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ynopsis An  algorithm,  based  on  the  matching  of  q-vectors  pairs,  is  combined  with  three-

dimensional pattern matching using a nearest-neighbors approach to index Laue and monochromatic

serial crystallography data recorded on small unit cell samples. 

bstract Serial  crystallography data could be challenging to index,  as each frame is  processed

individually,  rather  than  processed  as  a  whole  like  in  conventional  X-ray  single-crystal

crystallography. We developed an algorithm to index still diffraction patterns arising from small unit

cell samples. The algorithm is based on the matching of reciprocal lattice vector pairs, as developed

for  Laue  microdiffraction  data  indexing,  combined  with  three-dimensional  pattern  matching

using a nearest-neighbors approach. As a result,  large bandpass data (e.g.  5-24 keV energy

range) as well as monochromatic data can be processed, the main requirement being the prior

knowledge  of  the  unit  cell.  Angles  calculated  in  the  vicinity  of  a  few  theoretical  and

experimental reciprocal lattice vectors are compared, and only vectors with the highest number of

common angles are selected as candidates to obtain the orientation matrix. Global matching on the

entire pattern is then checked. Four indexing options are available, two for the ranking of the

theoretical reciprocal lattice vectors, and two for reducing the number of possible candidates. The

algorithm was used to index several datasets collected under different experimental conditions

on a series of model samples. Knowing the crystallographic structure of the sample and using

this  information to  rank the  theoretical  reflections  based on  the  structure  factor  helps  the



indexing of large bandpass  data for the largest  unit  cell  samples.  For small  bandpass  data,

shortening the candidate list to determine the orientation matrix should be based on pairs of

reciprocal lattice vectors matching instead of triplet matching. 

eywords: Indexing; Energy bandpass; Laue microdiffraction; Serial 
Crystallography. 

1. Introduction 

With the emergence of high-energy X-ray free electron laser (XFEL) sources generating ultra-

fast X-ray pulses of high brilliance, serial crystallography has become a method of choice to 

collect single-crystal X-ray diffraction data (Chapman et al., 2011; Boutet et al., 2012). By 

exposing a crystal to a single monochromatic X-ray pulse, a diffraction pattern is collected 

before radiation damage occurs. By combining a series of single shot diffraction patterns 

obtained from randomly oriented crystals, a complete dataset can be retrieved, and the 

structure of complex systems studied, with a focus on macromolecular structural biology 

applications (Johansson et al., 2017). The sudden rise of serial crystallography has triggered the 

development of dedicated analytical tools, to analyze the huge number of diffraction patterns 

collected, index the individual diffraction patterns, and reconstruct useable reflection intensities 

(White et al., 2016; Hattne et al., 2014; Kabsch 2014; Liu & Spence, 2016). Owing to the nature 

of the XFEL beam (each X-ray pulse has its own energy and intensity spectrum), the sample 

variability (the crystallites exposed to the beam may vary in size and crystallinity), and the 

measurement strategy (one or several crystals randomly oriented may diffract simultaneously), 

data processing can be very challenging.

 In recent years, new strategies to index such complex data have been proposed, with a focus on 

sparse data and smaller unit cell samples, in particular making use of a prior knowledge of the 

unit cell (Brewster et al., 2015; Ginn et al., 2016; Li et al., 2019). For example, in order to obtain 

the crystal orientation matrix of still images with sparse data, Brewster et al. (2015) used a 

powder-like diffraction pattern reconstructed from the aggregate of thousands of still images to 

derive accurate cell information, before using the model powder pattern to assign initial Miller 

indices to reflections. Li et al. (2019) have developed an auto-indexing algorithm for sparse and 

small unit cell diffraction data, comparing the length and angles of paired scattering vectors 

with referenced values derived from prior knowledge of the unit cell. Finally, dedicated tools 

have been developed to take into account the non-monochromatic nature of the XFEL beam in 

the indexing process (Gevorkov et al., 2019).

The term of “serial crystallography” to define the concept of collecting single shot data and 

processing each frame individually was used at an earlier stage with XFEL, especially in the 



case of Laue diffraction. When a crystal is exposed to a broad energy bandpass (polychromatic, 

pink or white beam), a reasonably large number of reflections can be recorded simultaneously 

in a single exposure. Because of this, the Laue method is a good alternative to the 

monochromatic one for in situ time-resolved studies of macromolecules (Moffat & Helliwell, 

1989; Bourgeois et al., 2003; Yorke et al., 2014). If combined with a micron or sub-micron size 

beam, Laue diffraction can also be used to map crystal orientation and strain in materials (Chen

et al., 2016). In addition, a complete structure characterization only requires a few random 

orientations to be combined (Cornaby et al., 2010; Dejoie, McCusker, Baerlocher, Kunz & 

Tamura, 2013). The indexing of individual patterns collected using the Laue microdiffraction 

technique is generally based on a matching process of pairs of reciprocal lattice vectors (Chung 

& Ice, 1999; Tamura, 2014), which requires prior knowledge of the unit cell. In short, each 

measured reflection is converted into normalized reciprocal lattice vectors (they are normalized,

as their length is not directly accessible in Laue diffraction), and the angle between the vectors 

are matched with a list of expected angles calculated from the known unit cell. Data processing 

for structure solution based on a set of Laue reflection integrated intensity measurements tends 

to be difficult, mainly due to the energy dependence of the various correction factors, and the 

overlap of harmonic reflections (Helliwell et al., 1989). 

The non-monochromatic nature of the XFEL beam attracted our attention a few years ago. 

With a small energy bandpass (a few percent in E/E, E being the energy of the incident beam), 

more reflections are in diffraction condition, and the probability a reflection intensity to be 

truncated is also reduced. The possibility to measure more Bragg peaks in a single shot is 

particularly interesting for samples with small unit cells. As a 4% energy bandpass beam had 

been planned at the Swiss free electron laser (SwissFEL) (Patterson et al., 2014), we developed a 

methodology to simulate such data and implement the data processing appropriate for small 

unit cell samples. A first indexing of the simulated data was carried out using a Laue 

microdiffraction approach, showing that such Laue indexing algorithm could be adapted to 

index data collected over smaller energy bandpass (Dejoie, McCusker, Baerlocher, Abela et al., 

2013). A short description of the indexing strategy was published in Dejoie et al. (2015). The 

“classic” Laue pair of reciprocal lattice vectors matching approach (Chung & Ice, 1999; Tamura, 

2014) was combined with a three-dimensional pattern matching approach based on nearest neighbors 

initially developed for fast 2D pattern matching of fingerprints (Van Wamelen et al., 2004), 

which appeared to be efficient to index these 4% bandpass data.

Keeping a similar combined approach, the code has been revised and optimized for the indexing

of different types of data collected with varying energy bandpass, from Laue (5-24 keV range) to



monochromatic. A complete description of the indexing algorithm is presented here, along with 

the results of the indexing tests carried out on five small unit cell model samples (cell volume 

ranging from 722 to 6640 Å3). First, angles in the vicinity of selected theoretical and 

experimental reciprocal lattice vectors are calculated, and only vectors with the highest number of 

common angles are kept. The list of candidates from nearest-neighbors matching can be further 

reduced before checking for global match. Four indexing strategies are available, depending on 

whether or not the crystallographic structure is (at least partially) known (this will affect the 

ranking of theoretical reflections), and on the type of matching process chosen (based on pair or

triplet of reciprocal lattice vectors matching). Our objective is to identify the main parameters 

influencing the indexing process, to check the limitations of the indexing algorithm, and to propose 

the best indexing strategy depending on the type of sample and the type of diffraction data. We 

show that knowing the crystallographic structure of the sample helps the indexing of large 

bandpass data for the largest unit cell samples. On the other hand, for the indexing of small 

bandpass data, a matching process based on pairs of reciprocal lattice vectors should be favored. 

The current indexing algorithm uses routines written in the XMAS software (Tamura, 2014), but 

can be used as a stand-alone program.

2. Sample tests and data acquisition

The indexing algorithm has been tested on X-ray diffraction data collected on five model 

samples. The chemical composition and main crystallographic information for each of the five 

samples are given in Table 1. A 30 m thin section of feldspar (sanidine) (Ackermann et al., 

2004) was provided by Professor H. R. Wenk (UC Berkeley, USA). Hydrated caesium 

cyanoplatinate (CsPt) (Johnson et al., 1977) and ZSM-5 zeolite crystals (Olson et al., 1981; van 

Koningsveld et al., 1987) were provided by Dr. P. Pattison (EPFL Lausanne, Switzerland) and 

Professor Henri Kessler (Université de Haute-Alsace, Mulhouse, France), respectively. The 

zirconium phosphate (ZrPOF) (Liu et al., 2009) and the magnesium acetate (MgAc) samples 

were provided by Dr. L. B. McCusker (ETH Zurich, Switzerland). The magnesium acetate 

structure was refined using single crystal data collected at the ALS-11.3.1 beamline. Results 

agree with the published structure (Scheurell et al., 2015).

X-ray single crystal diffraction data were collected using monochromatic (E/E ~ 10-4) and non-

monochromatic X-ray incident beams: E/E ~ 4 %; E ~ 11-17 keV (e.g. E/E ~ 50 %); and E ~ 

5-24 keV. Information about all the datasets collected varying both the energy range and the 

experimental setup (setups (1) to (5)) are summarized in Table 2. 

Conventional monochromatic data (setup (1)) and 4% bandpass data (E/E ~ 4 %, setup (2)) 

were collected at the Swiss–Norwegian Beamline (SNBL/BM01A) at the European Synchrotron 



Radiation Facility (ESRF). To do so, single crystals of sanidine, CsPt, ZSM-5 and ZrPOF were 

mounted on MiTeGen MicroMeshes. A two-dimensional DECTRIS Pilatus 2M detector was 

positioned at a distance of 224 mm from the sample. The broad bandpass mode was achieved by

collecting a diffraction pattern while the monochromator was scanned over a 4% energy 

bandpass (average energy 17.34 keV, or 0.7153 Å). The shape of the X-ray incident spectrum 

achieved in such a way was extracted using the ‘reverse method’ from sanidine data (Dejoie et 

al., 2011) (Fig. 1a). The monochromatic datasets and 4% bandpass datasets were collected by 

rotating single crystals using 0.25° rotation and 1° rotation step, respectively. Geometry 

calibration (sample-detector distance, normal incidence position of the detector, tilt angle of the 

detector) was carried out with the XMAS program (Tamura, 2014), using a LaB6 reference 

powder pattern.

Laue diffraction (E ~ 11-17 keV and E ~ 5-24 keV) experiments were conducted on Beamline 

12.3.2 at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. A 

polychromatic X-ray beam (5–24 keV) was focused down to about 1 × 1 m using a pair of 

Kirkpatrick-Baez (KB) mirrors (Tamura et al., 2003; Kunz et al., 2009). Laue microdiffraction 

patterns were collected using a two-dimensional DECTRIS Pilatus 1M X-ray detector. An 

exposure time of 1s per pattern was used for all samples. The sample–detector distance, the 

center channel of the detector and the tilt of the detector relative to the sample surface were 

calibrated using a Laue pattern obtain from a strain-free Si single-crystal.

Two different setups were used to collect full range Laue data (5–24 keV). In the first setup 

(DET-90, setup (5)), the two-dimensional Pilatus detector was positioned at 90° with respect to 

the incident beam and the sample at 45° (reflection geometry). The distance from the sample to 

the center of the detector was ~141 mm. This configuration is optimized to collect more data in a

single shot by favoring the high-resolution (low d-spacing) range and is used in a routine way 

for strain and stress mapping (Tamura et al., 2003). Single shot patterns were collected on single

crystals of ZSM-5 and MgAc randomly dispersed on a glass slide, and on the thin section of 

sanidine. In the second setup (setup (4)), both reflection and transmission geometries were used. 

First, the two-dimensional detector was placed at 60° (sample-detector distance ~147mm) and 

the sample at 15° relative to the incident X-ray beam (reflection geometry, DET-60), and single 

crystal data were collected on single crystals of ZSM-5 and MgAc randomly dispersed on a glass

slide. For CsPt, ZrPOF and sanidine, data were collected in transmission geometry with the 2D 

detector positioned at 50° (sample-detector distance ~167mm, DET-50). The crystals were 

spread over Mitegen Micromounts covered with a 10nm Au layer. Data were collected using the

methodology described in Dejoie, McCusker, Baerlocher, Kunz & Tamura (2013). Both DET-60



and DET-50 setups give access to lower resolution data. The shape of the X-ray incident 

spectrum corresponding to setup (4) and setup (5) can be seen in Fig. 1c.

The reduced Laue range (E ~ 11-17 keV, setup (3)) was achieved in the following way: the high 

energy part of the beam was cut by increasing the pitch angle of the vertically focusing KB 

mirror, and the low energy part was restricted using the low-energy threshold of the Pilatus 

detector. As a result, the vertical size of the beam increases to ~4m, the overall intensity of the 

incident flux decreases by about 20%, and the number of reflections of different orders 

(harmonics) decreases from 25% (Dejoie, McCusker, Baerlocher, Kunz & Tamura, 2013) to 

5%. The resulting incident flux as a function of energy is shown on Fig. 1b. Some remaining 

intensity can be seen between 17 and 19 keV, with limited impact on data processing. The 

detector was positioned at 50° relative to the incident X-ray beam, for a sample-detector 

distance of ~167mm. Sanidine, ZrPOF and MgAc crystals were spread on Mitegen 

Micromounts and measured in transmission geometry. ZSM-5 data were measured using a 

geometry in reflection (sample positioned at 15° relative to the incident beam).

Powder diffraction data were collected at the high-resolution powder diffraction beamline 

(ID22) at the European Synchrotron Radiation Facility (Grenoble, France). The ZrPOF, ZSM-5

and MgAc samples were packed in 0.7mm-sized borosilicate capillaries, and measured using a 

wavelength of 0.399963 Å over 40° (2) at a speed of 2° min-1. The ZrPOF sample suffering 

radiation damage, several fast 2 scans (15°/min) have been collected on a fresh zone of the 

sample at 100K before averaging. Pawley fits were carried out using the TOPAS software 

(Coelho, 2018).

3. Description of the indexing algorithm

The indexing algorithm combines the pair of reciprocal lattice vectors matching strategy first 

proposed by Chung & Ice (1999) for the indexing of Laue microdiffraction data, with a nearest 

neighbor ranking approach initially proposed for pattern matching of 2D data such as 

fingerprint matching (Van Wamelen et al., 2004). A first version of the algorithm has been 

written for the indexing of 4% bandpass data (Dejoie, McCusker, Baerlocher, Abela et al., 2013;

Dejoie et al., 2015). The current version can be used to index several types of serial 

crystallographic data, from monochromatic to Laue. There are two important aspects in 

relation with the indexing process: i) it requires prior knowledge of the unit cell parameters of 

the sample; ii) it does not require knowledge of the energy of the diffraction peaks, which is 

retrieved during the indexing process. The main steps of the indexing process are described 

hereafter.



3.1. Step 1: data pre-processing

Prior to indexing, experimental patterns were processed (background subtraction, peak search) 

using the routines developed in the XMAS software (Tamura, 2014). The positions of the 

experimental peaks (Xexp, Yexp) in pixels on the 2D diffraction images were obtained, and 

corresponding integrated intensities (Iint) extracted using a simple box method, before ranking 

them by decreasing values. The current version of the indexing algorithm uses a simple text file 

per frame as input, in which the positions of the experimental peaks in pixels and their 

integrated intensities for a given frame of interest are listed. Next step is to convert the reflection

positions measured on the area detector into lattice vectors of the reciprocal space. Knowing the 

experimental setup (sample-detector distance, center channel and tilt of the detector), the 

experimental peaks are then converted into normalized reciprocal lattice vectors (q-vectors), as 

defined by the following equation:

q=
kout−k¿

‖kout−k¿‖

with k¿ the incident wave vector and kout the wave vector pointing from the diffracting volume 

towards the reflection on the detector (Fig. 2a). The lengths of the q-vectors are normalized to 

unity because the wavelengths of the reflections are not a priori known for non-monochromatic 

data (Fig. 2b).

From the known unit cell parameters of the crystal, the theoretical reciprocal lattice reflections 

are calculated. Three options for the ranking of these reflections are available: i) if the structure

(i.e. atomic decoration of the unit cell) or part of it is known, structure factors are also 

calculated, and theoretical reflections are ranked by decreasing structure factors. This is the 

strategy used in the Laue indexing algorithm implemented in the XMAS software (Tamura, 

2014); ii) in the case of a fully unknown structure (but known unit cell parameters), theoretical 

reflections are ranked by decreasing d-spacing; iii) a third mode is available, in which a user-

defined list is used, and extended if necessary by calculated theoretical reflections ranked by d-

spacing. For example, the user-defined list can be generated from a powder pattern, after 

extraction of the strongest intensity reflections using a Le Bail or Pawley fit. The ranking of the 

theoretical reflections according to the “likelihood” to be found in the actual dataset is a way to 

increase the speed efficiency of the indexing process, especially for low symmetry materials, by 

considerably decreasing the number of calculations. Once generated following one of the three 

options described above, theoretical reflections are converted into normalized q-vectors. The 

number of calculated theoretical q-vectors can be restricted, either to a particular threshold d-



spacing if the d-spacing ranking strategy has been chosen, or by imposing a minimum structure 

factor value in the case of the structure factor ranking strategy. 

3.2. Step 2: nearest neighbour matching

The indexing starts at this step. The q-vectors corresponding to the brightest (highest integrated

intensities) experimental reflections are first considered, and the angles between these selected 

q-vectors and the other experimental q-vectors in the first vicinity are calculated. The first 

vicinity/neighborhood is defined by a limiting maximum threshold angle. Similar strategy is 

applied around the q-vectors corresponding to a selection of theoretical unique reflections 

ranked following one of the three options described above (Fig. 3a). 

Then, the neighborhood of experimental q-vectors and of theoretical q-vectors are compared in 

terms of the number of common angles. At the end of this process, a list of theoretical unique 

reflection with similar neighborhood is obtained for each experimental peak, these theoretical 

reflections being ranked depending on the number of common q-vector angles. This is the 

“Nearest neighbors list”. For example, as can be seen on Fig . 3a, the experimental q-vector 

qexp_start(1) (corresponding to the experimental reflection with the highest intensity) has 5, 5, 3 and

4 similar neighbors with the theoretical unique reflections m, n, o, and p, respectively. These 

four theoretical matching candidates will then be ranked as m, n, p, o or n, m, p, o. 

3.3. Step 3: global matching

To verify global matching (i.e. reflection matching not limited to the nearest neighbors), a 

candidate orientation matrix has to be generated. The indexing is considered to be successful if 

more than a minimum number of experimental peaks are indexed. The orientation matrix is 

built out of 3 vectors (or1, or2, or3), with the first vector or1 selected from the “Nearest 

neighbors list”, and the vector or2 selected from a non-restricted list of theoretical q-vectors. 

The theoretical unique q-vectors with the highest number of common neighbors obtained from 

step 2 can be used directly to build the first vector or1. This approach was implemented and 

tested in Dejoie et al. (2015). Nevertheless, most of the time, these reflections are not the best 

candidates to build the first vector of the orientation matrix. In particular, when the energy 

range and/or the volume of the cell increase, the number of calculated reflections increases, and 

the number of common neighbors is becoming a less discriminating parameter. As a result, 

indexing time increases. To overcome this, additional conditions were introduced in order to 

select the first vector or1, and two additional options are currently available. 



The first additional option to retrieve candidates for or1 relies on a “pair matching” selection 

among the reflections of the “Nearest neighbors list”. If the angle between the q-vectors of two 

experimental peaks is , then the angle between the corresponding matching theoretical q-

vectors has to be  (within an angular resolution). This is illustrated in Fig. 3b, where two out of 

four vectors (qth_match(1)(1) and qth_match(1)(3)) fulfil the condition. By applying the “pair matching” 

conditions to all of the reflections part of the “Nearest neighbors list”, a reduced list of 

candidates for the vector or1 is generated. 

The second option is an extension of the previous concept, implemented over three q-vectors 

(“triplet matching”). If an experimental q-vector is making an angle  with a second 

experimental q-vector and an angle  with a third one, then, same should apply to the 

corresponding theoretical q-vectors from the “Nearest neighbors list”, as illustrated in Fig. 3c.

In order to determine the second vector of the orientation matrix or2, a pair of q-vectors 

matching strategy is used, over experimental and theoretical q-vectors. Candidates are 

generated by looking for any experimental/theoretical couples with similar angles (within an 

angular resolution). In a similar way as for or1, an additional “pair matching” restriction in the 

selection process applies: if the angle between two experimental q-vectors is , then the angle 

between the two corresponding selected theoretical q-vectors should also be within a given 

angular resolution.

The third vector or3 of the orientation matrix is deduced from or1 and or2, with only two 

possibilities, allowing for right-handed and left-handed coordinate systems. From the candidate 

orientation matrix, the positions of all the expected reflections can be devised and compared to 

the positions of the experimental peaks on the diffraction pattern. The experimental pattern is 

indexed if the number of experimental peaks indexed is higher than a defined minimum. 

3.4. Step 4: post-calculations

Once a satisfactory indexing is obtained, the successful orientation matrix is refined using the 

entire set of indexed reflections, and the number of matching reflections is calculated again. The

output is a text file, either using XMAS indexing file format, or ShelX (Sheldrick, 2008) format. 

For each reflection in the diffraction pattern, the Miller indices (h, k, l), the integrated intensity 

of the experimental peak (Iint) and corresponding wavelength are given in the output. 

3.5. Additional features

An option for indexing several orientations (several crystal grains) in a single frame is available.

This is performed sequentially as implemented in the XMAS software (Tamura, 2014). A 

maximum number of orientations to look for per frame is provided, and the algorithm simply 



loops over the previously described steps 1-4, removing each time the newly indexed peaks from

the experimental peak list. 

A second option has been introduced, taking into account possible disorientation of the crystal. 

This is for example the case when the crystal is slightly rotated while taking an exposure. As a 

result, additional reflections will be measured. This rotation effect can be specified by 

introducing a rotation angle. This option will not be discussed further in this paper.   

4. Results and discussion

4.1. Indexing results

The indexing algorithm has been implemented in Fortran 90, using existing routines from the 

XMAS software (Tamura, 2014). Indexing trials have been carried out on a DELL Optiplex 

9020 computer equipped with a 3.6GHz Intel Core i7-4790 processor. The indexing results for 

the datasets presented in Table 2 are shown in Table 3. Four indexing strategies have been 

tested, using either d-spacing (dsp) or structure factor (strf) ranking of the theoretical 

reflections (see 3.1. Pre-calculations part), and either pair (pm) or triplet (tm) matching when 

selecting candidates for the or1 vector (see 3.3. Global matching part). The percentage of 

successfully indexed patterns as well as the average time per pattern processed are given in each

case. The complete set of parameters used for the indexing of each dataset is given in the Table 

SI1. The set of parameters necessary to obtain a successful indexing may not be unique, and 

parameter values different from the ones indicated in this paper may also provide a successful 

indexing. Moreover, the total indexing time will vary depending on the computing machine 

used.

A key step is to find the successful candidate to build the first vector or1 of the orientation 

matrix (step3). A first selection is done through nearest neighbor matching (step 2), and a 

second one at step 3 through pair or triplet matching. In order to have a successful indexing, the

first requirement is to have the correct solution as candidate in the selection list. Then, this 

candidate should also be among the first to be checked. Selecting a large number of candidates 

may increase the indexing success rate, but also the processing time if the solution is ranked too 

far down in the list. The 15 patterns of the ZSM-5 sample collected using setup (4) and indexed 

using a d-spacing ranking strategy and triplet matching strategy to obtain or1 candidates (dsp-

tm) can be used as an example. For each of the 15 patterns in the dataset, the processing time as 

a function of the ranking of the successful candidate has been plotted in Fig. 4. One pattern could 

not be indexed, probably due to the too limited number of possible candidates generated (15). In all 



the other cases, even if the indexing was successful, a fast indexing could only be achieved with the

solution occupying one of the first two positions in the selection list. 

A few parameters have a strong influence on the ranking of the or1 candidates, and 

consequently on the indexing time and indexing success. A detailed discussion of these 

parameters is given in SI1 and SI2, using the tests performed on ZSM-5 as examples. The 

requirements are different depending on whether small bandpass (monochr. or 4%) or larger 

bandpass (50%, DET-50/60, DET90) data are being indexed. In the latter case, a subset of 

experimental and theoretical reflections/q-vectors should be considered at step 2, when for small

bandpass data, it is recommended to exploit as many experimental data as possible. Two main 

limitations have been identified. On the small bandpass side, the indexing may fail if not enough 

data per frame are present (e.g.  CsPt monochr. data, with in average less than 10 reflections 

per frame). On the other hand, on the large bandpass side, the number of required expected 

reflections may increase drastically, preventing the indexing to be successful in a reasonable 

amount of time (e.g. ZSM-5 DET-90 data using d-spacing ranking). 

4.2. Indexing modes

Four possible indexing strategies are available, depending on the theoretical reflections ranking 

mode (d-spacing- or structure factor-based) and on the selection mode of the first vector or1 of 

the orientation matrix (pair matching or triplet matching). The efficiency of these four indexing 

strategies will be discussed next for the various samples and setups. 

As the indexing process is based on matching experimental q-vectors with theoretical ones, we 

expected that the ranking of theoretical reflections by structure factor would provide the best 

results. Indeed, this ranking mode has favored the indexing of the datasets of ZrPOF, ZSM-5 

and MgAc collected with a large bandpass beam (50pc, DET-50 and DET90) (Table 3). For the 

datasets of CsPt and Sanidine collected with similar setups, this trend is less clear, and similar 

or even better results have been obtained using d-spacing ranking (Table 3). Reflection 

intensities from a single Laue diffraction pattern are usually fully measured (except for the 

reflections lying at the ends of the energy range), and even when affected by the presence of 

harmonics (reflections of different orders overlapping), our results show that this does not 

hinder a good match and the patterns can be indexed. The fact that a d-spacing ranking is also 

providing good results when indexing Sanidine and CsPt datasets is more difficult to interpret. 

We assume that, because fewer theoretical reflections are expected (smaller cell volume), the 

matching process is converging faster. 



The results for datasets collected with a large bandpass beam show that the choice of using a 

pair matching or triplet matching strategy follows a binary distribution (Table 3). Indeed, in 

order to index the ZrPOF, ZSM-5 and MgAc datasets, the triplet matching process associated to

structure factor ranking gives the best results. On the other hand, when indexing Sanidine and 

CsPt, similar results are obtained using either pair matching or triplet matching options. By 

imposing a matching among three q-vectors, the triplet matching process provides a higher 

degree of discrimination among potential candidates to build the first vector of the orientation 

matrix, which seems to be what is required to successfully index samples with larger cell 

volumes. Such a degree of discrimination appears less crucial to index samples with smaller 

cells, and both pair matching and triplet matching approaches can give acceptable results. 

In the case of the indexing of datasets obtained using a smaller bandpass beam (monochr. and 

4%), both structure factor and d-spacing ranking can be used, with nevertheless slightly better 

results with the second option (Table 3). When using a small bandpass beam, mainly partial 

reflection intensities are measured, and this may affect the intensity ranking of the experimental

peaks. Consequently, the matching process will not be strongly affected by the chosen ranking 

strategy of theoretical reflections. On the other hand, the triplet matching option seems to be 

much less efficient than the pair matching one to index such small bandpass data. As previously 

mentioned, triplet matching requires a match between three experimental/theoretical q-vectors, 

this requirements being more difficult to achieve when fewer reflections/q-vectors are available. 

As less data per frame are measured with a small bandpass beam and with less theoretical 

reflections expected, a pair matching strategy is giving better results.  

When searching for the most appropriate indexing strategies, three main tendencies emerge. 

These main indexing modes are presented in Fig. 5. For small bandpass data, both ranking by d-

spacing or by structure factor can be used, combined to a pair matching approach. For larger 

bandpass data, there are two main strategies, depending on the dimension of the sample cell 

volume. In the case of a large cell, combining structure factor ranking with triplet matching 

ensure good indexing results. For smaller cell, any strategy can be used.

4.3. Alternative ranking of theoretical reflections

As shown in the previous section, the theoretical reflections ranking strategy plays an important

role to obtain a successful indexing. However, the fact that a structure factor ranking seems to 

be required to index patterns measured with a large bandpass beam on large cell samples (Fig. 

5) is an issue in the case of samples with unknown crystallographic structure. To cope with this, an 

alternative ranking strategy may be desirable. As mentioned when describing the pre-calculation part 

(step 1) of the indexing algorithm, a user-defined theoretical reflections list can be imposed, and 



we have tested the possibility of using the strongest reflection intensities extracted from a 

powder diffraction pattern. This approach has been tested on three datasets obtained with large

bandpass beams: setup (4) (Laue DET-50) for ZrPOF and setup (5) (Laue DET-90) for both 

ZSM-5 and MgAc. 

A Pawley refinement requires the cell parameters of a particular sample to be known, and this 

is indeed the case here, as it is also a requirement for the indexing algorithm. The refinements of

the powder patterns measured on ZrPOF, ZSM-5 and MgAc are shown in Fig. 6. The resolution 

at which the powder diffraction signal vanishes (dmax powder) as well as the three resolution limits 

(lowest d-spacing, dmin single-crystal) of the three relevant single-crystal datasets are indicated. 

We can see that single-crystal data for ZSM-5 (Fig. 6b) and MgAc (Fig. 6c) mainly cover high 2 

range (low d-spacing), as imposed by the DET-90 configuration. This is also true for ZrPOF 

(Fig. 6a), even if the DET-50 configuration allows higher d-spacing reflections to be measured. A 

resolution of 1 Å (23° 2), 0.665 Å (35° 2) and 0.888 Å (26° 2) has been reached with powder 

data for ZrPOF, ZSM-5 and MgAc, respectively, which is still far away from the resolution 

obtained with single-crystal data (0.313 Å, 0.230 Å and 0.229 Å, respectively, Table 2). 

The indexing results using as theoretical reflections the strongest reflection intensities extracted 

from the refined powder patterns (p_int) are shown in Table 4. For comparison, results obtained

using d-spacing ranking and structure factor ranking (Table 3) have also been reported. The 

complete set of parameters to index the three datasets can be found in supplementary 

information. The number of unique reflections chosen at step 2 of the indexing process 

corresponds to the number of unique reflections extracted from the powder patterns, ranked in 

decreasing intensities. Following the indications given in Fig. 5, only the triplet matching strategy 

(step 3) has been used. We can see that the indexing using powder diffraction intensities as theoretical

reflections gives intermediate results, with a better score than using the d-spacing ranking method, 

but still not as good as when using the structure factor ranking method. Using reflections 

ranked by decreasing intensities obtained from a powder pattern or reflections ranked by 

decreasing structure factors calculated from a known structure should give similar results. This 

is not the case yet, which means that the intensities extracted from the powder patterns may not 

be fully accurate. We attribute this to the low diffraction signal and the strong overlapping of 

reflections in the three relevant 2 ranges (mainly high 2), preventing an optimal measure of 

the integrated intensities. Nevertheless, as we were looking for an improvement of the indexing 

score when a structure factor ranking cannot be used, the powder ranking strategy is indeed 

providing better results.

4.4. Indexing efficiency



A good indication of the appropriate indexing method to choose depending on the bandpass of 

the beam and on the volume of the unit cell of a particular sample has been given in Fig. 5. 

However, using only these two parameters may be a bit restrictive. In an attempt to better assess the 

results, the different datasets used in the present study have been ranked depending on their 

“complexity”. To do so, we have identified three main parameters that may play a significant 

role: the volume of the crystallographic unit cell (Volume), the number of unique reflections 

expected in the relevant energy range (Unique refl.), and the number of actually measured 

reflections per frame. If the first parameter is only related to the dimension of the 

crystallographic cell of the sample, the second one is linked to its symmetry and to the 

experimental setup (e.g. the energy range). The first two parameters can be calculated for a 

given sample and a particular setup. On the other hand, the third parameter is less predictable, 

and may fluctuate depending for instance on the brilliance of the incident beam, the quality of 

the crystal, or possible radiation damage. As a result, a “complexity” parameter comp has been 

calculated as follow: comp = Observe refl. / Unique refl. / Volume, with Observe refl. being the 

average number of measured reflections per frame for a particular dataset. 

The indexing is considered to be successful when a maximum number of frames are indexed in a

minimum of time. Within the average indexing time per frame (Table 3), the time spent to 

successfully index a frame may be much shorter than for a non-successful indexing. To take that

into account, an indexing efficiency coefficient Eff has been calculated: 

Eff = tN * (Nsuccess * tsuccess) / (Ntot * ttot)

with Nsuccess being the number of patterns successfully indexed, tsuccess the time spend to 

successfully index the patterns, Ntot the total number of patterns in the dataset, and ttot the total 

time taken to index the dataset. In order to obtain a meaningful comparison between the 

different datasets, a time normalization tN has been introduced:

tN = -0.001 * Av_time +1

with Av_time the average indexing time per frame for a particular dataset, given in Table 3. In 

such a way, an indexing efficiency of 1 (best efficiency) and an efficiency of 0 (worse efficiency) 

can only be reached for an average indexing time of 0s per frame, and of 1000s per frame, 

respectively.

Complexity values obtained for each datasets as well as the indexing efficiency coefficients for 

the different indexing methods are reported in Table 5. The indexing efficiency as a function of 

sample complexity has been plotted in Fig. 7. In the case of hopeless indexing (e.g. ZSM-5, DET90,

dsp-pm), the efficiency coefficient has been set to 0.



In Table 5, the datasets have been ranked by decreasing complexity, the smallest comp value 

corresponding to the higher degree of complexity. With such classification, the datasets collected

on ZSM-5 crystals with a monochromatic beam and on MgAc with a large bandpass beam 

appear to be most complex, when the one obtained on CsPt using the DET-50 configuration the 

least. Indeed, indexing of the ZSM-5 monochromatic dataset and of the MgAc DET-90 dataset 

have been demanding, with a highest score below 90% (Table 3), no matter the indexing method

used. On the other hand, the CsPt DET-50 dataset is part of these datasets that can be easily 

indexed, with any of the methods chosen (Table 3). This shows that the complexity of a dataset 

is not correlated to an increase of the bandpass of the beam.

We have chosen a comp value of 6.10-6 to separate the datasets into two categories (see the 

vertical dash line in Fig. 7). When looking at the less complex datasets (comp > 6.10-6), an 

efficiency coefficient higher than 80% is achieved most of the time, no matter the indexing 

method. The only exception concerns the CsPt monochromatic dataset, with a drop of the 

indexing efficiency when using the triplet matching method, most probably due to a lack of data 

per frame (Table 2), as mentioned earlier. For the most complex datasets (comp < 6.10-6), the 

indexing efficiency is clearly dropping, irrespective of the indexing methods used. One of the 

most affected is the dsp-tm method, with an efficiency never reaching 80%. On the other hand, 

the structure factor ranking methods are the most robust, in agreement with the results shown 

in Fig. 5.

5. Conclusion

The indexing algorithm presented in the current paper has been tested on a series of datasets 

obtained from five different samples with variable experimental conditions. Four indexing 

strategies can be used, with the calculated theoretical reflections ranked by d-spacing or by 

structure factors, and the matching process based on pair or triplet of q-vectors. The main 

parameters to tweak and the best indexing mode to choose to obtain a successful indexing differ 

depending on whether small bandpass (monochr. or 4%) or larger bandpass (50%, DET-50, 

DET90) are considered. The calculation of a complexity parameter for each dataset reveals that 

the most complex datasets are not simply correlated to a particular bandpass, and that the most

robust indexing methods are the ones based on structure factor ranking. An additional feature 

has been added, allowing a user-defined theoretical reflection list to be provided. This is 

particularly useful when only the lattice parameters of a sample are known, and a d-spacing 

ranking strategy has to be used. Using the reflection intensities extracted from a powder 

patterns have shown that the indexing can indeed be improved. The idea of using 

crystallographic information coming from powder diffraction to index serial crystallography 



data has been proposed previously, the powder pattern being in that case directly build from 

single crystal data (Brewster et al., 2015). Combining methods and practices from different 

communities is always a good approach to solve challenging crystallographic problems. 

The indexing program can be downloaded at https://sites.google.com/a/lbl.gov/bl12-3-2/user-

resources/.

Figure 1 Incident flux for the four non-monochromatic setups extracted from sanidine single-

crystal data using the reverse method (Dejoie et al., 2011). Setup 2: 4% bandpass; setup 3: 10-17

keV range (50% bandpass); setup 4 and 5: 5-24 keV range. 

Figure 2 a) Schematic representation of an experimental setup using a geometry in reflection; 

b) Ewald construction for non-monochromatic (Laue) diffraction. Nodes of the reciprocal lattice

in the blueish zone are in diffraction condition. Two normalized q-vectors, q1 and q2, 

corresponding to the h1 k1 l1 and the h2 k2 l2 reflections, respectively, are shown. The wavelength 

of these two reflections, defining the length of the q-vectors, is not known a priori, and lies on the

solid line crossing the reflections. Note that the reflection h1 k1 l1 has a harmonic reflection (h1n  

k1n  l1n).     

Figure 3 Indexing algorithm. a) Step 2, nearest neighbors matching. The red, green and blue 

cones represent the limiting maximum threshold angle around the experimental q-vectors 1, 2 

and 3, respectively. On the experimental side, 6, 4 and 4 nearest neighbor angles can be calculated 

around the q-vectors 1, 2, and 3, respectively. On the theoretical side, four q-vectors having 

similar nearest neighbors as the first experimental q-vector are shown. The theoretical q-vectors

m, n, o, and p have 5, 5, 3 and 4 similar neighbors (purple arrows) with qexp_start(1), respectively. 

Additional q-vectors (dashed black arrows) may also be present; b) Step 3, pair matching. If 

two experimental q-vectors form an angle , then, the same applied for theoretical q-vectors. 

https://sites.google.com/a/lbl.gov/bl12-3-2/user-resources/
https://sites.google.com/a/lbl.gov/bl12-3-2/user-resources/


Among the 4 potential candidates with similar nearest neighbors as the first experimental 

reflection, only two (qth_match(1,1) and qth_match(1,3)) fulfil the requirement; c) Step 3, triplet 

matching. Three q-vectors are involved in the matching process, and only one theoretical q-

vector (qth_match(1,1)) fulfils the requirement.

Figure 4 Indexing of the dataset collected on ZSM-5 using the DET-60 configuration and the 

dsp-tm strategy, showing the indexing time as a function of the position of the solution within 

the candidate list to determine the or1 vector of the orientation matrix. 

Figure 5 Schematic representation of the most successful indexing modes depending on the 

volume of the crystallographic cell and on the energy bandpass of the beam.

Figure 6 Pawley refinement of a) ZrPOF (Rp=4.2%, Rwp=6.6%, Rexp=1.4%), b) ZSM-5 

(Rp=5.9%, Rwp=9.8%, Rexp=1.3%) and c) MgAc (Rp=4.1%, Rwp=5.9%, Rexp=0.7%).

Figure 7 Efficiency of the indexing methods as a function of the complexity of the datasets 

(dsp: d-spacing ranking; strf: structure factor ranking; pm: pair matching; tm: triplet 

matching).

Table 1 Main crystallographic information for the samples of the present study (SG: space 

group). 

Name Formula SG Volume 

(Å3)

a (Å) b (Å) c (Å)   

Sanidine KAlSi3O8 C2/m 721.79 8.58320 13.0076 7.1943 90 116.023 90

CsPt Cs2[Pt(CN)4].H2O P65 1619.73 9.791 9.791 19.510 90 90 120

ZrPOF |(C9H8N)4(H2O)4|

[Zr8P12O40(OH)8F8]

P 1977.53 10.7567 13.8502 14.8995 109.6 101.1 100.5

ZSM-5 (SiO2)96 Pnm

a

5343.32 20.022 19.899 13.383 90 90 90

MgAc Mg5(C2H3O2)8(OH)2 I41/a 6640.68 23.3126 23.3126 11.9855 90 90 90



Table 2 Single crystal datasets collected for the five samples of this study, using five different 

setups ((1) to (5)) – The number of diffraction patterns per dataset, the resolution range (d-

spacing), the average number of experimental peaks per frame, and the number of independent 

reflections expected in the resolution range are indicated.

Dataset name

Energy range (keV)

Setup no.

Monochr.

17.75 

(1)

4% 

16.9-17.7 

(2)

50%

10-17 

(3)

LaueDET-50/60

5-24 

(4)

LaueDET-

90

5-24 

(5)

Sanidine No. patterns

Resolution range (Å-1)

Average no. peaks / frame

No. independent reflections

100 

Inf-0.450

16

4337

85 

3.599-0.406

67

5809

80 

5.872-0.312

98

12674

10 

1.563-0.227

201

32313

CsPt No. patterns

Resolution range (Å-1)

Average no. peaks / frame

No. independent reflections

100 

Inf-0.574

9

523

100 

Inf-0.560

16

551

12 

5.950-0.315

353

2715

ZrPOF No. patterns

Resolution range (Å-1)

Average no. peaks / frame

No. independent reflections

21 

0-12.311

34

7767

17 

1.069-20.085

170

33884

ZSM-5 No. patterns

Resolution range (Å-1)

Average no. peaks / frame

No. independent reflections

100 

Inf-0.552

12

4604

100

Inf-0.559

26

4427

17 

3.471-0.387

148

12884

15 

4.155-0.287

472

31063

19 

1.685-0.230

517

59358

MgAc No. patterns

Resolution range (Å-1)

Average no. peaks / frame

No. independent reflections

29 

3.599-0.406

118

7150

37 

1.670-0.229

213

37989

Table 3 Indexing results for the different datasets tested (dsp: d-spacing ranking; strf: 

structure factor ranking; pm: pair matching; tm: triplet matching). For each indexing option, 



the percentage of successfully indexed frames and the average indexing time per pattern (s) is 

given.

Dataset name

Energy range (keV)

Setup no.

Monochr.

17.75 

(1)

4% 

16.9-17.7

(2)

50%

10-17 

(3)

LaueDET-50/60

5-24 

(4)

LaueDET-

90

5-24 

(5)

Sanidine dsp-pm 

dsp-tm

strf-pm 

strf-tm

96, 13.2

65, 25.1

99, 12.4

79, 25.1

100, 0.7

100, 1.8

100, 0.7

100, 1.5

100, 0.7

100, 1.1

100, 0.7

100, 1.4

100, 1.6

100, 2.0

100, 1.3

100, 0.8

CsPt dsp-pm 

dsp-tm

strf-pm 

strf-tm

87, 3.0

55, 6.3

85, 3.2

55, 6.2

100, 2.8

93, 6.8

97, 2.8

89, 5.8

100, 1.4

100, 1.6

100, 5.3

100, 5.4

ZrPOF dsp-pm 

dsp-tm

strf-pm 

strf-tm

75, 38.8 – 53, 

19.4** 

40, 191.1 – 20, 

95.6**

95, 31.3 – 80, 

15.7**

40, 178.2 – 28, 

89.1** 

76, 432

76, 78

76, 33.5

82, 24.9

ZSM-5 dsp-pm 

dsp-tm

strf-pm 

strf-tm

85, 4.8

37, 15.5

82, 5.2

42, 15.2

98, 8.6

78, 85.7

92, 8.2

71, 108.2

-

65, 301.7

100, 17.4

100, 3.6

73, 378.5

93, 56.7

100, 8.4

100, 7.2

-

79, 672.5

95, 68.0

100, 35.7

MgAc dsp-pm 

dsp-tm

strf-pm 

strf-tm

-

90, 138.0

90, 72.6 

97, 10.2

-

57, 550.0

65, 271.1

86, 108.4

* For ZSM-5, the solutions where the a and b axes are reversed were accepted as correct (the flipped 

solution can be checked in an additional step, and correct indexing is usually the one where more 

reflections are indexed)



** For the monochromatic dataset of ZrPOF, the algorithm is looking for 2 orientations in each patterns 

sequentially. The first two numbers correspond to the percentage of success if at least one orientation per 

pattern was indexed and the indexing time per pattern (20 in total), and the last two numbers to the 

percentage of success per orientation indexed and the indexing time per orientation (40 in total)

Table 4 Indexing results using reflection intensities extracted from a powder pattern (dsp: d-

spacing ranking; strf: structure factor ranking; p_int: powder diffraction intensities ranking; 

tm: triplet matching). 

Name Indexing 

method

Laue datasets

ZrPOF dsp-tm

p_int-tm

strf-tm

76, 78.0

82, 50.8

82, 24.9

ZSM-5 dsp-tm

p_int-tm

strf-tm

79, 672.5

84, 50.6

100, 35.7

MgAc dsp-tm

p_int-tm

strf-tm

57, 550.0

76, 169.8

86, 108.4

Table 5 Efficiency of the four indexing modes (Eff1 to Eff4) depending on the complexity 

(Comp) of the datasets. 

Sample Dataset Comp (*10-6) Eff1

dsp-pm

Eff2

dsp-tm

Eff3

strf-pm

Eff4

strf-tm

ZSM5 Monochr. 0.50 0.758 0.166 0.692 0.243

MgAc DET-90 0.85 0 0.091 0.260 0.621

ZSM5 4% 1.11 0.946 0.546 0.765 0.469

ZSM5 DET-90 1.63 0 0.206 0.719 0.964



ZSM5 50% 2.16 0 0.143 0.983 0.996

ZrPOF Monochr. 2.25 0.566 0.115 0.869 0.141

MgAc 50% 2.48 0 0.546 0.642 0.900

ZrPOF DET-50 2.53 0.194 0.266 0.416 0.457

ZSM5 DET-60 2.84 0.155 0.746 0.992 0.993

San 4% 4.95 0.932 0.477 0.973 0.656

San DET-90 8.62 0.998 0.998 0.999 0.998

San DET-50 10.68 0.999 0.999 0.999 0.999

CsPt Monochr. 10.90 0.809 0.370 0.778 0.401

San 50% 16.01 0.999 0.998 0.999 0.998

CsPt 4% 18.00 0.997 0.865 0.959 0.833

CsPt DET-50 80.21 0.999 0.998 0.995 0.995
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Supporting information 

S1. User-defined parameters 

n_exp_peaks: total number of experimental peaks (imposed by the data)

n_th_refl: total number of theoretical reflections (imposed by the unit cell and space group of 

the sample)

Indexing process, step 2:

exp_start_set: first set of experimental peaks/q-vectors (exp_start_set ≤ n_exp_peaks)

exp_set: second set of experimental peaks/q-vectors (exp_start_set ≤ exp_set ≤ n_exp_peaks)

th_set_uniques: set of theoretical unique reflections/q-vectors (th_set_uniques  ≤ n_th_refl)

th_set: set of theoretical reflections/q-vectors (th_set_uniques < th_set ≤ n_th_refl)

ineid: angle defining the first vicinity/neighbourhood around experimental and theoretical q-

vectors

dmax-dmin: limiting resolution range for nearest neighbor matching 

Indexing process, step 3:

thresh_neighbors: for each experimental q-vectors, number of candidates unique q-vectors from

the “Nearest neighbors list” to consider for pair matching or triplet matching

ang_dev_or1: angle deviation acceptance to select candidates for the first vector of the 

orientation matrix or1

ang_dev_or2: angle deviation acceptance to select candidates for the first vector of the 

orientation matrix or2

ang_dev: deviation angle acceptance during the final matching process

min_ind_peak: minimum number of experimental peaks to be indexed to consider the indexing 

successful

S2. Description of the main indexing parameters 

The role of the main parameters are discussed in the next few paragraphs, using the tests 

performed on ZSM-5 as examples. Even if all these parameters are user-defined, default values 

have been identified and can be used depending on the beam bandpass and the cell volume of 

the sample (see input files examples in https://sites.google.com/a/lbl.gov/bl12-3-2/user-resources/).

https://sites.google.com/a/lbl.gov/bl12-3-2/user-resources/


The first parameters to consider are the number of experimental q-vectors exp_start_set and 

exp_set parameters. Both parameters play an important role in the nearest neighbors matching 

process (step 2). In step 3, exp_start_set and exp_set also have an influence on the selection of the

candidates for the or1 and or2 vectors, respectively. In the case of large energy bandpass data 

(10-17 keV and 5-24keV, setup (3), (4) and (5)), using all the experimental q-vectors obtained 

from all the peaks found in a diffraction pattern did not give appropriate results, both in term 

of indexing time and success, and the use of a subset is preferable. After a series of tests, for 

most samples, the best indexing results were obtained with a starting set (exp_start_set) of 8 to 

15 experimental q-vectors. ZrPOF is the only sample (DET-50 datasets) for which a larger 

starting set had to be selected (15 to 20 peaks). Concerning the choice of exp_set, which 

corresponds to the number of experimental q-vectors taking part to the neighborhood 

calculation (step 2), 40 and 50 have been the values commonly used. The choice of the 

exp_start_set parameter can greatly influence the indexing process, and increasing or decreasing

its value by one or two elements can sometimes make a huge difference. On the other hand, the 

exp_set parameter was found to be less critical, as long as enough data are taken into account (a 

value below 30 may not be recommended). In the case of smaller bandpass data 

(monochromatic and 4%, setup (1) and (2)), the full experimental set has been used to define 

both exp_start_set and exp_set. Using subsets of data in that case only resulted in a decrease of 

the indexing success. In average, for small bandpass data, less than 30 experimental peaks per 

frame have been recorded (Table 2). Being slightly short in term of experimental data per frame

means that the neighborhood of the q-vectors corresponding to the first brightest reflections 

may not be well defined. By using all available data in a frame and setting both exp_start_set 

and exp_set to n_exp_peaks (total number of experimental peaks/q-vectors), we increase the 

possibility to obtain a better nearest neighbor matching around at least one of the experimental 

q-vector, and the diffraction pattern is more likely to be indexed. 

The second set of parameters (th_set_uniques and th_set) concerns the calculated theoretical 

reflections, to limit the number of theoretical q-vectors taken into account. In a similar way as 

exp_start_set and exp_set parameters, th_set_uniques and th_set parameters both have an 

influence on the nearest neighbors matching process, and later on the selection of the or1 and 

or2 vectors, respectively. The values of th_set_uniques and th_set used to index the datasets 

collected on ZSM-5 have been reported in Fig. S1a and S1b, respectively. For both parameters, 

there is a clear difference depending on the indexing method chosen and how the theoretical 

reflections have been ranked. Using structure factor ranking, the number of theoretical 

reflections needed to obtain a successful match tends to decrease when trying to index large 

bandpass data compared to small bandpass data. On the other hand, when theoretical 



reflections are ranked by decreasing d-spacing, both th_set_uniques and th_set stay at a high 

value, with even an increase for th_set. In most of the cases tested in this project, for large 

bandpass datasets (setups (3), (4), (5)), a d-spacing ranking induces the use of more theoretical 

reflections (see Table S1). A ranking by structure factor is then more efficient to index large 

bandpass data. For small bandpass data, this effect is not so clear anymore.

Two additional parameters play an important role in the nearest neighbor matching process 

(step 2). The first one is the ineid parameter, which defines the angular limit to calculate angles 

with neighboring q-vectors of a particular q-vector. An angular value of 30° has been used for 

large bandpass data, and additional tests carried out with different values did not bring better 

results (not shown). A larger angular value, up to 50°, was found more adequate in the case of 

smaller bandpass datasets (see Table S1). This is correlated to the fact that less data per frame 

are available, as mentioned when discussing the exp_start_set and exp_set parameters. 

Increasing the angular range helps in defining the nearest neighbors around a particular q-

vector. The second parameter to consider is the limited resolution range (d-spacing range) 

dmax-dmin in which the nearest neighbors matching is performed. If the full resolution range 

(imposed by the setup) can be used in the case of small bandpass data, using a restricted range 

for larger bandpass data helps to obtain a faster indexing. The average number of indexed 

reflections as a function of 18 different resolution ranges has been calculated, and the resulting 

plot for three ZSM-5 datasets (setups (3), (4) and (5)) is shown in Fig. S1c. In each case, the 

restricted resolution range used in the indexing process has been indicated. These chosen ranges

correspond to those where the majority of the reflection lies. As the number of measured 

reflections decreases when going from DET-90 (setup (5)), to DET-60 (setup (4)) to 50% (setup 

(3)) configurations, the resolution range can be increased towards higher d-spacing (low q) data.

Using only low-resolution data (d > 1.256 Å, or q < 5 Å-1) did not give any good results, probably

because not enough reflections are present for the nearest neighbors matching process in that 

range. On the other hand, too many reflections being expected on the high-resolution side (low 

d-spacing or high q), the matching process is becoming quite inefficient, and this explains why 

the use of a restricted range is necessary. 

The last parameter to mention is thresh_neighbors, which corresponds, for each experimental q-

vectors, to the number of unique q-vectors with the highest number of common neighbors (step 

3). Its evolution has been plotted in Fig. S1d. The number of unique q-vectors to take into 

account globally decreases when going from small bandpass data to larger bandpass data. What

is important to note is that the thresh_neighbors parameter clearly reflects the difference 

between pair matching and triplet matching procedures for the determination of or1 



candidates. If a relatively small number can be chosen for pair matching, a higher number is 

always required when choosing triplet matching. The latter involves three q-vectors (instead of 

only two for pair matching), which means that enough possibilities have to exist in order to find 

potential candidates.

Table S1 Complete set of parameters used for the indexing of each dataset (see excel file 

attached). 

Figure S1 a) Number of theoretical unique reflections used to index ZSM-5 datasets as a 

function of the setup. A clear difference can be seen depending on the ranking strategy chosen. 

b) Number of theoretical reflections used to index ZSM-5 datasets as a function of the setup. As 

for the unique reflections, the behavior between d-spacing and structure factor ranking is 

different. c) Average number of reflections per resolution range (d-spacing) for three ZSM-5 

datasets, displayed left-to-right for each resolution range in the following order: setup 5 (5-24 



keV energy range, DET-90), setup 4 (5-24 keV energy range, DET-50), and setup 3 (10-17 keV 

energy range, 50pc). The dashed rectangle are indicating where the maximum number of 

reflection for a particular setup lies. d) Evolution of the thresh_neighbors parameter used to 

index ZSM-5 datasets as a function of the setup. This parameter reflects the difference between 

triplet matching and pair matching strategies (dsp: d-spacing ranking; strf: structure factor 

ranking; pm: pair matching; tm: triplet matching, setup 1:monochromatic beam; setup 2: 4% 

bandpass beam; setup 3: 10-17 keV energy range; setup 4: 5-24 keV energy range, DET-60; 

setup 5: 5-24 keV energy range, DET-90).




