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Efficient Delay Correction for Total-Body PET Kinetic
Modeling Using Pulse Timing Methods

Elizabeth J. Li1, Benjamin A. Spencer1, Jeffrey P. Schmall2, Yasser Abdelhafez3, Ramsey D. Badawi1,3, Guobao Wang3,
and Simon R. Cherry1,3

1Department of Biomedical Engineering, University of California Davis, Davis, California; 2United Imaging Healthcare America, Inc.,
Houston, Texas; and 3Department of Radiology, UC Davis Health, Sacramento, California

Quantitative kinetic modeling requires an input function. A noninvasive
image-derived input function (IDIF) can be obtained from dynamic PET
images. However, a robust IDIF location (e.g., aorta) may be far from a
tissue of interest, particularly in total-body PET, introducing a time
delay between the IDIF and the tissue. The standard practice of joint
estimation (JE) of delay, along with model fitting, is computationally
expensive. To improve the efficiency of delay correction for total-body
PET parametric imaging, this study investigated the use of pulse timing
methods to estimate and correct for delay.Methods: Simulation stud-
ies were performed with a range of delay values, frame lengths, and
noise levels to test the tolerance of 2 pulse timing methods—leading
edge (LE) and constant fraction discrimination and their thresholds.
The methods were then applied to data from 21 subjects (14 healthy
volunteers, 7 cancer patients) who underwent a 60-min dynamic total-
body 18F-FDG PET acquisition. Region-of-interest kinetic analysis was
performed and parametric images were generated to compare LE and
JE methods of delay correction, as well as no delay correction.
Results: Simulations demonstrated that a 10% LE threshold resulted
in biases and SDs at tolerable levels for all noise levels tested, with 2-s
frames. Pooled region-of-interest–based results (n 5 154) showed
strong agreement between LE (10% threshold) and JE methods in
estimating delay (Pearson r5 0.96, P, 0.001) and the kinetic parame-
ters vb (r5 0.96, P, 0.001), Ki (r5 1.00, P, 0.001), and K1 (r5 0.97,
P , 0.001). When tissues with minimal delay were excluded from
pooled analyses, there were reductions in vb (69.4%) and K1 (4.8%)
when delay correction was not performed. Similar results were
obtained for parametric images; additionally, lesion Ki contrast was
improved overall with LE and JE delay correction compared with no
delay correction and Patlak analysis. Conclusion: This study demon-
strated the importance of delay correction in total-body PET. LE delay
correction can be an efficient surrogate for JE, requiring a fraction of
the computational time and allowing for rapid delay correction across
more than 106 voxels in total-body PET datasets.

KeyWords: dynamic PET; input function; delay correction; total-body
PET
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An input function (IF) is required for fully quantitative PET
kinetic modeling and can be derived through arterial blood sampling
(1). However, arterial blood sampling is invasive and technically

challenging and can introduce errors in the measured IF arrival time
and bolus shape, which may result in biased kinetic parameter esti-
mates when left uncorrected (2–4). An image-derived IF (IDIF) can
be sampled from the images directly, reducing errors in arrival time
and removing the external dispersion introduced by arterial blood
sampling. Still, the delay between the IF peak and arrival time at a
tissue or voxel of interest must be considered.
The advent of high-efficiency scanners with a long axial field of

view, such as the uEXPLORER (United Imaging) total-body PET
system (5,6), presents the opportunity for high signal-to-noise total-
body kinetic modeling. Short frames with high count statistics are
possible for improved estimation of parameters such as delay.
Additionally, an IDIF can be derived from the larger vessels, where
partial-volume effects are reduced. However, with total-body PET,
delay correction becomes more important because the IDIF will be
farther from a tissue of interest than a more localized IDIF (e.g.,
carotid IDIF for gray matter) and incorrect delay estimates may
lead to parameter bias (2–4). Because different tissues will also
have their own unique delay values, delay correction must be per-
formed for every voxel or regional time–activity curve.
Common methods of delay correction include setting the delay

to a predetermined value (2,7), adjusting the IF on the basis of
an IDIF near the tissue of interest (2,8), or jointly estimating the
delay during the fitting process (4,9,10). However, the widely used
joint estimation (JE) method is costly in terms of computation time,
especially for voxel-level total-body PET, because it involves
nonlinear fitting of kinetic parameters for all possible delay values.
Therefore, a much faster method for estimating bolus delay would
be beneficial. Applications in which voxel-level parametric imaging
is important include the detection and quantification of metastatic
lesions, as well as disease processes that result in heterogeneous
tracer delivery and uptake within a tissue or organ.
Here, we draw our inspiration from pulse timing methods—

including the leading edge (LE) method and the constant fraction
discrimination (CFD) method—that are used to efficiently determine
the arrival time of electronic pulses from a radiation detector (11).
In this work, LE and CFD pulse timing methods were applied to
time–activity curves rather than electronic pulses. Delay was defined
as td 2 t0, which is the difference between the arrival times of the
bolus in the region chosen to define the IF (t0) and of a tissue or
voxel time–activity curve determined using one of the pulse timing
methods (td). Implementation of pulse timing methods would greatly
reduce the computational burden of the fitting process for a given
kinetic model, since the nonlinear least-squares fitting process can
be performed for a single delay value, as determined by these
methods. Although these methods are computationally efficient, the
choice of parameters (LE trigger threshold, CFD attenuation values)
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can impact delay estimation. Therefore, we investigated the use of
pulse timing methods for time delay estimation and correction for
quantitative total-body kinetic modeling and parametric imaging.

MATERIALS AND METHODS

Simulations
Computer simulations of time–activity curve data were developed to

evaluate the bias and SD of delay estimation approaches. A high-temporal-
resolution IF (0.1-s sampling) representing a bolus of 18F-FDG was gener-
ated on the basis of the triexponential function proposed by Feng et al.
(12,13). The IF was shifted by 100 randomly selected delay values between
0 and 50 s. Brain gray matter time–activity curves were simulated on the basis
of these delayed IFs and typical kinetic parameters (vb 5 0.05, K1 5 0.06
mL/min/mL, k2 5 0.07 min21, k3 5 0.07 min21, and k4 5 0 min21) from
Huisman et al. (14). For each delay value, 500 noisy realizations were gener-
ated using a commonly applied time-changing gaussian noise model (15)
with a mean equal to the initial activity in frame m (TACm) and SD equal to
the scaling factor Sc times the unscaled SD, dm:

TACm � gaussian TACm , Scdm
� �

, dm5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TACm � expðltmÞ

Dtm

s
,

where dm is dependent on the radioisotope decay constant l, frame
midpoint tm, frame length Dtm, and mean activity TACm in frame
m. The scale Sc was set to 4 noise levels of 0.03, 0.1, 0.2, and 0.3 to
encompass time–activity curves with different statistical quality. To
mimic zero-mean noise present in measured time–activity curves
before bolus arrival, the activity included in dm was modified to
have a mean of 0.5% of the maximum activity:

TACearly,m � gaussian 0,Scdmð Þ, dm5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005 �maxðTACÞ � expðltmÞ

Dtm

s
:

Time–activity curves were then rebinned to frame lengths of 1, 2, 5,
and 10 s and used to assess the impact of framing on delay estimates. Sup-
plemental Figure 1A shows an example time–activity curve with Sc equal
to 0.1 (supplemental materials are available at http://jnm.snmjournals.org).

For the LE method (11), a trigger threshold was selected and the time
at which the signal amplitude passed that threshold was recorded as the
arrival time. LE thresholds were set across a wide range (2.5%–50%) of
the peak activity in the first 120 s. A 10% LE threshold is shown in Sup-
plemental Figure 1B. For the CFD method (11), the time–activity curves
were shifted in time by 2 s for shorter framing, or by 1 frame for frames
longer than 2 s. Attenuated and inverted versions of the time–activity

curve (attenuated to between 2.5% and 50% of the peak activity) were
added to the shifted time–activity curve, and the resulting zero-crossing
point marked the arrival time (Supplemental Fig. 1C). LE- and CFD-based
estimates for each combination of delay value, frame length, noise level,
and percentage peak activity were determined. The average bias and SD
of the LE and CFD delay estimates were determined by comparing the
estimates with the ground truth. On the basis of the results of these simula-
tions, only the LE method was subsequently applied to human data.

Human Data
Institutional Review Board approval and written informed consent

were obtained for 14 healthy volunteers (6 male, 8 female; body mass
index, 19.4–37.0 kg/m2; age range, 26–78 y) and 7 male subjects with
genitourinary cancer (GUC) (body mass index, 20.1–32.0 kg/m2; age
range, 56–76 y). The subjects were injected with an average dose of
357.8 MBq of 18F-FDG (range, 331.9–391.8 MBq) and underwent
60-min dynamic studies on the uEXPLORER scanner (16). Images were
reconstructed with vendor-provided time-of-flight ordered-subsets expec-
tation maximization software (20 subsets, 4 iterations, 150 3 150 3 486
image matrix size, 4-mm isotropic voxels) with corrections for attenua-
tion, scatter, randoms, dead time, and decay (17). No point-spread func-
tion modeling was applied. For generating parametric images, image data
were smoothed using a composite image prior and the kernel method
(18). The following framing protocol was used to generate 66 time points:
303 2 s, 123 10 s, 63 30 s, 123 120 s, and 63 300 s.

For all human data, an IDIF was derived from a region of interest (ROI)
in the left ventricle. Tissue compartment model selection was incorporated
to account for tissue spaces where 18F-FDG undergoes minimal metabo-
lism, such as the blood pool. Model selection was performed for a range of
tissue ROIs and voxel time–activity curves by fitting a 0-tissue 1-parameter
(where vb was the only nonzero parameter), a 1-tissue 3-parameter, and an
irreversible 2-tissue 4-parameter model (k4 5 0); the model with the lowest
Akaike information criterion was chosen. For comparison, parametric Pat-
lak plots (19) were generated with and without using the JE delay estimates
from model selection. All results were obtained using a nonlinear least-
squares fitting process as described previously (20). Initialization parameters
are included in Supplemental Table 1. To assess the impact of delay cor-
rection methods, delay was estimated jointly (JE), via the LE method, or
not at all (no delay correction). The first 36 dynamic frames, representing
the first 120 s of the acquisition, were used to jointly estimate delay before
fitting all 66 time points for estimation of the rest of the parameters. For
ROI-based analysis, the same LE thresholds used in simulations (between
2.5% and 50% of the peak activity in the first 2 min) were used to deter-
mine the IDIF bolus arrival time (t0) and the arrival time at the tissue (td).
Both JE and LE estimates of delay (td 2 t0) were estimated in 1-s

FIGURE 1. Normalized time–activity curves in several healthy-subject and GUC patient tissues. Although injection bolus shape was consistent across
pooled human subjects, injection time relative to start of scan, delay in arrival time at individual tissues, and initial lesion uptake differed. Single lesion per
GUC patient is shown for ease of visualization. a.u.5 arbitrary units.
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steps and were constrained to be between 0
and 50 s. The conventional JE method was
considered ground truth, such that the opti-
mal LE threshold could be determined across a
variety of ROIs. After determining the optimal
LE threshold, a single LE threshold was used
for kinetic modeling, and the quality of ROI-
based and parametric image–derived parameter
estimates was assessed using Pearson r.

ROIs were identified in 6 tissue types (gray
matter, liver, lungs, muscle, myocardium, and
spleen) and in the left ventricle blood pool.
An additional 28 GUC lesions were delineated
on the basis of a threshold of 41% of SUVmax,
as recommended by Boellaard et al. (21). All
ROIs were manually corrected for subject
motion. ROIs were delineated using PMOD
(PMOD Technologies).

To highlight a variety of tissue types for pro-
totyping of the method, parametric maps of delay
and other kinetic parameters (vb, K1, Ki) were
generated with both JE and LE methods using
the entire image volumes of 1 representative
healthy subject and 1 GUC subject. The tissue
ROIs were used to generate tissue-specific voxel-
wise parameter estimates from the parametric
images (Supplemental Fig. 2). A vascular ROI
was also included to assess the impact of delay
within the blood pool in the parametric images.

RESULTS

Simulations
Delay estimates were determined for dif-

ferent framing schemes and noise levels (e.g.,

FIGURE 2. (A) Average JE delay estimates with SE. (B) LE estimates at thresholds ranging from
2.5% to 50% for different ROIs. As LE threshold increases, estimates of LE delay exhibit timing walk
for tissues with longer rise times such as liver and muscle. On the basis of A and B, threshold of
10% was selected for further kinetic analyses. (C) Agreement between LE method and JE estimates
of delay (r5 0.96; P, 0.001; slope, 1.00) with 10% threshold across all regions.

TABLE 1
Estimated Kinetic Parameters Obtained from Pooled Regions

Parameter JE LE
r*,

JE vs. LE
No delay
correction

r*, JE vs. no
delay correction

All regions (n 5 154)

vb 0.070 (0.079) 0.076 (0.080) 0.96 0.050 (0.078) 0.86

K1 0.553 (0.629) 0.529 (0.584) 0.97 0.541 (0.622) 0.89

Ki 0.012 (0.017) 0.012 (0.017) 1.00 0.012 (0.017) 1.00

Delay 5.981 (6.073) 6.377 (6.331) 0.96 0 (0) NA

k2 1.213 (1.292) 1.171 (1.277) 0.94 1.205 (1.348) 0.85

k3 0.039 (0.069) 0.037 (0.057) 0.97 0.040 (0.063) 0.96

Regions† with positive delay (n 5 112)

vb 0.036 (0.056) 0.044 (0.061) 0.91 0.011 (0.036) 0.57

K1 0.600 (0.677) 0.569 (0.618) 0.98 0.571 (0.656) 0.88

Ki 0.011 (0.014) 0.011 (0.014) 1.00 0.011 (0.015) 0.99

Delay 8.205 (5.701) 8.732 (5.888) 0.94 0 (0) NA

k2 1.133 (1.230) 1.084 (1.188) 0.95 1.085 (1.233) 0.79

k3 0.035 (0.064) 0.032 (0.046) 0.96 0.036 (0.057) 0.94

*P , 0.001.
†Excludes lung and myocardium.
NA 5 not available.
Data are mean followed by SD in parentheses.
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TABLE 2
Estimated Kinetic Parameters for Healthy Subjects (n 5 14) and GUC Patients (n 5 7)

Parameter JE LE r*

Gray matter
vb 0.030 (0.006) 0.030 (0.006) 0.98
K1 0.107 (0.017) 0.107 (0.018) 1.00
Ki 0.031 (0.007) 0.031 (0.007) 1.00
Delay 5.048 (0.805) 5.238 (0.944) 0.77
k2 0.165 (0.027) 0.163 (0.029) 0.95

k3 0.067 (0.012) 0.066 (0.013) 0.99

Liver
vb 0.001 (0.003) 0.001 (0.005) NS

K1 0.660 (0.286) 0.636 (0.291) 0.98
Ki 0.002 (0.002) 0.002 (0.001) 0.81
Delay 13.571 (3.723) 12.333 (2.536) 0.87
k2 0.765 (0.374) 0.737 (0.381) 0.98
k3 0.002 (0.002) 0.002 (0.002) 0.84

Lung
vb 0.128 (0.039) 0.128 (0.039) 1.00
K1 0.023 (0.012) 0.023 (0.012) 1.00
Ki 0.000 (0.000) 0.000 (0.000) 1.00
Delay 0.000 (0.000) 0.000 (0.000) NA
k2 0.205 (0.090) 0.205 (0.090) 1.00
k3 0.001 (0.004) 0.001 (0.004) 1.00

Muscle
vb 2.3E-4 (4.7E24) 0.001 (0.001) 0.69
K1 0.026 (0.012) 0.026 (0.012) 1.00
Ki 0.002 (0.000) 0.002 (0.000) 1.00
Delay 14.333 (3.812) 17.000 (3.715) 0.94
k2 0.249 (0.142) 0.249 (0.136) 1.00
k3 0.016 (0.006) 0.016 (0.006) 1.00

Myocardium

vb 0.190 (0.063) 0.192 (0.068) 0.98

K1 0.832 (0.307) 0.820 (0.356) 0.81

Ki 0.029 (0.024) 0.028 (0.024) 1.00
Delay 0.095 (0.301) 0.190 (0.512) NS
k2 2.651 (1.044) 2.597 (1.215) 0.78

k3 0.099 (0.088) 0.098 (0.088) 1.00

Spleen
vb 0.044 (0.025) 0.083 (0.029) NS
K1 1.593 (0.556) 1.458 (0.467) 0.99

Ki 0.003 (0.001) 0.003 (0.001) 0.99
Delay 4.905 (1.411) 6.333 (1.278) 0.71
k2 2.867 (0.980) 2.709 (0.882) 1.00

k3 0.006 (0.003) 0.006 (0.003) 0.99

GUC lesions (n 5 28)
vb 0.089 (0.086) 0.089 (0.092) 0.93
K1 0.609 (0.614) 0.605 (0.573) 0.92
Ki 0.017 (0.016) 0.018 (0.016) 0.99
Delay 4.429 (5.295) 4.250 (5.254) 0.90
k2 1.496 (1.213) 1.443 (1.272) 0.79
k3 0.071 (0.114) 0.062 (0.074) 0.97

*P , 0.001.
NA 5 not available; NS 5 not significant.
Data are mean followed by SD in parentheses.
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Supplemental Fig. 1). From the wide range of LE thresholds and CFD
attenuation fractions tested, LE results indicated that higher noise lev-
els resulted in only marginal increases in bias and SD, particularly
with 2-s frames and an LE threshold of less than 15%, whereas CFD
bias and SD increased with higher noise levels for attenuation frac-
tions of 15% or less (Supplemental Table 2). With 2-s frames, there
was less than a 1-s bias in delay for all LE thresholds of 10% or
greater, and a 30% LE threshold led to the lowest bias in delay
(0.11–0.18 s, Supplemental Table 2, bold). As frame length increased
from 2 to 10 s, the effect of frame length dominated the bias, particu-
larly at higher LE thresholds and higher CFD attenuation fractions.
This effect was mitigated for LE results by increasing the LE thresh-
old to 25% or greater, which reduced bias to less than 5 s for all noise
levels. With a 30% LE threshold, absolute biases for 10-s frames
were between 3.80 and 3.96 s for all noise levels tested. The CFD
method was not investigated further because of its poorer performance
on noisy simulated data and reliance on a user-chosen time shift, tradi-
tionally based on waveform rise time (11). The LE method does not
rely directly on the rise time, making it the more practical method for
total-body PET human subject data. Supplemental Table 3 expands on
the LE results, showing data for additional frame lengths. The impact
of frame length dominated the bias estimates for large (5- and 10-s)

frames; the bias estimates were within 0.5 s of each other across the
different noise levels at the same LE threshold.
Although an LE threshold of 25% was the most insensitive to

noise level, and a threshold of 30% resulted in the lowest biases
and SD for 2-s frames, the simulations focused solely on a gray
matter time–activity curve with an ideal bolus injection. Therefore,
to assess the performance of the LE method on different tissue
types with varying kinetics and the effect of timing walk on LE
estimates in slowly rising time–activity curves (e.g., liver), a variety
of LE thresholds was tested in human ROI-based analyses.

Human ROI-Based Analysis
Tissue-specific time–activity curves were consistent across

organ type among subjects (Fig. 1; Supplemental Fig. 3). The sub-
set of the 28 lesion time–activity curves shown in Figure 1 demon-
strates the heterogeneity of tracer arrival time and metabolism.
Since there were no noticeable differences between healthy-subject
and GUC-patient time–activity curves, ROI-based parameter
estimates were pooled across the 14 healthy subjects and 7 GUC
patients. Average JE and LE delay estimates, with their standard
errors (Figs. 2A and 2B), demonstrated the impact of slower time–
activity curve rise times on the LE estimates of liver and muscle,

FIGURE 3. Maximum-intensity-projection parametric images of delay and Ki for representative healthy subject (A) and GUC patient (B). Images were
generated using 4 coronal slices (1.6 cm thick). Ten percent LE threshold-derived delay maps showed some differences from JE delay maps, particularly
near injection site, but were broadly in agreement across rest of body. Compartment modeling–based Ki maps were similar with JE and LE methods of
delay correction, and both methods resulted in improved liver signal (A, arrows) and lesion contrast (B, arrows) compared with Patlak results or com-
pared with no delay correction.
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as compared with gray matter, spleen, and GUC lesions, all of
which demonstrated a sharp rising edge (Supplemental Fig. 3).
On the basis of the simulation results and the timing walk, or
overestimation of the delay that occurs for more slowly rising
time–activity curves as LE thresholds are increased (Fig. 2B), an
LE threshold of 10% was selected for further ROI-based results
and implemented for parametric imaging. As shown in Figure 2C,
there was good agreement between JE and LE methods in the esti-
mation of delay (Pearson r 5 0.96; P , 0.001; slope, 1.00), with a
10% LE threshold for all ROIs.
The impact of delay correction can be seen in Table 1, which

shows parameter estimates obtained with and without delay correc-
tion. With LE-based delay estimation, mean parameter estimates
agreed with JE results for vb (r 5 0.96; P , 0.001; slope, 0.98), Ki

(r 5 1.00; P , 0.001; slope, 0.99), and K1 (r 5 0.97; P , 0.001;

slope, 0.91) when all regions were pooled (n 5 154) (Table 1; Sup-
plemental Fig. 4). When delay correction was not performed, there
was little impact on Ki (r 5 1.00; P , 0.001; slope, 1.02); however,
vb (r 5 0.86; P , 0.001; slope, 0.85) and K1 (r 5 0.89, P , 0.001,
slope: 0.89) were poorly estimated in some tissues, including gray
matter, spleen, and GUC lesions. When tissues with negative or zero
delay (myocardium, lung) were excluded from pooled analyses, Ki

remained constant, whereas there was a drop in vb (69.4%) and K1

(4.8%) without delay correction (Table 1).
Table 2 shows the mean and SD estimates of the 42 tissue-

parameter pairs. LE estimates strongly agreed with JE methods
for most tissues; only 5 of 38 statistically significant comparisons
had a Pearson r of less than 0.8, though the LE method did not
agree with JE results in some liver and spleen ROIs when estimat-
ing vb.

FIGURE 4. Maximum-intensity projections of K1 and vb parametric maps for representative GUC patient. Overall, LE-derived parametric images were
similar to JE-based images. Without delay correction, K1 was increased whereas vb was underestimated in much of abdomen and lower body compared
with JE-based vb. Multiple GUC lesions (arrows) demonstrated increased K1 and vb when delay correction was applied, whereas vessels in legs and
some lesions in upper abdomen and liver (asterisks) showed reduction in K1 and increase in vb.

FIGURE 5. Parametric LE vs. JE results for GUC patient were compared across several regions including 8 lesions (L1–L8). Delay was slightly overesti-
mated (r 5 0.99; P , 0.001; slope, 1.10) overall and was underestimated in several tissues, namely in muscle, lesions, and gray matter. LE vb (r 5 1.00;
P, 0.001; slope, 0.98) and Ki (r5 1.00; P, 0.001; slope, 1.00) estimates demonstrate nearly 1:1 ratios with JE.
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Parametric Imaging
Voxelwise LE results were assessed using datasets from 1 repre-

sentative healthy volunteer and 1 representative GUC subject. Using
a high-performance computational node (Xeon Gold 2.6-GHz,
24-core processor; Intel), JE parametric images were produced at an
approximate rate of 180 voxels/s, whereas LE parametric images
were produced at an approximate rate of 1,200 voxels/s, representing
a 6.7-fold increase in computational efficiency. Parametric results
agreed with the results of ROI-based methods but were slightly over-
estimated for both JE (r 5 0.97; P , 0.001; slope, 1.05) and LE
(r 5 0.99; P , 0.001; slope, 1.06) (Supplemental Fig. 5). Example
delay and Ki maps are shown in Figure 3. LE-derived delay maps
showed some artifacts near the injection site compared with JE delay
maps, but results were broadly comparable across most tissues. Ki

was similar between JE and LE and demonstrated improved Ki con-
trast in the liver and GUC lesions compared with Ki computed with
no delay correction or via Patlak plots (Fig. 3; Supplemental Table
4). GUC-subject maximum-intensity-projection images of K1 and vb
are shown in Figure 4; delay correction improved visualization of
lesions in the thorax, lower torso, and legs. Like the ROI-based
results in Tables 1 and 2, voxel-level delay correction resulted in
improved estimation of lesion vb and K1 (Fig. 4), both of which are
sensitive to the early phases of the scan.
Both representative subjects showed some disagreement in LE

delay in the muscle and spleen relative to JE delay, though this did
not greatly impact Ki or vb estimates. Scatterplots comparing JE
and LE results in a representative healthy subject (Supplemental
Fig. 6) demonstrated agreement in the estimation of delay (r 5

0.99; P , 0.001; slope, 1.01). Estimates of vb (r 5 1.00; P ,

0.001; slope, 1.00) and Ki (r 5 1.00; P , 0.001; slope, 0.99)
agreed strongly with JE results. Although not shown, K1 LE esti-
mates also agreed with JE but were underestimated (r 5 0.97;
P , 0.001; slope, 0.91).
GUC voxelwise estimates of delay were similarly in disagreement

in some muscle, spleen, and lesion voxels, and overall, delay was
slightly overestimated (r 5 0.99; P , 0.001; slope, 1.10) (Fig. 5).
There was strong agreement for vb (r5 1.00; P, 0.001; slope, 0.98)
and Ki (r 5 1.00; P , 0.001; slope, 1.00). Although not shown,
GUC-subject K1 estimates were also in agreement (r 5 0.99; P ,

0.001; slope, 0.97).

DISCUSSION

Here we have demonstrated, at both the ROI and the voxel lev-
els, the feasibility of using pulse timing methods (LE and CFD) as
a surrogate for jointly estimating tracer delay using the first 120 s
of data, across a wide range of tissue types present in total-body
PET datasets. Noise, in addition to temporal framing, plays an
important role in the choice of threshold in the LE method. In sim-
ulations, LE with a 10% threshold or greater provided a satisfac-
tory delay bias and SD in short frames at most noise levels, but a
30% threshold resulted in the lowest measured bias and SD at all
noise levels. However, the shape of the time–activity curve itself
is important and may explain the discrepancies between simula-
tions and acquired time–activity curves in determining the optimal
LE threshold for gray matter. Further, tissues with a long rise
time, such as the liver, suffer from timing walk, and spillover from
the blood pool can cause early triggering. Threshold optimization
may be necessary for these tissues. Since the simulation data
showed no advantage from using the CFD approach, the simpler
LE method was used for human studies.

After assessing regional delay estimates from various LE thresh-
olds, we implemented a 10% threshold for all human analyses. JE
and LE methods were in agreement for all estimated kinetic
parameters at both the ROI and the voxel levels. vb and K1 esti-
mates were sensitive to delay correction, whereas Ki was impacted
by delay correction only in the liver and GUC lesions of the para-
metric images. Improved estimation of vb and K1 has implications
for perfusion imaging with radiotracers with rapid kinetics (e.g.,
15O-water).
The bolus shape is another important consideration; the simula-

tion results indicated that LE methods work well, with a sharp
bolus peak for the IF with respect to the frame length such that the
timing walk in the tissue and IF curves is as slight as possible.
Therefore, these methods are expected to be translatable to other
tracers delivered via bolus injection.
Although we implemented model selection in our parametric

analyses, special-case tissues (e.g., liver and lung) require addi-
tional models that consider dual IFs and dispersion, which were
not implemented here but will be a part of our future work. Patient
motion is another major challenge with total-body parametric
imaging. Short frames capture not only respiratory and cardiac
motion but also any gross motion throughout the scan. In prac-
tice, application of these methods will likely benefit greatly
from incorporation of motion correction in total-body PET (22).
Here, we performed simple manual correction of our ROIs and
selected image datasets with limited motion for parametric
analysis.
Although LE delay correction can be implemented with the Pat-

lak analysis, delay correction has a limited impact on Patlak Ki,
indicating that improved lesion contrast seen in this study was a
result of implementation of compartment modeling with delay
correction.

CONCLUSION

We applied pulse timing methods to dynamic PET images to
estimate the arrival time of the radiotracer bolus in ROIs and in
every voxel in the body. We demonstrated that pulse timing
methods can be an efficient surrogate for JE. Moreover, LE and
JE methods of delay correction provided Ki, vb, and K1 estimates
that were in good agreement and substantially improved para-
metric results compared with when no delay correction was per-
formed or compared with Patlak analysis. Further, at the voxel
level, LE estimates agreed with JE across a variety of tissue
types for both healthy and GUC subjects. The results suggest
that delay correction should be implemented for total-body PET
kinetic modeling using short (,5 s) frames, and implementing
the LE method instead of JE will allow for efficient correction
of delay.
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KEY POINTS

QUESTION: Are pulse timing methods an efficient surrogate for
JE of the delay in tracer arrival time for total-body PET kinetic
modeling?

PERTINENT FINDINGS: Results from regional and voxelwise
studies on 14 healthy volunteers and 7 cancer patients showed
strong agreement between LE and JE methods in estimating delay
and the kinetic parameters vb, Ki, and K1. Improved regional
estimates, as well as increased parametric image contrast of vb
and K1 were observed when delay correction was performed.

IMPLICATIONS FOR PATIENT CARE: This study demonstrated
the importance of delay correction in total-body PET kinetic
modeling and that LE delay correction can be a computationally
efficient surrogate for JE, making the methods more translatable
for patient studies.
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