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ABSTRACT OF THE DISSERTATION

Reuse Techniques for Efficiently Evaluating a Sequence of Iterative Graph Queries

by

Xiaolin Jiang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2023

Dr. Rajiv Gupta, Chairperson

Graph analytics is employed in many domains (e.g., social networks, web graphs) to uncover

insights by analyzing high volumes of connected data. Real world graphs are often large and

iterative graph analytics requires repeated passes over the graph till the algorithm converges

to a stable solution. As a result, iterative graph queries are expensive to evaluate. Thus,

there has been a great deal of interest in developing scalable and efficient graph analytics

systems for various platforms (e.g., GPUs, multicore servers, clusters). While much of

the research has focused on developing algorithms for efficiently evaluating a single global

graph query, in practice we may be faced with a sequence of queries. This research develops

two platform independent complimentary reuse based approaches, value reuse and graph

structure reuse, that collect information from executing a small number of queries and then

use this information to speedup the evaluation of all future queries.

The first approach is based on the observation that, due to their global nature,

vertex specific graph queries present an opportunity for sharing work across queries. To take

advantage of this opportunity, we have developed the VRGQ framework that accelerates the
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evaluation of a stream of queries via coarse-grained value reuse. In particular, the results

of queries for a small set of source vertices are reused to speedup the evaluation of all

future queries. We present a two step algorithm that in its first step initializes the query

result based upon value reuse and then in the second step iteratively evaluates the query

to convergence. The reused results for a small number of queries are held in a reuse table.

Our experiments with best reuse configurations on four power law graphs and thousands

of graph queries of five kinds yielded average speedups of 143×, 13.2×, 6.89×, 1.43×, and

1.18×. We have also extended the above approach to evaluation of queries over streaming

graphs and simultaneous evaluation of a batch of graph queries.

The second approach is based upon graph structure reuse. We have developed a

new technique for identifying a proxy graph named the Core Graph (CG) that is not only

small, it also produces highly precise results. A CG is a subgraph of the larger input graph

that contains all vertices but on average contains only 10.7% of edges and yet produces

precise results for 94.5–99.9% vertices in the graph. The identification of such an effective

CG is based on our key new insight, namely, a small subset of critical edges are responsible

for determining the converged results of nearly all the vertices across different queries. We

develop algorithms for identifying a CG and demonstrate its benefits by improving the

performance of three systems: Subway for GPU-based graph processing, GridGraph for out-

of-core disk-based processing, and Ligra for in-memory graph processing. In our experiments

with six kinds of graph queries and four large input graphs, we achieved speedups of up to

13.62× in GridGraph and 4.97× in Ligra.
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Chapter 1

Introduction

Graph analytics is employed in many domains (e.g., social networks, web graphs) to

uncover insights by analyzing high volumes of connected data. Real world graphs are often

large (e.g., Twitter - TT has 2 billion edges and 52.6 million vertices) and iterative graph

analytics requires repeated passes over the graph till the algorithm converges to a stable

solution. As a result, in practice, iterative graph analytics workloads are highly data- and

compute-intensive. Therefore, there has been a great deal of interest in developing scalable

and efficient graph analytics systems such as Pregel [50], GraphLab [46], PowerGraph [20],

Galois [57], GraphChi [41], Ligra [73], ASPIRE [85, 86] and others.

While the performance of graph analytics has improved greatly due to advances

introduced in aforementioned systems, much of this research has focussed on developing

highly parallel algorithms for solving a single iterative graph analytic query. For example,

SSSP(s) query computes shortest paths from a single source s to all other vertices in the

graph. However, in practice the query evaluation system may need to respond to multiple

1



queries for different source vertices. The queries may be generated by a single user or

multiple users. In this work we develop two general and complimentary approaches, VRGQ

and Core Graph, aimed at efficiently evaluating a sequence of vertex specific queries received

from users for different source vertices of a large graph. For example, for SSSP algorithm,

we may be faced with the following stream of queries: SSSP(s1); SSSP(s2); · · · · · · SSSP(sn).

1.1 Dissertation Overview

In this thesis, we investigated methods for caching graph queries values and graph

structures to accelerate iterative graph queries. Initially, we reused queries values in a

shared-memory architecture for static graphs to optimize the performance of subsequent

queries, and adapted this technique in streaming graphs. Following this, we identified and

labeled critical edges, consolidating them into a proxy graph to facilitate evaluation of future

queries efficiently on multiple systems.

1.1.1 Value Reuse

While much of the research on graph analytics over large power-law graphs has

focused on developing algorithms for evaluating a single global graph query, in practice

there’s a potential to encounter continuous query streams. In this work, our primary focus

is to store important query value information and reuse their values. Also, this technique is

applied to streaming graphs, further combined with batched query evaluation techniques.
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Reuse for Static Graphs

Based on the observation that vertex specific graph queries present an opportunity

for sharing work across queries. Different queries typically traverse the majority of the graph

and thus present an opportunity for reuse across multiple queries. For example, the same

shortest subpaths may contribute to solutions of many queries and hence reusable across

them. To take advantage of this opportunity, the VRGQ framework has been developed to

accelerate the evaluation of a stream of queries via coarse-grained value reuse.

Reuse for Streaming Graphs

In many real-world application scenarios, a stream of updates are continuously

applied to the graph, often in batches for better efficiency, known as the streaming graph

scenario. There exists a fundamental limitation in the existing design. Except pre-selected

standing queries, an expensive full evaluation is required for arbitrary queries. So we propose

a principled way to generalizing the incremental graph processing such that vertex-specific

queries without their a priori knowledge may also benefit from incremental processing.

Value Reuse can connect the evaluation of a vertex-specific query to the results of another

query evaluation, providing solutions to the same type of query in static graphs.

Reuse for Batched Evaluation of Queries

Batching queries in graph processing systems enhances performance by enabling

parallel processing and reducing overheads in query evaluation. Batched evaluation of

queries benefits from Value Reuse due to the intrinsic data sharing that occurs between

different queries within the batch. SimGQ is a shared memory system that optimizes
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simultaneous evaluation of a group of vertex queries using the results of the shared queries

in a shared table. MultiLyra is a distributed framework incorporated Reuse technique as

an optimization where results from earlier batches of queries are used to accelerate the

execution of later batches of queries.

1.1.2 Graph Structure Reuse

Real-world graphs are characterized by their irregular and large nature. Significant

overheads are incurred due to movement of graph across the memory hierarchy and repeated

propagation of values over the edges in the graph. These overheads are exacerbated due

to the iterative nature of graph analytics. Thus, it remains a significant challenge for

scalable graph analytics systems across various computing architectures such as GPUs,

multicore servers, and clusters. We have developed a novel platform independent technique

for identifying a proxy graph named the Core Graph (CG) that is not only small and also

produces highly precise results.

Reuse for In-Memory Evaluation System

Graph structure reuse in shared-memory system eliminates the need for repetitive

computations. Also, leveraging CoreGraph improved memory performance by storing edge-

lists such that Core Graph edges first stored first and then the remaining edges. We further

refined the Ligra system to employ two phase computation. In the initial phase, almost

all vertices propagated on CoreGraph with precise values. Following this, the second phase

usually completes the computation after just one iteration.
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Reuse for Out-of-Core System

In out-of-core systems, data loading costs are predominant. We have extended

GridGraph to load and iterate on Core Graph first which reduces the need to continually

fetch and process irregular edges from disk. For GridGraph, the first phase of computation is

performed in-memory after loading the CG from disk and then the second phase performs

partition-based processing. This policy generally leads to fewer iterations. Also during an

iteration blocks with no active edges may arise more frequently and hence their fetch from

disk will be skipped due to the selective scheduling optimization in GridGraph.

Combining Value and Graph Structure Reuse

The second phase processing on full graph is expensive because we need to add all

activated vertices into frontier again. We use value reuse idea to identify precise values and

make the frontier smaller. Starting from all vertices whose values are impacted in the first

phase, the second phase resumes propagation of values over the full graph to obtain precise

results for all vertices. Since most results are computed precisely in the first phase efficiently

using the small CG, the work performed during the second phase is greatly reduced giving

significant speedups.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents VRGQ,

the system for value reuse based evaluation of iterative graph queries. Chapter 3 describes

how value reuse can be leveraged to quickly respond to arbitrary queries in the streaming
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graph scenario and simultaneously evaluate a batch of queries. Chapter 4 presents the Core

Graph, which forms the basis of graph structure reuse based query evaluation. Chapter 5

discusses how Core Graph can be exploited to speedup multiple existing graph processing

systems including out-of-core query evaluation system and an in-memory query evaluation

system. Chapter 6 concludes the thesis and discusses future work.
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Chapter 2

VRGQ: Exploiting Value Reuse

While much of the research on graph analytics over large power-law graphs has

focused on developing algorithms for evaluating a single global graph query, in practice

we may be faced with a stream of queries. We observe that, due to their global nature,

vertex specific graph queries present an opportunity for sharing work across queries. To take

advantage of this opportunity, we have developed the VRGQ framework that accelerates the

evaluation of a stream of queries via coarse-grained value reuse. In particular, the results

of queries for a small set of source vertices are reused to speedup all future queries. We

present a two step algorithm that in its first step initializes the query result based upon

value reuse and then in the second step iteratively evaluates the query to convergence. The

reused results for a small number of queries are held in a reuse table. Our experiments with

best reuse configurations on four power law graphs and thousands of graph queries of five

kinds yielded average speedups of 143×, 13.2×, 6.89×, 1.43×, and 1.18×.
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2.1 Our Approach

We observe that different queries typically traverse the majority of the graph and

thus present an opportunity for reuse across multiple queries. For example, the same

shortest subpaths may contribute to solutions of many queries and hence reusable across

them. Our approach for reuse is as follows. Given an input graph and type of vertex query,

we precompute the results of queries for a small number of source vertices and save them in

a table for coarse-grained value reuse to optimize the evaluation of all future queries. Note

that an iterative algorithm updates vertex property values of active vertices in each iteration

driving them towards their final stable solution. When all vertex values become stable, the

algorithm terminates. Our proposed reuse strategy is designed to update property values

of all vertices in a single reuse step such that a good number of vertex values arrive at their

final stable solutions and thus the active vertex sets of subsequent iterations are greatly

reduced.

In the development of VRGQ we consider the following factors. First, because the

reuse step incurs significant cost as it updates property values of all vertices, to limit its

cost reuse is performed only once during the evaluation of a query by both the presented

algorithms. Second, to maximize the benefits of reuse, reuse should be performed as early

as possible and therefore we develop an algorithm that performs reuse right at the start. In

particular, we have developed the 2Step algorithm where the Step 1 of the algorithm safely

initializes the values of all vertices with the benefit of the precomputed results of other source

vertex queries and then Step 2 simply iterates till the algorithm converges. Experiments

with four power law graphs show that 2Step delivers varying amounts of speedups across
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queries of different kinds. In particular, with best reuse configurations, for thousands of

graph queries of five kinds 2Step yielded average speedups of 143×, 13.2×, 6.89×, 1.43×,

and 1.18×.

The remainder of the paper is organized as follows. Section 2 develops the 2Step

reuse based query evaluation algorithm that is at the heart of VRGQ. Section 3 presents

the evaluation of the 2Step algorithm. Section 4 describes our approach for selecting reuse

source vertices whose queries are evaluated to populate the reuse table. Additional related

work is discussed in Section 5 and concluding remarks are given in Section 6.

2.2 VRGQ: Two Step Value Reuse Algorithm

Let us assume that given a source vertex s, a query Q(s) computes the desired

property value val for every destination vertex d with respect to s, also denoted as val(d\s).

A straightforward and intuitive approach for enabling reuse of the computed values is to

explicitly transform the graph to express the computed property values so that they become

available for reuse to future queries.

The above approach is illustrated by an example shown in Figure 2.1 using single-

source shortest-path or SSSP queries. Figure 2.1(a) shows a small graph followed by the

evaluation of query SSSP(2) using a push-style strictly synchronous algorithm. The shortest

path values for all vertices are first initialized to 0 for source vertex 2 and ∞ for all other

destination vertices. Following each iteration the updated shortest path values are shown

along with list of active vertices, that is, vertices whose values have changed and thus must

play a role in further propagation. Note that we do not add vertex 5 to the set of active
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vertices because it has no outgoing edges. As we can see, in all it takes four iterations for

the shortest path values to converge.

Now let us assume that SSSP(7) had been previously evaluated and we would like

to reuse its result to accelerate the computation of query SSSP(2). In Figure 2.1(b) we

observe that the results of SSSP(7) indicate that val(4 \ 7) is 5 and val(5 \ 7) is 9. As

shown, this information can be incorporated explicitly into the graph by introducing the

two additional edges, or shortcuts, one from 7 to 4 and the other from 7 to 5 with weights

of 5 and 9 respectively. Next the results of computing SSSP(2) on the transformed are

shown. We observe that the shortcuts cause faster propagation and hence convergence is

achieved in one less iteration than before. While in the above example there is a reduction

in number of total iterations, even if the number of iterations remains the same, reuse can

lead to reduction in total amount of work performed due to reduction in number of active

vertices.

While the above approach is straightforward and applicable to other graph al-

gorithms where query evaluation originates at a source vertex, it also has the following

limitations. First, the approach based upon graph transformation may cause the shortcuts

introduced to be processed multiple times increasing the overhead of reuse and thus cutting

into its benefits. This limitation is illustrated in Figure 2.1(c) where evaluation of SSSP(1)

on the transformed graph causes shortcuts to be processed twice as vertex 7 is activated

twice. At first activation val(7 \ 1) is 25 which is not stable and during second activation

val(7 \ 1) is 23 which is the final stable value. Second, introduction of shortcuts increases

the number of edges in the graph. Hence there is an increase in the size of memory footprint
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Iter# 1 2 3 4 5 6 7 Active Vertices

0 ∞ 0 ∞ ∞ ∞ ∞ ∞ {2}
1 ∞ 0 10 ∞ ∞ ∞ 3 {3,7}
2 ∞ 0 5 13 19 6 3 {3,4,6}
3 ∞ 0 5 8 14 6 3 {4}
4 ∞ 0 5 8 12 6 3 {}

(a) Evaluation of SSSP(2) on the Original Graph.

Source 1 2 3 4 5 6 7

7 ∞ ∞ 2 5 9 3 0

Iter# 1 2 3 4 5 6 7 Active Vertices

0 ∞ 0 ∞ ∞ ∞ ∞ ∞ {2}
1 ∞ 0 10 ∞ ∞ ∞ 3 {3,7}
2 ∞ 0 5 8 12 6 3 {3,4,6}
3 ∞ 0 5 8 12 6 3 {}

(b) Evaluation of SSSP(2) on Graph Transformed Via Shortcuts to Reuse Results of SSSP(7).

Iter# 1 2 3 4 5 6 7 Active Vertices

0 0 ∞ ∞ ∞ ∞ ∞ ∞ {1}
1 0 20 ∞ ∞ ∞ 10 25 {2,6,7}
2 0 20 27 30 34 10 23 {3,4,7}
3 0 20 25 28 32 10 23 {3,4}
4 0 20 25 28 32 10 23 {}

(c) Evaluation of SSSP(1) on Graph Transformed Via Shortcuts.

Figure 2.1: Value Reuse via Graph Transformation.
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as well as number of irregular memory accesses.

To overcome the above limitations we developed the 2Step algorithm for evaluating

a query Q(s). At the start of the computation, the Step 1 of the algorithm initializes the

values of vertices using the results for another query, say Q(r). By performing reuse exactly

once right at the start, the benefits of reuse are maximized and its overhead is minimized.

Then, in Step 2 the algorithm iterates applying conventional updates to all vertices till

the algorithm converges. Instead of transforming the graph by adding shortcuts, in this

approach we store results of evaluating a small number of queries in a reuse table and select

a suitable Q(r) for reuse. By using a reuse table, the footprint of the graph is not increased

and its locality of graph accesses is not worsened. Moreover accesses of values from the

reuse table exhibit good spatial locality.

The reuse table is designed to contain both the forward and backward results of

query Q(r). This ensures that when Q(s) reuses results of query Q(r), it makes use of

stable value of val(r \s) which maximizes the stable values produced via reuse. When reuse

table contains results of multiple queries for different source vertices, to limit the cost of

reuse 2Step selectively reuses results of a small subset of most promising source vertices in

the reuse table. Thus, 2Step, while controlling the cost of reuse, maximizes production of

stable values.

Forward-Backward Reuse Table Our objective is to perform reuse first, i.e. apply

reuse updates and then run the original iterative algorithm to completion. Moreover, we

want to ensure maximal production of stable values. We observe that both these objectives

can be met if we enhance the information contained in the reuse table such that it contains
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both forward and backward information for a given reuse vertex r as described below:

• FwdTable [r] [d] (∀ d ∈ AllVertices) represents the property values (e.g., shortest

path) computed for query Q(r) on graph Graph.

• BwdTable [s] [r] (∀ s ∈ AllVertices) represents the property values (e.g., shortest

path) computed for query Q(r) on edge-reversed graph GraphR – which is obtained

by reversing the direction of each edge in the original Graph.

Now let us see how the precomputed values can be used right away at the start

of evaluation of query Q ( v ). Given a vertex d, its value can be initialized using the

precomputed results of a reuse source vertex r in the table as follows:

reuseFunc ( d,BwdTable[v][r],FwdTable[r][d] )

The reuseFunc function for five algorithms is given in Table 2.1. For example, for SSSP,

BwdTable[v][r] + FwdTable[r][d]

is the shortest path from v to d via r and thus it is the best estimate we can obtain for

d.value by using the results for vertex r in the reuse table. If we reuse results for multiple r

vertices in the reuse table then we find the shortest paths via each of these vertices and then

take the minimum across all the computed shortest paths to initialize d.value. Because the

BwdTable contains stable values, reuse produces maximal number of stable values upon

completion of the reuse step.

Let us reconsider the computation of SSSP(1) whose evaluation was shown earlier

in Figure 2.1(c). Now let us apply 2Step to this query; however, now the reuse table contains
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both forward and backward information for vertex 7 as in Figure 2.2. The evaluation now

involves reuse followed by iterations. Following reuse, only two iterations are required for

termination. In contrast earlier it took an extra iteration.

Source 1 2 3 4 5 6 7

7
FWD ∞ ∞ 2 5 9 3 0
BWD 23 3 13 10 ∞ 35 0

Iter# 1 2 3 4 5 6 7 Active

Init. 0 ∞ ∞ ∞ ∞ ∞ ∞ {1}

Reuse
d ∈ {3, 4, 5, 6, 7}

BwdTable[7][1] + FwdTable[7][d]
0 ∞ 25 28 32 26 23 {1}

P
1 0 20 25 28 32 10 23 {2,6}
2 0 20 25 28 32 10 23 {}

Figure 2.2: Computing SSSP(1) via 2Step Algorithm by Reusing results of SSSP(7).

Push-style 2Step Reuse Algorithm In Algorithm 1 we summarize our 2Step algorithm.

As we can see, in Step 1 (lines 4-9) of evaluating the query for a given source vertex s, we

exploit the precomputed results for ReusableVertices whose queries were precomputed

and used to populate the reuse table (BwdTable, FwdTable). The algorithm first carries

out the reuse step and sets the values of all destination vertices by reusing n most promising

reusable source vertices for which precomputed query results are stored in the reuse table.

To find the n most promising vertices we use function Prioritize which looks at values

in the BwdTable and prioritizes vertices in the increasing or decreasing order (depending

upon algorithm characteristic) of BwdTable[r][s] values where r is a reusable source vertex

whose results were precomputed and stored in the reuse table and s is the source vertex
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Algorithm 1 Backward-Forward Reuse Algorithm.

1: function 2Step ( Q ( s ), BwdTable, FwdTable, n )

2: ▷ Initialize Active Vertex Set and Vertex Values

3: Active ← Initialize ( Q ( s ) )

4: ▷ Step 1: Reuse

5: Q← Prioritize( s )

6: ▷ Select reuse vertices and perform Reuse

7: for all r ∈ first n vertices in Q do

8: Reuse ( s, r )

9: end for

10: ▷ Step 2: Iterate

11: while Active ̸= ϕ do

12: Active ← Process ( Active )

13: end while

14: end function

15:

16: function Priortize ( s )

17: ▷ Ordering Vertices Used to Populate Reuse Table

18: Build Priority Queue Q by inserting all

19: vertices r ∈ ReusableVertices such that

20: they are sorted in increasing order of

21: BwdTable[r][s] values.

22: return Q

23: end function
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Algorithm 2 Backward-Forward Reuse Algorithm.

1: function Reuse ( s, r )

2: ▷ Only Reuse Valid Values

3: if bwdTable[s][r] ̸= initialV alue then

4: for d ∈ AllVertices do

5: ▷ Only Reuse Valid Values

6: if fwdTable[r][d] ̸= initialV alue then

7: ▷ Perform Reuse Update of d

8: reuseFunc ( d, bwdTable[s][r], fwdtable[r][d]) )

9: end if

10: end for

11: end if

12: end function

13: function Process ( Active )

14: newActive ← ϕ

15: for all v ∈ Active do

16: for each e ∈ Graph.outEdges(v) do ▷ Apply Conventional Update to e.dest

17: changed← edgeFunc (e)

18: if changed then ▷ Update newActive Set

19: newActive ← newActive ∪ {e.dest}

20: end if

21: end forall

22: end forall

23: return newActive

24: end function
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for which the query Q(s) is being evaluated. The details of function Reuse show how it

uses reuseFunc (lines 32-35) to perform reuse updates of all the vertex values so that

remainder of the iterative algorithm does not have to start from the initialization values of

all vertices but rather better values computed by the reuse step. Once the reuse step has

been completed, then the iterative computation is completed (see Step 2, lines 10-13) by

applying conventional updates to all vertices using the Process function (lines 41-54).

Table 2.1: Functions for Reuse Updates for Four Algorithms.

d.value← vrFunc ( d, bwdTable[s][r], fwdTable[r][d] )

SSWP(s): d.value←
max(d.value,min(bwdTable[s][r], fwdTable[r][d]))

Viterbi(s): d.value←
max(d.value,bwdTable[s][r] ∗ fwdTable[r][d])

SSSP(s): d.value←
min(d.value,bwdTable[s][r]+ fwdTable[r][d])

BFS(s): d.value←
min(d.value,bwdTable[s][r]+ fwdTable[r][d])

SSNP(s): d.value←
min(d.value,max(bwdTable[s][r], fwdTable[r][d]))

2.3 Experimental Evaluation of VRGQ

Next we evaluate VRGQ that is based upon the presented 2Step algorithm and

report the speedups achieved, reduction in number of active edges processed, and extent to

which stable values are produced.

We implemented our algorithms using Ligra [73] that provides a shared memory

abstraction for vertex algorithms which is particularly good for graph traversal. Graph algo-

rithms used include – Single Source Widest Path (SSWP), Viterbi [43], Single Source Shortest

Path (SSSP), Breadth First Search (BFS), and Single Source Narrowest Path (SSNP). Ex-
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periments were performed on a 64 core (8 sockets × 8 cores) machine with AMD Opteron

2.3 GHz processor 6376, 512 GB memory, and running CentOS Linux release 7.4.1708.

Table 2.2: Input graphs used in experiments.

Graphs #Edges #Vertices

Twitter (TT) [7] 2.0B 52.6M
Twitter (TTW) [40] 1.5B 41.7M
LiveJournal (LJ) [4] 69M 4.8M
PokeC (PK) [78] 31M 1.6M

We use four directed and edge-weighted power-law input graphs with relatively

small diameter that are listed in Table 2.2 – TT, TTW, LJ, PK. We use the default weight

generation tool provided by Ligra. Ligra generated weights range from 1 to the log(n) + 1

(where, n = |vertices|). For the four graphs we tested, log(n) ranged from 20 to 25. We

also varied the upper bound of the range to 64 and 128, but the results were similar.

For each input graph, we generated 20,000 queries. Table 2.3 characterizes the

coverage of queries and reuse table that are used in our evaluation. The queries used were

for source vertices that are Hmin to Hmax hops from the reuse source vertices in the reuse

table. The reuse table populated with results of only 5 source vertices allows nearly all

possible queries to take advantage of its contents for reuse (ALL ranging from 81.9% to

96.1%). The hops considered account for nearly all of these queries (REUSABLE ranging

from 81.7% to 95.8%). For each input graph we used 20,000 queries spread across the four

different hop values considered. For 80% of vertices, Hops ranged from 1 to 4 or 2 to 5 for

four graphs. We randomly picked 5K corresponding to each hop. Thus, the selected queries

18



Table 2.3: Coverage Characteristics of Reuse Table with 5 ReusableVertices.

Hmin Hmax ALL → REUSABLE #Queries

TT 1 4 81.9% → 81.7% 20K (5K/hop)

TTW 1 4 96.1% → 95.8% 20K (5K/hop)

LJ 2 5 87.2% → 83.2% 20K (5K/hop)

PK 2 5 86.8% → 85.1% 20K (5K/hop)

Table 2.4: NoReuse: Average execution times in Seconds across 20,000 queries.

G SSWP Viterbi SSSP BFS SSNP

TT 7.04s 9.28s 8.41s 0.42s 18.03s

TTW 3.10s 3.91s 3.62s 0.28s 11.02s

LJ 0.21s 0.29s 0.22s 0.04s 0.58s

PK 0.07s 0.14s 0.09s 0.02s 0.09s

maximize diversity in terms of number of hops between the source vertex and the reusable

vertices.

Finally, we use multiple reuse table configurations of the form n out of m in these

experiments, where m is the number of sources vertices whose full results are stored in the

reuse table and n is the most promising subset number of these that are actually exploited

during reuse. The configurations used are 5 out of 20; 2 out of 10; and 1 out of 5.

Speedups Table 2.5 presents the speedups achieved by 2Step for the three reuse table

configurations for all the input graphs and algorithms considered. The baseline running

times without reuse (NoReuse) that are used in computing speedups are given in Table 2.4.

For power law graphs, the results for 20,000 queries are separated according to the 5,000

queries each for the four hop values considered. The average speedups obtained for power-

law graphs and table configurations are substantial, 43× to 143× for SSWP, 6.05× to 6.89×

for Viterbi, 1.33× to 1.43× for SSSP, 1.05× to 1.18× for BFS, and 12× to 13.2× for SSNP.
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Table 2.5: 2Step: Speedups for three Reuse Table configurations: 5 out of 20; 2 out of 10;
and 1 out of 5. Overall the 1 out of 5 configuration performs the best in 3 of 5

benchmarks as it minimizes the reuse overhead.

G Hops SSWP Viterbi SSSP

T
T

1 66.5 : 155.9 : 249.0 9.51 : 10.2 : 10.5 1.97 : 1.85 : 1.72
2 52.1 : 125.7 : 266.2 6.61 : 6.82 : 6.96 1.57 : 1.48 : 1.40
3 48.2 : 106.5 : 205.1 3.81 : 3.94 : 3.90 1.49 : 1.42 : 1.35
4 43.9 : 95.9 : 199.9 3.20 : 3.24 : 3.28 1.49 : 1.41 : 1.36

T
T
W

1 82.4 : 94.6 : 157.6 9.61 : 9.48 : 10.9 1.83 : 1.75 : 1.67
2 71.0 : 69.3 : 125.6 6.83 : 7.44 : 7.34 1.39 : 1.33 : 1.30
3 71.0 : 79.0 : 125.3 4.47 : 3.97 : 4.82 1.38 : 1.35 : 1.26
4 47.7 : 51.7 : 111.6 3.01 : 3.76 : 3.86 1.32 : 1.27 : 1.21

L
J

2 26.2 : 72.7 : 122.2 8.50 : 10.9 : 10.4 1.14 : 1.13 : 1.13
3 23.2 : 65.9 : 119.6 5.20 : 6.46 : 6.51 1.12 : 1.13 : 1.14
4 25.2 : 57.3 : 105.2 4.53 : 5.71 : 4.80 1.12 : 1.14 : 1.14
5 17.8 : 46.1 : 78.7 4.00 : 4.25 : 4.72 1.17 : 1.15 : 1.11

P
K

2 38.0 : 89.3 : 138.5 11.5 : 15.6 : 14.5 1.47 : 1.51 : 1.43
3 31.2 : 75.6 : 120.2 6.83 : 8.04 : 8.27 1.37 : 1.29 : 1.32
4 23.0 : 57.1 : 88.0 5.19 : 4.89 : 5.29 1.50 : 1.48 : 1.37
5 20.5 : 52.0 : 78.5 4.05 : 4.52 : 4.19 1.48 : 1.42 : 1.39

Average 43.0× : 80.9× : 143.2× 6.05× : 6.82× : 6.89× 1.43× : 1.38× : 1.33×

G Hops BFS SSNP

T
T

1 2.12 : 2.20 : 2.14 16.2 : 17.3 : 18.0
2 1.15 : 1.22 : 1.24 16.1 : 15.3 : 16.1
3 0.95 : 1.38 : 1.27 16.0 : 14.8 : 15.5
4 0.95 : 0.95 : 1.01 11.8 : 12.1 : 12.4

T
T
W

1 1.69 : 2.01 : 2.10 14.4 : 15.3 : 15.7
2 0.99 : 1.14 : 1.03 14.8 : 14.2 : 15.2
3 0.87 : 1.00 : 0.94 12.4 : 15.3 : 14.5
4 0.83 : 0.93 : 0.97 11.8 : 13.9 : 13.0

L
J

2 0.96 : 1.04 : 1.09 14.8 : 17.6 : 18.7
3 0.88 : 0.90 : 0.97 11.9 : 14.1 : 15.9
4 0.84 : 0.91 : 0.94 9.34 : 13.3 : 14.2
5 0.82 : 0.90 : 0.95 6.75 : 8.62 : 9.62

P
K

2 1.09 : 1.17 : 1.17 11.3 : 12.6 : 6.23
3 0.95 : 1.02 : 1.04 4.91 : 5.47 : 5.57
4 0.90 : 0.97 : 1.00 8.16 : 9.03 : 5.12
5 0.88 : 0.93 : 0.97 7.40 : 8.03 : 4.28

Average 1.05× : 1.17× : 1.18× 12.0× : 13.2× : 12.8×
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The larger power-law graphs (TT and TTW) experience higher speedups than

smaller power-law graphs (LJ and PK). The number of hops from query source vertex to

nearest reuse table source vertex also impacts performance. By and large, the smallest hop

distance gives the best speedups while the largest hop distance gives the least speedup.

For example, for SSWP on TTW with the smallest reuse table configuration, speedups

decrease from 157.6× to 111.6× as hop distance increases from 1 to 4. For SSWP the

smallest table configuration gives best speedups, for Viterbi and BFS the speedups for the

two smaller table configurations are fairly close and significantly better than for the largest

table configuration, and for SSSP mostly the largest table gives best speedups, though by

a small margin. Larger reuse tables may enable more effective reuse but also incur higher

reuse overhead. Thus, depending upon the algorithm characteristics, different sized reuse

tables deliver the best performance for different benchmarks.

Reduction in Active Edges and Stable Values Produced Next we present ad-

ditional data for the benchmarks to better understand the large degree of difference in

speedups observed. Tables 2.6 and 2.7 provides reduction in active edges processed and ex-

tent to which reuse step produces stable values. The reason for varying degrees of speedups

can be found in algorithms characteristics.

First, performance benefit of reuse is very high for SSWP because in this algorithm

no new values are computed – the resulting property value for each vertex is essentially equal

to the weight of a selected edge. Thus, reuse often produces stable values as high as 99.99%

as shown in Table 2.7. This unique characteristic of SSWP resulted in high speedups.
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Table 2.6: 2Step: % reduction in processed active edges due to reuse for table
configuration of 2 out of 10.

G Hops SSWP Viterbi SSSP BFS SSNP

T
T

1 99.99 95.28 73.14 29.94 99.99
2 99.99 99.99 82.80 18.89 99.99
3 99.99 89.30 66.84 2.21 99.99
4 99.99 85.60 71.31 3.89 99.99

T
T
W

1 99.99 94.42 68.76 34.06 99.99
2 99.99 99.99 80.48 38.09 99.99
3 99.99 89.67 62.05 2.11 99.99
4 99.99 91.44 70.93 1.67 99.99

L
J

2 99.99 96.66 58.53 5.86 99.99
3 99.99 86.89 50.03 3.04 99.99
4 99.99 94.86 46.84 0.41 99.99
5 99.99 93.94 49.38 0.34 99.99

P
K

2 99.99 98.03 74.59 6.78 99.99
3 99.99 89.56 70.93 9.71 99.99
4 99.99 93.21 69.54 1.10 99.99
5 99.99 91.36 71.88 0.77 99.99

Average 99.99% 93.14% 66.75% 9.93% 99.99%

Table 2.7: 2Step: Percentage of values that become stable following reuse for table
configuration of 2 out of 10.

G Hops SSWP Viterbi SSSP BFS SSNP

T
T

1 99.99 90.57 41.37 93.04 99.99
2 99.99 85.81 21.58 60.28 99.99
3 99.99 74.70 22.64 42.91 99.99
4 99.99 62.81 28.88 47.31 99.99

T
T
W

1 99.99 90.79 48.76 94.78 99.99
2 99.99 89.38 31.81 72.83 99.99
3 99.99 80.31 31.26 52.97 99.99
4 99.99 79.10 30.86 47.83 99.99

L
J

2 99.99 91.72 21.08 46.24 99.99
3 99.99 84.69 16.61 23.65 99.99
4 99.99 84.72 11.94 16.52 99.99
5 99.99 79.25 13.39 15.69 99.99

P
K

2 99.99 92.99 46.34 66.88 99.99
3 99.99 84.14 41.52 39.41 99.99
4 99.99 71.65 33.97 32.76 99.99
5 99.99 61.77 36.24 27.59 99.99

Average 99.99% 81.52% 29.89% 48.79% 99.99%
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The nature of Viterbi and SSSP is quite similar as both compute new values,

except that one involves real values and the other integer values. However, on average,

Viterbi produces 81.52% stable values while SSSP produces only 29.89% stable values on

average across all four power law graphs. Thus, average reduction in active edges is 93.14%

for Viterbi which is significantly higher than 66.75% for SSSP across all power law graphs.

This explains why Viterbi achieves higher speedups than SSSP via reuse even though the

values were not stable following reuse.

Small benefits are expected for BFS as cost of computing a value for a vertex is

similar to cost of generating the value via reuse. The competing factors of possibly increased

work (when insufficient number of stable values are produced) and better memory behavior

during reuse (because edge-lists are not accessed and vertices are visited in the order they

are stored) result in small speedups or small slowdowns.

Speedups for Individual Queries So far we have presented the average execution times

and speedups over 20,000 queries for the 2 out of 10 configuration. To demonstrate that

the speedups are achieved across nearly all queries, we present plots in Figure 2.3 where for

the TT graph, the execution times of 2Step and NoReuse for each query are plotted. The

plots are given for the SSWP and BFS algorithms that give maximum and minimum average

speedups across all benchmarks. The scatter plots in Figure 2.3 show that execution times

for nearly all of the 20K queries are improved by VRGQ (only exception is BFS, Hops=4).
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Figure 2.3: Performance of individual queries – each scatter plot depicts execution times
of 2Step and NoReuse for 20,000 queries – black dots correspond to 2Step execution times

and gray dots are for NoReuse execution times. The plots show that vast majority of
queries benefit from 2Step algorithm.
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Table 2.8: Populating Reuse Table: Overlap (OL) in 20 source vertices selected; Runtime
Overhead (OH) of using different number of random queries to select 20 vertices; and
Runtime overhead of populating the Reuse Table with full results for the 20 vertices.

G Number of Random Queries Popu.
1000 10 20 40 60 Table

TT
OL 20 19 20 20 20
OH 6070s–3.8% 101s–3.1% 175s–5.1% 333s–6.2% 393s–4.7% 699s

TTW
OL 20 19 18 19 19
OH 3095s–5.7% 60s–7.9% 89s–1.5% 155s–6.4% 227s–6.8% 490s

LJ
OL 20 20 18 18 20
OH 164s–14.1% 3.1s–7.3% 5s–9.7% 7.4s–6.7% 13.6s–4.4% 43s

PK
OL 20 17 19 19 19
OH 81s–8.5% 1.3s–0.3% 2.5s–10.3% 4.2s–10.2% 5.6s–7.8% 16s

2.4 Populating the Reuse Table

To populate the reuse table we need to identify a small subset of vertices in the

graph, say N, whose backward and forward query results will be precomputed and stored

in the reuse table. Since an input graph typically contains millions of vertices, we need to

develop a methodology for selecting the N vertex set. Our selection is aimed at achieving

two goals:

• Maximize Reuse – Since all vertices are not equally effective in the degree of reuse

they support, we will include vertices in N that have high centrality. That is, we will

give preference to vertices that play an influential role in computation of results of

large number of other queries.

• High Coverage – Ideally we would like to choose N such that, from all other vertices

in the graph, at least some vertices in N can be reached in less than MaxHops. That

is, all queries will encounter reusable vertices. Since this is not always possible, we

attempt to achieve high coverage, i.e. for most queries reuse is possible.
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Our three step methodology for selecting vertex set N such that it meets the above

goals is presented below.

Step 1: Identify High Centrality Candidates using Random Queries –

We evaluate randomly selected queries and during each query evaluation we maintain impact

counts for all other vertices in the graph. Each time the value of some vertex v, causes an

update of its out-neighbor, the impact count of v is incremented. Betweenness centrality

quantifies the number of times a node acts as a bridge along the shortest path between pairs

of nodes. Vertices that have a high probability to occur on a randomly chosen shortest path

between two randomly chosen vertices have a high betweenness. High impact counts are

treated as an indicator for high centrality. Thus, extremely expensive centrality is avoided.

For each query evaluated, the top N vertices, i.e. vertices with the highest impact counts,

are identified. Since this process is repeated for multiple queries, say q1, q2 · · · qn, we obtain

multiple candidate sets N(q1), N(q2) · · · N(qn).

Step 2: Selecting top | N | High Centrality Candidates – Note that the

same vertex may appear in multiple sets N(q1), N(q2) · · · N(qn) obtained in the first step but

not necessarily in all the sets. We select the final set N by both considering how frequently

a vertex appears in different sets and its corresponding impact counts. This is achieved by

summing up the impact counts of all occurrences of a vertex in the above sets and sorting

the final sums to identify the top | N | vertices.

Step 3: Populating the Table – The top centrality candidates identified in the

preceding step are processed one by one to populate the reuse table. By evaluating the

query for each vertex v in both the forward direction on the original graph and backward
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direction on the edge reversed graph, the reuse table is populated with FwdTable[v][*]

and BwdTable[*][v].

Cost of populating strategy Finally we would like to describe the runtime cost of

constructing the reuse table of size 20 – we present this cost when using different number

of random queries – 1000, 10, 20, 40 and 60 – in Table 2.8. Considering the 20 vertices

found using 1000 random queries as the best selection, we compared its results with sources

vertices selected by using 10, 20, 40 and 60 random queries. The overlap among the selected

vertices is very high – when using 60 random queries, the overlap is 20 out of 20 for TT

and LJ and it is 19 out of 20 for TTW and PK. Thus, running 60 random queries is more

than sufficient for identifying high centrality vertices. The runtime overheads for selecting

20 vertices using 60 random queries range for 5.6 to 393 seconds depending upon the size of

the power law graph graph while populating the table with results takes 16 to 699 seconds.

Note that while high centrality vertices are being selected, new queries can be processed in

parallel. The cost of selecting high centrality vertices varies from 0.44s (for PK) to 18.47s

(for TT) for power law graphs for 60 random queries in Table 2.8. Thus, the overhead of

populating the reuse tables is modest as it has to be done only once.

In Table 2.9 we show results of our experiment justifying the selection of 5 out of

20 configuration. If in the reuse step, instead of reusing results of best 5 we reuse results of

all 20, little to no reductions in vertices processed and increase in stable values produced

are observed as shown in the table. We also increased the size of the reuse table from 20 to

40 source vertices. No improvements in vertices processed or stable values produced were
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Table 2.9: Improvements if instead of using 5 out of 20 we reuse results of all 20 queries.
The minimal improvements indicate that reusing results of a few queries is enough.

Improvements in SSWP Viterbi SSSP BFS

Vertices Processed 0% 0% 3% 5%

Stable Values 0% 0% 1% 7%

Table 2.10: Substantial overlap in high centrality vertices for different benchmarks and
graphs for 20 Reusable- Vertices indicates that same reuse vertices can be used across

different benchmarks.

TT TTW LJ PK

SSWP 20 20 20 20

Viterbi 20 19 18 19

SSSP 20 19 17 16

BFS 19 18 19 16

observed for the first three programs and 1% improvement was seen for BFS.

Heuristic effectiveness Our heuristic for finding high centrality vertices is very effective.

To verify this we found high centrality vertices using the betweenness centrality algorithm

available in Ligra and compared them with ones found by our heuristic. We found that top

5 vertices found by the original algorithm appear among the top 10 vertices found by our

heuristic. Thus, there is great degree of overlap, though vertices appear in different order.

Finally, we identified the top 20 vertices in the four power law graphs by considering

the centrality with respect to property values of all four algorithms and found that vast

majority of vertices are the same for all algorithms. Table 2.10 shows how many of the 20

reuse sources found for SSWP also appear in the 20 reuse sources found for Viterbi, SSSP

and BFS. The high overlap indicates that structure of the graph is the determinative factor

much more so than the graph algorithm. Thus, for a given graph, it is possible to find reuse
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Table 2.11: Higher Hub populating times in seconds and their comparison with VRGQ
populating times.

Graph→ TT TTW LJ PK

Hub=20 1102s 732s 43s 16s
1.58× 1.49× 1.00× 1.00×

Hub=100 5925s 3390s 211s 77s
8.50× 6.92× 4.90× 4.81×

Table 2.12: Evaluation of Hub and VRGQ applying reuse on 4K BFS queries with size of
20. The results show that Hub-based reuse largely results in slowdowns.

Speedups Reuse 1 Reuse 2 Reuse All

Hub=20
PK 0.89× 0.75× 0.35×
TT 0.98× 0.96× 0.75×

Hub=100
PK 0.81× 0.74× 0.12 ×
TT 1.01× 0.95× 0.31 ×

VRGQ
PK 1.06×
TT 1.39×

vertices once and use them for all algorithms.

Hub Accelerator vs. VRGQ The Hub Accelerator [34] is used to speedup the evalua-

tion of graph queries. At a high level it is similar to VRGQ as both rely upon precomputa-

tions and then use the results of precomputations to speedup subsequent query evaluations.

However, VRGQ computes point-to-all (i.e., queries involving single source and all desti-

nations) while the Hub Accelerator computes point-to-point queries (i.e., queries involving

a single source and destination pair). We implemented the Hub Accelerator in Ligra and

adapted it to compute point-to-all queries by reusing the Hub Accelerator results for all

destinations. Next we show that VRGQ is far more effective than Hub Accelerator both

because its precomputation is relatively inexpensive and the speedups obtained are higher.

The reason why the Hub Accelerator precomputation is more expensive than our
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precomputation for populating the reuse table is as follows. For the Hub network to be

effective it is typically chosen to have large number of vertices (e.g., in [34] the authors

consider Hub sizes of 5K to 15K vertices) and then shortest paths among all these vertices

are precomputed. In addition, the shortest path from each non-Hub vertex to the closest

core-Hub vertex must also be precomputed. In contrast, the 2Step algorithm of VRGQ

only precomputes results for a handful of high centrality vertices to populate the reuse

table. Table 2.11 compares the precomputation costs of Hub Accelerator precomputation

with reuse table precomputation. Table 2.11 first presents Hub Accelerator precomputation

times in seconds and then the factor by which the cost of Hub Accelerator precomputation

exceeds that of reuse table precomputation of VRGQ. We present this data for Hub sizes of

20 and 100 for all four graphs. We observe that Hub Accelerator precomputation is several

times more expensive that VRGQ precomputation for Hub size of 100 and even for Hub size

of 20 for the difference can be substantial for large graphs.

We also compare speedups for evaluating four thousand BFS queries by applying

reuse with Hub Accelerator and VRGQ in Table 2.12. These four thousand queries were

chosen from 20K queries used in earlier experiments, we randomly chose 1000 queries each

from the 5000 queries for each of the four hop values. With Hub size of 20, the same as

the number of reusable-vertices for VRGQ, the Hub Accelerator only experiences slowdowns

as shown in Table 2.12. If we reuse all precomputed results, due to high reuse cost, we

get significant slowdown. We therefore tried reuse of only 1 or 2 vertices from the Hub

but this too did not produce any speedups although it reduced the slowdowns. When

Hub size was increased to 100, for the TT graph, a slight speedup of one percent was

30



finally achieved though the precomputation cost is dramatically increased. In contrast

VRGQ achieves average speedup of 1.39× for TT on BFS queries. Because reuse is very

expensive, in VRGQ, we selected only one source vertex whose results are reused. For Hub

Accelerator [34], each vertex can have multiple corehubs. The result in Table 2.12 shows

that if reuse all corehubs we only achieve slowdowns. If we select a specific corehub vertex

by distance, then VRGQ and Hub Accelerator will select the same vertex for reuse. Hence

there is no advantage of using a selected corehub over VRGQ. Moreover, Hub Accelerator

was designed for point-to-point queries and hence its reuse table contains partial results.

From the above results we conclude that the limitation of the Hub Accelerator

approach is that it cannot deliver speedups for point-to-all queries. When small Hub sizes

are used only slowdows are observed and when large Hub sizes are used the precomputation

cost becomes very high. In contrast, VRGQ gives speedups with small number of reuseable-

vertices while incurring low precomputation cost. Finally our 2Step algorithm requires

minimal change to the original algorithms as it simply initializes the vertex values using

reuse-table (not default initialization values) and then standard iterative algorithm is run.

2.5 Related Work on Evaluating Multiple Graph Queries

VRGQ reuses results of a few queries for achieving speedups in the evaluation of

numerous other queries. We have adapted this concept and applied it in other scenarios as

well. SimGQ [92] reuses the results of dynamically identified sharing queries to speed up

the simultaneous evaluation of a batch of queries. Tripoline [33] uses this idea to create a

generalized streaming graph model where continuously updated results of a small number
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of standing queries are used to rapidly evaluate arbitrary user queries.

There are two recent works, Quegel [95] and PnP [93], that evaluate a stream of

graph queries. However, both these works are aimed at evaluating point-to-point queries

(e.g., shortest path from a single source to a single destination). Quegel derives improved

throughput by evaluating queries in a pipelined fashion and taking advantage of the Hub [34]

precomputation. PnP [93] is similar to other graph frameworks in that speedups are

achieved by evaluating a single query faster using new dynamic optimizations.

There are other recent works [95, 79, 59, 94, 100, 48] that evaluate multiple queries

simultaneously. Congra [59] handles each query independently using a separate process.

Thus, it is unable to take advantage of value reuse opportunity across queries. CGraph [100]

and Seraph [94] are out-of-core systems that evaluate multiple queries. However, their

benefits are achieved via sharing of the graph as opposed to the result values. In [79] a

specialized system that processes multiple BFS queries is presented. Finally, MultiLyra [48]

and BEAD [49] simultaneously evaluate queries on distributed systems.

2.6 Summary

We have developed VRGQ that incorporates the 2Step iterative algorithm for eval-

uating a sequence of graph queries on individual vertices. The key feature of this framework

is that during evaluation of any query, coarse-grained reuse of previously computed results

for selected vertices is performed to accelerate query evaluation. The VRGQ system is dif-

ferent from related works in a key way. It takes advantages of results computed for a very

small number of queries to optimize the execution of all future queries via value reuse.
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Chapter 3

Exploiting Value Reuse in Other

Scenarios

Value reuse is a platform independent technique that exhibits extensive applicabil-

ity across various systems for vertex-specific iterative queries. It provides initial values for

queries to reduce computation and memory access costs. Value reuse has been successfully

implemented in multiple systems. Two prominent scenarios where value reuse manifests its

effectiveness are arbitrary query evaluation for streaming graphs and batched evaluation of

queries in both distributed and shared memory systems. In these two cases we leverage the

shared values among computations, which not only decreases computation overhead but

also enhances the overall system performance.
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3.1 Streaming Graphs

In many real-world application scenarios, a stream of updates are continuously

applied to the graph, often in batches for better efficiency, known as the streaming graph

scenario. Taking Twitter as an example, new followers are generated constantly, adding new

edges to the existing graph. To get query results on the latest graph, a naive solution is sim-

ply evaluating the query on the latest graph from scratch. For iterative graph queries, this

full query evaluation can be expensive. Instead, existing streaming graph processing frame-

works choose to evaluate the queries continuously and incrementally for better efficiency.

Several streaming graph systems have been proposed to support incremental evaluation,

like Kineograph [9], Tornado [71], KickStarter[84] and others. Instead of reevaluating the

query on the updated graph from scratch (i.e., view it as a completely new graph), existing

streaming graph systems adopt an incremental graph query evaluation strategy and tend

to terminate faster than a full reevaluation [9], [84].

Despite the promise of incremental graph processing, there exists a fundamental

limitation in the existing design. Except pre-selected standing queries, an expensive full

evaluation is required for arbitrary queries. In fact, vertex-specific graph queries hold sig-

nificant relevance in real-world applications. Vertex-specific queries are concerned with the

interests or capture the perspective of a specific vertex, which are common in online shop-

ping and social networks, such as generating recommendations for individual customer[96]

and finding the overlap of friends of two specific users. This limitation significantly com-

promises the generality of the existing incremental streaming graph systems. So we propose

a principled way to generalizing the incremental graph processing such that vertex-specific
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queries without their a priori knowledge may also benefit from incremental processing. In

this chapter, we focus on adaption of Value Reuse to lift this requirement, such that a user

query for an arbitrary source vertex can be incrementally evaluated.

3.1.1 Value Reuse in Streaming Graphs

Value Reuse can connect the evaluation of a vertex-specific query to the results of

another query evaluation, providing solutions to the same type of query in static graphs.

Similar principles exist in streaming graph problems and can be naturally derived. As a

result, Value Reuse could be used to optimize streaming graph processing. Because of the

nature of the incremental streaming graph evaluation model, the key to our solution is to

connect an arbitrary user query with a standing query that satisfies Value Reuse principle.

Next, we first use SSSP as an example to introduce the Value Reuse in streaming graphs.

Figure 3.1: Value Reuse in SSSP

Value Reuse in SSSP as Example. Based on Value Reuse in static graphs, it is not hard

to find similar distance between vertices in streaming graph. In static graphs, we selected

high centrality vertices r, and store the distances from r to all vertices in graph. But in

streaming graphs, we keep information for standing queries, and the connection between

arbitrary source query u and any possible destination x has been illustrated in Figure 3.1.
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In fact, the above Value Reuse in Figure 3.1 becomes obvious once one realizes

that the shortest path(dashed lines represented) from u to r can be concatenated with the

shortest path from r to x, and the resulted path is just one of the many paths from u to

x, hence must be no shorter than the shortest path from u to x. As a result, we evaluate

any source vertices from value dist(u, r) + dist(r, x) instead of default, without a priori

knowledge.

Rather than referring to the distance, we can also apply Value Reuse for a prop-

erty between two vertices – property(v1, v2), where (v1, v2) is an ordered pair for directed

graphs and an unordered pair for undirected graphs. And could be be formally defined by

the following equation: property(v1, v2)
⊕

property(v2, v3) ≽ property(v1, v3), where
⊕

depicts an abstract addition and ≽ represents an abstract greater than or equal operator.

For SSWP, the widest path between two vertices is the path whose minimum edge weight is

the largest. Based on this definition, it is not difficult to derive the Value Reuse application

in SSWP for any u, r, and x: min(wide(u, r), wide(r, x)) ≤ wide(u, x). Here
⊕

is function

MIN , and ≽ represents ≤. We also turn to the reversed graph problem for directed graphs.

Value Reuse holds for SSWP because the widest paths from u to r and from r to

x can be concatenated, and the width of the concatenated path must be no larger than the

width of the widest path from u to x as it is just one of the paths from u to x. Similarly,

we next briefly present the Value Reuse for other graph problems, including SSNP, Viterbi,

SSNSP, and Radii [73].
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3.1.2 Value Reuse based Incremental Evaluation Model

After establishing the relations between the user query and the standing query,

we can design a more general user query evaluation framework, where the user query can

reuse the results of the standing query, even when their source vertices are different. Similar

to the static graph, Value Reuse with generalized distance and comparison operators may

also be derived for vertex-specific queries in the streaming graph. Based on them, we can

establish rigorous constraints between a user query (whose source vertex can be any vertex

in the graph) and the pre-selected standing query, thus enabling reusing the results of the

latter to accelerate the evaluation of the former. Figure 3.2 illustrates the basic idea of our

solution.

Figure 3.2: Value Reuse-based Incremental Evaluation

Each time, after the graph is updated, the standing query q(r) (usually same high

degree vertices) will be re-evaluated incrementally. Meanwhile, the system accepts user

queries like q(u) which is of the same type as q(r), but its source vertex u could be any

vertex in the graph. From the evaluation of q(r), we can obtain the values of u to r, and r
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to any other vertices in graphs. Next, instead of evaluating q(u) from scratch (i.e., using the

default initial values) on the current version of the graph, the system starts its evaluation

directly from the intermediate value and runs until all the vertex values are converged. As

these calculated initial values must be no worse than the default initial values, in fact, often

much better, the evaluation usually takes less iterations and computations to terminate.

From the high level, the Value Reuse module serves as an adaptor that connects the user

query with the standing query.

3.2 Batched Evaluation of Queries

Batching queries in graph processing systems enhances performance by enabling

parallel processing and reducing overheads in query evaluation. It leverages modern hard-

ware’s parallel execution capabilities and minimizes latency in distributed systems. Batch-

ing promotes efficient cache utilization, as the required data loaded once can be used multiple

times, reducing cache misses. Furthermore, it opens avenues for query optimization, such

as avoiding duplicate work across queries, and enables the system to anticipate data needs

better, allowing for effective data prefetching. However, its applicability might be limited

in real-time or low-latency scenarios where gathering enough queries for a batch could be

impractical. Machine resources can be fully utilized delivering higher throughput by simul-

taneously evaluating multiple queries on a modern server with many cores and substantial

memory resources.

Batch evaluation queries benefit from Value Reuse due to the intrinsic data sharing

that occurs between different queries within the batch. In most cases, the various queries
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traverse the majority of the graph. This enables the selection of only a few crucial queries,

and their computation at a reduced cost. Then these important queries values can be

stored in memory for single-machine systems like SimGQ [92], or across each machine in a

distributed system like Multilyra [48], thereby enhancing efficiency.

3.2.1 Value Reuse in Batched Evaluation on a Shared-Memory System

SimGQ is a system that optimizes simultaneous evaluation of a group of vertex

queries that originate at different source vertices (e.g., multiple shortest path queries orig-

inating at different source vertices) and delivers substantial speedups over a conventional

framework that evaluates and responds to queries one by one. The performance benefits

are achieved via batching and sharing. The SimGQ system contains three phases: identi-

fying shared queries, accelerating batch queries using shared queries, and completing the

evaluation of batch queries.

A Result Table maintains the results of all the queries for each vertex, and at

termination the results of all queries can be found in it. We accelerate the convergence of

the solution of the original batch of queries in Result Table using the results of the shared

queries in a Shared Table. Since the cost for looping over all vertices and applying share

updates is significant, we limit the number of shared vertices with which each query is used

to speed up convergence of property values by choosing a small set size. The result of a

shared query with source vertex benefit a batch of queries via reuse.

Batching fully utilizes system resources to evaluate a batch of queries and amortizes

run-time overheads incurred due to fetching vertices and edge lists, synchronizing threads,

and maintaining computation frontiers. Sharing dynamically identifies a shared query that
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substantially represent subcomputations in the evaluation of different queries in a batch,

evaluates the shared queries, and then uses their results to accelerate the evaluation of

all queries in the batch. For SimGQ [92], First, it is easy to see that during batched

evaluation, we can share the iteration overhead across the queries. This overhead includes

the cost of iterating over the loop, synchronizing threads at the barrier, as well as fetching

vertex values and edge lists of active vertices to update vertex values and the computation

frontier. Second, synergy or overlap between computations performed by the queries can be

exploited to reduce the overall computation performed. By evaluating the shared queries

once, we can speedup the evaluation of the entire batch of queries. Note that the shared

queries must be identified dynamically because they may vary from one batch to another.

3.2.2 Value Reuse in Batched Evaluation on a Distributed System

Various distributed graph processing frameworks have been developed to deliver

scalable performance for evaluation of individual iterative graph queries. In practice though,

we may need to evaluate many queries. MultiLyra [48] is a distributed framework that ef-

ficiently evaluates a batch of graph queries. To deliver high performance, this system is

designed to amortize the communication and synchronization costs of distributed query

evaluation across multiple queries. Reuse technique has been incorporated as an optimiza-

tion where results from earlier batches of queries are used to accelerate the execution of

later batches of queries. MultiLyra is a distributed framework that generalizes PowerLyra

to handle a batch of queries efficiently. Powerlyra employs the GAS (Gather-Apply-Scatter)

model to divide the distributed computation into three phases.

The Reuse optimization includes three steps. First, it identifies the top high-
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centrality vertices while processing the first batch. Second, it selects the top five vertices

and runs them as an extra batch, storing the results distributed across each machine for

its local vertices. In the third step, these results from the initial five queries are reused

throughout the following batches, significantly accelerating the convergence of each query.

Consequently, the remaining batches of queries can exploit the notable speedup offered

by the Reuse optimization. To accommodate this, a new Reuse-Batch phase has been

introduced to the MultiLyra GAS model, placed between the Apply-Batch and Scatter-

Batch phases.

The final results of high centrality vertices, serving as source vertices with desti-

nations for all queries, are stored on every machine. Once a stored high centrality vertex

becomes active, its stored results are used to update the intermediate results of query being

evaluated during the Reuse-Batch phase. As the host machine holds the most recent values,

it is responsible to send these values to other machines to ensure that all machines have the

required data for the reuse process. After employing optimizations that improve scalability

of expensive phases and perform reuse across the distributed computation, the improved

maximum speedups range from 7.35× to 11.86×.

3.3 Summary

Value reuse exhibits extensive applicability across various systems. In streaming

graph systems, Tripoline proposes to leverage the value reuse technique to solve a funda-

mental limitation of stream graph systems. This idea leads to a generalized incremental

processing design for vertex-specific queries. Multilyra [48] performs reuse across distributed
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computation, results from earlier batches of queries are used to accelerate the execution of

later batches of queries. SimGQ [92] is a shared memory system dynamically identifies

shared queries that substantially represent subcomputations in the evaluation of different

queries in a batch, then evaluates and reuses their results to accelerate the evaluation of all

queries in the batch.

42



Chapter 4

Core Graph: Exploiting Graph

Structure Reuse

When evaluating an iterative graph query over a large graph, systems incur signif-

icant overheads due to repeated graph transfer across the memory hierarchy coupled with

repeated (redundant) propagation of values over the edges in the graph. An approach for

reducing these overheads combines the use of a small proxy graph and the large original

graph in a two phase query evaluation. The first phase evaluates the query on the proxy

graph incurring low overheads and producing mostly precise results. The second phase uses

these mostly precise results to bootstrap query evaluation on the larger original graph pro-

ducing fully precise results. The effectiveness of this approach depends upon the quality of

the proxy graph. Prior methods find proxy graphs that are either large or produce highly

imprecise results.

We present a new form of proxy graph named the Core Graph (CG) that is not only
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small, it also produces highly precise results. A CG is a subgraph of the larger input graph

that contains all vertices but on average contains only 10.7% of edges and yet produces

precise results for 94.5–99.9% vertices in the graph for different queries. The finding of such

an effective CG is based on our key new insight, namely, a small subset of non-zero centrality

edges are responsible for determining the converged results of nearly all the vertices across

different queries. We develop techniques to identify a CG that produces precise results for

most vertices and optimizations to efficiently compute precise results of remaining vertices.

Across six kinds of graph queries and four input graphs, CGs improved the performance of

GPU-based Subway system by up to 4.48×, of out-of-core disk-based GridGraph system by

up to 13.62×, and of Ligra in-memory graph processing system by up to 9.31×.

4.1 Our Approach

Graph analytics is employed in many domains (e.g., social networks, web graphs)

to uncover insights from connected data. There has been much work resulting in scalable

graph analytics systems for GPUs, multicore servers, and clusters [50, 46, 20, 57, 73, 86,

105, 41, 37, 36, 67, 89, 5, 27]. Real world graphs are irregular and large. Thus, significant

overheads are incurred due to movement of graph across the memory hierarchy and repeated

propagation of values over the edges in the graph. These overheads are exacerbated due to

the iterative nature of graph analytics. Thus, in spite of the numerous advances, efficient

processing of large and irregular graphs remains a challenge.

A general approach [39, 99] for dealing with the above challenge employs a two-
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Figure 4.1: Proxy Graph based 2Phase Evaluation.

2.
37

2.
16

1.
79 2.
02

4.
35

2.
49

1.
13

8.
69

1.
94

7.
74

13
.6
2

1.
021.
31

4.
41

2.
14

3.
82

9.
31

1.
09

SSSP SSNP VITERBI SSWP REACH WCC

SP
EE
D
U
P

Subway GridGraph Ligra

Figure 4.2: Speedups with CG over without CG for Friendster (FR) [19] input graph with
2.586 billion edges.

phase (2Phase) query evaluation as shown in Figure 4.1. Here a small proxy graph cor-

responding to the large original graph is identified once and then the combination of the

proxy graph and original graph is used to evaluate all future queries. Note that for graphs

with a large number of vertices, there is an equally large number of vertex-specific queries
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(e.g., each vertex can serve as a source of a shortest path query). The first phase evaluates

the query on the proxy graph incurring low overheads and producing mostly precise results

(mostly green and some red values in Figure 4.1). Then, the second phase uses these mostly

precise results to bootstrap query evaluation on the larger original graph producing fully

precise results (all green values in Figure 4.1). Resuming query evaluation in the second

phase from vertices whose property values are impacted in the first phase, guarantees that

the 2Phase algorithm will produce correct results for 100% of vertices [39, 99]. Given its

generality, this approach is applicable to different kinds of systems – GPU-based Subway,

in-memory Ligra, out-of-core GridGraph – as shown in Figure 4.2. Moreover, the improve-

ments are largely complimentary to other platform specific optimizations incorporated in

different graph processing systems. However, for the above approach to be effective, the

proxy graph must fulfill two key requirements:

• RQ1: The proxy graph should be much smaller than the original so that the first

phase incurs substantially reduced graph transfer overhead and performs little redun-

dant propagation of values over edges; and

• RQ2: Convergence over the proxy graph should produce query results that have

mostly precise, i.e. most have converged to the same values that are obtained upon

convergence over the original graph. Thus, the second phase requires little effort to

reach full convergence (i.e., convergence for all vertices).

Prior methods [39, 99], Reduced Graph [39] and Abstraction Graph [99], are proxy

graphs with significant limitations. The first method by Kusum et al. [39] collapses parts

of the graph eliminating many vertices that cannot be queried and produces a proxy graph
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that is too large (roughly 50% of original size [39]). Although the Abstraction Graph [99]

overcomes the limitations of Reduced Graph and produces a small proxy graph, it yields

query results that are imprecise – it produces imprecise results for over 53% of the vertices.

Similar lack of precision is observed when graph sampling is used to to produce a small

proxy graph [108, 106, 107]. Query-by-sketch [90] identifies a self-contained subgraph (meta-

graph). However, it is limited to queries that find the shortest path between two vertices.

Our approach handles other kind of queries beside shortest paths and it finds property

values from a source vertex to all destination vertices.

In this paper we develop a new approach for identifying a proxy graph, called the

Core Graph (CG), that satisfies both the aforementioned requirements. That is, Core

Graph is both small and produces highly precise results. The CG includes all the vertices

from the original graph so that any vertex-specific query can be evaluated and it contains

only a subset of edges. Which edges to include in the CG, and how to identify these edges

efficiently, is one of our key contribution.

For many kinds of vertex-specific queries (i.e., queries of the form Q(s) where s is

the source vertex), the final property value of a vertex v can be precisely computed from the

property value of a single vertex u because edge e(u, v) is critical to obtaining v’s precise

result. For example, for single-source shortest path query, the shortest path from s to v is

determined by the vertex u if edge e(u, v) belongs to the shortest path from s to v. Thus,

removing of all other incoming edges of v from the graph will not impact the precision of

v’s result. Removal of subsets of incoming edges of all vertices results in a small proxy

graph that produces highly precise results. Furthermore, critical edges are determined by
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the graph structure and edge weights; thus, they are critical for computing precise results

for many different queries of the same kind, i.e. they are recurring. Consequently, the above

observations yield a Core Graph that satisfies both RQ1 and RQ2 requirements.

Consider finding the CG for use by single-source shortest-path (SSSP) queries.

We note that the edge betweenness centrality (ebc), which is defined as the number of the

shortest paths that contain an edge in a graph [?], can be used to identify edges that are

important to SSSP queries. Each edge that has non-zero ebc value should be included in

the CG as it plays a role in establishing a shortest path between at least a pair of vertices.

If all non-zero centrality edges are included in the CG, the graph remains well connected via

shortest paths, i.e. if there is a path between a pair of vertices in the original graph, then

the shortest path is also present in the CG. However, identifying all edges with non-zero

ebc values is extremely expensive – it requires computing shortest paths from every vertex

to every other vertex.

Core graphs are useful for efficiently solving queries over large graphs on systems

with limited memory including: a GPU where the full graph cannot be held in GPU mem-

ory and thus the overhead of repeated graph transfers between host and GPU memory is

substantial; and a shared-memory out-of-core system where the full graph cannot be held

in the memory and thus the overhead of repeated graph transfers from disk and memory

is substantial. Recent research has led to systems with reduced graph transfer overheads

for GPU-based [45, 23, 70, 38, 66] and Out-of-Core [41, 105, 65, 87, 99] systems. Nev-

ertheless, Core Graphs can substantially improve performance of Subway [66] for GPUs

and GridGraph [105] for out-of-core processing. Even for Ligra [73] where the entire graph
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is held in memory, Core Graph can significantly reduce computation performed and yield

performance improvements.

The key contributions of our work are as follows:

• Recurring Critical Edges Phenomenon (§2): Our study of multiple kinds of

graph queries on irregular graphs shows that the solution of a query is determined by

a small fraction of total edges, i.e. critical edges. Also, many edges recur frequently

across critical edge sets of different queries.

• Core Graph Identification and Exploitation: We present algorithms for finding

a core graph by solving a small set of queries to identify most non-zero centrality

edges. We exploit CG and present a new optimization that improves the efficiency of

the 2phase evaluation while producing 100% precise results.

• Experimental Results (§3): For the 2.586 billion FR graph, across six kinds of

queries, our approach yielded CGs containing 5.42% to 10.45% edges and precise

results for 97.1–99.9% vertices. Across six kinds of queries and four large input graphs

our approach outperforms Subway [66] by up to 4.48×, GridGraph [105] by up to

13.62×, and Ligra [73] by up to 9.31× for computing precise results for all vertices.

4.2 Recurring Critical Edges

In this section we present the key concepts that, for a given large graph, enable

identification of a subgraph that is both small in size and yet produces highly precise

results for different kinds of queries. We will show that for a large class of vertex queries
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the following observations hold:

• A small fraction of edges, named critical edges, are responsible for producing a query’s

results; and

• Across different vertex queries, same critical edges are found to be recurring.

In the remainder of this section we will define the notion of critical edges and carry out a

study to demonstrate their characteristics.

4.2.1 Critical Edges and their Characteristics

Consider an input graph, G(V,E), where edges in E are directed, and edges may

or may not have weights. An edge from vertex u to vertex v is denoted as e(u, v) and, when

edges have weights, w(u, v) denotes the edge weight. A directed path from u to v is denoted

by p(u, v).

The graph algorithms we consider solve different kinds of vertex-specific queries.

A vertex query Q(s) originates at the source vertex s ∈ V and upon its evaluation has

computed the property values Q(s).V al(v) for all other vertices v ∈ V − {s}.

Given a source vertex s and a path p(s, v), the property value of v along the path,

denoted as p(s, v).V al(v) is computed from V al(s) and the weights of edges along path

p(s, v) using a propagation operator
⊕

. For example, given the path p(s, v) = s→ u→ v,

p(s, v).V al(v) is given by V al(s)
⊕

w(s, u)
⊕

w(u, v).

For the class of graph queries we consider, given multiple paths p1, p2, · · · pn from

s to v, the property value of v corresponding to query Q(s), denoted as Q(s).V al(v), is

computed from pi(s, v).V al(v) values for all pi’s using a selection operator, viz., one of:
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MINi(pi(s, v).V al(v)) or MAXi(pi(s, v).V al(v)).

Once Q(s) has been evaluated, V al(v) for all v ∈ V − {s} represents the query

solution. For push-style propagation, the processing of a single edge e(u, v) is expressed

below; moreover, update of V al(v) must be performed atomically :

atomic { V al(v)←−
⊙

( V al(v), V al(u)
⊕

w(u, v) ) }

Many graph algorithms fall in this category including the six graph algorithms used

in our evaluation. Note that 2Phase algorithm is also applicable to other graph algorithms

where the two phase algorithm produces correct results (e.g., PageRank). However, for

problems where update does not use selection, benefits are limited.

Definition 1 – The Critical Edge Set with respect to query Q(s) is denoted as

Ec \ Q(s). Given a graph G(V,E) and vertex query Q(s), where s ∈ V , the Critical Edge

Set Ec \Q(s) is given by:

Ec \Q(s) = { e(u, v) st V als(u)
⊕

w(u, v) == V als(v) }

Each critical edge e(u, v) is responsible for determining the final stable value of

the destination vertex v, i.e.
⊙

selects u to provide the final value V als(v) at v. Note

that a vertex v can have multiple incoming critical edges if they all produce

the same final value at v. As an example, for SSSP,
⊕

is the + operator and
⊙

is

the selection operator MIN. Similarly, for SSWP,
⊕

is the MIN operator and
⊙

is the

selection operator MAX.

We further observe that a critical edge set Ec\Q(s) has the following two proper-

ties:
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Figure 4.3: Critical Edge Set for query SSSP(7).

• s-Reachability Preservation: Any vertex that is reachable from s by following edges

in E is also reachable from s via edges in Ec\Q(s).

• s-Property Preservation: The solution to Q(s) computed using set of edges in E is

identical to the solution computed using edges in Ec\Q(s).

The above discussion shows that after solving a query, its results can be efficiently postpro-

cessed to identify critical edges and thus we can derive a smaller graph which answers

that query precisely. While edges in this smaller graph are those in Ec\Q(s), the vertices

include the following:

Vc = {v st ∃ e(∗, v) or e(v, ∗) ∈ Ec}

The edges in Ec\Q(s) are called critical edges, the remaining edges in E −

Ec\Q(s) are called non-critical edges. Figure 4.3 illustrates the critical edge set cor-

responding to the shortest path query originating at source vertex 7. The red edges are

critical edges while all remaining edges are non-critical with respect to query SSSP(7).

Definition 2 – Critical Edge Set with respect to a set of queries S is denoted
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as Ec \ S. The critical edge set with respect to a set of queries for source vertices

S = {s0, s1 · · · sn} is computed as the union of the critical edge sets of queries in S as

defined below:

Ec\S =
⋃

i=0..n

Ec\Q(si).

The critical edge sets of multiple queries of same or different kind display the

following characteristics:

Observation 1 – The Critical Edge Set corresponding to a given query Q contains

a small fraction of edges in the graph;

Observation 2 – The Critical Edge Sets of a set of queries of the same kind greatly

overlap, that is, many edges recur frequently in critical edge sets; and

Observation 3 – The Critical Edge Sets of a set of queries of similar (but not

same) kind greatly overlap. In particular, SSSP, SSNP and Viterbi all are influenced by low

weight edges and thus such edges recur frequently in their critical edge sets.

4.2.2 A Study of Critical Edge Sets

Next, we present empirical evidence that confirms the above recurring critical edges

phenomenon, i.e. a small fraction of edges that constitute critical sets for a given query

recurs frequently across critical edge sets of other queries, of the same or similar kind. We

carry out a study based upon five different kinds of queries and four graphs described in

Table 4.1.

In gathering this data we evaluated a set of queries that originate at highest degree

vertices in the graph as such queries are expected to reach visit most of vertices and edges in
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Table 4.1: Number of Edges, Vertices, and the Size of Unweighted–Weighted Graph
Versions of Input Graphs: Friendster – FR; Twitter – TT; Twitter – TTW; PokeC – PK.

| E | | V | Size (MB)

FR [19] 2,586,147,869 68,349,467 20,963

TT [7] 1,963,263,821 52,579,683 15,916

TTW [40] 1,468,365,182 41,652,231 11,914

PK [78] 30,622,564 1,632,804 252

Table 4.2: %age of all edges included in combined Critical Edge Set for 20 high-degree
vertex queries. Union3 combines SSSP, SSNP and Viterbi critical edge sets.

G SSSP SSNP Viterbi SSWP REACH Union3

FR 6.7% 5.4% 5.3% 5.4% 4.1% 8.99%

TT 4.9% 5.2% 5.1% 5.3% 4.6% 8.11%

TTW 5.7% 5.2% 5.0% 5.2% 6.1% 8.74%

PK 13.3% 8.2% 7.7% 11.5% 8.4% 16.68%

the graph and hence produce largest critical edge sets. By comparing the edge sets obtained

from different queries of the same kind as well as queries of different kinds, we study the

degree of recurrence.

First, in Table 4.2 we show the critical edge set size for a set of high degree vertices

in terms of the percentage of edges from the full graph that are included in it. The critical

edge set size for the set of queries ranges from 4.1% to 6.7% for FR which is the largest

graph. On the other hand, for the smallest graph PK, the size ranges from 7.7% to 13.3%.

Thus this data confirms Observation 1, i.e. the critical edge sets contain only a

small fraction of all edges in the graph.

Second, we show that same edges recur frequently across critical edge sets of

different queries of the same kind. In Figure 4.5 we show the distribution of edges according
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to the number of queries whose critical edge sets they appeared in. As we can see, for three

kinds of queries (SSWP, Viterbi, SSNP) nearly all the edges appearing in the critical edge

sets of different queries are the same. For SSSP we observe that most edges appear in

multiple critical edge sets with sizeable number also appearing in all sets or one critical

edge set. This also holds for REACH though the distribution varies across different input

graphs. Overall, this data supports Observation 2, i.e. critical edge sets of a set of

queries of the same kind overlap substantially.

Finally, we consider recurrence of critical edges present across queries of similar but

not the same kind. We present the union of the critical edge sets for queries of three kinds

whose results are influenced by lower weight edges (i.e., SSSP, SSNP, Viterbi). Table 4.2

Figure 4.4: Cumulative %age of Critical Edges identified with increasing number of
queries for TT input graph.
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Figure 4.5: Number of critical edges recurring in exactly 1, 2, · · · 20 queries. The total
number of these edges is a small fraction of all edges in the full graph as indicated by the

percentages in Table 4.2.

56



shows that their combined size, UNION3, is only slightly bigger than the size of largest

critical edge set among the three kinds of queries considered. In fact over 50% of edges

in UNION3 are critical edges that are common to the three kinds of queries. This data

confirms Observation 3, i.e. critical edge sets of a set of queries of similar kinds

overlap substantially.

Our key insight is that most edges with non-zero betweenness centrality can be

identified by evaluating a small number of queries corresponding to the highest degree

vertices in the graph. We can identify edges that lie along shortest paths found via these

queries. That is, each edge u → v such that value of vertex v equals value of vertex u

plus the weight of edge u → v, lies along some shortest path. This simple approach is not

only inexpensive, since it selects edges along shortest paths, it selects edges with non-zero

centrality and edges that provide well connectedness. Figure 4.4 shows that as we solve

increasing number of queries, inclusion of newly discovered edges found to fall on shortest

paths causes the number of edges in the CG grow very slowly. That is, vast majority of

edges included play an important role in the evaluation of many different queries. Moreover,

the data for TT graph in Figure 4.4 shows that this observation is true across many graph

algorithms to a very large degree. Table 4.3 shows that, when edges are identified using 20

forward queries on TT, most edges are frequently selected for inclusion by majority of the

queries – similar behavior was also observed for other input graphs. Therefore, in rest of

the paper we limit the number of vertices queried for identifying CG edges to 20.

We also considered larger number queries, up to 100, to observe the growth in

critical edge set size with increasing number of queries. In Figure 4.4 we show how the size
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Table 4.3: Average number of queries out of a total of 20 forward queries that select an
edge added to CG.

G SSSP SSNP Viterbi SSWP REACH

FR 12.12 19.99 20.00 19.86 1.06

TT 13.01 19.49 20.00 19.99 17.50

TTW 11.14 19.94 20.00 19.96 16.24

PK 8.95 19.99 19.99 14.57 2.65

grows with the query set size of high degree vertices evaluated to find critical edges. As we

can see, for SSWP, Viterbi, and SSNP, the critical set size is mostly flat. The number of

critical edges grows by a very small number with additional queries. Only in the case of

REACH and SSSP, the critical edge set continues to grow though the growth continues to

slow with increasing number of queries.

4.3 Identifying Core Graph

We have thus far considered critical edge sets that correspond to a single specific

query or a set of specific queries. However, we would like to find a Core Graph that can

be used to evaluate all possible queries of a given kind or even queries of multiple kinds.

Ideally we would like to find a graph that is complete, that is, it is not only a subgraph of

the full graph but it also preserves the properties for all vertex queries that are of interest

as defined next.

4.3.1 Edge Centrality and Complete Core Graph.

As a consequence of evaluating a query Q(s), it is possible to identify all edges

belonging to solution paths (e.g., shortest paths). That is, we can identify every edge that

belongs to some solution path p(s, v) such that p(s, v).V al(v) == Q(s).V al(v). This is
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because for any edge e(a, b) belonging to a solution path p(s, v), property values of a and b

are related as follows:

Q(s).V al(b) == Q(s).V al(a)
⊕

w(a, b).

All edges that belong to a solution path have non-zero centrality values, i.e. they

belong to at least one solution path. For a given graph G(V,E), we introduce the notion of

the Complete Core Graph cCG(Vc, Ec) that is defined as follows.

Definition 3 – Complete Core Graph (cCG) is a subgraph of G which contains all

vertices from G and all non-zero centrality edges in G, i.e.,

Vc = V ; Ec = { e(a, b) | Centrality of e(a, b) > 0 }

Since the above definition states that any edge with non-zero centrality is included

in cCG, it implies that any path p(x, y) for which p(x, y).V al(y) is equal to Q(x).V al(y) in

G, is also present in cCG. Thus, the evaluation of any query on cCG produces results that

are identical to those produced by evaluating the query on G.

Note that finding the cCG does not require computing the exact centrality value

of each edge e(a, b) but rather it simply requires identifying edges with non-zero centrality.

If upon solving some query Q(s) we observe that

Q(s).V al(a)
⊕

w(a, b) = Q(s).V al(b)

then edge e(a, b) definitely has non-zero centrality. Nevertheless we observe that it is not

practical to identify the Complete Core Graph. By solving a single queryQ(s), we can identify

only the subset of non-zero centrality edges that play a role in computing the solution of

query Q(s). However, to identify all non-zero centrality edges, in general all queries must

be evaluated. Therefore, next we present a heuristic for finding an incomplete core graph
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that is nevertheless very effective in producing highly precise results.

However, we observe that it is not practical to compute the exact cCG because it

would require solving all (tens of millions) possible queries to identify their critical edges.

In addition, the resulting graph for some query types may also be large, i.e. it may contain

majority of the edges from the full graph even ones that are rarely part of the solution.

However, our goal in finding a smaller graph is to use it to solve queries with limited

memory and with higher efficiency. Therefore, motivated by the phenomenon of recurring

critical edges, we settle on building an incomplete core graph that is computed by solving

a small set of selected queries. We refer to this graph as a Core Graph (CG) that we will

use to evaluate queries at a reduced cost without a guarantee of 100% precision. That is,

the CG produces prices results for most of the vertices while precise results for remainder

of vertices are computed using FG.

Next we present two algorithms for identifying (incomplete but practical) core

graphs. The first algorithm constructs a specialized core graph for evaluating all queries of

a given kind. The second constructs a general core graph for queries of multiple kinds.

4.3.2 Specialized CG: For Queries of One Kind

A specialized CG includes all vertices from the full graph but only a small subset of

its edges. For constructing a specialized (incomplete) CG, we develop a heuristic to identify

the majority of frequently occurring critical edges. The set of critical edges identified for

inclusion in CG preserve pairwise vertex reachability , for those that are reachable within

FG, with a high likelihood as defined below. Doing so ensures that queries involving an

arbitrary vertex that succeeds in FG, will also succeed in the specialized CG.

60



If there is a path from u to v in the full graph G(V,E), then there

is a high likelihood that there is also a path from u to v in core

graph CG(Vc, Ec) which is composed of identified critical edges.

Note that since core graph is a subgraph of the full graph, if there is no path from

u to v in the full graph, then there will not be any path from u to v in the core graph.

Since our goal is to accelerate the solving of queries in the first place, we settle

on building an incomplete Core Graph that is computed by solving a small set of selected

queries (we found 20 vertices are adequate) and use this graph to speedup the evaluation

of all future queries. Henceforth we refer to this incomplete core graph simply as the Core

Graph (CG) which contains a subset of all non-zero centrality edges. As shown in earlier in

Figure 4.4, when we identify sets of non-zero centrality edges of different queries, there is

very large overlap in these sets which implies that most of the non-zero centrality edges being

found belong to many soultion paths. We will soon show that our approach for building the

CG produces exact results for most vertices, further confirming the inclusion of most non-

zero centrality edges in CG, while the exact results for remainder of vertices require further

computation using the original full graph to account for the non-zero centrality edges that

are missing from CG and belong to some solution path for the query being evaluated.

Forward and Backward Queries. Our work is aimed at large graphs with

power law degree distribution. For such graphs, it is known that high degree vertices

are good proxies for high centrality vertices [?]. Thus, a small number of highest degree

vertices are used to identify edges with non-zero centrality. Given a chosen high-degree

vertex h, we can find high centrality edges by solving query Q(h) and then testing each
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edge for non-zero centrality. Therefore, by choosing edges along paths passing through a

small number of high-degree vertices we can, with high likelihood, preserve the reachability

condition described above. As a result a CG obtained is expected to be useful for solving

all possible queries. In a directed graph, we actually solve two queries corresponding to

each chosen high-degree vertex h: Q(h, forward) and Q(h, backward). The forward query

identifies non-zero centrality edges that lie along paths originating at h and leading to some

other vertex. The backward query identifies non-zero centrality edges that lie along paths

originating at some other vertex and leading to h. By computing both forward and

backward queries we are able to preserve pairwise reachability among vertices,

via h, to a very large extent and thus producing a well connected CG.

Additional Connectivity Edges. Once non-zero centrality edges corresponding

to a small set of high degree vertices have been found, we ensure that every vertex with

non-zero out-degree has at least one edge included in the core graph to make the graph well

connected. If no outgoing edge is included, we add one. For SSSP (SSWP) lowest

(highest) weight edges are chosen as they are more likely to belong to shortest (widest)

paths. This approach ensures that each vertex is connected to the CG.

Algorithm 3 shows the above computation. The algorithm repeatedly uses different

high degree vertices in H to find additional non-zero centrality edges. One by one queries

of the specific kind are evaluated in both forward and backward directions originating at

vertices in S. The critical edges are identified from the results of the queries and added

to the critical set. Note that typically CG(Vc, Ec)\S includes all the vertices in V , i.e.

Vc = V . Finally, it ensures that at least one out edge of each vertex with non-zero out
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degree is added to Ec. And when the incomplete Core Graph as constructed above is used

to solve a new query, it will produce exact results for some vertices but not for all vertices.

Next we illustrate the above algorithm and observations.

Example. We illustrate the above algorithm by building a specialized core graph

for the shortest path problem for the example graph in Figure 4.6(a). The red and blue

edges in Figures 4.6(b) and (c) are found by solving queries SSSP(7,f) and SSSP(7,b). The

core graph obtained by combining the two is shown in Figure 4.6(d). The two tables in

Table 4.4 show results of all shortest path queries computed using the full graph (FG) and

the core graph (CG).

Note that most of the results in the two tables are identical. Only four results

shown in red do not match. First, the reachability for vertex pairs (6, 4) and (6, 5) is

present in FG but not in CG causing the values computed using FG to be ∞. However,

since no outgoing edge for vertex 6 is present, we will include the lowest weight outgoing

edge from 6 to 4 to the critical set. This will cause the values for vertices 4 and 5 to change

to 25 (precise) and 29 (imprecise). Second, although reachability for pairs (8, 5) and (8, 6)

is satisfied by both graphs, in CG the lengths of the paths is longer than the shortest paths

present in FG. Since CG contains only a subset of FG’s edges, shortest path length for a

vertex pair computed using FG can only be shorter than that computed via CG.

4.3.3 General CG: For Queries of Multiple Kinds

Next we present a heuristic for building one core graph for use in evaluating queries

of multiple kinds. We observe that many of the common graph queries can be divided in
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(a) Full Graph (FG).

7→ ∗ 1 2 3 4 5 6 7 8 9

7 ∞ ∞ 2 5 9 3 0 ∞ ∞

(b) Forward Critical Edge Set Ef
c \SSSP f (7).

∗ → 7 7

1 18
2 3
3 ∞
4 ∞
5 ∞
6 ∞
7 0
8 24
9 11

(c) Backward Critical Edge Set Eb
c\SSSP b(7).

(d) Core Graph derived from SSSP f+b(7).

Figure 4.6: Illustration of Algorithm 1: Starting from Full Graph in (a) to derived
Specialized Core Graph in (d).

64



Algorithm 3 Identifying Specialized Critical Edges.

1: Input: Full Graph G(V,E) and Query Set S

2: Output: Critical Edges Ec

3: Ef
c = Identify ( G(V,E), Direction f )

4: Eb
c = Identify ( GR(V,ER), Direction b )

5: Ec = Ef
c ∪ Eb

c

6: function Identify ( G(V,E), Direction d )

7: for s ∈ S do

8: Evaluate Query Q(s, d) on G(V,E)

9: for all e(u, v) ∈ E do

10: if V als(u) is updated by Q(s, d) then

11: if ( V als(u)
⊕

w(u, v) == V als(v) ) then

12: if ( d == f ) then

13: Ec = Ec ∪ { e(u, v) }

14: else ▷ ( d == b )

15: Ec = Ec ∪ { e(v, u) }

16: end if

17: end if

18: end if

19: end for

20: end for

21: end function

three categories: (a) queries that depend only on reachability (REACH, Weakly Connected

Components–WCC); (b) queries that depend on reachability and lower weight edges (SSSP,
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Table 4.4: Shortest Paths Computed: Using the Full Graph with 17 Edges (Top) vs. Core
Graph with 8 Edges (Bottom).

FG 1 2 3 4 5 6 7 8 9

1 0 15 20 23 27 21 18 ∞ 7
2 ∞ 0 5 8 12 6 3 ∞ ∞
3 ∞ ∞ 0 3 7 ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ 0 4 ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ 25 27 0 ∞ ∞ ∞
7 ∞ ∞ 2 5 9 3 0 ∞ ∞
8 6 21 26 29 32 5 24 0 13
9 ∞ 8 13 16 20 14 11 ∞ 0

CG 1 2 3 4 5 6 7 8 9

1 0 15 20 23 27 21 18 ∞ 7
2 ∞ 0 5 8 12 6 3 ∞ ∞
3 ∞ ∞ 0 3 7 ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ 0 4 ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
7 ∞ ∞ 2 5 9 3 0 ∞ ∞
8 6 21 26 29 33 27 24 0 13
9 ∞ 8 13 16 20 14 11 ∞ 0

SSNP, Viterbi); and (c) queries that depend on reachability and higher weight edges (SSWP).

Since queries from all three categories rely on reachability characteristics, to cap-

ture these characteristics we can identify critical edges that belong to forward and backward

breadth-first-trees corresponding to a set of high-degree vertices. Then, to consider edge

weights, we can bias the selection of critical edges in favor of lower weight edges (for second

category) or higher weight edges (for third category). Next, we first describe an algorithm

for finding a small core graph that captures reachability characteristics of the graph without

considering edge weights. After that we show how this algorithm can be adapted to consider

edge weights.
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(a) Forward from 7 and (b) Forward from 3 and
Backward from 7. Backward from 2.

(c) Forward from 4 and (d) Forward from 6 and
Backward from 1. Backward from 9.

Figure 4.7: An example of General Core Graph. Each step shows forward and backward
traversal from a node. Note forward (backward) traversal from 5 (8) does not traverse any

edges as these vertices have no outgoing/incoming edges respectively.

Common Critical Edges. We note that when constructing a core graph that

captures reachability characteristics via forward and backward BFS-traversals, same edges

can be chosen by traversals originating at different high-degree vertices to the extent possible

in order to produce smaller core graphs. Algorithm 4 takes advantage of this sharing in

identifying critical edges. In this algorithm, Qid(v) contains the id of the high-degree query

vertex that is the first to add an incoming critical edge of v in the set of critical edges

CS. When an edge e(u, v) is encountered whose source and destination vertex Qid’s are
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Algorithm 4 Critical Edges for Graphs With No Weights.

1: Input: Full Graph G(V,E) and Query Set S

2: Output: Critical Edges Ec

3: Qid[*] ← 0 for each vertex

4: Ef
c ← Eb

c ← ϕ

5: for s ∈ S do

6: Ef
c = Ef

c ∪ Traverse ( s, G(V,E) )

7: Eb
c = Eb

c ∪ Traverse ( s, GR(V,ER) )

8: end for

9: Ec = Ef
c ∪ Reverse ( Eb

c )

10: function Traverse ( s, G(V,E) )

11: CE = ϕ; Fifo.Push(s);

12: while ! Fifo.Empty() do

13: u← Fifo.Pop()

14: for all e(u, v) ∈ Graph.Outedges(u) do

15: if Qid(v) ̸= s then ▷ add e(u, v) to CE

16: CE = CE ∪ { e(u, v) }

17: if Qid(v)=0 then

18: Fifo.push(v); Qid(v) ← s

19: end if

20: end if

21: end for

22: end while

23: return ( CE )

24: end function
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different, then the edge is added to the graph but all critical edges emanating from v onward

are reused by queries labeling vertices u and v.

Considering Edge Weights. To further consider the influence of weights, we

can build BFS trees that are biased towards inclusion of edges with lower weights (e.g., for

SSSP) or higher weights (e.g., for SSWP). To achieve this behavior we can modify the BFS

algorithm so that when a vertex is visited the first time, the incoming edge e along which

it is visited is included in the tree; however, during a future visit along another incoming

edge e′, if incoming edge e′ has the lower weight (e.g., for SSSP) or higher weight (e.g., for

SSWP) than e, then we replace e by e′. The levels in the BFS tree are used to ensure edge

replacements do not disconnect the tree (i.e., a replacement must go from lower to higher

level vertex).

Example. Figure 4.7 illustrates the identification of critical edges using forward-

BFS (shown in red) and backward-BFS (shown in blue) from vertex 7. The edges with

lower weights are given preference for inclusion in the critical edge set. Next, we illustrate

the traversals in both directions.

When we carry out forward traversal from 7, edges (7,3), (7,4) and (7,6) are

initially added to the critical set. Next traversal from vertex 3 adds lower weight edge (3,4)

as a replacement for edge (7,4) and in addition edge (3,5) is added. Next traversal from

vertex 4 adds lower weight edge (4,5) as a replacement of edge (3,5). Finally traversal from

vertex 6 does not add or replace any edges as both outgoing edges of 6 have high weights.

Vertex 5 has no outgoing edges. Thus, the critical edges are (7,3), (7,6), (3,4), and (4,5).

When we carry out backward traversal from 7, edges (2,7) and (1,7) are initially
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added to the critical set. Next backward traversal from vertex 2 adds edge (9,2) and

backward traversal from vertex 1 adds edge (8,1). Finally backward traversal from vertex

9 adds edge (1,9) as a replacement of edge (1,7). Vertex 8 has no incoming edges. Thus,

critical edges identified are (2,7), (9,2), (8,1), and (1,9).

In carrying out replacement of edges we must ensure that the starting vertex (i.e.,

vertex 7 in the example) has at least one incoming and one outgoing edge as critical. Finally,

we observe that the core graph shown in Figure 4.7(d) is identical to the one found earlier

in Figure 4.6(d). However, in general this may not be the case.

4.4 Core Graph Sizes and Precision

Core Graph Sizes. In Table 4.5 we present the percentage of all edges that

are present in specialized core graphs for SSSP, SSNP, Viterbi (where lower weight edges

are more important), and SSWP where higher weight edges are more important. Finally

in GENERAL weights play no role and this graph is essentially the General CG built using

Algorithm 4. For the three large input graphs – FR, TT, TTW – the core graphs contain

7.27% to 13.77% of total edges. For the smaller PK graph this number is higher. The

average over all twenty core graphs generated is 10.7%.

We also note that core graphs that are constructed by solving both forward and

backward queries contain nearly twice the number edges than those constructed only from

only forward queries (Table 4.5 vs. Table 4.2). This is the cost of ensuring that the core

graph is useful for solving all queries. Across the four graphs, time for identifying the core

graphs using Subway [66] for the most expensive Viterbi queries is 1 to 30 minutes and for
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Table 4.5: (Top) % of Total Edges in the Specialized and General Core Graphs Computed
from 20 High-degree Vertices. Overall average is 10.7%; (Bottom) MB of Memory Needed

to Hold weighted CG.

CG (%) SSSP SSNP Viterbi SSWP REACH

FR 10.45% 7.27% 7.33% 7.27% 5.42%

TT 9.36% 7.71% 7.73% 7.71% 7.02%

TTW 10.10% 13.77% 8.34% 13.58% 8.34%

PK 21.85% 18.05% 12.14% 18.18% 12.13%

RMAT1 2.78% 2.70% 12.61% 2.70% 3.95%

RMAT2 1.68% 1.65% 7.82% 1.65% 3.17%

RMAT3 3.05% 2.98% 21.29% 2.89% 5.17%

CG (MB) SSSP SSNP Viterbi SSWP REACH

FR 2,436 1,777 1,789 1,777 834

TT 1,680 1,421 1,425 1,425 762

TTW 1,353 1,784 1,146 1,762 656

PK 60 51 36 51 21

the GENERAL graph it is 1 to 7 minutes.

In contrast, CGs provide highly precise results for the following reasons. First,

since CGs are built from query results, they include paths formed by non-zero centrality

edges giving us good connectivity. Second, as shown by a representative plot in Figure 4.8,

the degree distributions of FG and CG are similarly power law. Third, as shown in Table 4.8,

although the degrees of high degree vertices in CG are reduced, their relative degrees remain

unchanged (e.g., the top 1000 vertices in CG and full graph are exactly the same).

Precision of Results from CGs. Though the core graph contains a very small

fraction of edges from the full graph, it truly captures its essence. When we evaluated ten

random queries for every combination of graph algorithm and input graph, we found that

on average for 94.5–99.9% of the vertices the core graph produces precise results
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Table 4.6: Average % of Vertices for which CG Produces Precise Results for
10 Random Queries.

G SSSP SSNP Viterbi SSWP REACH WCC

FR 97.1% 99.9% 99.9% 99.9% 99.9% 99.4%

TT 99.6% 99.9% 99.9% 99.9% 99.9% 99.9%

TTW 99.4% 99.9% 99.9% 99.9% 99.9% 98.7%

PK 94.5% 99.9% 99.9% 99.9% 99.9% 99.3%

RMAT1 96.5% 99.9% 95.3% 99.9% 99.9% 99.9%

RMAT2 97.8% 99.9% 91.4% 99.9% 99.9% 99.9%

RMAT3 95.2% 99.9% 99.4% 99.9% 99.9% 99.9%

Table 4.7: Average Times in Milliseconds for Generating Nearly Precise Results using CG
for 10 Random Queries.

G SSSP SSNP Viterbi SSWP REACH WCC

FR 675.3 149.1 521.7 538.7 108.24 325.5

TT 314.9 85.0 379.5 308.1 58.67 115.6

TTW 292.1 97.3 316.4 287.9 46.18 91.8

PK 22.2 4.2 26.2 26.0 2.14 9.3

Table 4.8: Degree of Overlap in Sets of Topmost 100,000 Highest Degree Vertices of
Full Graphs and Corresponding Core Graphs for SSSP.

G Common High Degree Vertices

Top 1,000 Top 10,000 Top 100,000

FR 1,000 9,997 99,931

TT 1,000 10,000 99,997

TTW 1,000 10,000 99,988

PK 1,000 10,000 98,988

(i.e., same result as the one produced by the full graph). This data is given in Table 4.6.

Note that the REACH (Reachability) and WCC (Weakly Connected Components) query

evaluations were performed using the GENERAL CG.

Across four kinds of queries (SSNP, Viterbi, SSWP, REACH) CG generated impre-

cise results for only a tiny number of vertices – a maximum of 310, 40, 36, and 79 vertices

72



Figure 4.8: Power Law Degree Distributions of Full Graphs and Corresponding Core
Graphs for SSSP.

for FR, TT, TTW, and PK respectively. For SSSP the fraction of vertices with imprecise

results is the highest and the average percentage errors in the values for these imprecise
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vertex values is 2.27%, 6.35%, 5.71%, and 3.79% for FR, TT, TTW, and PK. The times (in

milliseconds) it takes to generate nearly precise results are given in Table 4.7.Finally, note

that we also provide precision of WCC which is computed using the REACH’s CG. The

small CG sizes lead to low processing times (over an order of magnitude lower than the

baseline for Subway), and should there be applications that can tolerate limited impreci-

sion, they should be able to benefit from large improvements in performance by using the

results produced by CG. We leave that exploration to future work.

The reason for high precision delivered by CGs is that in shrinking the size of the

graph, some key characteristics of the graph are preserved. First, as shown in Figure 4.8,

the degree distribution of both FGs and CGs follow similar power law distribution. Second,

as shown in Table 4.8, although the degrees of high degree vertices in CG are reduced, their

relative degrees remain unchanged. For example, for all four graphs, the top 1000 vertices

in CG and full graph are exactly the same.

Precision of Abstraction Graphs Sampled Graphs vs. Core Graphs. We

also studied the precision of Abstraction Graph (AG) for SSSP constructed according to the

algorithm presented in [99]. This algorithm orders the edges according to increasing edge

weights. First, pass over the edges adds those edges to the AG that connect two weakly

connected components. Then, another pass includes additional edges till upper limit on

number of allowed edges is reached – once again preference is given to lower weight edges.

For fair comparison, we constructed AGs with equal number of edges as corresponding CGs

and then compared their precision. The precision of AGs is given in Table 4.9. As we can

see, the precision of AGs ranges from 6.1% to 69.9% while the precision of CGs ranges
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Table 4.9: Precision of Abstraction Graph of size: AG - size equal to CG; 2AG - double
the size of CG. Average % of Vertices with Precise Results for 10 Random Queries.

G SSSP SSNP Viterbi SSWP REACH WCC

FR
AG 22.3% 52.4% 35.9% 52.7% 25.5% 9.4%

2AG 36.2% 63.9% 62.7% 63.9% 44.6% 58.1%

TT
AG 34.4% 43.2% 27.9% 43.2% 26.9% 6.1%

2AG 50.6% 61.6% 55.0% 63.4% 55.7% 6.2%

TTW
AG 29.0% 60.3% 23.7% 55.43% 43.5% 54.0%

2AG 46.0% 77.9% 46.9% 77.67% 53.1% 67.8%

PK
AG 46.8% 69.9% 14.4% 71.8% 49.5% 59.6%

2AG 73.5% 83.9% 44.7% 85.6% 62.3% 75.5%

Table 4.10: Precision of SGs of sizes: (SG) equal to CG; (2SG) double of CG. % Vertices
with Precise Results for 10 Queries.

G SSSP SSNP Viterbi SSWP REACH WCC

FR
SG-P 9.8% 15.2% 11.8% 12.7% 35.2% 38.1%

2SG-P 11.2% 19.7% 15.1% 17.2% 39.7% 42.5%

TT
SG-P 8.7% 10.5% 15.5% 6.3% 41.8% 33.5%

2SG-P 11.8% 14.1% 17.1% 10.1% 49.2% 35.3%

TTW
SG-P 10.4% 11.2% 18.8% 15.9% 34.8% 47.9%

2SG-P 12.8% 14.8% 21.5% 18.1% 38.2% 51.7%

PK
SG-P 11.1% 14.9% 14.6% 17.8% 30.6% 48.5%

2SG-P 15.0% 17.6% 19.5% 21.5% 32.7% 58.4%

from 94.5% to 99.9%. We also doubled the size of AGs (relative to CGs) to see study how

the precision improves. However, as shown by the rows labeled 2AG in Table 4.9, though

precision improves to 6.2% to 83.9%, it is still far lower than the precision of CGs.

Sampling techniques have been developed to scale down graph size [108, 106, 107].

We generated Sampled Graphs (SGs) using random walks [106] and used them in place of

CGs for two phase evaluation of queries. The precision data of this approach is given in

Table 4.10. We observe that overall the precision of SGs is even lower than AGs. This is

because sampling does not guarantee creation of well-connected graphs.
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Limitation. We would like to point out that the above observations hold for

irregular graphs with power-law distribution. For other kinds of graphs, core graphs may

have different forms and different degree of precision. Also, we have examined six graph

properties, there may be other properties for which high precision may be difficult to attain.

Finally, as mentioned earlier our work considers monotonic algorithms for vertex-specific

queries.

4.5 Related Work on Proxy, Pruned, and Transient Graphs

A Proxy Graph used for evaluating all future queries. We provide additional com-

ments on relevant works that derive smaller graph structure to speedup evaluation of all

future queries over a large graph. As mentioned earlier, input reduction [39] employs prop-

erty preserving graph transformations to reduce graph size and then uses 2Phase processing

on reduce and then full graph. However, due to restrictive nature of safe transformations,

graph size reductions are limited and so is the work that can be performed in the first phase.

Best performance is reported when reduced graph has around 50% of the edges. Moreover,

since parts of the graph are collapsed, the reduced graph can only be used to evaluate

queries for subset of vertices in the full graph. Abstraction Graph [99] on the other hand

delivers small proxy graph; however, it lacks precision as shown by results in Table 4.9.

In contrast, core graphs are much smaller (5.42–10.45% for FR) and yet produce accurate

results for over 94% vertices, and leaving less work for the second phase.

Query Specific Pruned Graph for Point-to-Point Queries. Our work focuses on

evaluating vertex queries that originate at a source vertex and then compute property values
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for all other vertices in the graph that are reachable from the source. There is another class

of queries that compute a property value between a source and destination vertex pair.

These are called point-to-point queries and as their first step perform graph pruning and

then evaluate the query on the pruned graph [90, 93]. Unlike Core Graph, pruned graph

must be recomputed for each new query. Due to limited scope of a point-to-point query,

pruning parts of the graph that do not fall on paths from source to destination significantly

reduces graph size. However, since our work is for point-to-all queries, pruning would only

reduce the graph size minimally. Next we provide detailed comparison with two specific

point-to-point query algorithms that employ pruning.

Query-by-Sketch (Qbs) [90] is a three-phase (offline labelling followed by query

specific online sketching and searching) algorithm for finding of all shortest paths from one

vertex to another (i.e., they solve a point-to-point query). Though core graph and Qbs

speedup query evaluation over large graphs, Qbs has major limitations in comparison to

core graph. First, a sketch is query specific and thus must be computed online for each

query while the core graph is found once and used for all future queries. Second, core graph

is general as it solves many kinds of queries as opposed Qbs that is for one kind of query

– shortest path. Third, we evaluate demanding queries that compute property values from

one source vertex to all other reachable vertices while Qbs evaluates a single point-to-point

query. For the queries we evaluate, a sketch is expected to be very large fraction of the

graph. Finally, not only is online sketching expensive, if the sketch produced is large in

size, then computation of shortest path takes a long time. For TTW labelling and sketching

takes 1,345 seconds and since sketch is large (0.76GB), the query evaluation time is also
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high (164 seconds). In summary, core graph construction is efficient, done only once and

henceforth it gives fast query times for all queries – 9-16 seconds for TTW on a GPU.

Pruning and Prediction (PnP) [93] is another method for evaluating point-to-

point queries. This algorithm employs bidirectional BFS originating from source (forward)

and destination (backward) to first prune the graph for a given query and then perform

remainder of the query evaluation using the pruned graph. The pruning is query specific

like the query sketch used by Qbs.

Query Specific Transient Graphs generated on-the-fly. Transient graphs are gener-

ated to minimize data transfer cost multiple times during the evaluation of a query. There

are two contexts in which such work has been done: works considering graphs that do not

fit in GPU memory; and out-of-core systems for graphs that do not fit in the memory of

a single machine. Both these approaches can benefit from Core Graphs to reduce data

transfers – between host and GPU-memory vs. disk and machine memory.

A number of approaches have been developed to reduce data transfer in context

of a GPU [45, 23, 70, 38, 66]. Among them Subway is the most promising – it on-the-fly

generates and loads transient active subgraphs covering the frontier from one iteration to

next. Across iterations, the reachable graph is loaded at least once. In contrast, a core

graph is loaded in its entirety once and computes precise results for over 94% of vertices

without requiring graph transfers at iteration boundaries.

On shared-memory machines when graphs cannot fit in memory, out-of-core partition-

based processing is employed [41, 105, 65, 87, 99]. Partitions are loaded from disk one at

a time and processed. Typically the disk IO represents 70% of the runtime cost [87]. To
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reduce disk IO, in [87] authors maximize the work performed on one partition before load-

ing the next partition. Wonderland [99] organizes edges across partitions according to their

weights so that fewer passes, and faster convergence, can be obtained. Nevertheless, the cost

of disk IO is very high. Out-of-core systems benefit from 2Phase since first phase loads the

entire core graph and computes precise results for over 94% of vertices without additional

IO.

Eliminating redundant processing. As shown by our experiments, 2Phase processing

on a CG eliminates redundancy. There are other works on eliminating redundancy via

vertex scheduling (e.g. [75]). However, this work does not address the memory problem due

to large graph size. Another approach for reducing redundant computation across queries

uses results of a set of queries to accelerate future queries [32, 92, 33]. However, this approach

increases memory requirements as, in addition to the entire graph, it must also keep results

of a set of queries to be reused in memory. Finally, AsyncGraph [102] accelerates processing

along preselected paths by increasing parallelism. It does not identify full graph structure

or enable in-memory processing for computing results for vast majority of vertices. Core

graph eliminates substantial amount of redundancy by first using a small graph and thus

provided speedups for in-memory system like Ligra.

4.6 Summary

We identified the phenomenon of recurring critical edges and used it to identify a

core graph with 10.7% of edges on average that rapidly yields precise results for 94.5–99.9%

of vertices. In the next chapter we will present the details of the two pass algorithm where
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the second pass over the full graph computes precise results for rest of the vertices leading to

net reduction in execution times over baselines that only work using full graphs. Significant

performance improvements for multiple existing systems will also be shown for six kinds of

graph queries and for four different input graphs.

80



Chapter 5

Exploiting Core Graphs for

Different Platforms

In this chapter we present a 2phase algorithm for precisely evaluating graph queries

by first evaluating them on the core graph to obtain mostly precise results and then eval-

uating them on the full graph to quickly obtain fully precise results. We will then demon-

strate the benefits of this approach for two platforms, out-of-core GridGraph system and

in-memory Ligra system.

5.1 CG-based 2Phase Algorithm

Overview of using CG in the 2Phase approach is provided in Figure 4.1. The offline

part finds the CG that is used to power a 2Phase algorithm (online part in Figure 4.1) that

first evaluates the query on the small in-memory graph and then uses the results obtained

to bootstrap the evaluation of the query on the full graph.
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Table 5.1: Push Operations for Four Algorithms. Here, CASMIN(a; b) sets a = b if b < a
atomically using compare-and-swap; CASMAX is similarly defined.

Alg
Needed (e(u, v))
EdgeFunction (e(u, v))

SSWP
V al(v) < min(V al(u), wt(u, v))
CASMAX(V al(v),min(V al(u), wt(u, v)))

SSNP
V al(v) > max(V al(u), wt(u, v))
CASMIN(V al(v),max(V al(u), wt(u, v)))

SSSP
V al(v) > V al(u) + wt(u, v)
CASMIN(V al(v), V al(u) + wt(u, v))

Viterbi
V al(v) < V al(u)/wt(u, v)
CASMAX(V al(v), V al(u)/wt(u, v))

REACH
V al(v) < V al(u)
CASMAX(V al(v), V al(u))

WCC
V al(v) > V al(u)
CASMIN(V al(v), V al(u))

An arbitrary query, using both the core and full graphs, is evaluated using Algo-

rithm 5 on a GPU as follows. In the initialization step (lines 3 to 8) of this algorithm, the

host receives the query vertex and initializes the vertex values such that the values of the

outgoing neighbors are computed using the source vertex value and these outgoing neigh-

bors form the initial frontier. Next the host transfers the initial value array, the frontier,

and the core graph to the GPU to begin query evaluation.

On the GPU, the query evaluation is carried out in two phases: Core Phase (lines

9 to 13) and Completion Phase (lines 14 to 18). During the first phase, the query evaluation

is carried on the much smaller CG and when this phase stabilizes, the second phase begins.

The second phase, starting from the source vertex, and this time using the FG, again

evaluates the query till the values stabilize and the final result becomes available.
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In the completion phase, all reachable vertices must be visited at least once to

ensure that their values are push along outgoing edges in FG that were excluded from CG.

This is achieved by ensuring that upon first visit to a vertex in this phase, it is always added

to the frontier even if its property value is unchanged (FirstPhase2Visit(), line 23).

The first phase is fast and effective as it is an in-memory phase which produces

Algorithm 5 2Phase evaluation of a query for source vertex s on input graph FG(V,E).

1: Input: s, FG(V,E), and CG(Vc = V,Ec)

2: Output: Query Result – V als(∗)

3: ▷ Initialization : Initialize V al Array on Host

4: V als(s)← SourceInitV al

5: ∀v ∈ OutNeighbors(s), V als(v)← V als(s) w(s, v)

6: ∀v ∈ V −OutNeighbors(s), V als(v)← InitV al

7: Transfer from Host to GPU:

8: V als(∗), OutNeighbors(s), & CG(Vc, Ec)

9: ▷ Core Phase : Process Core Graph on GPU

10: Active ← OutNeighbors(s)

11: while Active ̸= ϕ do

12: Active ← Process ( Active, CG(Vc, Ec) )

13: end while

14: ▷ Completion Phase : Process Full Graph on GPU+Host

15: Active ← { s }

16: while Active ̸= ϕ do

17: Active ← Process ( Active, FG(V,E) )

18: end while
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precise results for over 94% of the vertices. The second phase is efficient because most

needed computations have already been completed in the first phase and the edge function

that uses expensive atomic operation to propagate values is applied for incoming edges of

only a small number of vertices.

Note that the 2Phase algorithm is general and can be used to enhance the per-

formance of range of existing systems including out-of-core systems like GridGraph [105]

and even in-memory systems like Ligra [73]. In context of in-memory system like Ligra, the

Core Phase reduces overall computation performed while in the context of an out-of-core

Algorithm 6 Function Process for 2Phase evaluation of a query.

1: ▷ Push V als’s of Vertices in Active Over outEdges

2: function Process ( Active , Graph )

3: newAct ← ϕ

4: for all u ∈ Active do

5: for all e(u, v) ∈ Graph.outEdges(u) do

6: if Needed(u, v) then

7: change ← EdgeFunction ( e(u, v) )

8: if change ∨ FirstPhase2Visit(v) then

9: newAct ← newAct ∪ { v }

10: end if

11: end if

12: end for

13: end for

14: return newAct

15: end function
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system like GridGraph an in-memory Core Phase reduces the cost of both computation and

I/O performed during the second out-of-core phase. For simplicity, we maintain separate

core graph and full graph representations and simply switch from core graph to full graph

when we transition to the second phase.

We evaluate the benefits of core graphs in improving the performance of query

evaluation for the following systems:

• GridGraph [105] disk-based out-of-core graph processing system with 8GB available

memory exceeded by all graph sizes and 4×4 grid partitioning; and

• Ligra [73] in-memory graph processing system with push-based algorithms.

The evaluation employs Specialized CGs for SSSP, SSNP, Viterbi, and SSWP while

General CG is used to evaluate reachability (REACH) and Weakly Connected Components

(WCC). The CGs were derived from evaluation of queries for 20 highest degree vertices in

each graph. The choice of 20 was made after it was observed that evaluation of additional

queries contributed very few new edges to the CG. This behavior is shown in Figure 4.4.

Four input graphs from Table 4.1 are used. The default weight generation tool from Ligra

is used to generate weights ranging from 1 to the log(n) + 1 (where, n = |V |).

The baselines are the original GridGraph, and Ligra systems and same settings

are used for CG-based 2Phase runs. We perform in-memory evaluation of the query on the

core graph in the first phase. For GridGraph first phase is performed over unpartitioned

graph. Data presented represents averages based upon execution of ten random queries for

each graph and algorithm combination.
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Figure 5.1: Speedups Over Ligra Due To Bootstrapping Initial Result from CG and AG.

5.2 In-Memory Graph Processing: Ligra Evaluation

Ligra [73] runs on a server where the graph fits in memory and thus gains from

CGs can be expected from reduced computation, and enhanced locality in the caches due

to the smaller CG. For weighted graphs, as shown in Figure 5.1, the 2Phase approach
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Table 5.2: Average Execution Times in Seconds for Core Graph based 2Phase Ligra [73]
across 10 Queries.

G Specialized CGs General CG

SSSP SSNP Viterbi SSWP REACH WCC

FR 926.6s 358.1s 677.5s 405.1s 59.6s 377.7s

TT 137.7s 151.8s 186.4s 84.1s 28.3s 102.5s

TTW 235.4s 111.1s 130.5s 98.6s 25.2s 425.7s

PK 3.6s 1.8s 2.2s 2.4s 0.5s 1.2s

Table 5.3: Benefit of CG to Ligra [73]: Average % Reduction in Edges Processed
(EDGES-RED).

G SSSP SSNP Viterbi SSWP REACH WCC

FR 10.2% 26.1% 56.0% 50.4% 94.8% 40.9%

TT 46.2% 29.6% 36.4% 19.0% 93.1% 42.5%

TTW 52.5% 35.2% 51.9% 39.7% 92.1% 41.0%

PK 52.7% 39.1% 75.0% 44.3% 88.2% 36.8%

delivers speedups of 4.42–2.71× for SSWP queries (with highest first phase precision) and

for SSSP queries (with lowest first phase precision) speedups of 1.44–1.08× were observed.

For REACH speedups are even higher. Average speedups across all queries are higher for

larger graphs (e.g., FR) and least for the smallest graph (PK). Note that to save memory

needed for CG and FG, while preserving efficiency, the edge lists can be organized to separate

critical and non-critical edges so that latter can be easily skipped during the first phase.

We observe that in comparison to CGs, AGs deliver significantly lower speedups over Ligra:

highest speedup of 1.70× for AGs vs. 9.31× for CGs. As we can see, AGs frequently result

in slowdowns over Ligra. Finally, Table 5.4 shows that significant reduction in computation

(dynamic edges processed) causes the Ligra performance to improve due to CGs.
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Table 5.4: Benefit of CG: Average % Reduction in Computation in Ligra [73].

G SSSP SSNP Viterbi SSWP REACH WCC

FR

COMP-RED 10.2% 26.1% 56.0% 50.4% 94.84% 40.90%

CG SPEEDUP 1.31× 4.41× 2.14× 3.82× 9.31× 1.09×
AG SPEEDUP 1.06× 1.60× 0.84× 1.36× 0.77× 0.61×

TT

COMP-RED 46.2% 29.6% 36.4% 19.0% 93.09 % 42.51%

CG SPEEDUP 1.28× 4.43× 2.97× 4.42× 7.48× 1.35×
AG SPEEDUP 0.96× 1.70× 0.94× 1.00× 0.89× 0.75×

TTW

COMP-RED 52.5% 35.2% 51.9% 39.7% 92.10% 40.95%

CG SPEEDUP 1.44× 2.84× 3.12× 3.77× 6.76× 0.78×
AG SPEEDUP 1.16× 1.14× 1.10× 1.15× 0.82× 0.83×

PK

COMP-RED 52.7% 39.1% 75.0% 44.3% 88.24% 36.79%

CG SPEEDUP 1.08× 1.89× 3.30× 2.71× 3.07× 1.12×
AG SPEEDUP 1.04× 1.07× 1.01× 1.39× 0.86× 0.58×

5.3 Out-of-Core Graph Processing: GridGraph Evaluation

For GridGraph, the first phase of computation is performed in-memory after loading

the CG from disk and then the second phase performs partition-based processing. The

active frontier for second phase is set to all the vertices whose values have been changed by

the first phase. This ensures that maximal amount of updates are performed in the first

iteration. This policy generally leads to fewer iterations. During the second phase disk IO

savings come due to two reasons: fewer iterations may be performed compared to baseline

GridGraph; and during an iteration blocks with no active edges may arise more frequently

and hence their fetch from disk will be skipped due to the selective scheduling optimization

in GridGraph.

For GridGraph, we specified 4×4 grid for partitioning the graphs and 8 GB of

available memory which is less than all graph sizes (except PK). Since same memory con-
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Figure 5.2: Speedups Over GridGraph Due To Bootstrapping Initial Result from CG
and AG.

figuration was used for all graphs, larger graphs experienced more IO and hence greater

benefits from use of CGs. Figure 5.2 shows speedups observed for larger graphs are greater

than for smaller ones. Note, speedups for FR>TT>TTW>PK due to higher disk IO savings.

Fewer iterations in second phase are shown in percentage reduction terms in Table 5.7. The

speedups for queries with high precision (SSNP, Viterbi, SSWP, REACH) speedups range
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Table 5.5: Average Execution Times in Seconds for Core Graph based 2Phase
GridGraph [105] across 10 Queries.

G Specialized CGs General CG

SSSP SSNP Viterbi SSWP REACH WCC

FR 274.4s 39.0s 200.5s 39.1s 11.0s 98.8s

TT 116.3s 24.8s 163.5s 23.2s 7.1s 24.2s

TTW 78.5s 27.4s 108.2s 29.8s 6.5s 34.4s

PK 3.2s 1.5s 3.0s 1.5s 0.3s 0.8s

Table 5.6: Benefit of CG to GridGraph [105]: Average % reduction in the # of iterations
requiring disk IO.

G SSSP SSNP Viterbi SSWP REACH WCC

FR 23.5% 96.4% 44.4% 97.1% 95.6% 0%

TT 29.3% 94.8% 33.3% 94.1% 93.1% 42.0%

TTW 36.7% 94.7% 36.1% 94.5% 93.8% 0%

PK 27.5% 96.5% 47.0% 96.8% 92.4% 28.6%

from 13.62× to 1.35×. The speedups for SSSP and WCC are modest because the number of

iterations in second phase is closer to number of iterations performed by the baseline Grid-

Graph. Note that for WCC on FR there is no change in the number of iterations yet there is

no slow down because fetches of more blocks of edges can be skipped in the second phase.

For SSSP on PK there is a slight slow down because cost of first phase offsets the benefits to

second. Finally, we observe that speedups achieved when AGs are used are relatively small

ranging from 1.58× to a slowdown of 0.57×. We also note that bootstrapping initial result

from CG is superior to AG. Note that higher speedups for AGs in [99] are due to additional

optimizations besides ”bootstrapping an initial result” from AG.
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Table 5.7: Average Speedups over GridGraph [105]; and Average % reduction in the # of
iterations requiring disk IO.

G SSSP SSNP Viterbi SSWP REACH WCC

FR

ITER-RED 23.5% 96.4% 44.4% 97.1% 95.6% 0%

CG SPEEDUP 1.13× 8.69× 1.94× 7.74× 13.62× 1.02×
AG SPEEDUP 1.00× 1.35× 1.05× 1.19× 1.27× 0.85×

TT

ITER-RED 29.3% 94.8% 33.3% 94.1% 93.1% 42.0%

CG SPEEDUP 1.28× 8.21× 1.35× 6.89× 11.28× 1.64×
AG SPEEDUP 1.17× 1.46× 1.14× 1.38× 1.20× 0.87×

TTW

ITER-RED 36.7% 94.7% 36.1% 94.5% 93.8% 0%

CG SPEEDUP 1.33× 5.31× 1.46× 4.71× 8.06× 1.13×
AG SPEEDUP 1.02× 1.34× 1.03× 1.20× 1.06× 0.90×

PK

ITER-RED 27.5% 96.5% 47.0% 96.8% 92.4% 28.6%

CG SPEEDUP 0.93× 2.83× 1.45× 2.97× 3.80× 1.19×
AG SPEEDUP 0.89× 1.56× 1.01× 1.58× 0.88× 0.57×

5.4 Combining Benefits of Value and Structure Reuse

The exact evaluation of a query results requires a two phase approach where the

first phase evaluates the query on the small in-memory core graph (CG) and then uses the

results obtained to bootstrap the evaluation of the query on the full graph (G). Starting

from all vertices whose values are impacted in the first phase, the second phase resumes

propagation of values over the full graph to obtain precise results for all vertices. Since

most results are computed precisely in the first phase efficiently using the small CG, the

work performed during the second phase is greatly reduced giving significant speedups.

Next we present a new optimization over the above approach to improve the effi-

ciency of the second phase. The key idea behind this optimization is as follows. After the

first phase has completed, we introduce a step that is able to identify some (but not all)

of the vertices whose values are already precise and hence will not change in the second
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phase. For each such vertex v, the incoming edges of v are removed from the full graph G

because any propagation via these edges will not change the value of vertex v and hence

would be wasteful. Next we present a theorem that allows us to identify some (but not

all) vertices with stable values following first phase. We first present the above results in

context of the shortest path problem and later show that these results apply to many other

graph algorithms.

Given a full graph G(V,E) and a high degree vertex h in V such that forward and

backward shortest path queries SSSPf (h,G) and SSSPb(h,G) are evaluated to identify

the corresponding core graph CG(V,Ec). Now consider the first phase evaluation of user

query SSSPf (s, CG) on CG(V,Ec) that computes, for each vertex v reachable from s, the

shortest path length dist(s, v).CG. The following theorem provides the condition under

which dist(s, v).CG is precise.

Theorem 1: The computed value dist(s, v).CG is precise if one of the following conditions

is true:

(a) dist(s, v).CG == dist(s, h).G − dist(v, h).G

(b) dist(s, v).CG == dist(h, v).G − dist(h, s).G

Proof : To prove the above, we rely on the triangle inequality over the shortest path

property as given in [33].
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According to the triangle quality for shortest path property: dist(s, v).G + dist(v, h).G ≥

dist(s, h).G or dist(s, v).G ≥ dist(s, h).G − dist(v, h).G (1)

Since CG is a subgraph of G:

dist(s, v).CG ≥ dist(s, v).G (2)

Therefore from (1) and (2) we conclude that:

dist(s, v).CG ≥ dist(s, h).G − dist(v, h).G

Thus, if we observe that

dist(s, v).CG == dist(s, h).G − dist(v, h).G (a)

then dist(s, v).CG must be precise.

Similarly, we use another triangle inequality as follows:

dist(h, s).G + dist(s, v).G ≥ dist(h, v).G

or dist(s, v).G ≥ dist(h, v).G − dist(h, s).G (1)

Since CG is a subgraph of G:
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dist(s, v).CG ≥ dist(s, v).G (2)

From (1) and (2) we conclude that if:

dist(s, v).CG ≥ dist(h, v).G − dist(h, s).G

Therefore, if we observe that

dist(s, v).CG == dist(h, v).G − dist(h, s).G (b)

then dist(s, v).CG must be precise.

As shown in [33], the graph triangle inequality abstraction given below applies to many

different graph properties.

property(v1, v2)⊕ property(v2, v3) ⪰ property(v1, v3)

Here ⊕ depicts an abstract addition and ⪰ represents an abstract greater than or equal

operator. While operators vary across the different algorithms, the proposed optimization

applies many graph algorithms such as widest path, narrowest path, breadth-first search,

and others.

Algorithm 5 shows the 2Phase evaluation of a query on a GPU. In the initialization

step (lines 3 to 8) of this algorithm, the host receives the query vertex and initializes the

vertex values such that the values of the outgoing neighbors are computed using the source

vertex value and these outgoing neighbors form the initial frontier. Next the host transfers

the initial value array, the frontier, and the core graph to the GPU to begin query evaluation.

The data presented thus far did not make use of the triangle inequality optimiza-

tion thus requiring no major changes to existing systems. We added the optimization to

Ligra and reevaluated performance for the two largest input graphs, FR and TT. We consider

the three algorithms identified in [33] for which the triangle inequality is the most effec-
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Table 5.8: Impact of Triangle Inequality on Ligra Speedups.

G SSNP Viterbi SSWP

FR
SPEEDUP 4.24× 4.40× 7.30×

EDGES-RED 70.95% 78.71% 93.23%

TT
SPEEDUP 6.06× 4.52× 6.01×

EDGES-RED 89.95% 80.48% 88.80%

TTW
SPEEDUP 2.86× 2.78× 3.20×

EDGES-RED 84.29% 80.75% 83.40%

PK
SPEEDUP 1.79× 1.83× 1.87×

EDGES-RED 85.67% 86.71% 83.72%

tive. The new speedups shown in Table 5.8 for SSWP, Viterbi, and SSNP are substantial

improvements over prior speedups for the two largest graphs.

5.5 Summary

We identified core graphs with 10.7% of edges on average that rapidly yield precise

results for 94.5–99.9% of vertices. An optimized second pass efficiently computes the precise

results for rest of the vertices. The generality of the CG based approach allows it to be

applied across existing systems without requiring any major modifications to them. We

demonstrated this by enhancing three different systems. Significant performance improve-

ments for these systems were observed – up to 13.62× in GridGraph [105], and up to 4.97×

in Ligra [73]. Applying the triangle inequality optimization gave additional speedups.
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Chapter 6

Contributions and Future Work

6.1 Contributions

In this thesis, we identify opportunities for improving query performance across

various systems by capturing the essence of a graph both as values and structure. Re-

sults from solving a few queries are leveraged to benefit all subsequent queries. First, we

investigate the feasibility of bidirectionally solving for values (results) of a limited set of

high-centrality queries. We then extend the concept of value reuse to streaming and batch-

ing systems. Second, we developed an approach for the reuse of graph structures. We

identify the core graph structure by marking critical edges. Ultimately, we combine graph

structure reuse with value reuse to obtain best results across different systems.

This thesis has developed VRGQ that incorporates the 2Step iterative algorithm for

evaluating a sequence of vertex queries. The key feature of this framework is that during

evaluation of any query, coarse-grained reuse of previously computed results for selected

vertices is performed to accelerate query evaluation. The VRGQ system is different from
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related works in a key way. It takes advantages of results computed for a very small number

of queries to optimize the execution of all future queries via value reuse.

Value reuse is applicable across various graph processing systems. In streaming

graph systems, Tripoline leverages the value reuse technique to solve a fundamental limi-

tation of stream graph systems. This idea leads to a generalized incremental processing

design for vertex-specific queries, in which optimization is ensured via reuse based vertex

functions. Multilyra reuses results from earlier batches of queries to accelerate the execution

of later batches of queries. SimGQ is a shared memory system that dynamically identifies

a shared query that substantially represent subcomputations in the evaluation of different

queries in a batch, then evaluates and reuses its results to accelerate the evaluation of all

queries in the batch.

Additionally, this thesis incorporated the concept of graph structure reuse. Firstly

it identified the phenomenon of recurring critical edges and discovered a core graph with

modest quantity of edges that yield precise results for virtually all vertices. A second pass

over the full graph computes precise results for rest of the vertices leading to net reduction

in execution times over baselines that only work using full graphs. Significant performance

improvements for multiple existing systems are shown for six kinds of graph queries and for

four different input graphs.
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6.2 Future Work

6.2.1 Using CoreGraph for Other Benchmarks

CoreGraph was exploited in the evaluation of path-based graph queries to achieve

significant speedups. There is further potential for leveraging critical edges to speed up

convergence of both global and Personalized PageRank algorithms. Identifying certain

paths and precomputing their results could lead to faster propagation and convergence

of PageRank values. Rather than simply marking edges as critical or not critical, we

could assign impact numbers to edges and use them to rank and select important paths.

HubPPR [109] pre-computes and indexes auxiliary information for selected hub nodes that

are often involved in PPR processing. Nevertheless, the challenging problem of identifying

effective indexing schemes remains open for graph queries.

6.2.2 Reuse for Graph Partitioned Distributed Systems

For shared memory and out-of-core systems, we used CoreGraph to mainly reduce

computation cost. In distributed graph processing systems, CoreGraph holds the potential

to refine graph partitioning and reduce communication overhead. A straightforward ap-

proach is to store the compact CoreGraph on every machine, facilitating query evaluations

locally. It is also interesting to store the CoreGraph along with its extensive neighbors

on a master machine. Intermediate query values can then be scattered to other mirrored

machines after evaluation on CoreGraph.
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6.2.3 Streaming Graph and Incremental Evaluation

We highlighted how Tripoline generalizes, via value reuse, the use of incremental

evaluation to random graph queries. It is also promising to identify critical edges across

different snapshots to develop CoreGraph+, and further leverage graph structure reuse

for queries over evolving graph systems. After computing the query on the CoreGraph+,

we can add or delete edges and incrementally update the query results. Recent work on

CommonGraph [110] converts all deletions to additions by finding a common graph that

exists across all snapshots to evaluate an evolving graph query. CoreGraph+ may allow

further generalization to achieve reuse across different queries.
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[6] Markus Bläser. A new approximation algorithm for the asymmetric tsp with triangle
inequality. ACM Transactions on Algorithms (TALG), 4(4):1–15, 2008.
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