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HAUNTING MELODIES

Abstract

How much does specific previous experience shape immediate perception? Top-down perceptual

inference occurs in ambiguous situations. However, similarity-based accounts such as exemplar 

theory suggest that similar memories resonate with the percept, predicting that detailed previous 

experiences can shape perception even when bottom-up cues are unambiguous. The current 

study tests whether specific musical memories influence beat perception only under ambiguity, 

or more pervasively—that is, even when clear bottom-up beat cues are present. Listeners were 

exposed to 16 melodies, half in one meter, half in another. Later, each listener’s perception of a 

specific melody’s meter was tested when that melody occurred in either its original meter or 

another meter. Ratings of metrical probes were influenced not only by fit with the current (test) 

meter, but also by fit with the meter previously experienced with that melody. Findings suggest 

that perception is routinely influenced by detailed top-down perceptual imagery.

Keywords: exemplar theory, perceptual imagery, noisy inference, beat perception, music
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To what extent are perception and processing controlled by generic memory representations, vs. 
veridical, highly-detailed memory representations? This answer to this question is critical to 
understanding of how perception takes place. A wealth of findings in domains of inquiry such as 
language processing (DeLong, Urbach, & Kutas, 2005; Kamide, Altmann, & Haywood, 2003; 
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995) and motion processing (Saygin, 
Driver, & de Sa, 2008; Saygin, Ishiguro, Chaminade, Driver, & Frith, 2012; Shiffrar & Freyd, 
1990) explicitly acknowledge the role of detailed knowledge in prediction. Relatedly, detailed 
memories can bias ambiguous percepts. For example, viewers seeing a grayscale picture of a 
banana perceive it as slightly yellow (Hansen, Olkkonen, Walter, & Gegenfurtner, 2006); color 
is modulated by perceived light sources (Purves, Lotto, & Nundy, 2002); listeners illusorily 
perceive a missing phoneme that has been replaced by noise (Samuel, 1981; Warren, 1970); beat 
perception for ambiguous-meter melodies is shaped by specific details of recently-heard musical 
memories (Creel, 2011, 2012, 2020).

Like prediction, perceptual inference depends on memory: the perceiver must activate 

preexisting knowledge to infer the underlying structure of a noisy perceptual signal. Yet it is not 

known to what extent, or under what circumstances, specific memories control perceptual 

inference. This theoretical gap is particularly large in cases where the bottom-up input is high-

fidelity: if bottom-up input is strong enough, perhaps top-down information is not needed, 

suggesting that perceptual inference has effects primarily in high-noise situations, rather than 

pervading all of perceptual processing.

The pervasiveness of detailed memory activation in perception has not been explored 

extensively, particularly in music perception. While recent findings suggest that listeners form 

highly-specific auditory memories (Gjerdingen & Perrott, 2008; Krumhansl 2010; Palmer, 

Jungers, & Jusczyk, 2001; Schellenberg, Iverson, & McKinnon, 1999), no current account links 

highly-detailed memories to processing of critical structural aspects of music like timing. The 

current study tests how strongly detailed memories shape processing, through the lens of musical

beat detection.

Advantages of storing specific memories
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The work here favors a theoretical view of perception as a process of similarity-based memory 

activation. One set of approaches within this view construes memory as a collection of 

experienced instances or exemplars (Goldinger, 1998; Hintzman 1986; Pierrehumbert, 2001). On

an exemplar account, perception itself is a process of obligatorily activating previously-learned 

instances to a degree proportional to their similarity to the input. The summed activation of 

exemplars might be thought of as simulation, auditory imagery (see Janata, 2012), or, in 

Hintzman’s (1986) terms, a collective “echo” of experience. This detailed echo shapes the 

inferred percept. While the general notion of similarity-based activation is widespread in 

language processing, particularly word recognition (e.g., Goldinger, 1996; McClelland & Elman,

1986), it is less widespread in music perception. Further, even within word recognition, some 

aspects of specific memories, such as talker-specific detail, have not been deemed relevant by 

classic similarity-based models (McClelland & Elman, 1986). However, more recent evidence 

indicates talker-specific detail can impact real-time word recognition (e.g., Creel, Aslin, & 

Tanenhaus, 2008; Creel & Tumlin, 2011; Kapnoula & Samuel, 2019).

Specific memory effects on perceptual inference are most evident when the input is 

ambiguous. This leaves open the possibility that top-down knowledge supports perceptual 

inference only weakly, trading off to bottom-up input when the latter is relatively noise-free. Yet,

if detailed representations are routinely activated during listening, then they should be active 

even when bottom-up perceptual information is strong.

Some recent models of music perception (see Huron, 2006; Huron & Margulis, 2010; 

Pearce & Wiggins, 2012) begin to account for specific pitch sequence knowledge in pitch 

prediction. However, current models of beat-finding and meter perception are heavily bottom-up,

driven by event onsets (Large, Herrera, & Velasco, 2015; Scheirer, 1998; Tomic & Janata, 
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2008). That is, they take as input features of the current auditory signal and compare those 

features to representations of periodicities (e.g., comb filters, Scheirer, 1998; damped linear 

oscillators, Large et al., 2015, Tomic & Janata, 2008). Importantly, input is not compared to a 

register of richer musical information, such as specific musical memories. Thus, models 

currently incorporate highly schematized top-down knowledge, making it impossible for them to 

account for effects of memory detail. One exception is deep neural net approaches to beat 

detection, which can incorporate extensive musical training data, though even these may use 

data-reducing transformations (Schreiber & Müller, 2018).

Models’ lack of top-down knowledge is problematic because bottom-up cues are not 

always sufficient to explain listeners’ behavior. For example, Western listeners have difficulty 

perceiving complex meters, where beats are unevenly spaced in time (such as 2:3 duration 

ratios), while listeners whose cultures have complex meters have no such difficulty (Hannon, 

Soley, & Ullal, 2012; Hannon & Trehub, 2005a, b; Kalender, Trehub, & Schellenberg, 2013; 

Snyder, Hannon, Large, & Christiansen, 2006; see also Drake, 1993, and Parncutt, 1994, on 

binary vs. ternary patterns). This finding suggests that cultural musical knowledge 

(presence/absence of a meter in one’s culture), not just the bottom-up auditory signal, influences 

meter processing. In addition to general music knowledge, models do not specify any role for 

memory detail, yet recent work (Creel 2011, 2012, 2020) suggests that detailed memories shape 

perception of melodies that on their own are metrically ambiguous. However, Creel’s work 

leaves unanswered whether memory detail influences meter processing routinely, even when 

bottom-up cues are strong, or only influences meter processing in cases of metrical ambiguity.

The current study presents a stronger test of the role of detailed memory in perception by 

testing whether memory affects beat perception even when the bottom-up signal clearly favors 
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one beat structure or another. This work builds on recent findings (Creel 2011, 2012, 2020) that 

beat perception is influenced by specific top-down knowledge when beat cues are ambiguous. If 

specific top-down knowledge influences beat perception even when bottom-up beat cues are 

unambiguous, it suggests that activation of specific memories is a routine element of perception.

Method

Participants were 96 individuals from the UCSD human participants pool. This large sample size

was suggested by earlier work, where 48 participants and 8 items were sufficient for by-

participants but not quite by-items effects, so both participants and items were doubled. Research

was approved by the UCSD Human Research Protections Program, and informed consent was 

obtained. Two additional participants were excluded for failing to complete the experiment. 

Stimuli. Melodies from Creel (2011, Experiment 2) and Creel (2020, Experiment 2) were 

combined to yield 16 melodies. All melodies contained six sub-beats per measure and were 

ambiguous between 3/4 time—three groups of two sub-beats (repeating pattern of XxXxXx, 

where capital X’s indicate beats and lower-case x’s indicate sub-beats, such as the underlying 

beat pattern of Happy Birthday), and 6/8 time—two groups of three sub-beats (repeating pattern 

of XxxXxx, e.g., Greensleeves). Melodies differed in instruments (e.g., flute, violin), keys (C, 

F#), modes (major, minor, other), and sub-beat duration (see Creel, 2011, Table 5, and Creel, 

2020, Table 4 for details).

The Creel (2011) melodies originally were roughly 16 measures long, while the Creel 

(2020) melodies were roughly 8 measures long. To match the sets, the Creel (2011) melodies 

were shortened to 8 measures. Music files were exported from Finale (2009, MakeMusic Inc.) 
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software as .aiff files, which were then were normalized for RMS amplitude and exported 

as .wav files using Praat 5.4.01 (Boersma & Weenink, 2014).

Table 1. Correlations of note onsets with idealized 34 and 68 metrical patterns. For each pair of 
columns, the stronger correlation is bolded. In all cases, the contexts and the melody+context 
combinations correlated more strongly with the intended meter. Melodies 1-8 were drawn from 
Creel (2020), and Melodies 9-16 were drawn from Creel (2011, Experiment 2).

Melody 34 context 68 context
Melody +
34 context

Melody +
68 context

Melody 34 68 34 68 34 68 34 68 34 68
1 0.59 0.41 1.00 0.59 0.39 0.96 0.95 0.58 0.56 0.96
2 0.26 0.56 1.00 0.63 0.62 1.00 0.89 0.74 0.55 0.94
3 0.70 0.65 0.91 0.24 0.37 0.91 0.91 0.37 0.49 0.89
4 0.75 0.68 0.91 0.26 0.32 0.93 0.91 0.47 0.55 0.90
5 0.57 0.77 1.00 0.64 0.63 0.99 0.93 0.76 0.64 0.96
6 0.62 0.46 0.89 0.22 0.31 0.91 0.87 0.31 0.47 0.86
7 0.70 0.65 1.00 0.56 0.33 0.92 0.98 0.62 0.47 0.93
8 0.80 0.88 0.99 0.67 0.59 1.00 0.98 0.70 0.62 1.00
9 (a) 0.35 0.55 0.92 0.28 0.37 0.95 0.90 0.47 0.40 0.90
10 (b) 0.51 0.66 0.92 0.31 0.47 0.98 0.89 0.51 0.53 0.97
11 (d) 0.59 0.43 0.98 0.57 0.59 1.00 0.98 0.58 0.62 0.99
12 (e) 0.70 0.34 0.98 0.45 0.37 0.95 0.99 0.45 0.53 1.00
13 (f) 0.56 0.76 0.89 0.22 0.31 0.92 0.93 0.48 0.44 0.95
14 (g) 0.61 0.84 0.93 0.30 0.38 0.95 0.96 0.55 0.48 0.96
15 (h) 0.83 0.64 0.95 0.70 0.47 0.93 0.94 0.70 0.58 0.91
16 (i) 0.65 0.44 0.80 0.18 0.40 0.96 0.94 0.34 0.59 0.94
M 0.61 0.61 0.94 0.42 0.43 0.95 0.93 0.54 0.53 0.94
SD 0.15 0.16 0.06 0.19 0.11 0.03 0.04 0.14 0.07 0.04

To verify that contexts and melody+context combinations indicated each meter 

unambiguously, onset times of notes in melodies and contexts were correlated with idealized 3/4 

and 6/8 patterns (2 0 1 0 1 0 and 2 0 0 1 0 0 respectively). For each voice (melody, context upper

voice, context lower voice) a value of 1 was assigned if there was an onset at that time, and a 0 
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otherwise. Sixteenth notes (1/12 of measure) were not counted. Values summed across measures 

and voices were then correlated with idealized meter patterns. Correlations (Table 1) indicated 

that the intended meter for a given context had a stronger correlation than the other meter in 

every case.

Figure 1. Example of musical contexts presented. A listener might hear the top context (3/4; 
second and third staves) playing along with this melody during exposure, but might hear both of 
the top and bottom contexts (3/4, second and third staves, 6/8, fifth and sixth staves) on different 
trials during testing.

Procedure.  Before the main experiment, listeners completed brief demographic and 

music experience questionnaires. The main experiment had two phases: exposure and test, as in 

Creel (2011, 2012, 2020). During exposure, each listener heard all 16 melodies: 8 melodies in a 

metrically clear 3/4 musical context, 8 in a metrically clear 6/8 musical context (examples in 

Figure 1). Each melody was heard once per 16-trial subblock x 8 subblocks = 128 exposure 
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trials. Trials in a subblock were randomly ordered. A given listener heard a particular melody in 

a single meter during exposure. Across participants, 8 different lists ensured that each melody 

occurred equally often in each meter. For example, one participant’s exposure phase might 

include Melody 1 in 3/4 and Melody 9 in 6/8, while another participant heard Melody 1 in 6/8 

and Melody 9 in 3/4. Thus, no metrical properties of any melody itself could drive overall 

results.

Figure 2. On an exemplar account, hearing a specific melody reactivates information associated 
with that melody, including metrical information (“Memory,” middle line). When hearing clear 
metrical information with a particular melody (“Context,” top line), the reactivated metrical 
information combines with it to yield the metrical percept (“Combined,” bottom line). When the 
current (context) meter and the memory meter match, they reinforce each other (left side). When 
the current (context) meter and the memory meter mismatch, they interfere with each other (right
side). Filled circles indicate beats; darkness of circles indicates perceptual strength.

On each exposure trial, listeners rated perceived affect (happy or sad) and their preference

(like or dislike) by clicking in a square with two axes, affect and liking. This cover task aimed to 

maintain participant attention without alerting them to the upcoming test or its contents, so 

ratings were not examined.
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The test consisted of two 16-trial blocks (total 32 trials), with a brief, self-paced break 

between blocks. Each block of 16 presented each melody once; melodies within a block were 

presented in random order. On each trial, a listener heard a melody in a clear metrical context—

either the one they had heard at exposure, or the other one. Right after the melody, a series of 

probe drumbeats played in a woodblock timbre, either in 3/4 time or in 6/8 time. Listeners then 

clicked on a graphical ruler to rate how well the probe beats fit with the preceding music. The 

ruler was 384 pixels long, with the label “Bad fit” at the left end, “Okay” in the center, and 

“Good fit” at the right end. Ratings were quantified as the x-coordinate clicked on the ruler 

(range 0-384). For display purposes this value was scaled using the formula (rating – 192)/192, 

so that it ranged from -1 (bad fit) to +1 (good fit), with 0 indicating the center of the ruler.

For half of test trials, the probe meter matched the test metrical context, and for the other 

half, it mismatched. Crossed with this, the probe equally often matched or mismatched the 

exposure meter—the context heard during exposure with a given melody. Following the test, 

listeners completed a brief questionnaire about the experiment.

Predictions. Figure 2 outlines a general account of how activated, specific memories 

might shape meter perception by combining the bottom-up beat percept with beat features from 

top-down memory. If listeners are not influenced by specific musical memories (from the 

exposure phase), then goodness-of-fit ratings should be determined completely by the test 

metrical context—whether the probe meter matches the context heard with the melody at test 

(Figure 3, left). However, if listeners are influenced by musical memories, then goodness-of-fit 

ratings should be influenced by the exposure meter (Figure 3, center) or, more likely, by both the 

test meter and the exposure meter (right side of Figure 3), with the highest probe ratings when 

the probe matches both test meter and exposure meter, lower when it matches only one, and 
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lowest it mismatches both. A specific example (Figure 4): suppose a listener previously heard 

Melody 10 during exposure with a 3/4 meter context. At test, if they hear Melody 10 with a 3/4 

context, a 3/4 probe will sound very good, and a 6/8 probe will sound quite poor. If they hear 

Melody 10 with a 6/8 meter context, a 3/4 probe will sound less bad despite mismatching the 

immediate context, and a 6/8 probe will sound less good despite matching the immediate context.

 Context effect only  Memory effect only Combined

match mismatch match mismatch match mismatch

Does probe match current context?

M
et

ric
al

 p
ro

be
go

od
ne

ss
−
of

−
fit

 r
at
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g

Does probe
match exposure?

match

mismatch

Figure 3. Predictions of goodness-of-fit ratings of metrical probes, depending on whether or not 
the metrical context heard during exposure affects meter perception during the test phase. Left: if
previous exposure to a particular meter does not matter when a clear meter is heard during the 
test phase, main effect of context match to probe; center: predictions if previous exposure to a 
particular meter completely overrides a clear meter heard during the test phase, main effect of 
exposure match to probe (unlikely); right: predictions if previous exposure to a particular meter 
affects meter perception even when hearing a clear meter during the test phase, main effects of 
both context match to probe and exposure match to probe.
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Figure 4. Example melody (Melody 10) with 3/4 exposure context and associated test trials for
different combinations of test metrical contexts and probe meters.

Results

Ratings were averaged over participants and over items and were entered into by-subjects and 

by-items analyses of variance (ANOVAs). Factors were Test-Probe Match (does probe meter 

match or mismatch test metrical context), Exposure-Probe Match (does probe meter match or 
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mismatch previously experienced metrical context), and Probe Meter (3/4, 6/8). All factors were 

within-subjects and within-items. If exposure does not affect goodness-of-fit ratings, but 

immediate metrical context does, there should only be a main effect of Test-Probe Match. 

However, if listeners are reactivating the exposure meter from memory, there should also be a 

main effect of Exposure-Probe Match.

−0.2

0.0

0.2

0.4

match mismatch

Does probe match current context?
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Does probe
match exposure?

match

mismatch

Figure 5. Metrical probe goodness-of-fit ratings (with standard errors) by the probe’s metrical
match to the test context and the probe’s match to the exposure context.

The observed effects were as follows. An effect of Test-Probe Match (F1(1,95) = 194.1, p

< .0001; F2(1,15) = 100.9, p < .0001; 2
P = .67) indicated higher ratings when the test and probe 

meters coincided than when they mismatched (Figure 5, left bars vs. right bars). This large effect 

suggests the metrical contexts effectively indicated the intended meters. The effect of Exposure-

Probe Match was also significant (F1(1,95) = 12.98, p = .0005; F2(1,15) = 9.41, p = .008; 2
P 

= .12), such that probe ratings were higher when the probe meter matched the exposure meter 
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(Figure 5, light bars) than when the probe meter mismatched the exposure meter (dark bars). No 

other effects or interactions approached significance.

One might ask whether effects represented a subset of participants guessing the 

hypothesis and deliberately responding based on songs’ initial meters. This seems unlikely for 

three reasons. First, participants did not know there would be a test, much less what they would 

be tested on, until after the exposure phase. Second, only three participants in the post-

experiment questionnaire indicated any awareness of the critical manipulation: a change in meter

relative to the exposure phase. One participant noted that this awareness started when they 

arrived at the test phase; none appeared to have guessed the meter manipulation at the outset. 

Third, when asked if they knew which time signatures were present (that is, what the notated 

musical meters would be), most participants replied that they did not know or had not been 

paying attention. Of the participants reporting anything construable as time signatures at all (e.g.,

“2/4,” “4/6,” “waltz,” “renaissance,”; 20/94), only 9 indicated at least two time signatures, the 

minimum needed for using explicit labels to differentially encode melodies’ meters. Importantly, 

when these participants were omitted from analyses, the Exposure-Probe Match effect was still 

significant. That is, results were still consistent with reactivation of metrical information from 

specific memories even when restricting analyses to listeners who could not have differentially 

verbally labeled melodies’ meters.

Discussion

This study finds effects of specific, recent prior listening experience on beat perception even in 

the presence of strong bottom-up beat cues. This suggests that listeners’ musical percepts are 

shaped by similarity-based activation of specific memory traces. Further, this effect does not 
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appear to result from deliberate encoding or strategic memorization of meters. Future work 

should examine on-line measures of beat perception such as EEG or tapping to verify that 

similarity-based activation takes place in real time.

The study makes several novel contributions. Principally, it suggests that perception is 

influenced by memory reactivation even in the presence of clear bottom-up input. This lends 

support to the principle that similar memories are obligatorily reactivated during processing and 

shape perception, as similarity-based activation models predict. Second, findings unify recent 

demonstrations of detailed musical knowledge (Gjerdingen & Perrott, 2008; Krumhansl, 2010; 

Palmer et al., 2001; Schellenberg et al., 1999) and musical prediction via detailed memory 

activation (Huron, 2006; Huron & Margulis, 2010; Pearce & Wiggins, 2012) with listeners’ 

perceptual experiences. That is, current results suggest that detailed musical knowledge 

subserves not just rapid recognition of songs (Schellenberg et al., 1999) or genres (Gjerdingen & 

Perrott, 2008; Krumhansl, 2010), but also perception (of meters; the current study). Third, given 

that detailed musical knowledge materially affects beat processing, the current study suggests 

that models of music processing and beat processing in particular (e.g., Large et al., 2015; Tomic

& Janata, 2008) need to be modified in order to account for effects of detailed memory. Even for 

newer deep neural network models with detailed training data, the current results would not be 

reproducible without incorporating the particular musical materials used here, and perhaps giving

them greater weight than other musical material.

More broadly, current findings raise the possibility that seemingly unambiguous 

perceptual information is routinely modified by prior perceptual experience. Some accounts view

all of perception as a process of inference under uncertainty (e.g., Kleinschmidt & Jaeger, 2015; 

Purves et al., 2002), invoking a role for knowledge in perception. Sources of uncertainty include 
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external noise, neural noise, attentional competition from sound sources, speech production 

errors, and expressive timing variations. Given so many noise sources, listeners should not 

depend completely on surface perceptual input. This perspective, along with the current data, is 

consistent with detailed top-down perceptual knowledge affecting perception in a wide variety of

situations.

Conclusion

Recent, previous musical experiences influenced judgments of musical beat even when bottom-

up cues clearly indicated a beat. This suggests that detailed memories shape perception even 

when bottom-up cues are strong, implying that coactivation of specific memories materially 

shapes perception. This provides evidence that memory-based perceptual imagery, rather than 

trading off with bottom-up input, is a routine element of recognition, prediction, and processing, 

consistent with similarity-based activation models of memory representation.
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