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Markus W. Däne,1 John E. Pask,1 Walter R. Johnson,4 Abhiraj Sharma,5 Phanish Suryanarayana,5

Duane D. Johnson,6, 7 Andrey V. Smirnov,6 Philip A. Sterne,1 David Erskine,1 Richard A. London,1

Federica Coppari,1 Damian Swift,1 Joseph Nilsen,1 Art J. Nelson,1 and Heather D. Whitley1, §

1Lawrence Livermore National Laboratory, Livermore, California 94550, USA
2Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA

3Department of Astronomy, University of California, Berkeley, California 94720, USA
4Department of Physics, 225 Nieuwland Science Hall,

University of Notre Dame, Notre Dame, Indiana 46556, USA.
5College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

6Division of Materials Science & Engineering, Ames Laboratory, Ames, Iowa 50011, USA
7Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, USA

(Dated: February 5, 2019)

The equation of state (EOS) of materials at warm dense conditions poses significant challenges
to both theory and experiment. We report a combined computational, modeling, and experimen-
tal investigation leveraging new theoretical and experimental capabilities to investigate warm-dense
boron nitride (BN). The simulation methodologies include path integral Monte Carlo (PIMC), sev-
eral density functional theory (DFT) molecular dynamics methods [plane-wave pseudopotential,
Fermi operator expansion (FOE), and spectral quadrature (SQ)], activity expansion (ACTEX), and
all-electron Green’s function Korringa-Kohn-Rostoker (MECCA), and compute the pressure and
internal energy of BN over a broad range of densities and temperatures. Our experiments were
conducted at the Omega laser facility and the Hugoniot response of BN to unprecedented pressures
(1200–2650 GPa). The EOSs computed using different methods cross validate one another in the
warm-dense matter regime, and the experimental Hugoniot data are in good agreement with our
theoretical predictions. By comparing the EOS results from different methods, we assess that the
largest discrepancies between theoretical predictions are .4% in pressure and .3% in energy and
occur at 106 K, slightly below the peak compression that corresponds to the K-shell ionization
regime. At these conditions, we find remarkable consistency between the EOS from DFT calcu-
lations performed on different platforms and using different exchange-correlation functionals and
those from PIMC using free-particle nodes. This provides strong evidence for the accuracy of both
PIMC and DFT in the high-pressure, high-temperature regime. Moreover, the recently developed
SQ and FOE methods produce EOS data that have significantly smaller statistical error bars than
PIMC, and so represent significant advances for efficient computation at high temperatures. The
shock Hugoniot predicted by PIMC, ACTEX, and MECCA shows a maximum compression ratio of
4.55±0.05 for an initial density of 2.26 g/cm3, higher than the Thomas-Fermi predictions by about
5%. In addition, we construct new tabular EOS models that are consistent with the first-principles
simulations and the experimental data. Our findings clarify the ionic and electronic structure of
BN over a broad range of temperatures and densities and quantify their roles in the EOS and prop-
erties of this material. The tabular models may be utilized for future simulations of laser-driven
experiments that include BN as a candidate ablator material. (LLNL-JRNL-767019-DRAFT)

I. INTRODUCTION

The equation of state (EOS) of materials from the con-
densed matter to warm dense matter and the plasma
regime plays an indispensable role in radiation hydro-
dynamic simulations1, which are required for the de-
sign and analysis of inertial confinement fusion (ICF)
and high energy density (HED) experiments. In laser-
driven capsule experiments, ablator materials are impor-
tant to implosion dynamics and performance. Currently,
the most widely used ablator materials are plastics, such
as polystyrene derivatives and glow-discharge polymer,
high density carbon (HDC), and beryllium. Materials
with higher density and tensile strength, such as boron
(B) and its compounds, offer the potential for improve-

ments in performance and additional nuclear diagnostics
in exploding pusher platforms.2,3

At ambient conditions, BN exists in two stable, nearly
degenerate phases: hexagonal BN (h-BN) and cubic BN
(c-BN), similar to the graphite and diamond phases of
its isoelectronic material, carbon (C). Because of this
similarity, BN is widely investigated for the synthesis of
superhard materials and fabrication of thin films or het-
erostructures for various applications.4 Nanostructured
c-BN, whose hardness is almost twice that of bulk c-BN
and close to that of diamond, has been synthesized at
high-pressure and temperature conditions5. Other appli-
cations for low-dimensional BN include nanoelectronic
devices4 and expanded h-BN for hydrogen storage6. It
has also been demonstrated that the density and me-
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chanical properties of BN can be tuned by constructing
a mixture of its cubic and hexagonal phases.7

There have been extensive theoretical and experimen-
tal studies on the structure8,9, stability10–12, EOS13–18,
melting and phase diagram19–22, and mechanical23–25,
optical26,27, thermodynamic14,25,28,29, and transport30,31

properties of BN and its polymorphs. The phase trans-
formation of rhombohedral BN (r-BN) was found to be
dependent on the pressure transmitting medium12, and
the transition of h-BN into a wurtzite phase (w-BN) un-
der plastic shear may be dramatically different from that
under hydrostatic pressures32,33. A large number of cal-
culations using density functional theory (DFT)34,35, and
quantum Monte Carlo (QMC) simulations15,36,37 have
been performed on c-BN. Assisted by vibrational correc-
tions, QMC results15 successfully reproduce the volume
changes and Raman frequency shifts measured by static
high-pressure experiments.

Experimentally, the diamond anvil cell or multi-anvil
apparatus have been used to obtain the EOS of h-BN
up to ∼12 GPa and 1000 K38–40, c-BN to 160 GPa
and 3300 K41–43, and of w-BN to 66 GPa44. Shock
compression measurements for BN up to 300 GPa
have been reported for various initial densities (1.81–
3.48 g/cm3)16–18,45, porosity18, and temperatures (293–
713 K)45. Because of the limited data available at ex-
tremely high pressure and temperature conditions, exist-
ing tabular EOS models have traditionally relied on sim-
plified electronic structure theory, such as the Thomas-
Fermi (TF) theory. The goal of this work is to investi-
gate the EOS of BN in the high-energy-density regime
and provide new tabular models that are validated by
first-principles simulations and experimental data.

In a recent study3, Zhang et al. computed the EOS of
B based on first-principles quantum simulations over a
wide range of temperatures and densities. The Hugoniot
computed from those simulations shows excellent agree-
ment with our experimental measurement on a planar
laser shock platform. We have utilized the data to con-
struct an EOS table (X52) for B. The work has also al-
lowed us to study the performance of the polar direct-
drive exploding pusher platform2 and its sensitivity to
the EOS.

In this work, we combine extensive theoretical cal-
culations to build tabular models for the EOS of BN,
which we then validate in the warm dense matter regime
via comparison to experimental measurements of the BN
Hugoniot. We also provide theoretical estimates of the
uncertainty in the pressure and internal energy by com-
paring values from different simulation methods. Our
theoretical methods include many-body path integral
Monte Carlo (PIMC), several electronic structure the-
ories based on pseudopotential DFT-molecular dynam-
ics (DFT-MD), an activity expansion method, and an
all-electron, Green’s function Korringa-Kohn-Rostoker
(KKR) method. Our experiments consist of three mea-
surements of the Hugoniot response of c-BN conducted
at the Omega laser facility.

FIG. 1. Temperature-density diagram showing the param-
eter regions where the methods in this article are used for
calculating the EOS of BN.

The paper is organized as follows: Sec. II introduces
our simulation methods; Sec. III describes details of our
shock experiments; Sec. IV introduces our EOS models;
Sec. V compares and discusses our EOS and Hugoniot
results from different theoretical methods and experi-
ments and those between BN and C; finally we conclude
in Sec. VI.

II. FIRST-PRINCIPLES SIMULATION
METHODS

In this section, we introduce the theoretical methods
that are used in this work to compute the internal ener-
gies and pressures of BN across a wide range of tempera-
tures and densities in order to provide simulation data for
construction of new tabular EOS models for BN. The the-
oretical methods applied here include PIMC, the activity
expansion method as implemented in the ACTEX code,
and several methods that are based on DFT. The DFT
methods include both methods that sample the ionic po-
sitions via molecular dynamics and average-atom meth-
ods where the ionic positions are static. Figure 1 sum-
marizes the temperature and density conditions at which
each of the methods has been employed for calculations
of BN in this study. In the following, we briefly describe
the fundamental assumptions associated with each tech-
nique and comment on its accuracy. Additional details
can be found in the cited references.

A. Path Integral Monte Carlo

PIMC is a quantum many-body method for materials
simulations that is based on sampling the finite temper-
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ature density matrix derived from the full many-body
Hamiltonian, H. In PIMC, particles are treated as quan-
tum paths that are cyclic in imaginary time [0,β=1/kBT ],
where kB is the Boltzmann constant. Thermodynamic
properties, such as the internal energy, are obtained by

Ō =
1

Z

∫ ∫
dRdR′

〈
R
∣∣∣Ô∣∣∣R′〉 %(R,R′;β) (1)

in coordinate representation. Z =
∫
dR
〈
R
∣∣∣Ô∣∣∣R〉 is the

partition function. %(R,R′;β) = 〈R| exp(−βH)|R′〉 is
the density matrix. Trotter’s formula46 can be used to
break up %(R,R′;β) into M slices, each corresponding to
an imaginary time step τ = β/M . The method becomes
exact in the limit of τ → 0. Higher temperatures require
fewer points, and convergence with respect to the imag-
inary time step must systematically be tested for each
system studied. In practice, one starts with a solution
of the two-body problem and only employs the PIMC
method to sample higher-order correlations. This pair
density matrix approach is described in Refs. 47 and 48.

The application of PIMC to electronic structure cal-
culations requires certain approximations due to the
fermion sign problem. Fermionic symmetry requires that
a negative sign arises from the anti-symmetrical wave-
function. This leads to the nearly complete cancellation
of positive and negative contributions to the fermionic
density matrix, which makes a direct numerical evalua-
tion impractical for more than a few particles. The stan-
dard way to avoid this issue in PIMC simulations is to
restrict the paths to the positive region of the trial density
matrix, %T , by implementing the fixed-node approxima-
tion49. The condition %T = 0 in 3N -dimensional space
defines the nodal surface, where N is the number of par-
ticles. In high temperature simulations, %T is chosen to
be a Slater determinant of free-particle density matrices

%[1](ri, rj ;β) =
∑
k

exp(−βEk)Ψ∗k(ri)Ψk(rj), (2)

where Ψ∗k(r) denotes a plane wave with energy Ek.
The corresponding nodal surface is called free-particle
nodes. The assumption of free-particle nodes is appro-
priate at high temperature. The PIMC method with
free-particle nodes has been successfully developed and
applied to hydrogen50–58, helium59,60, and calculations
of the EOS for a range of first-row elements3,61–64 and
compounds61,65–67. Recent developments68–70 have ex-
tended the applicability of PIMC to second-row elements
at lower temperatures by appending localized orbitals to
%[1], opening a possible route toward accurate quantum
many-body simulations of heavier elements.

In this study, we apply PIMC for the simulations of
BN with free-particle nodes using the CUPID code71.
All electrons and nuclei are treated explicitly as quan-
tum paths. The Coulomb interactions are described via
pair density matrices47,72, which are evaluated in steps
of τ = 1

512 Hartree−1 (Ha−1). The nodal restriction is

enforced in much smaller steps of 1
8192 Ha−1. The cal-

culations are performed over a wide range of densities
0.23–45.16 g/cm3, or 0.1- to 20-times the ambient density
ρ0 ∼ 2.26 g/cm3 based on that of h-BN73, and temper-
atures 106–5×108 K. Each simulation cell consists of 24
atoms, which is comparable to our previous simulations
for pure B3, nitrogen (N)63, and hydrocarbons66,67. The
cell size effects on the EOS are negligible at such high
temperature conditions74.

B. DFT-MD with plane-wave basis and projector
augmented wave potentials

DFT-MD is a widely used method for accurately simu-
lating condensed matter systems at finite temperatures.
In DFT-MD, the ions are classical particles, which move
according to Newton’s classical equations of motion. The
forces are computed by solving the Kohn-Sham DFT
equations for the electrons at each time step. The appli-
cability and accuracy of DFT-MD for EOS calculations
has been previously demonstrated for condensed phase
materials in multiple studies (see Ref. 75 as an exam-
ple). One difficulty lies in using this method for high
temperatures, which is originated from significant ther-
mal excitation of electrons and intractable computational
cost.

Our DFT-MD simulations for BN are performed in two
different ways. One way is by using the plane-wave ba-
sis and projector augmented wave (PAW) pseudopoten-
tials76 (pwPAW), as implemented in the Vienna Ab initio
Simulation Package (VASP)77 and used in our previous
studies (e.g, Refs. 3, 66, 67, 69, and 78). Similar to our
recent work on pure B3, we choose the hardest PAW po-
tentials available in VASP, which freeze the 1s electrons
in the core and have a core radius of 1.1 Bohr for both B
and N. We choose the Perdew-Burke-Ernzerhof (PBE)79

functional for describing electronic exchange and correla-
tion interactions, a large cutoff energy of 2000 eV for the
plane-wave basis, and the Γ point to sample the Brillouin
zone. The simulations are carried out using a Nosé ther-
mostat80 to generate MD trajectories in the canonical
ensemble. The MD time step is chosen to ensure total
energy conservation and takes on values of 0.05-0.55 fs
in these calculations, with smaller values corresponding
to higher temperatures. We typically run for 5000 steps
at each density-temperature (ρ − T ) condition, which is
found to be sufficient for convergence of the computed
energies and pressures.

To ensure consistency with the all-electron PIMC en-
ergies, our pwPAW energies from VASP reported in this
study are shifted by -79.017 Ha/BN. This is determined
with all-electron calculations for isolated B and N atoms
with OPIUM81 using the PBE functional.

Our pwPAW calculations are performed at temper-
atures between 6.7×103 K and 5.05×105 K (∼0.6–
43.5 eV). Due to limitations in applying the plane-wave
expansion for orbitals at low densities and limitations in
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the applicability of the pseudopotentials that freeze the
1s2 electrons in the core at high densities, we consider
a smaller range of densities (ρ0 up to 10×ρ0) than that
was examined via PIMC simulations. These conditions
are relevant to shock-compression experiments and span
the range in which Kohn-Sham DFT-MD simulations are
feasible by conventional wavefunction based approaches.
We performed calculations with both 24-atom and 96-
atom cells to minimize the finite-size errors.

C. DFT-MD with optimized norm-conserving
Vanderbilt pseudopotentials and Fermi-operator

expansion

As a check on the pwPAW calculations for the ma-
jority of the DFT-MD simulations and to enable ex-
tension of our DFT-MD calculations to higher den-
sity, we perform a separate set of DFT-MD simula-
tions by utilizing optimized norm-conserving Vanderbilt
(ONCV)82,83 pseudopotentials—a plane-wave method
(pwONCV) at low temperatures and a Fermi operator
expansion method (FOE) at high temperatures—in or-
der to verify our pwPAW calculations and expand the
range of applicability of Kohn-Sham DFT to higher tem-
peratures. Detailed information about the ONCV pseu-
dopotentials is described in Appendix A.

The pwONCV calculations at low temperature (<
1.3 × 105 K) are similar to those using pwPAW. We
applied a preconditioned conjugate gradient method84

to fully relax the electronic wavefunctions at each time
step. An efficient fast Fourier transform (FFT) algo-
rithm was used for the conversion of the wave functions
between real and reciprocal spaces. Each simulation is
performed either with frozen 1s2 core pseudopotentials
(for ρ . 10 × ρ0) or with all-electron pseudopotentials
(for ρ > 10 × ρ0), NV T ensemble with over 5000 steps,
time-step of 0.2 fs, and on 128-atom supercells.

At temperatures greater than 3.5×105 K, K-shell ion-
ization becomes significant3. We use all-electron ONCV
potentials and FOE85,86, which takes advantage of the
smooth Fermi-Dirac function at high temperature by ap-
proximating the function with polynomial expansion, to
conduct Kohn-Sham DFT calculations. In the subspace-
projected Hamiltonian approach, we adopted the Cheby-
shev filtered subspace iteration approach87. As the
ground-state electron density depends solely on the oc-
cupied eigenspace, the technique exploits the fast growth
property of Chebyshev polynomial to magnify the rele-
vant spectrum, thereby providing an efficient approach
for the solution of the Kohn-Sham eigenvalue problem.
The matrix-vector multiplications in the Chebyshev fil-
tering procedure are performed on the FFT grids in
Fourier space and only considered if the vector has a non-
zero value in the matrix.

Three steps are involved in this method: (i) a Cheby-
shev filter to construct a subspace which is an approxi-
mation to the temperature-smearing occupied eigenspace

in a given self-consistent iteration; (ii) FFT mesh to
span the Chebyshev filtered subspace from real-space
to Fourier space; (iii) FOE in terms of the subspace-
projected Hamiltonian represented in the plane-wave ba-
sis to compute relevant quantities like the density ma-
trix, electron density and band energy. The accuracy of
the Chebychev polynomial expansion88,89 depends on the
electron temperature Te, and the width of the eigenspec-
trum ∆Ee. In particular, the degree of polynomial re-
quired to achieve the desired accuracy in the approxima-
tion88 of the Fermi-Dirac distribution is O(∆Ee/kBTe).
A more accurate estimate that takes into account the lo-
cation of the Fermi level can be found in Ref. 90. Cheby-
chev polynomial orders of 40–60 and localization radii
ranging from 1.056 to 2.88 Bohr were used in the FOE
method.

To achieve the same level of accuracy as the plane-
wave approach, our high-T FOE simulations use PBE
exchange-correlation functional and the same FFT
meshes as the pwONCV method (real-space grid spacing
ranges from 0.066 to 0.18 Bohr). The NV T simulations
were carried out using 32-atom supercells. Each simula-
tion involves 3000–6000 steps (0.05–0.1 fs/step) to ensure
sufficient statistics.

D. DFT-MD using spectral quadrature

The spectral quadrature (SQ) method90 is a density
matrix based O(N) method for the solution of the Kohn-
Sham equations that is particularly well suited for calcu-
lations at high temperature. In the SQ method, all quan-
tities of interest, such as energies, forces, and pressures,
are expressed as bilinear forms or sums of bilinear forms
which are then approximated by quadrature rules that re-
main spatially localized by exploiting the locality of elec-
tronic interactions in real space91, i.e., the exponential
decay of the density matrix at finite temperature92–95.
In the absence of truncation, the method becomes math-
ematically equivalent to the recursion method96,97 with
the choice of Gauss quadrature, while for Clenshaw-
Curtis quadrature, the FOE98,99 in Chebyshev polyno-
mials is recovered. Being formulated in terms of the
finite-temperature density matrix, the method is applica-
ble to metallic and insulating systems alike, with increas-
ing efficiency at higher temperature as the Fermi operator
becomes smoother and density matrix becomes more lo-
calized100,101. O(N) scaling is obtained by exploiting the
locality of the density matrix at finite temperature, while
the exact diagonalization limit is obtained to desired ac-
curacy with increasing quadrature order and localization
radius. Convergence to standard O(N3) planewave re-
sults, for metallic and insulating systems alike, is readily
obtained100,101.

While mathematically equivalent to classical FOE
methods for a particular choice of quadrature, the more
general SQ formulation affords a number of advantages
in practice100,101. These include: (1) The method is
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expected to be more robust since it explicitly accounts
for the effect of truncation on the Chebyshev expansion.
(2) The method computes only the elements of density
matrix needed to evaluate quantities of interest—e.g.,
only diagonal elements to obtain densities and energies—
rather than computing the full density matrix (to speci-
fied threshold) as in FOE methods. (3) The method com-
putes the Fermi energy without storage or recomputation
of Chebyshev matrices as required in FOE methods. (4)
The method admits a decomposition of the global Hamil-
tonian into local sub-Hamiltonians in real space, reducing
key computations to local sub-Hamiltonian matrix-vector
multiplies rather than global full-Hamiltonian matrix-
matrix multiplies as in FOE methods. Since the asso-
ciated local multiplies are small (according to the decay
of the density matrix) and independent of one another,
the method is particularly well suited to massively par-
allel implementation; whereas the global sparse matrix-
matrix multiplies required in FOE methods pose signifi-
cant challenges for parallel implementation86.

In the present work, we employ the massively paral-
lel SQDFT code101 for high-temperature Kohn-Sham cal-
culations. SQDFT implements the SQ method in real
space using a high-order finite difference discretization
wherein sub-Hamiltonians are computed and applied for
each finite-difference grid point. For efficient MD sim-
ulations, Gauss quadrature is employed for the calcula-
tion of density and energy in each SCF iteration whereas
Clenshaw-Curtis quadrature is employed for the calcula-
tion of atomic forces and pressure100. While applicable
at any temperature in principle, the present implemen-
tation is most advantageous at temperatures in excess
of ∼ 105 K, where the Fermi operator becomes suffi-
ciently smooth and density matrix sufficiently localized
to reduce wall times below those attainable by standard
O(N3) scaling methods for the system sizes considered
here; though avenues exist to reduce this temperature
substantially102.

Simulations were carried out for a series of 32-atom BN
unit cells at densities from 6.77–13.55 g/cm3 and temper-
atures from 1010479–1347305 K. All-electron ONCV82

pseudopotentials were employed for B and N with cutoff
radii of 0.60 and 0.65 Bohr, respectively. Exchange and
correlation were modeled in the local density approxima-
tion (LDA) as parametrized by Perdew and Zunger103.
NV T simulations were carried out using a Nosé-Hoover
thermostat80,104 with ∼500 steps for equilibration fol-
lowed by ∼3000–5000 steps for production (with time
steps of 0.035–0.04 fs). A finite difference grid spacing
of ∼0.1 Bohr (commensurate with unit cell dimensions),
Gauss and Clenshaw-Curtis quadrature orders of 50 and
76, respectively, and localization radius of 1.3 Bohr were
employed in the SQ calculations to obtain energies to
0.02% and pressures to 0.2% (discretization error) or less.

E. All-electron, Green’s function
Korringa-Kohn-Rostoker

In addition, we applied an all-electron, Green’s func-
tion KKR electronic-structure method (based on Kohn-
Sham DFT) implemented within a scalar-relativistic
approximation, i.e., spin-orbit is ignored beyond the
core electrons. We use the Multiple-scattering
Electronic-structure Calculation for Complex Applica-
tions (MECCA) code, a k-space KKR code.105 More tech-
nical details on high energy density applications us-
ing MECCA and the advantages using a Green function
method can be found in reference106. MECCA is applica-
ble to the whole pressure and temperature range of inter-
est in this paper, beyond that available from pseudopo-
tential methods. However, as presently implemented,
MECCA is a static DFT code that does not sample the
ionic degrees explicitly, i.e., vibrational energies and cor-
responding entropy contributions cannot be obtained. As
such, one must add these either from another calculation
or some analytic model. Here, we apply the ideal-gas cor-
rection to the MECCA results to provide the most consis-
tent comparisons with the other methods. This approach
was used recently to address, for example, the principal
Hugoniot curves for Be in a review of EOS models for
ICF materials.107

For current results, we used the atomic sphere ap-
proximation with periodic boundary conditions to in-
corporate interstitial electron contributions to Coulomb
energy from all atomic Voronoi polyhedra. The KKR
spherical-harmonic local basis included Lmax = 2, i.e., s,
p, and d symmetries within the multiple-scattering con-
tributions, and L’s up to 200 are included automatically
until the free-electron Bessel functions contribute zero to
the single-site wavefunction normalizations. The Green’s
functions are integrated via complex-energy contours en-
closing a subset of Matsubara poles at finite tempera-
tures, as well as taking advantage of analytic continua-
tion to decrease dramatically solution times.106,108 Vari-
ous DFT exchange-correlation functionals are included
through use of the libXC library.109 In this work we
used the LDA functional of Vosko, Wilk, and Nusair.110

Brillouin zone integrations for self-consistent charge it-
erations were performed with a 16×16×16 Monkhorst-
Pack111 k-point mesh along the complex-energy contour
for energies with an imaginary part smaller than 0.25 Ry-
dberg, and a 10×10×10 k-point mesh otherwise. A
denser mesh was used for the physical density of states
calculated along the real-energy axes when needed.

Even though BN occurs in many phases near ambient
conditions, for simplicity we chose to use a dense packed
but cubic structure, the B2 phase (CsCl prototype) for all
MECCA calculation to cover the broad range of pressures
and temperatures.
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F. Activity expansion

Activity expansion calculations of the EOS are per-
formed using the ACTEX code, which is based on an ex-
pansion of the plasma grand partition function in powers
of the constituent particle activities (fugacities)112,113.
The present calculations are similar to those used in pre-
vious work3 and include interaction terms beyond the
Debye-Hückel, electron-ion bound states and ion-core
plasma polarization terms, along with relativistic and
quantum corrections114,115. EOS data generated with
the ACTEX code, as well as OPAL opacity tables which
use the state populations computed from ACTEX, have
been extensively checked by comparison with astronomi-
cal observations116 and with laser-driven experiments117.

As with previous studies3, we cut off ACTEX calcula-
tions at temperatures below the point where many-body
terms become comparable to the leading-order Saha term
(T > 5.8× 105 K). This ensures that the activity expan-
sion method is valid while allowing investigation of the
predicted peak compression on the Hugoniot.

III. SHOCK HUGONIOT EXPERIMENT

Experiments to constrain the EOS of BN were per-
formed at the Omega laser facility at the Laboratory
for Laser Energetics in Rochester, NY. Samples were
c-BN crystals of greater than 99% purity (by weight)
and density of 3.45(±0.03) g/cm3, obtained from Saint-
Gobain Ceramic Materials. Pale amber-colored {111}
and {1̄1̄1̄}-oriented (identified by their morphology) op-
tically transparent single crystals were characterized us-
ing x-ray photoelectron spectroscopy (XPS) and Raman
spectroscopy as in118. XPS analysis was performed with
a PHI Quantum 2000 system, using focused (1×1 mm)
monochromatic Al Kα x-rays (1486.3 eV). XPS revealed
a large amount of C, O and Si contamination, but a 60
second 3 kV Ar ion beam sputter (estimated to remove
about 2-5 nm from the surface), dropped the concentra-
tion of contaminants by nearly 50%, indicating that these
form primarily a surface contamination (a < 1µm con-
taminated surface layer will have no effect on our mea-
surement). After etching, XPS identified a B:N ratio
of 1.08:1. Room temperature Raman spectroscopy at
514.5 nm showed the TO and LO phonons of c-BN at
1057.7 and 1309.1 cm−1, with no sign of the defect bands
observed for amber crystals in Ref. 118, indicating a high
bulk purity. An extremely weak peak at 1122.3 cm−1

suggests a negligible contamination of B4C.
Crystals with parallel facets separated by∼150 µm and

lateral dimensions of 150-250 µm were affixed to ∼90 µm-
thick z-cut α-quartz (density of 2.65 g/cm3) windows
with micron-scale layers of epoxy. A 3-µm thick layer
of Au was deposited on the other side of the quartz win-
dow, to absorb ablation plasma x-rays and reduce x-ray
preheat of the BN samples to negligible levels, and a
∼25 µm-thick layer of plastic was deposited onto the Au

Quartz BN
Us Us Up P ρ

(km/s) (km/s) (km/s) (GPa) (g/cm3)
75265 31.27(0.47) 31.95(0.29) 18.97(0.47) 2091(53) 8.49(0.34)
75263 34.99(0.34) 35.04(0.31) 21.87(0.37) 2643(48) 9.18(0.30)
75264 24.51(0.61) 25.29(0.35) 13.92(0.58) 1214(52) 7.67(0.44)

TABLE I. Measured quartz and c-BN shock velocities (Us)
and analyzed c-BN particle velocity (Up), pressure (P ) and
density (ρ).

to form the laser ablator (Fig. 2(a)).
Samples were ablated directly using 12 beams at of

the Omega laser with a 1-ns top-hat pulse shape and dis-
tributed phase plates forming a 800 µm spot size. Laser
energies were tuned to drive the target at intensities rang-
ing from 1.8× 1014 to 5× 1014 TW/cm2.

A reflecting shock wave could be tracked continuously
as it propagated through the quartz and c-BN samples,
using a line-imaging velocimeter (VISAR: Velocity In-
terferometer System for Any Reflector)119. The in-situ
apparent velocities are corrected for the index of refrac-
tion of the quartz (1.54687)120 and c-BN (2.126)121 at
532 nm, which is the wavelength of the VISAR probe
laser.

The shock velocities in the quartz and c-BN at the
interface between the two are used in the impedance-
matching technique, to determine the EOS data point
for c-BN. Because of a finite glue bond thickness between
the two materials, the shock velocity in the c-BN must be
extrapolated to the quartz surface. The quartz Hugoniot
standard is taken from122 and the reshock model from123.
The shock impedance in cBN at these conditions is higher
than quartz, but sufficiently close that the accuracy of
the off-Hugoniot quartz model has a small effect on the
result (differs by ∼1% from the result obtained by simply
assuming a reflected Hugoniot for the reshock state).

The results of these measurements are recorded in Ta-
ble I. Factors contributing to the uncertainty in the
Omega measurements include: uncertainty in the quartz
and c-BN wave velocities, uncertainty in the extrapo-
lation of the c-BN velocity across the epoxy layer, un-
certainty in the initial density of c-BN, and systematic
uncertainty in the quartz standard EOS. Uncertainty in
the c-BN index of refraction is not quantified so is not
included in the error bar.

IV. CONSTRUCTION OF EOS MODELS FOR
BN

Before describing the results of the first principles sim-
ulations and experiments in detail, we describe the new
EOS models and make comparisons to a subset of the
calculations. We construct new EOS tables (X2151 and
X2152) for BN under the QEOS framework124,125. QEOS
is a self-contained quasi-single-phase set of thermody-
namic models that are widely applicable and guarantee
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CH Au quartz
BN

stainless steel

Omega
laser VISAR

BN

BN

(a) (b) (c)

FIG. 2. (a) experimental configuration (not drawn to scale), (b) image of a typical c-BN crystal glued to the quartz plate, viewed
from the perspective of the VISAR diagnostic and (c) image of the VISAR data from shot 75265, with the analyzed velocities
shown as red and blue traces (corresponding the two interferometer legs). The dashed traces are the apparent velocities and
the solid traces are corrected for the index of refraction in quartz and cBN.

the correct physical limits at both high/low tempera-
ture and high/low density. The standard QEOS model
based on TF theory also guarantees thermodynamic con-
sistency. In our QEOS framework, we decompose the
EOS into separate contributions corresponding to the
T = 0 cold curve, the ion thermal term that describes
contributions to the EOS from the ionic degrees of free-
dom, and the electron thermal term that describes the
contributions to the EOS from thermal distribution of
the electrons. The cold curve is generally taken from ex-
perimental data static DFT calculations, while the elec-
tron thermal term is generated using fast electronic struc-
ture methods, namely, TF theory and DFT calculations
for the average atom-in-jellium model (Purgatorio) de-
scribed in Appendix B. The ion thermal term is often
derived using a form proposed by Cowan124,125 and can
be modified to fit both experimental data and data from
many-body calculations. In condensed phases (at high
densities and low temperatures), the EOS, and hence the
shock response of materials, is dominated by the cold
curve, whereas the ion thermal term dominates the EOS
through much of the high-velocity shock regime that is
currently accessible in planar experiments at Omega and
the National Ignition Facility. The behavior of the EOS
and the Hugoniot near peak compression, on the other
hand, is mostly dominated by the electron thermal term.
The Hugoniot response that a model predicts near peak
compression is therefore determined mostly by the un-
derlying electron thermal model, and thus notable dif-
ferences are seen between TF-based QEOS models and
Purgatorio-based QEOS models.

The QEOS framework was chosen due to the lack of
data necessary to constrain a more complicated multi-
phase EOS representation and because the focus of the
current study is in the liquid/plasma region relevant
to high velocity, laser-driven shocks. Both X2151 and
X2152 tables have reasonably similar parameterization

Note
ρ0 2.258 g/cm3 reference density
T0 295 K reference temperature
Kh-BN 37 GPa bulk modulus
Kc-BN 369 GPa bulk modulus
Ecoh 9×1010 erg/cm3 cohesive energy
T 0

m 2200 K melt temperature @ 1 bar
Θ0

D 1675 K Debye temperature @ ρ0

γ 1/3 Cowan exponent

TABLE II. Key parameters used in the X2152 EOS table.

except for the electron-thermal model. At the time when
the X2151 table was constructed there was only a Purga-
torio126 electron-thermal model for B, therefore the full
electron-thermal model for BN is a mixture of a Purga-
torio electron-thermal model for B and a TF electron-
thermal model for N. Once a N Purgation electron-
thermal model became available, the X2152 table was
constructed, where the hybrid TF-Purgatorio electron-
thermal model from X2151 was exchanged with a fully
Purgatorio electron-thermal model (some adjustments to
other EOS parameters were needed to improve the fit
for X2152). Therefore, examining the L2150 (legacy TF
EOS), X2151, and X2152 gives a demonstration of how
the Hugoniot varies from a fully mean-field TF descrip-
tion of ionization, to a hybrid treatment, to a fully quan-
tum atom-in-jellium description.

In both X2151 and X2152, the equilibrium conditions
were chosen to be in the hexagonal phase, with a density
of 2.258 g/cm3, at 295 K and 1 atm. The cold curves
are identical in the two models and were fit to calcula-
tions from this study and Hugoniot measurements from
the Marsh compendium18. Since the ground state phase
was taken to be hexagonal the transformation to the cu-
bic phase was represented by employing break-points125

to transition from the hexagonal cold-curve to the cubic
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cold-curve at 10 GPa (the wurtzite phase is essentially
combined with the cubic phase in this QEOS form). This
transformation pressure is slightly higher than what is
reported (1–6 GPa127) but was chosen so that the den-
sity where the transformation begins is notably denser
than the reference density; this was a practical choice to
enhance the stability of the EOS when employed dur-
ing hydrodynamic simulations. The first-principles iso-
chores calculated for this work were used to constrain
the ion-thermal models; specifically, the density depen-
dent Grüneisen model, and the Cowan liquid model. The
largest difference between X2151 and X2152 (outside of
the electron-thermal model) is that the best ion-thermal
fit for X2151 (hybrid electron-thermal) was found using a
Cowan exponent of 0.5, conversely the best fit for X2152
(purely Purgatorio) was determined using the canonical
value of 1/3. All other EOS parameters (melt tempera-
ture, Debye temperature, etc.) were taken directly from
known literature. The thermodynamic parameters in the
ion thermal model are determined by fitting the pressure
data from PIMC, DFT-MD, and ACTEX, taking into ac-
count the range of applicability of each method. The key
parameters used in X2152 are shown in Table II. In or-
der to avoid problems with energy offsets (energy zeros)
in various techniques, only the pressure data are used
for constructing the LEOS tables. The fidelity of this
procedure is discussed here.

We note that the EOS obtained using different elec-
tronic structure theories can vary depending on the un-
derlying physics. For example, orbital-free (OF) MD,
which significantly reduces computational cost of stan-
dard DFT-MD by constructing the energy functional in
a form that is independent of electronic wavefunctions,
predicts CH to be less compressible at the compression
maximum than predicted by PIMC and Purgatorio66,67.
Zhang et al.67 found that this is because the internal
energies calculated by OFMD are lower than PIMC, al-
though the pressures are similar, at the same tempera-
tures. Comparing a recent work128 on carbon EOS us-
ing OFWMD (with W standing for Weizsäcker) to the
most recent, Purgatorio-based LEOS 9061 table129, the
peak compression predicted by OFWMD is also smaller
(4.5 by OFWMD versus 4.6 by LEOS 9061). In addition,
OFMD calculations for silicon130 shows a single compres-
sion maximum along the Hugoniot, whereas PIMC pre-
dicts two peaks corresponding to K and L shell ionization
respectively.

We examine the internal energy differences by com-
paring the Hugoniot curves for BN based on three LEOS
tables (LEOS 2150, X2151, and X2152), for which the
electron thermal free energy are constructed differently,
as we have explained previously in this section. The re-
sults are shown in Fig. 3. Consistent with previous stud-
ies, we find that the TF-based model (L2150) predicts
a lower peak compression with a broader shape along
the vertical axis than the fully Purgatorio-based model
(X2152). As expected, the model which combines TF
and Purgatorio models lies between the two. Both the

FIG. 3. (a) Pressure- and (b) temperature-compression Hugo-
niot of BN predicted by different LEOS models in comparison
with PIMC and DFT-MD (pwPAW). The initial density of all
Hugoniot curves are set to be 2.15 g/cm3. Note that the devi-
ations at above 106 GPa and 2×107 K are due to the electron
relativistic effect, which is included in the Purgatorio tables
(thus fully in X2152 and partially in X2151) but not in L2150
or PIMC.
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FIG. 4. Comparison of the pressure and the energy terms
of the Hugoniot function along the 2×106 K isotherm, which
is near the compression maximum. Shaded areas denote the
error bar of the PIMC data.

shape and the magnitude of the peak compression are
intimately related to the K-shell ionization of B and N.
The TF model is broad due to the neglect of the shell ef-
fects, and we observe that the peak compression becomes
sharper as one accounts for the K-shell ionization of B
(X2151), and sharper still when we also account for the
shell structure of N (X2152).

The differences in the maximum compression predicted
by the different models can be explained by decompos-
ing the Hugoniot function [left-hand side of the Hugoniot
equation E−Ei−(P+Pi)(Vi−V )/2 = 0, where (E,P, V )
and (Ei, Pi, Vi) denote the energy, pressure, and volume
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of the sample in the shocked and the initial states, re-
spectively] into the energy term E −Ei and the pressure
term (P +Pi)(Vi−V )/2 and comparing the two as func-
tions of density along isotherms. Figure 4 shows such
comparisons at 2×106 K, which is near the compression
maximum along the shock Hugoniot (Fig. 3). The den-
sity at which the energy and the pressure curves cross is
the Hugoniot density at this temperature. We find that
the pressure curves of X2151 and X2152 are on top of
each other, but their energies are different. The ener-
gies of X2151 are lower, leading to a smaller compres-
sion ratio than X2152. In comparison, X2152 data are
similar to PIMC in both energy and pressure. This in-
dicates that when constructing an EOS model by merely
fitting pressure, it is important to make the electronic
contribution fully Purgatorio-based. This is not surpris-
ing because Purgatorio is essentially a DFT method. The
EOS consistency here demonstrates that the agreement
in EOS between PIMC and DFT is not accidental, but
represents a consistent description of the electronic in-
teraction in both methods. In addition, Fig. 4 shows
the non-smoothness and error bar of the PIMC data at
2×106 K, which leads to an uncertainty in the compres-
sion ratio of .0.05 (or .1%). This represents the level of
uncertainty in our reported compression maximum along
the Hugoniot by PIMC. At both higher and lower tem-
peratures, the uncertainties are smaller because of the
smaller error of the EOS data and higher smoothness of
the data along isotherms.

V. RESULTS AND DISCUSSION

A. Isochore Comparisons

In order to evaluate the performance of recent exten-
sions of DFT methods to high temperature, we com-
pare the computed EOS data from PIMC, pwPAW,
pwONCV, FOE, SQ, ACTEX, and MECCA. We choose
the X2152 model along several isochores between 0.23
and 45.16 g/cm3 in Fig. 5 for the basis of performing the
comparison. Figure 5(b) highlights the comparison in
the temperature range of 105–107 K. This is the regime
where 1s electrons are significantly ionized, providing an
important testbed for different methods.

We find that, at temperatures greater than 2×106 K,
PIMC, ACTEX, and MECCA results show excellent agree-
ment with each other, while the ACTEX predictions are
slightly higher than the other two methods only at higher
densities. At densities above 4.52 g/cm3 and tempera-
tures below 1.35×106 K, deviations of ACTEX from the
other methods are evident, which indicates a cut-off tem-
perature (Tcutoff) below which the ACTEX method breaks
down. This is where the two-body term at order 2 in the
activity becomes comparable to the Saha term, which
we use as a simple measure of the point where higher
order terms start to contribute. Since those terms are
not included in ACTEX, we can consider this to be the

FIG. 5. Comparison of the pressure-temperature profiles of
BN along several isochores from PIMC, DFT-MD (PAW,
frozen 1s), DFT-MD (ONCV, frozen 1s), FOE (all-electron),
SQ (all-electron), ACTEX, MECCA, and X2152. Subplot (b)
is a zoom-in version of (a).

limit of the current theory. Moreover, we have plotted
the percent differences between ACTEX and X2152 data
(see Fig. 6 for the comparison in energy; pressure plots
look similar), and found the cutoff is dependent on the
density: Tcutoff gradually increases from 106 K to 4×106

K as density increases from 0.1- to 20-times ρ0. Above
Tcutoff, the agreement between ACTEX and X2152 data is
excellent, with differences below 2% in general.

Our pressure-temperature profiles by MECCA are over-
all consistent with those by PIMC, pwPAW, pwONCV,
FOE, SQ, and ACTEX. The agreement is best at densi-
ties higher than 4.5 g/cm3 and temperatures higher than
106 K, where the contributions to the EOS from the ions
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FIG. 6. Percent difference in internal energy of BN between
ACTEX and X2152 along several isochores. The compression
ratio (with respect to ρ0=2.258 g/cm3) are labeled at the top
of the plotting area. The reference points for ACTEX and
X2152 are both at ρ0 and ambient temperature.

(the ion thermal contributions) are less significant than
those from the thermal electrons (see Fig. 7).

At intermediate-low densities (0.23-2.3 g/cm3), we
observe a discrepancy between MECCA and the DFT-
MD/X2152 data, and it grows larger as temperature de-
creases further below 105 K. This is because the MECCA

simulations are performed using static configurations
with 2 atoms in the B2 (cesium chloride) structure, which
do not include ion motion, and we have thus approxi-
mated the ion thermal effect by adding ideal gas cor-
rections to the pressures and energies. However, at the
low-temperature conditions, the nuclei show significant
correlations by forming polymers, such as N-N pairs or
B-N structures that are characterized by the strong fluc-
tuations in the radial pair distribution function at 104 K
and shown in Fig. 8(a)-(c). Therefore, by disregarding
the vibrational and rotational contributions, the ideal
gas model underestimates the EOS at these conditions.
As temperature exceeds 5 × 104 K, the features in the
pair distribution function quickly smooth out because
the polymeric structures are de-stabilized by thermal ef-
fects, which makes the ideal gas approximation for the
ions work better and explains the improved agreement
between the EOS from DFT-MD and MECCA. Moreover,
we note that the agreement between the EOS from X2152
and MECCA can be improved by replacing the ideal-gas
correction with the ion thermal model from X2152. The
differences at ρ > ρ0 reduce more by applying a constant
shift to the MECCA pressures to anchor the pressure-
zero point at ρ0 and 300 K. These findings explain the
good consistency between the shock Hugoniot predicted

by X2152 and MECCA EOS data, which we address in
Sec. V C.

At densities higher than 2.26 g/cm3, the radial distri-
bution function also show significant pair correlations at
temperatures below 105 K (Fig. 8(d)-(f)). However, the
agreement between the EOS from MECCA and those from
DFT-MD are far better than at lower densities. This is
the regime where the cold curve contribution dominates
the EOS, as Fig. 7 implies. The excellent agreement be-
tween MECCA and DFT-MD EOS indicates the effects
of the simulation cell and the non-ideal ion thermal con-
tribution are less significant in the more strongly com-
pressed (ρ ≥ 5× ρ0) regime.

At 2.26 g/cm3 and T < 2 × 104 K, We also observe
differences between X2152 and DFT-MD. This can be
explained by the differences in the cold curve between
X2152 and DFT-MD. The energy minimum in X2152 is
set to ρ0 = 2.26 g/cm3 corresponding to h-BN, while
DFT-MD tends to stabilize c-BN because of the cubic
simulation cell being implemented for the liquid simula-
tions. In fact, we found that altering the cold-curve in
X2152 such that the ρ0 is more in line with the ambient
density of c-BN allows for better agreement with these
low temperature points.

We compare the EOS data from SQ with those from
PIMC, FOE, and MECCA along two different isotherms:
1.01×106 and 1.35×106 K. Their values are listed in
Tab. III and the differences shown in Fig. 9(a) and (b)
for pressures and energies, respectively. Our FOE and
SQ pressures are in excellent agreement with each other
(differences are less than 1%). This can be explained by
the use of all-electron ONCV potentials and the DFT-
MD nature of both methods. The FOE energies are
slightly lower than the SQ values by 1-2% of the cor-
responding ideal gas values. The small differences can
be attributed mainly to different discretization errors
in the two approaches, whereas differences associated
with trajectory lengths, pseudopotentials, and exchange-
correlation functionals were determined to be an order of
magnitude smaller.

Our PIMC data at these temperatures scatter around
the DFT values, because of the longer paths and larger
error bars at such conditions. The differences between
PIMC and SQ are <4% in pressure and . 1 Ha/atom
(or . 3% when normalized by the ideal gas value) in
energy, which is typical of what we found about differ-
ences between PIMC and DFT-MD in previous work on
B3 and hydrocarbon systems3,67. MECCA data also agree
with SQ and FOE at these conditions, with differences
< 3% in pressure and < 0.4 Ha/atom (or < 1.5% when
normalized by corresponding ideal gas values) in energy.
The cross validation of the different DFT methods and
their consistency with PIMC predictions strongly suggest
both the PIMC and the DFT-MD approaches, albeit car-
rying approximations in each, are reliable for studying
the EOS of warm dense matter.

Figure 9 and Table III also show the standard error
bars of our EOS data, determined by statistical averaging
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FIG. 7. Percent contributions of the ion thermal (left) and electron thermal (right) terms to the total pressure of BN. The
remaining contributions are from the cold curve. The temperature-density conditions corresponding to several isochores along
which we performed EOS calculations are shown with ’+’ symbols.

SQ FOE PIMC MECCA
ρ T P E P E P E P E

(g/cm3) (K) (GPa) (Ha/BN) (GPa) (Ha/BN) (GPa) (Ha/BN) (GPa) (Ha/BN)
6.77 1010479 21807±9 -18.375±0.016 21860±15 -19.688±0.019 21446±628 -19.039±1.317 21510 -17.589
9.03 1010479 29297±12 -20.045±0.018 29355±18 -21.006±0.069 28664±775 -20.791±1.217 28721 -19.528
10.16 1010479 33136±17 -20.664±0.021 33212±29 -21.522±0.040 32070±860 -21.941±1.201 32411 -20.212
11.29 1010479 37027±15 -21.149±0.017 36979±20 -21.866±0.069 36758±956 -20.978±1.201 36149 -20.783
13.55 1010479 44946±23 -21.921±0.022 45040±40 -22.511±0.040 46718±1087 -19.857±1.138 43755 -21.692
15.80 1010479 53176±39 -22.379±0.032 53317±58 -23.472±0.046 54562±1281 -20.691±1.152 51570 -22.342
6.77 1347305 31097±12 7.553±0.020 30769±20 5.913±0.079 30240±577 6.226±1.210 30855 8.040
9.03 1347305 41369±15 4.580±0.019 41291±22 3.634±0.150 41816±759 5.713±1.190 41022 5.073
10.16 1347305 46621±18 3.528±0.022 46654±27 2.613±0.066 47342±858 5.119±1.201 46111 3.884
11.29 1347305 51838±26 2.565±0.029 51904±41 2.057±0.160 52711±964 4.061±1.212 51226 2.863
13.55 1347305 62537±22 1.137±0.021 62633±42 0.415±0.090 61365±1153 0.378±1.206 61566 1.215
15.80 1347305 73360±30 0.000±0.024 73582±59 0.000±0.101 72905±1299 0.000±1.166 72125 0.000

TABLE III. Comparison of computed internal energies and pressures from SQ, FOE, PIMC, and MECCA. The energies have
been shifted by setting the reference to their respective values at 15.80 g/cm3 and 1.35×106 K, at which the pressures are close
to each other. The errors in the SQ, FOE, and PIMC data are the statistical 1σ error bar determined by blocking analysis131.

of the MD (for FOE and SQ) or PIMC data blocks. At
the temperatures of 1.01×106–1.35×106 K, PIMC errors
are 2–3% in pressure and ∼0.6 Ha/atom in energy; FOE
errors are 0.05–0.8% in pressure and 0.01–0.08 Ha/atom
in energy. In comparison, the statistical error bars of the
SQ data are significantly smaller (see Tab. III). These
results, for the first time, establish SQ as an accurate
method capable of calculating the EOS of partially ion-
ized, warm-dense plasmas with high precision and accu-
racy comparable to PIMC.

B. Comparison between theory and experiment

In this section, we compare our experimental measure-
ments of the pressure-density relation of BN with our
theoretical predictions. The experimental data are along

the Hugoniot curve, which varies depending on the prop-
erties of the sample material. Figure 10 compiles the ex-
perimental and theoretical Hugoniot curves correspond-
ing to two different initial densities (ρi): Omega data
with ρi of 3.45 g/cm3 and the Rusbank data18 with ρi of
2.15 g/cm3. The corresponding theoretical predictions
by X2152 are shown with dark curves. We also show the
PIMC and the DFT-MD predictions for 3.45 g/cm3 and
2.15 g/cm3.

The comparison in Fig. 10 shows very good consistency
between the measurements and the theoretical predic-
tions. Assisted by the theoretical predictions, we are
able to estimate Hugoniot temperatures for the exper-
imental data. We label the Hugoniot temperatures for
selected DFT-MD data points with blue-colored text in
Fig. 10. We find the Omega data points are in the tem-
perature range of 104–105 K. Our results also show that
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FIG. 8. Comparison of the nuclear pair correlation func-
tion obtained from DFT-MD (pwPAW) for BN using 24-atom
(red) and 96-atom (dark) cells at two different densities and
three temperatures. The reference density ρ0 is 2.26 g/cm3.
The peaks at 104 K indicates a polymeric structure of the
liquid. Differences between small and large cells are evident
at 4000 K, indicating a significant finite size effect. This ef-
fect is stronger at higher densities and becomes negligible at
temperatures higher than 5×104 K.

the PIMC and DFT-MD predicted Hugoniot are in re-
markable agreement with X2152 for both initial densi-
ties, which spans the Hugoniot curves over a wide range
in the phase space. This further shows the validity of
the fitting and construction procedure and the quality of
our X2152 table. Our calculations and the X2152 model
predicts BN to have a maximum compression ratio of
4.59 at 9.8×104 GPa for ρi = 2.15 g/cm3 and 4.47 at
1.8×105 GPa for ρi = 3.45 g/cm3. We also note that
the pressure-density Hugoniots predicted by our different
tabular models are very similar (see Fig. 3) at the pres-
sure regime (103–3×103 GPa) explored in our current
experiments. We expect future, accurate experiments at
higher pressures (e.g., near the compression maximum)
to further check our predictions.

C. Comparison of different EOS methods

Finally, we make a comprehensive comparison of the
shock Hugoniot curves for BN predicted by our dif-
ferent EOS methods. The pressure-compression and
temperature-compression Hugoniot curves from ACTEX,
TF, MECCA, and X2152 are shown in Fig. 11. We note

FIG. 9. EOS differences of PIMC (red), FOE (black), and
MECCA (blue) relative to SQ along two isotherms (1.01×106

and 1.35×106 K). Because of the different references chosen
in the EOS datasets, all energies have been shifted by the cor-
responding value at 15.80 g/cm3 and 1.35×106 K. The energy
differences are normalized by the corresponding ideal gas val-
ues (21kBT per BN). The statistical error bars correspond to
the 1σ uncertainty of the FOE and PIMC data.

that ACTEX and X2152 each intrinsically accounts for
electron relativistic effects, thus the Hugoniot deviates
from the nonrelativistic ideal electron gas limit of 4 at
very high temperatures (> 108 K). In comparison, the
relativistic correction has not been applied to the TF or
MECCA calculations.

At pressures of ∼ 104–106 GPa and temperatures
∼ 3 × 105–2 × 107 K, ACTEX, X2152, and MECCA yield
very similar Hugoniot profiles and a maximum compres-
sion of ∼4.55 for ρi of 2.26 g/cm3, while the peak is more
broadened according to the TF model and the maximum
compression ratio is lower by ∼0.2. The peak is associ-
ated with the K shell ionization of B and N, which is
smoothed out in the TF model because electronic shell
effects are missing in this approach but captured by the
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FIG. 10. Comparison of the Hugoniot of BN from experiment to predictions from PIMC and DFT-MD (pwPAW) simulations
and the X2152 model in (a) pressure-density and (b) pressure-compression ratio representations. The initial densities of
corresponding Hugoniots are shown in the legend. In (a), equal-temperature conditions along the two Hugoniot curves are
connected with lines (as guides to the eyes) to approximate the location of isotherms. The corresponding temperatures are
labeled in colored texts. Note that the deviation between PIMC and X2152 curves at above 106 GPa is due to the electron
relativistic effect, which is considered in X2152 but not in PIMC.

other methods. The slightly larger compression predicted
by ACTEX than X2152 is consistent with the . 2% larger
values of the ACTEX EOS data than X2152 (Figs. 5 and
6). The slightly lower compression predicted by MECCA

than X2152 can be explained by the non-perfect recon-
ciliation in pressure and energy terms in the Hugoniot
function (MECCA pressures are slightly lower while ener-
gies are similar in comparison to SQ and PIMC, as shown
in Fig. 9).

In the low-temperature condensed matter regime, we
find that, with a constant pressure shift in the EOS, our
MECCA predictions for the Hugoniot are in good consis-
tency with those of X2152. This indicates the efficacy of
using the ideal gas model to approximate the ion ther-
mal effect when constructing EOS using small-size, fixed-
lattice models (as in MECCA). Our TF results predict BN
to be stiffer in this regime because the initial energy in TF
is estimated using an average-atom method (described in
Appendix B), which may be higher than the actual value
because of the excess energy release due to bonding. We
also show differences between X2152 and our DFT-MD
(pwPAW) predictions, in particular in Hugoniot temper-

atures (Fig. 11(b)). This is because of the EOS differ-
ences between h-BN and c-BN that we have elaborated
previously in Sec. V A.

D. EOS and Hugoniot of isoelectronic materials

Our EOS models and results for BN enable us to in-
vestigate the difference with C—an isoelectronic material
of BN. Figure 12 compares the Hugoniot of BN and of
C based on X2152 and LEOS 9061, setting their initial
densities to be the same (2.26 g/cm3). LEOS 9061 is the
a multi-phase EOS table constructed for C by using a
Purgatorio table for the electron thermal term and fit-
ting DFT and PIMC data133 to obtain the ion thermal
term, similar to our present work on BN.

The Hugoniot comparison shows that, at temperature
regimes of both 105–106 K and > 107 K, the compression
ratio of BN is higher than C. The compression peak is
thus slightly narrower for C. This is because the K level
of C is in between those of B and N. The differences be-
tween BN and C in the low-pressure condensed-matter
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FIG. 11. Comparison of the pressure-compression Hugoniot
of BN from different theories and LEOS models. The initial
density of every Hugoniot curve is 2.26 g/cm3. Two sets of
DFT-MD (pwPAW) Hugoniots constructed with a difference
of the cohesive energy (Ecoh ∼7.1 eV/atom132) in the initial
energy are also shown for comparison. Note that all MECCA
pressures in the EOS have been shifted relative to the value at
the initial density and 300 K. Also note that the deviation at
above 106 GPa and 2×107 K is due to the electron relativistic
effect, which is considered in X2152 and ACTEX but not in
MECCA.

FIG. 12. (a) Pressure- and (b) temperature-density Hugoniot
of BN in comparison with C. The electron thermal contri-
bution to both tables are based on Purgatorio. The initial
density of both materials are set to be 2.26 g/cm3.

region (T < 105 K) reflect differences in the cold-curve
and ion thermal contributions to the EOS. These dif-
ferences are physically consistent with the influence of
different types of interactions between atoms in the two
materials. BN has slightly higher ionic character than C
due to the differences between the electronegativity of B
and N, associated with dipolar interactions between the
non-identical atoms.

E. Zero-point motion effects

We have also examined the effect of Zero-point mo-
tion (ZPM) on the EOS and Hugoniot of BN. In order

FIG. 13. Zero-point motion effects on the pressure of BN as a
function of density along several isotherms. The inset shows
the percent increase in pressure for the EOS (black) and along
the Hugoniot (red) and percent decrease in compression ratio
along the Hugoniot (blue).

to do this, we implement the Debye model134 to estimate
the magnitude of the EOS contributions due to ZPM.
This correction reasonably account for the nuclear quan-
tum effects that have been neglected in the our Born-
Oppenheimer MD simulations. According to the De-
bye model, the harmonic vibration energy can be ap-
proximated by δE = 9kBΘD(V )/8, where ΘD(V ) is the
volume-dependent Debye temperature and is related to
the ambient-density via ΘD(V ) = ΘD(V0)(ρ/ρ0)γ with
γ being the Grüneisen parameter, and the correspond-
ing pressure δP = 9γkBΘD(V )/8V . We take the values
ΘD(V0) = 1900 K and γ = 1.1 for c-BN from previ-
ous measurements and calculations14,22, apply the cor-
rections to our EOS data from DFT-MD (pwPAW) and
evaluate the changes in the Hugoniot curve. The results
are summarized in Fig. 13.

Our results show that ZPM causes a pressure increase
by over 10% at 6.7×103 K and ambient density. This
percentage difference decreases gradually to ∼ 1% at
20 g/cm3. The differences dramatically decrease as tem-
perature becomes higher, more so at lower densities. The
effect of ZPM on Hugoniot, however, is small. For exam-
ple, the compression ratio decreases by up to 0.01 (0.4%)
for the temperature range 6.7×103–5.1×105 K considered
in our DFT-MD (pwPAW) simulations. This is similar to
what we have seen in carbon-hydrogen systems67. These
findings indicate that the ZPM should be carefully ad-
dressed when studying the the low-Z materials in the
condensed matter regime, but is negligible for studying
the shock Hugoniot of them in the high-energy-density
plasma state.
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VI. CONCLUSIONS

In this work, we present a comprehensive study of the
EOS of BN over a wide range of pressures and tempera-
tures by implementing several computational methods,
including PIMC, DFT-MD using standard plane-wave
basis and PAW or ONCV potentials, ACTEX, FOE, SQ,
MECCA, and TF. We use the PIMC, DFT-MD, and AC-

TEX data to construct two new EOS tables (X2152 and
X2151) for BN using the QEOS model.

Our EOS data by PIMC, FOE, SQ, and MECCA show
good consistency at 106 K where 1s electrons are ionized.
Our findings establish SQ as an accurate method capable
of calculating the EOS with high precision and accuracy
comparable to PIMC. Our detailed EOS comparison pro-
vides strong evidences that cross validate both the PIMC
and the DFT-MD approaches for EOS studies of the par-
tially ionized, warm-dense plasmas.

At 2.5–3.2×106 K and 1.0–1.3×105 GPa, our PIMC,
ACTEX, and MECCA calculations uniformly predict a
maximum compression of ∼4.55 along the shock Hugo-
niot for h-BN (ρi=2.26 g/cm3), which originates from
K shell ionization. This compression is underestimated
by TF models by ∼0.2. The maximum compression de-
creases to 4.47 for c-BN (ρi=3.45 g/cm3) and increases
to 4.59 for ρi=2.15 g/cm3.

We also report Hugoniot data up to ∼ 2650 GPa from
experiments at the Omega laser facility. The measured
data show good agreement with our theoretical predic-
tions based on DFT-MD.

By comparing QEOS models with the electron ther-
mal term constructed in different ways (Purgatorio, TF,
or hybrid), we find that the shock Hugoniot can be well
reproduced by fitting the QEOS models to the pressures
in the EOS calculated from first principles. Consistent
with our previous studies, we find that the Purgatorio-
based EOS models provide the best agreement with both
internal energies and pressures from first principles calcu-
lations. Because the largest differences in the Hugoniot
response of the models occurs near peak compression,
performing experiments for materials near peak compres-
sion135–139 would provide a rigorous experimental test of
our understanding of electronic structure in high energy
density plasmas. It would also be worthwhile to pursue
experiments that provide measurements of the tempera-
ture and the pressure in either Hugoniot or off-Hugoniot
experiments, which would provide data to validate the
first principle calculations.

We find the shock Hugoniot profiles of isoelectronic
materials BN and C are very similar, with the compres-
sion peak of C being slightly sharper. This is explained
by the differences between the 1s level of C and those
of B and N. Based on the similarities of these materials
in the laser-induced shock regime, BN ablators would be
expected to behave similarly to HDC ablators. While
the impact of the condensed phase microstructure of the
materials may also be an important consideration in the
compressive, ICF regime where much of the ablator is still

present during the implosion phase, the microstructure
should be less consequential to the behavior of exploding
pushers where most of the ablator has been vaporized.

VII. APPENDIX

A. Optimized norm-conserving Vanderbilt
pseudopotentials

We employed ONCV pseudopotentials82 for a subset
of DFT-MD calculations, in addition to the FOE and
SQ calculations. Fully nonlocal two-projector norm-
conserving pseudopotentials were generated. The result-
ing potentials have an accuracy in electronic structure
properties comparable to VASP PAW and all-electron cal-
culations. Due to the wide range of density and tem-
perature grids used in the EOS table generation, we
have constructed two versions of ONCV pseudopoten-
tials for B and N to reduce projector overlap and core-
state ionization under these extreme conditions. The first
set of ONCV pseudopotentials have 2s2 and 2p1 valence
states for B and 2s2 and 2p3 valence states for N, respec-
tively. The second set of ONCV pseudoptentials are all-
electron pseudopotentials that include 1s2 valence. The
parameters associated with the corresponding psuedopo-
tentials are listed in Table IV. To cross check the accu-
racy of the ONCV pseudopotentials we compared cal-
culated pressures with regularized Coulomb potentials
(rc = 0.02 Bohr and kinetic-energy cutoff of 6000 Ha) for
solid c-BN phase at each density-temperature point in the
DFT-MD simulations. The overall agreement between
ONCV pseudopotentials and regularized Coulomb poten-
tials is within 1% except a few points slightly greater.
As an example, Figure 14 shows the percent difference
of pressure between all-electron ONCV pseudoptentials
and Coulomb potentials for c-BN within the density-
temperature grid employed in the DFT-MD simulations.
The pressure difference ranges from −0.6% to 1.4%, with
the larger differences in the low-temperature, low-density
regions.

B. Mean-field Thomas-Fermi and average-atom in
jellium (Purgatorio)

Our EOS models are developed on a broad grid in
phase space, spanning many decades in both tempera-
ture and pressure. As such, we require efficient meth-
ods for computing the electron thermal contribution to
the EOS. In this work, we apply two methods for this
purpose, both of which are based on density functional
theory. Our TF calculations are based on the general-
ized theory of Feynman et al. 140 . In contrast to the TF
approach, which assumes a uniform Fermi distribution
of states and thus does not explicitly include discretized
states, Purgatorio solves the electronic structure problem
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Species Valence rc KCutoff Note
(Bohr) (Ha)

B 2s22p1 1.125 35 pwONCV
B 1s22s22p1 0.6 160 FOE
B 1s22s22p1 0.6 – SQ
N 2s22p3 1.2 35 pwONCV
N 1s22s22p3 0.65 160 FOE
N 1s22s22p3 0.65 – SQ

TABLE IV. Parameters used to generate ONCV psuedopo-
tentials for B and N. Bulk properties calculated from these
pseudopotentials were benchmark against VASP PAWs and
regularized Coulomb potentials. rc and KCutoff denote the
local potential core radius and the kinetic energy cutoff, re-
spectively. The potentials for SQ are similar to those in FOE,
but used higher continuity at rc to remove cusps and improve
convergence.
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FIG. 14. Percent pressure difference between calculations
using ONCV all-electron pseudopotentials and regularized
Coulomb potentials for BN in the cubic phase. For most
of the phase points examined in this study, the difference is
within 1% except a few cases where the difference is slightly
greater.

for an atom-in-jellium within LDA self-consistently, and
thus allows for the inclusion of discretized states.141,142

For computing the EOS of mixtures, such as BN, from
either Purgatorio or TF, we apply a constant electron
pressure mixing rule, following the prescription outlined
in Ref. 143. Briefly, if x1 and x2 represent concentrations
of the two ions, then the Wigner-Seitz (WS) volume per
ion of the plasma is required to be the weighted sum of
the WS volumes of its two constituent ions:

x1A1 + x2A2

NAρ
= x1

A1

NAρ1
+ x2

A2

NAρ2
. (3)

In the above, ρ, ρ1 and ρ2 are the densities of the plasma
and its ionic components, A1 and A2 are atomic weights
of the constituent ions and NA is the Avagadro constant.
This equation is supplemented by the requirement that
the free electron density of the plasma be unique:

pe(1) = pe(2). (4)

Moreover, since the pressure in the TF theory depends
only on T and µ, it follows that the electron density in the

plasma is also unique ne(1) = ne(2). In the TF method,
the free electron density ne(i) associated with ion i is
determined by solving the TF equations for the ion at
specified values of temperature T and density ρi. At a
given value of T , Eqs. 3-4 provide two equations that
can be solved to give values of the unknown densities ρ1

and ρ2. Inasmuch as ne(i) is a monotonic function of
µi, it follows that the chemical potential is also unique
µ1 = µ2.

To create an EOS table for two-ion plasmas, we first
choose a T grid uniformly spaced on a logarithmic scale.
For each temperature on the T grid, we solve the TF
equations for the two ions on density sub-grids ranging
from 1/2 to 5 times the respective cold-matter densities.
The properties of ion 2: ρ2, p2, and µ2, considered as
functions of electron density ne(2) are interpolated onto
the electron density grid of ion 1. In this way, Eq. 4 is
automatically satisfied at each point on the ne(1) grid.
We can verify that this procedure leads to p = p2 = p1

and µ = µ2 = µ1 for the interpolated values. Further-
more, we can now determine the density ρ of the two-ion
plasma at each point on the ne(1) grid using Eq. 3. In
this way, an EOS table is created for p as a function of
ρ and T . The approach is similar for a Purgatorio-based
EOS table for a multi-component material: we perform
Purgatorio calculations for the individual elements on a
(ρ, T ) grid and mix the tables according to the pressure
equality denoted in Eq. 4.
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76 P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev.

B 49, 16223 (1994).
77 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
78 S. Zhang, K. P. Driver, F. Soubiran, and B. Militzer,

High Energ. Dens. Phys. 21, 16 (2016).
79 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996).
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