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Open Forum Infectious Diseases                                   

M A J O R  A R T I C L E

Natural Language Processing and Machine Learning to 
Identify People Who Inject Drugs in Electronic Health 
Records
David Goodman-Meza,1,2, Amber Tang,3 Babak Aryanfar,2 Sergio Vazquez,4 Adam J. Gordon,5,6 Michihiko Goto,7,8, Matthew Bidwell Goetz,2,3

Steven Shoptaw,9 and Alex A. T. Bui10

1Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA, 2Veterans Affairs Greater Los Angeles Healthcare System, Los 
Angeles, California, USA, 3Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA, 4Undergraduate Studies, Dartmouth 
College, Hanover, New Hampshire, USA, 5Informatics, Decision-Enhancement, and Analytic Sciences Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA, 6Division 
of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA, 7Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA, 
8Center for Access and Delivery Research and Evaluation, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA, 9Department of Family Medicine, David Geffen School of Medicine, 
University of California, Los Angeles, Los Angeles, California, USA, and 10Medical and Imaging Informatics Group, Department of Radiological Sciences, University of California, Los Angeles, Los 
Angeles, California, USA

Background. Improving the identification of people who inject drugs (PWID) in electronic medical records can improve 
clinical decision making, risk assessment and mitigation, and health service research. Identification of PWID currently consists 
of heterogeneous, nonspecific International Classification of Diseases (ICD) codes as proxies. Natural language processing (NLP) 
and machine learning (ML) methods may have better diagnostic metrics than nonspecific ICD codes for identifying PWID.

Methods. We manually reviewed 1000 records of patients diagnosed with Staphylococcus aureus bacteremia admitted to 
Veterans Health Administration hospitals from 2003 through 2014. The manual review was the reference standard. We 
developed and trained NLP/ML algorithms with and without regular expression filters for negation (NegEx) and compared 
these with 11 proxy combinations of ICD codes to identify PWID. Data were split 70% for training and 30% for testing. We 
calculated diagnostic metrics and estimated 95% confidence intervals (CIs) by bootstrapping the hold-out test set. Best models 
were determined by best F-score, a summary of sensitivity and positive predictive value.

Results. Random forest with and without NegEx were the best-performing NLP/ML algorithms in the training set. Random 
forest with NegEx outperformed all ICD-based algorithms. F-score for the best NLP/ML algorithm was 0.905 (95% CI, 
.786–.967) and 0.592 (95% CI, .550–.632) for the best ICD-based algorithm. The NLP/ML algorithm had a sensitivity of 92.6% 
and specificity of 95.4%.

Conclusions. NLP/ML outperformed ICD-based coding algorithms at identifying PWID in electronic health records. NLP/ML 
models should be considered in identifying cohorts of PWID to improve clinical decision making, health services research, and 
administrative surveillance.
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Injection drug use (IDU) and its complications continue to rise 
in the United States (US). The estimated number of people who 
inject drugs (PWID) nearly quintupled from 2011 to 2018 [1] 
and there was an 8-fold increase in PWID-related overdoses 
from 2000 to 2018 [2]. With the rise of IDU, epidemiologic 
studies reported an increase in bacterial infections related to 
IDU (eg, skin and soft tissue infections, endocarditis) [3–5] 
and viral pathogens (human immunodeficiency virus [HIV] 

and hepatitis C virus [HCV]) [6, 7]. Accurate identification 
of PWID is important clinically for prognostic reasons, risk as
sessment, and risk mitigation, as well as to provide correct es
timates in health services research, and for administrative 
purposes like resource allocation. However, current methods 
for identification of PWID in electronic health record 
(EHR)–based studies are inaccurate [8–13].

An inherent problem with estimates of PWID are the use of 
International Classification of Diseases (ICD) codes to identify 
cases. In clinical practice, ICD codes are used for the purpose 
of billing clinical encounters and are often specified by health
care providers or extracted by trained human coders who re
view clinical notes [14]. An important caveat regarding 
PWID is that there is no ICD code for IDU [8, 10]. Both in 
clinical and epidemiologic studies, authors have used different 
and heterogeneous combinations of nonspecific codes as prox
ies to identify PWID [3, 15, 16]. Yet, recent studies have 
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demonstrated the inaccuracies of ICD-based approaches [8–12]. 
Marks et al showed that in 229 cases of endocarditis, an 
ICD-based approach had a sensitivity of 65% compared to manual 
review [9]. When analyzing the effect of medications for opioid 
use disorder (OUD) on patient-directed discharges and mortality, 
results were nonsignificant when using the ICD-based approach, 
compared to protective when using only the manually reviewed 
cases. McGrew et al showed a sensitivity of 70.3%–81.9% and spe
cificity of 97.8%–98.9% in identifying IDU in 321 cases with en
docarditis using an ICD-based approach compared to manual 
review [11]. In a systematic review, authors identified 3 other 
manuscripts that used ICD codes to identify PWID. Their sum
mary finding was that there is wide heterogeneity in the combina
tions of codes used to identify PWID [10].

Natural language processing (NLP) and machine learning 
are potential options to identify cohorts from EHR data [17]. 
NLP is a field of computer science that concerns the processing, 
understanding, and generation of spoken or written language. 
There are many tasks that NLP deals with, largely around the 
identification of concepts and relationships; but for this article 
we deal with the methods of automated data extraction to con
vert unstructured free text to structured, encoded data by ap
plying probabilistic or rule-based algorithms to combinations 
of terms [18]. Previously, NLP has been used in many research 
tasks to identify problems related to opioid use and its related 
harms in diverse types of EHRs. Algorithms have been devel
oped and evaluated to identify “problem opioid use” [19], opi
oid misuse [20, 21], opioid-related aberrant behaviors [22], 
OUD [23, 24], and to characterize opioid use [25]. NLP has 
also been used to identify overdoses in both hospital records 
and coroner’s reports [26–30]. To date, there has been no pub
lished attempt at developing an algorithm to identify PWID in 
EHRs.

Given the continued rise of IDU-related complications in 
parallel to the ongoing drug use epidemic in the US [1, 31], on
going epidemiologic and clinical research are needed to both de
scribe the problem and evaluate solutions to improve outcomes 
in care. An important initial step in these two types of research is 
having an accurately identified cohort. Based on the recent liter
ature, ICD codes are insufficient for that purpose. Our objective 
was to develop and evaluate an NLP/machine learning algo
rithm to identify PWID in the EHR and compare these algo
rithms to ICD codes. We hypothesized that we could use 
methods from NLP and machine learning to identify a PWID 
cohort more accurately from the unstructured clinical notes 
contained in EHR compared to an ICD code–based strategy.

METHODS

Data

This was a retrospective EHR study. The study was approved by 
the University of California, Los Angeles Institutional Review 

Board (IRB), the Veterans Health Administration (VHA) 
Greater Los Angeles Healthcare System Research and 
Development Committee, the University of Iowa IRB, and 
the Iowa City VHA Research and Development Committee. 
Informed consent was waived for this study. We used a previ
ously assembled cohort developed by Goto et al [32]. This data
set contained a cohort of 36 868 cases of patients diagnosed 
with Staphylococcus aureus bacteremia at 124 VHA hospitals 
between 1 January 2003 and 31 December 2014. This dataset 
covered the 48 continental states, District of Columbia, and 
Puerto Rico (Alaska and Hawaii are not included as the VHA 
did not have acute inpatient units in these states). This dataset 
was selected due to its extensive characterization, wide geo
graphic distribution, large numbers, and high probability of in
cluding PWID. This study is reported following the 
Transparent Reporting of a Multivariable Prediction Model 
for Individual Prognosis or Diagnosis (TRIPOD) reporting 
guideline [33].

We recreated the cohort and extracted data for the cases 
from the VHA Corporate Data Warehouse within the VHA’s 
Veterans Informatics and Computing Infrastructure (VINCI) 
framework. We extracted admission notes for each case during 
their hospitalization for S aureus bacteremia. Additionally, we 
extracted demographic variables (age, sex, race, ethnicity, hos
pital), laboratory features related to urine toxicology, and ICD, 
Ninth Revision (ICD-9) codes. We used keyword matching 
within the notes and positive urine drug screens (opiates, co
caine, methamphetamines) to subset the cases with the highest 
risk for being PWID. We randomly selected 1000 individual 
cases and split the data 70%/30% between a training and testing 
dataset (held-out). Final evaluation comparing ICD code algo
rithms and NLP algorithms were done on the testing dataset. 
Figure 1 depicts the overall study design.

Reference Standard

Our reference standard was manual case review. We annotated 
all text data from the admission notes in VINCI ChartReview 
[34]. B. A. was trained by D. G.-M. in annotating text based 
on a predefined annotator guide (Supplementary Table 1). 
B. A. annotated all charts after he achieved an interannotator 
agreement (κ) with D. G.-M. >0.80 on a subset of 100 cases. 
Once B. A. completed all annotations, D. G.-M. verified the ac
curacy of all classification of notes pertaining to PWID.

ICD Code Algorithms

We extracted ICD code–based algorithms to identify PWID 
from Ball et al [8]. These algorithms used different combina
tions of codes to denote opioid use dependence/abuse, hepatitis 
C, HIV, other substance use disorders, substance use, and 
homelessness. These codes were published using ICD, Tenth 
Revision (ICD-10) codes. During the study period of our 
EHR data (2003–2014), the VHA used ICD-9 codes (the 
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Figure 1. Study design. Abbreviations: EHR, electronic health record; HCV, hepatitis C virus; HIV, human immunodeficiency virus; ICD, International Classification of 
Diseases; NLP, natural language processing; TF-IDF, term frequency–inverse document frequency; VHA, Veterans Health Administration.
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VHA transitioned to ICD-10 on 1 October 2015) [35]. As the 
dataset that we used in our analyses predated ICD-10, we trans
lated the different algorithms’ ICD-10 codes to ICD-9 codes us
ing general equivalence mapping. Supplementary Tables 2 and 
3 show codes, mappings, and combination ICD code algo
rithms. We used all ICD codes for each case in the EHR for 
analysis.

NLP Algorithms

We split the annotated dataset into training (70%) and testing 
(30%) datasets. A general NLP pipeline consists of preprocessing 
data, converting text into numerical features, modeling, and 

evaluating results. First, during data preprocessing for all notes, 
we converted all case to lower case; removed numbers, dates, 
names, and general English stop words; and filtered out words 
with <10 mentions in the text. Additionally in the preprocessing 
stage, we compared between the use of NegEx [36], a rule-based 
algorithm to remove negated terms within clinical text; the use of 
regular general expressions (RegEx) to abbreviate certain terms 
related to IDU (eg, “IV drug abuse” to “IVDA”); and the use 
of neither of these approaches. We also compared different com
binations of N-grams. N-grams are continuous sequences of 
words. We compared the use of N-grams of length 1 (unigrams), 
2 (bigrams), and 3 (trigrams). For example, in the sentence “The 

Table 1. Descriptive Characteristics of Sampled Cases for Annotation Stratified by Inclusion in the Training and Testing Datasets

Characteristic
Overall 

(N = 1000)
Train 

(n = 700)
Test 

(n = 300) P Value

Age, y, median (IQR) 56 (52–61) 57 (52–62) 56 (50–61) .028

Sex .075

Male 971 (97) 685 (98) 286 (96)

Female 29 (2.9) 16 (2.3) 13 (4.3)

Race .14

White 536 (54) 374 (53) 162 (54)

Black/African American 386 (39) 277 (40) 109 (36)

American Indian/Alaska Native 16 (1.6) 7 (1.0) 9 (3.0)

NHPI 5 (0.5) 4 (0.6) 1 (0.3)

Asian 1 (0.1) 0 (0) 1 (0.3)

Unknown 56 (5.6) 39 (5.6) 17 (5.7)

Ethnicity .2

Not Latino 888 (89) 615 (88) 273 (91)

Latino 64 (6.4) 47 (6.7) 17 (5.7)

Unknown 48 (4.8) 39 (5.6) 9 (3.0)

District .4

Pacific 258 (26) 173 (25) 85 (28)

North Atlantic 238 (24) 170 (24) 68 (23)

Southeast 212 (21) 154 (22) 58 (19)

Continental 173 (17) 126 (18) 47 (16)

Midwest 119 (12) 78 (11) 41 (14)

Substances reporteda

Cocaine or crack 294 (29) 200 (29) 94 (31) .4

Heroin 129 (13) 86 (12) 43 (14) .4

Methamphetamine/amphetamine 44 (4.4) 27 (3.9) 17 (5.7) .2

Prescription opioid 78 (7.8) 55 (7.8) 23 (7.7) >.9

Cannabis/marijuana 84 (8.4) 60 (8.6) 24 (8.0) .8

Benzodiazepine 7 (0.7) 5 (0.7) 2 (0.7) >.9

Comorbiditiesb

HIV 449 (45) 309 (44) 140 (47) .4

Hepatitis C virus 554 (55) 390 (56) 164 (55) .8

Substance use disorder 680 (68) 475 (68) 205 (69) .8

Substance-related psychosis/withdrawal 254 (25) 177 (25) 77 (26) .9

Homelessness 283 (28) 211 (30) 72 (24) .053

Injection drug use statusa .9

Non-PWID 716 (72) 501 (71) 215 (72)

PWID 284 (28) 200 (29) 84 (28)

Data are presented as No. (%) unless otherwise indicated.  

Abbreviations: HIV, human immunodeficiency virus; IQR, interquartile range; NHPI, Native Hawaiian and other Pacific Islander; PWID, person who injects drugs.  
aIdentified by manual review.  
bIdentified by International Classification of Diseases codes.
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patient denied drug use,” individually each word is a unigram 
(eg, “the,” “patient,” “denied”), combinations of 2 words are bi
grams (eg, “the patient,” “patient denied,” “denied drug”), and 
combinations of 3 words are trigrams (eg, “the patient denied,” 
“patient denied drug,” “denied drug use”).

Second, we converted textual features to numeric vectors us
ing term frequency–inverse document frequency (TF-IDF). 
TF-IDF is a frequency-based numeric representation of each 
word that provides a higher weight to rarer words that are likely 
to provide more meaning within a text. TF-IDF is calculated as 
the product of the TF (number of times a word appears in each 
observation) and IDF. The IDF is calculated as the log of the 
number of documents divided by the number of documents 
that contain the word or words in question.

Third, we trained and evaluated several machine learning 
classifiers on their predictive ability to identify PWID based 
on the annotator’s classification (see Reference Standard 
above). Machine learning classifiers and different combination 
of their hyperparameters were trained on 70% of the annotated 
data (training dataset) using 10-fold cross-validation. Machine 
learning classifiers included logistic regression, K-nearest 
neighbor, support vector machines, random forest, and 
XGBoost. Hyperparameters were tuned based on an automated 
grid search. We selected the best classifier based on the mean 
F-score of the 10-fold cross-validation. We used the mean 
F-score instead of accuracy or area under the receiver operating 
characteristic (ROC) curve due to the imbalance in the out
come, and the F-score not being influenced by the outcome’s 
prevalence.

Final Evaluation

We compared metrics for the ICD-based approaches and the 
NLP-based approaches to evaluate the best-performing strat
egy. Using only the held-out test set (30% of the annotated da
taset), we calculated diagnostic metrics to include accuracy, 
F-score, sensitivity (recall), specificity, positive predictive value 
(precision), negative predictive value, and the area under the 
ROC curve. We calculated 95% confidence intervals (CIs) by 
bootstrapping resampling. We bootstrapped the testing set 
with replacement 1000 times and calculated diagnostic metrics 
for each resample. We report the 2.5th and 97.5th percentile as 
the lower and upper end of the CI, respectively, and the 50th 
percentile as the mean. We performed a manual error analysis 
of the false-positive and false-negative predictions from the 
best-performing NLP models. All statistical analyses were per
formed in R 4.1.2 software.

Validation Analyses

We performed an external validation analysis. Here, we com
pared the best-performing NLP models from the previous anal
yses to the ICD code algorithms in the MIMIC-III dataset [37]. 
This dataset contains de-identified data from admissions to the 

intensive care unit at Beth Israel Deaconess Medical Center in 
Boston, Massachusetts, between 2001 and 2012. De-identified 
discharge summaries were available, as well as ICD-9 codes. 
Similar to our original analysis, cases were selected based on 
a high likelihood of pertaining to PWID based on keyword 
matching. Then, we annotated text documents to identify 
PWID and non-PWID as the gold standard. A. T. and 
S. V. classified documents after attaining an interannotator 
agreement >0.80 on a subset of 50 cases. All notes pertaining 
to PWID were then verified by D. G.-M. ICD algorithms tested 
were the same as the algorithms described above, and we used 
the best-performing NLP model as a comparison.

RESULTS

Text contained a median of 821 words (interquartile range 
[IQR], 479–11 856 words). The median number of characters 
per text was 5271 (IQR, 2956–7632 characters). There were 
no significant differences in the number of words or characters 
between notes describing PWID and non-PWID.

Table 1 shows descriptive statistics for the annotated cases. 
Median age was 56 years (IQR, 52–61 years), 97% were male, 
54% White, 39% Black, and 6% Latino. Cocaine (29%) was 
the most mentioned substance in the notes, followed by heroin 
(13%), prescription opioids (8%), and methamphetamine (4%). 
Based on ICD codes, HIV was present in 45%, HCV in 55%, a 
substance use disorder in 68%, and homelessness in 28%. Notes 
were classified as pertaining to a PWID in 28% and non-PWID 
in 72%.

Table 2 shows F-scores for the NLP algorithms in 10-fold 
cross-validation of the training dataset. Tree-based models 

Table 2. Mean F-Scores Based on 10-Fold Cross-Validation for Machine 
Learning Models in Testing Dataset (n = 700)

Model N-Grams
No NegEx NegEx
F-Score F-Score

Random forest Unigram 0.829 0.908

Random forest Bigram 0.871 0.913

Random forest Trigram 0.866 0.913

XGBoost Unigram 0.807 0.901

XGBoost Bigram 0.843 0.909

XGBoost Trigram 0.839 0.907

SVM Unigram 0.527 0.568

SVM Bigram 0.485 0.576

SVM Trigram 0.494 0.551

Logistic regression Unigram 0.371 0.366

Logistic regression Bigram 0.332 0.346

Logistic regression Trigram 0.362 0.319

KNN Unigram 0.195 0.460

KNN Bigram 0.223 0.421

KNN Trigram 0.151 0.319

Values in bold indicate the best-performing models based on F-scores.  

Abbreviations: KNN, K-nearest neighbor; SVM, support vector machine.
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(random forest and XGBoost) were the best-performing mod
els. Support vector machines, logistic regression, and k-nearest 
neighbors performed poorly. Models that incorporated bi
grams were better than their unigram or trigram counterparts. 
Adding NegEx improved F-scores for all models, except logistic 
regression. The best-performing model was random forest with 
bigrams and NegEx (mean F-score 0.913, mean sensitivity 
0.945, mean specificity 0.950). Without NegEx, random forest 
with bigrams had the best performance (mean F-score 0.871, 
mean sensitivity 0.945, mean specificity 0.910). Full diagnostic 
metrics can be seen in Supplementary Tables 4 and 5.

Table 3 shows performance metrics for the best NLP/ma
chine learning algorithms compared to the ICD-based algo
rithms in the testing dataset. The NLP/machine learning 
algorithms outperformed all ICD-based algorithms based on 
F-scores. ICD-based algorithms had a high sensitivity (range 
of means, 0.665–0.977) but a low specificity (range of means, 
0.255–0.524). The NLP/machine learning model that incorpo
rated NegEx outperformed its counterpart that did not incor
porate NegEx. The former had both excellent sensitivity 
(mean, 0.926 [95% CI, .697–1.00]) and specificity (mean, 
0.954 [95% CI, 0.914–0.988]), whereas the latter had a poor sen
sitivity (mean, 0.697 [95% CI, .484–.889]) but excellent specif
icity (mean, 0.954 [95% CI, .89–1.00]). ROC and precision- 
recall (PR) curves can be seen in Supplementary Figures 1 
and 2.

In our manual error analysis, we reviewed 13 cases where the 
NLP algorithm had false predictions. The NLP model predicted 
3 cases as false negatives, and 10 cases as false positives. We 
evaluated age and race/ethnicity as potential sources of errors 
and did not find any specific pattern in the cases with errors. 
Reasons for false negatives included missing phrases such as 
“injecting oxycontin,” “past IVD+,” and “patient admits to IV 
drug abuse.” Reasons for the false positive mostly included 
the inability for the NegEx algorithm to remove a negated men
tion of IDU. For example, keywords denoting IDU were not re
moved in phrases such as “claims he has not used any illicit 
drugs [cocaine/heroin/amphetamine]” and “denies any other 
drug use to include IV drug use.”

Validation Analysis

In the external validation analysis, the NLP (ie, random forest 
with NegEx) model outperformed all ICD-based algorithms in 
the MIMIC-III dataset. The F-score for the NLP model was 
0.929 (95% CI, .901–.954) compared to 0.775 (95% CI, 
.740–.809) for the best ICD-based algorithm (ie, algorithm 
10). Of note, ICD algorithms performed better in the 
MIMIC-III dataset than in the VHA dataset. Descriptive statis
tics for the MIMIC-III sample can be seen in Supplementary 
Table 6 and full diagnostic metrics can be seen in 
Supplementary Table 7; ROC and PR curves can be seen in 
Supplementary Figure 3.

DISCUSSION

We showed that NLP/machine learning outperformed 
ICD-based algorithms, scoring a mean of ≥0.9 in every techni
cal performance metric. ICD-based algorithms had a high sen
sitivity but a very poor specificity, leading to an overestimation 
of cases as PWID. Additionally, we externally validated the 
best-performing algorithm, again finding excellent diagnostic 
metrics for classification of cases as PWID or non-PWID.

We also showed that machine learning models alone were not 
sufficient in attaining excellent performance. Adding a rule- 
based algorithm for negation (NegEx) and regular expressions 
improved model performance significantly—specifically the sen
sitivity of the NLP/machine learning models. This is likely due to 
models keying on the appearance of singular words like IVDU 
[intravenous drug use], IVDA, or heroin. For example, if a com
mon phrase like “denied smoking, alcohol use or IVDA” or “de
nied any recent heroin use” appeared, the non-NegEx model 
would mark this as pertaining to a PWID. It is possible that 
the use of longer N-grams could capture these phrases as signifi
cant for the negative class, but this would also increase the com
putational complexity significantly. Adding a simple rule-based 
strategy increased the models’ performance dramatically.

Based on our present work, and that of others, combinations 
of ICD codes to identify PWID are nonspecific and inaccurate. 
Use of these codes in research risks identifying a high number 
of false-positive cases. In epidemiologic studies, this may inflate 
the number of cases pertaining to PWID, overestimating the 
burden of the behavior. In clinical effectiveness studies, inclu
sion of false positives may bias toward the null when examining 
the effects of important interventions such as medications for 
OUD. This was the case in the study published by Marks 
et al [13], where use of ICD codes alone led to no difference 
in negative outcomes based on medications for OUD status. 
However, when manually reviewing cases and analyzing a 
smaller and more accurate cohort, they showed that medication 
for OUD status was protective of all-cause mortality.

NLP/machine learning algorithms could be embedded with
in clinical contexts to improve patient care. For example, real- 
time screening of daily admission notes could trigger alerts to 
addiction medicine teams to intervene and improve the quality 
of care by offering medication for substance use disorders and 
other services. If not in real time, screening of notes could trig
ger alerts to backend teams for case review and posterior inter
vention, like the VHA’s Project STORM (Stratification Tool for 
Opioid Risk Management) [38]. Nevertheless, future applica
tions of NLP algorithms to trigger clinical care need to be rig
orously evaluated to determine if they improve patient 
outcomes before widespread implementation.

NLP/machine learning should be considered for future re
search or for administrative purposes related to PWID. For exam
ple, NLP/machine learning could be used to evaluate trends of 
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complications in PWID (eg, endocarditis or other deep-seeded in
fections) or in comparative effectiveness studies evaluating differ
ent interventions (eg, medications for OUD or other harm 
reduction services). However, certain pros and cons would need 
to be considered. Use of NLP/machine learning would require ac
cess to patients’ notes and expertise in open-source software such 
as R or Python. Manual review is still the most accurate but re
quires a large amount of time to review the EHR compared to 
our NLP/machine learning algorithm. ICD-based identification 
of PWID may be the most accessible as ICD codes are available 
in most EHRs and many administrative databases used for epide
miologic research. Many administrative databases do not have ac
cess to patients’ notes, and ICD codes are the only viable option. 
Yet, ICD-based identification has the drawback of inaccuracies 
that we demonstrated here. A solution could be a specific ICD 
code for PWID. Until then, the inaccuracies are likely to persist.

This study has several limitations. First, correct identification 
of PWID by an NLP algorithm is first based on clinicians docu
menting the behavior in their clinical notes. However, many is
sues may arise that include poor documentation from providers 
or failure to disclose the behavior from patients out of fear of 
stigma [39]. Second, the dataset used is from 2003 to 2014. 
Since then, the IDU epidemic has shifted away from prescription 
opioids and heroin to synthetic opioids like fentanyl. Based on 
our experience reviewing contemporary charts in the hospital, 
terms such as “IVDU” and “IVDA” are still present when de
scribing fentanyl use via injection. However, this must be tested 
empirically, and continuous model development and evaluation 
are necessary to ensure accuracy of these models as substance use 
patterns change. Third, the study lacks generalizability to other 
settings and populations. The data were entirely from the 
VHA, all cases had S aureus bacteremia, and the sample was al
most entirely male, reflective of the US Veteran population. To 
these points, the algorithm was validated in MIMIC-III—a co
hort of cases admitted to critical care units at a large tertiary 
care hospital inclusive of both men and women, as well as cases 
other than S aureus bacteremia. Fourth, we used the NegEx algo
rithm to filter out negated terms. Newer negation algorithms that 
are either lexical or syntax based, such as ConTextNLP [40] and 
DEEPEN [41], or machine learning based [42] are available and 
may improve negation and provide other contextual findings. 
However, none of these were implemented in R at the time of 
our algorithm development. Additionally, other more advanced 
NLP techniques are also available that include the use of medical 
ontologies (eg, Unified Medical Language System) to normalize 
text, word embeddings, and transfer learning from medical- 
specific models, or deep learning.

CONCLUSIONS

We showed that NLP/machine learning–based algorithms out
performed ICD code–based algorithms at identifying PWID in 

a large national dataset from the VHA and externally validated 
this performance in an external dataset. We add to the body of 
literature that shows that ICD codes are inaccurate and insuffi
cient for the purpose of identifying PWID [8–12]. The contin
ued use of ICD codes for the purpose of identifying PWID may 
lead to inaccurate estimates with a major concern being overes
timation of the burden of PWID. Further and continued re
search is necessary to validate NLP/machine learning models 
in the landscape of changing substance use patterns and incor
porate NLP/machine learning in clinical decision support and 
future research or surveillance projects. Other research direc
tions using NLP in substance use research include developing 
named entity recognition models to identify specific substances 
used or other ancillary information such as chronicity or use of 
treatments such as methadone or buprenorphine.
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