
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Numerical Modeling of Rotating Neutron Stars and the Equation of State of Superdense 
Matter

Permalink
https://escholarship.org/uc/item/2kf0v7hf

Author
Farrell, Delaney

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kf0v7hf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Numerical Modeling of Rotating Neutron Stars and
the Equation of State of Superdense Matter

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computational Science

by

Delaney Farrell

Dissertation Committee:
Professor Fridolin Weber, Chair

Professor Pierre Baldi
Professor David Buote

Professor Calvin Johnson
Professor Daniel Whiteson

2024



Portions of Chapter 2 © 2024 IOP Publishing Ltd and Sissa Medialab
Portions of Chapter 3 © 2024 Wiley-VCH GmbH

Portions of Chapter 5 © 2023 IOP Publishing Ltd and Sissa Medialab
Portions of Chapter 6 © 2023 IOP Publishing Ltd and Sissa Medialab

All other materials © 2024 Delaney Farrell



DEDICATION

To my family, friends, and kitty girls.

”A society has no chance of success if its women are uneducated.”
- Khaled Hosseini, A Thousand Splendid Suns

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES xiv

ACKNOWLEDGMENTS xvii

VITA xix

ABSTRACT xxii

1 Superdense Matter and Neutron Stars 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Rotation and Stellar Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Neutron Star Masses and the Equation of State . . . . . . . . . . . . 10
1.4.2 Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 Tidal Deformability and Gravitational Waves . . . . . . . . . . . . . 14
1.4.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Notation and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Modeling Neutron Star Matter with the Relativistic Brueckner-Hartree-
Fock Formalism 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Coupled System of Many-Body Equations . . . . . . . . . . . . . . . 23
2.2.3 Self-Consistent Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Spectral Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Self-Energy (Mass-Operator) . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 One-Boson-Exchange (OBE) Interaction . . . . . . . . . . . . . . . . 31
2.2.7 The Brueckner Propagator . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.8 T-matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.9 Properties of Nuclear Matter at Zero Temperature . . . . . . . . . . . 36

iii



2.2.10 Extensions to Finite Temperatures . . . . . . . . . . . . . . . . . . . 38
2.3 Theoretical Framework for Calculating Neutron Star Properties . . . . . . . 41

2.3.1 Non-Rotating Compact Stars . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2 Rotating Compact Stars . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Properties of Dense Nucleonic Matter at Zero Temperature . . . . . . 44
2.4.2 Properties of Dense Nucleonic Matter at Finite Temperature . . . . . 46
2.4.3 Neutron Star Properties . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Differential Rotation in Compact Objects at Zero Temperature 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Metric Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Rotational Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Stellar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Results for Maximum Density at the Center of the Star . . . . . . . . . . . . 69
3.3.1 EOS Models using Relativistic Hartree-Fock (RHF) Theory . . . . . . 70
3.3.2 Stellar Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Particle Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Differential Rotation in Hot, Hypermassive Stars 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Modifications to the CST Algorithm . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Results for Maximum Density not at the Center of the Star . . . . . . . . . . 85

4.3.1 EOS Models using Relativistic Brueckner-Hartree-Fock (RBHF) Theory 85
4.3.2 Stellar Sequences Varying the Ratio of Polar to Equatorial Radius . . 86
4.3.3 Dynamical Bar-Mode Instability . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 Structural Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Equation of State Inference from Simulated X-ray Spectra using Machine
Learning 102
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 X-Ray Spectroscopy for Neutron Stars . . . . . . . . . . . . . . . . . 107
5.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4 Training Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.2 Modeling X-ray Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 Nuisance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Inference of EOS from Mass and Radius . . . . . . . . . . . . . . . . . . . . 117
5.5.1 Mass and Radius inference by XSPEC . . . . . . . . . . . . . . . . . 118
5.5.2 Inference of EOS from mass and radius . . . . . . . . . . . . . . . . . 120

iv



5.6 Inference of Mass and Radius from Spectra . . . . . . . . . . . . . . . . . . . 125
5.6.1 MR Net Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.2 MR Net Performance in Mass and Radius . . . . . . . . . . . . . . . 127
5.6.3 Network Uncertainty on Mass and Radius . . . . . . . . . . . . . . . 128
5.6.4 Revisiting EOS Regression . . . . . . . . . . . . . . . . . . . . . . . . 130

5.7 Inference of EOS from Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7.2 Training the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Equation of State Inference from Simulated X-ray Spectra using Machine
Learning Derived Likelihoods 146
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Machine-Learning Derived Likelihood Calculation . . . . . . . . . . . . . . . 148
6.3 Stellar Mass and Radius Inference . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.1 Learning the Model f to Model Stellar Spectra . . . . . . . . . . . . 151
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Equation of State Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4.1 Learning the Model h to Model Stellar Radius . . . . . . . . . . . . . 159
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Conclusions and Final Remarks 168
7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 173

Appendix A Partial Wave Expansion 191

Appendix B Numerical Scheme for T-matrix Calculation: Lambt 197

Appendix C Numerical Scheme for Differential Rotation: DRNS 203

Appendix D Supplemental Information for Machine-Learning-Derived Like-
lihoods 209

v



LIST OF FIGURES

Page

1.1 Phase diagram of the hot and dense matter, where the critical temperature
TCritical is ≈ 160−170 MeV. The light blue is representative of experiments at
the Large Hadron Collider (LHC), the yellow is the Relativistic Heavy Ion Col-
lider (RHIC), and the purple is the Facility for Antiproton and Ion Research
(FAIR) and the Nuclotron-based Ion Collider fAcility (NICA). Additionally
shown are the regimes for proto-neutron stars (PNS), binary neutron star
(BNS) mergers, atomic nuclei, and neutron stars. Similar diagrams can be
found in Refs. [1–3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The layered structure of a neutron star. . . . . . . . . . . . . . . . . . . . . . 4

2.1 A schematic for the factorization of the six-point Green’s function G3 in the
RBHF approximation. G3 is factorized into a product of four-point (G2) and
two-point (G1), where the dynamical two-body correlations are held in G2.
Ingoing states are un-primed, and outgoing are primed (see text for more detail). 23

2.2 The graphical representation of the T -matrix scattering equation. The single
dashed line shows the scattering of two particles via the OBE potential V , and
the summation occurs in the repeated scattering. The propagator Λ, given by
the product of two-point Green’s functions G1, describes the propagation of
intermediate particle states. Ingoing states are unprimed, and outgoing states
are primed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 A schematic for the particle-particle, antiparticle-antiparticle, and particle-
antiparticle T -matrix amplitudes shown in the direct terms of ΣΦΦ, Σθθ, and
ΣθΦ (Eqs. (2.35), (2.36), and (2.37)), where Φλ(k) denote the particle spinors
and θλ(k) denote the antiparticles spinors. . . . . . . . . . . . . . . . . . . . 35

2.4 The depletion of single-particle states with the inclusion of temperature. At
zero temperature, the Fermi-Dirac distribution becomes a step function Θ, as
described in Eq. (2.63). Higher temperatures smear the boundary, resulting
in filled states outside the Fermi sea. . . . . . . . . . . . . . . . . . . . . . . 40

2.5 The energy per nucleon E/A for the three Bonn potentials (A, B, and C)
compared to density ρ on the left and Fermi momentum pF on the right. The
top row with solid lines shows the momentum-dependent self-energy approx-
imation completed in the full basis, and the bottom row with dashed lines is
the momentum-averaged approximation. . . . . . . . . . . . . . . . . . . . . 46

vi



2.6 The compressibility K for the three Bonn potentials (A, B, and C) compared
to density ρ. The approximation using momentum-dependent self-energy is
shown on the left with solid lines and the approximation using momentum-
averaged self-energy is shown on the right with dashed lines. . . . . . . . . . 47

2.7 Energy per nucleon per nucleon E/A vs. density for asymmetric nuclear mat-
ter (ANM) calculated with the Bonn A potential at zero temperature. Shown
are varying values of the asymmetry parameter α ranging from 0 (SNM) to
1 (PNM), and compared to the APR method [4] shown with blue squares
(SNM) and red circles (PNM). . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Pressure as a function of energy density for all three Bonn potentials (A, B,
and C) for asymmetric nuclear matter with α = 0.8 (see text for more details). 49

2.9 Energy per nucleon per nucleon E/A vs. density of asymmetric matter (ANM)
calculated with the Bonn B potential for four different temperatures: 10, 30,
50, and 70 MeV. For each temperature, the asymmetry parameter α ranges
from 0 (SNM) to 1 (PNM). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.10 Free energy per nucleon F/A vs. density for SNM (left panel) and PNM (right
panel) calculated with the Bonn B potential. The plots show results for four
temperatures: 10, 30, 50, and 70 MeV. . . . . . . . . . . . . . . . . . . . . . 51

2.11 Pressure as a function of energy density calculated with the Bonn B potential
for asymmetric nuclear matter with α = 0.8. Shown are the zero-temperature
EOS and four models at temperatures 10, 30, 50, and 70 MeV. . . . . . . . . 51

2.12 Mass-radius relations for rotating (solid lines) and non-rotating (dashed lines)
neutron stars from EOS models computed with the RBHF approximation at
zero temperature using the Bonn A, B, and C potentials. Computations
use the full basis and a momentum-dependent self-energy (see text for more
details). The black contours show the confidence intervals for the mass and
radius of PSR J0030+451 [5], where the inner contour is the 95% and outer
is 68%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.13 Mass vs. central density ϵC from EOS models computed with the RBHF
approximation at a range of temperatures (T = 10, 30, 50, and 70 MeV)
using the Bonn B potential. Non-rotating stellar models are shown on the left
(dashed lines), and rotating models at the mass-shedding limit are shown on
the left (solid lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 A schematic for the physical deformation seen in rotating neutron stars. In
(A), the star is non-rotating and therefore spherically symmetric, and in (B)
the star takes on an ellipsoid shape under extreme uniform or less extreme
differential rotation. However, extreme differential rotation can result in (C)
quasi-toroidal or (D) fully toroidal stars. For (A) and (B), the center of the
star is the densest portion (signified by dark red), but in (C) and (D), the
densest portion is no longer in the center of the star. . . . . . . . . . . . . . 68

vii



3.2 Pressure vs. energy density for four EOS models constructed using RHF
theory at zero temperature. The black curve, denoted “npY”, describes hy-
pernuclear matter that does not contain ∆ isobars. The other three curves
contain both hyperons and ∆’s, parametrized by different values of the po-
tential depth V∆ (see text for more details). . . . . . . . . . . . . . . . . . . 73

3.3 Mass-radius relations for the hyperonic EOS npY constructed using RHF the-
ory at zero temperature. The dashed black line shows the non-rotating curve
resulting from the TOV equation, while the solid-colored lines are curves under
different degrees of differential rotation. Differential rotation is parameterized
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of rratio values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Mass vs. central density of differentially rotating neutron stars constructed
using the EOS model from the Bonn B potential at T = 30 MeV. The four
panes show values for four instances of the rotation parameter Â−1 for a range
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Neutron stars harbor dense nuclear matter in density and temperature regimes inaccessible in

terrestrial laboratory experiments. Understanding the interior of these stars and determining

the equation of state of such matter has been a forefront area of nuclear and astrophysics

research for decades, as the properties of neutron star matter are of key importance in

comprehending the early Universe, laboratory and particle physics, and other astrophysical

phenomena like supernovae and stellar mergers.

In this work, the determination of the equation of state of dense neutron star matter and

neutron star structure is approached in several ways. The first is through theoretical model-

ing carried out in the framework of relativistic quantum field theory at both zero and finite

temperatures. The calculated equation of state models are then used to compute the proper-

ties of neutron stars using Einstein’s theory of general relativity. Special emphasis is placed

on the structure and stability of differentially rotating compact objects, which may exist on

short timescales following extreme astrophysical events like binary neutron star mergers.

The second approach to determining the equation of state of dense neutron star matter

is based on machine learning, utilizing X-ray spectra and observable properties such as

mass and radius of neutron stars. A novel inference of the equation of state directly from
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simulated high-dimensional spectra of observed stars is compared with a calculation of the

full likelihood of the equation of state parameters, accomplished by replacing intractable

elements of the likelihood with machine learning models trained on samples of simulated

stars.
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Chapter 1

Superdense Matter and Neutron Stars

1.1 Introduction

A longstanding area of interest in nuclear and astrophysics is the exploration of the properties

of matter existing at extreme densities, pressures, and temperatures. Understanding the

properties of such matter, described succinctly by its equation of state (EOS), may better

our understanding of various research fronts: the early Universe, compact objects, laboratory

physics explored with particle colliders, and other extreme astrophysical phenomena like

core-collapse supernovae and stellar mergers. A phase diagram of the Universe is shown

in Figure 1.1; terrestrial laboratories with particle colliders like the Large Hadron Collider

(LHC) [12], Relativistic Heavy Ion Collider (RHIC) [13], the Facility for Antiproton and

Ion Research (FAIR) [14], and the Nuclotron-based Ion Collider fAcility (NICA) [15] probe

dense matter at high temperatures. On the other extreme, neutron stars contain one of the

densest forms of matter in the Universe, characterized by temperatures that are less than

1010 K (or around 1 MeV), effectively registering as zero temperature on the nuclear scale.

The conditions within a neutron star cannot be replicated in terrestrial laboratories, making
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Figure 1.1: Phase diagram of the hot and dense matter, where the critical temperature
TCritical is ≈ 160 − 170 MeV. The light blue is representative of experiments at the Large
Hadron Collider (LHC), the yellow is the Relativistic Heavy Ion Collider (RHIC), and the
purple is the Facility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion
Collider fAcility (NICA). Additionally shown are the regimes for proto-neutron stars (PNS),
binary neutron star (BNS) mergers, atomic nuclei, and neutron stars. Similar diagrams can
be found in Refs. [1–3].

them unique naturally-occurring laboratories to study matter in extreme conditions [16–21].

A newly born neutron star, also known as a proto-neutron star (PNS), and stellar binary

mergers containing neutron stars are also incredibly dense but are much hotter than a neutron

star, existing in a regime closer to being probed by particle colliders [22]. Determining the

EOS of both cold and hot superdense matter remains a forefront area of research, even after

decades of theoretical, experimental, and observational endeavors.

A neutron star is formed from the iron core of a massive star - one 8 to 25 times the mass

of our sun, M⊙. When the iron core of such a star surpasses the so-called Chandrasekhar

limit (1.4 M⊙), gravity overcomes the balance of forces within the star resulting in a core-
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collapse supernova, where the star expels much of its matter and leaves behind a neutron star.

Neutron stars are the densest observed stellar objects, typically harboring masses within the

range of 1 to 2 solar masses (M⊙) and radii spanning from 10 to 15 km. Their high mass and

small radius result in immense gravitational forces within the star, compressing the matter in

the innermost regions to densities up to an order of magnitude higher than nuclear saturation

density (2.5 × 1014 g/cm3). The high mass and extreme densities encountered within these

stars warp the geometry of spacetime considerably, so modeling of neutron stars must be

carried out in the framework of Einstein’s theory of general relativity. Beyond their extreme

densities, neutron stars may also be rotating rapidly and possess very strong magnetic fields.

To date, the fastest rotating neutron star, also known as a pulsar, is PSR J1748–2446ad

with a rotational frequency of 716 Hz [23]. Pulsars may also fall into a class of neutron stars

referred to as magnetars, which rotate at slow frequencies but have extremely high magnetic

fields (on the order of 1014 - 1015 G on their surface). Pulsars emit beamed radiation in the

form of radio, X-ray, and gamma rays which can be detected by radio telescopes like the

Parkes telescope [24] and FAST (Five hundred meter Aperture Spherical Telescope) [25], or

X-ray telescopes like NICER (Neutron star Interior Composition Explorer) [26], the Chandra

X-ray Observatory [27], and XMM-Newton [28].

In this dissertation, a variety of numerical techniques are used to explore the properties

of rotating neutron stars and superdense matter. The following sections give a theoretical

introduction to each topic explored and the motivation to study them.

1.2 Equation of State

The essential physics of matter within a neutron star can be succinctly summarized by

the equation of state (EOS), which describes the pressure-density relation within the star.

Because the matter within the core of a neutron star exists in a low-temperature, high-
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Figure 1.2: The layered structure of a neutron star.

density regime that cannot be replicated in laboratories or particle colliders, the EOS of

dense neutron star matter must instead be described by theoretical models that vary widely

due to particle composition and mathematical frameworks used to model such matter.

Figure 1.2 shows the composition of each region of a neutron star, which is believed to have

a layered structure. Theoretical modeling the EOS of neutron star matter is a formidable

task, as the density within a neutron star ranges from a few grams per cubic centimeter at

the surface to around 1015 g/cm3 at the core. The least dense portions of a neutron star are

its surface and outer crust region, where matter is compressed to densities up to 106 g/cm3.

The surface region is comprised of ordinary atomic nuclei (such as 56Fe) and non-relativistic

electrons; this is the region that emits thermal radiation that telescopes like NICER or the

Chandra X-ray Observatory can observe. In the outer crust, at densities on the order of 106−

1011 g/cm3, electrons become relativistic and form a relativistic electron gas. Additionally,

the atomic nuclei grow more neutron-rich because of the inverse β-reaction while forming

a Coulomb lattice. In the inner crust, which has densities in the range 1011 − 1014 g/cm3,
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atomic nuclei grow extremely neutron-rich to the point neutrons begin to drip out of the

nuclei and populate free states; the neutron-rich nuclei form clusters in a lattice and are then

immersed in a gas of relativistic electrons and neutrons [29–33].

The high-density region of a neutron star, its core, is composed of a relativistic Fermi liquid

of neutrons and protons. The liquid is extremely neutron-rich while maintaining a certain

fraction of protons, electrons, and muons to maintain chemical or β-equilibrium [34]:

µB = µn + qB(µe − µνe), (1.1)

where µB is the chemical potential of baryons B, neutrons (µn), electrons (µe), and electron

neutrinos (µνe), while qB is the baryon electric charge. Neutron star matter additionally

fulfills electric charge neutrality. The dense, neutron-rich matter in the core may reach

densities of up to 10 times nuclear saturation density, and as nuclear boundaries at such

high densities begin to overlap, the matter is expected to transition into non-nucleonic or

”exotic” states of matter. These states can take several forms: the onset of quark degrees

of freedom and deconfined quark matter [35–43] which may occur in color superconducting

phases [16, 18, 44, 45], boson condensates formed by pions or kaons [46–59], or the formation

of other matter with a high degree of strangeness carried by hyperons [60–65].

While the matter within the core of a neutron star cannot be replicated in terrestrial lab-

oratories, properties of laboratory neutron-rich nuclei can be used to define the EOS for

the crust (up to order 1011 g/cm3). The crust regions are thin, contributing very little to

the bulk properties of the star like its mass; below 1011 g/cm3, the crust only contributes

10−5 M⊙ to the mass. Today, two commonly used EOS models for the crust include Baym-

Pethick-Sutherland [66] and Baym-Bethe-Pethick [67] (BPS-BBP), or Harrison-Wheeler [68]

and Negele-Vautherin [69] (HW-NV).

The EOS of dense neutron star matter is modeled as a many-body problem that can be
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solved theoretically using different nuclear many-body theories which broadly fall into two

categories: phenomenological or ab initio [70–73]. Phenomenological models, based on den-

sity functional theories with effective nucleon-nucleon (NN) interactions, are constructed to

reproduce the empirical saturation properties of finite nuclei and symmetric nuclear matter

(SNM) while adhering to constraints extracted from nuclear physics and astrophysics [74–

76]. A popular method of constructing phenomenological models is the relativistic mean

field (RMF) approximation, also referred to as the relativistic Hartree approximation. This

methodology is expanded on in the relativistic Hartree-Fock (RHF) theory, where an ex-

change contribution (i.e. the Fock contribution) is added such that the final states of each

of the two baryons propagating in the many-body medium are interchanged [70].

In contrast to the effective NN interactions used in phenomenological models, ab initio meth-

ods use realistic NN interactions which are determined by nucleon-nucleon scattering data

and the properties of the deuteron. These NN interactions are characterized by a repulsive

core at short distances, a strong attraction in an intermediate range, and are dominated

by the one-pion exchange at large distances. Ab initio methods of this kind include the

quantum Monte Carlo method [77–79], the self-consistent Green’s function method [80], and

Brueckner-Hartree-Fock approaches [81–89]. Most ab initio calculations are constructed in a

non-relativistic framework, which can simulate the saturation behavior of symmetric nuclear

matter (SNM) using high-precision, realistic NN interactions [90]. To reproduce the satu-

ration properties of nuclear matter, non-relativistic calculations need to include three-body

interactions, which makes calculations to extend the theory to heavier nuclei very difficult.

On the other hand, relativistic ab initio methods, like the relativistic Brueckner-Hartree-

Fock (RBHF) approximation, more closely reproduce empirical data than non-relativistic

calculations [83, 91]. Unlike the RMF or RHF approximations, the RBHF approximation

couples the propagation of baryons to the many-body background and encapsulates dynam-

ical correlations between baryons, computed using a relativistic scattering (T ) matrix.
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Solving the nuclear many-body problem in a relativistic framework is considerably more

tedious (both theoretically and numerically) than non-relativistic methods as a self-consistent

spinor basis with positive and negative energy states is necessary. Because of this, studies

carried out using the RBHF approximation have historically been relatively rare in the

literature. However, there is a growing body demonstrating that variations of the RBHF

approximation are successful in reproducing the empirical saturation properties of SNM,

including the works of Refs. [83, 85, 89, 92–95]. Additionally, the vast majority of models of

neutron star matter are calculated at zero temperature which is suitable for certain classes

of neutron stars, but there is a vested interest within the nuclear astrophysics community

to carry out calculations at higher temperatures to model newly born neutron stars (proto-

neutron stars), core-collapse supernovae, and stellar merger events.

1.3 Rotation and Stellar Structure

The structure of a neutron star, including macroscopic properties like the mass and radius,

can be deduced from observation (a topic explored more in Section 1.4) or modeled theoret-

ically in the framework of Einstein’s theory of general relativity. The stellar equations for

neutron stars are derived from Einstein’s field equation, which is written as (µ, ν = 0, 1, 2, 3):

Gµν = 8πT µν(ϵ, P (ϵ)), (1.2)

where Gµν is the Einstein curvature tensor and T µν is the energy-momentum tensor. The

energy-momentum tensor contains the EOS (i.e. the energy density ϵ and pressure P (ϵ)) as

an input, meaning the stellar structure equations serve as a mapping between the EOS of

neutron star matter and macroscopic properties.
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The simplest form of stellar structure equations is the Tolman-Oppenheimer-Volkoff equa-

tion, which models non-rotating, spherically symmetric objects in hydrostatic equilibrium

[96, 97]. In this case, the stellar structure simplifies to an ordinary differential equation that

describes the pressure gradient within the star. For rotating stars, the calculations become

considerably more complicated. Rapid rotation deforms the structure of the star, which is

discussed more in Chapters 2 and 3. Additionally, rotation drags along the local inertial

frames inside and outside of the star so that they co-rotate, also known as frame-dragging,

which must be accounted for in the calculations [70, 98].

The vast majority of rotating neutron stars exhibit rigid body or uniform rotation, wherein

the entire star rotates as a singular entity, maintaining a consistent rotation rate. However,

following extreme astrophysical events like core-collapse supernovae or binary neutron star

mergers, a neutron star may rotate differentially as opposed to uniformly. A newly formed

proto-neutron star may experience some degree of differential rotation following a core-

collapse supernova, but the phenomena would be short-lived. Hydrodynamical forces in the

form of Ekman pumping and turbulent mixing will dampen any differential rotation in the

star within a few days [70]. Another avenue for a star to experience differential rotation is

following a binary neutron star merger event, where complex hydrodynamic motions come

into play during coalescence [99]. The resulting remnant star following the collision may

either promptly collapse into a black hole, or form a hypermassive neutron star depending on

the dynamics of the binary prior to merging. A hypermassive remnant star is likely stabilized

by thermal pressure and differential rotation on short, dynamical timescales. Modeling

differential rotation in neutron stars can provide a better understanding of the structure and

stability of these objects, an important task in the new era of multi-messenger astronomy.

There are only very few independent numerical codes that solve the stellar structure equa-

tions for uniformly rotating stars, some of which are open-source like RNS [100] and XNS

[101]. These codes follow different numerical schemes to varying accuracy; a full review
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can be found in Ref. [102]. Currently (to the best of my knowledge), there exists only

one open-source numerical code that models differential rotation in neutron stars, which is

included as a module of the Einstein Toolkit [103]. This module is a black box, which limits

the capability to customize, alter, or fine-tune the numerical scheme. Independent stud-

ies of differential rotation in neutron stars have been conducted in the literature [104–109].

Like those for uniform rotation, the numerical codes for differential rotation follow different

schemes, but many use the same linear rotation law, which is explored more in Chapters 3

and 4.

1.4 Observation

Observation has long served as an avenue for furthering our understanding of neutron stars

and superdense matter. In the last two decades, there has been an increasing amount of

high-quality, new data from X-ray and gamma-ray telescopes, including precisely timed

observations of pulsars [110]. Today, over 3,000 pulsars have been discovered, and their dis-

coveries have provided valuable constraints on various neutron star properties like mass and

radius, cooling [111], and magnetic fields [112]. As we move into an era of new-generation X-

ray telescopes, these constraints on neutron star properties and EOS are expected to tighten

even further. These discoveries will also aid in our understanding of other astrophysical

phenomena like core-collapse supernovae, r-process nucleosynthesis, and gravitational wave

emission [110].

The emission from a neutron star is directly influenced by macroscopic stellar properties

such as mass and radius, which are determined by the star’s underlying EOS. Therefore, in

principle, the EOS (which also determines such stellar properties) can be inferred from ob-

servations of stellar emission. In practice, crucial elements of the likelihood are not tractable,

preventing straightforward inference. For example, while the mass and radius can be calcu-
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lated from the EOS using the stellar structure equations, the equations cannot be trivially

inverted [113–119]. The task is further complicated by the small number of neutron star

observations and the relatively large uncertainty of the individual measurements. Instead,

the current state-of-the-art methods to place constraints on stellar properties use statistical

inference to fit emissions to theoretical models.

In this section, we discuss how physical properties like mass, radius, and tidal deformability

are deduced from spectral emission and gravitational waves, as well as how these properties

in turn place constraints on the nuclear EOS. For each property, the current state-of-the-art

inference methods are given, and a new inference method, machine learning, is introduced

as well.

1.4.1 Neutron Star Masses and the Equation of State

The mass of neutron stars is perhaps the most precisely measured neutron star property,

especially those coming from radio pulsar timing of neutron star masses in compact binaries

[1]. Observed values of masses of neutron stars [120] are extremely valuable measurements as

they test theories of nuclear matter and therefore provide constraints on the (nuclear) EOS.

A notable example of such a constraint resulted from the observation of massive neutron

stars. For several decades the canonical mass of a neutron star was thought to be around

1.4 M⊙, but recent observations of heavier neutron stars (≥ 2 M⊙) have widened the range

of masses that must be accounted for with theoretical EOS models. Heavy neutron stars

directly challenge theoretical models of dense nuclear matter in quantum chromodynamics

(QCD) if exotic degrees of freedom are taken into account. Observations of massive stars

enforced the requirement that EOS models for neutron star matter must produce maximum

stable masses of at least 2 M⊙. Such models are referred to as ”stiff” meaning they have a

larger pressure for a given density than a ”soft” model, so observations of massive neutron

10



stars ruled out many softer theoretical EOS models. An example of such a massive neutron

star is the millisecond pulsar MSP J0740+6620 with a measured mass of 2.14+0.10
−0.09 M⊙,

making it one of the heaviest millisecond pulsars observed thus far [121].

Radio pulsars, or highly magnetized, rotating neutron stars, that exist in binary stellar

systems generate radio pulses that can be precisely tracked as a method of determining

the binary’s mass [110]. Radio pulsars have long-term rotational stability, allowing for very

precise timing measurements of orbital motion. The binary mass function, f(M1,M2, i),

can be derived from measurements of five Keplerian parameters: the binary period Pb, the

projection of the pulsar’s orbital semimajor axis a on the line of sight x ≡ ai sin i, the orbital

eccentricity e, and time T0 and longitude ω0 of periastron ω [70]. The formula for the mass

function is given as:

f(M1,M2, i) ≡
(M2 sin i)3

(M1 +M2)2
=
Pbv

3
1

2πG
=

4π2x3

GP 2
b

, (1.3)

where G is Newton’s gravitational constant and v1 = (2π/Pb)x is the orbital velocity of star

M1 along the line of sight. Other relativistic effects, like the transverse Doppler effect and

gravitational redshift, can also be used to determine the pulsar and companion’s masses in

a binary system [70, 110].

Alongside other parameters, mass can also be inferred from stellar emission using other

observational techniques like waveform modeling, where a Bayesian inference approach is

employed to analyze X-ray waveform oscillations emitted by pulsars [5, 122]. X-ray oscilla-

tions can be observed from accretion-powered pulsars, thermal emission of rotation-powered

(or non-accreting) pulsars, or some thermonuclear bursts on accreting neutron stars [1]. It

is believed that the X-ray oscillations are emitted from a “hot spot” on the star’s surface, or

a region of the stellar surface that is both hotter than its surroundings and offset from the

rotational pole of the star. The pulse profile, or waveform, from the hot spot combined with
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general relativistic effects like light bending and Doppler boosting, can be used to determine

the mass and radius of the source. Pulse waveform modeling was pioneered using data from

X-ray telescopes like ROSAT and XMM-Newton, but the methodology has become more

popular recently with observations from NICER, which has extraordinary absolute timing

accuracy when determining the pulse profile of isolated neutron stars and those in binary

systems [5]. For example, NICER data was used to determine estimations for the mass and

radius of the isolated millisecond pulsars PSR J0030+0451 [5, 123] and PSR J0740+6620

(together with XMM-Newton data) [124, 125]. The latter study showed that although hav-

ing a mass ∼ 40% larger, the radii of PSR J0740+6620 and PSR J0030+0451 are of the

same order [123, 125]. This finding is all the more interesting when considering that the

determination of neutron star radius has historically been more difficult than mass, which is

discussed further below.

1.4.2 Radius

Historically, direct measurements of neutron star radius do not exist, and inference of ra-

dius using various techniques provides large uncertainties when compared to precise mass

measurements. Current methods for determining radius commonly rely on the spectroscopic

measurements of surface emission to either measure apparent angular size or look for effects

of the emission on neutron star spacetime [1, 110]. These methods broadly fall into one of

two categories: spectroscopic or timing measurements.

Spectroscopic measurements from either the surface emission of quiescent low-mass X-ray

binary (LMXB) systems or from thermonuclear bursts can be used to constrain the mass-

radius relation. If it is assumed that the surface spectrum is a diluted blackbody and the

source of the spectrum is at a known distance D, the mass-radius (M-R) relation of a slowly
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spinning neutron star can be defined as:

R2

(
1 − 2GM

Rc2

)−1

=
FD2f 4

c

σT 4
c

, (1.4)

where F is the measured flux, σ is the Stefan-Boltzmann constant, and Tc and fc are the color

temperature and color-correction factor, respectively [1]. The color temperature is assumed

to be larger than the star’s effective temperature, defined as Tc = fcTeff. The color-correction

factor fc is dependent on both the assumed atmospheric composition and effective surface

gravity, where fc ≈ 1.3−2 [1]. Under the same assumed conditions, the observed or apparent

radius Robs can be defined as:

Robs = R

(
1 − 2GM

Rc2

)−1/2

. (1.5)

The above approximation is reliant on several assumptions and exact measurements and

thus may not hold in various instances. In the case of strong magnetic fields, for example,

the assumptions of a specific atmospheric composition and a constant surface temperature

may be incorrect [110]. For rotating neutron stars that are rotating rapidly (i.e. not spin-

ning slowly), spin-dependent corrections must be applied to the observed angular size as a

Schwarzschild metric can not describe the spacetime due to frame dragging [110]. Additional

complications to the approximation are introduced if there is uncertainty when measuring

the exact distance D to the star.

Some uncertainties can be alleviated by choosing sources with low magnetic fields or those

that exist in globular clusters of known distances, which is why thermal emission from sources

like LMXBs in quiescence is at the forefront of constraining the neutron star mass-radius

relation. The observed thermal spectrum can be fit to a well-motivated theoretical model

dependent on the assumed atmosphere of the neutron star in a process called spectral fitting.

Many of these theoretical models assume quiescent LMXBs have pure hydrogen atmospheres
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as the companion stars are hydrogen-rich, but other atmospheric compositions like helium

and carbon have also been explored in the literature [126].

As mentioned in the section above, the mass-radius relation can also be explored through

X-ray timing techniques like waveform modeling, spin measurements, and asteroseismology.

While further explanation of these techniques will not be discussed explicitly, the reader can

find more information at [1, 5, 125, 127].

1.4.3 Tidal Deformability and Gravitational Waves

The tidal deformability of compact objects is an important physical quantity for gravitational-

wave (GW) astronomy. The main reason is that it determines the pre-merger GW signal in

binary neutron star merger events. Working up to linear order, the tidal deformability λ is

given by [128]:

λ = − εij
Qij

, (1.6)

where εij denotes the external gravitation field produced by the external source and Qij is

the induced mass-quadrupolar moment of the given object. In addition, λ is related to the

second Love number, k2, and the radius of the compact object, R, by [128]:

λ =
2

3
k2R

5. (1.7)

Finally, the dimensionless tidal deformability, Λ, is defined by [128]:

Λ =
λ

M5
, (1.8)
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where the M denotes the gravitational mass of the compact star. For details on how theo-

retical calculations related to this quantity are performed, the interested reader can refer to

Refs. [128, 129] and references therein.

The detection by LIGO and Virgo observatories of the gravitational waves emitted dur-

ing event GW170817, a binary neutron star merger (see, for example, [130] and references

therein) together with its electromagnetic counterpart (see, for example, [131], and references

therein) allow to estimate the possible masses, radius and dimensionless tidal deformability

of the merging objects. Additionally, the dimensionless tidal deformability of a canonical

neutron star was estimated to be Λ1.4 = 190+390
−120 at a 90% level with no strong restrictions

to the EOS are imposed [130].

1.4.4 Machine Learning

In recent years, the application of machine learning to scientific problems has exploded, in-

cluding the application to the inference of neutron star properties and the EOS. Machine

learning has been used previously for data analysis in the natural sciences [132], increasing

the power of valuable data [133] while naturally propagating uncertainties [134]. Applica-

tions in particle physics have used larger and deeper neural networks powered by advances in

hardware processing to tackle more complex and higher-dimensional tasks [135, 136]. In as-

trophysical contexts such as regression of neutron star parameters where the likelihood is not

tractable and analytical inversion is not feasible, simulation-based inference techniques [137]

have been explored. For example, recent work from Fujimoto et al [6, 7] demonstrated re-

gression of neutron star matter EOS from mass-radius pairs, where networks are trained

on samples of simulated stars and uncertainties are drawn from an ad-hoc Gaussian model.

Morawski [8] also performed regression from mass-radius pairs to EOS assuming Gaussian

uncertainty and attempted to reduce EOS parameterization dependence. Soma et al [138]
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regressed both EOS and mass-radius information through a set of connected modes: density

values are used to determine pressure values using a deep neural network, and the regressed

pressure values are then used to generate mass-radius pairs using a generative deep learning

model. Ferreira [9] instead regressed EOS from radius and tidal deformation information

using support vector machines (SVMs) and deep neural networks (DNNs).

1.5 Projects

This thesis is comprised of three main projects, involving the modeling of dense neutron star

matter at zero and finite temperatures, the modeling of differential rotation in neutron stars,

and using machine learning to deduce the EOS of neutron star matter from observed X-ray

spectra. In detail:

Project 1: In the next chapter of this thesis, Chapter 2, we numerically model the EOS

of neutron star matter using the RBHF formalism. Calculations are carried out at zero

temperature to describe conventional neutron stars, as well as at finite temperatures up to

70 MeV which can be used to model proto-neutron stars or binary neutron star mergers.

The EOS models are then used to calculate the bulk properties of both non-rotating and

uniformly rotating neutron stars.

Project 2: As shown throughout the literature, the calculated properties of uniform and

differential rotation depend not only on the mathematical framework used to solve Einstein’s

field equations but also on the underlying EOS [70, 102, 104, 105, 139]. In Chapter 3,

we numerically model differential rotation in neutron stars to explore the structure and

stability of hypermassive stars, using modern EOS models that include strange matter. In

Chapter 4, we extend the calculations to matter at finite temperatures, specifically using

models constructed using the RBHF formalism described in Chapter 2. For the differentially
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rotating stellar models constructed at finite temperatures, we classify models as stable or

unstable to excitation of the dynamical bar-mode instability and provide examples of the

physical structures of unstable models.

Project 3: The vast majority of published studies that use machine learning techniques

to determine the EOS of neutron star matter from observed stellar properties (like mass

and radius) make simplifications to handle uncertainties in the regression task. None begin

directly with stellar emission from which the observed properties are derived. In Chapter 5,

we demonstrate regression of EOS directly from simulated X-ray spectra from neutron stars

without collapsing to intermediate states of observable properties like mass and radius, and

where uncertainty due to unknown values of other stellar parameters is fully propagated. In

Chpater 6, we instead infer EOS from simulated X-ray spectra by constructing an otherwise

intractable likelihood by replacing the intractable elements with neural networks trained on

samples of simulated stars.

1.6 Notation and Abbreviations

This section provides information on the notation and mathematical conventions used in this

thesis.

Modeling neutron stars is carried out in the framework of Einstein’s theory of general rel-

ativity. In this framework, the coordinates of an event are generally written as xµ where

Greek indices (µ in this case) take values from 0 to 3 corresponding to four dimensions. The

first, x0, is the time coordinate, and the last three, x1, x2, and x3, are the space coordinates.

Additionally, equations shown throughout this thesis use Einstein’s summation notation,

where any index that is repeated in a product is summed over.
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Table 1.1: Common abbreviations used throughout this thesis.

Abbreviation Meaning
EOS equation of state

SNM/ANM symmetric/asymmetric nuclear matter
OBE one boson exchange
PNM pure neutron matter
PNS proto-neutron star
BNS binary neutron star, in the context of BNS merger events
CST Cook-Shaprio-Teukolsky, differential rotation algorithm [104]

RBHF relativistic Brueckner-Hartree-Fock
RHF relativistic Hartree-Fock
RMF relativistic mean field
ML machine learning
NN neural network

For the context of this work, the metric tensor gµν is defined as [97]:

gµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.9)

in matrix notation. The equations appear throughout the text using geometrized units,

where the gravitational constant G, the speed of light c, and Planck’s constant ℏ are all set

to 1. The Dirac matrices used are in the Bjorken-Drell notation [140, 141].

In many of the chapters, bulk properties of neutron stars like mass and radius are calculated.

If not otherwise specified, the mass M will always refer to the gravitational mass, and the

radius R refers to the equatorial radius.

Several abbreviations are commonly used throughout the text, which can be found in Ta-

ble 1.1. These abbreviations will be mentioned and redefined at the first use in each chapter.
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Chapter 2

Modeling Neutron Star Matter with

the Relativistic

Brueckner-Hartree-Fock Formalism

This chapter presents text and results from work in collaboration with Fridolin Weber that

has been accepted for publication in the Astrophysical Journal.

2.1 Introduction

There is a particular interest in the fields of nuclear and astrophysics to learn and model the

equation of state (EOS) of nuclear matter under extreme conditions. For superdense nuclear

matter, far beyond its saturation point, this knowledge is paramount to the study of neutron

stars whose core densities can reach an order of magnitude higher than saturation density.

However, the unique internal conditions within a neutron star are well beyond the reach

of our terrestrial laboratories, namely due to the extreme densities exhibited in the inner
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regions of the star and because the matter is highly isospin-asymmetric (N ̸= Z) [20, 142].

Some experimental constraints on neutron star matter have come from ultra-relativistic

heavy-ion collisions (as conducted at the RHIC [143], the LHC [144], and FAIR [145]),

which probe the nature of hot, symmetric nuclear matter. Extremely neutron-rich matter

has more recently been probed in studies of neutron skin or giant monopole and dipole

resonances, but these studies are limited in nature [146]. Unfortunately, these experiments

currently lack the temperature and density constraints present within the core of a neutron

star - meaning the dense matter encountered within a neutron star cannot yet be replicated

by experiment. Other promising avenues to constraining the knowledge of the equation

of state of neutron star matter come from multi-messenger astronomy; vital constraints

have come from telescopes like the Neutron Star Interior Composition Explorer (NICER)

[147] and NASA’s Chandra Observatory [148], or more recently, from the gravitational wave

observatories LIGO [149] and Advanced Virgo [150].

As mentioned in Chapter 1, the vast majority of theoretical EOS models for neutron star mat-

ter, especially those calculated using a relativistic framework like the relativistic Brueckner-

Hartree-Fock (RBHF) approximation, are done at zero temperature. However, finite tem-

perature EOS models are vital to understanding various astrophysical phenomena like core-

collapse supernovae, binary neutron star mergers, and proto-neutron stars. In this chapter,

we extend the RBHF approximation in full Dirac space to finite temperatures. For asym-

metric nuclear matter (ANM), we produce EOS models for dense neutron star matter at

both zero and finite temperatures, which are then used to calculate bulk properties of both

rotating and non-rotating neutron stars. This chapter is organized as follows: the theoretical

framework of the RBHF theory and the modifications for the inclusion of temperature are

shown in Section 2.2. The theoretical framework for calculating properties of neutron stars,

rotating and non-rotating, is discussed in Section 2.3. Section 2.4 shows the calculated re-

sults, including properties of nuclear matter at zero and finite temperature, and the resulting

bulk properties of neutron stars. Section 2.5 presents the summary of the work.
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2.2 Theoretical Framework

The general theory for modeling nuclear matter in the RBHF approximation is outlined

in extensive detail in Refs. [70, 83]; the information presented in this chapter follows di-

rectly from the aforementioned references. Nuclear matter at supranuclear densities can be

described from the framework of nuclear physics as a complex, many-body system whose

dynamics are governed by the Lagrangian density:

L = LN +
∑
M

(LM + LMN), (2.1)

where LN denotes the Lagrangian of non-interacting nucleons and LM is the Lagrangian

of different free meson fields M = σ, ω, ρ, π, ϕ, δ, η. LMN describes the interaction between

nucleons and mesons; a complete description of the interaction Lagrangians is given in Eqs.

(2.3) - (2.12) in Ref. [83]. The interactions caused by various meson fields in the proposed

relativistic model are taken into account by an effective relativistic single-particle potential

or self-energy [151]. The vital distinction of RBHF theory is that nucleons in this system are

treated as effective Dirac particles, which can be described by the relativistic Dirac equation:

(iγµ∂µ −m)Φ =
∑
M

ΓM Φ , (2.2)

where γµ are the Dirac matrices, m is the particle mass, Φ represents the spinors, and ΓM

are the meson-nucleon vertices.

2.2.1 Green’s Functions

The equations of motion for the various particle fields within the many-body system are

derived from the Euler-Lagrange equation and solved using the Martin-Schwinger hierarchy
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of coupled Green’s functions [152]. The Green’s functions, denoted by Gn, are defined as

ground-state (|Φ0⟩) expectation values of time-ordered field operators and contain informa-

tion vital to the structure of the many-body system [70, 83]. To describe the propagation of

n nucleons relative to the many-body background, the 2n-point Green’s function is defined

as:

Gn(1...n, 1′...n′) = in⟨Φ0 | T (ψξ1(x1)...ψξn(xn) ψ̄ξ1(x1)...ψ̄ξn(xn)) | Φ0⟩ , (2.3)

where the integers 1 to n denote the spacetime coordinates (x01, x⃗1) . . . (x
0
n, x⃗n) with corre-

sponding spin-isospin coordinates ξ1 . . . ξn. The nucleon fields are represented by ψ. T̂ is the

time-ordering operator, which is defined such that the operators are ordered in time accord-

ing to the values of their associated time parameters. For example, if t1 < t2 < . . . < tn, the

operators are arranged in ascending order of time.

The RBHF approximation accounts for dynamical two-body correlations by using a six-point

Green’s function, which is factorized into products of four- and two-point functions (shown

schematically in Figure 2.1). Therefore the nucleonic three-body force is reduced to an ef-

fective two-body force by averaging over the third nucleon in the medium [153]. Figure 2.1

shows ingoing (un-primed) particles entering a medium, scattering, and exiting in outgo-

ing (primed) states. Here, Green’s functions G act as particle propagators from ingoing to

outgoing states. Within the approximation, the four-point Green’s function preserves the

dynamical two-body correlations and the third body (particle 3 in the schematic) only con-

tributes as a spectator. The key differentiation between the RBHF approximation and other

many-body approximations like the relativistic mean-field (RMF) and Hartree-Fock (RHF)

approximations is the inclusion of dynamical correlations within the scattering or T -matrix,

as will be discussed below. For both RMF and RHF, particles propagate independently from

each other in the medium, meaning dynamical correlations are ignored. Both approxima-

tions factor the four-point Green’s function into products of two-point functions, where RHF
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Figure 2.1: A schematic for the factorization of the six-point Green’s function G3 in the
RBHF approximation. G3 is factorized into a product of four-point (G2) and two-point
(G1), where the dynamical two-body correlations are held in G2. Ingoing states are un-
primed, and outgoing are primed (see text for more detail).

expands on RMF by including an ”exchange” or Fock contribution.

2.2.2 Coupled System of Many-Body Equations

To describe the properties of a dense, many-body system, the formal structure of the RBHF

approach is to solve a highly nonlinear, coupled system of equations. This approach first

begins with solving for G1 for all nucleons using the Dyson equation, which in position space

is defined as:

G1 = G0
1 +G0

1 ΣG1 , (2.4)

where G0
1 represents the free nucleon Green’s function and the influence of the surrounding

nucleons is expressed by the nucleon self-energy, Σ. Under the Fourier transformation, the

Dyson equation is represented as:

[/p−m− Σ(p)]G1(p) = 1 , (2.5)
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where /p = γµpµ = γµgµνp
ν = γ0p0 −

∑3
i=1 γ

ipi and γ0 and γi are the Dirac matrices. Once

the 2-point G1 function is solved for, the in-medium scattering matrix, here referred to as

the T -matrix, is solved for. It is given by a Bethe-Salpeter-type integral equation:

T= V +
∫
V ΛT , (2.6)

where Λ is the intermediate nucleon-nucleon propagator, which takes the form of the Brueck-

ner propagator in the RBHF approach (discussed further in Section 2.2.7). V is represen-

tative of repeated sums of two-particle interactions given by a one-boson-exchange (OBE)

potential, which describes the interaction among two nucleons in terms of the exchange

of scalar, pseudo-scalar, and vector mesons. It can be written as a sum over meson (M)

contributions:

⟨1 2 |V | 3, 4⟩ =
∑
M

⟨1 2 |VM | 3, 4⟩ , (2.7)

where the numbers 1 to 4 denote time and space (or momentum). In the same vein, Eq.

(2.6) can be written as:

⟨1 2 |T | 1′, 2′⟩ = ⟨1 2 |V | 1′ 2′ − 2′ 1′⟩ + ⟨1 2 |V | 3, 4⟩Λ(3 4, 5 6) ⟨5 6 |T | 1′, 2′⟩. (2.8)

which constitutes a four-dimensional integral equation. In momentum space, the integral

equation is given as:

T (P ; p, p′) = V (p− p′) +

∫
d4p′′

(2π)4
V (p− p′′) Λ

(
P

2
+ p′′,

P

2
− p′′

)
T (P ; p′′, p′) , (2.9)

where the momenta p, p′, and p′′ denote the relative four-momenta in the final, initial, and

intermediate state, respectively, and P is the total momenta. The matrix elements of the

OBE potential V serve as an input to solve the matrix elements of T . The last coupled
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equation in the formal scheme is for the self-energy or mass operator Σ, given by an explicit

sum over matrix elements in terms of the T -matrix and the two-point Green’s function:

Σ(1, 2) = −i⟨1 4 |T | 5 2⟩G1(5, 4). (2.10)

In momentum space, Σ is written as:

Σ(p) =
i

(2π)4

∫
d4p′

[〈
p− p′

2

∣∣∣∣T̂ (p+ p′)

∣∣∣∣p− p′

2

〉
−
〈
p− p′

2

∣∣∣∣T (p+ p′)

∣∣∣∣p′ − p

2

〉]
G1(p

′).

(2.11)

The system of coupled equations follows an iterative process to determine solutions to the

above equations. To begin, the self-energy Σ can be first calculated using a simplified

approximation like the RHF approach. These calculated values are then used in the first

step to determine the spectral functions Ξ (Eqs. (2.30) and (2.32)) and single particle

energies ω (Eq. (2.31)). The T -matrix equations can be then solved to determine new values

for Σ to be used in the next iterative step until convergence is achieved. Once converged,

properties of nuclear matter (symmetric and asymmetric) which define the equation of state

can be calculated.

2.2.3 Self-Consistent Basis

The integral equation that determines the T -matrix, Eq. (2.6), has 256 elements with respect

to spin indices, making the computation extremely complicated. A method to simplify the

numerical process is to introduce a complete basis of particles (Φλ) and antiparticles (θλ),

where λ = ±1/2 are the helicity eigenvalues. The complete basis decouples the integral

equations and makes the two-body propagator Λ diagonal, thereby breaking the self-energy
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Σ into scalar Σs, vector Σv, and time-like Σ0 components:

Σ(p) = Σs(p)1 + Σv(p)

(
p⃗

|p⃗|
· γ⃗
)

+ Σ0(p) γ
0 , (2.12)

where 1 is the 4 × 4 unity matrix. From Eq. (2.12), the particle spinors obey:

[p0 − Σ0(p)]γ
0 − γ⃗ · p̂[|p⃗| + Σv(p)] − [m+ Σs(p)]Φl(p) = 0 , (2.13)

where p̂ = p⃗/|p⃗| is the momentum unit vector. The particle spinors are thus a solution of

Eq. (2.13):

Φλ(p) =

[
ϵ(p)

2m∗(p)

]1/2  1

2λp∗(p)
ϵ(p)

⊗ |λ⟩ , (2.14)

where m∗ = m + Σs(p) is the effective mass, p∗ = |p⃗| + Σv(p) is the effective momentum,

and ϵ(p) = E(p) − Σ0 +m∗. The quantities m∗ and p∗ are self-consistent and determine the

particle spinors, which is why the basis can be referred to as self-consistent as well.

In Eq. (2.14), the quantity |λ⟩ is representative of the eigenstates of the helicity operator ĥ:

ĥ = s · p
|p|

=
1

2
σ · p

|p|
, (2.15)

where:

1

2
σ · p

|p|
|λ⟩ = λ|λ⟩ , (2.16)

with eigenvalues λ = ±1/2 [70]. Here, σ are the Pauli matrices and p/|p| = p̂ is the
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momentum unit vector. The particle spinors obey the following:

1

2
σ · p̂Φλ(p) = λΦλ(p). (2.17)

The anti-particle spinors are defined as:

θλ(p) =

[
ϵ(p)

2m∗(p)

]1/2 2λp∗(p)
ϵ(p)

1

⊗ |λ⟩ , (2.18)

and can be neatly defined in terms of the particle spinors by the relation:

θλ(p) = γ5Φλ(p) , (2.19)

just with negative energy and reversed momentum and helicity [70, 83]. The symbol γ5 =

−iγ0γ1γ2γ3 is comprised of the Dirac matrices. The particle and anti-particle spinors obey

standard orthogonality:

Φ̄λ(p) Φλ′(p) = δλλ′ ,

θ̄λ(p) θλ′(p) = δλλ′ ,

Φ̄λ(p) θλ′(p) = θ̄λ′(p)Φλ(p) = 0.

(2.20)

2.2.4 Spectral Function

An elegant technique used to make the many-body equations numerically tractable and to

calculate the key quantities of many-body systems is to utilize the spectral representation of

the G1 function [83]. G1 can then be defined in Fourier space at zero temperature as:

G1(p) =

∫
dω

Ξ(ω, p⃗)

ω − (p0 − µ)(1 + iη)
, (2.21)
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where Ξ is the spectral function dependent on the single particle energy ω. The quantity µ

is the chemical potential of a nucleon, and η is used to circumvent a singularity occurring as

the integral is carried out in the complex plane. Within the self-consistent basis {Φλ, θλ},

the matrix elements for the particle and anti-particle spectral functions are given by the

following equations. The matrix elements for the particle contribution are given by:

⟨Φλ(ω1, p⃗)|Ξ1(p⃗) |Φλ(ω1, p⃗)⟩ = δλλ′n1(p⃗) , (2.22)

⟨θλ(ω1, p⃗)|Ξ1(p⃗) |θλ(ω1, p⃗)⟩ = δλλ′ O
[
∂Σ

∂ω

]
, (2.23)

⟨Φλ(ω1, p⃗)|Ξ1(p⃗) |θλ(ω1, p⃗)⟩ = ⟨θλ(ω1, p⃗)|Ξ1(p⃗) |Φλ(ω1, p⃗)⟩ = δλλ′ O
[
∂Σ

∂ω

]
, (2.24)

where ”1” denotes the particle (positive energy) contribution. Similarly, the matrix elements

for the anti-particle contribution are given by:

⟨θλ(ω2, p⃗)|Ξ2(p⃗) |θλ(ω2, p⃗)⟩ = δλλ′n2(p⃗) , (2.25)

⟨Φλ(ω2, p⃗)|Ξ2(p⃗) |Φλ(ω2, p⃗)⟩ = δλλ′ O
[
∂Σ

∂ω

]
, (2.26)

⟨Φλ(ω2, p⃗)|Ξ2(p⃗) |θλ(ω2, p⃗)⟩ = ⟨θλ(ω2, p⃗)|Ξ2(p⃗) |Φλ(ω2, p⃗)⟩ = δλλ′ O
[
∂Σ

∂ω

]
, (2.27)
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where ”2” denotes the antiparticle (negative energy) contribution. The function n(p⃗) is

defined as:

ni(p⃗) =

[
m∗∣∣W −

(
m∗ ∂ΣS

∂ω
+ p∗ ∂ΣV

∂ω
+W ∂Σ0

∂ω

)∣∣
]
p0=ωi(p⃗)

, (2.28)

where, for ωi(p⃗), i = 1, 2 for particles and antiparticles, respectively.

Once the matrix values of Ξ are determined in the self-consistent basis, the spectral function

can be decomposed into scalar Ξs, vector Ξv, and time-like Ξ0 components:

Ξ(ω, p⃗) = Ξs(ω, p⃗) + Ξv(ω, p⃗)(p⃗ · γ⃗) + Ξ0(ω, p⃗)γ
0 . (2.29)

Ξ is comprised of contributions from both particles and antiparticles in the many-body

system, which is shown explicitly in the expression:

Ξ(ω, p⃗) = sign[ω1−Σ0(ω1, p⃗)] Ξ1δ(ω+µ−ω1)+sign[ω2−Σ0(ω2, p⃗)] Ξ2δ(ω+µ−ω2) , (2.30)

The single-particle energies, ω1 for particles and ω2 for antiparticles, are defined as (i = 1,2):

ωi = Σ0(ωi, p⃗) + (−1)i+1
√

(m+ Σs(ωi, p⃗))2 + (p⃗+ Σv(ωi, p⃗)2 , (2.31)

and are used to find the scalar, vector, and time-like components of A for both particles and

antiparticles (i = 1,2):

Ξi, s(p) =
m+ Σs(p)

| ∂F
∂ωi

(p)|
· sign(ωi) ,

Ξi, v(p) =
p+ Σv(p)

| ∂F
∂ωi

(p)|
· sign(ωi) ,

Ξi, 0(p) =
ωi − Σ0(p)

| ∂F
∂ωi

(p)|
· sign(ωi) ,

(2.32)

29



where p = |p⃗| and

F (ω) = (m+ Σs(ω, p))
2 + (p+ Σv(ω, p))

2 − (Σ0(ω, p) − ω)2. (2.33)

2.2.5 Self-Energy (Mass-Operator)

As shown in the previous sections, the self-energy Σ becomes diagonal with the definition

of the self-consistent basis. To calculate the scalar, vector, and time-like components of Σ

shown in Eq. (2.10), the components are first calculated in the self-consistent basis. The

components are given by ΣΦΦ(p) = ⟨Φλ(p) |Σ(p) |Φλ(p)⟩, with Σθθ and ΣΦθ defined similarly.

The scalar, vector, and time-like components of Σ are expressed in the self-consistent basis

as:

Σs(p) =
1

2
[ΣΦΦ(p) − Σθθ(p)] ,

Σv(p) = p∗(p) − |p⃗| ,

Σ0(p) =
1

2

W (p)

m∗(p)

[
ΣΦΦ(p) + Σθθ(p) −

p∗(p)

m∗(p)
ΣΦθ(p)

]
,

(2.34)

where W (p) = (m∗(p)2 + p∗(p)2)1/2. Equations (2.34) can also be rearranged and solved

for ΣΦΦ, Σθθ, and ΣΦθ. The above equations show the momentum-dependent self-energies

computed in the full basis, but this procedure can also be made less complicated by using

momentum-averaged self-energies (still as a self-consistent calculation). The results shown in

Section 2.4 will compare the full momentum dependence calculations to momentum-averaged

calculations.

The determination of the components of Σ in the self-consistent basis requires the knowledge

of the particle-particle scattering amplitude and the particle-antiparticle scattering ampli-

tude, which are contained in the T -matrix [70]. Thus, the self-energy components obey the
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following equations:

ΣΦΦ(p) =
1

2

∑
B

∫
d3p

(2π)3
[⟨Φλ(p),Φλ′(p

′)|T |Φλ(p),Φλ′(p
′)⟩−

⟨Φλ(p),Φλ′(p
′)|T |Φλ′(p

′),Φλ(p)⟩]nB1 (p′)Θ(pB
′

F − p′) ,

(2.35)

Σθθ(p) =
1

2

∑
B

∫
d3p

(2π)3
[⟨θλ(p), θλ′(p

′)|T |θλ(p), θλ′(p
′)⟩−

⟨θλ(p), θλ′(p
′)|T |θλ′(p′), θλ(p)⟩]nB1 (p′)Θ(pB

′

F − p′) ,

(2.36)

ΣθΦ(p) =
1

2

∑
B

∫
d3p

(2π)3
[⟨θλ(p),Φλ′(p

′)|T |Φλ(p),Φλ′(p
′)⟩−

⟨θλ(p),Φλ′(p
′)|T |Φλ′(p

′),Φλ(p)⟩]nB1 (k′)Θ(pB
′

F − p′) ,

(2.37)

where B sums protons and neutrons and Θ is the Heaveside step function evaluated at the

Fermi momentum pF .

2.2.6 One-Boson-Exchange (OBE) Interaction

The RBHF approximation is considered ”parameter-free” due to the use of meson-exchange

potentials created from scattering data and properties of the deuteron. The RBHF ap-

proximation can also be referred to as the relativistic ladder approximation as two-particle

scattering processes, where the meson exchange occurs, are summed infinitely to calculate

dynamical two-body correlations. This process is shown schematically in Figure 2.2. The

OBE potential V depends on the nature of nucleon-meson couplings, shown visually with

the red vertices Γ in the diagram. For numerical stability, these vertices are replaced with

form factors F that are adapted for the specified OBE model (see Ref. [70] for an in-depth

explanation). For the context of this work, we use three potentials constructed by Brock-
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Figure 2.2: The graphical representation of the T -matrix scattering equation. The single
dashed line shows the scattering of two particles via the OBE potential V , and the summation
occurs in the repeated scattering. The propagator Λ, given by the product of two-point
Green’s functions G1, describes the propagation of intermediate particle states. Ingoing
states are unprimed, and outgoing states are primed.

mann and Machleidt [85], known colloquially as the Bonn potentials (denoted by A, B, and

C). The values for the coupling constants and cut-off masses in these three potentials are

given in Appendix B. They use the following form factor:

F (p, p′) =
Λ2
α −m2

M

Λ2
α + (p′ − p)2

, (2.38)

where mα is the meson mass of meson type α (scalar, pseudovector, and vector) and Λα is

the corresponding cut-off mass.

The determination of the matrix elements of V , computed for scalar, pseudovector, and

vector mesons, has the form ⟨Φλ′1
(p′1),Φλ′2

(p′2)|Vα |Φλ1(p1),Φλ2(p2)⟩, which can be written in

short-hand notation as:

⟨λ′1λ′2p′|Vα |λ1λ2p⟩ = ⟨Φλ′1
(p′1),Φλ′2

(p′2)|Vα |Φλ1(p1),Φλ2(p2)⟩ , (2.39)

for each meson type α. Similar redefinitions are made for the mixed particle-antiparticle
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matrix elements:

⟨λ′1λ′2p′|Uα |λ1λ2p⟩ = ⟨θλ′1(p
′
1),Φλ′2

(p′2)|Vα |Φλ1(p1),Φλ2(p2)⟩,

⟨λ′1λ′2p′|Wα |λ1λ2p⟩ = ⟨θλ′1(p
′
1),Φλ′2

(p′2)|Vα |Φλ1(p1), θλ2(p2)⟩,

⟨λ′1λ′2p′|Zα |λ1λ2p⟩ = ⟨θλ′1(p
′
1),Φλ′2

(p′2)|Vα |θλ1(p1),Φλ2(p2)⟩.

(2.40)

The matrix elements for scalar mesons (α = s), for example, then take the form:

⟨λ′1λ′2p′|Vs |λ1λ2p⟩ = −g2s∆0
S(p, p′)S(p′, p)×(

1 − 4λ′1λ1p
′
1
∗p∗1

ϵ′1ϵ1

)(
1 − 4λ′2λ1p

′
2
∗p∗2

ϵ′2ϵ2

)
⟨λ′1λ′2| 1 |λ1λ2⟩ ,

(2.41)

⟨λ′1λ′2p′|Us |λ1λ2p⟩ = −g2s∆0
S(p, p′)S(p′, p)×(

2λ′1p
′
1
∗

ϵ′1
− 2λ1p

∗
1

ϵ1

)(
1 − 4λ′2λ1p

′
2
∗p∗2

ϵ′2ϵ2

)
⟨λ′1λ′2| 1 |λ1λ2⟩ ,

(2.42)

⟨λ′1λ′2p′|Ws |λ1λ2p⟩ = −g2s∆0
S(p, p′)S(p′, p)×(

2λ′1p
′
1
∗

ϵ′1
− 2λ1p

∗
1

ϵ1

)(
2λ′2p

′
2
∗

ϵ′2
− 2λ2p

∗
2

ϵ2

)
⟨λ′1λ′2| 1 |λ1λ2⟩ ,

(2.43)

⟨λ′1λ′2p′|Zs |λ1λ2p⟩ = −⟨λ′1λ′2p′|Vs |λ1λ2p⟩ , (2.44)

where ∆0
S(p, p′) is the free meson field equation, ϵ = m∗ +W , and S is:

S(p′, p) =
1

4

[
ϵ′1
m∗

1
′
ϵ1
m∗

1

ϵ′2
m∗

2
′
ϵ2
m∗

2

]1/2
. (2.45)

Similar relations for the pseudovector and vector meson matrix elements are detailed in [70].
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2.2.7 The Brueckner Propagator

The generalized mathematical formalism described throughout this text can use any rel-

ativistic propagator, but the Brueckner propagator has been shown in the literature to

produce saturation properties closest to their empirical values [83, 85, 89, 93, 95]. At zero

temperature, the Brueckner propagator is defined as:

Λ(p⃗, p⃗ ′, E) = 2π
Θ(|p⃗| − pF ) Θ(|p⃗ ′| − pF )

E − ω1(|p⃗|) − ω1(|p⃗ ′|)
, (2.46)

Here, the step functions, represented by Θ(|p⃗|−pF ), account for the Pauli exclusion principle,

ensuring that intermediate scattering states lie outside the nucleon Fermi sea, characterized

by the Fermi momentum pF . As will be discussed in Section 2.2.10, the step functions are

modified for finite temperatures. The quantity ω1 denotes the single-nucleon energy and is

defined as:

ω1(|p⃗|) = Σ0(|p⃗|) +
{

[m+ Σs(|p⃗|)]2 + [|p⃗| + Σv(|p⃗|)]2
}1/2

. (2.47)

In this expression, Σ0(|p⃗|), Σs(|p⃗|), and Σv(|p⃗|) represent momentum-dependent self-energies

arising from the scalar, vector, and time-like components (see Eq. (2.12)) of the nucleon-

nucleon interaction, respectively. The quantity m stands for the nucleon rest mass.

The use of the Brueckner propagator in the mathematical framework described above results

in the RBHF approximation. While the results demonstrated in this work use the Brueckner

propagator, other notable propagators that have been explored in the literature are the Λ00

which is comprised of two free two-point Green’s functions G0
1 are therefore not coupled to

the medium:

Λ00(p⃗, p⃗′) = i eiηp0 G0
1(p⃗

′)G0
1(p⃗) , (2.48)
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Figure 2.3: A schematic for the particle-particle, antiparticle-antiparticle, and particle-
antiparticle T -matrix amplitudes shown in the direct terms of ΣΦΦ, Σθθ, and ΣθΦ (Eqs.
(2.35), (2.36), and (2.37)), where Φλ(k) denote the particle spinors and θλ(k) denote the
antiparticles spinors.

and the Λ10, which additionally takes into account the full two-point Green’s function G1:

Λ10(p⃗, p⃗′) =
i

2
[eiηp

′
0G0

1(p⃗)G1(p⃗
′) + eiηp0G1(p⃗)G

0
1(p⃗

′)]. (2.49)

As shown in [70, 83, 93], the Λ00 propagator creates too much energy per nucleon (over-

binding) at saturation, and the Λ10 creates too little (under-binding) at saturation.

2.2.8 T-matrix Elements

The scattering amplitudes seen in Eqs. (2.35), (2.36), and (2.37) are depicted visually in

Fig. 2.3. To calculate the matrix elements of Σ in the self-consistent basis, the elements of

the T -matrix must first be solved.

The integral equations for the scattering amplitudes of the T -matrix contain particle and

antiparticle states in the initial and final scattering states, but do not contain intermediate

antiparticle states as they are excluded in the OBE potentials [70]. Therefore, the initial and

final states are computed in the full particle-antiparticle basis, but the intermediate states
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are determined by the intermediate propagator Λ̃:

Λ̃(p, p′) = ⟨Φλ(p)Φλ′(p
′)|Λ(p, p′) |Φλ(p)Φλ′(p

′)⟩ , (2.50)

which is only computed in the particle basis. Using the intermediate propagator, the integral

equation for the particle spinors takes the form:

⟨Φλ1 Φλ2 ; p|T (P ) − V |Φλ′1
Φλ′2

; p′⟩ =

∫
d4p′′

(2π)4
[⟨Φλ1 Φλ2 ; p|V |Φλ3 Φλ4 ; p

′′⟩

Λ̃

(
P

2
+ p′′,

P

2
− p′′

)
× ⟨Φλ3 Φλ4 ; p

′′|T (P ) |Φλ′1
Φλ′2

; p′⟩.
(2.51)

A useful simplification to the calculation of the elements of the T -matrix is to use its par-

tial wave expansion with an angle-averaged propagator. A more in-depth mathematical

breakdown of the partial wave expansion can be found in Appendix A.

2.2.9 Properties of Nuclear Matter at Zero Temperature

When employing the spectral representation described in Section 2.2.4, the properties of

nuclear matter can then be determined by the self-energy Σ and spectral function Ξ (de-

scribed in greater detail in [70, 83]). Once a self-consistent solution to the coupled system

of equations is found, bulk properties of symmetric nuclear matter (SNM) can be calculated

and compared to empirical values at zero temperature. Using the spectral decomposition of

the 2-point function G1, the number density ρ of the system follows from:

ρ =
4

(2π)3

∫
d3pΞ0(ω, p⃗)Θ(pF − p) , (2.52)

where Ξ0 is the time-like component of the spectral function. The step function Θ is evaluated

at the Fermi momentum pF . Note that the step function Θ is modified in the case of finite
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temperatures, which will be discussed below in Section 2.2.10. The energy per nucleon E/A

of the system is expressed as:

E/A(ρ) =
1

4π3

∫
d3p [2(mΞs(p) − pΞv(p)) + Σs(p)Ξs(p)

−Σv(p)Ξv(p) + Σ0(p)Ξ0(p)) Θ(|pF − p|) .
(2.53)

Once the energy per nucleon and number density of the system are calculated, the compress-

ibility K of the matter:

K(ρ) = 9ρ2
(
∂2E/A(ρ)

∂ρ2

)
, (2.54)

and the pressure P :

P (ρ) = ρ2
(
∂E/A(ρ)

∂ρ

)
, (2.55)

can be computed at zero temperature. The total energy density ϵ of the system follows from

the energy per nucleon as:

ϵ(ρ) = (E/A(ρ) +m) ρ , (2.56)

where m is the nucleon mass.

In the case of asymmetric nuclear matter (ANM), an asymmetry parameter α which defines

the asymmetry between the number of neutrons and protons in the system can be defined

as:

α =
ρn − ρp

ρ
, (2.57)

where ρn is the density of neutrons and ρp is the density of protons. In the case of SNM, α = 0,

and for pure neutron matter, α = 1. For ANM, the energy per nucleon can be expressed as
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a power series dependent on the total density of the system ρ and the asymmetry parameter

α [95]:

E/A(ρ, α) = E/A(ρ, 0) + Esym(ρ)α2 + O(4) . (2.58)

Esym is the nuclear symmetry energy, which is defined as:

Esym(ρ) =
1

2

∂2E/A(ρ, α)

∂α2

∣∣∣∣
α=0

, (2.59)

and can be approximated as Esym(ρ) ≈ E/A(ρ, 1) − E/A(ρ, 0) [154].

2.2.10 Extensions to Finite Temperatures

For finite temperatures, the formal structure of solving the many-body problem in the RBHF

approximation is the same as for zero temperature. The Green’s function formalism is

modified, where the 2-point Green’s function G1 in Eq. (2.21) is instead expressed as [70,

83, 93]:

G1(p) =

∫
dω

[
Ξ(ω, p⃗)

ω − (p0 − µ)(1 + iη)

]
− 2iπ sign(p0 − µ)

Ξ(p0 − µ, p⃗)

eβ|p0−µ| + 1
, (2.60)

with β = 1/kBT , where kB is the Stefan-Boltzmann constant and T is the temperature.

While the formal structure of the spectral function Ξ is unaltered when compared to zero

temperature, Ξ has an implicit temperature dependence from G1.

In the case of finite temperatures, the properties described in Section 2.2.9 are also modified

to include a temperature dependence. This is achieved by replacing the step functions Θ
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seen in Eqs. (2.52) and (2.53) with Fermi-Dirac distribution functions f(p⃗):

f1(p⃗) =
1

eβ(ω1(p⃗)−µ) + 1
, (2.61)

f2(p⃗) =
1

eβ(−ω2(p⃗)+µ) + 1
, (2.62)

where ”1” indicates the particle contribution and ”2” indicates the antiparticle contribution.

We remember that at finite temperatures, the behavior of nuclear matter undergoes an

important modification, attributed to thermal nucleonic excitations surpassing the Fermi

surface. Contrary to absolute zero conditions where all states within the Fermi sea (|p⃗| < pF )

are fully occupied, higher temperatures induce partial occupancy due to thermal excitations

of particles and antiparticles. This phenomenon significantly impacts various thermodynamic

attributes of dense stellar matter, including the equation of state and the entropy of hot

neutron star matter. Both particle and antiparticle distributions adhere to modified Fermi-

Dirac statistics, resulting in alterations in state occupancy for both species, both below and

above the Fermi surface, as expressed by Eqs. (2.61) and (2.62).

At zero temperature, nucleons propagate in the many-body system, filling particle and an-

tiparticle states within the Fermi sea (|p| < pF ). The inclusion of temperature in the system

results in states outside of the Fermi sea filled (i.e. states with momenta |p| > pF ) by par-

ticles (and antiparticles) with corresponding hole (anti-hole) states in the Fermi sea. This

phenomenon is seen for particles in Figure 2.4. As T → 0, the Fermi-Dirac distribution for

particles becomes:

f1(p⃗) → Θ(µ− ω1(p⃗)) , (2.63)

and for antiparticles, f2(p⃗) → 0.
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Figure 2.4: The depletion of single-particle states with the inclusion of temperature. At zero
temperature, the Fermi-Dirac distribution becomes a step function Θ, as described in Eq.
(2.63). Higher temperatures smear the boundary, resulting in filled states outside the Fermi
sea.

For finite temperatures, the pressure is instead calculated with the free energy F per nucleon,

which is defined as:

F (ρ, T ) = U(ρ, T ) − TS(ρ, T ) , (2.64)

where U is the internal energy (equal to the energy per nucleon E/A with the thermal

contribution) and S is the entropy of the system [92]. The entropy is given by:

S(ρ, T ) =
−1

(2π)3ρ

∫
d3p [(1 − f(p⃗)) ln(1 − f(p⃗)) + f(p⃗) ln(f(p⃗))] , (2.65)

where f is the Fermi-Dirac distribution. Both particles and antiparticles contribute to S,

but the antiparticle contribution is very small (f2 << f1). Therefore, Eq. (2.65) can be

approximated with only the particle contribution, or f = f1. Once the entropy S, and
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subsequently the free energy F , are calculated, the pressure is derived as:

P (ρ, T ) = ρ2
∂F (ρ, T )

∂ρ
. (2.66)

2.3 Theoretical Framework for Calculating Neutron Star

Properties

The equation of state (EOS) of neutron star matter is described as a relationship between

the pressure P and energy density ϵ of the many-body system within. This holds true for

the majority of neutron stars, which can be described as zero temperature on the nuclear

scale (or just a few MeV). However, following extreme events like a core-collapse supernova

or a binary neutron star merger, the system’s temperature is much higher (on the order of

50-100 MeV) and therefore plays a critical role in the EOS. The RBHF formalism is used

to calculate the EOS of asymmetric nuclear matter within a neutron star at both zero and

finite temperatures. Once an EOS model has been defined, the structural properties of a

neutron star can be calculated in the framework of Einstein’s theory of general relativity.

2.3.1 Non-Rotating Compact Stars

For non-rotating compact stars, the stellar structure is described by the Tolman-Oppenheimer-

Volkoff (TOV) equation (where G = c = 1):

dP (r)

dr
= −(ϵ(r) + P (r))(m(r) + 4πr3P (r))

r2
(

1 − 2m(r)
r

) , (2.67)
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that describes the pressure gradient within the star as a function of the radius r. The mass

m contained in a sphere of radius r can be found with:

dm

dr
= 4πr2ϵ(r) , (2.68)

where, at the origin, m(0) = 0. Using a specified model for the EOS, a star’s mass and

radius can be determined by first choosing a central value for density ϵC with a corresponding

pressure value PC , and integrating Eqs. (2.68) and (2.67) until pressure vanishes, signifying

the total radius R of the star.

2.3.2 Rotating Compact Stars

The stellar structure of rotating compact stars is more complicated than that of non-rotating

stars for several reasons, as mentioned in Chapter 1. Non-rotating stars are assumed to be

spherically symmetric, so their stellar structure depends solely on the radial coordinate.

However, rapid rotation can deform the star’s shape by flattening at the pole and expanding

in the equatorial direction; to account for this deformation, the stellar structure equations

must also include a dependence on the polar coordinate θ. While spherical symmetry is bro-

ken in rotating stars, the assumptions of stationary rotation, axial symmetry, and reflection

symmetry still hold, leaving the stellar structure equations independent from time t and the

azimuthal angle ϕ. The metric of a rotating neutron star can thus be written as:

ds2 = −e2ν(r,θ)dt2 + e2ψ(r,θ)(dϕ− ω(r, θ) dt)2 + e2µ(r,θ)dθ2 + e2λ(r,θ)dr2 , (2.69)

where the metric functions (ν, ψ, µ, and λ) are dependent on the radial r and polar θ coor-

dinates, as well as implicitly on the star’s rotational frequency Ω. The term ω is indicative

of an additional complication from rotation: the general relativistic effect of frame dragging,

where ω is the angular velocity of the local inertial frames being dragged in the direction of
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the star’s rotation.

The absolute upper limit for a neutron star’s rotational frequency is the mass-shedding

limit, set by the Kepler frequency ΩK . This frequency can be defined in terms of the metric

functions ψ and ν, and frame-dragging term ω as:

ΩK =
ω′

2ψ′ + eν−ψ
[
ν ′

ψ′ +

(
ω′

2ψ′ e
ψ−ν
)]1/2

+ ω , (2.70)

evaluated at the equator, where mass-shedding occurs when the angular velocity reaches ΩK

at the star’s equator, and the prime indicates a partial derivative with respect to the radial

coordinate r. In general, rotating stars can be more massive than non-rotating stars, as

rotation stabilizes the star against gravitational collapse. The mass-shedding limit sets the

maximum allowed mass of a (uniformly) rotating neutron star, which can be 20% higher

than non-rotating stars for very stiff EOS models [155].

Due to the complications introduced by rotation, there exists no analytical solution for

solving the system of equations deriving the stellar structure of relativistic rotating objects.

Instead, numerical methods are employed; an in-depth review of different schemes can be

found in Ref. [102]. In this chapter, models for rotating stars at the Kepler frequency

are computed using Hartle’s perturbative rotation formalism [156]. In the next chapters,

we introduce another numerical scheme referred to as Cook-Shapiro-Teukolsky (CST) [104],

which will be modified to account for differential rotation.

2.4 Results

The saturation properties of dense SNM and ANM are calculated at zero and finite temper-

atures. For this investigation, calculations are carried out using the three OBE potentials

constructed by Brockmann and Machleidt [85], known colloquially as the Bonn potentials
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(denoted by A, B, and C). The calculated EOS models are then used to determine the bulk

properties of neutron stars.

2.4.1 Properties of Dense Nucleonic Matter at Zero Temperature

The Bonn potentials have previously been shown to produce values for the bulk properties of

SNM at zero temperature that are in good agreement with empirical values [70, 85, 93, 95].

For both the full momentum-dependence and the momentum-averaged calculations, values

for the saturation density ρ0, energy per nucleon E/A, Fermi momentum pF , compressibility

K, effective nucleon mass m∗/m, and symmetry energy Esym are given in Table 2.1. The

corresponding empirical values are shown for comparison but it is worth noting the empirical

values for the saturation properties vary across the literature.

The saturation density, ρ0, is found in a recent study to be within the range 0.155±0.005 fm−3

[157]. This value directly correlates to the Fermi momentum pF via:

ρ0 =
2p3F
3π2

, (2.71)

leading its empirical value to be ≈ 1.32 fm−1. The energy per nucleon E/A is also given in

Ref. [157] as −16±1 MeV but has been found with different bounds throughout the literature.

For the compressibility K, Ref. [158] provides a historical overview of the empirical range

from a variety of theoretical approaches, which is shown to be as low as 100 and as high as

370 depending on the reference. However, more recent studies like that of Ref. [159] provide

a more narrow uncertainty band on K, 240± 20 MeV. For the effective nucleon mass m∗/m,

analyses of the isoscalar nucleon mass provide the range 0.8±0.1, but there is less consensus

of the isovector nucleon mass with values ranging as low as 0.6 and as high as 0.93 [160]. Ref.

[161] provides values for the symmetry energy Esym using different semi-classical methods

but finds a consensus centered around 32 MeV.
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Table 2.1: Saturation properties of symmetric nuclear matter (SNM) at zero temperature for
different approximations using the Bonn potentials (A, B, and C). The first approximation is
carried out using the full basis and a momentum-dependent (Momentum-Dep.) self-energy
and the second uses the full basis and a momentum-averaged (Momentum-Avg.) self-energy.
Empirical values are shown in the last row, where the ± indicates a range of values (see text
for references).

Self-Energy Σ Potential ρ0 (fm−3) E/A (MeV) pF (fm−1) K (MeV) m∗/m Esym (MeV)

Momentum-Dep.
A 0.17 -14.08 1.36 281.64 0.675 32.07
B 0.16 -12.99 1.33 246.77 0.701 29.67
C 0.15 -12.30 1.30 227.99 0.725 27.26

Momentum-Avg.
A 0.17 -15.45 1.36 265.54 0.657 33.44
B 0.16 -14.33 1.33 241.40 0.685 31.01
C 0.16 -13.63 1.33 225.31 0.692 28.86

Empirical Value 0.155 ± 0.005 -16 ± 1 1.32 240 ± 20 0.8 ± 0.1 32

For both momentum-dependence and the momentum-averaged calculations, the Bonn po-

tential A results are the closest to the empirical value for the binding and symmetry energies,

a finding that is consistent with other implementations of the RBHF approximation at zero

temperature.

We next investigate ANM produced by the RBHF approximation to produce an equation of

state for neutron star matter. For ANM, results are shown for the full iteration procedure

using the momentum-dependent Σ. Following the theoretical description in Section 2.2.9,

the energy per nucleon E/A of ANM, defined in Eq. (2.58), becomes dependent on the

asymmetry parameter α. When α = 0, there are an equal number of protons and neutrons

within the system (SNM), and when α = 1, the system is pure neutron matter (PNM). In

Figure 2.7, energy per nucleon as a function of density for varying values of α are shown,

along with the (non-relativistic) calculated results from Ref. [4], known colloquially as APR.

In the high-density regime of a neutron star, the asymmetry between neutrons and protons is

believed to be ≈ 0.8. Using the energy per nucleon E/A with α = 0.8 and the corresponding

number density ρ, the pressure P and energy density ϵ can be calculated using Eqs. (2.55)

and (2.56), respectively. The EOS models for the Bonn potentials A, B, and C following this
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Figure 2.5: The energy per nucleon E/A for the three Bonn potentials (A, B, and C)
compared to density ρ on the left and Fermi momentum pF on the right. The top row with
solid lines shows the momentum-dependent self-energy approximation completed in the full
basis, and the bottom row with dashed lines is the momentum-averaged approximation.

procedure are displayed in Figure 2.8. Despite the differences in the saturation properties of

the three potentials, the resulting EOS models remain very similar.

2.4.2 Properties of Dense Nucleonic Matter at Finite Tempera-

ture

We extend the calculations of nuclear matter in the RBHF approximation to finite tempera-

tures, specifically for T = 10, 30, 50, and 70 MeV. Modifications to the numerical scheme are

introduced to be consistent with the mathematical framework described in Section 2.2.10.
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Figure 2.6: The compressibility K for the three Bonn potentials (A, B, and C) compared to
density ρ. The approximation using momentum-dependent self-energy is shown on the left
with solid lines and the approximation using momentum-averaged self-energy is shown on
the right with dashed lines.

Due to the additional complexity of the algorithm, we find solutions to be more stable

numerically, especially at higher temperatures, using the momentum-averaged self-energy

approximation.

The binding energies per nucleon E/A for four different temperatures are shown in Figure 2.9,

calculated using the Bonn B potential. Each meson provides a thermal contribution to the

energy per nucleon, which grows larger as the temperature increases. For finite temperatures,

the energy per nucleon is used to calculate the free energy per nucleon F/A, given in Eq.

(2.64). When using the RBHF approximation at temperatures ≥ 50 MeV, we find the Bonn

B potential provided the most stable results. The free energies of SNM and PNM from the

Bonn B potential for four temperatures are displayed in Figure 2.10.

Pressure is calculated from F/A using Eq. (2.66). As for zero temperature, the pressure and

energy density are calculated with the asymmetry parameter α = 0.8 for neutron star matter.

The EOS, pressure vs. energy density, for varying temperatures are shown in Figure 2.11.

Higher temperatures at low densities introduce some level of numerical noise, as seen in
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Figure 2.7: Energy per nucleon per nucleon E/A vs. density for asymmetric nuclear matter
(ANM) calculated with the Bonn A potential at zero temperature. Shown are varying values
of the asymmetry parameter α ranging from 0 (SNM) to 1 (PNM), and compared to the
APR method [4] shown with blue squares (SNM) and red circles (PNM).
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Figure 2.8: Pressure as a function of energy density for all three Bonn potentials (A, B, and
C) for asymmetric nuclear matter with α = 0.8 (see text for more details).

Figure 2.11.

2.4.3 Neutron Star Properties

Once models have been defined for the EOS of neutron star matter at both zero and finite

temperatures, bulk properties like mass and radius can be solved numerically.

At zero temperature, EOS models resulting from both the momentum-dependent and momentum-

averaged self-energy calculations are used. To compute rotating and non-rotating stellar

models, an EOS that describes the neutron star from the core to the crust must be specified.

The RBHF approximation is used for the high-density region. For the crust, we use Harrison

and Wheeler (HW) [68] for the outer crust, and Negele and Vanutherin (NV) [69] for the

inner. Mass-radius relations for non-rotating (dashed lines) and rotating (solid lines) stars

are shown in Figure 2.12, resulting from calculations that use the momentum-dependent
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Figure 2.9: Energy per nucleon per nucleon E/A vs. density of asymmetric matter (ANM)
calculated with the Bonn B potential for four different temperatures: 10, 30, 50, and 70
MeV. For each temperature, the asymmetry parameter α ranges from 0 (SNM) to 1 (PNM).
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Figure 2.10: Free energy per nucleon F/A vs. density for SNM (left panel) and PNM (right
panel) calculated with the Bonn B potential. The plots show results for four temperatures:
10, 30, 50, and 70 MeV.

Figure 2.11: Pressure as a function of energy density calculated with the Bonn B potential
for asymmetric nuclear matter with α = 0.8. Shown are the zero-temperature EOS and four
models at temperatures 10, 30, 50, and 70 MeV.
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Figure 2.12: Mass-radius relations for rotating (solid lines) and non-rotating (dashed lines)
neutron stars from EOS models computed with the RBHF approximation at zero tem-
perature using the Bonn A, B, and C potentials. Computations use the full basis and a
momentum-dependent self-energy (see text for more details). The black contours show the
confidence intervals for the mass and radius of PSR J0030+451 [5], where the inner contour
is the 95% and outer is 68%.

self-energy in the full basis for the Bonn A, B, and C potentials. For all three models, the

rotating mass-radius relations are shown at their mass-shedding or Kepler limit (Ω = ΩK).

Additionally shown are the confidence intervals for the mass and radius of PSR J0030+451,

observed by the Neutron Star Interior Composition Explorer (NICER) and analyzed in [5].

The outer contour is the 68% interval and the inner is 95%. Both the non-rotating and

rotating mass-radius relations fall in the 95% confidence interval for all three potentials.

Bulk properties of non-rotating and rotating stars (at their mass-shedding limit) constructed

with the zero-temperature EOS models are given in Table 2.2. For both non-rotating and

rotating stars, the maximum mass Mmax and corresponding radius Rmax are shown. Ad-
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Table 2.2: Non-rotating and rotating neutron star properties calculated with the zero-
temperature EOS models from the RBHF approximation, using the three Bonn potentials.
Results are shown for EOS models constructed with momentum-dependent and momentum-
averaged self-energy Σ. Bulk properties include the maximum mass Mmax and corresponding
radius Rmax for both non-rotating and rotating stars, as well as the Kepler frequency ΩK

and stability parameter T/|W | for rotating stars.

Non-rotating (Ω = 0) Rotating (Ω = ΩK)

Self-Energy Σ Potential Mmax (M⊙) Rmax (km) Mmax (M⊙) Rmax (km) ΩK (Hz) T/|W |

Momentum-Dependent
A 2.315 10.978 2.624 12.230 1916 0.116
B 2.294 10.954 2.599 12.261 1908 0.115
C 2.282 10.937 2.587 12.248 1900 0.115

Momentum-Averaged
A 2.237 10.861 2.538 12.186 1910 0.114
B 2.225 10.855 2.525 12.140 1906 0.114
C 2.203 10.824 2.501 12.117 1904 0.113

ditionally, the Kepler frequency ΩK and stability parameter T/|W | are provided for the

rotating stellar models. The stability parameter is the ratio of rotational (T ) to gravita-

tional (W ) energy; a more in-depth exploration into this parameter and instabilities that

may arise in rotating neutron stars will be in Chapter 4. In brief, this parameter has been

used to determine if different instability modes may be excited in rotating neutron stars. In

the context of uniformly rotating neutron stars, stability studies have previously specified the

limit of T/|W | < 0.14 for stars to remain stable against secular instabilities, which grow in

the presence of a small dissipative mechanism like viscosity or gravitational radiation at lower

rotation rates [162]. Previous work finds this parameter in the range 0.11 < T/|W | < 0.13,

just below the specified so-called ”critical” limit of 0.14, for stars uniformly rotating at their

respective Kepler frequencies [163, 164]. For the three Bonn potentials, both the momentum-

dependent and momentum-averaged approximations fall within this range.

For finite temperatures, only models constructed using the momentum-averaged self-energy

approximation are used, as discussed in Section 2.4.2. To solve for stellar models, the high-

density, finite temperature EOS must also be fit to an EOS for the crust. Popular models

for neutron star crusts, like the previously mentioned HW+NV, are all constructed at zero

temperature, meaning there is a discontinuity in the temperature for the low-density and
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Table 2.3: Non-rotating and rotating neutron star properties calculated with EOS models
at finite temperatures from the RBHF approximation, using the Bonn B potential. Bulk
properties include the maximum mass Mmax and corresponding radius Rmax for both non-
rotating and rotating stars, as well as the Kepler frequency ΩK and stability parameter
T/|W | for rotating stars.

Non-rotating (Ω = 0) Rotating (Ω = ΩK)

Temperature (MeV) Mmax (M⊙) Rmax (km) Mmax (M⊙) Rmax (km) ΩK (Hz) T/|W |
10 2.388 10.900 2.702 12.112 1967 0.120
30 2.461 10.973 2.776 12.238 1958 0.122
50 2.541 11.439 2.861 12.887 1844 0.119
70 2.650 11.819 2.963 13.277 1803 0.113

high-density regions of the star. In massive neutron stars, the crust regions are thin and

contribute negligibly to the bulk properties like mass and radius [70]. For this reason,

we focus only on higher-mass stars created by fitting the finite temperature EOS models

constructed using the RBHF approximation to the zero-temperature HW+NV EOS for the

crust.

Mass compared to central energy density ϵc for four temperatures (T = 10, 30, 50, and

70 MeV) are shown in Figure 2.13, calculated using the Bonn B potential. As mentioned

previously, the low-density portion of the higher temperature EOS models, especially T = 70

MeV, do not have good agreement with the zero-temperature HW+NV EOS, which can be

seen for the low mass stars in Figure 2.13. As with the zero-temperature constructed EOS

models, the bulk properties of non-rotating and rotating neutron stars constructed with the

finite temperature EOS models using the Bonn B potential are displayed in Table 2.3. Even

with high temperatures, the stability parameter T/|W | remains below the critical value

T/|W | < 0.14 for stars rotating at their Kepler frequencies. Increasing the temperature

leads to higher mass peaks, as shown in Table 2.3, but has an inverse effect on the Kepler

frequency ΩK . When compared to the zero-temperature EOS from the Bonn B potential

using the momentum-averaged Σ in the RBHF approximation, the EOS at 70 MeV sees a

19.1% increase in mass for non-rotating stars and a 17.3% increase for rotating stars.
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Figure 2.13: Mass vs. central density ϵC from EOS models computed with the RBHF
approximation at a range of temperatures (T = 10, 30, 50, and 70 MeV) using the Bonn
B potential. Non-rotating stellar models are shown on the left (dashed lines), and rotating
models at the mass-shedding limit are shown on the left (solid lines).

2.5 Discussion and Conclusions

In this chapter, we present a comprehensive investigation into the properties of symmetric

and asymmetric nuclear matter, employing self-consistent calculations utilizing the effective

scattering matrix within the full Dirac space, following the methodology outlined in [83] and

[70]. Specifically, we utilized the Bonn potentials (A, B, and C) for the OBE interaction.

Our study begins with the examination of symmetric nuclear matter, where we conduct

calculations of saturation properties at zero temperature, yielding results that align well

with empirical values from diverse sources. Subsequently, our analysis extends to asymmetric

nuclear matter, as detailed in Section 2.2.9, laying the groundwork for constructing equations

of state (EOS) models pertinent to neutron star matter.

Expanding our investigation to include finite temperatures, we adapted the two-point Green’s

function within the RBHF scheme, as elucidated in Section 2.2.10. Here, employing the Bonn

B potential, we derive results up to 70 MeV. Analogous to our zero-temperature analysis,
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the properties of asymmetric nuclear matter at finite temperatures serve as the foundation

for constructing EOS models tailored to varying temperature regimes relevant to neutron

stars. The incorporation of temperature is done in a self-consistent manner, as opposed to

the common practice of adding a thermal contribution to models for the EOS of cold nuclear

matter [165–167]. The integration of thermal effects into the RBHF framework ensures for a

more comprehensive and accurate representation of the thermodynamic properties of dense

nuclear matter.

Subsequently, we leveraged the zero and finite temperature EOS models to compute bulk

properties of both non-rotating and rotating neutron stars, with the latter, computed up to

the mass-shedding limit (Ω = ΩK). Our investigation reveals that while the saturation prop-

erties of symmetric nuclear matter varied among the Bonn potentials at zero temperature,

attributed to differences in the tensor force primarily provided by the pion, these variations

did not markedly impact resulting neutron star properties, as evidenced in Figure 2.12.

Furthermore, the incorporation of finite temperature effects introduced additional contribu-

tions to the system’s pressure, resulting in a discernible increase in the mass peak for both

non-rotating and rotating stellar models, as illustrated in Figure 2.13. Comparing the maxi-

mum mass of the zero-temperature EOS utilizing the Bonn B potential to the corresponding

EOS at 70 MeV, we observe a comparable increase in mass for both non-rotating (19.1%) and

rotating (17.1%) stellar sequences. This underscores the significance of temperature effects

in neutron star models, particularly in delineating their mass and associated properties.

It is noteworthy that the equations of state studied in this paper are sufficiently versatile to

accommodate the mass of the most massive neutron star ever detected, PSR J0952–0607,

estimated to be 2.35 ± 0.17M⊙ [168, 169] and lead to masses and radii for PSR J0030+451

that are in agreement with the confidence intervals established for this pulsar [5].

As stated in Chapter 1, the finite temperature EOS models constructed in this Chapter will

56



be used to construct models of differentially rotating stars. In the next chapter, we introduce

the mathematical framework for the numerical scheme and provide example calculations at

zero temperature. The finite temperature EOS models constructed in this Chapter are then

used in Chapter 4.
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Chapter 3

Differential Rotation in Compact

Objects at Zero Temperature

This chapter presents text and results from previously published work (Ref. [99]) in collabo-

ration with Fridolin Weber, Jia Jie Li, and Armen Sedrakian.

3.1 Introduction

As discussed in the previous chapter, extreme astrophysical events like core-collapse su-

pernovae or binary neutron star mergers are characterized by extremely hot temperatures.

Another feature that will influence the dynamics of the neutron stars involved in these events

is the presence of a unique type of rotation called differential rotation, which is discussed in

this chapter.

While the majority of rotating neutron stars are believed to be rotating uniformly, some

neutron stars form with an appreciable amount of differential rotation, as discussed above. A

newly formed proto-neutron star may experience some degree of differential rotation following
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a core-collapse supernova, but the phenomena would be short-lived, as hydrodynamical forces

in the form of Ekman pumping and turbulent mixing will dampen any differential rotation

in the star within a few days [70]. A more likely avenue for a star to experience differential

rotation is following a binary neutron star (BNS) merger event. Binary neutron star mergers

are likely to form differentially rotating remnants due to complicated hydrodynamic motions

during the coalescence, evidenced in general relativistic numerical simulations.

The fate of the remnant of a BNS merger depends largely on the masses of the stars within

the binary before coalescence. The mass of the remnant can be estimated as M0 = M1,0 +

M2,0−Mejected,0, where M1,0 and M2,0 are the baryonic masses of the two stars before merging,

and Mejected,0 is the mass ejected during the merger [170]. Depending on the remnant’s mass

in relation to the underlying EOS within the star, it may take the form of a massive, quasi-

stable neutron star or promptly collapse into a black hole. As discussed in Chapter 2, there is

an upper limit set on uniformly rotating stars by the Kepler or mass-shedding frequency. For

the same EOS, a maximum mass can also be calculated for non-rotating stars. If the remnant

mass falls between the Kepler mass and the non-rotating maximum mass, the remnant will

likely take the form of a supramassive neutron star, which may find long-term stability or

eventually collapse into a black hole depending on other dynamics within the star. If the

remnant mass is instead over the Kepler limit, the remnant will either promptly collapse

into a black hole, or form a hypermassive neutron star. A hypermassive star is stable only

on short, dynamical timescales (≲ 0.1 s), where the short-term stability is likely due to

differential rotation and thermal pressure. For the context of this chapter, we will focus

solely on differential rotation; thermal effects paired with differential rotation are explored

in Chapter 4.

In the case of hypermassive remnants, differential rotation provides stability which allows the

star to sustain a total mass considerably higher than that of a uniformly rotating star [171],

set by the Kepler or mass-shedding limit. A star will experience mass shedding when the
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rotational frequency at the star’s equator surpasses the Kepler limit. In uniform rotation,

the star rotates as a rigid body, meaning the maximum rotation rate at the equator restricts

the overall rotational frequency. However, in the case of differential rotation, the star’s core

can rotate at frequencies beyond the Kepler frequency and maintain stability if the equator

obeys the Kepler limit. The additional centrifugal force can therefore support the core from

collapse while maintaining a considerably higher mass than uniform rotation, thus providing

stability to hypermassive remnant stars.

Studies of differentially rotating neutron stars are of particular interest in the context of

binary neutron star mergers following the first observation of a binary neutron star merger,

GW170817 [172]. The BNS merger GW170817 was first detected by the gravitational wave

detectors at LIGO and Advanced Virgo; the merger was followed rapidly by a short gamma-

ray burst (GRB 170817A), detected by Fermi-GRB [173]. This particular event sparked a

new era of multi-messenger astronomy and a revived interest in understanding the complex

physics of BNS mergers. Understanding not only the inspiral phase but also the post-merger

phase has the potential to provide further information on the equation of state of dense

matter, neutron star properties, and the remnant’s evolution.

In this chapter, numerical models for differentially rotating neutron stars are constructed

for various equations of state at zero temperature to study the structure, deformation, and

particle formation in hypermassive neutron stars. Models at finite temperatures will be

explored in the following chapter. This chapter is organized as follows: Section 3.2 discusses

the general relativistic theoretical framework for modeling differential rotation in neutron

stars. For numerical models constructed under the assumption the densest portion of the

star is in the center (discussed in further detail below), the results are shown in Section 3.3.

Section 3.4 presents the summary and discussion of the work.
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3.2 Theoretical Framework

The theoretical framework for modeling differential rotation in neutron stars described in

this work follows from the framework laid out by Ref. [139], which was then modified in

Ref. [104] (referred to as CST throughout the text). The equations shown in this section

directly follow the modifications introduced in CST.

To model differentially rotating neutron stars, we begin with the definition of the line element

[104]:

ds2 = −eγ−ρdt2 + e2α(dr2 + r2dθ) + eγ−ρr2 sin2 θ(dϕ− ωdt)2, (3.1)

which essentially has the same form as the line element for uniform rotation described in

Chapter 2. As is for uniform rotation, the metric potentials, ρ, γ, α, and ω are dependent

on both the radial r and polar θ coordinates, where θ is included to account for the physical

deformation of the star from rotation described in Section 3.1. For both uniform and dif-

ferential rotation, Eq. (3.1) models neutron stars as stationary, axisymmetric configurations

of a (self-gravitating) perfect fluid [104]. Under the assumption of neutron star matter as

a perfect fluid, sources of non-isotropic stresses such as magnetic fields or heat transport

are ignored [102]. This assumption also allows neutron star matter to be described by the

energy-momentum (or stress-energy) tensor given by:

T κσ = (ϵ+ P )uκuσ + gκσP, (3.2)

where u is the fluid’s 4-velocity, κ and σ are indices ranging from 0 to 3, and ϵ and P are

given by the underlying EOS. Equilibrium models for neutron stars must obey the equation
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of hydrostatic equilibrium as Einstein’s field equation, given as:

Rκσ − 1

2
Rgκσ = 8πT κσ, (3.3)

where Rκσ is the Ricci tensor, R is the curvature scalar, and gκσ is the metric tensor.

3.2.1 Metric Potentials

Under the assumption of axisymmetry, the domain for the spherical coordinates r and θ are

0 ≤ r ≤ ∞ and 0 ≤ θ ≤ π/2. The following coordinate transformations are introduced in

CST to map the infinite radial domain into a finite domain to solve the problem numerically.

The polar coordinate is transformed to µ:

µ = cos θ, (3.4)

and the radial coordinate is transformed to s:

r̄ = r̄e

(
s

1 − s

)
, (3.5)

where r̄ is a scaled version of the radius and r̄e is the coordinate radius at the equator of

the star [104]. Many quantities discussed throughout this text will be scaled following the

definitions given in CST; an exhaustive list can be found in Appendix C.

The field equations for the metric potentials are a result of Einstein’s field equation, Eq.

(3.3). As described in CST, the metric potentials ρ, γ, and ω are written as [104]:

ρ(s, µ) = −e−γ/2
∞∑
n=0

P2n(µ)

[(
1 − s

s

)2n+1 ∫ s

0

ds′s′2n

(1 − s′)2n+2

∫ 1

0

dµ′P2n(µ′)S̃ρ(s
′, µ′)

+

(
s

1 − s

)2n ∫ 1

s

ds′(1 − s′)2n−1

s′2n+1

∫ 1

0

dµ′P2n(µ′)S̃ρ(s
′, µ′)

]
,

(3.6)
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γ(s, µ) =
2e−γ/2

π

∞∑
n=1

sin[(2n− 1)θ]

(2n− 1) sin θ[(
1 − s

s

)2n ∫ s

0

ds′s′2n−1

(1 − s′)2n+1

∫ 1

0

dµ′ sin[(2n− 1)θ′]S̃γ(s
′, µ′)

+

(
s

1 − s

)2n−2 ∫ 1

s

ds′(1 − s′(2n−3

s′2n−1

∫ 1

0

dµ′ sin[(2n− 1)θ′]S̃γ(s
′, µ′)

]
,

(3.7)

ω̂(s, µ) = −e(2ρ−γ)/2
∞∑
n=1

P1
2n−1(µ)

2n(2n− 1) sin θ[(
1 − s

s

)2n+1 ∫ s

0

ds′s′2n

(1 − s′)2n+2

∫ 1

0

dµ′ sin θ′P1
2n−1(µ

′)S̃ω̂(s′, µ′)

+

(
s

1 − s

)2n−2 ∫ 1

s

ds′(1 − s′)2n−3

s′2n−1

∫ 1

0

dµ′ sin θ′P1
2n−1S̃ω̂(s′, µ′)

]
,

(3.8)

where Pn(µ) are Legendre polynomials, Pm
2n(µ′) are associated Legendre polynomials, and

S̃ are the effective source terms for the three metric potentials [104]. The source terms are

defined as:

S̃ρ(s, µ) = eγ/2
[
8πe2αr̄2e(ϵ̄+ P̄ )

(
s

1 − s

)2
1 + v2

1 − v2
+

(
s

1 − s

)2

(1 − µ)2e−2ρ

[(s(1 − s)ω̂,s)
2 + (w − µ2)ω̂2

,s] + s(1 − s)γ,s − µγ,µ +
ρ

2
(16πe2α r̄2eP̄

(
s

1 − s

)2

−s(1 − s)γ,s

[
s(1 − s)

2
γ,s + 1

]
− γ,µ

(
1 − µ2

2
γ,µ − µ

))]
,

(3.9)

S̃γ(s, µ) = eγ/2
[
16πe2αr̄2eP̄

(
s

1 − s

)2

+
γ

2

(
16πe2αr̄2eP̄

(
s

1 − s

)2

−s
2(1 − s)2

2
γ2,s −

1 − µ2

2
γ2,µ

]
,

(3.10)
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S̃ω̂(s, µ) = e(γ−2ρ)/2(−16πe2α
Ω̂ − ω̂

1 − v2
r̄2e(ϵ̄+ P̄ )

(
s

1 − s

)2

+ω̂

[
−8πe2αr̄2e

(1 + v2)ϵ̄+ 2v2P̄

2 − v2

(
s

1 − s

)2

− s(1 − s)

(
2ρ,s +

1

2
γ,s

)]
+

ω̂

[
µ

(
2ρ,µ +

1

2
γ,µ

)
+
s2(1 − s)2

4
(4ρ2,s − γ,µ)

]
+ω̂

[
+

1 − µ2

4
(4ρ2,µ − γ2,µ) − (1 − µ2)e−2ρ

(
s4ω̂2

,s +
s2(1 − µ2)

(1 − s)2
ω̂2
,µ

)]
),

(3.11)

where v is the proper velocity of the matter and the quantities ω̂ and Ω̂ are scaled versions

of the potential ω and the angular frequency Ω, given as:

ω̂ = r̄eω̄,

Ω̂ = r̄eΩ̄.

(3.12)

The terms ending in ,s or ,µ imply a derivative with respect to s or µ. The gravitational field

for the fourth metric potential α can be reduced to a linear ordinary differential equation,

given as:

α,µ = −1

2
(ρ,µ + γ,µ) − [(1 − µ2)[1 + s(1 − s)γ,s]

2 + [−µ+ (1 − µ2)γ,µ]2]−1

×
[

1

2
(s(1 − s)[s(1 − s)γ,s],s + s2(1 − s)2γ2,s − [(1 − µ2)γ,µ],µ

−γ,µ[−µ+ (1 − µ2)γ,µ]) +
1

4
[s2(1 − s)2(ρ,s + γ,s)

2 + (1 − µ2)(ρ,µ + γ,µ)2]

[−µ+ (1 − µ2)γ,µ] − s(1 − s)(1 − µ2)

[
1

2
(ρ,s + γ,s)(ρ,µ + γ,µ)

+γsµ + γ,sγ,µ[1 + s(1 − s)γ,s] + s(1 − s)µγ,s[1 + s(1 − s)γ,s]

+
1

4
(1 − µ2)e−2ρ

[
2
s3

1 − s
(1 − µ2)ω̂,sω̂,µ[1 + s(1 − s)γ,s]

−
(
s4ω̂2

,s −
s2

(1 − s)2
(1 − µ2)ω̂2

,µ

)
[−µ+ (1 − µ2)γ,µ].

(3.13)
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3.2.2 Rotational Frequency

While the definition of gravitational field equations for the metric potentials remains un-

changed for uniform or differential rotation, the key difference separating the two rotation

types will be discussed here. As mentioned previously, equilibrium models for neutron stars

must obey the equation of hydrostatic equilibrium, which has the form:

h(P ) − hp =

∫ P

Pp

dP

ϵ+ P
= lnut − lnutp −

∫ Ω

Ωc

F (Ω)dΩ, (3.14)

where h(P ) is enthalpy as a function of the pressure and the subscripts p and c denote the

variable’s value at the pole or center, respectively. Additionally, ut is the time-like component

of the 4-velocity uµ, defined as:

uµ =
e−(γ+ρ)/2

(1 − v2)1/2
[1, 0, 0,Ω], (3.15)

where the proper velocity v is:

v = (Ω − ω) r sin θ e−ρ. (3.16)

The integrand of the final integral term in Eq. (3.14), F (Ω), is the function that defines

the rotation law of the matter in the case of differential rotation. Following CST, we define

F (Ω) as a linear rotation law:

F (Ω̄) = A2(Ω̄c − Ω̄), (3.17)

where A is a parameter that dictates the degree of differential rotation within the star. In

the case of uniform rotation, Eq. (3.17) disappears as the value for the frequency at the

center of the star is constant throughout (i.e. Ωc = Ω). Using the specified rotation law in
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Eq. (3.17), the equation of hydrostatic equilibrium can be integrated to give:

h(P ) − hp =
1

2

[
γp + ρp − γ − ρ− ln(1 − v2) + Â2(Ω̂ − Ω̂c)

2
]
, (3.18)

where Â is the rotation parameter scaled as Â = A/r̄e. The matrix of angular frequency Ω̂

can be derived using the following equation:

(Ω̂c − Ω̂) =
1

Â2

[
(Ω̂ − ω̂)s2(1 − µ2)e−2ρ

(1 − s)2 − (Ω̂ − ω̂)2s2(1 − µ2)e−2ρ

]
. (3.19)

The choice of rotation law directly impacts the maximum mass for a given EOS. Many other

studies of differential rotation use the linear rotation law in Eq. (3.17) (see Refs. [104, 105,

107]), which is also referred to throughout the literature as the so-called “j-constant law”.

However, different studies of differential rotation have explored the impact of using modi-

fied versions of the linear law or completely different rotation laws. Ref. [174] explores the

parameter space of a given rotation law using a generalized version of the “j-constant law”,

with Ref. [175] adopting a similar generalized version. Ref [176] instead carries out full simu-

lations of BNS mergers and argues a linear rotation law cannot fully capture the complexity

of a hypermassive remnant’s rotation profile just after forming. For the context of this work,

we will proceed with the linear rotation law in the form of Eq. (3.17), but interesting future

work would entail implementing other rotation laws explored in the literature to see the

impacts on calculated bulk properties.

To solve the numerical scheme for equilibrium models of differentially rotating stars, we begin

with an ansatz for the metric potentials (ρ, γ, ω̂, and α) from a non-rotating solution of the

TOV equation. These values are used to determine a value for the radius at the equator, re

of the star:

r̄2e =
2[h(P̄ (ϵ̄c)) − hp]

γ̂ + p+ ρ̂p − γ̂m − ρ̂m
, (3.20)
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which is equivalent to Eq. (3.18) evaluated at the location of the maximum (denoted by

subscript m) density of the star, which is assumed to be the central value in CST. However,

the equation for re changes when the maximum density within the star is not in the center,

which is the case in very deformed configurations; see Figure 3.1 for a visual explanation

of this phenomenon. Results in Section 3.3 use Eq. (3.20) to derive value for re (i.e. the

traditional CST scheme), and Chapter 4 discusses how to update the numerical scheme when

the central density is not the maximum density.

Returning to the CST scheme, Eq. (3.20) makes use of the following re-definitions:

ρ̂ =
ρ

r̄2e
,

γ̂ =
γ

r̄2e
,

α̂ =
α

r̄2e
.

(3.21)

Next to be determined is the angular frequency Ω̂, which is dependent on the central value

Ω̂c. The central value is determined by evaluating Eqs. (3.18) and (3.19) at the equator,

which take the form:

r̄2e(γ̂2 + ρ̂e − γ̂p − ρ̂p) + ln[1 − (Ω̂e − ω̂e)
2 exp(−2r̄2e ρ̂e)] = Â2(Ω̂e − Ω̂c), (3.22)

and:

Â2(Ω̂e − Ω̂c) =
1

Â2

(Ω̂e − ω̂e)
2 exp(−4r̄2e ρ̂e)

[1 − (Ω̂e − ω̂e)2 exp(−2r̄2e ρ̂e)]
2
, (3.23)

where the subscript e denotes the value of the variable at the equator. To determine Ω̂c, the

value of Ω̂e is first determined from Eq. (3.23) using a root-finding algorithm; we implement

Brent’s method, which is described in Appendix C.0.2. After Ω̂e and Ω̂c are calculated, the

full matrix for the angular velocity Ω̂ is determined using Eq. (3.19), solved for numerically
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(A) Spherically Symmetric (B) Oblate Spheroid / Ellipsoid

(C) Quasi-Toroidal (D) Toroidal

Figure 3.1: A schematic for the physical deformation seen in rotating neutron stars. In (A),
the star is non-rotating and therefore spherically symmetric, and in (B) the star takes on
an ellipsoid shape under extreme uniform or less extreme differential rotation. However,
extreme differential rotation can result in (C) quasi-toroidal or (D) fully toroidal stars. For
(A) and (B), the center of the star is the densest portion (signified by dark red), but in (C)
and (D), the densest portion is no longer in the center of the star.

also using Brent’s method. These values are then used to determine the enthalpy, velocity,

and pressure of the system with Eqs. (3.18) and (3.16).

Finally, the effective source terms, defined in Eqs. (3.9), (3.10), and (3.11), are calculated

and used to determine new values for the metric potentials. These new values start the

iterative process over again, which is repeated until r̄e converges. This process is shown

schematically in Appendix C.
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3.2.3 Stellar Properties

Once a set of self-consistent solutions are determined for the system, they are used to cal-

culate the bulk properties of the star as described in CST. Some of these properties include

the gravitational mass M :

M =
4πκ1/2c2r̄3e

G

∫ 1

0

s2 ds

(1 − s)2

∫ 1

0

dµ e2α+(γ+ρ)/2 ρ̄0
(1 − v2)1/2

, (3.24)

the angular momentum J :

J =
4πκc3r̄4e

G

∫ 1

0

s3 ds

(1 − s)5

∫ 1

0

dµ (1 − µ2)1/2e2α+γ−ρ(ϵ̄+ P̄ )
v

1 − v2
, (3.25)

the rotational energy T :

T =
2πκ1/2c2r̄3e

G

∫ 1

0

s3 ds

(1 − s)2

∫ 1

0

dµ (1 − µ2)1/2e2α+γ−ρ(ϵ̄+ P̄ )
v Ω̂

1 − v2
, (3.26)

and the circumferential radius of the equator Re:

Re = κ1/2r̄ee
(γe−ρe)2. (3.27)

An exhaustive list of equations for the bulk properties can be found in CST (Ref. [104]).

3.3 Results for Maximum Density at the Center of the

Star

Stellar models of differentially rotating neutron stars are constructed using the outlined

numerical scheme. For the traditional CST algorithm, we fix three values to be constant: the
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central density ϵc, the ratio of polar to equatorial radii rratio (which dictates the deformation

of the star), and the scaled rotation parameter, Â. More specifically, Â−1 is fixed as it

repeatedly appears in its inverse form in the equations described in Section 3.2. We follow

the lead of previous work which parameterized sequences by values of Â−1 = 0.3, 0.5, 0.7,

and 1.0 [104, 105, 174]. Uniform rotation is obtained in the limit Â−1 → 0, and an upper

bound of the scaled rotation parameter is Â−1 = 1.0. As differential rotation becomes more

extreme in the star (Â−1 → 1.0), the maximum mass and corresponding equatorial radius of

a stellar sequence are expected to increase.

In this section, the traditional CST algorithm is used, which assumes the maximum density

occurs at the center of the star. This assumption holds well for higher values of rratio, or less

extreme physical deformations (similar to what is observed in stars rotating uniformly at

their Kepler frequency). The CST algorithm finds stable numerical results for rratio values of

1 (which is spherically symmetric) to ∼ 0.55, so results shown in this section use values for

rratio that fall within this range. More deformed configurations are explored in Chapter 4.

3.3.1 EOS Models using Relativistic Hartree-Fock (RHF) Theory

In this section, models for the EOS constructed using the RHF formalism at zero temperature

are used as input to the numerical scheme. The four EOS models used in this section

also include strange matter, which is hypothesized to occur in stable states at extreme

densities. The high-density regime within a neutron star may include exotic degrees of

freedom like deconfined quark matter, meson condensates, hyperons, and delta isobars (∆).

These additional degrees of freedom have been shown previously in numerical simulations to

greatly impact properties like the mass and radius of neutron stars. In [177], the presence of

∆’s was shown to soften the EOS in the low to intermediate-density region and stiffen it at

high densities, resulting in a slightly increased maximum mass and considerably decreased
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radius for non-rotating compact objects.

The models of dense matter EOS used in this section are based on the framework of CDF

theory, where meson-∆ coupling values are varied and the calculations are carried out with

the relativistic Hartree-Fock (RHF) approximation. The Lagrangian of the model is given

as

L = LB + Lm + Lint + Ll, (3.28)

where LB represents free baryonic fields ψB, Lm represents free meson fields ϕm, Lint describes

the interaction between baryons and mesons, and Ll represents the contribution from free

leptons. The baryons accounted for include the spin-1/2 octet of nucleons N ∈ {n, p} and

hyperons Y ∈ {Λ,Ξ0,−,Σ+,0,−} and the spin-3/2 zero-strangeness quartet ∆ ∈ {∆++,+,0,−}.

The mesons accounted for include those regularly encountered in the RHF approximation

including the isoscalar-scalar meson σ, the isoscalar-vector meson ω, the isovector-vector

meson ρ, and the pseudo-vector meson π, as well as two hidden-strangeness mesons, σ∗ and

ϕ, which describe the interaction between hyperons. The leptons accounted for are electrons

e− and muons µ−.

The standard procedure for obtaining the density functional begins with finding equations of

motion from the Euler-Lagrange equations for each particle species. These take the form of

the Dirac equations for the baryon octet and leptons, the Rarita-Schwinger equations for the

∆’s, and the Klein-Gordon equations for the mesons. The solutions of these equations are

used to generate the energy density functional by evaluating each of the baryon self energies,

Σ, in the RHF approximation. In Dirac space, the self-energy can be defined as:

Σ(p) = ΣS(p) + γ0 Σ0(k) + γ⃗ · p̂ΣV (p) , (3.29)

where ΣS, Σ0, and ΣV denote the scalar self-energy, the time and space components of vector
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self-energy, respectively, γµ (µ = 0-3) are the Dirac matrices, and p̂ is a unit vector along

the 3-momentum p⃗. The self-energies, field equations, and the required charge neutrality

condition are then used to determine EOS at zero temperature. The full self-consistent

procedure is outlined in greater detail in [70, 177, 178].

The interaction between mesons and baryons, described by Lint in Eq. ((3.3.1)), is parametrized

by meson-baryon coupling constants gmB. As discussed in Chapter 2, ab initio methods use

values for the coupling constants from a given OBE model. But in the case of phenomeno-

logical methods like RHF, these values instead are determined by fitting to empirical data of

nuclear and hypernuclear systems. For the hypernuclear sector, the coupling constant values

are given by the SU(3) flavor symmetry quark model for vector mesons; for scalar mesons, the

coupling constants are fitted to empirical hypernuclear potentials. The meson-∆ coupling is

parametrized by ∆ isoscalar potential V∆, which is measured in units of the nucleon isoscalar

potential VN = Σ0,ω(ω) + ΣS,σ(σ). Heavy-ion collision and scattering experiments provide

approximate upper and lower bounds on V∆ relating to VN, but there are no exact values

defined for the isoscalar potential. Following [177], three potential depths V∆ are chosen at

nuclear saturation density ρ0 as V∆ = 2/3 VN, VN, and 4/3 VN. These are consistent with

inferences of ∆ potentials from terrestrial experiments and are compatible with the lower

limit on the maximum mass of static compact stars MTOV ≥ 2M⊙. For comparison, we

also include a hypernuclear EOS constructed from the framework of CDF theory which does

not include ∆ particles, labeled “npY” throughout the text. The three mixed ∆-hyperon

EOS models parametrized by V∆ and the purely hypernuclear EOS model npY are shown

in Fig. 3.2.
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Figure 3.2: Pressure vs. energy density for four EOS models constructed using RHF theory at
zero temperature. The black curve, denoted “npY”, describes hypernuclear matter that does
not contain ∆ isobars. The other three curves contain both hyperons and ∆’s, parametrized
by different values of the potential depth V∆ (see text for more details).

3.3.2 Stellar Sequences

We first show results for stellar sequences with a constant central density range to demon-

strate the expected increase in mass due to differential rotation. Figures 3.3 and 3.4 show

mass-radius (equatorial) relations for four degrees of differential rotation, parameterized by

Â−1, compared to the non-rotating curves calculated with the Tolman-Oppenheimer-Volkoff

(TOV) equation; Figure 3.3 uses the hyperonic EOS model and Figure 3.4 uses the EOS

model with largest potential depth value of V∆ = 4/3 VN [177].

They highlight that the inclusion of ∆ in the EOS composition softens the EOS at lower

densities and stiffens it at higher densities. This impacts the corresponding mass-radius

relations for non-rotating stars by decreasing the radius but increasing the maximum mass.

When comparing the mass-radius curves under differential rotation resulting from the hy-

peronic EOS in Figure 3.3 to those resulting from the largest value of V∆ in Figure 3.4,
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Table 3.1: Maximum gravitational mass (in units of M⊙) of four RHF EOS models which
account for hyperons (npY) or hyperons and ∆ particles (given as values of the V∆ potential):

EOS model TOV Â−1 = 0.3 Â−1 = 0.5 Â−1 = 0.7 Â−1 = 1.0
npY 2.011 2.183 2.253 2.319 2.356

2/3 VN 2.034 2.200 2.270 2.334 2.366
1.0 VN 2.054 2.216 2.287 2.355 2.386
4/3 VN 2.103 2.262 2.339 2.418 2.461

the same trend is observed. For the highest degree of differential rotation (Â−1 = 1.0), the

canonical 1.4 M⊙ star containing ∆’s has a radius of 15.46 km for the EOS with V∆ = 4/3

VN, compared to a radius of 17.65, reflecting the same decrease in radius observed with the

non-rotating curves in [177].

The maximum masses of the hyperonic EOS and the three EOS models containing both

hyperons and ∆’s are given in Table 3.1 for non-rotating (TOV) and differentially rotating

stars. For values of parameter Â−1 corresponding to different degrees of differential rotation

are used. Both Table 3.1 and Figures 3.3 and 3.4 reflect calculated values for stellar models

at a fixed value of the ratio between the polar and equatorial radius, rratio = 0.7. For

all employed EOS models, we observe a similar 16-17% increase in the maximum mass of

a maximally differentially rotating star when compared to the maximum mass of a static

(TOV) star. This shows that the difference in particle compositions that were accounted

for has no significant impact on how much the maximum mass will increase as the rotation

parameter Â−1 → 1.0.

3.3.3 Particle Composition

In this section, density distributions of massive, differentially rotating stars are used to

demonstrate where in the star different particle species appear.

Individual stellar models are constructed with a series of set parameters: the central density,
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Figure 3.3: Mass-radius relations for the hyperonic EOS npY constructed using RHF theory
at zero temperature. The dashed black line shows the non-rotating curve resulting from the
TOV equation, while the solid-colored lines are curves under different degrees of differential
rotation. Differential rotation is parameterized by values of the rotation parameter, Â−1 (see
text for more details).

the ratio between the polar and equatorial radius rratio, and the rotation parameter Â−1

which specifies the degree of differential rotation. The parameter rratio reflects the struc-

tural deformation observed with rapid rotation, which has been extensively showed through

numerical simulation [70, 179, 180] to result in a lengthening of the radius at the equator

and shortening at the pole. In the case of differential rotation, more extreme structural

deformations can occur as rratio → 0, in some cases leading to the formation of toroidally

shaped objects [105, 155]. In this section, we fix rratio at a value of 0.6, slightly lower than

that used to create stellar sequences in the previous section, resulting in massive, rapidly

rotating, ellipsoid-shaped stars.

We construct density distribution maps for the hyperonic EOS model and the V∆ = 4/3

VN EOS model additionally containing ∆’s. Particle fractions for both EOS models can be

found in Figure 3.5. For the hyperonic EOS model, the three hyperon species accounted for
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Figure 3.4: Mass-radius relations for the mixed hyperon-∆ EOS with V∆ = 4/3 VN con-
structed using RHF theory at zero temperature. The dashed black line shows the non-
rotating curve resulting from the TOV equation, while the solid-colored lines are curves
under different degrees of differential rotation. Differential rotation is parameterized by val-
ues of the rotation parameter, Â−1 (see text for more details).

are the Λ, the Ξ−, and the Σ− hyperons, which appear in that order. Figure 3.6 shows the

density map of a 2.48 M⊙ star constructed from the npY EOS model, with the following set

parameters: central density ϵc = 900 MeV, rratio = 0.6, and rotation parameter Â−1 = 0.7.

The Λ hyperon first appears at an equatorial radius, re, of ∼5 km and a density of 329.4

MeV/fm3 (shown in cyan); the Λ hyperon would be present from this depth until the center

of the star. The Σ− and Ξ− both appear at re ≈ 3 km and densities of 479.1 and 510.9

MeV/fm3, respectively (shown in green). The Σ− only appear briefly due to their repulsive

potential at nuclear saturation density [177], but the Ξ− would be populated throughout the

star up to its center.

The density distribution map for a 2.55 M⊙ star constructed with the mixed hyperon and

∆ EOS with a potential depth of V∆ = 4/3 VN is shown in Figure 3.7. The same values

for the central density, rratio, and rotation parameter Â−1 were used as in Figure 3.6. As
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shown in both Figure 3.5 and Figure 2 of [177], a larger value of the potential V∆ results in

a lowered onset threshold for ∆’s, and their threshold density is much lower than the one for

the first hyperon. For the largest potential depth V, the same-charge ∆− isobar effectively

replaces the Σ− hyperons in the star. In this case, only the Λ and Ξ− hyperons appear.

The same-charge ∆− isobar effectively replaces the Σ− hyperon, as it is energetically more

favorable due to its large negative potential. In Figure 3.7, the ∆− appears at a density of

168.66 MeV/fm3, corresponding to an re of ∼8 km (shown in royal blue). The next species

to appear, ∆0, appears at a density of 344.1 MeV/fm3 corresponding to an re of ∼8 km

(shown in cyan). The Λ and ∆+ become present at densities of 465.9 and 486.3 MeV/fm3

respectively, shown in green at a radius of ∼ 5 km. The particle species to appear is the

∆++, at a density of 763.6 MeV/fm3 and radius of < 3 km shown in red. All particles would

be present from the density they appear through to the star’s center.

It is important to note here that neutrons, protons, electrons, and muons are additionally

present within the stellar models discussed above but not shown explicitly in Figures 3.6 and

3.7.

3.4 Discussion and Conclusions

In Section 3.3.1, we extended the previous work of [177] and [181] that studied static and

uniformly rotating stellar configurations of hyperonic and ∆-admixed stars to stellar models

that support differential rotation. Specifically, we examined how the inclusion of ∆ isobars in

the EOS of dense matter impacts the corresponding stellar properties like mass and equatorial

radius for non-vanishing differential rotations. Computation of stellar sequences using the

RHF EOS models demonstrated that the inclusion of ∆’s in hypernuclear EOS results in

the reduction of the equatorial radius of the differentially rotating star and an increase in its

maximum mass. These trends are consistent with analogous findings for uniformly rotating
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and static compact stars. An interesting finding is that when comparing the maximum

masses from the highest degree of differential rotation (where the rotation parameter Â−1 =

1.0) to the lowest (Â−1 = 0.3), the magnitude of the increase in mass remained constant for

all four EOS models considered. In particular, the inclusion of ∆’s in the hypernuclear EOS

does not change the total amount of mass increase once the differential rotation is allowed. In

Section 3.2, density distribution maps of massive, differentially rotating stars were shown to

demonstrate at what radial depth different particle species appear. The competition between

the nucleation of Σ− hyperon and ∆− isobar was demonstrated, whose outcome depends on

the value of the ∆− potential in nuclear matter.

As mentioned in Section 3.2.2, the results shown in this chapter use a simple, linear rotation

law (the so-called “j-constant law”), but other studies like Ref. [176] argue a more complex

law is necessary to describe remnant stars following BNS mergers. While the implementation

of other rotation laws is not explored in the context of this work, future work should explore

if the same findings hold using hyperonic and ∆-admixed EOS models. Particularly, the

specified rotation law may impact the emergence of ∆ particles.

The stellar models presented in this chapter are constructed at zero temperature, which is

standard for traditional neutron stars. In the next chapter, we explore how temperature

impacts the structure and bulk properties of differentially rotating stars, and focus on more

deformed stellar configurations.
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Figure 3.5: Relative particle fractions Yi for the hypernuclear EOS npY (top panel) and the
hyperon-∆ admixed EOS with a potential depth of 4/3 VN (bottom panel).
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Figure 3.6: Energy density map of a 2.48 M⊙ differentially rotating star constructed with
hyperonic EOS npY. The star has an rratio = 0.6 and rotation parameter Â−1 = 0.7.
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Figure 3.7: Energy density map of a 2.55 M⊙ differentially rotating star constructed with
hyperon-∆ admixed EOS with a potential depth of 4/3 VN. The star has an rratio = 0.6 and
rotation parameter Â−1 = 0.7.
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Chapter 4

Differential Rotation in Hot,

Hypermassive Stars

4.1 Introduction

The coalescence of two of the densest objects in the Universe, a binary neutron star (BNS)

merger, is a volatile event. If the resulting remnant star does not promptly collapse into a

black hole, it may take the form of a hypermassive neutron star. This hypermassive remnant

would be very hot (up to 100 MeV) and is likely to find equilibrium by distributing the angu-

lar momentum from the collision differentially rather than uniformly. The thermal pressure

and differential rotation stabilize these stars in otherwise unstable physical configurations

on short, dynamical timescales.

Up to now, this thesis has independently explored features found in a hot, hypermassive

neutron star remnant. In Chapter 2, models for the EOS of hot, superdense neutron star

matter at varying temperatures were constructed using the RBHF formalism. In Chapter 3,

the traditional numerical scheme for modeling differential rotation in neutron stars, “CST”
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[104], was introduced and used to model differentially rotating objects at zero temperature.

This chapter combines the ideas presented in the previous two chapters to numerically model

hot, differentially rotating compact objects.

An important note discussed in Chapter 3 is the limitation of the traditional CST algorithm

when constructing models for very deformed stars, as the original algorithm assumes the

densest portion of the star is at the center. While the CST algorithm was shown to produce

deformed stars at zero temperature in the previous chapter, modeling stars that take a quasi-

toroidal or fully-toroidal shape is beyond the breadth of the traditional algorithm. This

chapter modifies the traditional CST algorithm to allow for greater physical deformation

and heavier stars.

This chapter is organized as follows: Section 4.2 discusses the mathematical and numerical

modifications to the CST algorithm necessary to construct models where the maximum

density is no longer at the center of the star. Section 4.3 shows results of differentially

rotating stars constructed using the four EOS models constructed in Chapter 2. In this

section, we show stellar sequences and individual stellar models while also discussing the

stability of such models. Section 4.4 presents the summary and discussion of the work.

4.2 Modifications to the CST Algorithm

The theoretical framework for modeling differential rotation in neutron stars follows directly

from the previous chapter, which assumes the density at the star’s center is the maximum

density throughout. However, this assumption limits the physical deformation possible,

as shown in extreme configurations like (C) or (D) in Fig. 3.1. This section introduces a

modification to the original CST algorithm to model stars whose maximum density is not

at its center.
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Stars that adopt a quasi- and fully-toroidal shape have a ratio of polar to equatorial radii

within the star, rratio, that tends towards 0. Our implementation of the original CST al-

gorithm becomes numerically unstable and thus fails to find solutions for small values of

rratio; other implementations of the same algorithm discuss a similar issue, like those in Refs.

[105, 182]. Specifically, Ref. [182] mentions that differentially rotating sequences can be split

into two branches, one with the maximum density at the center of the star and spheroidal

geometry, and one with an off-center location of the maximum density and quasi-toroidal

shape. They argue the CST algorithm in its traditional form will generally fail to converge

to a solution at values of rratio before mass shedding and, therefore, possibly before the

maximum mass for a given configuration is reached [182]. The first branch of sequences

described in Ref. [182] is representative of the (A) and (B) configurations in Fig. 3.1, where

the maximum density occurs at the star’s center. The second branch of sequences, where

the maximum density is off-center, is representative of the (C) and (D) configurations in

Fig. 3.1. As described in Section 3.2.2, the original CST algorithm therefore must be modi-

fied to achieve the second branch of sequences as described by Ref. [182].

As presented in the last chapter, the equation of hydrostatic equilibrium is given as:

h(P ) − hp =
1

2

[
γp + ρp − γ − ρ− ln(1 − v2) + Â2(Ω̂ − Ω̂c)

2
]
, (4.1)

which can be written in terms of the scaled metric potentials as:

h(P ) − hp =
1

2

[
(γ̂p + ρ̂p − γ̂ − ρ̂)r2e − ln(1 − v2) + Â2(Ω̂ − Ω̂c)

2
]
. (4.2)

In the original CST algorithm, this equation is evaluated at the maximum density of the

star (i.e. the center) and rearranged to determine the radius at the equator of the star, re,
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defined as:

r̄2e =
2[h(P̄ (ϵ̄c)) − hp]

γ̂ + p+ ρ̂p − γ̂m − ρ̂m
, (4.3)

where the subscript m denotes the location of the maximum density of the star. The last

two terms on the right side of Eq. (4.1) disappear as the velocity at the center of the star

goes to 0 and Ω̂ = Ω̂c. If the assumption is instead that the densest regions of the star are

not at the center, Eq. (4.3) must be redefined accordingly and the following updates are

introduced to our algorithm.

In the updated version, the iterative process to solve for metric potentials is employed twice

for each stellar model. The first run follows the original CST algorithm where re is determined

using Eq. (4.3). Once convergence is reached, the coordinate values (s, µ) of the maximum

density of the star are determined; this can be implemented succinctly using the built-in

function maxloc in modern Fortran, or an equivalent argmax function. The coordinate

values from the maximum density are then used to determine the corresponding maximum

pressure, enthalpy, and scaled metric potentials γ̂ and ρ̂ (given as γ̂m and ρ̂m). Resolving

for re using Eq. (4.2) gives the following:

r2e =
2(h(Pm) − hp) + ln(1 − v2m) − Â2(Ω̂m − Ω̂c)

2

[γ̂p + ρ̂p − γ̂m − ρ̂m]
, (4.4)

where the subscript m denotes the quantity’s value at the coordinates of the maximum

density. When using Eq. (4.4) instead of Eq. (3.20) to update re, the program is no longer

restricted to the assumption that the maximum density is at the center of the star. The

iterative process to determine values for the metric potentials is employed for a second time

using these substitutions, and these values are then used to calculate the bulk properties of

the star.

The final modification to our implementation of the original CST algorithm is regarding the
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root-finding methods used to determine the angular frequency Ω. In the previous chapter,

Brent’s method is used to determine the rotational frequency at the equator Ωe, which

subsequently is used to determine its value at the center Ωc. As rratio becomes small, finding

the supposed window containing the root using Brent’s method becomes increasingly difficult,

so we found it to be more numerically stable to instead solve for Ωe and Ωc simultaneously

using the Levenberg-Marquardt algorithm. Brent’s method is still however employed to find

the matrix values of the full rotational frequency Ω.

4.3 Results for Maximum Density not at the Center of

the Star

Results in this section use the above substitutions, and we present stable solutions for more

extreme configurations of differentially rotating stars. The stellar models constructed with

the modified CST algorithm use the finite temperature EOS models from Chapter 2 to model

hot, hypermassive neutron stars. Because the updated method used in this chapter allows

for a wider range of rratio values, we present results that examine how this parameter impacts

the mass for each EOS.

4.3.1 EOSModels using Relativistic Brueckner-Hartree-Fock (RBHF)

Theory

In this section, EOS models constructed using the RBHF formalism at finite temperatures

are used as an input to construct differentially rotating stellar models. The inclusion of

finite temperatures into the EOS more accurately depicts a remnant star following a BNS

merger, and temperature likely plays an important role in the stability of the remnant. As
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discussed in Chapter 1, lone neutron stars (or those in binary systems before coalescence)

are relatively cold; neutron stars are considered to be zero temperature on the nuclear scale,

or less than 1010 K. A quasi-stable hypermassive neutron star remnant, however, would be

incredibly hot - on the order of several hundred billion degrees or up to 100 MeV [183].

Because temperature adds to the complex calculations required to derive a nuclear EOS

model, most EOS models are constructed at zero temperature. As shown in Chapter 2, the

inclusion of temperature complicates the treatment of nucleons and the many-body system

when calculating pressure and density. Due to the restricted number of publicly available

and constraint-fulfilling finite-temperature EOS models, many simulations of binary neutron

star mergers and remnant stars used a “hybrid-EOS”, where a cold, zero-temperature EOS

model is combined with a thermal contribution [183]. The thermal contribution obeys an

ideal fluid and is parameterized in terms of a simple adiabatic index assumed to be constant

[165]. Unfortunately, this treatment of the adiabatic index does not accurately describe

the behavior of nuclear matter at finite temperatures [184]. In Chapter 2, nuclear many-

body calculations were carried out at finite temperatures in a self-consistent fashion using

the RBHF formalism, which more accurately describes hot nuclear matter than hybrid-EOS

models. We use the EOS models from Chapter 2 as input to the differential rotation scheme

to construct models of hot, differentially rotating neutron stars.

4.3.2 Stellar Sequences Varying the Ratio of Polar to Equatorial

Radius

In the previous chapter, stellar sequences over a range of central density values were con-

structed with a fixed rotation parameter Â−1 and fixed rratio. When assuming the maximum

density of the star is no longer in the center, more extreme configurations with lower values

of rratio can be calculated. Results are presented in this section for a range of rratio values to

demonstrate the parameter’s impact on the maximum mass for a given EOS.
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Figure 4.1: Mass vs. central density of differentially rotating neutron stars constructed using
the EOS model from the Bonn B potential at T = 10 MeV. The four panes show values for
four instances of the rotation parameter Â−1 for a range of rratio values.

Table 4.1: The ratio of polar to equatorial radii, rratio, corresponding to the uniformly
rotating maximum mass of the four finite temperature EOS models constructed with the
Bonn B potential.

EOS rratio = rp/re
T = 10 MeV 0.739
T = 30 MeV 0.740
T = 50 MeV 0.739
T = 70 MeV 0.752
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Figure 4.2: Mass vs. central density of differentially rotating neutron stars constructed using
the EOS model from the Bonn B potential at T = 30 MeV. The four panes show values for
four instances of the rotation parameter Â−1 for a range of rratio values.
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In Chapter 2, four EOS models at temperatures of 10, 30, 50, and 70 MeV are used to

determine mass values for non-rotating stars and for stars uniformly rotating at their Kepler

frequencies. The uniformly rotating stars exhibit some level of structural deformation, which

can be observed by calculating the ratio of polar to equatorial radii in the star (rratio). For

the four EOS models, the corresponding rratio values at the mass peak for uniform rotation

are given in Table 4.1; the maximum mass at each of the four temperatures exhibits an

average rratio of 0.7425.

When using the modifications to the CST algorithm described in Section 4.2, a wider range of

rratio can be used. While Chapter 3 presented stellar sequences for a given EOS over a range

of central densities, this chapter will present results over both a range of central densities and

a range of rratio values. Specifically, sequences over a range of central densities are calculated

at varying values of rratio, where only the rotation parameter Â−1 is kept constant. For each

EOS model at a given temperature, we provide stellar sequences of this form for four degrees

of differential rotation that follow directly from the previous chapter: Â−1 = 0.3, 0.5, 0.7,

and 1.0. For the EOS model with temperature T = 10 MeV, the resulting stellar sequences

are shown in Fig. 4.1, T = 30 MeV are shown in Fig. 4.2, T = 50 MeV are shown in Fig. 4.3,

and T = 70 MeV are shown in Fig. 4.4. For all four temperatures, the general trend follows

that more extreme differential rotation (Â−1 → 1.0) paired with more extreme structural

deformation (rratio → 0.0) results in higher masses at lower central densities, which then

taper off to the Kepler limit at higher central densities. This trend is also encountered in

Ref. [105], who make similar modifications to the original CST algorithm. Additionally, the

stellar models computed with rratio similar to the rratio values seen in uniform rotation closely

follow the Kepler curve, indicating that even high levels of differential rotation may have less

of an impact on the mass of the system when compared to the overall structure of the star.

At higher temperatures (i.e. T = 50 and 70 MeV), the numerical scheme fails to find stable

solutions at high central densities, usually over 700 MeV/fm3. One explanation for this
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phenomenon is the linking of a finite temperature EOS for the dense regions of the star to a

zero-temperature EOS for the crust. The numerical scheme requires a full EOS as an input,

meaning a model for the crust must be added to the high-density portion of the EOS. As

mentioned in Chapter 2, the conventionally used EOS models for the inner and outer crusts

are all constructed at zero temperature. Results in this chapter, as well as the previous

chapter, use BPS+BBP for the crust. When including temperature in the full EOS, there

exists a substantial discontinuity between the highest-density portion of the cold crust and

the lowest-density region of the hot core, which grows as temperature increases and impacts

the resulting bulk properties of the star. In Fig. 4.4 (at 70 MeV), calculated mass values

dip below the Kepler curve at lower densities for low degrees of differential rotation, which

is likely due to the different crust EOS models used for this chapter and in Chapter 2. This

issue may be rectified by adding a thermal contribution to the EOS of the crust, but this is

not conventionally done in the literature.

Alternatively, the lack of stellar models at higher central densities, shown in Figs. 4.3 and

4.4, could be because there exist no physical solutions for hot stars at those central densities.

4.3.3 Dynamical Bar-Mode Instability

The ratio of rotational (T ) to gravitational (W ) energy within the star T/|W |, referred to

as the stability parameter, was introduced for uniformly rotating stars in Chapter 2. This

parameter commonly appears as β throughout the literature. In this section, we explore how

this parameter determines the stability of differentially rotating models against the dynamic

bar-mode instability.

Rotating neutron stars formed from a CCSN or binary stellar merger may experience nonax-

isymmetric instabilities that directly impact their rotation rate and overall stability. Previous

90



Figure 4.3: Mass vs. central density of differentially rotating neutron stars constructed using
the EOS model from the Bonn B potential at T = 50 MeV. The four panes show values for
four instances of the rotation parameter Â−1 for a range of rratio values.
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Figure 4.4: Mass vs. central density of differentially rotating neutron stars constructed using
the EOS model from the Bonn B potential at T = 70 MeV. The four panes show values for
four instances of the rotation parameter Â−1 for a range of rratio values.

92



Figure 4.5: Mass vs. central density of for two cases of differential rotation (Â−1 = 0.3 for
the top panes, Â−1 = 1.0 for the bottom) at T = 50 MeV. The left plots show mass vs.
central density for various values of rratio as shown in Fig. 4.3, while the right plots show the
same values color-coded based on their stability parameter β = T/|W |. Stars are deemed
“unstable” if β ≥ 0.25, see text for more details.
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studies (see Refs. [185, 186]) in Newtonian gravity have shown rotational instabilities arise

from non-radial toroidal modes, i.e. eimϕ (m = ±1, 2, ...), which result in the stability pa-

rameter exceeding some critical value βc. These rotational instabilities are likely to impact a

star’s gravitational radiation signal, making the study of such instabilities an important topic

in the wake of new gravitational wave detectors. In this section, we will focus on the so-called

bar-mode instability where m = ±2, which is expected to be the fastest-growing mode and

the subject of many instability studies for both uniformly and differentially rotating neutron

stars.

Two mechanisms cause rotating stars to be unstable to bar-mode deformation: secular and

dynamical instabilities. In Newtonian theory, uniformly rotating incompressible neutron

stars become secularly unstable to bar-mode deformation at a critical value βc ≥ 0.14 with

similar findings in studies of post-Newtonian theories [187]. In general, the secular instability

grows only in the presence of a small dissipative mechanism like viscosity or gravitational

radiation at lower rotation rates [162]. The secular instability usually has a longer growth

time when compared to the dynamic timescale of the system. A similar critical value of

βc has been observed in numerical studies of relativistic stars but is also dependent on the

compaction (M/R) of the star and the dissipative mechanism. For example, viscosity-driven

secular instability has been shown to occur at βc > 0.14 in more compact configurations

with higher rotation rates, but gravitational radiation-driven instabilities occur at βc < 0.14

at lower rotation rates; a more in-depth review of this topic is given in Ref. [188].

The dynamical bar-mode instability occurs independent of any dissipative mechanism and

with a growth rate determined by the dynamical timescale of the system, which is generally

faster than the timescale of growth for secular instabilities. Therefore, numerical simulations

of hydrodynamical equations are necessary to determine the onset threshold of the dynami-

cal bar-mode instability. Many simulations have been carried out in Newtonian theory, the

consensus of which gives the critical value βc ≥ 0.27 [189]. Simulations of the dynamical
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bar-mode instability in general relativity are less common, as solving the nonlinear hydro-

dynamical equations in full relativity is more complex. However, there have been reliable

studies carried out by Refs. [189, 190] for uniformly rotating stars and Refs. [191–195] for

differentially rotating stars.

The relativistic simulation of differentially rotating stars carried out in [194] finds that the

critical value of the stability parameter for the dynamic bar-mode instability is βc ≈ 0.24 −

0.25, slightly lower than the Newtonian limit. These simulations were carried out using the

same linear rotation law as in this chapter (and the proceeding one) for similar values of rratio.

Therefore, we adhere to their specified threshold of β to determine whether differentially

rotating stars are stable or unstable to the dynamical bar-mode deformation. Specifically,

we use the upper limit for the critical threshold, so stars deemed unstable in this section will

have a stability parameter βc ≥ 0.25.

A visual representation of stable and unstable models using this criterion at T = 50 MeV

for two degrees of differential rotation is shown in Fig. 4.5. The two panels in each row show

the same information, mass vs. central density for a range of rratio values, where the figures

in the right column categorize each stellar model as stable with a blue square or unstable

with a red dot. The top row presents a lesser degree of differential rotation (Â−1 = 0.3),

where 81.6% of calculated stellar models are considered stable against dynamical bar-mode

deformation. In contrast, the bottom row has the highest degree of differential rotation (Â−1

= 1.0), and the increase in differential rotation decreases the percentage of stable models to

67.2%. For both cases of differential rotation, the majority of the unstable configurations

have small values for rratio, a trend that will be echoed in the next section.

Table 4.2 gives the percentage of unstable models and the average rratio of those unstable

models for four degrees of differential rotation for each temperature: 10, 30, 50, and 70

MeV. The general trend appears to be as temperature increases, the percentage of unstable

models decreases. However, this trend requires more context: the numerical scheme fails to

95



Table 4.2: The percentage of unstable models and the average rratio, r̄ratio, of unstable models
for four degrees of differential rotation for each temperature EOS: 10, 30, 50, and 70 MeV.

EOS Â−1 % unstable r̄ratio

T = 10 MeV

0.3 23.2 0.47
0.5 27.6 0.46
0.7 25.5 0.51
1.0 27.0 0.52

T = 30 MeV

0.3 27.4 0.50
0.5 30.2 0.48
0.7 30.5 0.50
1.0 31.6 0.54

T = 50 MeV

0.3 18.4 0.43
0.5 21.4 0.43
0.7 21.7 0.49
1.0 32.8 0.47

T = 70 MeV

0.3 1.7 0.49
0.5 9.1 0.40
0.7 9.7 0.43
1.0 12.2 0.49

find solutions at high central densities for higher temperatures (T = 50 and 70 MeV), so the

percentages may be skewed. A more important figure to look at is the average rratio, r̄ratio, of

the unstable models. A small correlation could be made where r̄ratio decreases as temperature

increases, but for all four temperatures, the average values generally tend to fall between 0.4

to 0.5. Stars with rratio ≤ 0.5 are extremely deformed and thus likely to be vulnerable to

dynamical instabilities. These findings imply temperature plays little role when compared

to the star’s deformation on its stability against dynamical bar-mode excitation.

4.3.4 Structural Deformation

In this section, we examine density and frequency maps of individual stellar models at

two temperatures, T = 10 MeV and T = 50 MeV. For each temperature, two models are

computed: the first with a lesser degree of differential rotation (Â−1 = 0.3) and the second

with a larger degree of differential rotation (Â−1 = 1.0). All four models are computed with
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an rratio = 0.4, which is a significant degree of structural deformation. Information on the

stars’ masses, radii, and stability parameters are given in Table 4.3.

The density and frequency maps for T = 10 MeV are shown in Fig. 4.6, where the top row

shows results for Â−1 = 0.3 and the bottom for Â−1 = 1.0. The lesser degree of differential

rotation is shown very clearly in the frequency map, where the difference of frequency values

in the star only spans 320 Hz. In contrast, the star with a higher degree of differential

rotation sees a span of 5,600 Hz from the highest to lowest frequency values. The density

maps show an interesting depiction of the overall structural deformation. For Â−1 = 0.3, the

star takes an ellipsoid-like shape, but for Â−1 = 1.0, the star instead takes a quasi-toroidal

shape, as was demonstrated schematically in Fig. 3.1. While each star was initialized with

the same central density of 400 MeV/fm3, the star with Â−1 = 1.0 experiences much higher

densities outside of the center of the star. A similar story is seen for T = 50 MeV in Fig. 4.7

but with even higher densities observed at the higher temperature.

As shown in the previous section, the stability of the star depends not only on the deformation

characterized by rratio but also on the degree of differential rotation. In Table 4.3, all four

models have the same value of rratio. For both temperatures, the stars computed with Â−1

= 0.3 have stability parameters T/|W | well below the critical limit of 0.25. However, the

stars with Â−1 = 1.0 are well above the critical limit for β, where the stability parameter is

0.64 for T = 10 MeV and 0.75 for T = 50 MeV. These stars are well beyond the threshold

for the dynamical bar-mode instability and thus likely unphysical.

The timescale over which the dynamical bar-mode instability develops, also known as the

dynamical timescale, is proportional to R3/2/M1/2. While this is not a definite indication

of the growth time of the instability, which would instead require a full simulation in both

time and space (see Ref. [194] for a good example), for extremely unstable configurations

the dynamical timescale can provide some idea of how long these stars may exist with the

bar-mode instability excited before collapse. For the unstable configuration at T = 10 MeV,
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A-1 = 0.3, T = 10 MeV
^

A-1 = 1.0, T = 10 MeV^

A-1 = 0.3, T = 10 MeV
^

A-1 = 1.0, T = 10 MeV^

Figure 4.6: Energy density (left) and frequency (right) contours for individual stellar models
at two degrees of differential rotation, constructed using the EOS model from the Bonn B
potential at T = 10 MeV. The top row has a lower degree of differential rotation (Â−1 =
0.3) and the bottom has a higher degree (Â−1 = 1.0). The corresponding masses, radii, and
stability parameters are given in Table 4.3.
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A-1 = 0.3, T = 50 MeV^

A-1 = 1.0, T = 50 MeV^

A-1 = 0.3, T = 50 MeV^

A-1 = 1.0, T = 50 MeV^

Figure 4.7: Energy density (left) and frequency (right) contours for individual stellar models
at two degrees of differential rotation, constructed using the EOS model from the Bonn B
potential at T = 50 MeV. The top row has a lower degree of differential rotation (Â−1 =
0.3) and the bottom has a higher degree (Â−1 = 1.0). The corresponding masses, radii, and
stability parameters are given in Table 4.3.
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Table 4.3: Bulk properties of highly deformed neutron stars, all with rratio = 0.4, at two
temperatures: 10 MeV and 50 MeV. For both temperatures, results are presented for a
small degree of differential rotation (Â−1 = 0.3) and a large degree of differential rotation
(Â−1 = 1.0). Calculated properties include the gravitational mass MG, baryonic mass MB,
equatorial radius re, polar radius rp, the ratio of central to equatorial frequency Ωc/Ωe, and
stability parameter T/|W |. The T = 10 MeV entries correspond to Fig. 4.6 and the T = 50
MeV entries correspond to Fig. 4.7; see text for more details.

EOS Â−1 rratio MG (M⊙) MB (M⊙) re (km) rp (km) Ωc/Ωe T/|W |

T = 10 MeV
0.3 0.4 1.69 1.84 20.41 8,16 1.13 0.01
1.0 0.4 1.91 2.61 12.94 5.18 5.88 0.63

T = 50 MeV
0.3 0.4 1.78 1.93 22.25 8.90 1.13 0.01
1.0 0.4 2.08 2.84 13.65 5.19 5.95 0.75

the dynamical timescale is ∝ 35.8 seconds, and for the unstable configuration at T = 50

MeV, the dynamical timescale is ∝ 34.9 seconds.

4.4 Discussion and Conclusions

In this chapter, we present results that differ from the previous chapter in two ways. The

first is that the numerical scheme is modified to allow for more deformed stars, by changing

the criteria previously in place where the central density of the star was its maximum. The

second differentiation comes from the type of EOS models used as input to the numerical

scheme that models differential rotation. In this chapter, we use the finite temperature

EOS models constructed from the RBHF formalism as described in Chapter 2, where the

temperatures span 10, 30, 50, and 70 MeV. The inclusion of temperature is pertinent to the

realistic modeling of extreme astrophysical events where differential rotation may occur like

BNS mergers or core-collapse supernovae.

The modifications to the numerical scheme allow for solutions in a wider range of rratio

values, or the ratio between the polar and equatorial radius of the star. In Section 4.3.2,

we calculate stellar sequences with varying rratio values (0.8 to 0.3) over a range of central
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densities for all four finite temperature EOS models. The general trend echos what has

previously been shown in literature at zero temperature, where a higher degree of differential

rotation (Â−1 → 1.0) results in higher mass stars at lower central densities when compared

to lower values of Â−1, especially as rratio decreases. For all four temperatures, the numerical

scheme struggled to find physical solutions as Â−1 increased and rratio decreased, especially

at higher densities. This was especially true for T = 50 MeV and 70 MeV, where no solutions

were found beyond a central density of 700 MeV/fm3.

The calculated stellar models’ stability against rotational instabilities, specifically the dy-

namical bar-mode instability, is explored in Section 4.3.3. At a temperature of 10 MeV,

the average rratio value of stars unstable against dynamical bar-mode excitement is 0.49, for

30 MeV the average is 0.50, for 50 MeV the average is 0.455, and for 70 MeV the average

is 0.452. The results presented in this section emphasize that the deformation, character-

ized rratio, has a greater impact on the star’s stability than temperature against dynamical

instabilities.

Finally, individual stellar maps of density and frequency distributions were shown in Sec-

tion 4.3.4 for two temperatures, 10 and 50 MeV, and two degrees of differential rotation. As

expected, the frequency range for higher degrees of differential rotation (and higher values

of Â−1) was much wider. Higher values of Â−1 also resulted in a shift in the overall shape of

the star, from ellipsoid to quasi-toroidal. However, the two quasi-toroidal models computed

had stability parameters well beyond the critical limit of 0.25, making them unstable to the

bar-mode instability and likely unphysical configurations.

In the next chapter, we turn our attention back to the inference of the EOS of neutron star

matter. Instead of theoretical modeling as done in Chapter 2, we implement novel numerical

techniques using machine learning to decipher a link between the observation of neutron

stars and the underlying EOS.
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Chapter 5

Equation of State Inference from

Simulated X-ray Spectra using

Machine Learning

This chapter presents text and results from previously published work (Ref. [10]) in collabo-

ration with Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar,

Lee Lindblom, Daniel Whiteson, and Fridolin Weber.

5.1 Introduction

While the work presented thus far has focused on modeling neutron star matter theoreti-

cally and, in turn, determining macroscopic properties, the next chapters instead explore

the inference of the equation of state (EOS) from simulated observable neutron star data.

Previous chapters have given the mathematical framework where the EOS of a star in static

gravitational equilibrium determines stellar properties such as its mass and radius. These
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Figure 5.1: Overview of the regression task, which involves either inferring stellar summary
quantities such as mass and radius, which can then be used to deduce the equation of state
as in earlier work [6–9] or inference of EOS directly from stellar spectra, as is demonstrated
in this study.

same properties can also be determined from thermal, X-ray, or gravitational wave emission

of neutron stars; for the context of this work, we will focus on X-ray emission. Spectral emis-

sion can therefore, in principle, allow inference of the EOS from inference of mass and radius,

which has been demonstrated in the literature [113–118], though inversion of this second step

is numerically very difficult. Additional challenges are due to the small number of neutron

star observations, O(10), and the significant uncertainty of individual measurements. It is

therefore vital that as much information as possible is extracted from each star, and that the

uncertainties be propagated accurately, to provide the most complete information possible

about the EOS.

While traditional inference methods include statistical methods like Bayesian inference, other

numerical methods can be well-suited for this task. In recent years, there has recently

been a dramatic burst of progress in artificial intelligence, specifically deep learning [132],

a modern re-branding of neural networks. This progress has led to breakthroughs not only

in traditional areas such as natural language processing and computer vision but also in the
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natural sciences, including particle physics, often increasing the statistical power of difficult-

to-collect data [133] while allowing robust handling of uncertainties [134]. Where earlier

neural networks were limited in size, computing progress, especially in the form of Graphical

Processing Units (GPUs), has enabled the deployment of larger and deeper networks that

can handle more complex and higher-dimensional data [135, 136], allowing direct analysis of

data without requiring dimensional reduction, or other preprocessing steps, that can often

sacrifice useful information. The full power of these techniques has not yet been brought to

bear on many astrophysical tasks.

In the context of the inference of neutron star EOS, recent work by Fujimoto et al. [6, 7]

demonstrated the ability of deep networks to regress the EOS directly from a set of stellar

mass-radius pairs, without the need to extract the functional relationship between mass

and radius. Their analysis used a toy model to describe the uncertainties in mass and

radius, assuming uncorrelated Gaussian errors randomly drawn from ad-hoc priors. Real

measurements, of course, do not often obey these simplifying assumptions, and show complex

correlations between mass and radius [196]. Related work [8] has demonstrated similar

regression, again assuming Gaussian uncertainty on mass and radius values, but with clever

efforts to reduce dependence on EOS parameterization. An alternative approach [9] uses

both neural networks and support vector machines to regress the EOS from stellar radii and

tidal deformations.

More realistic characterization of the uncertainties in the mass-radius plane can be extracted

using the state-of-the-art tool xspec [197], which assumes a theoretical model for the star

and telescope response, allowing for explicit calculation of the likelihood of X-ray telescope

spectra for various mass and radius values. The likelihood can be used in the standard

way to extract the best estimates and uncertainty contours of any shape in the mass-radius

plane. However, these complex mass-radius likelihoods cannot be trivially incorporated into

the existing EOS inference schemes, motivating the simplifying assumptions of uncorrelation
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normal distributions which can be described by two width values. An additional concern is

that xspec’s contours rely on the simplifying assumptions of the theoretical model.

What has received less attention in the literature are likelihood-free methods to infer the

EOS directly from the telescope spectra, without the intermediate stepping stone of the

mass-radius determination and the challenges of its representation. This would allow for

the full propagation of realistic uncertainties and the relaxation of assumptions about the

theoretical model.

In this chapter, a technique of EOS inference that allows for the full propagation of the

uncertainties in the X-ray spectra is presented, without making simplifying assumptions

about the shape of the contours in the mass-radius plane. The work presented in this chapter

follows directly from Ref. [10]. We proceed in three steps, beginning from an approach similar

to the state of the art but with realistic uncertainty propagation, and moving towards end-to-

end inference. In the first step, our neural network model infers the neutron star EOS from

a set of stellar masses and radii extracted from xspec, but rather than making simplifying

assumptions of extracting uncertainty contours from xspec, we vary the assumed nuisance

parameters (NPs) which are the source of the uncertainty to produce new best-estimate mass-

radius points. The EOS inference can then be performed on many sets, each corresponding

to varied NP values, producing a variation in the inferred which represents the propagated

uncertainty. In the second step, we investigate a more flexible method of inferring the

mass and radius that does not explicitly rely on xspec’s specific theoretical model. We

introduce a network capable of directly analyzing high-dimensional neutron star spectra,

performing inference of stellar mass and radii from telescope spectra, a demonstration of the

impressive capacity of modern deep networks. Finally, we perform a first-of-its-kind inference

of the EOS parameters directly from a multi-star set of stellar spectra, without requiring

the intermediate step of collapsing the information into mass and radius; see Figure 5.1.

In both cases, we allow for full propagation of uncertainties by conditioning the networks
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on the stellar nuisance parameters. As this is – to our knowledge – the first attempt at

full propagation of these uncertainties for this task, there are no direct benchmarks in prior

work. Instead, we show comparisons between our three methods and visualize the impact

on the EOS inference of variation of the nuisance parameters for a fixed X-ray spectrum.

The chapter is organized as follows. In Section 5.2, the background on the physics of the

connection between the nuclear equation of state and the stellar observations is given. Sec-

tion 5.3 describes the fundamentals of the machine learning concepts on which our studies

rely. Details of the samples of simulated data are given in Section 5.4. Section 5.5 demon-

strates inference of the EOS parameters from mass and radius, while Section 5.6 describes

how mass and radius parameters can be inferred directly from stellar spectra, and Section 5.7

shows end-to-end inference of EOS parameters from a set of neutron star spectra.

5.2 Background

The theoretical connection between the EOS of dense matter and the mass and radius of

neutron stars is discussed extensively in previous chapters. For non-rotating stars, numeri-

cally solving the TOV equations (Eqs. 2.67 and 2.68) for M and R is straightforward given

an EOS. These equations create a one-to-one map from the EOS to the M−R relation [118];

the inverse form of this map can therefore provide constraints on the EOS from observable

properties. To mathematically invert the TOV equation, at least two stars’ mass and ra-

dius must be known exactly, a feat that is not possible with current observational technology.

Solving the inverse problem is therefore much more complicated, potentially even intractable

without making significant numerical assumptions.
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5.2.1 X-Ray Spectroscopy for Neutron Stars

Many reliable observations of neutron stars come from X-ray emission, either from electro-

magnetic radiation from pulsars or thermal emission in quiescent low-mass X-ray binaries

(qLMXBs). qLMXBs are particularly desirable to place strong constraints on neutron star

structure as they are likely to have low magnetic fields (108−9 G), resulting in minimal effects

on the radiation transport or temperature distribution on the star’s surface [196, 198, 199].

Additionally, these binaries are identified in globular clusters where distances, ages, and red-

dening are well-constrained [200]. The distinctive soft thermal spectra from these sources

come from a long-lived thermal glow resulting from heat stored in the deep crust of the

neutron stars within the binary system during accretion, which is then re-radiated from the

whole surface when accretion stops [201]. For the context of this work, the inference of EOS

will come from simulated thermal spectra from qLMXBs.

Observation of neutron star emission, whether X-ray or gravitational wave, has long served as

a way to constrain mass and radius for neutron stars (eg. [202, 203]), but uncertainties arise

in the inference of these properties for a variety of reasons. In the case of X-ray radiation from

qLMXBs, constraints on mass and radius are determined by fitting the emitted spectrum

with an appropriate atmosphere model (where the surface composition is known or can be

determined by the X-ray spectrum) and combining the spectroscopic measurements with

the distance of the source. Models for thermal X-ray radiation are based on a light-element

atmosphere, as the lightest element that is present in the atmosphere floats to the top due

to rapid gravitational settling on neutron star surfaces [196]. Atmospheric models used on

X-ray spectra from qLMXBs gave the first broad constraints on neutron star radius, and

more modern analyses of X-ray spectra have provided tighter constraints on both radius and

EOS.

The high-resolution imaging and spectroscopy of NASA’s Chandra X-ray Observatory have
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provided powerful insight into neutron star properties like cooling [204, 205], mass and

radius [196], and binary mergers of exotic stars [206]. Chandra’s telescope contains a system

of four pairs of mirrors that focus incoming X-ray photons to the Advanced CCD Imaging

Spectrometer (ACIS), which measures the energy of each incoming X-ray. The observed

spectrum, along with a corresponding instrument response, is then fit to a well-motivated

parameterized model. Many such models for spectral fitting exist in xspec [197], an X-

ray spectral fitting package distributed and maintained by the aegis of the GSFC High

Energy Astrophysics Science Archival Research Center (HEASARC). These parameterized

models differ for different types of X-ray sources, as well as assumptions about the source’s

atmosphere, magnetic field, and temperature (a full list of models can be found in the xspec

manual [197]). xspec has been used numerous times in the past to analyze data from

Chandra as well as other spectrometers like NICER, Nustar, and XMM-Newton, making it

a valuable resource for inference of neutron star properties.

5.3 Machine Learning

Machine learning methods, in particular deep learning, aim to extract useful knowledge from

data automatically and are rapidly being applied across many data-rich fields of science [132].

In regression tasks such as EOS inference, one is interested in constructing a function f

whose inputs are the observed data and whose outputs are an estimate of some parameter of

interest. The optimal function f is not known initially, but an approximation can be learned

from a set of input-output example pairs.

To approximate f , machine learning methods first begin with a suitable class C of pa-

rameterized functions (e.g. polynomials of a certain degree, neural networks of a certain

architecture) and then seek to find the best approximation to f within the class C. This

is typically done through a stochastic gradient descent procedure that seeks to iteratively
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minimize the approximation error on the training set.

The well-known technique of linear regression is the most elementary form of regression and

can be viewed as a form of shallow learning (no hidden layers). Deep learning generalizes

linear regression by using multi-layer neural networks as the class C thus enabling the con-

struction of sophisticated and flexible non-linear approximations. With sufficient training

data and computing power, deep learning methods can handle large-scale problems with

high-dimensional data and avoid heuristic simplifications that lose information. It is not

uncommon to deal with problems with input sizes in the range of up to 109 examples, each

with dimensions of 103−4, with neural networks that can have up to 1011 free parameters.

Training sets can range in size from 101 to 1010 or more. Unlike shallow learning and lin-

ear regression, deep learning does not require that the number of parameters be equal to

the number of training examples [207]. More recent, attention-based architectures, such as

transformers [208, 209], allow networks to take advantage of structures and symmetries in

the data and are applied in the sections below.

When the interpretation of data depends on external unmeasured or poorly-known param-

eters, such as neutron star temperature or distance, it can be useful to apply parameterized

networks [135]. Such networks learn a task as a function of the external parameter, allowing

for the evaluation of a fixed dataset under varying assumptions about the parameter [134].

5.4 Training Samples

Samples of simulated neutron stars, used to train networks and evaluate their performance,

are described below.

Each simulated star is described by two high-level summary quantities, the mass and radius,

which are drawn from the mass-radius relation determined by the EOS, as well as three nui-
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sance parameters that are independent of the EOS and can vary from star to star. These five

parameters are sufficient to determine the expected simulated Chandra telescope spectrum

in the chosen neutron star theoretical model. In the case of EOS inference, sets of stars with

consistent EOS are grouped to form training and testing sets. Details of each step of the

generation are provided below.

5.4.1 Equation of State

The equation of state of the hadronic matter within the core is modeled with the relativistic

non-linear mean field model GM1L [11]. The version used here only accounts for protons and

neutrons but can be extended to include hyperons and ∆ baryons [210]. The corresponding

saturation properties of symmetric nuclear matter for the GM1L parametrization are shown

in Table 5.1 [210, 211]. These properties include the nuclear saturation density n0, energy per

nucleon E0, nuclear compressibility K0, effective nucleon mass m∗
N/mN , asymmetry energy

J , asymmetry energy slope L0, and the value of the nucleon potential UN . The value of

L0 listed in Table 5.1 is in agreement with the value of the slope of the symmetry energy

deduced from nuclear experiments and astrophysical observations [212].

The most commonly used constraints on K0 come from experimental values of the giant

monopole resonance, which lie in the range of 220 to 260 MeV [213, 214]. The analysis

of [215], however, suggests a higher range of 250 to 315 MeV. The value of K0 = 300 MeV

considered in our paper falls into the latter category, but this will not dramatically impact the

neutron-rich equation of state appropriate for neutron star interiors. The GM1L equation

of state for the core is paired with two models for the crust. For the outer crust, which

falls in the density range 104 − 1011 g/cm3, we use the Baym-Pethick-Sutherland (BPS)

model [216]. For the inner crust, with densities in the range 1011 − 1014 g/cm3, we use the

Baym-Bethe-Pethick (BBP) model [217].
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Table 5.1: Parameters of the model used to select example equations of state for the gener-
ation of simulated data samples. Shown are properties of the symmetric nuclear matter at
saturation density for the GM1L parametrization of neutron star interiors[11]; see text for
details.

Saturation Property Value Units
n0 0.153 fm−3

E0 −16.3 MeV
K0 300.0 MeV

m∗
N/mN 0.70 -
J 32.5 MeV
L0 55.0 MeV
UN −65.5 MeV

To limit the number of parameters the networks must learn, the essential features of the

high-density portion of the EOS needed to be represented efficiently by just a few values.

This can be done accurately by constructing parametric representations based on spectral

fits, formed as generalizations of the Fourier series used to represent periodic functions [116].

An EOS, defined as P = P (ϵ) or ϵ(P ) = ϵ, can be represented as a linear combination of

basis functions ϵk(ϕ):

ϵ(p) =
∑
k

ϵkΦk(p) (5.1)

where ϕk(p) can be any complete set of functions. The EOS is therefore determined by the

spectral coefficients ϵk, making ϵk = ϵ(p, ϵk). There are two important conditions that a

physical EOS must satisfy to ensure microscopic stability. The first is that the EOS must be

non-negative, or p(ϵ) ≥ 0, and the second is that pressure must be monotonically increasing

with density [116]. Because these conditions are not naturally respected by arbitrary basis

functions in a spectral representation, representing an EOS with a straightforward spectral

expansion will likely produce data that violates microscopic stability and is therefore erro-

neous. To ensure these two conditions are met, we instead turn to a faithful construction of

spectral representations of the EOS; the process for constructing these is outlined in detail
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in [218] and [116].

The spectral representation of GM1L is formed from representing the EOS in terms of the

relativistic enthalpy, h, where the EOS can be rewritten as a pair of equations P = P (h)

and ϵ = ϵ(h). The enthalpy can be defined as

h(P ) =

∫ P

0

dP ′

ϵ(P ′)c2 + P ′ (5.2)

where c is the speed of light [218]. Inverting Eq. (5.2) obtains the equation P = P (h), which

can recover the EOS ϵ(P ) as ϵ(h) = ϵ[P (h)]. The pair of equations P = P (h) and ϵ = ϵ(h)

can be expressed from a reduction to quadrature:

P (h) = P0 + (ϵ0c
2 + P0)

∫ h

h0

µ(h′)dh′, (5.3)

ϵ(h) = −P (h)c−2 + (ϵ0 + p0c
−2)µ(h). (5.4)

The function µ(h) is defined as

µ(h) = exp

{∫ h

h0

[2 + Γ(h′)]dh′
}

(5.5)

which is dependent on the sound speed or velocity function Γ(h) and constants P0 = P (h0)

and ϵ0 = ϵ(h0) [218]. Similar to Eq. (5.1), the velocity function can be represented as a

spectral expansion:

Γ(h, νk) = exp

[∑
k

νkΦk(h)

]
(5.6)

where Φk(h) is any complete set of basis functions on the domain [h0, hmax].
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We constructed enthalpy-based causal spectral fits for the GM1L EOS with up to 10 param-

eters. Figure 5.2 shows that just two spectral parameters produce parameterizations with a

mean relative error of only 10%, and additional parameters can reduce the error to 5% or

lower. A small number of parameters is preferred due to the increased complexity of learning

multiple parameters, and the danger of Runge’s phenomenon when applying our networks to

current neutron star observations with accurate readings of mass and radius, which are still

relatively few. Runge’s phenomenon arises when attempting to fit equispaced data points

with polynomials of a high degree; increasing the order of the polynomial interpolation can

result in issues with convergence or divergence rates for certain functions [219]. When ap-

plied to neutron star observation, attempting to fit a small number of data points (with

varying accuracy in observation method) with a model having many parameters may result

in fits that accurately fit the data, but are very poor representations of the actual physics.

Based on the reasons listed above, we chose to use two spectral parameters to represent the

EOS, hereafter referred to as λ1 and λ2.

Figure 5.2: Relative error in the spectral parameterization of the equation of state, shown
as a function of the number of parameters used.

To create many samples needed for training and testing, spectral parameters were then
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constructed from the expression:

λgenerated = λtrue · (1 + 2 · scale(−0.5 + ran2 )), (5.7)

where λgenerated represents the newly constructed spectral parameter, λtrue is the best fit (true)

spectral parameter of GM1L, and scale is a scaling parameter set to 0.05. ran2 are uniformly

distributed random numbers in the range 0 to 1 generated by the ran2 function given in

[220]. This process was repeated to create 104 different EOS variations. Each EOS variation

was used to generate a coinciding M − R relation using equations (Eqs. 2.67 and 2.68),

examples of which are seen in Figure 5.3, from which 100 (M,R) pairs are selected, each

representing stellar parameters consistent with that EOS. Due to the random component of

our EOS generation, some models have a mass peak below the current observed mass limit,

2.1 M⊙. All models have a minimum mass of at least 1 M⊙. The physicality of predicted

results will be discussed in further detail Section 5.8.

4.8 4.9 5.0 5.1 5.2
EOS Spectral Param 1

2.05

2.00

1.95

1.90

1.85

EO
S 

Sp
ec

tra
l P

ar
am

 
2

Figure 5.3: Examples of training data. On the left: 100 samples in EOS spectral parameter
space (λ1, λ2) randomly selected from the full set of 10,000 EOS spectral pairs. On the right:
neutron star mass-radius curves determined by the selected EOS parameters.
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5.4.2 Modeling X-ray Spectra

The relation between stellar parameters (M,R) is determined by the EOS and samples from

the allowed curve are used as input to generate simulated X-ray Chandra spectra, such as the

Chandra observation of the quiescent low-mass X-ray binary (qLMXB) X7 in the globular

cluster 47 Tuc [196].

The xspec program [197], which can be used for spectral fitting, is also capable of generation

of simulated spectra, via the fakeit command when a neutron star model and telescope

response matrix are provided.

The neutron star theoretical model NSATMOS [221] selected includes a hydrogen atmosphere

model with electron conduction and self-irradiation. The Chandra telescope response spec-

ified in Ref. [221] was also used to describe the instrument response and telescope effective

area.
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Figure 5.4: Examples of simulated stellar spectra expected for several values of stellar pa-
rameters. Each pane shows the expected rate of photons in Chandra per energy bin, for
variations of the parameters of interest (mass M, radius R) as well as for variations of the
nuisance parameters (NH , log(Teff), distance). The dashed black line has the same parame-
ters in each pane.
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5.4.3 Nuisance Parameters

The NSATMOS model has five parameters to describe each star: gravitational mass M in units

of M⊙, radius R in units of km, and three additional parameters related to observation.

For the context of M − R and subsequent EOS inference, only M and R are parameters

of interest, whose values come from those generated by the GM1L EOS and so provide

information relevant to the physical question. The remaining three nuisance parameters are

the effective temperature of the surface, Teff , the distance to the star, d, and the hydrogen

column, NH which parameterizes the reddening of the spectrum by the interstellar medium.

These parameters influence the observed spectrum of a given neutron star. Lack of knowledge

of these values is a leading source of uncertainty in the inference of mass and radius, and

hence EOS.

Using Table 1 in Ref. [203] as a guide, we find that distances typically range between 2

and 10 kpc, and hydrogen columns lie between 0.2 and 5 × 1021 cm−2. While neutron stars

with larger distances and larger hydrogen columns exist, they are sufficiently distant to be

difficult to obtain spectral information. From Table 3 in Ref. [222], effective temperatures

at the surface typically lie between 50 and 200 eV, or from 6 × 105 and 2.4 × 106 K. Note

that core temperatures are typically a few orders of magnitude larger. Again colder neutron

stars most certainly exist but are more difficult to observe.

Examples of generated spectra for varying stellar parameters are shown in Figure 5.4.

The generated spectra are very sensitive to the effective surface temperature, with lesser

sensitivity to other parameters. The dependence of the curves in Figure 5.4 to the changing

nuisance parameters is not surprising: roughly proportional to radius and distance squared,

but higher power in temperature.

The networks detailed below provide estimates of either the neutron star mass and radius

or the EOS parameters, conditioned on NP values. Uncertainty in regressed parameters of
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Table 5.2: Description of “true”, “tight”, and “loose” nuisance parameter (NP) scenarios.
Shown are the width of each Gaussian distribution representing the prior knowledge of each
NP. For distance and NH , width is relative; for log(Teff), it is absolute. See text for details
and references.

Nuis. Param. True Tight Loose
Distance exact 5% 20%
Hydrogen Column NH exact 30% 50%
log(Teff) exact ±0.1 ±0.2

interest due to uncertainties in the NP can then be fully propagated via variation of the

NPs used during regression. To demonstrate the impact of NP uncertainties, we define three

example scenarios of uncertainties, dubbed “true”, “tight”, and “loose”, which describe the

quality of prior information on the NP values for each star.

In the “true” scenario, the NPs are set to the true value used to generate the spectra, such

that the NP prior is essentially a delta function. In the “tight” scenario, the uncertainty is

described as a narrow Gaussian for each NP, with distance having a width of 5%, hydrogen

column having a width of 30%, and log(Teff) having a width of 0.1. In the “loose” scenario,

the uncertainties are described by a wider Gaussian, with distance having a width of 20%,

hydrogen column having a width of 50%, and log(Teff) having a width of 0.2. These ranges

are shown in Table 5.2. The sensitivity to NP values is reflected in the performance of the

networks below.

5.5 Inference of EOS from Mass and Radius

Previous applications of machine learning to the task of inferring the equation of state have

begun from the stellar mass and radii [6–8], or equivalent parameters [9], though with simple

ad-hoc descriptions of the uncertainty on stellar mass and radius values, often modeled

as two-dimensional uncorrelated Gaussians rather than fully propagating the underlying

uncertainties. In this section, we tackle the same problem, but where the stellar data are
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more realistic and the underlying uncertainties are fully propagated to the EOS estimation.

Specifically, the best estimates of stellar mass and radius are derived using state-of-the-art

tools that extract them from realistic stellar spectra, which include the impact of stellar

nuisance parameters and limited observation time. In addition, this mass-radius estimation

is conditioned on the nuisance parameters, such that variations in those nuisance parameters

lead to variations in the mass and radius estimates. This connects directly to the neural

network regression of EOS parameters from mass-radius values parameterized in the nuisance

parameters, allowing for the direct propagation of the underlying uncertainties to give a

measure of the resulting uncertainty on the regressed EOS parameters.

Below, we describe the extraction of realistic mass and radius values with xspec, and their

subsequent use in NN regression of the EOS parameters and the estimation of the uncertainty.

For comparison, we also provide a demonstration of the regression of EOS parameters using

polynomial regression. In subsequent sections, we consider an alternative extraction of mass

and radius using a NN, as well as end-to-end regression of EOS directly from stellar spectra.

5.5.1 Mass and Radius inference by XSPEC

Sample stellar spectra are generated as described above, including Poisson noise correspond-

ing to an observation time of 100 ks, and nuisance parameters variations as specified in Table

5.2.

Given a sample observed X-ray spectrum, the xspec code scans the mass and radius pa-

rameter space, searching for values that best describe it. For each mass-radius pair, the

expected spectrum is calculated using the chosen model and telescope response function,

identical to those used to generate the sample spectra being fit. The fitted values are those

that minimize a bin-wise χ2, and reported errors are those that generate a fixed increase in

the χ2 metric.
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Figure 5.5: Estimation of the mass and radius of a neutron star from the underlying stellar
spectra, by xspec. Each pane represents one star, and shown (green) are estimates for
several independent values of the nuisance parameters drawn from the associated priors, and
the mean value (red). Top two cases have loose priors, bottom two have tight. The dashed
ellipse, whose widths are set to the standard deviation of the mass and radius estimates, is
a demonstration of the inadequacy of a simple uncertainty model.

To propagate the uncertainty due to the lack of knowledge of the NP values, the fit on a

given spectrum is performed several times with varying assumed values of the NPs drawn

from the appropriate prior. The variation in the resulting fitted values then describes the

impact of uncertainty on the NPs. For this reason, during each single xspec fit, the NP

values are not allowed to vary but are frozen. Figure 5.5 shows examples for individual stars,

demonstrating the variation of the stellar parameter estimates with varying NP values. For

illustrative comparison to ad-hoc models of uncertainty, the standard deviation in mass and

radius are used to define the widths of a 2d error ellipse, though it is clear that this fails

to capture the complex nature of the impacts of the underlying uncertainties; these simple

error models are not used in our analysis.
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xspec is also capable of floating the nuisance parameters, varying their values to improve

an individual fit, and reporting an uncertainty envelope in the mass-radius plane. This can

be helpful in the case where the mass and radius and their envelope are the final targets.

However, to propagate the uncertainty downstream requires that we have the full posterior

in the mass-radius plane or samples from it. An estimate and envelope do not provide

that capacity, though they can allow for ad-hoc parameterizations of the prior as have been

performed previously. We condition the nuisance parameters to allow full propagation of the

NP uncertainty through to EOS estimation, as we do below.

Performance of xspec regression of mass and radius is shown in Figure 5.6, where the

residuals increase as expected with wider priors on the nuisance parameters. In addition,

note that in the case of the “loose” priors, there is a small fraction of cases where xspec

fails to converge on an estimate, as the nuisance parameters are fixed to a value far from the

value used to generate the spectrum.

One important note regarding xspec’s performance is that the same theoretical model,

NSATMOS, is used in data generation and regression. Because of this, the regression models

discussed in the next section can, at best, match xspec’s performance for the evaluation

dataset. Nonetheless, it is an important step in demonstrating the capacity of these methods

to perform such inference without explicitly relying on a single theoretical model.

5.5.2 Inference of EOS from mass and radius

In this section, we demonstrate the inference of EOS parameters from the stellar mass and

radius data, using neural network regression parameterized in the NPs to allow propagation

of the uncertainty. In addition, we build polynomial regression models which serve as a

benchmark, following Ref. [6].
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Figure 5.6: Performance of xspec inference of neutron star mass and radius, as measured by
residuals between the fitted (”pred”) and true values under three treatments of the nuisance
parameters (NPs). In the “true” case, the NPs are fixed to their true values; in the “tight”
and “loose” cases, they are drawn from narrow or wide priors, respectively; see text for
details. Cases in which xspec fails to converge are shown as large negative residuals.

Neural Network regression

Deep feed-forward neural networks are trained to provide the EOS parameters given a collec-

tion of ten stars, each represented by their mass and radius. Each network has two outputs,

λ1 and λ2.

We train three networks, one for each of the true, tight, and loose NP scenarios. All networks

have identical architecture, 10 hidden layers with 32 nodes each followed by an output

layer with 2 nodes. Rectified linear units (ReLU) are used as activation functions for the

hidden layers while linear activations are used for the output layers. They were trained

up to 1000 epochs with a mean squared error (MSE) loss and an Adam optimizer [223],

and the performance is evaluated on independent validation data. The performance was not

found to be highly sensitive to hyper-parameter tuning, so permutation symmetry-preserving

architectures were not explored. The networks were implemented using Tensorflow 2.7.0

on a single NVIDIA RTX A5000 GPU.
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Polynomial regression

Following the example of Ref [6], as a performance benchmark we also construct a polyno-

mial regression model to regress EOS parameters λ1 and λ2 from stellar mass and radius

information. The input for each model is a 20 x 1 vector containing the following information

from each of the ten stars: mass M , radius R.

Each 20 x 1 input to the polynomial regression network represents a set of stars, all of which

are chosen from the same EOS. We construct two multivariate polynomial regression models

of degree two, following the general form:

λ = β0 +
N∑

i=1,2

βix
i (5.8)

where each β are coefficients and N = 20 to represent the cluster size or 10 mass-radius pairs.

Polynomial features were created using the machine learning toolbox scikit-learn [224], and

subsequently fit to a linear regression model. This model uses optimization in the form of

ordinary least squares, which takes the form:

minβ||Xβ − y||22 (5.9)

where X is the N = 20 input vector, and y is the target EOS parameter, either λ1 or λ2.

Estimation of Uncertainty

The uncertainty in the underlying neutron star nuisance parameters has a significant impact

on the estimation of EOS parameters. Because the mass and radius estimation is conditioned

on the NPs, leading to variations in the mass and radius, (eg see Figure 5.5), those variations

can be propagated through the EOS estimation. The significant uncertainties in stellar
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Figure 5.7: Neural network regression of the EOS parameters λ1 and λ2 of a set of 10
neutron stars from their masses and radii as estimated by xspec from each star’s spectrum.
Each pane represents an example dataset of 10 simulated stars, and shown (green) are EOS
estimates for several independent values of the stellar nuisance parameters drawn from the
associated priors, and the mean value (red). Top two cases have loose priors, bottom two
have tight.

nuisance parameters and the small number of stars observed to date make the treatment of

those uncertainties vital. The validity of the final result is only as powerful as the validity

of its uncertainties. In Figure 5.7, examples of the variation of the EOS estimates are

shown, where the underlying stellar spectra are fixed. Thus, this provides a measure of the

uncertainty in the EOS due to the uncertainty in the NPs.

Performance

Performance of neural network regression of the EOS parameters λ1 and λ2 are compared

to polynomial regression of the same quantities using identical datasets via comparison of

the residuals, the difference between the true and regressed values. As seen in Figures 5.8

and 5.9, while PR can achieve narrower residuals in the true case, the network regression is
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more robust in cases with larger uncertainties.

This result confirms what has been seen in earlier studies of NN regression from mass-radius

pairs [6], but our study extends previous work by using realistic values of the mass and radius

inferred from realistic simulated spectra, as well as by demonstrating uncertainty quantifi-

cation, via full propagation of the underlying uncertainties due to nuisance parameters.
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Figure 5.8: Comparison of the performance of NN regression and polynomial regression of
EOS parameter λ1 from mass-radius pairs inferred by xspec from stellar spectra. Shown
is the residual, the difference between the predicted and true values for each of the three
treatments of the stellar nuisance parameters. In the “true” case, the NPs are fixed to their
true values; in the “tight” and “loose” cases, they are drawn from narrow or wide priors,
respectively; see text for details.
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Figure 5.9: Comparison of the performance of NN regression and polynomial regression of
EOS parameter λ2 from mass-radius pairs inferred by xspec from stellar spectra. Shown
is the residual, the difference between the predicted and true values for each of the three
treatments of the stellar nuisance parameters. In the “true” case, the NPs are fixed to their
true values; in the “tight” and “loose” cases, they are drawn from narrow or wide priors,
respectively; see text for details.

5.6 Inference of Mass and Radius from Spectra

Previous applications of machine learning to neutron star datasets focus on the analysis

of mass-radius pairs, as demonstrated above, rather than the direct analysis of the stellar

spectra by neural networks.

A potential obstacle to direct analysis of spectra by neural networks is that the spectra are

high-dimensional, often with O(103) bins of photon energy. However deep learning methods
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combined with GPUs have no trouble analyzing data with similarly high dimensionality [135],

opening up new opportunities to tackle this important topic. While the mass and radius

are powerful summaries of the information in the lower-level spectra which is relevant to the

equation of state, direct ML analysis of the spectra themselves may allow for the extraction

of additional information or provide more robust propagation of uncertainties. As an initial

step, we begin by estimating the stellar mass and radius from a single stellar spectrum before

moving on to end-to-end inference of EOS parameters directly from a set of spectra in the

next section.

In this section, we apply machine learning to the task of extracting the mass and radius from

the stellar spectra, training a network we refer to as MR Net. This serves as a demonstration

of the capabilities of ML to grapple with high-dimensional datasets, allows us to harmonize

the treatment of nuisance parameters end-to-end from spectra to EOS, and potentially ex-

tract more relevant information.

5.6.1 MR Net Method

We build a network whose inputs correspond to the bins of the stellar X-ray spectrum, and

whose outputs are the estimates of the star’s mass and radius. In addition, the mass and

radius regressor is parameterized on the stellar nuisance parameters (distance, NH , log(Teff)),

which allows the results to be conditioned on the nuisance parameters.

This architecture is composed of two input branches, one to process the star’s spectra and

another to process the corresponding nuisance parameters. Each branch contains a series

of layers that process its inputs in isolation. Following these initial layers, the output from

the branches is combined, forming a single vector containing all the information. This

vector is then passed to a final series of layers to predict the star’s mass and radius. Each

segment of the network, both the branches and the main trunk of the network, contains four
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layers, giving the network eight layers in total. All fully connected layers contain 275 nodes

and utilize a dropout probability of 0.25. The network employs skip connections between

alternate layers. This stabilizes the training process and adds robustness to the network

overall. The network is trained with an MSE loss and an Adam optimizer with an initial

learning rate of 0.00017 which is slowly decayed over the course of training.

Mass-radius regression is formulated as a supervised learning problem, where the network

learns to minimize the error between the true mass and radius and its predictions. The

network weights are updated by stochastic gradient descent using backpropagation. The

Huber loss function [225] is used and the Adam optimizer computes gradients and schedules

the backward passes.

5.6.2 MR Net Performance in Mass and Radius

We begin with the best-case scenario in which the nuisance parameters are known with

zero uncertainty, referred to as “true NP” above. Figure 5.10 shows the performance of

MR Net given neutron star spectra with statistical noise corresponding to 100,000 seconds

(100 ks) of observation time, as well as for spectra without statistical noise. This demon-

strates the contribution of statistical noise to the residual and demonstrates the network’s

ability to digest the spectral information and understand the dependence on mass and radius.

What is clear is that MR Net is capable of extracting the mass and radius values of the star

directly from the spectrum. We emphasize that the network is trained on examples, but does

not benefit from the knowledge of the theoretical model used to generate these stars, while

xspec requires precise specification of the theoretical model. This lack of requirement of a

theoretical model opens new possibilities, such as training MR Net to interpolate smoothly

between theoretical models by providing a mixed or parameterized training set.
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Figure 5.10: Performance of the MR Net regression of a neutron star mass (top) and radius
(bottom) from its stellar X-ray spectrum. Shown is the residual, the difference between
the true and predicted values, for spectra with statistical noise (blue) corresponding to an
observation time of 100ks, and for spectra without statistical noise (red), which demonstrates
the network’s capacity. Nuisance parameters are fixed to their true values.

The MR Net is conditioned on the nuisance parameters, allowing for propagation of the

NP uncertainties through to the regression target as was done with xspec estimates. To

assess the impact of NP uncertainty, we draw from priors on the NPs under the “Tight” and

“Loose” scenarios defined earlier. The residuals widen, as expected. Figures 5.11 and 5.12

show the mass and radius residuals, respectively, under each NP scenario for MR Net and

xspec. Table 5.3 shows the mean and width of each residual distribution, as well as the

combined width. As an additional comparison, Figure 5.13 shows the ratio of predicted

values from MR Net to true values subtracted from 1.

MR Net is capable of analyzing the stellar spectrum directly and extracting stellar param-

eters in a robust manner that allows for the propagation of NP uncertainties.

5.6.3 Network Uncertainty on Mass and Radius

Conditioning the extraction of M and R on the nuisance parameters allows for the natural

propagation of the corresponding uncertainties. As was done for xspec mass and radius
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Figure 5.11: Performance of the MR Net regression of a neutron star mass from its stellar
X-ray spectrum, compared to regression using xspec. Shown is the residual, the difference
between the true and predicted values, for three scenarios of nuisance parameter uncertain-
ties. In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose”
cases, they are drawn from narrow or wide priors, respectively; see text for details.

estimates, we propagate the NP uncertainty through to mass and radius uncertainty by

sampling from the stellar NP priors several times for a given stellar spectrum, performing

the mass and radius regression multiple times. Figure 5.14 demonstrates this for several

example stars. Note that the variation of NP values does not produce variation in M and

R which can be accurately summarized by 2D uncorrelated Gaussians, as has been assumed

in previous studies [6] with ad-hoc datasets.
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Figure 5.12: Performance of the MR Net regression of a neutron star radius from its stellar
X-ray spectrum, compared to regression using xspec. Shown is the residual, the difference
between the true and predicted values, for three scenarios of nuisance parameter uncertain-
ties. In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose”
cases, they are drawn from narrow or wide priors, respectively; see text for details.

5.6.4 Revisiting EOS Regression

The question driving the analysis of neutron star spectra is not a desire to measure their

masses and radii, but to use those to determine the equation of state parameters. In this

section, we push the results of MR Net through our NN regression of EOS parameters to

analyze the performance of spectra→ (M,R) →EOS regression. In later sections, we remove

the intermediate step and perform direct spectra→EOS regression.

Performance of the EOS regression using stellar mass and radius information from MR Net is
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Figure 5.13: Performance of the MR Net regression of a neutron star mass (top) and radius
(bottom) from its stellar X-ray spectrum. Shown is the ratio of predicted (”pred”) to true
values minus one for three scenarios of nuisance parameter uncertainties. In the “true” case,
the NPs are fixed to their true values; in the “tight” and “loose” cases, they are drawn from
narrow or wide priors, respectively; see text for details.

Table 5.3: Performance of the regression of neutron star mass and radius for xspec as well as
our neural network regression, MR Net, which lacks any knowledge of the theoretical model.
Shown are the mean (µ) and standard deviation (σ) of the residuals under three scenarios of
nuisance parameter uncertainties. In the “true” case, the NPs are fixed to their true values;
in the “tight” and “loose” cases, they are drawn from narrow or wide priors, respectively;
see text for details. The combined column is a quadrature sum of the standard deviations
of radius and mass.

Nuis. Mass Radius Combined

Method Params µ σ µ σ σ
xspec True −0.01 0.50 0.23 1.44 1.51
MR Net True −0.14 0.93 −0.07 2.80 2.99
xspec Tight −0.06 0.73 0.24 2.61 2.69
MR Net Tight 0.17 1.06 0.06 3.52 2.76
xspec Loose 0.18 0.86 −0.06 4.32 4.40
MR Net Loose 0.28 1.29 0.14 4.93 5.10
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Figure 5.14: Estimation of the mass and radius of a neutron star from the underlying stellar
spectra, by MR Net. Each pane represents one star, and shown (green) are estimates for
several independent values of the nuisance parameters drawn from the associated priors, and
the mean value (red). Top two cases have loose priors, bottom two have tight. The dashed
ellipse, whose widths are set to the standard deviation of the mass and radius estimates, is
a demonstration of the inadequacy of a simple uncertainty model.

shown in Figures 5.18 and 5.19, and compared to regression from mass and radius information

by xspec. Examples of uncertainty propagation through to EOS estimates are shown in

Figure 5.15.
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Figure 5.15: Neural network regression of the EOS parameters λ1 and λ2 of a set of 10
neutron stars from their masses and radii as estimated by MR Net from each star’s spectrum.
Each pane represents an example dataset of 10 simulated stars, and shown (green) are EOS
estimates for several independent values of the stellar nuisance parameters drawn from the
associated priors, and the mean value (red). Top two cases have loose priors, bottom two
have tight.
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5.7 Inference of EOS from Spectra

In the previous section, we connected the two ML models, MR Net(spectra →M,R) and our

EOS regression NN (M,R → EOS). This required the collapse of the full information and

dependence on nuisance parameters into these two physical quantities. At the same time,

MR Net demonstrated that it is possible to regress physics quantities directly from high-

dimensional stellar spectra. In this section, rather than connecting two networks via mass

and radius, we use a single network to perform end-to-end regression of EOS parameters

from a set of stellar spectra, avoiding the information collapse, keeping the full informa-

tion, and allowing for robust propagation of the stellar nuisance parameters into uncertainty

quantification for the EOS parameters of interest.

In addition to a demonstration of the power of networks to directly analyze low-level data,

this allows us to probe the question of whether the mass and radius are sufficient statistics,

and whether they contain all of the information relevant to the problem. There are many

examples in the literature in which such well-motived high-level heuristics fail to capture the

complete information contained in lower-level data. In this case, while in principle the mass

and radius are all that are required to infer the EOS in the context of a fixed theoretical stellar

model, such information is never without uncertainty. Full propagation of the dependence

on nuisance parameter uncertainty may allow for more accurate and robust estimates.

Furthermore, there are properties of neutron stars that can be deciphered from spectra

beyond simply mass and radius. Quantities like temperature inhomogeneities [226] may

impact a star’s equation of state but are not captured by the mass and radius.
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5.7.1 Architecture

Many neural network architectures operate on sequences of vectors, rather than a set of

vectors. For instance, in natural language processing, the input may be a sentence where

each word is converted to a vector and the ordering of the vectors matters. However, in the

case of neutron stars and other problems, we need neural networks that operate on sets of

vectors, such as the independent spectra observations for multiple stars.

One architecture with invariant properties with respect to permutations of the input vectors

is the transformer architecture [209, 227]. Perhaps surprisingly, transformers were origi-

nally developed for problems in natural language processing, thus requiring the addition of

positional information bits to the vector encoding each word to recover the sequential di-

mension. More recently they have been used in other areas, including physics [228, 229] to

leverage their permutation invariance properties. Transformer architectures typically consist

of stacks of encoder modules followed by decoder modules. The structure of each encoder

module and each decoder module is similar, thus we describe only a typical encoder mod-

ule. A transformer encoder module accepts an unordered set of inputs and produces a set

of outputs. The transformer employs a mechanism called self-attention, which allows it to

compare each element in the set against every other. This mechanism allows the network

to attend to important features in the set while computing an output prediction. Briefly,

self-attention (Equation 5.10) operates on an input matrix X, with N rows and D columns.

Three matrices are produced from the projection of X with differing, trainable, weight ma-

trices: Q = XWQ, K = XWK , V = XWV (termed Query, Key, and Value respectively).

S = D(Q,K, V ) = softmax

(
QKT√
dq

)
V (5.10)

Thus in short each output corresponds to a different convex combination of the Value vectors,

135



where each convex combination depends on the degree of similarity between the correspond-

ing Query and Key vectors. The similarity is computed by taking dot products between

corresponding Query and Key vectors and then applying a softmax to yield a convex com-

bination (see [209, 227] for additional details).

In the neutron star application, the transformer architecture takes input spectra and cor-

responding nuisance parameters for each star in the set. In the results shown below, the

network is given a set of 10 stars, though the structure of the network allows it to accept

larger or smaller datasets with minimal modification. The final output of the network is the

two EOS parameters. This is shown schematically in Figure 5.16.

The network is composed of six consecutive transformer blocks. Each block processes the

input through multi-head attention (with eight heads), followed by dropout (p = 0.15),

normalization, and fully connected layers. Following these blocks the output is processed by

one final fully connected layer to regress the EOS coefficients λ1 and λ2. All fully connected

layers, with the exception of the final one, use the ReLU activation function. The Adam

optimizer was used to provide gradient updates with an initial learning rate of 0.000075,

which was a slow decade over the course of training.

5.7.2 Training the Network

The parameters of the network architecture and the learning algorithm, the hyperparame-

ters, were optimized with Sherpa [230], a Python library for hyperparameter tuning. The

algorithm used is based on a random search and has the advantage of making no assump-

tions about the structure of the hyperparameter search problem and thus is well suited for

exploring a variety of parameter settings. An initial exploratory search was conducted on a

subset of the data to find appropriate hyperparameters.
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Figure 5.16: Schematic diagram of the transformer neural network used to determine EOS
coefficients λ1 and λ2 from an input of spectra and NPs.

Following this exploratory phase, the network is trained for 1,000 epochs on the full dataset.

The Adam optimizer [223] is used for gradient descent, with early stopping monitoring of

the validation loss to prevent overfitting.

5.7.3 Results

Figure 5.17 shows the performance of spectra→EOS regression in the best-case scenario,

where the nuisance parameters are perfectly known. Shown is the performance with sta-

tistical noise corresponding to 100 ks of observation time per star, as well as for spectra

without statistical noise. While there is significant width to the residuals, this is dominated

by the statistical uncertainty, not the network’s ability to digest the spectral information and

understand the dependence on mass and radius. This clearly demonstrates the network’s

capacity is sufficient for the regression task.

We next analyze the performance of the direct regression in cases where the nuisance pa-
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Table 5.4: Performance of the regression of neutron star EOS parameters λ1 and λ2 using
direct regression from spectra, as compared to NN regression from mass and radius (M,R) in-
formation extracted via MR Net or xspec. Shown are the mean (µ) and standard deviation
(σ) of the residuals under three scenarios of nuisance parameter uncertainties; distributions
are given in Figures 5.18 and 5.19. In the “true” case, the NPs are fixed to their true values;
in the “tight” and “loose” cases, they are drawn from narrow or wide priors, respectively;
see text for details. The combined column is a quadrature sum of the standard deviations
of λ1 and λ2.

Nuis. λ1 λ2 Combined

Method Params. µ σ µ σ σ
NN(Spectra) True −0.02 0.066 0.01 0.075 0.099
NN(M,R via MR Net) True -0.03 0.089 −0.02 0.068 0.112
NN(M,R via xspec) True −0.03 0.065 0.01 0.055 0.085
NN(Spectra) Tight 0.02 0.085 −0.02 0.077 0.115
NN(M,R via MR Net) Tight 0.00 0.104 0.02 0.072 0.126
NN(M,R via xspec) Tight −0.03 0.081 0.01 0.056 0.098
NN(Spectra) Loose −0.03 0.131 −0.01 0.078 0.152
NN(M,R via MR Net) Loose −0.01 0.135 −0.02 0.078 0.156
NN(M,R via xspec) Loose −0.03 0.123 0.01 0.058 0.136

rameters are not perfectly determined. Figures 5.18 and 5.19 show the residuals in the EOS

parameters for the end-to-end regression, as compared to regression from mass and radius

information provided by MR Net or xspec from the stellar spectra. Table 5.4 summarizes

the performance for each method.

As the full network is again conditioned on the NPs, we can propagate this uncertainty

directly through our regression. Figure 5.20 demonstrates how variations of the NPs, drawn

from the appropriate priors, provide a measure of the uncertainty of the final result.

5.8 Discussion

The performance of the three methods is measured in simulated stellar samples generated

with the same theoretical stellar model that is assumed by xspec, which makes it a valuable
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Figure 5.17: Performance of the neural network regression of the neutron star EOS pa-
rameters λ1 (top) and λ2 (bottom) directly from a set of stellar X-ray spectra, without
intermediate prediction of the mass and radius. Shown is the residual, the difference be-
tween the true and predicted values, for spectra with statistical noise (blue) corresponding
to an observation time of 100k seconds per star, and for spectra without statistical noise
(red), which demonstrates the capacity of the network. Nuisance parameters are fixed to
their true values.

upper limit for the two fully neural network-based methods, which must infer the relation-

ships. The three approaches perform comparably, and the end-to-end method slightly but

consistently outperforms the two-step method using MR Net. Once trained, the end-to-end

network can handle any prior on the nuisance parameters, whereas the networks that rely

on xspec fits or MR Net predictions need first to be trained on data with the desired prior.

When the data are simulated and drawn from a known theoretical model, one cannot achieve

more statistical power than directly calculating the likelihood. However, even powerful theo-

retical models for spectral fitting still rely on a variety of assumptions about the spectrum’s

source. The flexibility of these fully neural network-based approaches is an important ad-

vantage, opening the door to interpolating between theoretical models [134], or even learning

directly from observational data [231, 232]. An inference approach with this flexibility and

the capacity for robust propagation of uncertainties is vital.

As a further visualization, Figure 5.21 shows several example curves in the mass-radius
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Figure 5.18: Performance of the regression of neutron star EOS parameter λ1 using direct
regression from spectra, as compared to regression from mass and radius information ex-
tracted via MR Net or xspec. Shown are the residual distributions, the difference between
the true and predicted values, under three scenarios of nuisance parameter uncertainties. See
Table 5.4 for quantitative analysis. In the “true” case, the NPs are fixed to their true values;
in the “tight” and “loose” cases, they are drawn from narrow or wide priors, respectively
(see text for details).
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Figure 5.19: Performance of the regression of neutron star EOS parameter λ2 using direct
regression from spectra, as compared to regression from mass and radius information ex-
tracted via MR Net or xspec. Shown are the residual distributions, the difference between
the true and predicted values, under three scenarios of nuisance parameter uncertainties. See
Table 5.4 for quantitative analysis. In the “true” case, the NPs are fixed to their true values;
in the “tight” and “loose” cases, they are drawn from narrow or wide priors, respectively
(see text for details).
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Figure 5.20: Neural network regression of the EOS parameters λ1 and λ2 of a set of 10
neutron stars directly from the set of stellar spectra. Each pane represents an example
dataset of 10 simulated stars, and shown (green) are EOS estimates for several independent
values of the stellar nuisance parameters drawn from the associated priors, and the mean
value (red). Top two cases have loose priors, bottom two have tight.
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Figure 5.21: Demonstration of the impact of nuisance parameters on the regression of EOS
parameters for three sets of observed stellar spectra. In red are the true mass and radius of
the stars, drawn from the mass-radius curve determined by the true EOS parameters. In blue
dots are the values of the mass and radius deduced by MR Net for each star given a set of
stellar NPs drawn from the priors; the blue line shows the mass-radius curve corresponding
to the EOS parameters deduced directly from the stellar spectra and NPs by the proposed
end-to-end regression. The results of MR Net are not used in the EOS regression and only
appear to aid the visualization. Brown and green are similar to blue but for independent
draws of the NPs from the same stellar priors.
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plane fitted to the same stellar spectra with varying nuisance parameters.

5.9 Conclusions

We have demonstrated the network regression of EOS parameters from realistic neutron star

mass and radius estimates drawn from simulated stellar spectra. Our approach of condition-

ing each step on nuisance parameters allows us to fold in the NP uncertainty via multiple

sampling from priors and permits full propagation of the uncertainty through to the final

regression targets. The full propagation is important because variation in NPs does not pro-

duce variations in the mass and radius of neutron stars that can be accurately summarised as

two-dimensional uncorrelated Gaussians (see Figure 5.14), as has been assumed in previous

studies. In addition, we have shown that networks can analyze high-dimensional telescope

data directly, including sets of multiple stars, and achieve comparable performance to meth-

ods that assume perfect knowledge of the theoretical model used to generate the simulated

samples. In realistic cases where the nuisance parameter uncertainties are significant, the

proposed end-to-end network regression achieves comparable precision in EOS regression to

the network using xspec fits or MR Netpredictions.

These results suggest many future directions. Our networks are parameterized in the nui-

sance parameters, allowing for the propagation of prior uncertainties which are implicity

derived from auxiliary data. However, the stellar spectra may also offer information that

constrains the NP uncertainty. Profiling over the nuisance parameters could reduce this

uncertainty, though it may be computationally very expensive without neural likelihood

estimation techniques [233].

Alternatively, rather than employing regression to directly produce estimates of the EOS pa-

rameters, one might train a generative model to operate as a surrogate of the likelihood [234],
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allowing for fast evaluation of the likelihood as a function of the EOS parameters and po-

tentially direct profiling.

To reduce the impact on one particular set of theoretical assumptions, such networks may

be trained on a collection of theoretical models, and in the future when more telescope data

becomes available, even trained directly from observed spectra.

Other future directions for the networks described in this paper would be to test more

exotic neutron star equations of state, including those with 1st order (i.e., constant pressure)

phase transitions. Including additional parameters will play a key role in conducting similar

research using alternative models in xspec that rely on different nuisance parameters, like

a Helium atmospheric model. Even more interesting would be extending this type of EOS

inference to other compact objects like white dwarfs.
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Chapter 6

Equation of State Inference from

Simulated X-ray Spectra using

Machine Learning Derived

Likelihoods

This chapter presents text and results from previously published work (Ref. [235]) in collabo-

ration with Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar,

Lee Lindblom, Daniel Whiteson, and Fridolin Weber.

6.1 Introduction

In this chapter, we extend the premise of inference of EOS from X-ray spectra beyond

regression using the same dataset from Chapter 5; the work presented in this chapter is the

same as it appears in Ref. [235]. This chapter introduces a different novel approach to the
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inference of EOS parameters from neutron star X-ray spectra using likelihood estimation,

in which the likelihood is made tractable by replacing the intractable elements with neural

networks trained on samples of simulated stars. Rather than directly learning the entire

likelihood [236] in one step, we leverage our knowledge of the problem by replacing only the

crucial missing pieces, which focuses on the learning task and allows the interpretation of

network outputs as physically meaningful quantities. The resulting machine-learning-derived

likelihood of observing a set of stellar spectra given EOS parameters allows for estimation of

the EOS parameters via Bayesian maximum a posteriori and use of standard error estimation

techniques. The derivation of this machine-learning-derived likelihood is shown schematically

in Figure 6.1.
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Figure 6.1: Schematic diagram depicting the evaluation of the likelihood of producing a set
of observed stellar spectra by comparing it to the predicted spectra along the mass-radius
curve determined by EOS parameters λ1, λ2. Each value of the EOS parameters determines
a curve in the mass-radius plane. Integrating along the curve, the probability of observing
each star is evaluated as in Fig. 6.2.

This chapter is outlined as follows. The strategy for machine-learning-derived likelihoods is

described in Section 6.2. Sections 6.3 and 6.4 demonstrate the likelihood calculation and

extraction of parameter estimates for mass-radius information and EOS parameters, respec-

tively. Section 6.5 presents a discussion of the results, conclusions, and future directions.
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6.2 Machine-Learning Derived Likelihood Calculation
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Figure 6.2: Schematic diagram depicting the evaluation of the likelihood of producing on
the observed stellar spectrum by comparing it to the predicted spectrum for assumed values
of stellar mass and radius. Varying the assumed mass and radius allows for an evaluation of
the likelihood across the (M,R) parameter space.

If the likelihood p(x|θ) of observing some data x for given values of the theoretical model

parameters θ were known, estimating the value of θ for a given x would be a straightforward

task. In a Bayesian approach, one would use maximum a posteriori (MAP) to find θ̂, the

value of θ which maximizes the product of the likelihood and the prior p(θ).

In the case of neutron star EOS estimation, the likelihood p(S|λ1, λ2) of observing a set

of stellar spectra S for a given choice of EOS parameters λ1, λ2 is not tractable. Instead,

simulation-based inference [137] techniques often circumvent the need for a closed-form like-

lihood by approximating p(S|λ1, λ2) using density estimation with simulated samples. But

accurately estimating the density in high-dimensional spaces such as those for stellar spectra,

with dimensionality of ≈ O(1000), would require prohibitively large samples of simulated

events. Instead, we use machine learning to estimate the likelihood. But rather than esti-

mating the entire likelihood in one step, our machine-learning-derived likelihood calculation

focuses on the statistical power where it is most needed for a given set of observations by

combining the available analytic components with neural networks to replace the intractable
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components.

For the estimation of parameters such as EOS or mass and radius, many elements of the

likelihood calculation are known, such as the Poisson fluctuations within each energy bin of

a stellar spectrum. However, there are two elements without closed-form expressions that

require machine-learning assistance. We overview those intractable components here briefly

and provide more detail below.

The first missing piece is a prediction for the expected photon rates observed in a telescope

given stellar parameters M and R and nuisance parameters ν. Below, we train a neural

network to estimate this quantity and demonstrate its application by doing MAP estimates

of M and R, in which we integrate over the nuisance parameters ν.

The second missing piece is a prediction for the mass-radius values allowed by given EOS

parameters λ1, λ2. We train a neural network to output the allowed radius for a given stellar

mass when provided with the EOS parameters. This allows integration over the M−R curve

defined by the EOS.

Together, these two machine-learned elements allow for a tractable calculation of the like-

lihood p(S|λ1, λ2) and provide a MAP estimate of λ1, λ2 for a given set of spectra S. We

describe each piece in turn below.

6.3 Stellar Mass and Radius Inference

The mass and radius of a neutron star can be estimated from its spectrum s if one can

calculate and maximize p(s|M,R)p(M,R) for a fixed s. This requires access to p(s|M,R),

which depends on p(s|M,R, ν), the likelihood to produce this spectrum s given the full set
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of stellar parameters including the nuisance parameters ν:

p(s|M,R) =

∫
dν p(s|M,R, ν) p(ν), (6.1)

If the spectra consist of a set of energy bins of telescope photon counts,

s = (Nγ
1 , N

γ
2 , ..., N

γ
nbins

), (6.2)

then the joint likelihood p(s|M,R, ν) over the bins can be written as:

p(s|M,R, ν) =

nbins∏
j

Pois(Nγ
j , µj(M,R, ν)), (6.3)

where Pois refers to the Poisson distribution and µj is the expected number ⟨Nγ
j ⟩ of photons

in bin j of n bins:

µ(M,R, ν) = (⟨Nγ
1 ⟩, ⟨N

γ
2 ⟩, ..., ⟨Nγ

nbins
⟩), (6.4)

determined by M,R, ν via complex physics of the stellar emission model as well as the

telescope response. In principle, for this specific scenario, this function is contained within

xspec, but is not exposed to the user in a convenient fashion which would allow for a rapid

evaluation of many points, as needed for this application. More generally, one may want to

learn a function in scenarios where no function is available, or where the training sample

contains examples generated from a mixture of models where no single simple function can

describe all samples.

When we do not have access to a simple expression for µ(M,R, ν), it is possible to train a

neural network to learn a function f [M,R, ν]:

f [M,R, ν] → (
dNγ

1

dt
,
dNγ

2

dt
, ...,

dNγ
nbins

dt
), (6.5)
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such that µ(M,R, ν) can be estimated from f(M,R, ν) scaled by the observation time ∆t:

µ(M,R, ν) ≈ f [M,R, ν]∆t. (6.6)

The likelihood p(s|M,R, ν) can then be estimated as:

p(s|M,R, ν) =

nbins∏
j

Pois(Nγ
j , µj = f [M,R, ν]j∆t), (6.7)

where the final likelihood can be obtained by marginalizing over the nuisance parameters:

p(s|M,R) =

∫
dν p(s|M,R, ν) p(ν) =

∫
dν

nbins∏
j

Pois(Nγ
j , µj = f [M,R, ν]j∆t)p(ν). (6.8)

This estimate allows for a scan of theM,R plane for the values that maximize p(s|M,R)p(M,R)

to find the MAP estimate for (M,R) given a fixed s. Schematically, this process is shown in

Fig 6.2.

6.3.1 Learning the Model f to Model Stellar Spectra

The estimated likelihood requires learning a function f [M,R, ν] which produces the expected

stellar spectrum in each bin. This function is modeled by a deep neural network with five

inputs (M , R, and the three components of ν: effective temperature, distance, and NH) and

250 outputs, one for each of the spectral bins.

The network architecture includes two input branches, one to process the mass and radius,

and another to process the nuisance parameters. Each branch contains a series of nine

layers, with 2048 nodes and leaky Rectified linear units (ReLU) activation, that process its

inputs in isolation. Following these initial layers, the output from the branches is combined

together, forming a single volume with all information. This grouping is then passed to
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another successive set of nine layers which produce the generated spectra. The choice of

hyperparameters has a significant impact on the performance of this network. A complete

list of hyperparameters tried is given in Appendix D; the architecture used for model f was

the configuration with the best performance on the validation set.

Generating the spectra is formulated as a supervised learning problem, where the network

learns to minimize the error between the true spectra and its predictions for a set of sim-

ulated examples generated by xspec. The weights are updated with gradient descent via

backpropagation. The Huber loss function [225] is used, which is a standard loss function for

regression robust to outliers, and the Adam optimizer [223] computes gradients and schedules

the backward passes.

Figure 6.3 shows several examples of generated spectra. Each subplot contains generated

results using various values of mass, radius, and nuisance parameters. The predictions are

shown with their corresponding version from xspec. The predictions track the xspec values

remarkably well across a range of parameter values. In general, we notice a slight overpredic-

tion by the network; below, we estimate the potential bias due to this overprediction and find

it to be negligible compared to statistical uncertainties and other systematic uncertainties.

6.3.2 Results

The machine-learning-derived likelihood is tractable, allowing for a scan of p(s|M,R) for

individual stars. Fig. 6.4 shows examples of two individual simulated stars under the three

nuisance parameter scenarios.

The likelihood can then be used to produce estimated values of neutron star mass and

radius for a given spectrum, after marginalizing over the nuisance parameters. The mass-

radius plane is scanned using adaptive optimization to find values that maximize the product
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Figure 6.3: Comparison of neutron star X-ray spectra predictions (dashed) from our network
f [M,R, ν] described in the text, as compared to training data generated by xspec (solid).

Each pane shows the expected rate of photons (
dNγ

1

dt
) in Chandra per energy bin, for variations

of the parameters of interest (mass M , radius R) as well as for variations of the nuisance
parameters ν (nH , log(Teff), distance).

of the likelihood and the prior.

We assess the performance of this method to produce likelihood estimates, ML-LikelihoodM,R,
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Figure 6.4: Scans of the likelihood for two example stellar spectra s (left, right) versus stellar
mass and radius. Top demonstrates the ideal nuisance parameter (NP) conditions where the
NPs are fixed to their true values. For the same simulated observed spectra, the center
shows a more realistic “tight” scenario, and bottom shows a “loose” scenario in which the
NPs are not well constrained by priors. In the “loose” and “tight” scenarios, dependence on
the nuisance parameters has been integrated out as described in the text.
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by calculating the residual between the true values of the mass and radius and the estimates

produced by our method. As benchmarks, we compare the residuals to those generated

by xspec itself, which has access to the true likelihood used to generate the simulated

samples, as well as a regression-based method, MR Net, described in Ref. [10]. Figure 6.5

and Table 6.1 shows a comparison of the results.

It is striking that ML-LikelihoodM,R outperforms MR Net dramatically, despite being

trained on the same dataset. ML-LikelihoodM,R benefits from the physics knowledge encoded

in the approximate likelihood, which requires ML solutions only for a specific sub-task, rather

than having to blindly learn the entire problem, as MR Net must. ML-LikelihoodM,R per-

forms essentially as well as xspec, even having smaller residuals when nuisance parameters

have the most uncertainty, despite not having access to the explicit likelihood used to gen-

erate the data, as xspec does. Note that the performance comparison here highlights a

practical difference between our method and use of xspec, rather than a principled differ-

ence in the methods. That is, our method of replacing the difficult calculational step with

a learned ML model allows for convenient and rapid evaluation of the likelihood over many

values of the nuisance parameters, enabling us to marginalize over them, which explains the

improved relative performance. While in principle one could perform the same operation

with xspec, its lack of a convenient programmable interface makes this impractical. The

practical distinction is crucial, however, as it allows for greater general flexibility, such as

interpolation across several models, or in application to the broader EOS inference problem

described below, where likelihoods are not just hidden behind inconvenient interfaces, but

completely unavailable.
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Figure 6.5: Performance of our estimation of neutron star mass (left) and radius (right) using
an approximate likelihood which incorporates neural networks, ML-LikelihoodM,R, in com-
parison to the performance of a pure regression network, MR Net [10] and the xspec tool.
Shown is the residual, the difference between the true and predicted values, for three sce-
narios of nuisance parameter uncertainties. In the “true” case, the NPs are fixed to their
true values; in the “tight” and “loose” cases, they are drawn from narrow or wide priors,
respectively; see text for details.
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Table 6.1: Performance of our estimation of neutron star mass (left) and radius (right) using
an approximate likelihood which incorporates neural networks, ML-LikelihoodM,R, in com-
parison to the performance of a pure regression network, MR Net [10] and the xspec tool.
Shown are the mean (µ) and standard deviation (σ) of the residual distributions under three
scenarios of nuisance parameter uncertainties. In the “true” case, the NPs are fixed to their
true values; in the “tight” and “loose” cases, they are drawn from narrow or wide priors,
respectively; see text for details.

Nuis. Mass Radius

Method Params µ σ µ σ
ML-LikelihoodM,R True 0.11 0.47 0.28 1.43
xspec True -0.01 0.50 0.23 1.44
MR Net True -0.14 0.93 -0.7 2.80
ML-LikelihoodM,R Tight 0.15 0.50 0.57 1.87
xspec Tight 0.06 0.73 0.24 2.61
MR Net Tight 0.17 1.06 0.06 3.52
ML-LikelihoodM,R Loose 0.15 0.58 0.91 2.42
xspec Loose 0.18 0.86 -0.15 4.32
MR Net Loose 0.28 1.29 0.14 4.93

6.4 Equation of State Inference

The ultimate goal is to estimate the EOS parameters (λ1, λ2) given a set of spectra S =

(s1, s2..., snstars). In principle, this would be straightforward if one could evaluate p(S|λ1, λ2)p(λ1, λ2),

which would allow for maximization to find an estimate for λ1, λ2 for a fixed S.

We begin with the assumption that the EOS parameters have a uniform prior within their

physical boundaries of λ1 ∈ [4.75, 5.25], λ2 ∈ −[1.85,−2.05] (see Fig 3 of Ref. [10]). The

remaining step is evaluating p(S|λ1, λ2).

First, we express the probability over the entire set S as the joint probability for each star

si:

p(S|λ1, λ2) =
nstars∏
i

p(si|λ1, λ2). (6.9)
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The obstacle is that we do not know how to evaluate p(s|λ1, λ2), only p(s|M,R), which

depends on stellar parameters M and R. Linking these expressions is not trivial, as the

EOS parameters λ1, λ2 do not uniquely determine stellar parameters M and R, instead they

only determine the M -R relation. That is, each point in (λ1, λ2) space specifies a curve in

M -R space. The solution is to integrate over the M -R curve allowed by the EOS parameters

λ1, λ2. This is most directly accomplished by expressing the integral over the mass-radius

plane, constrained by a delta function which traces out the M -R curve determined by the

EOS parameters λ1, λ2:

p(s|λ1, λ2) =

∫
dMdR p(M,R|λ1, λ2)p(s|M,R) , (6.10)

where p(M,R|λ1, λ2) describes the allowed M -R relation given the EOS specified by λ1, λ2,

as:

p(M,R|λ1, λ2) = δ(hλ[M ] −R) p(M |λ1, λ2), (6.11)

where hλ[M ] → R is a function that gives the allowed value of R for a value of M , deter-

mined by the EOS parameters λ1, λ2. The function hλ[M ] encodes all of the physics which

translates the EOS into stellar mass and radius, and is not available analytically or tractable

numerically. It is possible, however, to train a neural network to learn this function, as we

do below. Assuming hλ[M ] is available, we choose to integrate over mass, as each mass is

mapped to a unique R; the same is not true for scanning in R, as shown in Fig. 6.6.

The delta function reduces the double integral in M and R to a single integral over mass:

p(s|λ1, λ2) =

∫
dM p(M |λ1, λ2) p(s|M,R = hλ[M ]), (6.12)

where the range of the mass integral is limited to the physical region, from 1.2M⊙ to 1.6 −

3.25M⊙, depending on the radius, as shown in Fig. 6.6. This allows us to write an expression
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for the joint probability over the set of stars:

p(S|λ1, λ2) =
nstars∏
i

∫
dMi p(Mi|λ1, λ2) p(si|Mi, Ri = hλ[Mi]). (6.13)

We have now expressed the likelihood p(S|λ1, λ2) in terms of the likelihood p(s|M,R), which

we previously learned to calculate. The equation for p(s|M,R) now allows for the expression

of a joint likelihood over the stars and the bins:

LS(λ1, λ2) = p(S|λ1, λ2) =
nstars∏
i

∫
dMi p(M |λ1, λ2)∫

dν

nbins∏
j

Pois(Nγ
ij, µij(Mi, Ri = hλ[Mi], ν)p(ν),

(6.14)

where we can replace each of the µij as we did above with f [M,R, ν]∆t:

LS(λ1, λ2) = p(S|λ1, λ2) =
nstars∏
i

∫
dMi p(M |λ1, λ2)∫

dν

nbins∏
j

Pois(Nγ
ij, µij = f [Mi, hλ[Mi], ν]j∆t)p(ν).

(6.15)

This expression can be evaluated, assuming one can learn a function hλ[M ] → R. The

determination of the likelihood LS(λ1, λ2) is shown schematically in Fig. 6.1.

6.4.1 Learning the Model h to Model Stellar Radius

The approximate likelihood above requires learning a function hλ[M ] which estimates the

stellar radius for a given stellar mass as determined by the EOS parameters λ1, λ2. Note

that one could equivalently estimate the mass from the radius, but this has the additional

complication of degenerate outputs for some radii, as shown in Fig. 6.6. It is important

here to note that model hλ[M ] is trained on M -R relations created by equations of state
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Figure 6.6: Relationship between neutron star mass and radius, as determined by equation
of state parameters λ1, λ2. Each color represents a single choice of EOS parameters, which
determine a curve in the mass-radius plane. Individual calculations as described in the text
are shown (crosses), as compared with the output of a neural network function hλ[M ] (solid
line), which estimates the radius corresponding to an input value of M as determined by the
EOS parameters.

that do not feature a phase transition; parameterizing the M -R relation as a function of

R = hλ[M ] may miss details stemming from more exotic features, like those caused by a

strong, first-order phase transition, in the EOS.

We model hλ[M ] with a deep neural network comprising 10 hidden layers with 32 nodes each

and ReLU activation. The output layer is a single node with linear activation, which is stan-

dard for regression. The number of hidden layers, their widths, and activation functions were

optimized for the functionality of hλ[M ]; the relatively small width of 32 nodes and ReLU

activation were found to perform well. The network was trained with Mean Squared Error

(MSE) loss and the Adam optimizer. Figure 6.6 demonstrates how the network hλ[Mi] → R

performs for a few example values of the EOS parameters λ. Generation of the training data

as described above required approximately 24 hours of CPU time for 106 stars; in compari-

son, evaluation of the network hλ[M ] generates 106 stellar radii in 400 ms, a relative speed

enhancement of 105.
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6.4.2 Results

The two networks that model the missing functions f and h allow for an approximate eval-

uation of the likelihood, Eq. (6.15) as a function of the EOS parameters. Figure 6.7 shows

examples of two individual sets of simulated stars under the three nuisance parameter sce-

narios.

To estimate the EOS parameters from a fixed set of stellar spectra, the likelihood is maxi-

mized via a course scan over EOS parameter space followed by the use of an optimization

algorithm for a more refined location of the optimal EOS parameters. Each evaluation of

the likelihood involves nested loops over the stars, an integral over possible masses, and a

loop over the spectral bins. Performance of ML-LikelihoodEOS and comparison with bench-

marks are shown in Fig. 6.8 and Table 6.2. We note that the data used in evaluations are

generated via xspec, not from the models f and h, allowing for a test of the fidelity of the

machine-learned models. Experiments in which simulated spectra are generated using the

models f and h show equivalent performance, indicating that any bias due to mis-estimation

by f or h is negligible in this context.

6.5 Discussion

The results in this chapter demonstrate that machine-learning-derived likelihoods are useful

statistical tools, allowing for traditional inference such as parameter estimation for quantities

of interest (eg stellar M and R) as well as profiling over nuisance parameters (eg stellar

distances and temperatures).

In the case ofM ,R-estimation for an individual star, the performance of the ML-LikelihoodM,R

method matches the performance of xspec when the nuisance parameters are known. This

is an important validation of the technique, as the simulated samples are generated by
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Figure 6.7: Scans of the likelihood for two example sets of stellar spectra s (left, right) versus
EOS parameters λ1 and λ2. Top demonstrates the ideal nuisance parameter (NP) conditions
where the NPs are fixed to their true values. For the same simulated observed spectra, the
center shows a more realistic “tight” scenario, and the bottom shows a “loose” scenario in
which the NPs are not well constrained by priors. In the “loose” and “tight” scenarios,
dependence on the nuisance parameters has been integrated out as described in the text.
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Figure 6.8: Performance of our estimation of neutron star EOS parameters λ1 (left)
and λ2 (right) using an approximate likelihood that incorporates a neural network, ML-
LikelihoodEOS, in comparison to the performance of a spectra-to-EOS regression network
and network which regresses EOS parameters from M,R values estimated by xspec, both
from Ref. [10]. Shown are the residual distributions, the difference between the true and
predicted values, under three scenarios of nuisance parameter uncertainties. See Table 6.2
for quantitative analysis. In the “true” case, the NPs are fixed to their true values; in the
“tight” and “loose” cases, they are drawn from narrow or wide priors, respectively; see text
for details
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Table 6.2: Performance of our estimation of neutron star EOS parameters λ1 (left)
and λ2 (right) using an approximate likelihood that incorporates a neural network, ML-
LikelihoodEOS, in comparison to the performance of a spectra-to-EOS regression network
and network which regresses EOS parameters from M,R values estimated by xspec, both
from Ref. [10]. Shown are the mean (µ) and standard deviation (σ) of the residual distribu-
tions under three scenarios of nuisance parameter uncertainties. See Fig 6.8 for distributions.
In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases,
they are drawn from narrow or wide priors, respectively; see text for details

λ1 λ2 Combined

Method Nuis. Params. µ σ µ σ σ
ML-LikelihoodEOS True -0.02 0.066 0.01 0.070 0.096
NN(Spectra) True -0.02 0.066 0.01 0.075 0.099
NN(M,R via xspec) True -0.03 0.065 0.01 0.055 0.085
ML-LikelihoodEOS Tight -0.02 0.078 0.03 0.081 0.112
NN(Spectra) Tight 0.02 0.085 -0.02 0.077 0.115
NN(M,R via xspec) Tight -0.03 0.081 0.01 0.056 0.098
ML-LikelihoodEOS Loose -0.04 0.089 0.03 0.081 0.120
NN(Spectra) Loose -0.03 0.131 -0.01 0.078 0.152
NN(M,R via xspec) Loose -0.03 0.123 0.01 0.058 0.136

xspec and so its internal likelihood estimation represents something of an upper bound

on possible performance. Though xspec can provide point estimates and other analy-

sis, ML-LikelihoodM,R in this case is valuable as a building block for further analysis, as

xspec does not provide an efficient interface to its internal calculations. For example, in

the cases where nuisance parameters weaken the inference, ML-LikelihoodM,R can improve on

xspec’s performance by marginalizing over the stellar nuisance parameters. Given access to

the full likelihood, one could also choose to profile over the nuisance parameters. In addition,

while xspec’s inference is linked to a particular theoretical model, ML-LikelihoodM,R can

be trained on a variety or mixture of models, providing a smooth interpolation between

otherwise distinct conceptual approaches [232].

The M,R-likelihood estimation is a building block toward the estimation of EOS parameters

for sets of stars. In this case, as well, the likelihood provides for reliable inference of the EOS

parameters, as demonstrated by the performance of ML-LikelihoodEOS. The residuals in this
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case again are narrower than the pure regression approach, nearly matching the performance

of xspec in the true case, and exceeding its unmarginalized estimates in the realistic case

where nuisance parameter uncertainty is important.

Our method uses machine learning to enable what is typically termed a forward process, in

that it aids the calculation of the likelihood of experimental data from the parameters, rather

than backward inference of the parameters from the data. In this sense, it can be considered

a fast and flexible simulation tool. The neural networks developed for this work effectively

enable end-to-end, fast, and convenient simulation of neutron star spectra for a range of

EOS parameters and nuisance parameters, including the intermediate step of generating

plausible neutron star properties (mass and radius) for a given set of EOS parameters. In

the case where the true likelihood exists but is not made conveniently accessible, our approach

provides a powerful and flexible new interface, even without speed enhancements. In the

more general case, such as for EOS inference, the approach additionally allows for more rapid

generation of simulated stellar masses and radii for specific EOS parameters without solving

the complex sets of equations underlying the physical model.

Once released, this framework will serve as a convenient simulation tool that can be used by

the larger machine learning research community to generate neutron star samples without

the expert knowledge required to run xspec or solve the TOV equations, and spur further

innovation, such as in simulator-based inference techniques that can handle a large number

of nuisance parameters, or to setup ML challenges where participants are given access to the

simulator.
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6.6 Conclusions

In this work, we demonstrate an alternative approach to deducing neutron star mass, radius,

and EOS from simulated stellar X-ray spectra using machine learning. The alternative ap-

proach employs a technique novel to neutron star astrophysics, machine-learning-derived like-

lihoods, in which intractable elements of the calculation are replaced with machine-learned

functions. This allows for an approximate likelihood calculation with increased interpretabil-

ity. Our forward neural network model allows us to predict the X-ray spectra given a value

of nuisance parameters, the equation of state parameters, and the neutron star mass. For-

ward modeling of this kind demonstrates how these networks are interpretable, testable, and

often with the assumptions being explicit rather than implicit when compared to inverse

models [203, 237]. The ML-LikelihoodEOS model outperforms our previous best-performing

regression model, demonstrating the power of such a technique for point estimation. Note

that it additionally provides access to the full likelihood, which can inform uncertainty esti-

mation.

While the studies shown in this work demonstrate the power of the method to provide a

tractable likelihood for stellar spectra generated from a specific model, the natural ability of

neural networks to interpolate allows for the treatment of inherent model uncertainties, by

training on samples with mixed or varying models [134].

The machine learning-driven calculations lend themselves to various future directions. As

mentioned in the previous chapter, training data could be modified, either by using EOS

models with different parametrizations or by using a different response matrix (e.g. from

NuStar, NICER, or XMM-Newton as described in [238]) in xspec to generate simulated

X-ray spectra. In addition, this technique can be rapidly applied to the analysis of X-

ray spectra from recent observations. The networks developed for this work will become a

convenient tool for fast simulation of neutron star spectra which can be run without the
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expert knowledge required to run xspec or to solve the TOV equations.
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Chapter 7

Conclusions and Final Remarks

The work presented in this thesis employed different theoretical and computational tech-

niques to study the equation of state (EOS) of dense nuclear matter and the structure of

neutron stars. The topics investigated in this thesis align with NASA’s roadmap and the

long-range plans of NSF and DOE for nuclear science [239, 240], which emphasize the signif-

icance of extracting information about dense nuclear matter properties from astrophysical

observations. The thesis aims to contribute to this goal by providing advanced models for

the equation of state of hot and dense nuclear matter, specifically for use in simulations of

binary neutron star mergers [241].

In Chapter 2, the properties of symmetric and asymmetric nuclear matter were investi-

gated by performing self-consistent, relativistic Brueckner-Hartree-Fock (RBHF) calculations

paired with the Bonn potentials for the OBE interaction, following the methodology outlined

in [70] and [83]. The saturation properties of SNM are first determined at zero temperature

with good agreement to empirical values from a wide variety of sources, and results are then

used to calculate the properties of ANM and thus the EOS of neutron star matter at zero

temperature. The methodology is extended to finite temperatures, and EOS models are pro-
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duced up to a temperature of 70 MeV. The nuclear equations of state studied in this work

incorporate finite temperatures in a self-consistent manner. This means that the effects of

finite temperatures are not merely added on to models of cold nuclear matter, as has been

commonly practiced in previous studies [165–167]. Instead, the finite-temperature effects

are integrated into the fundamental framework of the equations of state, ensuring a more

comprehensive and accurate representation of the thermodynamic properties of dense nu-

clear matter. At zero and finite temperatures, bulk properties of non-rotating and uniformly

rotating neutron stars are computed up to the mass-shedding limit (Ω = ΩK).

In Chapter 3, the numerical scheme for modeling differential rotation in neutron stars is

introduced, following the methodology outlined in [104]. The bulk properties of differen-

tially rotating hyperonic and ∆-admixed stars at zero temperature, modeled using the RHF

formalism, are calculated to examine how the inclusion of ∆ isobars in the EOS of dense

matter impacts the corresponding stellar properties like mass and equatorial radius. Pre-

vious work [177] demonstrated that inclusion of ∆ populations in hyperonic EOS models

softens the EOS at low to intermediate densities but stiffens it at high densities due to the

additional degrees of freedom, which slightly increases the maximum mass for a given EOS

and decreases the radius significantly. For computed stellar sequences, it was shown that the

inclusion of ∆’s in the hypernuclear EOS does not change the total amount of mass increase

once the differential rotation is allowed, meaning increasing the degree of differential rotation

resulted in a similar percentage increase in mass for hyperonic and ∆-admixed stars. Ad-

ditionally, density distribution maps of massive, differentially rotating stars were shown to

demonstrate at what radial depth different particle species appear. The competition between

the nucleation of Σ− hyperon and ∆− isobar was demonstrated, whose outcome depends on

the value of the ∆− potential in nuclear matter.

In Chapter 4, the ideas presented in the two previous chapters are combined to more closely

describe a hypermassive remnant from a BNS merger, characterized by finite temperatures
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and differential rotation. This chapter modifies the numerical scheme from the previous

chapter to be able to calculate stellar configurations more massive and deformed, demon-

strated with stellar sequences calculated over a range of stellar deformation. These sequences

are tested for stability against dynamical bar-mode excitation, where it was determined that

the stars’ deformation has a greater impact on stability than temperature against rotational

instabilities. Density and frequency distribution maps were constructed for two tempera-

tures, 10 and 50 MeV, where it was demonstrated that increasing the degree of differential

rotation shifted the shape of the star from ellipsoid to quasi-toroidal.

While the topic of determining the EOS of neutron star matter theoretically is discussed in

Chapter 2, the EOS is instead determined from observable properties using machine learning

techniques in Chapters 5 and 6. In Chapter 5, EOS parameters are regressed from realis-

tic neutron star mass and radius estimates drawn from simulated stellar spectra, a novel

approach to the problem. This chapter used different neural network architectures in the

regression task, where each step in the process is conditioned on so-called nuisance parame-

ters, and nuisance parameter uncertainty is folded in via multiple sampling from priors; this

technique permits full propagation of the uncertainty through to the final regression targets,

improving upon similar implementations in the literature where uncertainty is collapsed into

two-dimensional uncorrelated Gaussians.

The problem is expanded upon in Chapter 6, where machine-learning-derived likelihoods

for bulk properties of neutron stars and the corresponding EOS are constructed and the

intractable pieces of the likelihood are replaced using neural networks. Like in the previous

chapter, the technique outlined in this chapter is used to determine the EOS for a set of

stellar spectra, but can also be used in the reverse direction to determine either mass and

radius or stellar spectra from a given EOS, thus making it a fast and flexible simulation

tool. The model used to determine the EOS in this chapter outperforms the best-performing

regression model from Chapter 5 and provides access to the full likelihood, demonstrating
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the power of forward modeling.

7.1 Future Directions

The projects described in this thesis open various directions for future work.

In modeling differential rotation, results presented in Chapters 3 and 4 use the linear, “j-

constant” rotation law. While this law has widely been used in the literature, more recent

studies of binary neutron star merger events suggest a linear rotation law can not fully capture

the complexities of the rotation profile of the remnant object, especially immediately after

formation. An interesting extension of the numerical scheme presented in this work would

be to test how the bulk properties of differentially rotating stars are modified when using

non-linear rotation laws.

I will also highlight that the numerical scheme for modeling differential rotation is not par-

allelized in its current form. This is perfectly fine when computing a sequence of stars over

a central density range with a specified rotation parameter and rratio. When fixing these

parameters, a sequence of 15 stars can be computed in approximately 2 minutes, which can

increase or decrease depending on how “good” the initial guesses for the metric potentials

and root-finding windows are. When computing sequences over a range of central densities

and rratio values, as shown in Chapter 4, the runtime increases dramatically. For each star,

the iteration process is run twice - the first to determine the densest portion of the star, fixing

those coordinates as the maximum, and re-running to solve for the metric potentials. If rratio

was kept fixed, this would simply double the runtime for each central density. However, the

runtime increases exponentially when computing multiple stars with different rratio values at

each central density. Future work could entail parallelizing the iteration loop over central

density.
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Concerning the application of machine learning techniques to the determination of the EOS

of neutron star matter, potential future directions are very broad. For the specific work

presented in this thesis, Chapters 5 and 6 bring up specific future directions regarding training

data creation. The spectral representation used for the EOS can be extended to include more

parameters, which may complicate the learning process but would be able to capture other

features in the EOS like a phase transition. Additionally, the original EOS parametrization

used to generate training data was the GM1L parametrization, only including protons and

neutrons; another interesting future direction may be the inclusion of other particles like

hyperons or ∆ isobars as shown in Chapter 3. The Chandra response matrix was used to

generate simulated X-ray spectra in xspec, but this could also be altered to use a newer

observatory like NICER.

Beyond training data, ML techniques not discussed in this thesis could be employed that

might be better suited for high-dimensional data like simulated X-ray spectra. A recent col-

laboration (not explicitly discussed in the thesis) I participated in with Len Brandes, Chirag

Modi, Aishik Ghosh, Lee Lindblom, Lukas Heinrich, Andrew Steiner, Fridolin Weber, and

Daniel Whiteson used a simulation-based inference technique, neural likelihood estimation,

to determine the EOS from simulated X-ray spectra; in this work, a normalizing flow used

samples of simulated spectra to learn the likelihood of observation as a function of the EOS

and NPs [242]. The architecture and capability of ML grow rapidly, often outpacing scien-

tific applications, meaning there will likely continue to be a better, more accurate, and more

efficient way to approach determining EOS of neutron star matter from observable spectra.
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Appendix A

Partial Wave Expansion

To calculate the matrix elements of the one-boson-exchange (OBE) interaction V and the

scattering T -matrix as shown in Chapter 2, a useful simplification is the partial wave expan-

sion or decomposition. This process is fully outlined in Chapter 10 of [70], but this Appendix

will provide a basic explanation.

Figure A.1 depicts two particles, denoted by their momenta p1 and p2, scattering in the x−z

plane with the scattering angle ϕ. Following this setup, an expansion for the OBE potential

V into angular momentum states can be written as:

⟨Φλ′1
(p′)Φλ′2

(p′)|V |Φλ1(p)Φλ2(p)⟩ =
1

4π

∑
j

(2j + 1)djλλ′(ϕ)⟨λ′1λ′2|V j(p′, p) |λ2λ2⟩, (A.1)

where λ = λ1 − λ2. This relation can be inverted and the quantities djλλ′(ϕ) can be rep-

resented in terms of Legendre polynomials Pj(cosϕ). Taking into account parity and spin

conservation, V j is reduced to six amplitudes for symmetric nuclear matter (SNM) and eight

for asymmetric nuclear matter (ANM). While this process is done for all meson types, the
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Figure A.1: Two particle scattering in a center-of-mass system in the x-z plane, where ϕ is
the scattering angle between p1 and p2.

six amplitudes V j for SNM and scalar coupling are given as:

0V j
s (p′, p) = g2s

π

m′∗m∗

[
p′

∗
p∗

Q̃
(1)
j

|p′||p|
− (m∗′m∗ +W ′W )

Q̃j

|p′||p|

]
, (A.2)

12V j
s (p′, p) = g2s

π

m′∗m∗

[
p′

∗
p∗

Q̃j

|p′||p|
− (m∗′m∗ +W ′W )

Q̃
(1)
j

|p′||p|

]
, (A.3)

1V j
s (p′, p) = g2s

π

m′∗m∗

[
p′

∗
p∗

Q̃
(2)
j

|p′||p|
− (m∗′m∗ +W ′W )

Q̃j

|p′||p|

]
, (A.4)

34V j
s (p′, p) = g2s

π

m′∗m∗

[
p′

∗
p∗

Q̃j

|p′||p|
− (m∗′m∗ +W ′W )

Q̃
(2)
j

|k′||k|

]
, (A.5)
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5V j
s (p′, p) = g2s

π

m′∗m∗

[
(m∗W ′ +m∗′W )

Q̃j

|p′||p|

]
, (A.6)

and 6V j
s (p′, p) =5 V j

s (p′, p) from time-reversal invariance [70]. Here g2s is the scalar coupling

constant (see Table B.1). The functions Q̃j, Q̃
(1)
j , and Q̃

(2)
j are calculated by integrating the

Legendre polynomials Pj(cosϕ). These same processes are carried out for the other types of

mesons and the particle-antiparticle matrix elements, defined in Eqs. (2.41) - (2.44).

A similar decomposition is used for the T -matrix. For SNM, the T -matrix elements can be

written as:

0T j =0 V j +0 V jΛ̄0T j, (A.7)

12T j =12 V j +12 V jΛ̄12T j + 4 5V jΛ̄6T j, (A.8)

1T j =1 V j +1 V jΛ̄1T j, (A.9)

34T j =34 V j +34 V jΛ̄34T j + 4 6V jΛ̄5T j, (A.10)

5T j =5 V j +12 V jΛ̄5T j +5 V jΛ̄34T j, (A.11)
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6T j =6 V j +6 V jΛ̄12T j +34 V jΛ̄6T j, (A.12)

where Λ̄ is the angle-averaged propagator. For ANM, the mixed particle-antiparticle ampli-

tudes of the scattering matrix can be defined in shorthand notation as:

⟨λ′1λ′2p′|R
1

|λ1λ2p⟩ = ⟨θpλ′1(p
′
1)Φ

n
λ′2

(p′2)|T |Φn
λ1

(p1)Φ
n
λ2

(p2)⟩, (A.13)

⟨λ′1λ′2p′|R
2

|λ1λ2p⟩ = ⟨θpλ′1(p
′
1)Φ

p
λ′2

(p′2)|T |Φn
λ1

(p1)Φ
p
λ2

(p2)⟩, (A.14)

⟨λ′1λ′2p′|R
3

|λ1λ2p⟩ = ⟨θpλ′1(p
′
1)Φ

p
λ′2

(p′2)|T |Φp
λ1

(p1)Φ
n
λ2

(p2)⟩, (A.15)
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4

|λ1λ2p⟩ = ⟨θnλ′1(p
′
1)Φ

p
λ′2

(p′2)|T |Φp
λ1

(p1)Φ
p
λ2

(p2)⟩, (A.16)
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n
λ′2
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(p2)⟩, (A.18)
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1
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⟨λ′1λ′2p′|P
2

|λ1λ2p⟩ = ⟨θnλ′1(p
′
1)Φ

n
λ′2

(p′2)|T |θnλ1(p1)Φ
n
λ2

(p2)⟩, (A.24)
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⟨λ′1λ′2p′|P
4

|λ1λ2p⟩ = ⟨θnλ′1(p
′
1)Φ

p
λ′2

(p′2)|T |θnλ1(p1)Φ
p
λ2

(p2)⟩. (A.26)

where each R, S, and P can be broken down into angular momentum states as with V for

various amplitudes. Once the partial wave decomposition has been done for both the matrix

elements of V and T , they are used to calculate the three self-energy components in the

self-consistent basis: ΣΦΦ, Σθθ, and ΣθΦ.

196



Appendix B

Numerical Scheme for T-matrix

Calculation: Lambt

The numerical scheme for calculating properties of a relativistic many-body system at finite

temperatures, described in Chapter 2, is called Lambt. The original framework for this code

was created by P. Poschenrieder, M. K. Weigel, F. Weber, H. Huber, and others at Ludwig

Maximilian University of Munich. The original code calculated the bulk properties of nuclear

and neutron matter at zero temperature in the relativistic Hartree-Fock (RHF) or relativistic

Brueckner-Hartree-Fock (RBHF) approximations, the latter of which can also be referred to

as the Λ approximation. The Λ approximation is generalized to use various propagators or

Λ’s; the RBHF approximation is simply the Λ approximation with the Brueckner propagator,

as discussed in Chapter 2. Apart from the RBHF propagator, Lambt is capable of also

employing the Λ00 and Λ10 propagators.

In this section, we describe the numerical scheme and all relevant routines involved in Lambt,

which extends the previous work to finite temperatures.
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B.0.1 Numerical Scheme

A schematic diagram of the code Lambt, which calculates properties of nuclear matter using

the RBHF approximation, is shown in Figure B.1. This code is written using Fortran90 and

contains modules from the NAG numerical library [243].

The numerical scheme works well up to densities up to 0.5 fm−3. To reach higher densities

(i.e. for neutron star matter), we extrapolate quantities necessary to calculate the equation

of state: the energy per nucleon E/A for calculations at zero temperature, and also the

free energy per nucleon F/A at finite temperatures. The extrapolation, done in Python, is

carried out by first fitting the calculated data to a curve using a least squares polynomial fit

using Numpy’s polyfit and poly1d functions. Once extrapolated to higher densities, the

energy per nucleon and free energy per nucleon are then used to calculate the asymmetry

energy, pressure, and energy density of the system.

B.0.2 Input Data

The user must provide initial data to Lambt. The first several lines of the input file specify

parameters for the one-boson-exchange (OBE) interaction, for which we use the three Bonn

potentials (A, B, or C). For each meson α, these parameters include the coupling factor

g2α/4π and cut-off mass Λα, which are given in Table B.1 and taken from Table VI in [85].

In older works, these OBE interactions are also referred to as the Brockmann potentials.

An example of an input file, complete with the values from the Bonn A potential, is shown

below.

’PARAMETERSATZ A BROCKMANN’

’Bonn A’

’SIGM0’ , . 5 5 0 , 8 . 3 1 4 1 , 4 , 2 . 0 , 2 ∗ 0 .
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LBREL: 
main iterative loop

HELTST: 
calculates the matrix

elements of the 
self-energy S in the 

self-consistent basis {F, q}

UPDATE: 
calculates the scalar,
vector, and time-like 

components of S from the 
matrix elements in HELTST

ROMEO: 
calculates the number 

density r, binding energy 
E/A, thermal energy, 
e�ective mass m*, etc

GRF: 
calculates the spectral 

function X and
single particle energies u

CHEM: 
calculates the chemical

potential m which is used 
to determine the 
fermi momenta kF

TMAT: 
calculates the T-matrix 

elements using R, S, and P 
in the partial wave expansion

PROP: 
calculates the 

angle-averaged 
propagator L

VREL: 
calculates partial

wave expansion for each 
meson of the 

potential V

Functions for V, U, W, and Z for 
di�erent kinds of mesons:

VSK: scalar
VVK: vector

VPS: pseudoscalar
VPV: pseudovector

QGES: 
calculates the function Q, 

which is used to determine 
V, U, W, and Z

FMQ: 
calculates the form factor

F for the speci�ed OBE 
potential

Convergence? 
Yes           NoInput

Data

Figure B.1: The numerical scheme of Lambt, which calculates properties of nuclear matter
using the RBHF formalism.

Table B.1: Parameters for the three relativistic Bonn OBE potentials (A, B, and C). For each
meson α, the mass mα, coupling factor g2α/4π, and cut-off mass Λα are given. Additionally,
for the ρ meson the parameter fρ/gρ = 6.1. This table is adapted from Table VI in [85].

Meson Parameters Potential A Potential B Potential C
Meson α mα (MeV) g2α/4π Λα (GeV) g2α/4π Λα (GeV) g2α/4π Λα (GeV)

σ 550.0 8.3141 2.0 8.0769 2.0 8.0279 1.8
ω 782.6 20.0 1.5 20.0 1.5 20.0 1.5
π 138.03 14.9 1.05 14.6 1.2 14.6 1.3
ρ 769.0 0.99 1.3 0.95 1.3 0.95 1.3
δ 983.0 0.7709 2.0 3.1155 1.5 5.0742 1.5
η 548.8 7.0 1.5 5.0 1.5 3.0 1.5
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’SIGM1’ , . 5 5 0 , 8 . 3 1 4 1 , 4 , 2 . 0 , 2 ∗ 0 .

’OMEGA’ , . 7 8 2 6 , 2 0 . , 4 , 1 . 5 0 , 2 ∗ 0 .

’OMEG2’ , 0 . , 0 . , 0 , 3 ∗ 0 .

’ PI ’ , . 1 3 8 , 1 4 . 9 , 4 , 1 . 0 5 , 2 ∗ 0 .

’RO ’ , . 7 6 9 , 0 . 9 9 , 4 , 1 . 3 , 2 ∗ 0 . , 6 . 1

’PHI ’ , 1 . 0 2 0 , 7 . , 0 , 1 . 9 5 0 , 2 ∗ 0 .

’DELTA’ , . 9 8 3 , 0 . 7 7 0 9 , 4 , 2 . 0 , 2 ∗ 0 .

’ETA ’ , . 5488 , 7 . , −4 , 1 . 50 , 2∗0 .

’AMNUC’ , 0 . 9 3 8 9

’UMRFA’ , 0 . 1 9 7 3 2 9

’NSTEU’ , 0 , 1 , 0 , 1 , 5 , 3 , 0 , 1

’IGEL ’ , 1 . 2 5 0 , . 0 2 5 , 1 . , 1 0 , 4 , 8 , 4 , 5 , 1 , 1 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1

’EPS ’ , . 0 0 1 , . 0 2 5 , . 0 0 1 , 1 .E−4 ,10.7 ,25 ,150

’START’ , − . 1 8 , 0 . , . 1 5

’DICHTE’ , 0 . 1 , . 2 , . 0 2

’TEMPERATUR MeV’ , 2 0 . , 2 0 . , 5 .

’RELAX’ , . 3 , . 3 , . 3 , . 3 , . 3 , . 3

’RELEN’ , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 .

’CHEM POT. ’ , . 9

’ENDRUN’

After information for the η meson, the nucleon mass (in GeV) is given by “AMNUC”,

followed by a conversion factor “UMFRA” from fm−3 to GeV3. The next line “NSTEU”

gives a series of eight control parameters (NS1, NS2, NS3, NS4, NS5, NS6, NTEST, and

IFOCK). The relevant parameters to the RBHF approximation are:

• NS2: inclusion of retardation (= 1 do not include, = 2 include),
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• NS4: treatment of π meson (= 1 pseudovector, = 2 pseudoscalar),

• NS5: type of calculation, takes values 1 to 5 (1 = HF, 2 = Λ00, 3 = Λ10, 4 = Λ11, 5 =

BHF),

• IFOCK: inclusion of the exchange term (= 0 direct term only, ̸= 0 include direct and

exchange term).

A second set of control parameters is listed on the next line “IGEL”, of which the last

12 parameters are stored in the code as ISTEU(1:12). For the RBHF approximation, the

relevant parameters are:

• ISTEU(2): inclusion of temperature in the calculation of boson-exchange matrix ele-

ments (= 1 include, = 2 ignore),

• ISTEU(3): breakdown by meson (= 1 do not, = 2 do),

• ISTEU(6): specifies the type of basis (= 1 vacuum-basis, = 2 self-consistent spinor-

antispinor basis),

• ISTEU(7): carry out a relativistic (= 1) or nonrelativistic (= 2) calculation,

• ISTEU(8): inclusion of the vector components of the self-energy Σ (= 1 do not, = 2

do),

• ISTEU(9): type of matter (= 1 symmetric nuclear matter, = 2 pure neutron matter),

• ISTEU(12): momentum-averaging self-energy Σ (= 1 full calculation, = 2 momentum-

averaging).

The other parameters included are specific to the numerical calculation (integration, extrap-

olation, etc). The following line “EPS” includes information about convergence criteria and

values for the maximum number of iterations.
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The next lines give initial conditions for the calculations. “START” provides the starting

values for the scalar, vector, and time-like components of the self-energy Σ. “DICHTE”

gives the starting and ending values for the density along with the step size, respectively.

“TEMPERATUR MeV” gives the same information as “DICHTE” but for the temperature

(in MeV). Finally, “RELAX” and “RELEN” are the relaxation factors for the self-energy Σ

and single-particle energy, and “CHEM POT.” is the chemical potential.
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Appendix C

Numerical Scheme for Differential

Rotation: DRNS

The numerical method to solve bulk properties of differentially rotating neutron stars follows

an open-source code that models uniformly rotating stars called RNS (for Rapidly Rotating

Neutron Stars) written by Nikolaos Stergioulas, and an updated and expanded version of

RNS written by Rodrigo Negreiros. The open-source version of the original RNS code is

available freely online, which solves Einstein’s field equations for uniformly rotating stars

using the scheme laid out by CST [104]. This appendix will give more general details about

the numerical scheme and explicitly provide our modifications to extend its capability to

differentially rotating stars.

Under the assumption that the maximum density occurs at the center of the star (see Chap-

ter 3 for more details), the user must supply the following when computing equilibrium

models for a single star or sequence of stars:

• A equation of state (EOS) model that includes the energy density ϵ, pressure P , en-

thalpy h, and number density n in CGS units,
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• A central density, or range of central densities for a given number of stellar models,

• The ratio of polar to equatorial radius, rratio,

• The inverse of the scaled rotation parameter, Â−1.

Alternatively, DRNS has the option to assume the maximum density is not at the center

of the star (discussed in Chapter 4), which is the case for more deformed configurations. If

this option is chosen, the numerical models can be calculated using smaller values of rratio,

or the user can specify a range of values for rratio for which the code will find solutions over.

Once the input data is loaded, bulk properties of differentially rotating stars are calculated

using an iterative scheme, shown schematically in Figure C.1. The schematic shows the

process for a single star with a set central density, but a sequence of stars can be solved by

completing the scheme for a range of densities.

C.0.1 Parameter Scaling

While describing equations throughout this body of text, geometrized units are adopted

(G = c = 1). However, these variables are still present throughout calculations within

the DRNS code. The physical parameters within the calculation like the metric functions,

rotational frequency, EOS, and more are scaled both within the CST numerical scheme and

the DRNS code. The scaled variables are given in Appendix A of CST [104] but are also

listed here for convenience.

The fundamental length scale chosen in CST is κ1/2, which is used to scale physical param-

eters and is defined as:

κ1/2 =

(
c2

Gϵ0

)1/2

, (C.1)
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For a given central density, 
calculate the corresponding

pressure, enthalpy, and 
number density

Calculate the initial “guess” 
values for the metric 

potentials r, g, and a using 
the TOV equations (u = 0)

Compute the Legendre 
polynomials and associated

 Legendre polynomials

Calculate Ue , Uc , and U,
where Ue and U are found 
using Brent’s method for 

root �nding

Use U to calculate the
enthalpy and velocity
throughout the star

Calculate source terms for 
potentials r, g, and u:

S
r
 , S

g 
, and S

u

Re-calculate the metric 
potentials  r, g, u, and a

Convergence?
No                  Yes

Calculate bulk properties, 
including the mass, 

radius, stability
parameter T/|W|, and 

redshifts

Figure C.1: The numerical scheme of DRNS, which calculates bulk properties differentially
rotating neutron stars.

205



where c is the speed of light, G is the gravitational constant, and ϵ0 is 1015 g/cm3. The

following variables are then scaled (denoted by a bar over the variable) using κ as:

r̄ = κ−1/2 r, (C.2)

t̄ = κ−1/2 ct, (C.3)

ω̄ = κ1/2
ω

c
, (C.4)

Ω̄ = κ1/2
Ω

c
, (C.5)

ρ̄0 = κ
Gρ0
c2

, (C.6)

ϵ̄ = κ
Gϵ

c2
, (C.7)

P̄ = κ
GP

c4
, (C.8)
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J̄ = κ−1GJ

c3
, (C.9)

M̄ = κ1/2
GM

c2
. (C.10)

C.0.2 Root Finding: Brent’s Method

To determine the frequency at the equator Ωe and then the star’s total frequency Ω, Eqs.

(3.23) and (3.19) must be solved using a root-finding algorithm. In DRNS, this is done using

Brent’s method, more formally known as the van Wijngaarden-Deker-Brent method. This

root-finding method combines root bracketing, bisection, and inverse quadratic interpolation;

the reader is directed to Ref. [244] for a full description and the source code. The basic idea

of the algorithm is as follows: for three points [a, f(a)], [b, f(b)], and [c, f(c)], a polynomial

interpolation for point x is given as:

x =
[y − f(a)][y − f(b)]c

[f(c) − f(a)][f(c) − f(b)]
+

[y − f(b)][y − f(c)]a

[f(a) − f(b)][f(a) − f(c)]
+

[y − f(c)][y − f(a)]b

[f(b) − f(c)][f(b) − f(a)]
.

(C.11)

For root-finding, y is set to 0, giving:

x = b+ P/Q, (C.12)

where P is defined as:

S[T (R− T )(c− b) − (1 −R)(b− a)], (C.13)
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and Q is defined as:

Q = (T − 1)(R− 1)(S − 1). (C.14)

The auxiliary variables R, S, and T are defined in terms of f as:

R = f(b)/f(c),

S = f(b)/f(a),

T = f(a)/f(c).

(C.15)
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Appendix D

Supplemental Information for

Machine-Learning-Derived

Likelihoods

D.1 Integration and Optimization

This section describes the numerical integration and optimization methods used in Chapter 6.

D.1.1 Integration

Integration is performed by a Monte Carlo method. In order to ensure convergence, four

independent sets of 100 samples are made, leading to four estimates of the value of the

integral. Additional sets of 100 samples are performed until the uncertainty on the mean

over the sets is reduced to less than 3% relative. The mean value over all sets is then used

as the estimate.
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D.1.2 Optimization

Optimization is performed in two stages. First, the rough location of the maximum is located,

followed by the use of a maximization algorithm for fine-tuning.

The first stage performs a simple grid scan of the parameter space, dividing the space into

N tiles centered on the full parameter range. The process is repeated, but now centered over

the expectation value calculated from the previous round, and with a search space the width

of three grid tiles, again divided into N smaller tiles. The process is repeated M times. In

the results shown in Chapter 6, N = 4 and M = 3.

The second stage runs an algorithm to find a minimum. The scipy.minimize function with

Nelder-Mead and conjugate-gradient algorithms. In addition, a method that performs two

one-dimensional parabolic fits through the center of the region was explored. The results

shown in Chapter 6 use the Nelder-Mead algorithm.

The two-stage method performed more reliably than running the algorithm over the full

parameter space.

D.2 Hyperparameter Optimization

This section describes the hyperparameter optimization methods for model f , which gener-

ates simulated X-ray spectra from mass, radius, and the nuisance parameters ν.

The network has two input branches, the first to process the mass and radius values and the

second to process ν. The output of the two branches is combined and processed through

the remaining layers to predict the X-ray spectra. In both the input branches as well as

the secondary portion of the network, we trained models with random combinations of the

following parameters:
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1. Number of layers: one to fifteen,

2. Number of hidden nodes: 64 to 2048,

3. Dropout: 0 to 1,

4. Learning rate: 0.0001 to 0.005,

5. Activation functions,

6. Skip connections,

7. Loss functions: mean squared error (MSE), mean absolute percentage error (MAPE),

and the Huber loss function,

8. Data scalers for both the input and the output: zero-mean, log, min-max, and standard

scaler. The scalers preprocess the data before it enters the network, meaning scaled

input values (mass, radius, and ν) with a scaled output (spectra) are used for training.

After training, the scaling procedure is inverted for the predicted spectra to produce

meaningful values.

The hyperparameters chosen were the combination that had the best performance on the

validation data set, described in Section 6.2.
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