We anticipate these models can be friendly options for researchers

or engineers who value or mostly rely on linear estimators or performance guarantees in their

problems. In fact, these models should yield much better performance as they can be viewed

as basis function models with data-driven bases that guarantee to be always better than the best

linear estimator. Our contributions advance the fundamental understanding of ResNets and

DenseNets, and promote their use cases through a certificate of attractive guarantees.

2.7 Appendix

2.7.1 Proofs

Proof of Proposition 2

Proof. Let

Vi =

[
vi(x1) vi(x2) · · · vi(xN)

]
(2.11)

for i = 0,1, · · · ,L and

∆∆∆ =

(
WL+1

L

∑
i=0

WiVi−Y

)T

=
(

Ŷ−Y
)T

=

[
δδδ 1 δδδ 2 · · · δδδ No

]
(2.12)

where Y =

[
y1 y2 · · · yN

]
. The Hessian of R (WL,WL+1;φφφ) in (Pφφφ) is given by

∇
2R =


∂ 2R

∂vec(WT
L)

2
∂ 2R

∂vec(WT
L+1)∂vec(WT

L)

∂ 2R
∂vec(WT

L)∂vec(WT
L+1)

∂ 2R

∂vec(WT
L+1)

2


=

2
N

 WT
L+1WL+1⊗VLVT

L WT
L+1⊗VL ∑

L
i=0 VT

i WT
i +E

WL+1⊗∑
L
i=0 WiViVT

L +ET INo⊗∑
L
i=0 WiVi

(
∑

L
i=0 WiVi

)T


(2.13)

82

where

E =

[
IM⊗VLδδδ 1 · · · IM⊗VLδδδ No

]
. (2.14)

We have used ⊗ to denote the Kronecker product. See Appendix 2.7.1 for the derivation of the

Hessian. By the generalized Schur complement,

∇
2R ⪰ 0 =⇒ range

 ∂ 2R

∂vec
(

WT
L+1

)
∂vec

(
WT

L
)
⊆ range

 ∂ 2R

∂vec
(
WT

L
)2

 (2.15)

which implies the projection of ∂ 2R
∂vec(WT

L+1)∂vec(WT
L)

onto the range of ∂ 2R

∂vec(WT
L)

2 is itself. As a

result,

IMKL−
∂ 2R

∂ 2vec
(
WT

L
) (∂ 2R

∂ 2vec
(
WT

L
))†

 ∂ 2R

∂vec
(

WT
L+1

)
∂vec

(
WT

L
) = 0 (2.16)

where † denotes the Moore-Penrose pseudoinverse. Substituting the submatrices in (2.13) to the

above equation, we obtain

2
N



(
IM−WT

L+1WL+1

(
WT

L+1WL+1

)†
)T

⊗δδδ
T
1 VT

L

...(
IM−WT

L+1WL+1

(
WT

L+1WL+1

)†
)T

⊗δδδ
T
No

VT
L



T

= 0 (2.17)

which implies

WT
L+1WL+1

(
WT

L+1WL+1

)†
= IM or VL∆∆∆ = 0. (2.18)

On the other hand, the above condition is also necessary for the Hessian to be negative semidefi-

nite because ∇2R ⪯ 0 =⇒ −∇2R ⪰ 0 which implies (2.16).

Now, using the assumption ∑
N
n=1 vL (xn)ynT ̸= 0, notice that the condition in (2.18) is

83

not satisfied for any point in the set

S =
{
(WL,WL+1)

∣∣WL ∈ RM×KL ,WL+1 = 0
}
. (2.19)

Hence, there exist some points in the domain at which the Hessian is indefinite. The objective

function R (WL,WL+1;φφφ) in (Pφφφ) is non-convex and non-concave. We have proved the statement

(a).

By the generalized Schur complement and the assumption that ∑
N
n=1 vL (xn)vL (xn)T is

full rank, we have

∇
2R ⪯ 0 =⇒ ∂ 2R

∂vec
(
WT

L
)2 ⪯ 0 =⇒ WL+1 = 0 (2.20)

where we have used the spectrum property of the Kronecker product and the positive definiteness

of VLVT
L . Notice that this is a contradiction because any point with WL+1 = 0 is in the set S .

Hence, there exists no point at which the Hessian is negative semidefinite. Because the negative

semidefiniteness is a necessary condition for a local maximum, every critical point is then either

a local minimum or a saddle point. We have proved the statement (b).

Proof of Proposition 3

Proof. A (H0, · · · ,HL;φφφ) is convex in
[

H0 H1 · · · HL

]
because it is a nonnegative weighted

sum of convex functions composited with affine mappings. Thus, (PAφφφ) is a convex optimization

problem and
(
H∗0, · · · ,H∗L

)
is the best linear fit using φφφ . That is, for any local minimizer(

H∗0, · · · ,H∗L
)
, it is always true that

1
N

N

∑
n=1

ℓ

(
L

∑
i=0

H∗i vi(xn),yn

)
≤ 1

N

N

∑
n=1

ℓ

(
L

∑
i=0

Aivi(xn),yn

)
(2.21)

for arbitrary Ai ∈ RNo×Ki, i = 0,1, · · · ,L.

84

Proof of Theorem 4

Proof. By the convexity in Proposition 3, every critical point in (PAφφφ) is a global minimizer.

Since the objective function of (PAφφφ) is differentiable, the first-order derivative is a zero row

vector at any critical point, i.e.,

∂A

∂vec(Hi)
=

1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂vec(Hi)

∣∣∣∣
ŷ=∑

L
i=0 Hivi(xn)

=
1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂ ŷ
∂ ŷ

∂vec(Hi)

∣∣∣∣
ŷ=∑

L
i=0 Hivi(xn)

=
1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂ ŷ

∣∣∣∣
ŷ=∑

L
i=0 Hivi(xn)

(
vi (xn)T ⊗ INo

)

=
1
N

N

∑
n=1


(
vi (xn)⊗ INo

) ∂ℓ(ŷ,yn)

∂ ŷ

T
∣∣∣∣∣
ŷ=∑

L
i=0 Hivi(xn)︸ ︷︷ ︸

ga(xn)



T

=
1
N

N

∑
n=1

vec
(

ga (xn)vi (xn)T
)T

= 0

(2.22)

for i = 0,1, · · · ,L. Again, we have used ⊗ to denote the Kronecker product. According to (2.22),

the point
(
H∗0, · · · ,H∗L

)
is a global minimizer in (PAφφφ) if and only if the sum of rank one matrices

is a zero matrix for i = 0,1, · · · ,L, i.e.,

N

∑
n=1

vi (xn)ga (xn)T = 0, i = 0,1, · · · ,L. (2.23)

Next, we show that every local minimizer
(

W∗L,W∗L+1

)
of (Pφφφ) establishes a correspond-

ing global minimizer
(
H∗0, · · · ,H∗L

)
in (PAφφφ) such that H∗i = W∗L+1Wi for i = 0,1, · · · ,L.

At any local minimizer of (Pφφφ), the first-order necessary condition with respect to WL is

85

given by

∂R

∂vec(WL)
=

1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂vec(WL)

∣∣∣∣
ŷ=WL+1 ∑

L
i=0 Wivi(xn)

=
1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂ ŷ
∂ ŷ

∂vec(WL)

∣∣∣∣
ŷ=∑

L
i=0 WL+1Wivi(xn)

=
1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂ ŷ

∣∣∣∣
ŷ=WL+1 ∑

L
i=0 Wivi(xn)

(
vL (xn)T ⊗WL+1

)

=
1
N

N

∑
n=1


(

vL (xn)⊗WT
L+1

)
∂ℓ(ŷ,yn)

∂ ŷ

T
∣∣∣∣∣
ŷ=WL+1 ∑

L
i=0 Wivi(xn)︸ ︷︷ ︸

gr(xn)



T

=
1
N

N

∑
n=1

vec
(

WT
L+1gr (xn)vL (xn)T

)T

= 0.

(2.24)

Equivalently, we can write the above first-order necessary condition into a matrix form

N

∑
n=1

vL (xn)gr (xn)T WL+1 = 0. (2.25)

86

On the other hand, for the first-order necessary condition with respect to WL+1, we obtain

∂R

∂vec(WL+1)
=

1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂vec(WL+1)

∣∣∣∣
ŷ=WL+1 ∑

L
i=0 Wivi(xn)

=
1
N

N

∑
n=1

∂ℓ(ŷ,yn)

∂ ŷ
∂ ŷ

∂vec(WL+1)

∣∣∣∣
ŷ=∑

L
i=0 WL+1Wivi(xn)

=
1
N

N

∑
n=1

gr (xn)T

(L

∑
i=0

Wivi (xn)

)T

⊗ INo


=

1
N

N

∑
n=1


(L

∑
i=0

Wivi (xn)

)
⊗ INo

gr (xn)


T

=
1
N

N

∑
n=1

vec

(
gr (xn)

L

∑
i=0

vi (xn)T WT
i

)T

= 0.

(2.26)

The corresponding matrix form of the above condition is given by

L

∑
i=0

Wi

N

∑
n=1

vi (xn)gr (xn)T = 0. (2.27)

When WL+1 is full rank at a critical point, (2.25) implies ∑
N
n=1 vL (xn)gr (xn)T = 0

because the null space of WT
L+1 is degenerate according to Assumption 4. Then, applying such

an implication to (2.27) along with Assumption 5, we obtain

L−1

∑
i=0

Wi

N

∑
n=1

vi (xn)gr (xn)T = 0 =⇒
N

∑
n=1

vi (xn)gr (xn)T = 0, i = 0,1, · · · ,L−1. (2.28)

Note that all the column vectors in
[

W0 W1 · · · WL−1

]
are linearly independent if and only

if the linear inverse problem ∑
L−1
i=0 xi = ∑

L−1
i=0 Wivi has a unique solution for v0, · · · ,vL−1. We

have proved the statement (a).

On the other hand, when WL+1 is not full rank at a local minimizer, then there exists

87

a perturbation on WL such that the new point is still a local minimizer which has the same

objective value. Let (WL,WL+1) be any local minimizer of (Pφφφ) for which WL+1 is not full row

rank. By the definition of a local minimizer, there exists some γ > 0 such that

R
(
W′L,W

′
L+1;φφφ

)
≥R (WL,WL+1;φφφ) ,∀

(
W′L,W

′
L+1
)
∈ B

(
(WL,WL+1) ,γ

)
(2.29)

where B is an open ball centered at (WL,WL+1) with the radius γ . Then (WL+abT ,WL+1) must

also be a local minimizer for any nonzero a ∈N (WL+1) and any sufficiently small nonzero

b ∈ RKL such that (WL + abT ,WL+1) ∈ B
(
(WL,WL+1) ,γ/2

)
. Substituting the minimizer

(WL +abT ,WL+1) in (2.27) yields

L−1

∑
i=0

Wi

N

∑
n=1

vi (xn)gr (xn)T +
(

WL +abT
) N

∑
n=1

vL (xn)gr (xn)T = 0. (2.30)

Subtracting (2.27) from the above equation, we obtain

abT
N

∑
n=1

vL (xn)gr (xn)T = 0. (2.31)

Multiplying both sides by aT/∥a∥2
2, we have

bT
N

∑
n=1

vL (xn)gr (xn)T = 0 =⇒
N

∑
n=1

vL (xn)gr (xn)T = 0 (2.32)

because b ̸= 0 can be arbitrary as long as it is sufficiently small. As a result, (2.28) is also true

when WL+1 is not full row rank. We have proved the statement (b).

Proof of Corollary 1

Proof. The proof of Theorem 4 has shown that every local minimizer
(

W∗L,W∗
L+1

)
of (Pφφφ)

establishes a corresponding global minimizer
(
H∗0, · · · ,H∗L

)
in (PAφφφ) such that H∗i = W∗

L+1Wi

88

for i = 0,1, · · · ,L. Therefore, it must be true that

R
(

W∗Lα
,W∗Lα+1,ααα

)
= A

(
H∗0, · · · ,H∗Lα

,0, · · · ,0,φφφ
)
. (2.33)

Next, by the convexity in Proposition 3, we have

R
(

W∗Lα
,W∗Lα+1,ααα

)
= A

(
H∗0, · · · ,H∗Lα−1,H

∗
Lα
,0, · · · ,0,φφφ

)
a
≤A

(
H∗0, · · · ,H∗Lβ

,0, · · · ,0,φφφ
)

= R
(

W∗Lβ
,W∗Lβ+1,βββ

)
.

(2.34)

The equality a in (2.34) holds true by the relation Lβ < Lα .

Proof of Corollary 2

Proof. By Theorem 4 (b),

R
(
W∗0, · · · ,W∗L+1,θθθ

∗
1, · · · ,θθθ ∗L

)
= R

(
W∗

L,W
∗
L+1,φφφ

∗)= A
(
H∗0, · · · ,H∗L,φφφ∗

)
(2.35)

for any local minimizer
(
H∗0, · · · ,H∗L

)
of (PAφφφ) using feature finding parameters φφφ

∗. Then, by

the convexity in Proposition 3, every local minimizer
(
H∗0, · · · ,H∗L,φφφ∗

)
is a global minimzer of

(PAφφφ) using φφφ
∗. Hence, it must be true that

R
(
W∗0, · · · ,W∗L+1,θθθ

∗
1, · · · ,θθθ ∗L

)
= A

(
H∗0, · · · ,H∗L,φφφ∗

)
≤A

(
H∗0,0, · · · ,0,φφφ∗

)
= A

(
H∗0,0, · · · ,0,ψψψ

)
= min

A∈RNo×Nin

1
N

N

∑
n=1

ℓ(Axn,yn)

(2.36)

89

for arbitrary ψψψ due to the zero prediction weights for v1,v2, · · · ,vL. We have proved the statement

(a). If the inequality in (2.36) is strict, i.e.,

A
(
H∗0, · · · ,H∗L,φφφ∗

)
< A

(
H∗0,0, · · · ,0,φφφ∗

)
, (2.37)

then (2.36) implies

R
(
W∗0, · · · ,W∗L+1,θθθ

∗
1, · · · ,θθθ ∗L

)
< min

A∈RNo×Nin

1
N

N

∑
n=1

ℓ(Axn,yn) . (2.38)

We have proved the statement (b).

Proof of Theorem 5

Proof. By Theorem 4 (a), every critical point with full rank WL+1 is a global minimizer of (Pφφφ).

Therefore, WL+1 must be rank-deficient at every saddle point. We have proved the statement (a).

We argue that the Hessian is neither positive semidefinite nor negative semidefinite at

every saddle point. According to the proof of Proposition 2, there exists no point in the domain of

the objective function of (Pφφφ) at which the Hessian is negative semidefinite. If WL+1 is not full

rank, then the positive semidefiniteness of the Hessian at every critical point becomes a sufficient

condition for a local minimizer. This can be easily seen by replacing the convex loss with the

squared loss in the proof for Theorem 4 and applying (2.18). We conclude that the Hessian must

be indefinite at every saddle point under the assumptions; in other words, the Hessian has at least

one strictly negative eigenvalue. We have proved the statement (b).

Proof of Proposition 4

Proof. Note that (PDφφφ) is a convex optimization problem because its objective function is a

nonnegative weighted sum of convex functions composited with affine mappings. Since (PDφφφ)

90

is a convex optimization problem, it is true that

D
(
W∗L+1;φφφ

)
≤ min

A∈RNo×Nin
D

([
A 0 · · · 0

]
;φφφ

)
= min

A∈RNo×Nin

1
N

N

∑
n=1

ℓ(Axn,yn) (2.39)

for any local minimizer W∗L+1 of (PDφφφ) and arbitrary feature finding parameters φφφ .

Proof of Proposition 5

Proof. Let 0m×n be an m-by-n zero matrix and Im×n be an m-by-n matrix with ones on diagonal

entries and zero elsewhere, i.e.,

[Im×n]i j =


1, i = j

0, i ̸= j
. (2.40)

The superscript of every hyperparameter in this proof indicates the network type. We define

MResNEst = ∑
L
i=0 KResNEst

i = MDenseNEst
L and KResNEst

i = DDenseNEst
i for i = 1,2, · · · ,L. Let

ΠΠΠi =


0(

∑
i−1
j=0 KResNEst

j

)
×KResNEst

i

IKResNEst
i ×KResNEst

i

0(
MResNEst−∑

i
j=0 KResNEst

j

)
×KResNEst

i

 (2.41)

for i = 0,1, · · · ,L. Let WResNEst
L+1 = WDenseNEst

L+1 and WResNEst
i = ΠΠΠi for i = 0,1, · · · ,L. We define

the function Gi in the ResNEst as

Gi (xi−1) = Qi

([
ΠΠΠ0 ΠΠΠ1 · · · ΠΠΠi−1

]T

xi−1

)
(2.42)

for i = 1, · · · ,L where xi ∈ RMResNEst
is the residual representation in the ResNEst.

Based on such a construction, the feature finding weights φφφ in the ResNEst satisfies

Assumption 5. Therefore, by Theorem 4 (b), the excess minimum empirical risk is zero or ε = 0,

91

i.e., the minimum value at every local minimizer of (Pφφφ) is equivalent to the global minimum

value in (PAφφφ).

Important first- and second-order derivatives

We derive the Hessian in the proof of Proposition 2. Let X =

[
x1 x2 · · · xN

]
. Let

Ŷ(X) =

[
ŷ(x1) ŷ(x2) · · · ŷ(xN)

]
where each of column vectors is the ResNEst output given

by the function ŷ(x) = WL+1 ∑
L
i=0 Wivi(x). The empirical risk using the squared loss (up to a

scaling factor) is defined as

R (WL,WL+1;φφφ) =
1
2

1
N

N

∑
n=1

∥∥ŷ(xn)−yn∥∥2
2 . (2.43)

The Jacobian of R with respect to WL is given by

∂R

∂vec(WT
L)

=
1
2

1
N

∂

∂vec(WT
L)

N

∑
n=1

∥∥ŷ(xn)−yn∥∥2
2

=
1
2

1
N

∂

∂vec(WT
L)

∥∥∥Ŷ(X)−Y
∥∥∥2

F

=
1
2

1
N

∂

∂vec(WT
L)

vec
(

Ŷ(X)T −YT
)T

vec
(

Ŷ(X)T −YT
)

=
1
N

vec
(

Ŷ(X)T −YT
)T ∂

∂vec(WT
L)

vec
(

Ŷ(X)T −YT
)

=
1
N

vec
(

Ŷ(X)T −YT
)T ∂

∂vec(WT
L)

vec

(
L

∑
i=0

VT
i WT

i WT
L+1−YT

)

=
1
N

vec
(

Ŷ(X)T −YT
)T ∂

∂vec(WT
L)

vec
(

VT
L WT

L WT
L+1

)
=

1
N

vec
(

Ŷ(X)T −YT
)T ∂

∂vec(WT
L)

(
WL+1⊗VT

L

)
vec
(

WT
L

)
=

1
N

vec
(

Ŷ(X)T −YT
)T (

WL+1⊗VT
L

)
.

(2.44)

92

The Jacobian of R with respect to WL+1 is given by

∂R

∂vec(WT
L+1)

=
1
2

1
N

∂

∂vec(WT
L+1)

vec
(

Ŷ(X)T −YT
)T

vec
(

Ŷ(X)T −YT
)

= eT ∂

∂vec(WT
L+1)

vec
(

Ŷ(X)T −YT
)

= eT ∂

∂vec(WT
L+1)

vec

(
L

∑
i=0

VT
i WT

i WT
L+1−YT

)

= eT ∂

∂vec(WT
L+1)

vec

(
L

∑
i=0

VT
i WT

i WT
L+1INo

)

= eT ∂

∂vec(WT
L+1)

(
INo⊗

L

∑
i=0

VT
i WT

i

)
vec
(

WT
L+1

)
= eT

(
INo⊗

L

∑
i=0

VT
i WT

i

)

(2.45)

where we have used

e =
1
N

vec
(

Ŷ(X)T −YT
)
. (2.46)

Now, we find each of the block matrices in the Hessian.

∂ 2R

∂vec
(
WT

L
)2 =

∂

∂vec
(
WT

L
) (∂R

∂vec(WT
L)

)T

=
∂

∂vec
(
WT

L
) 1

N

(
WT

L+1⊗VL

)
vec
(

Ŷ(X)T −YT
)

=
1
N

(
WT

L+1⊗VL

)
∂

∂vec
(
WT

L
)vec

(
L

∑
i=0

VT
i WT

i WT
L+1−YT

)

=
1
N

(
WT

L+1⊗VL

)
∂

∂vec
(
WT

L
)vec

(
VT

L WT
L WT

L+1

)
=

1
N

(
WT

L+1⊗VL

)
∂

∂vec
(
WT

L
)vec

(
VT

L WT
L WT

L+1

)
=

1
N

(
WT

L+1⊗VL

)(
WL+1⊗VT

L

)
=

1
N

(
WT

L+1WL+1⊗VLVT
L

)
.

(2.47)

93

∂ 2R

∂vec
(

WT
L+1

)2 =
∂

∂vec
(

WT
L+1

)
 ∂R

∂vec
(

WT
L+1

)


T

=
1
N

∂

∂vec
(

WT
L+1

) (INo⊗
L

∑
i=0

WiVi

)
vec
(

Ŷ(X)T −YT
)

= F
∂

∂vec
(

WT
L+1

)vec

(
L

∑
i=0

VT
i WT

i WT
L+1−YT

)

= F
∂

∂vec
(

WT
L+1

)vec

(
L

∑
i=0

VT
i WT

i WT
L+1INo

)

= F

(
INo⊗

L

∑
i=0

VT
i WT

i

)

=
1
N

INo⊗
L

∑
i=0

WiVi

(
L

∑
i=0

WiVi

)T


(2.48)

where we have used

F =
1
N

(
INo⊗

L

∑
i=0

WiVi

)
. (2.49)

94

∂ 2R

∂vec
(

WT
L+1

)
∂vec

(
WT

L
)

=
∂

∂vec
(

WT
L+1

) (∂R

∂vec
(
WT

L
))T

=
1
N

∂

∂vec
(

WT
L+1

) (WT
L+1⊗VL

)
vec
(

Ŷ(X)T −YT
)

=
1
N

 ∂

∂vec
(

WT
L+1

) (WT
L+1⊗VL

)vec
(

Ŷ(X)T −YT
)

+
1
N

(
WT

L+1⊗VL

)
∂

∂vec
(

WT
L+1

)vec
(

Ŷ(X)T −YT
)

(see (2.52))

=
1
N

[
IM⊗VLδδδ 1 · · · IM⊗VLδδδ No

]
+

1
N

(
WT

L+1⊗VL

)(
INo⊗

L

∑
i=0

VT
i WT

i

)

=
1
N

[
IM⊗VLδδδ 1 · · · IM⊗VLδδδ No

]
+

1
N

(
WT

L+1⊗VL

L

∑
i=0

VT
i WT

i

)
.

(2.50)

∂ 2R

∂vec
(
WT

L
)

∂vec
(

WT
L+1

)
=

∂

∂vec
(
WT

L
)
 ∂R

∂vec
(

WT
L+1

)


T

=
1
N

∂

∂vec
(
WT

L
) (INo⊗

L

∑
i=0

WiVi

)
vec
(

Ŷ(X)T −YT
)

=
1
N

 ∂

∂vec
(
WT

L
) (INo⊗

L

∑
i=0

WiVi

)vec
(

Ŷ(X)T −YT
)

+
1
N

(
INo⊗

L

∑
i=0

WiVi

)
∂

∂vec
(
WT

L
)vec

(
Ŷ(X)T −YT

)
(see (2.53) and (2.54))

=
1
N



IM⊗δδδ
T
1 VT

L

IM⊗δδδ
T
2 VT

L
...

IM⊗δδδ
T
No

VT
L


+

1
N

WL+1⊗
L

∑
i=0

WiViVT
L .

(2.51)

95

Notice that we have used the following identities in (2.50) and (2.51).

 ∂

∂vec
(

WT
L+1

) (WT
L+1⊗VL

)vec
(

Ŷ(X)T −YT
)

=

 ∂

∂vec
(

WT
L+1

) (WT
L+1⊗VL

)vec(∆∆∆)

=
No

∑
j=1

N

∑
k=1

 ∂

∂vec
(

WT
L+1

) ((WT
L+1

)
j
⊗ (VL)k

)δk, j

=

[
∑

No
j=1 ∑

N
k=1 δk, j

∂(WT
L+1) j⊗(VL)k

∂(WT
L+1)1

· · · ∑
No
j=1 ∑

N
k=1 δk, j

∂(WT
L+1) j⊗(VL)k

∂(WT
L+1)No

]
=

[
∑

N
k=1 δk,1

∂vec
(
(VL)k(WT

L+1)
T
1

)
∂(WT

L+1)1
· · · ∑

N
k=1 δk,No

∂vec
(
(VL)k(WT

L+1)
T
No

)
∂(WT

L+1)No

]

=

[
∑

N
k=1 δk,1IM⊗ (VL)k · · · ∑

N
k=1 δk,NoIM⊗ (VL)k

]
=

[
IM⊗VLδδδ 1 · · · IM⊗VLδδδ No

]
.

(2.52)

96

 ∂

∂vec
(
WT

L
) (INo⊗

L

∑
i=0

WiVi

)vec
(

Ŷ(X)T −YT
)

=



δδδ
T
1

∂

∂vec(WT
L)

(
∑

L
i=0 VT

i WT
i

)
1

...

δδδ
T
1

∂

∂vec(WT
L)

(
∑

L
i=0 VT

i WT
i

)
M

δδδ
T
2

∂

∂vec(WT
L)

(
∑

L
i=0 VT

i WT
i

)
1

...

δδδ
T
2

∂

∂vec(WT
L)

(
∑

L
i=0 VT

i WT
i

)
M

...

δδδ
T
No

∂

∂vec(WT
L)

(
∑

L
i=0 VT

i WT
i

)
1

...

δδδ
T
No

∂

∂vec(WT
L)

(
∑

L
i=0 VT

i WT
i

)
M



=



δδδ
T
1 VT

L 0 0 · · · 0

0 δδδ
T
1 VT

L 0 · · · 0

0 0 δδδ
T
1 VT

L · · · 0
...

...
...

0 0 0 · · · δδδ
T
1 VT

L

δδδ
T
2 VT

L 0 0 · · · 0

0 δδδ
T
2 VT

L 0 · · · 0

0 0 δδδ
T
2 VT

L · · · 0
...

...
...

0 0 0 · · · δδδ
T
2 VT

L
...

...
...

...
...

δδδ
T
No

VT
L 0 0 · · · 0

...
...

...

0 0 0 · · · δδδ
T
No

VT
L



=



IM⊗δδδ
T
1 VT

L

IM⊗δδδ
T
2 VT

L
...

IM⊗δδδ
T
No

VT
L


.

(2.53)

97

(
INo⊗

L

∑
i=0

WiVi

)
∂

∂vec
(
WT

L
)vec

(
Ŷ(X)T −YT

)
=

(
INo⊗

L

∑
i=0

WiVi

)(
WL+1⊗VT

L

)
= WL+1⊗

L

∑
i=0

WiViVT
L .

(2.54)

2.7.2 Empirical results

In addition to the theoretical results, we also provide empirical results on image classifi-

cation tasks to further understand our new principle-guided models. The goal of this empirical

study is to answer the following question: How do ResNEsts and A-ResNEsts perform compared

to standard ResNets?

Datasets

The image classification tasks chosen in our empirical study are CIFAR-10 and CIFAR-

100. The CIFAR-10 dataset [Krizhevsky, 2009] consists of 60000 32×32 color images in 10

classes, with 6000 images per class. There are 50000 training images and 10000 test images.

The CIFAR-100 dataset [Krizhevsky, 2009] is just like the CIFAR-10, except it has 100 classes

containing 600 images each. The CIFAR-10 and CIFAR-100 datasets were collected by Alex

Krizhevsky, Vinod Nair, and Geoffrey Hinton.

Models and architectures

Every ResNEst was a standard ResNet without the batch normalization and Rectified

Linear Unit (ReLU) at the final residual representation, i.e., their architectures are exactly the

same before the final residual representation. Every BN-ResNEst was a standard ResNet without

the ReLU at the final residual representation. In other words, a BN-ResNEst is a modified

ResNEst because it adds a batch normalization layer at the final residual representation in the

98

ResNEst. Such a modification can avoid gradient explosion during training and allow larger

learning rates to be used. For A-ResNEsts, we applied 2-dimensional average pooling on each vi

going into each Hi.

The standard ResNets used in this empirical study are wide ResNet 16-8 (WRN-16-8),

WRN-40-4 [Zagoruyko and Komodakis, 2016], ResNet-110, and ResNet-20 [He et al., 2016b].

All these models use pre-activation residual blocks, i.e., they are in the pre-activation form [He

et al., 2016b].

Implementation details

The training procedure is exactly the same as the wide ResNet paper by Zagoruyko and

Komodakis [2016]. The loss function was a cross-entropy loss. The batchsize was 128. All

networks were trained for 200 epochs in total. The optimizer was stochastic gradient descent

(SGD) with Nesterov momentum. The momentum was set to 0.9. The weight decay was 0.0005.

The learning rate was initially set to 0.1 (0.01 for ResNEsts to avoid gradient explosion) and

decreased by a factor of 5 after training 60, 120, and 160 epochs. Learning rates 0.1 and 0.05

both led to gradient explosion in training ResNEsts, so we used 0.01 for ResNEsts to avoid

divergence. A-ResNEsts and BN-ResNEsts do not have such an issue.

In addition, we followed the same moderate data augmentation and preprocessing tech-

niques in the wide ResNet paper by Zagoruyko and Komodakis [2016]. For the moderate data

augmentation, a random horizontal flip and a random crop from a image padded by 4 pixels

on each side are applied on the training set. For preprocessing, standardization is applied to

every image including the training set and the test set. The mean and the standard deviation are

computed from the training set.

Code is available at https://github.com/kjason/ResNEst.

99

https://github.com/kjason/ResNEst

Comparison

Our empirical results are summarized in the two tables below in terms of classification

accuracy and number of parameters. The classification accuracy is an average of 7 trials with

different initializations. The number of parameters is shown in the unit of million. “1.0M” means

one million parameters.

Table 2.1. CIFAR-10.

Archit.

Model
Standard ResNEst BN-ResNEst A-ResNEst

WRN-16-8 95.56% (11M) 94.39% (11M) 95.48% (11M) 95.29% (8.7M)

WRN-40-4 95.45% (9.0M) 94.58% (9.0M) 95.61% (9.0M) 95.48% (8.4M)

ResNet-110 94.46% (1.7M) 92.77% (1.7M) 94.52% (1.7M) 93.97% (1.7M)

ResNet-20 92.60% (0.27M) 91.02% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Table 2.2. CIFAR-100.

Archit.

Model
Standard ResNEst BN-ResNEst A-ResNEst

WRN-16-8 79.14% (11M) 75.43% (11M) 78.99% (11M) 78.74% (8.9M)

WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.97% (9.0M) 78.62% (8.7M)

ResNet-110 74.08% (1.7M) 69.08% (1.7M) 73.95% (1.7M) 72.53% (1.9M)

ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.47% (0.28M) 68.16% (0.27M)

A-ResNEsts empirically exhibit competitive performance to standard ResNets

Empirical results in Section 2.7.2 show that A-ResNEsts in general exhibit competitive

classification accuracy with fewer parameters compared to standard ResNets; and ResNEsts

are not as good as A-ResNEsts. The A-ResNets in most cases have fewer parameters than

100

the ResNEsts and standard ResNets because they do not have the layers WL and WL+1; and

the number of prediction weights in H0,H1, · · · ,HL is usually not larger than the number of

weights in WL and WL+1 (see Figure 2.1 and Figure 2.2). Note that A-ResNEsts can have more

parameters than standard ResNets when the depth and the output dimension are very large, e.g.,

the A-ResNEst model under the architecture ResNet-110 for CIFAR-100 in Table 2.2.

A BN-ResNEst slightly outperforms a standard ResNet when the network is very deep on
the CIFAR-10 dataset

Empirical results in Table 2.1 show that BN-ResNEsts slightly outperform standard

ResNets and A-ResNEsts in the architectures WRN-40-4 and ResNet-110 on the CIFAR-10

dataset. For architectures WRN-16-8 and ResNet-20, BN-ResNEsts remain competitive perfor-

mance compared to standard ResNets. Notice that WRN-40-4 and ResNet-110 are much deeper

than WRN-16-8 and ResNet-20. Therefore, these empirical results suggest that keeping the batch

normalization and simply dropping the ReLU at the final residual representation in standard

pre-activation ResNets can improve the test accuracy on CIFAR-10 when the network is very

deep. However, if the batch normalization at the final residual representation is also dropped,

then the test accuracy is noticeably lower.

2.8 Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments. This

work was supported in part by NSF under Grant CCF-2124929 and Grant IIS-1838830, in part

by NIH/NIDCD under Grant R01DC015436, Grant R21DC015046, and Grant R33DC015046,

in part by Halıcıoğlu Data Science Institute, and in part by Wrethinking, the Foundation.

Chapter 2, in full, is a reprint of the material as it appears in K.-L. Chen, C.-H. Lee, H.

Garudadri, and B. D. Rao, “ResNEsts and DenseNEsts: Block-based DNN models with improved

representation guarantees,” in Advances in Neural Information Processing Systems (NeurIPS),

2021. The dissertation author was the primary investigator and author of this material.

101

Chapter 3

Subspace Representation Learning for
Sparse Linear Arrays to Localize More
Sources than Sensors: A Deep Learning
Methodology

Localizing more sources than sensors with a sparse linear array (SLA) has long relied

on minimizing a distance between two covariance matrices and recent algorithms often utilize

semidefinite programming (SDP). Although deep neural network (DNN)-based methods offer

new alternatives, they still depend on covariance matrix fitting. In this paper, we develop a novel

methodology that estimates the co-array subspaces from a sample covariance for SLAs. Our

methodology trains a DNN to learn signal and noise subspace representations that are invariant

to the selection of bases. To learn such representations, we propose loss functions that gauge the

separation between the desired and the estimated subspace. In particular, we propose losses that

measure the length of the shortest path between subspaces viewed on a union of Grassmannians,

and prove that it is possible for a DNN to approximate signal subspaces. The computation of

learning subspaces of different dimensions is accelerated by a new batch sampling strategy called

consistent rank sampling. The methodology is robust to array imperfections due to its geometry-

agnostic and data-driven nature. In addition, we propose a fully end-to-end gridless approach that

directly learns angles to study the possibility of bypassing subspace methods. Numerical results

show that learning such subspace representations is more beneficial than learning covariances

102

or angles. It outperforms conventional SDP-based methods such as the sparse and parametric

approach (SPA) and existing DNN-based covariance reconstruction methods for a wide range

of signal-to-noise ratios (SNRs), snapshots, and source numbers for both perfect and imperfect

arrays.

3.1 Introduction

Direction-of-arrival (DoA) estimation is one of the fundamental problems in array pro-

cessing, providing the direction information of sources to many applications such as hearing

aids [Pisha et al., 2019], wireless communications [Sant and Rao, 2020], and sonar systems [Liu

et al., 2021]. When a sufficiently large number of array measurements or snapshots are available,

most approaches estimate a spatial covariance matrix (SCM) and apply subspace methods like

MUtiple SIgnal Classification (MUSIC) [Schmidt, 1986] to find the DoAs. Because the noise

subspace is required to be nontrivial, an M-element uniform linear array (ULA) can only resolve

up to M− 1 sources. To remove such a limit and reduce the cost of sensors, one can choose

an N-element sparse linear array (SLA) with the same aperture but no “holes” in its co-array

[Van Trees, 2002]. In this case, the M-by-M SCM of the original ULA can be reconstructed

from the N-by-N SCM of the SLA. Taking a 5-element minimum redundancy array (MRA) for

example, it can recover the SCM of a 10-element ULA and thus resolve up to 9 sources with

only 5 sensors. Although such an exploitation on the co-array structure can deliver more degrees

of freedom, an extra step of covariance matrix estimation is required [Sarangi et al., 2023].

The earliest approach to this problem dates back to the work by Pillai et al. in 1985,

which completes a Toeplitz matrix via redundancy averaging and direct augmentation. Since the

SCM of a ULA is positive semidefinite and possibly Toeplitz, the matrix estimation problem can

be formulated as constrained optimization problems under the well-known maximum likelihood

(ML) principle. However, these problems are nontrivial due to being highly nonconvex, and

one often needs to relax them into convex optimization problems. For example, the problem

103

of the coarray ML-MUSIC (Co-MLM) [Qiao and Pal, 2017] is usually relaxed into the SDP

problem of SPA [Yang et al., 2014] according to the extended invariance principle [Stoica and

Söderström, 1989, Ottersten et al., 1998], with its global minimizer approximating the ML

estimator as the number of snapshots approaches infinity. Besides convex relaxation, another

strategy to tackle nonconvex optimization is majorization-minimization. For instance, the

recently proposed StructCovMLE approach by Pote and Rao [2023] majorizes the concave

component by a supporting hyperplane and then solves a sequence of SDP problems to arrive

at a solution. There are also many other approaches such as regularized algorithms based on

nuclear norm [Li and Chi, 2015] or atomic norm [Tang et al., 2014] minimization, Wasserstein

distance minimization [Wang et al., 2019], and proxy covariance estimation [Sarangi et al., 2021].

Literature on DoA estimation that primarily relies on optimization techniques is vast [Wu et al.,

2017, Zhou et al., 2018], so we focus on gridless and regularizer-free approaches in this paper.

For grid-based DoA estimation, we refer the reader to other references such as [Stoica et al.,

2010b] and [Stoica and Babu, 2012].

In the past decade, the advent of deep learning has opened up a new paradigm for DoA

estimation [Liu et al., 2018, Papageorgiou et al., 2021, Barthelme and Utschick, 2021b, Chen

et al., 2023a]. As the most intuitive and earliest learning-based approach, one can discretize

the angle domain into a grid and then learn a classifier [Papageorgiou et al., 2021]. However,

the performance of this approach is limited by the grid size and often the performance quickly

saturates as the SNR increases. On the gridless side, it was not until a recent work by Wu et al.

[2022] that the potential of deep learning for the matrix estimation problem was shown. Based on

enforcing the Toeplitz structure of the matrix, they showed that DNNs can be trained to retrieve

the noiseless SCM of a ULA from the sample SCM of an MRA, and numerical results show

that such an approach outperforms the SPA in most cases. However, it was reported that its

performance is worse than MUSIC when the source number is small at high SNRs. Another

feature that makes the approach slightly less appealing is that a separate DNN is required for

each individual source number. It is unknown whether training one DNN for all source numbers

104

can still provide good performance. In contrast to using the Toeplitz structure, the framework

proposed by Barthelme and Utschick [2021a] enforces the structure of positive definiteness of the

matrix. Although in [Barthelme and Utschick, 2021a] the task of interest is subarray sampling,

which is different from the present paper, the method can be applied seamlessly to the matrix

estimation problem here. These two approaches are probably the most relevant related work to

this paper.

In this paper, we propose a new methodology that exploits the fundamental property that

a subspace is invariant of the choice of the spanning basis, and answer the following question:

Is it possible for a neural network to learn the signal or noise subspace? In particular, we

formulate the DoA estimation problem as a subspace representation learning problem, and

propose new empirical risk minimization problems and loss functions to train a DNN to learn

subspace representations. Our approach first constructs a DNN to output a square matrix and

performs eigenvalue decomposition on the Gram matrix of the square matrix to obtain unitary

bases for the signal and noise subspace, which we refer to as subspace representations. The DNN

is then trained by minimizing loss functions of different dimensions based on principal angles

that calculate the average degree of separation between the desired subspace and the subspace

representation. In fact, with this new methodology, one can argue that learning subspaces

is simpler than learning covariance matrices. Because our loss functions are invariant to the

selection of bases, they create a larger solution space and thus make it easier for a DNN to

learn subspace structures. Furthermore, we prove that it is possible for a neural network to

approximate signal subspaces. To parallelize the computation of learning subspaces of different

dimensions, we propose a new batch sampling strategy called consistent rank sampling, which

greatly accelerates the training process. In addition, we propose a new gridless end-to-end

approach learning DoAs directly to study the benefit of bypassing the root-MUSIC algorithm.

Our methodology does not require knowledge of the sensor array positions, making it geometry-

agnostic and robust to array imperfections. Under the standard assumptions of DoA estimation,

numerical results show that our approach outperforms existing SDP-based and DNN-based

105

methods across a wide range of SNRs, snapshots, and numbers of sources.

3.2 Preliminaries

Notations, assumptions, definitions, and the problem of interest are set up in this section.

The set {1,2, · · · ,n} is denoted by [n]. The zero-mean circularly symmetric complex Gaussian

distribution with covariance ΣΣΣ is denoted by C N (0,ΣΣΣ). The Frobenius norm of a matrix A is

denoted by ∥A∥F . The trace of a matrix A is denoted by tr(A). The set of n-by-n Hermitian

matrices is denoted by Hn. Given A ∈ Hn, A ⪰ 0 (resp., A ≻ 0) means that A is positive

semidefinite (resp., positive definite). The set of n-by-n Toeplitz matrices is denoted by Tn. For

every A ∈Hn∩Tn whose first row is represented by a vector u, A is denoted as Toep(u). The

minimum eigenvalue of a matrix A ⪰ 0 is denoted by λmin(A). The matrix logarithm of A is

denoted by log(A) [Higham, 2008]. The set of all k-by-k permutation matrices is denoted by

Pk. The orthogonal projector onto a subspace U and the range of a matrix A are denoted by

PU and PA, respectively.

3.2.1 Assumptions

Let us consider an M-element ULA with spacing d = λ

2 centered at the origin. Assume

that there are k narrowband and far-field source signals {si}k
i=1 with a carrier wavelength λ

impinging on the array from DoAs

θθθ = {θ1,θ2, · · · ,θk} ⊂ [0,π]. (3.1)

Under the plane wave assumption [Van Trees, 2002], the received array measurement vector or

snapshot y(t) ∈ CM at time t ∈ [T] can be modeled as

y(t) =
k

∑
i=1

si(t)a(θi)+n(t) = A(θθθ)s(t)+n(t) (3.2)

106

where a(θ) : [0,π]→ CM is the array manifold of the M-element ULA whose i-th element is

given by

[a(θ)]i = e j2π

(
i−1− (M−1)

2

)
d
λ

cosθ
, i ∈ [M] (3.3)

and

A(θθθ) =

[
a(θ1) a(θ2) · · · a(θk)

]
. (3.4)

The source signal vectors are given by

s(t) =
[

s1(t) s2(t) · · · sk(t)

]T
(3.5)

for all t ∈ [T] and are independent and identically distributed (i.i.d.) with s(t) ∼ C N (0,P)

where P = diag(p1, p2, · · · , pk) and pi > 0 is the power of the i-th source signal for all t ∈ [T].

The additive noises follow n(t)∼ C N (0,ηIM) for all t ∈ [T] which are i.i.d. and uncorrelated

with s(t) for all t ∈ [T]. We further assume that T ≥M.

Let N ≤M and S = {s1,s2, · · · ,sN} ⊂ [M] such that s1 < s2 < · · ·< sN . Then a physical

N-element linear array can be created by removing the i-th sensor from a virtual M-element

ULA if i ̸∈S for all i ∈ [M]. As a result, the snapshot yS (t) ∈ CN received on this physical

N-element linear array at time t ∈ [T] is given by

yS (t) = ΓΓΓy(t) (3.6)

where y(t) is the snapshot received on the virtual M-element ULA and ΓΓΓ ∈ RN×M is a row

selection matrix given by

[ΓΓΓ]nm =


1, if sn = m,

0, otherwise,
,n ∈ [N],m ∈ [M]. (3.7)

In this paper, we are interested in S that gives rise to an SLA with the same aperture as the ULA

107

and with no holes in its co-array such as an MRA [Van Trees, 2002] or a nested array [Pal and

Vaidyanathan, 2010].

3.2.2 SCMs and the DoA estimation problem

With the above assumptions, it follows that the noiseless SCM of the ULA at every

t ∈ [T] can be written as

R0 = A(θθθ)PAH(θθθ) (3.8)

and the noiseless SCM of the SLA is

RS = ΓΓΓR0ΓΓΓ
T. (3.9)

The sample SCM of the ULA and the SLA are denoted by

R̂ =
1
T

T

∑
t=1

y(t)yH(t) (3.10)

and

R̂S =
1
T

T

∑
t=1

yS (t)yHS (t), (3.11)

respectively. Given M, k, S , and R̂S , the goal of the DoA estimation problem is to recover

θθθ . Note that it is possible that k > N because k ∈ [M−1]. In this paper, we focus on gridless

methods recovering an M-by-M matrix and use the root-MUSIC algorithm [Barabell, 1983, Rao

and Hari, 1989] to find θθθ .

3.2.3 Neural network models

The rectified linear unit (ReLU) activation function is defined as x 7→max(0,x). A ReLU

network can be expressed as a series of compositions of affine functions and the ReLU activation

function. We follow Definition 4 for the definition of ReLU networks.

108

3.3 Prior art

According to the assumptions and settings in Section 3.2, we will briefly review several

popular or insightful approaches in the literature including the widely used SDP-based methods

and recently proposed DNN-based approaches. Despite their differences, notice that most of

them fall into the category of minimizing some distance between two covariance matrices in an

appropriate space. The materials covered in this section will serve as important background and

contrast with our main contributions detailed in Section 3.4.

3.3.1 The maximum likelihood problem

Based on the assumptions in Section 3.2.1, it follows that R0 +ηIM is positive semidef-

inite and Toeplitz. Because yS (t) ∼ C N (0,RS +ηIN), one can formulate the following

constrained optimization problem according to the maximum likelihood principle:

min
R∈HM

logdet
(

ΓΓΓRΓΓΓ
T
)
+ tr

((
ΓΓΓRΓΓΓ

T
)−1

R̂S

)
subject to R⪰ 0, R ∈ TM.

(3.12)

By minimizing the Kullback–Leibler divergence between C N
(

0, R̂S

)
and C N

(
0,ΓΓΓRΓΓΓ

T
)

,

one can also derive the above problem. Due to the nonconvex objective, solving (3.12) is

nontrivial; and thus relaxing or refomulating (3.12) into a tractable problem is often necessary

to arrive at an accepted solution. Section 3.3.2 and 3.3.3 below describe tractable optimization

problems that are widely used in this context.

3.3.2 Redundancy averaging and direct augmentation

Because an SLA can generate all of the autocorrelation lags of the corresponding ULA,

Pillai et al. [1985] proposed the earliest approach of recovering R0 +ηIM from R̂S , i.e., the

so-called redundancy averaging and direct augmentation approach. This approach is identical to

109

solving the following matrix augmentation problem [Wang et al., 2019]:

min
R∈CM×M

∥∥∥ΓΓΓRΓΓΓ
T− R̂S

∥∥∥
F

subject to R ∈ TM (3.13)

which has a closed-form solution that is Hermitian and Toeplitz but not necessarily positive

semidefinite. Spatial smoothing [Pal and Vaidyanathan, 2010] can be applied to fix this issue via

1
M

RRH (3.14)

if R is the solution of (3.13).

3.3.3 Direct SDP-based methods

Based on the covariance fitting criterion [Stoica et al., 2010a], Yang et al. [2014] formu-

lated the SPA involving the optimization problem:

min
X∈HN ,R∈HM

tr(X)+ tr
(

R̂−1
S ΓΓΓRΓΓΓ

T
)

subject to


X R̂

1
2
S

R̂
1
2
S ΓΓΓRΓΓΓ

T

R

⪰ 0, R ∈ TM.

(3.15)

The noiseless SCM is then estimated by R−λmin (R)I where R is the solution of (3.15). Another

interesting approach based on the Bures-Wasserstein distance [Bhatia et al., 2019] was developed

by Wang et al. [2019]. The optimization problem is given by

min
X∈CN×N ,R∈HM

tr
(

R̂S +ΓΓΓRΓΓΓ
T−X−XH

)

subject to

ΓΓΓRΓΓΓ
T X

XH R̂S

⪰ 0, R⪰ 0, R ∈ TM.

(3.16)

110

Both optimization problems in (3.15) and (3.16) are SDPs that can be solved by off-the-shelf

solvers such as the SDPT3 [Toh et al., 1999].

3.3.4 Majorization-Minimization

Since the term logdet(·) in (3.12) is concave on the positive semidefinite cone and the

trace term can be written as an SDP via the Schur complement lemma, majorization-minimization

algorithms can be used to tackle (3.12). Using a supporting hyperplane to majorize the term

logdet, one can derive the so-called “StructCovMLE” approach [Pote and Rao, 2023]. Let R(0)

be initialized to IM. For i = 0,1,2, · · · , StructCovMLE calculates the iterate R(i+1) by solving

the optimal R in the following SDP:

min
R∈HM ,X∈HN

tr
((

ΓΓΓR(i)
ΓΓΓ
T
)−1

ΓΓΓRΓΓΓ
T

)
+ tr

(
XR̂S

)

subject to


X IN

IN ΓΓΓRΓΓΓ
T

R

⪰ 0, R ∈ TM.

(3.17)

The final solution is then obtained through running a number of iterations until a stopping

criterion is satisfied. For example, the relative change between R(i) and R(i+1) being sufficiently

small. As there is a sequence of SDPs to be solved, the complexity of this approach is greater

than the complexity of the above direct SDP-based methods in Section 3.3.3.

3.3.5 Proxy covariance matrix estimation

Instead of estimating the covariance matrix, Sarangi et al. [2021] proposed a “proxy

covariance matrix” approach (Prox-Cov) that jointly calculates a positive definite weighting

matrix W and a proxy covariance R such that the weighted covariance matrix from the data best

111

fits the proxy covariance. Based on this rationale, they formulated the following SDP:

min
R∈HM ,W∈HT

∥∥∥YWYH−ΓΓΓRΓΓΓ
T
∥∥∥2

F

subject to R⪰ 0, R ∈ TM, W⪰ εIT

(3.18)

where Y =

[
y(1) y(2) · · · y(T)

]
is a matrix whose columns are all of the received snapshots

and ε is a hyperparameter which is strictly positive. An interesting property of (3.18) is that it

can exactly recover the signal subspace, overcoming the shortcoming of (3.13), under appropriate

assumptions [Sarangi et al., 2021]. Unlike the aforementioned methods that estimate a covariance

matrix from a sample SCM, Prox-Cov considers all snapshots and attempts to estimate the signal

and noise subspaces by introducing a weighting matrix W, which allows for arbitrary signal

powers while maintaining the same range space from the snapshots.

3.3.6 DNN-based covariance matrix reconstruction

Let D =
{

R̂(l)
S ,R(l)

0

}L

l=1
be a dataset containing L pairs of matrices where every R̂(l)

S ∈

HN is a sample SCM of the N-element SLA and R(l)
0 ∈ HM is the corresponding noiseless

SCM of the M-element ULA. According to the work by Barthelme and Utschick [Barthelme

and Utschick, 2021a], one can formulate the matrix estimation problem as a learning problem

whose goal is to find optimal parameters W ∗ of a DNN model fW : CN×N → CM×M such that

fW ∗
(

R̂S

)
fHW ∗
(

R̂S

)
≈ R0 for every possible pair

(
R̂S ,R0

)
of interest. The Gram matrix

here is to ensure the positive semidefiniteness. The search of W ∗ is done through the training

of the DNN. After training, the function fW ∗ is evaluated at an N-by-N sample SCM to obtain

an M-by-M SCM estimate. The model fW is trained by solving the empirical risk minimization

problem

min
W

1
L

L

∑
l=1

d
(

fW
(

R̂(l)
S

)
fHW
(

R̂(l)
S

)
,R(l)

0

)
(3.19)

112

where d : CM×M ×CM×M → [0,∞) is a metric or distance. For example, the well-known

Frobenius norm

dFro (E,F) = ∥E−F∥F (3.20)

and the affine invariant distance [Bhatia, 2009]

dAff (E,F) =
∥∥∥log

(
F−

1
2 EF−

1
2

)∥∥∥
F

(3.21)

that gives the length of the shortest curve(s) between the two points in the convex cone of all

positive definite matrices {E ∈ HM | E ≻ 0}. If (3.21) is used in (3.19), R(l)
0 is replaced by

R(l)
0 + δ IM for some δ > 0 as R(l)

0 can be singular. Although this method by Barthelme and

Utschick [2021a] was originally developed for the subarray sampling problem, we find that it is

suitable for the matrix estimation problem in this paper.

An early study in the literature that tackles the matrix estimation problem using a DNN

is perhaps the work by Wu et al. [2022]. Let u ∈ CM be the vector representing the first row of

A(θθθ)AH(θθθ). Instead of using the Gram matrix to generate a positive semidefinite matrix output,

Wu et al. constructed a DNN fWk : CN×N → CM to estimate u and then recovered the matrix by

Toep
(

fWk

(
R̂S

))
for a given R̂S and source number k. The models

{
fWk

}M−1
k=1 were trained

individually by the squared loss function

dsqu (u,v) =
1

2M
∥u−v∥2

2 . (3.22)

Though M−1 DNNs are used in [Wu et al., 2022], note that this method is not limited by the

number of DNNs used. The Toeplitz prior and dsqu can be used to train a single network if

desired.

113

3.4 Subspace representation learning

A weakness of the above DNN-based methods is that their loss functions are not invariant

to a different matrix representation of the signal or noise subspace. To elaborate, let ΣΣΣ ∈ HK

be any positive definite matrix such that ΣΣΣ ̸= P. Then, A(θθθ)ΣΣΣAH(θθθ) and R0 have exactly

the same signal subspace
{

A(θθθ)x
∣∣x ∈ CK

}
that leads to the same DoAs via the root-MUSIC

algorithm. However, A(θθθ)ΣΣΣAH(θθθ) ̸= R0 which implies d
(

A(θθθ)ΣΣΣAH(θθθ),R0

)
> 0 for any

metric or distance d on CM×M. If ΣΣΣ = ρIK , it can be easily seen that d→ ∞ as ρ → ∞ for most

of the common distances such as dFro and dsqu mentioned above even though the signal subspace

induced by A(θθθ)ΣΣΣAH(θθθ) is always the same as the one induced by R0. This is not a desirable

property for a loss function because it significantly reduces the solution space and makes it much

more difficult to find and approximate the signal or noise subspace. It is worth noting that many

existing methods (e.g., most of the methods in Section 3.3) measure the goodness of fit via some

distance between two covariance matrices, effectively solving a harder problem than needed.

Because the root-MUSIC algorithm only requires the knowledge of the signal or noise subspace,

the problem of covariance estimation is actually harder than DoA estimation.

To address the above-mentioned issue, we propose a new methodology which we call

subspace representation learning. In the subsections below, we will first introduce a new output

representation for DNN models to establish the invariance to the choice of ΣΣΣ. Next, we construct

a novel family of loss functions to train these DNN models based on the goodness of subspace

fitting and show that it is possible for a DNN to approximate signal subspaces. The Root-MUSIC

algorithm is then applied on the learned signal subspace to obtain the DoAs. We then discuss the

use case for imperfect arrays. Finally, we propose a new batch sampling approach to parallelize

the computation involved during training.

114

3.4.1 Subspace representations of different dimensions

Because every k-dimensional subspace Uk of CM is a point in the Grassmann manifold

or Grassmannian Gr(k,M), we construct a DNN model fW such that

fW : CN×N× [M−1]→
M−1⋃
k=1

Gr(k,M) (3.23)

whose codomain is a union of M− 1 Grassmannians. To represent points of this union nu-

merically, we can pick any matrix U ∈ CM×k whose columns represent a unitary basis of

Uk ∈ Gr(k,M) for all k ∈ [M− 1]. Based on this perspective, the model fW is instructed to

generate a matrix X ∈ CM×M whose Gram matrix is factorized by eigenvalue decomposition:

XXH =

[
Ũ Ṽ

]ΛΛΛk

ΛΛΛM−k


ŨH

ṼH

 (3.24)

where ΛΛΛk and ΛΛΛM−k are diagonal matrices representing the k largest eigenvalues and M−

k smallest eigenvalues, respectively; and the columns of Ũ and Ṽ are their corresponding

orthonormal eigenvectors, respectively. Since the columns of Ũ ∈ CM×k forms a unitary basis,

a subspace Ũk ∈ Gr(k,M) can then be identified by the range space of Ũ and thus the function

fW can generate points in the union of the Grassmannians. As long as X maintains the same

signal subspace, the subspace Ũ generated by fW is invariant to the change of X. One simple

invariance can be easily seen by changing the eigenvalues while maintaining the order of ΛΛΛk and

ΛΛΛM−k. The subspace Ũ is also invariant to the equivalence class of its unitary bases.

Given a dataset D =
{

R̂(l)
S ,R(l)

0

}L

l=1
, we extract the signal subspace U (l) of R(l)

0 for

every l ∈ [L] via eigenvalue decomposition to create target subspace representations. Note that

U (l) can also be identified from A
(

θθθ
(l)
)

AH
(

θθθ
(l)
)

if only a dataset of
{

R̂(l)
S ,θθθ (l)

}
is given.

115

3.4.2 Distances between subspace representations

To learn the target subspace representations in D , we find the parameters W by solving

the following empirical risk minimization problem

min
W

1
L

L

∑
l=1

dk=k(l)

(
fW
(

R̂(l)
S ,k(l)

)
,U (l)

)
(3.25)

where dk : Gr(k,M)×Gr(k,M)→ [0,∞) is some distance on the Grassmannian Gr(k,M). We

propose to construct dk as a function of the vector of principal angles between two given

subspaces because it is a necessary condition if dk is invariant to any rotation in the unitary group

U(M) of M-by-M unitary matrices [Wong, 1967], i.e.,

dk

(
Q ·U ,Q · Ũ

)
= dk

(
U ,Ũ

)
(3.26)

for every U ,Ũ ∈Gr(k,M) and every Q ∈U(M). The left action of U(M) on Gr(k,M) in (3.26)

is defined by Q ·U := span(QB) where the columns of B∈CM×k form a basis of U . According

to Theorem 1 of [Björck and Golub, 1973], the principal angles φφφ k =

[
φ1 φ2 · · · φk

]T
between U ∈ Gr(k,M) and Ũ ∈ Gr(k,M) can be calculated by

φi

(
U ,Ũ

)
= cos−1

(
σi

(
UHŨ

))
(3.27)

for i ∈ [k] where U ∈ CM×k and Ũ ∈ CM×k are matrices whose columns form unitary bases of

U and Ũ , respectively, and σ1 ≥ σ2 ≥ ·· · ≥ σk are the singular values of the singular value

decomposition of UHŨ. Therefore, one is able to define many distances based on φφφ k [Edelman

et al., 1998, Barg and Nogin, 2002, Hamm and Lee, 2008, Ye and Lim, 2016]. Among them, the

most natural choice of dk is the geodesic distance [Wong, 1967]

dGeo
k

(
U ,Ũ

)
=
∥∥∥φφφ k

(
U ,Ũ

)∥∥∥
2
=

(
k

∑
i=1

φ
2
i

(
U ,Ũ

)) 1
2

(3.28)

116

which defines the length of the shortest curve(s) between the two points U and Ũ on the

Grassmannian Gr(k,M). The geodesic distance of any two points on Gr(k,M) is bounded from

above by
√

k π

2 [Wong, 1967]; and one can easily construct different loss functions which are

bounded.

3.4.3 Approximation

In this subsection, we attempt to enhance the feasibility of subspace representation

learning from an approximation viewpoint. In particular, we present a guarantee for a neural

network model to approximate the signal subspace.

Theorem 6. For every k ∈ [M−1] and every ε > 0, there exists a ReLU network f : CN×N →

Gr(k,M) such that ∫
[0,π]k

dGeo
k

(
f (RS) ,PA(θθθ)

)
dθθθ < ε. (3.29)

The proof of Theorem 6 is contained in Appendix 3.8.1. Here, subspaces are represented

by their orthogonal projectors to ensure every U ∈ Gr(k,M) has a unique representation. In

other words, Gr(k,M) is equivalent to

{
P ∈ CM×M | PH = P,P2 = P, rank(P) = k

}
. (3.30)

If the ideal covariance matrices are used, Theorem 6 shows that the average geodesic distance

between the predicted subspaces and the desirable signal subspaces can be made arbitrarily small

when a suitable ReLU network is picked. From an array processing point of view, it is trivial that

the signal subspace can always be extracted from RS . However, Theorem 6 illustrates that this

process can be achieved up to a small error by evaluating a continuous piecewise linear function

[Chen et al., 2022]. In order to sketch the proof, notice that a simple distance on Gr(k,M)

can be constructed by (U1,U2) 7→
∥∥PU1−PU2

∥∥
F . Lemma 14 below shows that the geodesic

distance can be bounded from above by the composition of a strictly increasing function and the

simple distance, allowing us to leverage the continuity of the orthogonal projection operator in

117

an appropriate manner to prove Theorem 6. It may be possible to extend Theorem 6 to a more

realistic case using R̂S with a probabilistic guarantee.

Lemma 14. For every U1,U2 ∈ Gr(k,M) where k ∈ [M−1],

dGeo
k (U1,U2)≤

√
k sin−1

(∥∥PU1−PU2

∥∥
F√

2

)
. (3.31)

The proof of Lemma 14 is contained in Appendix 3.8.2. Lemma 14 ensures that

∥∥PU1−PU2

∥∥
F → 0 implies dGeo

k (U1,U2)→ 0. (3.32)

3.4.4 Learning with imperfect arrays

Sensor arrays are not perfect in reality. For example, the array manifold may be corrupted

by several imperfections including the gain bias, phase bias, sensor position error, and the

intersensor mutual coupling [Liu et al., 2018]. Because model-based methods such as SDP-based

approaches in (3.15) and (3.16) often rely on prior knowledge of the sensor positions S to create

ΓΓΓ in their optimization problems, they are not robust to sensor position errors; and fixing such

a model mismatch is nontrivial. In contrast, our methodology does not suffer from this model

mismatch issue due to its geometry-agnostic or imperfection-agnostic nature. The empirical

risk minimization problem we solve in the imperfect array case is still (3.25). As described in

Section 3.4.1, U (l) can be identified from the ground truth θθθ
(l); and R̂S is the sample SCM

from the imperfect array. Hence, both the problem formulation in (3.25) and the model (3.23) do

not depend on the sensor positions. In addition, our method does not need to know the array is

imperfect and the degree of imperfections. The information is already embedded in the dataset

and solving (3.25) will enforce the DNN model learn the subspace representations of a perfect

virtual ULA from the imperfect array.

118

3.4.5 Consistent rank sampling

To learn subspaces of different dimensions in one DNN model, the empirical risk min-

imization problem (3.25) requires M−1 loss functions d1,d2, · · · ,dM−1 that calculate unitary

bases of different dimensions from 1 to M−1. Although (3.25) can be solved by the well-known

minibatch stochastic gradient descent (SGD) algorithm, it is hard for the computation of different

dimensions to be parallelized on a graphics processing unit (GPU). To fix this issue, we propose

consistent rank sampling, a new batch sampling strategy for learning subspaces of different

dimensions in one DNN model. Instead of randomly sampling from D , we propose randomly

sampling a batch of data points whose source number k is consistent from D . This way, only

one dk needs to be evaluated in every gradient step, streamlining the computation of unitary

bases in the same dimension k. It is important to note that consistent rank sampling is a crucial

strategy to make training efficient. Without this strategy, training DNNs on large datasets is

almost intractable due to slow training speed. Although the strategy is developed for subspace

representation learning, it is generally applicable to empirical risk minimization problems that

involve loss functions of different dimensions.

3.5 A gridless end-to-end approach

The subspace representation learning approach utilizes the root-MUSIC algorithm on the

obtained subspaces to estimate the DoAs. A natural question to study here is the following: Is it

possible to bypass the root-MUSIC algorithm and directly learn a model to output the DoAs in a

gridless manner? The best-known end-to-end approach is probably the work by Papageorgiou

et al. [2021]; however, it relies on a grid. The approach of mean cyclic error (MCE) network

or MCENet by Barthelme and Utschick [2021b] is a gridless end-to-end approach but it was

designed for subarray sampling and not for more sources than sensors. Below, we propose a new

gridless end-to-end approach that tailored to localization of more sources than sensors using an

SLA.

119

R̂S

Architecture

AffineAffineAffine · · · Affine

θ1 θ1,θ2 θ1,θ2,θ3 θ1,θ2, · · · ,θM−1

Figure 3.1. An illustration of the gridless end-to-end model, which consists of an architecture
and several output layers. The model simultaneously generates DoAs for every possible number
of sources so there are M−1 heads (affine functions) at the output. The k-th head is picked when
there are k sources.

As illustrated in Figure 3.1, we propose to construct a DNN model gW such that

gW : CN×N× [M−1]→ R1×R2×·· ·RM−1 (3.33)

whose codomain is the (M−1)-ary Cartesian product of Euclidean spaces R1,R2, · · · ,RM−1.

These Euclidean spaces are viewed as different “heads” at the output of the model where the

k-dimensional Euclidean space represents the k-th head. The k-th head will be picked when

there are k sources such that an element from Rk can represent k angles. Let r(i) = i(i−1)
2 for

i = 1,2, · · · ,M and denote hk : Rr(M)→ Rk the projection

(
x1, · · · ,xr(M)

)
7→
(

xr(k)+1,xr(k)+2, · · · ,xr(k)+k

)
. (3.34)

The empirical risk minimization problem of the gridless end-to-end model gW is then formulated

as follows

min
W

1
L

L

∑
l=1

dk=k(l)

(
hk ◦gW

(
R̂(l)

S ,k(l)
)
,θθθ (l)

)
(3.35)

where d1,d2, · · · ,dM−1 are loss functions of different dimensions that calculate some minimum

120

distances among all permutations. Taking the squared loss for example,

dk

(
θ̂θθ ,θθθ

)
= min

ΠΠΠ∈Pk

∥∥∥ΠΠΠθ̂θθ −θθθ

∥∥∥2

2
(3.36)

for k = 1,2, · · · ,M−1. The minimum in (3.36) is equivalent to the squared loss applied to the

corresponding sorted arguments according to the rearrangement inequality [Hardy et al., 1934].

Because a loss function of different dimensions is adopted, the consistent rank sampling strategy

detailed in Section 3.4.5 can be applied to accelerate training on GPUs.

3.6 Numerical results

In this section, we will compare our new methodology with existing methods including

the SPA [Yang et al., 2014], the Wasserstein distance based approach (WDA) [Wang et al.,

2019], the DNN-based covariance reconstruction (DCR) approach based on the Toeplitz prior

[Wu et al., 2022] (DCR-T), and the DCR approach based on the Gram matrix [Barthelme

and Utschick, 2021a] (DCR-G). In particular, we use both the Frobenius norm and the affine

invariant distance for DCR-G, leading to two methods termed DCR-G-Fro and DCR-G-Aff.

We do not include StructCovMLE [Pote and Rao, 2023] and Prox-Cov [Sarangi et al., 2021]

because the performance of StructCovMLE was similar to SPA, and Prox-Cov did not yield

better performance than the SPA in our preliminary experiments. Below, we will first set up the

scenarios for the DoA estimation problem. Next, we will describe the DNN architectures and

the training procedures for the DNN-based approaches. Finally, for a given SNR and number of

snapshots T , we will compare performance of different approaches in terms of the mean squared

error (MSE)
1

Ltest

Ltest

∑
l=1

1
k

min
ΠΠΠ∈Pk

∥∥∥ΠΠΠθ̂θθ l−θθθ l

∥∥∥2

2
(3.37)

for different source numbers k ∈ [M− 1] where Ltest is the total number of random trials, θθθ l

is the vector of DoAs of the ground truth at the l-th trial, and θ̂θθ l is the corresponding esti-

121

mate given by a method of interest. Code is available at https://github.com/kjason/

SubspaceRepresentationLearning.

3.6.1 Settings

The physical array is an N-element MRA with N = 5 and S = {1,2,5,8,10}, leading

to a 10-element virtual ULA or M = 10. A study for different MRAs is deferred to Section 3.6.2.

Below we describe the test or evaluation conditions. The number of snapshots T is set to 50,

if not explicitly specified. We assume equal source powers p1 = p2 = · · · = pk and the SNR

is defined as 10log10

(
pi
η

)
. The SNR is set to 20 dB if not explicitly stated. The finite set of

SNRs {−10,−8,−6, · · · ,16,18,20} is picked when a range of SNRs is required for evaluation.

The number of sources k can be any number in the set [M−1]. For any k ∈ [M−1], the DoAs

θ1,θ2, · · · ,θk are uniformly selected at random in the range
[

1
6π, 5

6π

]
with a minimum separation

constraint mini ̸= j|θi−θ j| ≥ 1
45π . For every given SNR, T , and k ∈ [M−1], there are 100 trials

of random source signals and noises for a given θθθ , and there are in total 100 random θθθ , leading

to a total number of trials Ltest = 104 for each case. All SDP problems are solved by the SDPT3

[Toh et al., 1999] solver in CVX [Grant and Boyd, 2014, 2008].

DNN models

As illustrated in Figure 3.2, we use WRN-16-8 [Zagoruyko and Komodakis, 2016]

without the batch normalization. The pair of numbers 16-8 implies that the total number of

layers is 16 and the widening factor is 8. The ReLU activation function is adopted by all of the

nonlinearities in the network. All of the residual blocks are in the pre-activation form [He et al.,

2016b]. Note that wide ResNets avoid the degradation problem and enjoy certain optimization

guarantees under mild assumptions [Chen et al., 2021]. The network takes an input tensor

in R2×N×N and generates an output tensor in R2×M×M (R2×M for DCR-T). Given an N-by-N

complex matrix, it is represented by its real and imaginary parts as inputs to the network. The

first and second planes of the output tensor represent the real and imaginary parts of an M-by-M

122

https://github.com/kjason/SubspaceRepresentationLearning
https://github.com/kjason/SubspaceRepresentationLearning

×L

×(L−1)

×(L−1)

ReLU

Conv

ReLU

Conv

Block

Input

Conv

Block

+

Block Conv

+

Block

+

Block Conv

+

Block

+

ReLU

AvgPool

Affine

Output

Figure 3.2. An illustration of a 3-stage L-block ResNet model [He et al., 2016a]. In the wide
ResNet 16-8 (WRN-16-8) [Zagoruyko and Komodakis, 2016], there are L = 2 blocks per stage,
leading to 16 layers in total. The widening factor is 8, meaning that WRN-16-8 is 8 times wider
than the original ResNet. See Section 3.6.1 for more details.

complex matrix, respectively. The number of parameters is approximately 11 million. All

DNN-based methods use the same architecture. The output layer is an affine function whose

output dimension is tailored to each approach.

Training

The minibatch SGD algorithm with Nesterov momentum is used to train all of the DNN

models. The momentum is set to 0.5 and the batch size is 4096. The weight decay is set

to 0. All of the models are trained for 50 epochs with the one-cycle learning rate scheduler

[Smith and Topin, 2019]. The best maximum learning rate of the scheduler for each approach

is found through a grid search whose description is deferred to Appendix 3.8.3. The learning

rates for DCR-T, DCR-G-Fro, DCR-G-Aff, and our approach are 0.05, 0.01, 0.005, and 0.1,

respectively. The weights in all models are initialized using normal distributions [He et al.,

2015]. The value of δ is set to 10−4 in the DCR-G-Aff approach. For each k ∈ [M−1], there

123

are 2×106 and 6×105 random data points for training and validation, respectively, leading to

a training dataset of size Ltrain = 9×2×106 and a validation dataset of size Lval = 9×6×105.

For each data point, the source signals and noises are generated randomly according to the

assumptions in Section 3.2.1. The SNR in decibels is uniformly picked at random in the finite set

{−11,−9,−7, · · · ,17,19,21}. The DoAs in the vector θθθ are uniformly selected at random in

the range
[

1
6π, 5

6π

]
with a minimum separation constraint mini ̸= j|θi−θ j| ≥ 1

60π . The number

of snapshots is set to 50. PyTorch is used to train all the DNN models [Paszke et al., 2019].

3.6.2 Results

Superior performance over a wide range of SNRs

Figure 3.3 compares the proposed method with the five baseline approaches in terms of

MSE over a wide range of SNRs and number of sources. For k = 1, all of the methods have

almost the same performance. For k = 2, the proposed method is significantly better than SPA

and WDA from −10 to 6 dB SNR. In fact, it is uniformly better than WDA from −10 to 20 dB

SNR. However, once the SNR goes beyond 14 dB, SPA starts to outperform the proposed method

and the gap seems to become larger as the SNR increases. DCR-T is slightly worse than the

proposed method in the high SNR region but the gap of MSE gets larger as SNR increases. With

regard to DCR-G-Fro and DCR-G-Aff, their performance is similar to the proposed method. For

k = 3, the proposed method is better than SPA, WDA, DCR-T, and DCR-G-Fro across almost

the entire evaluation range and even superior by orders of magnitude from 0 to 15 dB SNR with

respect to SPA, WDA, and DCR-T. DCR-G-Aff is slightly better than the proposed method in

the high SNR region but is slightly worse in the low SNR region. Then, for k ∈ {4,5,6,7,8,9},

the proposed method consistently and significantly outperforms SPA and WDA. As for DCR-T

and DCR-G-Fro, they are noticeably better than SPA and WDA but significantly inferior than the

proposed method. In particular, DCR-G-Aff is the most competitive approach to the proposed

method. However, it is still much inferior than our approach. Overall, the proposed method is

significantly better than all of the baseline approaches.

124

−10−5 0 5 10 15 20

10−6

10−4

10−2

SNR (dB)

M
SE

(r
ad

2)

(a) k = 1

SPA
WDA

DCR-T
DCR-G-Fro
DCR-G-Aff

Ours

−10−5 0 5 10 15 20

10−5

10−3

10−1

SNR (dB)

(b) k = 2

−10−5 0 5 10 15 20
10−5

10−3

10−1

SNR (dB)

(c) k = 3

−10−5 0 5 10 15 20
10−4

10−3

10−2

10−1

SNR (dB)

M
SE

(r
ad

2)

(d) k = 4

−10−5 0 5 10 15 20

10−3

10−2

10−1

SNR (dB)

(e) k = 5

−10−5 0 5 10 15 20

10−2.5

10−2

10−1.5

SNR (dB)

(f) k = 6

−10−5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

M
SE

(r
ad

2)

(g) k = 7

−10−5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

(h) k = 8

−10−5 0 5 10 15 20

10−1.9

10−1.5

SNR (dB)

(i) k = 9

Figure 3.3. MSE vs. SNR. Our approach is in general superior to all of the baselines. In most
cases, it is significantly better than SPA, WDA, DCR-T, and DCR-G-Fro. DCR-G-Aff is the
most competitive baseline. For k > 3, our approach outperforms DCR-G-Aff. In comparison
to DCR-G-Aff at k = 2 or k = 3, our approach is slightly better at low SNRs but worse at high
SNRs.

125

Generalization to unseen numbers of snapshots

Figure 3.4 evaluates SPA, WDA, DCR-G-Aff, and the proposed method in terms of MSE

in a wide range of numbers of snapshots and sources. We do not include the other baselines here

because DCR-G-Aff is significantly better than them according to Figure 3.3. For k = 1, all of

the methods have similar performance. For k = 6 and k = 9, the proposed method is consistently

and significantly better than SPA, WDA, and DCR-G-Aff. More importantly, Figure 3.4 also

implies that a DNN model trained by the subspace representation learning approach on a specific

number of snapshots can generalize well to a wide range of unseen numbers of snapshots.

10 20 40 60 80 100

10−6.5

10−6

Number of snapshots

M
SE

(r
ad

2)

(a) k = 1

SPA
WDA

DCR-G-Aff
Ours

10 20 40 60 80 100

10−3

10−2

Number of snapshots

(b) k = 6

10 20 40 60 80 100

10−2

10−1.5

Number of snapshots

(c) k = 9

Figure 3.4. MSE vs. number of snapshots. Although the DNN models are only trained on
a single number of snapshots T = 50, they are able to generalize to a wide range of unseen
scenarios from T = 10 to T = 100. Our approach is consistently better than SPA, WDA, and
DCR-G-Aff.

On different SLAs

It is desirable to show that the main conclusions drawn from the 5-element MRA ex-

periments in Section 3.6.2 in general hold true for an arbitrary N-element MRA. Here, we

demonstrate that this is true for 4-element and 6-element MRAs. Most of the hyperparameters

stay the same as the setting in Section 3.6. We find that δ = 10−4 leads to unstable training

in the DCR-G-Aff approach for the case of the 6-element MRA so we increase δ to 10−3 in

this particular case. Results for the 4-element MRA S = {1,2,5,7} are shown in Figure 3.5.

126

Results for the 6-element MRA S = {1,2,5,6,12,14} are shown in Figure 3.6. All of these

results in Figure 3.3, 3.5, and 3.6 demonstrate that the proposed method outperforms all of the

baseline approaches. Furthermore, they seem to suggest our approach is consistently better than

all baselines if k ≥ N. Figure 3.7 and 3.8 show the results on the number of snapshots for the

4-element and 6-element MRAs, they imply conclusions that are similar to ones drawn from

Figure 3.4.

−10−5 0 5 10 15 20
10−6

10−4

10−2

SNR (dB)

M
SE
(ra

d2)

(a) k = 1

SPA
WDA

DCR-T
DCR-G-Fro
DCR-G-Aff

Ours

−10−5 0 5 10 15 20

10−5

10−3

10−1

SNR (dB)

(b) k = 2

−10−5 0 5 10 15 20

10−4

10−3

10−2

10−1

SNR (dB)

(c) k = 3

−10−5 0 5 10 15 20

10−3

10−2

10−1

SNR (dB)

M
SE
(ra

d2)

(d) k = 4

−10−5 0 5 10 15 20

10−2.5

10−2

10−1.5

10−1

SNR (dB)

(e) k = 5

−10−5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

(f) k = 6

Figure 3.5. MSE vs. SNR. N = 4. M = 7. Our approach is significantly better than all of the
baselines when k > 2. For k = 2, it is better than all of the DNN-based baselines but slightly
worse than the SPA at 20 dB SNR. The main results obtained for the 5-element MRA are similar
to the 4-element MRA.

127

−10−5 0 5 10 15 20

10−6

10−4

10−2

SNR (dB)

M
SE

(r
ad

2)

(a) k = 1

SPA
WDA

DCR-T
DCR-G-Fro
DCR-G-Aff

Ours

−10−5 0 5 10 15 20

10−6

10−4

10−2

SNR (dB)

(b) k = 2

−10−5 0 5 10 15 20
10−6

10−4

10−2

SNR (dB)

(c) k = 3

−10−5 0 5 10 15 20

10−4

10−3

10−2

SNR (dB)

M
SE

(r
ad

2)

(d) k = 5

−10−5 0 5 10 15 20

10−3

10−2.5

10−2

10−1.5

SNR (dB)

(e) k = 7

−10−5 0 5 10 15 20
10−2.4

10−2

10−1.6

SNR (dB)

(f) k = 9

−10−5 0 5 10 15 20

10−2

10−1.8

10−1.6

10−1.4

SNR (dB)

M
SE

(r
ad

2)

(g) k = 11

−10−5 0 5 10 15 20

10−1.9

10−1.7

10−1.5

SNR (dB)

(h) k = 12

−10−5 0 5 10 15 20

10−1.9

10−1.7

10−1.5

SNR (dB)

(i) k = 13

Figure 3.6. MSE vs. SNR. N = 6. M = 14. These results, along with Figure 3.3 and 3.5, imply
that the proposed method consistently outperforms all of the baselines if k ≥ N. The proposed
method is slightly inferior than DCR-G-Aff at high SNRs when k < N.

128

10 20 40 60 80 100

10−6

10−5.5

Number of snapshots

M
SE

(r
ad

2)

(a) k = 1

SPA
WDA

DCR-G-Aff
Ours

10 20 40 60 80 100

10−3

10−2

Number of snapshots

(b) k = 4

10 20 40 60 80 100

10−2.6

10−2

10−1.4

Number of snapshots

(c) k = 6

Figure 3.7. MSE vs. number of snapshots. N = 4. M = 7.

20 40 60 80 100

10−7

10−6.5

Number of snapshots

M
SE

(r
ad

2)

(a) k = 1

SPA
WDA

DCR-G-Aff
Ours

20 40 60 80 100
10−4

10−3

10−2

Number of snapshots

(b) k = 7

20 40 60 80 100

10−2

10−1.5

Number of snapshots

(c) k = 13

Figure 3.8. MSE vs. number of snapshots. N = 6. M = 14.

3.6.3 Comparison to the proposed gridless end-to-end approach

To answer the question posed in Section 3.5, we use the same WRN-16-8 but replace the

final affine layer by M−1 affine heads whose number of output neurons are 1,2,3, · · · ,M−1

real numbers, as illustrated in Figure 3.1. The squared loss functions of different dimensions

are adopted as shown in (3.36). All of the settings here are the same as the ones described in

Section 3.6.1 and 3.6.1. The best learning rate is 0.2 according to a simple grid search in Section

3.8.3. Figure 3.9 shows that the gridless end-to-end approach tends to saturate its performance

earlier than the subspace representation learning approach for k < 8 as the SNR increases. As a

result, the subspace representation learning approach shows significantly better performance at

129

−10−5 0 5 10 15 20

10−6

10−4

10−2

SNR (dB)

M
SE

(r
ad

2)

(a) k = 1

End-to-end
Subspace

−10−5 0 5 10 15 20

10−5

10−3

10−1

SNR (dB)

(b) k = 2

−10−5 0 5 10 15 20

10−4

10−3

10−2

10−1

SNR (dB)

(c) k = 3

−10−5 0 5 10 15 20
10−4

10−3

10−2

SNR (dB)

M
SE

(r
ad

2)

(d) k = 4

−10−5 0 5 10 15 20

10−3

10−2

SNR (dB)

(e) k = 5

−10−5 0 5 10 15 20

10−2.5

10−2

10−1.5

SNR (dB)

(f) k = 6

−10−5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

M
SE

(r
ad

2)

(g) k = 7

−10−5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

(h) k = 8

−10−5 0 5 10 15 20

10−2

10−1.8

10−1.6

10−1.4

SNR (dB)

(i) k = 9

Figure 3.9. MSE vs. SNR. N = 5. M = 10. For k < 8, the performance of the gridless end-to-end
approach saturates at a higher MSE than the subspace representation learning method as the
SNR increases. For k = 8 and k = 9, the gridless end-to-end approach shows consistently better
performance.

high SNRs. However, for k = 8 and k = 9, it is consistently worse than the gridless end-to-end

approach. Although the gridless end-to-end approach does not have a grid at the output layer, its

130

behavior of hitting an early plateau seems to be similar to grid-based methods that are limited by

their grid resolution. Overall, subspace representation learning gives better performance than the

gridless end-to-end approach and we can deduce that learning subspace representations is more

beneficial than learning angles directly.

3.6.4 Robustness to array imperfections

With regard to array imperfections, we use the imperfect array manifold introduced by Liu

et al. [2018]. The exact formulation is given below. Define the following real hyperparameters

e1, · · · ,eM,g1, · · · ,gM,h1, · · · ,hM (3.38)

and a complex hyperparameter γ . The array manifold with sensor position errors is given by

aρ(θ) : [0,π]→ CM such that

[aρ(θ)]i = e j2π

(
i−1− (M−1)

2 +ρei

)
d
λ

cosθ (3.39)

for i ∈ [M]. Then, an imperfect array manifold ãρ(θ) of an M-element ULA can be defined by

ãρ(θ) = CρGρHρaρ(θ) (3.40)

where the gain bias is modeled by

Gρ = I+ρdiag(g1,g2, · · · ,gM) , (3.41)

the phase bias is modeled by

Hρ = diag
(

e jρh1,e jρh2 , · · · ,e jρhM
)
, (3.42)

131

and the intersensor mutual coupling is modeled by

Cρ = I+ρToep

([
0 γ γ2 · · · γM−1

]T)
. (3.43)

For the hyperparameters in the case of the 5-element MRA, we use e1 = 0,e2 = · · · = e6 =

−0.2,e7 = · · · = e10 = 0.2, g1 = 0,g2 = · · · = g6 = 0.2,g7 = · · · = g10 = −0.2, h1 = 0,h2 =

· · ·= h6 =−1
6π,h7 = · · ·= h10 =

1
6π , and γ = 0.3e

π

3 . For the 4-element and 6-element MRAs,

the hyperparameters can be found in the source code. The degree of imperfections is controlled

by a scalar ρ ∈ [0,1]. A larger ρ makes the imperfections more severe and ρ = 0 means the

array is perfect. To train a model for imperfect arrays, we uniformly select ρ at random on the

unit interval [0,1]. To train a model for a perfect array, we use ρ = 0.

Figure 3.10 shows MSE in terms of the array imperfection parameter ρ for different

numbers of sources. Indeed, a different ρ represents a different array; thus, one can collect a

new dataset and then specifically train a new model. However, here, we train a single model on a

joint dataset collected from different arrays. The MSE of SPA and WDA both get worse as ρ

increases, verifying that both methods suffer from model mismatch and are not robust to array

imperfections. Even though no attempts have been made to SPA and WDA to contend with array

imperfections, such corrections are nontrivial and require the knowledge of imperfections. On

the other hand, the MSE of the proposed method stays at the same level despite the increasing

degree of imperfections, implying that the subspace representation learning approach is robust

to array imperfections. Figure 3.11 and 3.12 show the results for the 4-element and 6-element

MRAs, one can also deduce conclusions that are similar to ones from Figure 3.10.

3.7 Conclusion

A new methodology learning subspace representations is proposed for robust estimation

of more sources than sensors. To learn subspace representations, the codomain of a DNN model,

is defined as a union of Grassmannians reflecting signal subspaces of different dimensions. Then,

132

0 0.2 0.5 1

10−6

10−4

10−2

ρ

M
SE
(ra

d2)

(a) k = 1

SPA
WDA

DCR-G-Aff
Ours

0 0.2 0.5 1

10−2

10−1

ρ

(b) k = 6

0 0.2 0.5 1

10−1.8

10−1.6

10−1.4

ρ

(c) k = 9

Figure 3.10. MSE vs. the array imperfection parameter ρ . Note that only one DNN model is
trained for our approach. Unlike model-based methods that give significantly worse MSE as ρ

increases, our approach is robust to array imperfections without being given ρ or the knowledge
about the degree of imperfections.

0 0.2 0.5 1
10−6

10−4

10−2

ρ

M
SE
(ra

d2)

(a) k = 1

SPA
WDA

DCR-G-Aff
Ours

0 0.2 0.5 1

10−3

10−2

10−1

ρ

(b) k = 4

0 0.2 0.5 1
10−2

10−1.5

ρ

(c) k = 6

Figure 3.11. MSE vs. the array imperfection parameter ρ . N = 4. M = 7.

a family of loss functions is proposed as functions of the principal angles between subspaces to

ensure rational invariance. In particular, we use geodesic distances on Grassmannians to train a

DNN model and prove that it is possible for a ReLU network to approximate signal subspaces.

Because a subspace is invariant to the selection of the basis, our methodology enlarges the

solution space of a DNN model compared to existing approaches that learn covariance matrices.

133

0 0.2 0.5 1

10−6

10−4

10−2

ρ

M
SE
(ra

d2)

(a) k = 1

SPA
WDA

DCR-G-Aff
Ours

0 0.2 0.5 1
10−3

10−2.5

10−2

10−1.5

ρ

(b) k = 7

0 0.2 0.5 1

10−1.9

10−1.7

10−1.5

ρ

(c) k = 13

Figure 3.12. MSE vs. the array imperfection parameter ρ . N = 6. M = 14.

In addition, due to its geometry-agnostic nature, our methodology is robust to array imperfections.

To study the possibility of bypassing the root-MUSIC algorithm, we propose a gridless end-to-

end approach that directly learns a mapping from sample SCMs to DoAs. Numerical results show

that subspace representation learning outperforms existing SDP-based approaches including

the SPA and WDA, DNN-based covariance matrix reconstruction methods, and the gridless

end-to-end approach under the standard assumptions. These results imply that learning subspace

representations is more beneficial than learning covariance matrices or angles directly.

3.8 Appendix

3.8.1 Proof of Theorem 6

Proof. Let I =
{
(i, j) ∈ [k]× [k] | i ̸= j

}
. For every (i, j) ∈I , define

Fi, j =
{

θθθ ∈ [0,π]k | θi = θ j

}
. (3.44)

134

Pick δ > 0 and let µ denote the Lebesgue measure. Because Fi, j is closed and µ(Fi, j) = 0 for

every (i, j) ∈I , there exists a open set

Fδ ⊃
⋃

(i,n)∈I
Fi, j (3.45)

such that

µ(Fδ)< δ . (3.46)

Therefore, Eδ = [0,π]k \Fδ is compact. Now, note that A(θθθ) is a rank-k matrix for every θθθ ∈ Eδ

due to the Vandermonde structure. It follows that the function X 7→ PX is continuous on A(Eδ).

On the other hand, the mapping RS 7→ R0 is affine on A(Eδ) since the SLA has no holes in its

co-array. As R0 = A(θθθ)PAH(θθθ), we have PR0 = PA(θθθ), implying that RS 7→ PA(θθθ) is continuous

on A(Eδ). By Theorem 1 of [Chen et al., 2022], any continuous piecewise linear function can

be represented by a ReLU network. Because the set of continuous piecewise linear functions

is dense in the set of continuous functions on any compact subset of CN×N , it follows that, for

every ε , there is a ReLU network f such that

sup
θθθ∈Eδ

∥∥∥ f (RS)−PA(θθθ)

∥∥∥
F
< ε. (3.47)

Note that RS (Eδ) is still compact since θθθ 7→ RS is continuous. By Lemma 14,

∫
Eδ

dGeo
k

(
f (RS) ,PA(θθθ)

)
dθθθ < π

k
√

k sin−1
(

ε√
2

)
. (3.48)

As f is continuous and every nonzero orthogonal projection is bounded, there exists L > 0 such

that
∥∥∥ f (RS)−PA(θθθ)

∥∥∥
F
< L for every θθθ ∈Fδ , which implies

∫
Fδ

dGeo
k

(
f (RS) ,PA(θθθ)

)
dθθθ < δ

√
k sin−1

(
L√
2

)
. (3.49)

135

The claim is proved because both δ > 0 and ε > 0 can be arbitrarily small, and sin−1(x)→ 0 as

x→ 0+.

3.8.2 Proof of Lemma 14

Proof. Because there is a one-to-one correspondance between the set of linear subspaces and the

set of orthogonal projectors, a distance d : Gr(k,M)×Gr(k,M)→ [0,∞) between U1 ∈Gr(k,M)

and U2 ∈ Gr(k,M) can be defined as

d(U1,U2) =
∥∥PU1−PU2

∥∥
F (3.50)

where PU1 and PU2 are the orthogonal projectors onto U1 and U2, respectively. Then, it follows

that

d2(U1,U2) = 2k−2tr
(
PU1PU2

)
= 2k−2

k

∑
i=1

σ
2
i
(
PU1PU2

)
= 2k−2

k

∑
i=1

σ
2
i

(
UH

1 U2

)
= 2k−2

k

∑
i=1

cos2
φi

(3.51)

where U1 and U2 are matrices whose columns form unitary bases of U1 and U2. Therefore, we

have ∥∥PU1−PU2

∥∥
F =
√

2

(
k

∑
i=1

sin2
φi

) 1
2

(3.52)

which was shown in [Stewart, 1991]. Finally, (3.52) implies that

φi ≤ sin−1

(∥∥PU1−PU2

∥∥
F√

2

)
(3.53)

for every i ∈ [k].

136

3.8.3 Learning rates

10−3 10−1.3 100

0.27

0.28

0.29

0.3

Learning rate

E
m

pi
ri

ca
lr

is
k

(a) DCR-T

10−3 10−2 10−0.3

5.3

5.4

5.5

5.6

Learning rate

(b) DCR-G-Fro

10−3.3 10−2.3 10−0.7

10

15

Learning rate

E
m

pi
ri

ca
lr

is
k

(c) DCR-G-Aff

8

8.1

10−2.3 10−1 100.3

0.29

0.3

Learning rate

(d) Ours

Figure 3.13. Search of the best learning rates. Empirical risk on the validation set vs. the
maximum learning rate in the one-cycle learning rate scheduler.

To determine the best learning rates to use in Section 3.6, a grid search of the best

maximum learning rate in the one-cycle learning rate scheduler [Smith and Topin, 2019] is

performed for each approach. For each k ∈ [M−1], there are 2×106 and 6×105 random data

points for training and validation, respectively, leading to a training dataset of size Ltrain =

9×2×106 and a validation dataset of size Lval = 9×6×105. Figure 3.13 shows that the best

learning rates for DCR-T, DCR-G-Fro, DCR-G-Aff, and the proposed approach are 0.05, 0.01,

0.005, and 0.1, respectively. These learning rates are also used to train all the corresponding

models in Section 3.6.2 and 3.6.3. For the gridless end-to-end approach, the best learning is 0.2

according to Figure 3.14.

137

10−2 10−1.7 10−1.3 10−1 10−0.7 10−0.3

1.3

1.4

1.5

·10−2

Learning rate

E
m

pi
ri

ca
lr

is
k

Figure 3.14. Search of the best learning rate for the gridless end-to-end approach.

3.9 Acknowledgements

This work was supported in part by IEEE Signal Processing Society Scholarship, and

in part by NSF under Grant CCF-2225617 and Grant CCF-2124929. The authors would like

to thank Dr. Ching-Hua Lee and Mr. Rushabha Balaji for their constructive comments on the

gridless end-to-end training and consistent rank sampling, respectively.

Chapter 3, in part, is a reprint of the material as it appears in K.-L. Chen and B. D. Rao,

“Subspace representation learning for sparse linear arrays to localize more sources than sensors:

A deep learning methodology,” which was submitted to IEEE Transactions on Signal Processing

in 2024, with its preprint available at arXiv (https://arxiv.org/abs/2408.16605).

The dissertation author was the primary investigator and author of this material.

138

https://arxiv.org/abs/2408.16605

Chapter 4

Conclusions and Future Work

In this chapter, we will summarize the key contributions of this dissertation. These

contributions advance the fundamental theory of deep learning and provide new deep learning-

based methodologies for signal processing. Lastly, we will point out their future research

directions.

4.1 Neural complexity and dimension-independent bounds

We established tighter upper bounds for the number of computational units required for

a ReLU neural network to represent or compute any given CPWL function. Specifically, we

prove that any n-dimensional CPWL function with q pieces can be represented by a feedforward

network using ReLUs with at most O(q2) hidden neurons. This quadratic bound is independent

of the input dimension and outperforms previous bounds exponentially. As far as we know, this

upper bound currently holds the state-of-the-art in literature. Besides ensuring the existence of

such a low-complexity network, we have also developed the first polynomial-time complexity

algorithm to identify a neural network that satisfies these tighter bounds. In addition, a tighter

upper bound on the number of pieces, in terms of the number of linear components, has been

proved. Our findings advance the fundamental understanding of neural complexity in computing

a CPWL function. With these new results, any CPWL function can be realized by a low-

complexity DNN. Since every ReLU neural network is CPWL, these upper bounds directly serve

139

as worst-case guarantees for many DNN pruning algorithms. Furthermore, the network found

by my algorithm allows most of the weights to be represented by one bit, making it possible

to design new low-energy and low-complexity neural engines. We also show that one can

reverse-engineer a ReLU network in polynomial time provided the partitions of the input space

are available. All of these findings have potentially strong implications for modeling complexity

of neural networks using other types of activation functions since the family of CPWL functions

is dense in the family of continuous functions.

4.2 Interpretable neural building blocks with optimization
guarantees

We proved that the most popular building block in deep learning, “the skip connection,”

can guarantee to improve representations over residual blocks when the expansion layer is

sufficiently large under mild assumptions. Our results are significant as it explains (a) why the

ResNet can avoid the “degradation problem” and be scaled to thousands of layers, (b) why the

wide ResNet is superior than the ResNet, and (c) why the bottleneck blocks are more economical

than the basic block. To the best of my knowledge, our work is the first to theoretically establish

the benefits of input space expansion in ResNets. To prove these results, we designed a slightly

different ResNet architecture called ResNEst and found that a ResNEst is a basis function model

that is limited by a coupling problem in basis learning and linear prediction. By constructing an

augmented ResNEst that decouples prediction weights from basis learning, we showed that the

minimum empirical risk of the augmented ResNEst serves as an empirical risk lower bound for a

ResNEst using the same basis. Then, It follows that every local minimizer of such a ResNEst

is a global minimizer despite the optimization landscape being nonconvex. More importantly,

it implies that any local minimizer of a ResNEst model is better than any best linear predictor

in training performance. This guarantee allows one to confidently replace linear models with

ResNEsts without compromising training performance. Furthermore, our results demonstrate

140

that bottleneck blocks are more economical than basic blocks when increasing depth, which

supports empirical findings and provides principles to select hyperparameters for ResNet-like

networks.

4.3 Subspace representation learning

We developed novel deep learning-based methodologies for SLAs to localize more

sources than sensors in DoA estimation. In contrast to previous SDP-based or DNN-based

methods reconstructing covariance matrices, we propose a methodology called subspace repre-

sentation learning, which constructs subspace representations suitable for DNNs and utilizes

a DNN to estimate the signal and noise subspaces. We view the output representations of

the DNN as a union of Grassmannians and construct loss functions of different dimensions

reflecting different numbers of sources via principal angles between the desired subspace and

the predicted subspace. In particular, we develop empirical risk minimization problems and

losses using the geodesic distances that measure the length of the shortest curve(s) within the

union of Grassmannians. We also proved that it is possible for a ReLU network to approximate

signal subspaces. The proposed methodology is robust to array imperfections due to its array- or

geometry-agnostic nature. As training requires the evaluation of loss functions of different dimen-

sions, we propose a new batch sampling strategy called consistent rank sampling to parallelize

computation on a GPU, greatly accelerating the training procedure. To study the effectiveness

of subspace representations, we also propose a gridless end-to-end methodology that directly

learns the DoAs. Numerical results show that subspace representation learning outperforms

SDP-based methods, including the widely used SPA, recently proposed DNN-based covariance

reconstruction approaches, and the proposed gridless end-to-end approach, for a wide range of

SNRs, snapshots, and numbers of sources, under the standard assumptions. These results imply

that learning subspaces is more beneficial than learning or estimating covariance matrices.

141

4.4 Future work

The complexity results presented in Chapter 1 raise the following new questions. First,

determining whether the upper bounds are tight remains an open problem. Second, the network

architecture generated by Algorithm 1 implicitly imposes a constraint on the total number of

pieces of a CPWL function, potentially serving as a regularizer to prevent overfitting. Third, for

certain families of functions, it may be possible to derive some interesting and insightful bounds

in terms of q, k, and an accuracy parameter ε , reducing the dependency on q or k by tolerating

small errors.

The insights in Chapter 2 may have some interesting extensions by noting that every

ReLU network partitions the input space into polyhedra. Since every skip connection can be

viewed as a ReLU network, every ResNEst also divides the input space into polyhedra. However,

the skip connections may cause the approximation scheme of ResNEst to differ significantly

from that of ReLU networks. For instance, is it possible to show that different residual blocks

employ multi-resolution approximators? On the other hand, the bounds derived in Chapter 1 are

based on ReLU networks. Is it possible to extend them to ResNEsts or A-ResNEsts?

Although the methodology of subspace representation learning in Chapter 3 was devel-

oped for narrowband signals, it is possible to extend the methodology to wideband scenarios.

Because subspace representation learning can be applied to every frequency component in the

frequency band, perhaps the simplest extension is to construct a DNN to approximate a collection

of signal or noise subspaces, which can be achieved by adding an extra dimension to the subspace

representations.

142

Bibliography

R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with
rectified linear units. In International Conference on Learning Representations, 2018.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2(1):53–58, 1989.

A. Barabell. Improving the resolution performance of eigenstructure-based direction-finding
algorithms. In International Conference on Acoustics, Speech, and Signal Processing, pages
336–339. IEEE, 1983.

A. Barg and D. Y. Nogin. Bounds on packings of spheres in the grassmann manifold. IEEE
Transactions on Information Theory, 48(9):2450–2454, 2002.

A. Barthelme and W. Utschick. DoA estimation using neural network-based covariance matrix
reconstruction. IEEE Signal Processing Letters, 28:783–787, 2021a.

A. Barthelme and W. Utschick. A machine learning approach to DoA estimation and model order
selection for antenna arrays with subarray sampling. IEEE Transactions on Signal Processing,
69:3075–3087, 2021b.

R. Bhatia. Positive definite matrices. In Positive Definite Matrices. Princeton University Press,
2009.

R. Bhatia, T. Jain, and Y. Lim. On the Bures–Wasserstein distance between positive definite
matrices. Expositiones Mathematicae, 37(2):165–191, 2019.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

Å. Björck and G. H. Golub. Numerical methods for computing angles between linear subspaces.
Mathematics of Computation, 27(123):579–594, 1973.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

K.-L. Chen and B. D. Rao. Subspace representation learning for sparse linear arrays to localize

143

more sources than sensors: A deep learning methodology. arXiv preprint arXiv:2408.16605,
2024.

K.-L. Chen, C.-H. Lee, H. Garudadri, and B. D. Rao. ResNEsts and DenseNEsts: Block-based
DNN models with improved representation guarantees. In Advances in Neural Information
Processing Systems, pages 3413–3424, 2021.

K.-L. Chen, H. Garudadri, and B. D. Rao. Improved bounds on neural complexity for representing
piecewise linear functions. In Advances in Neural Information Processing Systems, volume 35,
pages 7167–7180, 2022.

K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri. A DNN based normalized time-frequency
weighted criterion for robust wideband DoA estimation. In International Conference on
Acoustics, Speech and Signal Processing, pages 1–5. IEEE, 2023a.

K.-L. Chen, D. D. Wong, K. Tan, B. Xu, A. Kumar, and V. K. Ithapu. Leveraging heteroscedastic
uncertainty in learning complex spectral mapping for single-channel speech enhancement.
In International Conference on Acoustics, Speech and Signal Processing, pages 1–5. IEEE,
2023b.

L. O. Chua and A.-C. Deng. Canonical piecewise-linear representation. IEEE Transactions on
Circuits and Systems, 35(1):101–111, 1988.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. In Advances
in Neural Information Processing Systems, pages 2933–2941, 2014.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference on
Learning Theory, pages 907–940. PMLR, 2016.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202,
1980.

J. Gao, C. Zhong, G. Y. Li, J. B. Soriaga, and A. Behboodi. Deep learning-based channel estima-
tion for wideband hybrid mmwave massive MIMO. IEEE Transactions on Communications,
71(6):3679–3693, 2023.

144

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient
for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In
International Conference on Machine Learning, pages 1319–1327. PMLR, 2013.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel,
S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in
Control and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1.
https://cvxr.com/cvx, Mar. 2014.

K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and D. Wierstra. Towards conceptual
compression. In Advances in Neural Information Processing Systems, volume 29, 2016.

J. Hamm and D. D. Lee. Grassmann discriminant analysis: a unifying view on subspace-based
learning. In International Conference on Machine Learning, pages 376–383, 2008.

B. Hanin and D. Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pages 2596–2604. PMLR, 2019a.

B. Hanin and D. Rolnick. Deep ReLU networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems, 2019b.

M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on Learning
Representations, 2017.

G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1934.

H. He, B. Xin, S. Ikehata, and D. Wipf. From bayesian sparsity to gated recurrent nets. In
Advances in Neural Information Processing Systems, volume 30, 2017.

J. He, L. Li, J. Xu, and C. Zheng. ReLU deep neural networks and linear finite elements. Journal
of Computational Mathematics, 38(3):502–527, 2020.

K. He and J. Sun. Convolutional neural networks at constrained time cost. In Conference on
Computer Vision and Pattern Recognition, pages 5353–5360. IEEE, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. In International Conference on Computer Vision,

145

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://cvxr.com/cvx

pages 1026–1034. IEEE, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Conference
on Computer Vision and Pattern Recognition, pages 770–778. IEEE, 2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European
Conference on Computer Vision, pages 630–645. Springer, 2016b.

C. Hertrich, A. Basu, M. Di Summa, and M. Skutella. Towards lower bounds on the depth
of ReLU neural networks. In Advances in Neural Information Processing Systems, pages
3336–3348, 2021.

N. J. Higham. Functions of Matrices : Theory and Computation. Society for Industrial and
Applied Mathematics, 2008.

P. Hinz. An analysis of the piece-wise affine structure of ReLU feed-forward neural networks.
PhD thesis, ETH Zurich, 2021.

P. Hinz and S. van de Geer. A framework for the construction of upper bounds on the number of
affine linear regions of relu feed-forward neural networks. IEEE Transactions on Information
Theory, 65(11):7304–7324, 2019.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Conference on Computer
Vision and Pattern Recognition, pages 7132–7141. IEEE, 2018.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Conference on Computer Vision and Pattern Recognition, pages 4700–4708.
IEEE, 2017.

W.-L. Hwang and A. Heinecke. Un-rectifying non-linear networks for signal representation.
IEEE Transactions on Signal Processing, 68:196–210, 2019.

N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the 16th Annual ACM Symposium on Theory of Computing, pages 302–311, 1984. Revised
version: Combinatorica 4:373–395, 1984.

K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

K. Kawaguchi and Y. Bengio. Depth with nonlinearity creates no bad local minima in resnets.
Neural Networks, 118:167–174, 2019.

146

L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk, 244
(5):1093–1096, 1979. Translated in Soviet Mathematics Doklady 20(1):191–194, 1979.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Conference on Computer Vision and Pattern Recognition, pages
1646–1654. IEEE, 2016.

J. Kim, M. El-Khamy, and J. Lee. Residual LSTM: Design of a deep recurrent architecture for
distant speech recognition. arXiv preprint arXiv:1701.03360, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105,
2012.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Hand-
written digit recognition with a back-propagation network. Advances in neural information
processing systems, 2, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural
nets. In Advances in Neural Information Processing Systems, pages 6389–6399, 2018.

Y. Li and Y. Chi. Off-the-grid line spectrum denoising and estimation with multiple measurement
vectors. IEEE Transactions on Signal Processing, 64(5):1257–1269, 2015.

Y. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu activation. In
Advances in Neural Information Processing Systems, volume 30, pages 597–607, 2017.

S. Liang, R. Sun, Y. Li, and R. Srikant. Understanding the loss surface of neural networks for
binary classification. In International Conference on Machine Learning, pages 2835–2843,
2018.

T. L. Liu, M. Chen, M. Zhou, S. Du, E. Zhou, and T. Zhao. Towards understanding the importance
of shortcut connections in residual networks. In Advances in Neural Information Processing
Systems, 2019.

Y. Liu, H. Chen, and B. Wang. DOA estimation based on CNN for underwater acoustic array.
Applied Acoustics, 172:107594, 2021.

Z.-M. Liu, C. Zhang, and S. Y. Philip. Direction-of-arrival estimation based on deep neu-

147

ral networks with robustness to array imperfections. IEEE Transactions on Antennas and
Propagation, 66(12):7315–7327, 2018.

X. Lu, Y. Tsao, S. Matsuda, and C. Hori. Speech enhancement based on deep denoising
autoencoder. In Interspeech, volume 2013, pages 436–440, 2013.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view
from the width. In Advances in Neural Information Processing Systems, 2017.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In International Conference on Machine Learning, 2013.

A. Magnani and S. P. Boyd. Convex piecewise-linear fitting. Optimization and Engineering, 10
(1):1–17, 2009.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5:115–133, 1943.

F. Milletari, N. Navab, and S.-A. Ahmadi. V-Net: Fully convolutional neural networks for
volumetric medical image segmentation. In International Conference on 3D Vision, pages
565–571. IEEE, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

G. Montúfar. Notes on the number of linear regions of deep neural networks. In International
Conference on Sampling Theory and Applications, 2017.

G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural
networks. In Advances in Neural Information Processing Systems, pages 2924–2932, 2014.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning, pages 807–814, 2010.

B. Ottersten, P. Stoica, and R. Roy. Covariance matching estimation techniques for array signal
processing applications. Digital Signal Processing, 8(3):185–210, 1998.

S. Ovchinnikov. Max-min representation of piecewise linear functions. Contributions to Algebra
and Geometry, 43(1):297–302, 2002.

P. Pal and P. P. Vaidyanathan. Nested arrays: A novel approach to array processing with enhanced
degrees of freedom. IEEE Transactions on Signal Processing, 58(8):4167–4181, 2010.

148

G. K. Papageorgiou, M. Sellathurai, and Y. C. Eldar. Deep networks for direction-of-arrival
estimation in low SNR. IEEE Transactions on Signal Processing, 69:3714–3729, 2021.

R. Pascanu, G. Montúfar, and Y. Bengio. On the number of response regions of deep feed
forward networks with piece-wise linear activations. International Conference on Learning
Representations, 2014.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, , A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32,
2019.

S. U. Pillai, Y. Bar-Ness, and F. Haber. A new approach to array geometry for improved spatial
spectrum estimation. Proceedings of the IEEE, 73(10):1522–1524, 1985.

L. Pisha, J. Warchall, T. Zubatiy, S. Hamilton, C.-H. Lee, G. Chockalingam, P. P. Mercier,
R. Gupta, B. D. Rao, and H. Garudadri. A wearable, extensible, open-source platform for
hearing healthcare research. IEEE Access, 7:162083–162101, 2019.

R. R. Pote and B. D. Rao. Maximum likelihood-based gridless DoA estimation using structured
covariance matrix recovery and SBL with grid refinement. IEEE Transactions on Signal
Processing, 71:802–815, 2023.

H. Qiao and P. Pal. On maximum-likelihood methods for localizing more sources than sensors.
IEEE Signal Processing Letters, 24(5):703–706, 2017.

X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand. U2-Net: Going
deeper with nested U-structure for salient object detection. Pattern Recognition, 106:107404,
2020.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive power of
deep neural networks. In International Conference on Machine Learning, pages 2847–2854.
PMLR, 2017.

B. D. Rao and K. S. Hari. Performance analysis of root-music. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37(12):1939–1949, 1989.

J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming.
Mathematical Programming, 40(1):59–93, 1988.

D. Rolnick and K. Kording. Reverse-engineering deep ReLU networks. In International
Conference on Machine Learning, pages 8178–8187. PMLR, 2020.

149

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical Image Computing and Computer
Assisted Intervention, pages 234–241. Springer, 2015.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal
of computer vision, 115:211–252, 2015.

A. Sant and B. D. Rao. DOA estimation in systems with nonlinearities for mmwave commu-
nications. In International Conference on Acoustics, Speech and Signal Processing, pages
4537–4541. IEEE, 2020.

P. Sarangi, M. C. Hücümenoğlu, and P. Pal. Beyond coarray music: Harnessing the difference
sets of nested arrays with limited snapshots. IEEE Signal Processing Letters, 28:2172–2176,
2021.

P. Sarangi, M. C. Hücümenoğlu, R. Rajamäki, and P. Pal. Super-resolution with sparse arrays: A
nonasymptotic analysis of spatiotemporal trade-offs. IEEE Transactions on Signal Processing,
71:4288–4302, 2023.

R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on
Antennas and Propagation, 34(3):276–280, 1986.

T. Serra, C. Tjandraatmadja, and S. Ramalingam. Bounding and counting linear regions of deep
neural networks. In International Conference on Machine Learning, pages 4558–4566. PMLR,
2018.

O. Shamir. Are ResNets provably better than linear predictors? In Advances in Neural
Information Processing Systems, pages 507–516, 2018.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015a.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015b.

150

S. Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20(2):
7–15, 1998.

L. N. Smith and N. Topin. Super-convergence: Very fast training of neural networks using large
learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pages 369–386. SPIE, 2019.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

G. W. Stewart. Perturbation theory for the singular value decomposition. In SVD and Signal Pro-
cessing II, Algorithms, Analysis and Applications, pages 99–109. Elsevier Science Publishers,
1991.

P. Stoica and P. Babu. SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter
estimation. Signal Processing, 92(7):1580–1590, 2012.

P. Stoica and T. Söderström. On reparametrization of loss functions used in estimation and the
invariance principle. Signal processing, 17(4):383–387, 1989.

P. Stoica, P. Babu, and J. Li. New method of sparse parameter estimation in separable models
and its use for spectral analysis of irregularly sampled data. IEEE Transactions on Signal
Processing, 59(1):35–47, 2010a.

P. Stoica, P. Babu, and J. Li. SPICE: A sparse covariance-based estimation method for array
processing. IEEE Transactions on Signal Processing, 59(2):629–638, 2010b.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and
Pattern Recognition, pages 1–9. IEEE, 2015.

G. Tang, B. N. Bhaskar, and B. Recht. Near minimax line spectral estimation. IEEE Transactions
on Information Theory, 61(1):499–512, 2014.

J. M. Tarela and M. V. Martı́nez. Region configurations for realizability of lattice piecewise-linear
models. Mathematical and Computer Modelling, 30(11-12):17–27, 1999.

J. M. Tarela, E. Alonso, and M. V. Martı́nez. A representation method for PWL functions
oriented to parallel processing. Mathematical and Computer Modelling, 13(10):75–83, 1990.

M. Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, pages
1517–1539. PMLR, 2016.

M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of machine

151

learning research, 1(Jun):211–244, 2001.

K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3—A MATLAB software package for
semidefinite programming, version 1.3. Optimization Methods and Software, 11(1-4):545–
581, 1999.

H. L. Van Trees. Optimum array processing: Part IV of detection, estimation, and modulation
theory. John Wiley & Sons, 2002.

G. Vardi, D. Reichman, T. Pitassi, and O. Shamir. Size and depth separation in approximating
benign functions with neural networks. In Conference on Learning Theory, pages 4195–4223.
PMLR, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

S. A. Vavasis and Y. Ye. A primal-dual interior point method whose running time depends only
on the constraint matrix. Mathematical Programming, 74(1):79–120, 1996.

A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively
shallow networks. In Advances in Neural Information Processing Systems, pages 550–558,
2016.

M. Wang, Z. Zhang, and A. Nehorai. Grid-less DOA estimation using sparse linear arrays based
on wasserstein distance. IEEE Signal Processing Letters, 26(6):838–842, 2019.

S. Wang. General constructive representations for continuous piecewise-linear functions. IEEE
Transactions on Circuits and Systems I: Regular Papers, 51(9):1889–1896, 2004.

S. Wang and X. Sun. Generalization of hinging hyperplanes. IEEE Transactions on Information
Theory, 51(12):4425–4431, 2005.

D. P. Wipf and B. D. Rao. Sparse bayesian learning for basis selection. IEEE Transactions on
Signal processing, 52(8):2153–2164, 2004.

Y.-C. Wong. Differential geometry of grassmann manifolds. Proceedings of the National
Academy of Sciences, 57(3):589–594, 1967.

X. Wu, W.-P. Zhu, and J. Yan. A Toeplitz covariance matrix reconstruction approach for
direction-of-arrival estimation. IEEE Transactions on Vehicular Technology, 66(9):8223–8237,
2017.

X. Wu, X. Yang, X. Jia, and F. Tian. A gridless DOA estimation method based on convolutional

152

neural network with Toeplitz prior. IEEE Signal Processing Letters, 29:1247–1251, 2022.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for
deep neural networks. In Conference on Computer Vision and Pattern Recognition, pages
1492–1500. IEEE, 2017.

W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. The Microsoft 2017
conversational speech recognition system. In International Conference on Acoustics, Speech
and Signal Processing, pages 5934–5938. IEEE, 2018.

Z. Yang, L. Xie, and C. Zhang. A discretization-free sparse and parametric approach for linear
array signal processing. IEEE Transactions on Signal Processing, 62(19):4959–4973, 2014.

D. Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In
Conference on learning theory, pages 639–649. PMLR, 2018.

K. Ye and L.-H. Lim. Schubert varieties and distances between subspaces of different dimensions.
SIAM Journal on Matrix Analysis and Applications, 37(3):1176–1197, 2016.

C. Yun, S. Sra, and A. Jadbabaie. Are deep ResNets provably better than linear predictors? In
Advances in Neural Information Processing Systems, pages 15686–15695, 2019.

S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Conference
(BMVC), pages 87.1–87.12. BMVA Press, 2016.

T. Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of space by
hyperplanes, volume 154. American Mathematical Society, 1975.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European
Conference on Computer Vision, pages 818–833. Springer, 2014.

M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech processing.
In International Conference on Acoustics, Speech and Signal Processing, pages 3517–3521.
IEEE, 2013.

C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang. Direction-of-arrival estimation for
coprime array via virtual array interpolation. IEEE Transactions on Signal Processing, 66(22):
5956–5971, 2018.

153

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Deep neural networks
	ReLU and continuous piecewise linear functions
	Architectures and skip connections

	New learning-based methodologies for signal processing
	Outline and contributions of the dissertation

	Improved Bounds on Neural Complexity for Representing Piecewise Linear Functions
	Introduction
	Key results and contributions

	Preliminaries
	Upper bounds on neural complexity for representing CPWL functions
	Upper bounds in prior work
	Improved upper bounds
	Limitations

	Representations of CPWL functions have different implications on depth
	Constrained depth
	Proof sketch for the unconstrained depth

	Broader impact
	Appendix
	Lemmas
	Proofs
	Algorithms and time complexities
	Software implementation and run time of Algorithm 1

	Acknowledgements

	ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
	Introduction
	ResNEsts and augmented ResNEsts
	Dropping nonlinearities in the final representation and expanding the input space
	Basis function modeling and the coupling problem
	Finding reference models: bounding empirical risks via augmentation
	Necessary condition for strictly improved residual representations

	Wide ResNEsts with bottleneck residual blocks always attain ERLBs
	Improved representation guarantees
	How to design architectures with representational guarantees?
	Guarantees on saddle points

	DenseNEsts are wide ResNEsts with bottleneck residual blocks equipped with orthogonalities
	Related work
	Broader impact
	Appendix
	Proofs
	Empirical results

	Acknowledgements

	Subspace Representation Learning for Sparse Linear Arrays to Localize More Sources than Sensors: A Deep Learning Methodology
	Introduction
	Preliminaries
	Assumptions
	SCMs and the DoA estimation problem
	Neural network models

	Prior art
	The maximum likelihood problem
	Redundancy averaging and direct augmentation
	Direct SDP-based methods
	Majorization-Minimization
	Proxy covariance matrix estimation
	DNN-based covariance matrix reconstruction

	Subspace representation learning
	Subspace representations of different dimensions
	Distances between subspace representations
	Approximation
	Learning with imperfect arrays
	Consistent rank sampling

	A gridless end-to-end approach
	Numerical results
	Settings
	Results
	Comparison to the proposed gridless end-to-end approach
	Robustness to array imperfections

	Conclusion
	Appendix
	Proof of Theorem 6
	Proof of Lemma 14
	Learning rates

	Acknowledgements

	Conclusions and Future Work
	Neural complexity and dimension-independent bounds
	Interpretable neural building blocks with optimization guarantees
	Subspace representation learning
	Future work

	Bibliography

