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ABSTRACT 
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Simulation Research Group 
Applied Science Division 
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Berkeley, California 94720 

September 1986 

Most software tools currently used to solve simulation problems are monol­
ithic FORTRAN programs. Such programs retard advances in modeling by being 
inflexible, hard to modify, and hard to use. Simulation programs can be defined 
in terms of a network of physical objects and links. The network concept allows 
modeling algorithms to be defined as abstract data types called objects. Objects 
separate the details of a model from the interface needed to use it in a simulation. 
This allows a network simulation program to be more flexible and more easily 
modified than traditional simulation programs. A network simulation program 
kernel that provides basic tools for simulations is described. The kernel provides 
a language designed to define simulation networks and a solution technique for 
simulation problems that works well with network definitions. This method is 
analyzed and shown to be faster than traditional solution methods by a 
significant factor. A network simulation problem kernel providing data abstrac­
tion should accelerate advances in modeling by providing facilities to create flexi­
ble, easily modified simulation programs. 

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, 
Office of Building and Community Systems, Building Systems Division of the U. S. Department of 
Energy under Contract No. DE-AC03-76SFOOO98. 
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INTRODUCTION 

vVhile simulation was one of the first computer applications to be explored, it 
has been among the last to advance with improvements in software technology. 
Most current large simulation systems are written in FORTRAN; these simulation 
programs often involve more than 100,000 lines of FORTRAN tied together in a 
rigid structure of subroutines and common blocks. The systems are inflexible; 
often even simple changes can require expert programmers and several months of 
work. 

The immense difficulty associated with modifying large FORTRAN programs 
has a number of adverse effects on the simulation field. Algorithms modeling a 
phenomenon can not be easily varied or updated as models improve. It is exceed­
ingly difficult to add models of new phenomena that were not considered when the 
original program was written. Communications between modelers at different 
sites can be severely restricted. A subroutine written to model a phenomenon for 
one FORTRAN model is rarely easily inserted into a different FORTRAN model. 
Even worse, local updates to a model can make versions of the same original 
FORTRAN program incompatible. 

Many of these problems can be solved by introducing an object-oriented ker­
nel system for simulations. A simulation kernel provides basic tools for defining 
and solving simulations without placing many restrictions on the algorithms used 
in the simulation [PLA85]. This paper discusses the Simulation Problem Analysis 
Kernel, SP ANK. SPANK was designed as a prototype to guide the development 
of more complete and robust kernel systems. 

The SPANK system provides tools to define and solve a simulation problem 
that is defined in terms of a network. A network is a group of objects that model 
individual phenomena linked together to model some larger problem. SPANK 
builds upon earlier simulation network software developed by Levy and Low 
[LEV83] and later by Sowell, Taghavi, Levy and Low [SOW84]. Other groups have 
also built simulation programs that use approaches similar to networks to define 
problems [KLE76]. SPANK gains many of its advantages over earlier simulation 
programs by being an object-oriented system that provides data abstraction 
[STR84] for objects in the network. 

Data abstraction is the concept of separating the implementation details of a 
subprogram from its interface. In a network simulation, objects in a network can 
be linked together to form a problem without knowing any details of the method 
used by the objects to model a particular phenomenon. Conversely, the internal 
details of the object can be changed without affecting the way in which the object 
is linked into a network to define a problem. 

By providing data abstraction, SPANK accrues many advantages over tradi­
tional programs. The details of the implementation of an object are independent 
of the .problem specification (but, unfortunately, not independent of the solution 
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methods in the current implementation). Therefore, objects can be modified and 
new objects introduced without concern for any other part of the system. 
Different sites caQ more easily share developments; all that need be done is to 
share definitions for new types of objects. These abilities will allow simulation 
techniques to evolve more quickly than they have in the past. 

SPANK also examines a relatively new solution technique for simulation 
problems that are defined in terms of networks. The solution technique is found 
to be considerably faster than more traditional methods that could be applied to 
simulation problems. 

This report begins by providing a general overview of the idea of defining a 
simulation problem in terms of a network structure in section 2. Section 3 takes a 
closer look at the implementation of a simple language that can define simulation 
networks. Sections 4 and 5 are concerned with the numerical solution techniques 
implemented in SPANK. Instead of using more traditional solution techniques for 
numerical problems, SPANK implements a new technique that is naturally 
applied to simulations defined as networks. The relative merits of this new tech­
nique, compared to more traditional solution methods, are examined in section 6. 
Section 7 provides a complete example of a simulation problem implemented with 
SPANK. Finally, section 8 examines some shortcomings of SPANK and further 
developments that could enhance the SPANK system. 

The SPANK kernel has been successfully implemented and used to define 
several complex simulations in the building energy analysis field. It appears to be 
much easier to use than traditional simulation programs while providing greater 
flexibility for development of new simulation techniques. Hopefully, this project 
can serve as the basis for more advanced simulation kernels that will find 
widespread use in all simulation communities. 

2. OVERVIEW OF NETWORK APPROACH TO SIMULATION 
All problems in SPANK are viewed as networks of physical objects linked 

together by physical connections. This makes it simple to define many physical 
problems in SPANK. This section examines the idea of a network definition of a 
simulation problem. Certain solution techniques for simulation problems are most 
naturally implemented on simulation problems defined as networks. Such a solu­
tion technique is used in SPANK; an introduction to this solution technique is 
also provided here. 

2.1. Network Terminology and Depiction 

For the purpose of this paper, a network is a hypergraph consisting of a set 
N of nodes {nl' n2' ... , nn}, a set E of hyperedges {el, e2' ... , en}, and a function 
<P from the set E to the set of all non-null'subsets of N. The nodes represent 
physical objects in a simulation problem and are also referred to as objects. A 
hyperedge, also called a link, is a structure that connects one or more nodes 
together [BER73]. The hyperedges may be either directed or undirected; a directed 

- 3 -



hyperedge e distinguishes a single element of the set ¢( e) as the source node. All 
other nodes in ¢( e) are destination nodes of the directed hyperedge. Throughout 
the paper, depictiens of hypergraphs will have directed hyperedges marked with 
an arrow pointing to the destination nodes; a hyperedge without an arrow is 
assumed to be undirected. 

2.2. Objects 

A physical object is modeled by one or more objects in the simulation net­
work. An object is composed of two related parts, an equation and a set of inter­
face variables. The interface variables represent the set of unknowns in the 
object's equation. The equation defines a functional equality that must be satisfied 
by the interface variables. 

A simple example of an object from the building energy simulation field is a 
mass collector, a device in a ventilation system that has two input ducts which 
merge into a single output duct. The mass of the combined output air flow from 
a mass collector must equal the sum of the masses of the input flows. An object 
modeling a collector has three interface variables: mass_out, mass_in 1, and 
mass_in 2. The equation defined between these interfaces is: 

An object can express only a single, albeit arbitrarily complex, equation between 
its interfaces. A physical object normally requires several equations to be satisfied 
by some physical parameters. Several network objects, or a macro object, must 
be used to model physical objects of this type. Macro objects, introduced in sec­
tion 2.5, can be used to group related network objects into a single entity. 

2.3. Links 

Links allow independent objects to be connected to form a simulation prob­
lem. As a simple example, consider an air duct system in which four ducts are 
combined into one, first by combining two pairs of ducts and then by combining 
the two resulting ducts, fig. 2.1a. The network for this problem is represented in 
fig. 2.1 b. It is interesting to notice that the simulation network can be drawn to 
bear some resemblance to the physical situation being modeled. Defining network 
objects that correspond to physical objects causes this to be the case in many net­
work simulations. Note that there is no concept of direction defined for the links 
in the network. 
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Fig. 2.1a: The Physical System of Ducts Being Modeled 

An alternative perspective of networks comes from viewing each object as 
defining an equation, and each link as defining a variable shared by the equations. 
A network can then be viewed as a set of simultaneous equations. An example is 
the set of equations xy = a and x - y = o. 

mass_inl 
masa_out 

m&U-in2 

mUII_inl 
mUll_out 

mUII_in2 

m .... _inl 
m ...... out 

mILSIl-in2 

Fig. 2.1b: Network representation of three mass collectors which 
combine four air flows into one. Boxes repr,esent objects, lines 

ar.e links and interfaces are labeled. 
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PRODUCT a input a -
in.l· io.2 

y X 

I 

an.l an.2 

DIFFERENCE 0 input 0 

Fig. 2.2: A network definition of the simultaneous 
equations: xy ~ a and x - y = o. The boxes on the right 

define the parameters a and 0 for the problem. 

These equations are solved when x = y = ± Va. A network definition of 
this problem is shown in fig. 2.2. An important point follows from this alternate 
view of networks. Any simulation problem that can be defined by a set of simul­
taneous equations can be immediately translated into network form. Using a net­
work to define a simulation problem in no way limits the problems that may be 
defined. 

2.4. Network Based Solution Technique 

There are a variety of numerical methods that can be used to solve simula­
tion problems. Since SPANK problems are defined in terms of a network, it 
seems reasonable to employ a method that is naturally defined in terms of a net­
work. The solution method chosen is a relatively new one originally developed by 
Levy and Low [SOW84]. 

The Levy-Low method attempts to pick a dependent variable for each 
object's equation. For instance, in the mass collector object defined earlier in this 
section, each of the three interface variables can be defined in terms of the other 
two: 

mass_out = mass_in 1 + mass_in 2 
mass_in 1 = mass_out - mass_in 2 
mass_in 2 = mass_out - mass_in 1 

Selecting one of these equations for the object selects a dependent variable. 
The dependent variable is the output variable for the object. The other interface 
variables are input variables, and the object's function becomes the computation 
of the output variable from the input variables. In some cases, it is possible that 
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only some subset S of the interface variables can actually be computed from the 
remaining interface variables. Only members of S are eligible to be chosen as the 
dependent variable~ 

The Levy-Low technique is only viable when output variables are assigned so 
that each link is connected to only one output variable. The link can then be 
thought of as a directed hyperedge, carrying data produced from one object's out­
put to the input interfaces of some other objects. This directed network is a data 
flow graph; details on this structure can be found in section 4. Nodes in the 
hypergraph produce results from inputs carried on incoming hyperedges and send 
the results to other nodes along outgoing hyperedges. The network simulation 
problem is solved by introducing input data and then letting the results of this 
data flow through the graph. Complications, such as the need for iterative solu­
tions, nearly always arise in a simulation problem, but the general solution tech­
nique remains the same. Details of the solution technique are discussed in section 
5. 

2.5. Macro Objects 

In order for the solution method to function, each object must define a single 
equation. In general, physical. objects are more complicated than this; they require 
a number of equations among various physical quantities. It makes sense to 
group all the equations associated with a physical object into a single entity called 
a macro object. A macro object has a set of interface variables and may be linked 
into simulation networks like an ordinary object. Unlike an ordinary object, the 
macro object may contain an arbitrarily complex set of other objects and links 
that define many equations among its interface variables. Macro objects may con­
tain other macro objects nested to any depth. The solution technique expands 
instances of macro object types into their constituent set of simple objects and 
links. 

2.6. Advantages of Networks 

Data abstraction can be defined as "to separate the incidental details of the 
implementation of a subprogram from the properties essential to the correct use of 
it. Such a separation can be expressed by channeling all use of the subprogram 
through a specific interface." [STR84] The network technique accrues many of the 
advantages associated with object-oriented languages that provide data abstrac­
tion. Objects and macro objects in a network are instances of abstract data 
types. The equation(s) enforced between the interface variables need not be 
known to specify a simulation. All that is needed is to link the interface variables 
together to model a physical situation. It is no longer a problem to introduce a 
model of a physical situation that was not anticipated when the network software 
was written. Exchange of ideas between members of a modeling community is 
facilitated; to share new modeling techniques, different groups need only provide 
definitions of new object types. The benefits accrued from data abstraction are 
the greatest advantage of the network technique over previous simulation 
methods. 
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3. NETWORK SPECIFICATION LANGUAGE 

Many present day simulation programs are hampered by poor user interfaces. 
Interfaces are often either so rigid as to be entirely inflexible [DOE8lj, or so com­
plex as to be incomprehensible [ACS75, CONnj. This section describes a network 
specification language, NSL, that provides a simple set of commands to allow 
unsophisticated users to link together simulation problems from a set of 
predefined object types. More sophisticated users can define their own object and 
macro object types. This section begins by describing NSL which is used for 
description of simulation networks in SPANK. The section then discusses higher 
level interfaces NSL's relationship to more traditional object-oriented languages. 

3.1. Details of the Network Specification Language 

The network specification language must provide constructs that allow users 
to create objects and to link interfaces of these objects together. Methods for 
defining new object and macro object types, and for specifying the input of data 
are also needed. This leads to five commands in the basic language implementa­
tion: define, declare, link, input and macro. Each command is described below. 

1. DEFINE The define statement 'allows an object type with a particular 
equation and interface variables to be defined. An example 
definition is shown in fig. 3.1. After the key word define is a 
type name mass_coli. The definition of the interface variables 
for a mass_coli is enclosed in braces. The name of each interface 
is found on the left hand s~de of an equal sign. The function on 
the right side defines the formula relating the interface being 
defined and the other interfaces. For instance, the interface 
mass_out is defined as :E( mass_inl, mass_in2). The functions 
for the mass_in 1 and mass_in 2 interfaces should be different 
forms of the same equation. The functions used to define the 
interfaces are standard C functions that receive their arguments 
as an array of double precision values. The C code for function 
sum can be seen in fig. 3.2. If no function is defined for an inter­
face, this interface will not be selected as the dependent interface 
by the solution technique. 

define mass_coli { 

} 

mass~nl = difference(mass_out, mass_in2); 
mass~n2 = difference( mass_out, mass_inl); 
mass_out = sum(mass~nl, mass_in2); 

Fig. 3.1: Definition of object type mass_coIl. 
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dou ble sum( args) 
double args[]; 
{ 

return(args[O] + args[l]); 
} /* End of sum */ 

Fig. 3.2: Function sum.f.c. 

2. DECLARE Declarations create particular instances of an object type. The 
syntax is declare followed by a type name from a previous 
definition. The type name is followed by a list of names of 
object instances of this type. For example, fig. 3.3 shows the 
program to specify the four-way mass collector that was used in 
a previous example. Three mass collectors, me 1, me2, and me 3 
are declared. 

declare mass_coIl mcl, mc2, mc3; 

link intern_massl(mc1.mass_out, mc3.mass~nl) 
link intern_mass2(mc2.mass_out, mc3.mass~n2) 
link outpuLmass(mc3.mass_out) 

input mass~nl(mc1.mass~nl) 
input mass~n2(mc1.mass~n2) 
input mass~n3(mc2.mass~nl) 
input mass~n4(mc2.mass~n2) 

Fig. 3.3: Specification of the Four-Way Mass Collector Problem 

3. LINK 

4. INPUT 

The link command creates a link between one or more interface 
variables. The syntax can be seen in fig. 3.3. The keyword link 
is followed by a link name and an interface list enclosed in 
parentheses. The interface list specifies each interface connected 
by the link in the form objeeLname .interfaecname. In the 
figure, link intern_mass 1 connects the mass_out interface of 
object me 1 to the mass_in 1 interface of object me 3. 

The input command allows the user to indicate that an input 
data value will be available to one or more interfaces of the net­
work. An input value is a parameter of the simulation that the 
user wishes to vary at the time the solution program is executed. 
The syntax is similar to that for links; the keyword input is 
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5. MACRO 

followed by an input name. This precedes an interface list in the 
same form as those used for links. In fig. 3.3, there are four 
iRputs declared, one to each of the mass input interfaces of 
objects me 1 and me 2. 

The macro command defines a macro object type. The network 
specification language expects the definition of a macro type to 
contain a set of linked objects. The interfaces of a macro object 
type are a subset of the links defined in its definition. Section 7 
provides an example of the use of the macro command. 

3.2. Higher Level Interfaces 

While the language presented in the previous pages is probably reasonable for 
use by SPANK system designers, it may be too complex for the casual simulation 
user. In general, such users will not want to be troubled with defining object 
types or C functions to implement interfaces. Instead, they will want access to a 
library of predefined objects and macro objects which can be linked to define a 
simulation problem. SPANK allows libraries of object types to be defined and 
accessed by default if no object definitions are provided in a simulation 
specification program. While even higher level interfaces, graphical interfaces for 
example, are obviously of interest, they were beyond the scope of this work. 

3.3. Relation to Traditional Object Oriented Languages 

The network specification language is closely related to more traditional 
object-oriented languages such as SIMULA, SMALL TALK, or C++ [STR84]. 
Fig. 3.4 shows equivalences between concepts in C++ and the network 
specification language. 

C++ Network Specification Language 

class object type 
class instance object 
internal data (private) equation 
mem ber or friend functions links 
inheritance, derived classes macro objects 

Fig. 3.4: A comparison of features in the 
Network Specification Language and C++. 

An object is an instance of an object type which can be mapped to the C++ 
concept of a class. The object hides its internal details, i.e. its equation, just as a 
class instance hides its private parts. Links cause a certain order of execution to 
be imposed on the object's internals, just as a set of calls to member or friend 
functions act in a C++ program. There is also a notion of inheritance; a macro 
object contains the internal data of its various component objects. Since macro 
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objects can contain many types of objects, this is more closely related to the mul­
tiple inheritance available in SMALL TALK. Because of this close relation between 
C++ and the ne~work specification language, many of the benefits accrued by 
object-oriented languages also exist in the network specification language. In par­
ticular, it is easy to change the internals of an object as long as the interface 
remains the same. Errors tend to be localized to the object in which they exist. 
Inheritance makes it easy to define more complex objects that are still comprehen­
sible and easy to maintain. The network specification language is essentially an 
object-oriented language specifically designed for defining network problems. 
Unlike true object-oriented languages, however, NSL is processed by a solver that 
produces a traditional C program. 

4. NUMERICAL SOLUTION METHODS 
A simulation problem defined as a network can be mapped directly to a set 

of simultaneous equations. A traditional method for solving such systems is 
Newton-Raphson iteration. SPANK applies graph theory technique to reduce the 
size of the system of equations before applying Newton-Raphson iteration. This 
section describes the solution technique and the constraints that it places on net­
work defined simulation problems. 

4.1. Traditional Solution Techniques 
Any network specification language problem in which every interface variable 

has been linked can be mapped directly to a set of simultaneous equations. Each 
link is mapped to an unknown and each object is mapped to the equation it 
defines. Throughout this section it is assumed that every interface has been 
linked and that macro objects have already been expanded into their constituent 
objects and links. 

A network with n objects is mapped to a set of n simultaneous equations; an 
object with k interfaces defines an equation of the form: 

interfacel = F (interface2 , interfaces, ... , interfacek) 

where F is an arbitrarily complex function. While certain simulations may 
involve only linear equations, most will be non-linear. A general purpose tech­
nique for network simulation problems must, therefore, be equipped to handle the 
solution of systems of non-linear equations. 

The traditional technique for solving a system of non-linear equations is 
Newton's method [ATK78]. Details on Newton's method can be found in section 
5.3. 

4.2. Overview of SPANK Solution Method 

The SPANK solution method attempts to use techniques based on graph 
theory to reduce the number of simultaneous equations that must be solved by 
Newton's method. As mentioned in section 2.4, a matching of links to objects can 
produce a data flow graph from a network. If the data flow graph is cyclic, it can 
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not be solved directly; iteration is required. The traditional Newton implementa­
tion treats each variable in the problem as an iteration variable. However, a ver­
tex cycle cut set of .the data flow graph can be used to define a smaller set of equa­
tions that characterize the network. A vertex cycle cut set of size e leads to a set 
of e simultaneous equations to be solved by traditional methods. Since "e" is, 
smaller than the original number of equations, this new system can be solved 
more rapidly. 

4.3. Defining a Data Flow Graph 

The first step in the SPANK solution method is to create a data flow graph 
from the network specification. A data flow graph is a graph that represents a 
computation. Such graphs have been used to define computations for so-called 
data flow machines [DAV82]. The data flow graph is represented as a set of nodes 
and a set of directed hyperedges, one emanating from each node. Each node 
represents a computation that is performed on its incoming hyperedges to produce 
a result on its outgoing hyperedge. A node can execute its function, called firing, 
when all of its inputs are present. When a node fires, it consumes its input data 
and sends its output value to all nodes that are destinations of its outgoing 
hyperedge. The term data flow is natural; data flows along hyperedges from one 
node to another, causing certain nodes to fire and thus producing more data. 

y 

x 

z 

Fig. 4.1a: Network Problem Specification 

A data flow graph can by obtained from a network by finding a one-to-one 
matching of objects to links. Such a matching can be viewed as selecting a depen­
dent variable for each object. This means that the object will define a value for 
the link variable to which it is matched in terms of all the other links that are 
incident upon the object. Once such a matching is made, a data flow graph fol­
lows quite naturally from the original network definition. Each link becomes a 
data flow path between objects. A link points from the object to which it was 
matched to all other objects to which it is linked. An example will clarify this 
procedure. Fig. 4.1a-e shows a sample network problem, the matching between 
objects and links, and the resulting data flow graph. 
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Fig. 4.1b: Corresponding Matching Problem 

define typel { 

} 

inl = fl(in2, in3); 
in2 = f2(inl, in3); 
in3 = f3(inl, in2); 

define type2 { 

} 

inl = rl(in2); 
in2 = r2(inl); 

declare typel objl; 
declare type2 obj2, obj3; 

link x(obj1.in2, obj2.in2, obj3.inl) 
link y(obj1.inl, obj2.inl) 
link z(obj1.in3, obj3.in2) 

Fig. 4.1c: Network Specification Language for the Network 
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y 

x 

z 

Fig. 4.1d: Data Flow Graph 

obj1 defines y = f2(x, z) 

obj2 defines x = r2(y) 

obj3 defines z = r1(x) 

Fig. 4.1e: Resulting relations. 

4.4. Simulation Problem Networks Have Perfect Matchings 

To define a data flow graph from a network, a one-t<rone matching between 
the variables and equations must exist in the network. It can be shown that 
simulations of physical problems lead to networks that have one-t<rone match­
ings, provided three conditions are met. 

1. A simulation of a physical situation should always have a unique solution, 
i.e. a set of values for the links such that the equations of all objects are 
satisfied. Any problem that has no such solution is not considered a valid 
simulation; impossible physical situations do not exist. Problems that have 
many solutions are not specified strongly enough. Additional constraints can 
be added to create a problem with a unique solution. 

2. There should be only a single link for each physical quantity. Providing 
more than one link allows the same physical quantity to be simultaneously 
assigned different values in a simulation. This does not correspond to any 
real physical situation. 

3. There must be no redundant modeling of a physical constraint. There should 
not be two sets of equations that enforce the same physical constraints on the 
same physical quantities. Any redundant constraints must be removed from 
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a simulation. 

A series of Le_mmas proves that a perfect matching ·between objects and links 
must exist in a simulation satisfying these conditions. 

Lemma 1: 

A network that satisfies the three conditions above has the same number of 
equations and variables (objects and links). 

Proof: 

By condition 3, the equations in the network are independent and by condi­
tion 2, the variables are unique. Assume there are n equations. If there are 
k<n variables, some of the equations must be redundant which contradicts 
condition 3. If there are k>n variables, there can be no unique solution 
which contradicts condition 1. 

Lemma 2: 

Any set S of n equations from a network that satisfies conditions 1 to 3 must 
involve at least n variables. 

Proof: 

If a set of n equations has fewer than n variables, this set of equations is 
overdetermined and some set of equations is redundant in violation of condi­
tion 3. 

Theorem 1: (Hall's Theorem) 

Let X and Y be two bipartite sets that are connected by a set of edges E. 
Then there exists a matching in which all elements of X are matched if and 
only if for all subsets S of X, W(S)I > lS' I where N(S) is the set of all ele­
ments of Y that have edges to elements of S [ROB84j. 

Lemma 3: 

In a problem satisfying conditions 1 to 3, there exists a matching in which all 
equations are matched. 

Proof: 

Lemma 2 showed that every subset of j equations has edges to at least j 
variables. By Hall's Theorem, there exists a matching in which all equations 
are matched. 

Lemma 4: 

In a problem satisfying conditions 1 to 3, there exists a perfect matching of 
equations to links. 
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Proof: 

By Lemma 1, there are equal numbers of equations and links. By Lemma 3, 
there exists a matching in which all equations are matched. In this match­
ing, all objects must also be matched. 

As long as the three conditions are met, a perfect matching exists and the 
solution techniques can be applied. The conditions do not appear to unreasonably 
limit simulation problems; a number of Building Energy Simulation problems 
have been defined in SPANK and all have had perfect matchings of objects to 
links. 

4.5. Producing Results from Data Flow Graphs 

Once a matching has been used to find a data flow graph, the graph can be 
used to compute solutions to the simulation problem. Fig. 4.2 shows an acyclic 
data flow graph; it is clear what to do to produce numerical results from the data 
flow graph. The input value is introduced to the system. Upon receiving the 
value, obj 1 can fire producing variable x. Variable x allows obj2 to fire producing 
y. y in turn allows both obj3 and obj4 to fire producing output results. 

Any acyclic data flow graph can sequentially fire all its nodes whenever all of 
its external inputs are available. A cyclic graph, on the other hand, represents a 
problem that involves iteration and cannot be solved immediately [DAV82]. 

Fig. 4.2: An acyclic data flow graph 

4.6. Iterative Solution for Cyclic Flow Graphs 

Guessing the values of some of the hyperedges in a cyclic data flow graph can 
allow the rest of the graph to execute. Fig. 4.3 depicts making a guess for the 
value of ob)·1 's output in the data flow graph from fig. 4.1. Guessing a value for 
y, Y guess' allows the rest of the graph to execute. For a randomly selected value 
of Y guess' however, the solutions resulting from the flow graph execution are not 
related to the answers of the original network in any predictable fashion. 

In the original network of fig. 4.1d, Y was constrained to be equal to a func­
tion f 2(X ,z). This constraint has been removed when Y guess is introduced in 
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," 

fig. 4.3. The values of x and z that result only satisfy the original network prob­
lem if the output y of obj 1 is equivalent to the output y guess of obj 1', an 
extremely unlikely-occurrence for a randomly chosen Y guess' 

Yguess 

x 

z 

Fig. 4.3: Guessing value of y 

It is interesting to notice, however, that y, the output of obj 1, is a function 
of y guess' Y = G (y guess)' In order to satisfy the original network definition, the 
condition y = Y guess must be fulfilled. This implies that: 
Y -Y guess =G (y guess)-Y guess = F (y gues8) = O. But, F (y guess) = 0 is simply a system 
of simultaneous equations, in this case a single equation in a single variable. The 
classical techniques for solving non-linear systems of equations, outlined in section 
4.1, can now be employed to solve for Y gueS8' Each time a function evaluation of 
F (a) is called for in the iterative solution method, a is introduced to the data 
flow graph in 4.3b as Y guess = a, and G (a) is the resulting value of yproduced by 
the graph. A guess a for which F (a) is equal to zero is a solution of the network 
simulation problem. 

Notice that in the example above, the original network problem was three 
equations in three variables. By using the SPANK solution method as a prepro­
cessing step, the number of unknowns that must be solved by a ~raditional itera­
tive method has been reduced from three to one. 

This method can easily be extended to apply to arbitrarily complex data flow 
graphs. The procedure is to first find a set of objects (objl' obj2' .,. , objn) that 
forms a vertex cycle cut set in the flow graph. A vertex cycle cut set is a set of 
nodes that, if removed from a graph along with all edges incident to them, results 
in an acyclic graph. A new node, obji' , is introduced to the graph for each 
member of the cut set. A directed edge is introduced from obJ/ to all nodes to 
which obJ'j has a directed edge. The directed edges from objj are then deleted 
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from the graph. 

The n ou~put values (Xl' X2' ... , xn) of the cycle cut set objects 
(obJI' ObJ·2' ... , obJn) can be viewed as functions of the n guessed variables 
(Xl', xz', ... , xn') produced by the introduced objects (obJ I', obJ·2', ... , obJn'). 

Xl = GI(x l ' , x2' , ... , xn ') 

X2 = G2(x l', X2', ... , xn') 

The solution of the original network occurs when the guessed value x/is 
equivalent to the resulting value Xi for i = 1, 2, ... , n. This can be expressed as 

Xl-Xl' = Gl(Xl' 'X2', ... , Xn' )-X/ = Fl(Xl', X2', ... , xn') = 0 
X2-X2' = G2(x l', X2', ... , Xn' )-X2' = F 2(x l', X2', ... , xn') = 0 

, -G (" ')' F (" ') 0 Xn -Xn - n X 1 , X 2 , ... , Xn -Xn = n X 1 , X 2 , ... , Xn = 

This is a set of n equations in n unknowns that can be solved iteratively using 
Newton or a similar method. The functions: 

can be evaluated for particular guesses 0'1' 0'2, ... , an by introducing these values 
as the outputs of the guess objects obJ t' , obJ2' , ... , obJ·n' in the flow graph. 
The values of 

are the outputs of the objects obJ 1, obJ 2 , ... , obJn after the flow graph has exe­
cuted with these inputs. 

Since the number of dimensions of the iterative solution problem is the same 
as the size of the cycle cut set, it is advantageous to have as small a cut set as 
possible. The algorithms employed for determining the cut set are discussed in 
section 5. An analysis of the complexity of the solution technique can be found in 
section 6. 

4.7. Summary of the Solution Technique 

A simulation problem defined in network form can be viewed as a system of 
• simultaneous equations. One option for solving this system would be to immedi­

ately apply traditional Newton or quasi-Newton methods to the system. Since the 
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problem is defined in network form, a solution technique that depends on network 
representation of the simulation was examined instead. The data flow graph 
representation allpws a smaller set of simultaneous equations to be iteratively 
solved. There will be one equation for each member of a cycle cut set of the data 
flow graph. The entire solution method should be viewed as an attempt to reduce 
the number of equations before applying traditional iterative techniques. The 
value of this technique will be discussed in section 6. 

5. IMPLEMENTATION OF NUMERICAL METHOD 
5.1. Matching 

An efficient algorithm for matching on a bipartite graph, Dinic's algorithm, 
was implemented. The matching will fail and inform the user that an invalid 
simulation has been defined if there exists no perfect matching between the objects 
and their adjacent links. 

Dinie's algorithm is actually designed to determine a maximum flow on a net­
work. The bipartite matching can be converted to a unit network flow problem 
by introducing source and sink nodes sand t to the matching graph. Each node 
in one of the bipartite sets is attached to the sink; all nodes in the other bipartite 
set are attached to the source. The set of edges between the bipartite set in a 
maximum network flow from s to t are also edges in a matching. For details on 
this algorithm, see the work by Tarjan [TAR83]. 

5.2. Vertex Cycle Cut Set 

A vertex cycle cut set of a hypergraph must be found for every simulation 
problem that results in a cyclic data flow graph. The cycle cut set represents the 
nodes whose values must be guessed and solved for iteratively. It is always desir­
able to have as few simultaneous equations to solve as possible, therefore, a 
minimum cycle cut set of the data flow graph is sought. 

Unfortunately, the problem of finding a minimum cycle cut set for an arbi­
trary directed graph has been proven to be an NP-complete problem by Karp 
[KAR8l]. An algorithm that produces a small cycle cut set, but not necessarily 
the smallest such set, is the best alternative. Fortunately, algorithms producing 
small cut sets are known; a modified version of an algorithm due to Levy and Low 
[LEV83] is implemented in the SPANK system. 

The Levy-Low algorithm is designed to be applied to directed graphs. The 
data flow graphs under consideration are directed hypergraphs. Before the algo­
rithm can be applied, the hypergraph is converted to a simple graph. Each 
directed hyperedge that goes from a node n to a set of destination nodes 
{d 1 , d 2' ... , dd is rep laced by k edges, from n to dj , i = 1 , 2, ... , k. 

5.3. Newton's Method 

A version of Newton's iteration method for solving systems of non-linear 
equations is implemented in SPANK. Newton's method solves systems of non-
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linear equations: 

f 1 ( Xl' x 2' . __ :-, Xn) = 0 

f 2( Xl' x 2' ... , Xn) = 0 

f n ( Xl' x 2 , ... , Xn) = 0 

The general iteration involves repeatedly computing a new guess for the vector x 
using the old value of both x and the vector function J. In particular, 

xi +l = xi _ F-I(xi)J(xi ) 

where ~ is the current value of the vector X, ~.+1 is the new guess for X, and 
J(~.) is the current value of the vector.function J. F(~·) is the Jacobian matrix 
of the vector function f evaluate.d at ~. In the implementation, the computation 
of the inverse of the matrix F (~) is avoided because of its cost. Instead, the vec­
tor equation 

is solved for the correction term 8· + 1 using a Gaussian elimination routine. The 
new guess for x is computed as 

The Jacobian matrix is computed using numerical forward difference deriva­
tive approximations. Each Jacobian matrix requires n executions of the data flow 
graph. Introducing (x 1 + 8, X2' ... , xn) as the inputs of the cut set nodes allows 
the computation of the n partial derivatives with respect to Xl from the outputs. 
Adding 8 to the other inputs allows computation of all the other partial deriva­
tives in turn. 

The iteration is continued until all the vector functions, f i (x I , X 2' ... , xn) 
differ from zero by less than a given error tolerance e. The number of iterations 
is limited; problems that fail to converge after a fixed number of iterations will 
terminate with an error message. 

5.4. Comparison of SPANK and Explicit Equation and Derivative 
Evaluators 

There are software systems that develop explicit solution formulas for equa­
tions and their derivatives. MACSYMA, MIT's symbolic algebraic manipulation 
system, is one well-known example; given a set of equations, it can explicitly solve 
for a particular variable in terms of all others. For some class of objects, 
MACSYMA could be applied to a SPANK data flow graph to solve explicitly for 
each of the cut set variables in terms of the guessed values. 
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Derivatives can also be explicitly solved by programs like MACSY1v1A. Each 
node in the network could be required to provide' partial derivatives of its equa­
tion with respect ~o each of its interface variables. Making use of the chain rule 
and explicit differentiation formulas, the partial derivatives of the output variable 
with respect to each cut set variable could be computed each time a data flow 
node fired. Data flow hyperedges would carry both the value of the hyperedge 
and the partial derivatives of that hyperedge with respect to each guessed cut set 
variable. The partial derivatives needed for the Jacobian would be available at 
the output arcs of the original cut set nodes. 

Explicit methods like these were not implemented in SPANK for a number of 
reasons. First, programs to explicitly solve for equations are extremely complex; 
adding the ability to explicitly differentiate formulas would further increase this 
complexity. Second, the abilities of programs to explicitly solve equations and 
derivatives is limited to a standard set of equation types. The SPANK program 
allows much more generality by allowing equations to be anything that can be 
expressed as a C function. As an example, a C function that iteratively solves a 
heat equation could define the equation for a SPANK object. Explicit solving pro­
grams are simply not prepared to handle such general equation types. Finally, 
programmers would have to provide partial derivative functions for each interface 
variable of each object type. This would greatly increase the difficulty involved 
with using SPANK. In order to decrease program complexity, increase capabili­
ties, and decrease programming effort, SPANK does not implement explicit solu­
tion techniques. 

MACSYMA-like techniques could be used to enhance SPANK and SPANK 
techniques could be used to enhance MACSYMA. For example, SPANK objects 
require explicit formulas for each interface variable. Each formula is derived from 
the underlying mathematical model of the object. MACSY1v1A-like techniques 
could be used to automate these derivations which are presently done manually. 
Conversely, the SPANK techniques for matching and cut set determination could 
be used to allow MACSYMA to develop iterative solutions for systems without 
closed form solutions. These avenues are yet to be explored. 

6. ANALYSIS OF SOLUTION METHOD 

This section performs a non-rigorous analysis of the run time behavior of the 
solution algorithm implemented in SPANK. The run time efficiency of the match­
ing, cycle cut set, and solution algorithms are examined. Also, the relation of the 
implemented solution technique to an immediate application of a traditional 
Newton's method is examined in terms of speed and stability. The fact that the 
matching and cut set solutions can be non-unique is also discussed. 

6.1. Matching 

A simulation problem with n objects results in a matching of two bipartite 
sets with n members each. Tarjan [TAR83] provides an analysis of the time 
taken by Dinie's matching algorithm. On a unit network such as the one 
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produced in a matching problem, Dinic's algorithm finds a maximum flow in time 
O(Vn m) where n is the number of nodes and m is the number of edges. 

In the matching problem, there is an edge from a node representing an object 
to the nodes for each link that touches the object. The number of links per object 
is bounded above by the number of interfaces per object. One expects the number 
of interfaces per object in a problem to remain essentially constant independent of 
the total number of objects in a simulation. Another way of phrasing this is, in a 
simulation problem, one expects an object to be directly related only to a few 
other objects that are physically close to it. One does not expect an object to be 
directly related to all other physically remote objects in the simulation. If this is 
the case, the number of edges m is then O( n), where n is the number of objects 
in the simulation, and the total run time for Dinic's algorithm to find a matching 
is O( n 1.5). 

6.2. Cycle Cut Set 

Levy-Low provide an analysis of their cycle cut set algorithm [LEV83]. For a 
graph with m edges. and n nodes, the algorithm produces a cycle cut set in time 
O( m log n). Using the same assumptions as were used in the matching analysis, 
the number of edges can be assumed to be O( n). This gives a run time complex­
ity of O(n log n)for the cycle cut set with n the number of objects in the simula­
tion problem. 

6.3. Solution of Data Flow Graph 

In a simulation problem that results in an acyclic data flow graph, the solu­
tion algorithm will have to solve n equations, one for each object, and ship n 
results. If the assumption of the last two subsections that the number of inter­
faces per object is 0(1) is valid, each equation evaluation represents an amount of 
work that is 0(1) in terms of the number of objects n. Hence, the solution of an 
acyclic graph simulation requires time O( n ). 

The analysis rapidly becomes more complex if a cyclic data flow graph results 
from the simulation definition. An analysis of Newton's method and quasi­
Newton methods is needed first. 

When using divided difference methods to compute derivatives, each iteration 
of Newton's method requires n 2 +n function evaluations, n to compute the origi­
nal value of the function and n 2 to compute n partial derivatives for each of the 
n equations [ATK78]. The overriding cost comes from solving the linear equation 

F (xn)5" +1 = -T(xn) 

where F is the Jacobian, "0 is the correction vector, and TCxn) is the current func­
tion vector. In general, solving an n x n system like this requires O( n 3) opera­
tions, so the cost for each iteration of a standard Newton's method is O( n 3). 
Quasi-Newton methods are faster but only by a constant factor if they are general 
enough to solve an arbitrarily complex system of equations [ATK78] . 
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Suppose the same system of equations is solved using the SPANK solution 
technique. A cyclic graph will result in the selection of some number c of cut set 
objects whose vahtes will be guessed. As noted in section 5, this results in a new 
set of e equations in e unknowns to be solved by a standard Newton method. 

Computing the Jacobian for these c equations is performed in the same 
fashion as for a general Newton's method solution. The current value of the c 
functions is computed by pushing the current guesses through the data flow graph 
in time O( n ). The c partial derivatives for a given variable are obtained by 
adding a delta to that variable and pushing the guesses through the graph at cost 
O(n) for each cut set node. Thus the Jacobian can be computed in time 
O(cn+n ). 

In this cycle cut set case, the Jacobian is a e x e matrix C ( ~); solving 
C( cn)(S<n+l) = -/ (cn) for ~+l requires time O(c 3). The total time needed for 
each iteration of the solution is O( c 3+cn +n). Since the size, c, of a cycle cut set 
satisfies 1 <c < n, where n is the number of objects, the cost per iteration of 
the SPANK solution technique is O( c3 + en). The implemented· solution 
method's speed relative to Newton's method is dependent on the size of the cycle 
cut set, c. 

The expected size of the cycle cut set can be determined by the analysis of 
pseudo-random networks. Such problems are notoriously difficult to attack. 
When legitimate probabilistic analysis proved to be too difficult, empirical studies 
were used to determine the expected size of the cycle cut set. The results of these 
studies for several types of pseudo-random graphs are shown in tables 6.1 through 
6.3. 

The first table shows the size of the cycle cut set obtained from the Levy-Low 
algorithm for random graphs with no locality. Each node in these graphs was 
given a set of N directed edges to neighbors selected with equal probability from 
amongst the entire node set. 

The results in tables 6.2 and 6.3 are probably closer to the behavior of actual 
simulation problem networks. In this case, a locality condition is placed on the 
pseudo-random edges. The nodes are ordered, and each node is only assigned 
edges to a set of nodes within L behind or ahead of itself in the ordering. One 
can argue that simulation problems should display such locality characteristics. A 
physical object is generally affected by some set of physically adjacent objects, but 
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Average Number of Nodes in Network 
Number of 
Interfaces 2 4 8 16 32 64 128 256 512 1024 

2 1 1 4 2 3 3 3 2 2 4 
4 1 3 4 2 6 12 18 36 67 141 
8 1 3 3 7 15 27 58 105 225 441 

16 1 3 5 11 22 41 91 174 354 702 

Table 6.1: Size of Levy-Low algorithm 
cycle cut set for·entirely random edge selection. 

An examination of some common object types defined for building energy 
simulation models indicates that the average number of inputs for an object 
ranges somewhere between four and eight. Assuming the worst case, an average 
of eight interfaces per object, the cut size c is still seen to be less than n /2. This 
would result in a speedup by a factor of 8. In the four interfaces per object case, 
c <n /4 and the speedup is 64. 

Average Number of Nodes in Network 
Number of 
Interfaces 2 4 8 16 32 64 128 256 512 1024 

2 1 1 1 2 2 5 9 19 29 53 
4 1 1 3 3 5 11 26 48 90 187 
8 1 2 4 6 13 29 59 115 230 4"'') 0_ 

16 1 3 6 11 22 49 108 223 442 875 

Table 6.2: Size of Levy-Low cycle cut set for random selection 
from a set of 10 nodes ahead of and behind the current node. 
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Average Number of Nodes in Network 
Number of 
Interfaces 2 4 8 16 32 64 128 256 512 1024 

2 1 1 2 1 3 5 11 22 47 99 
4 1 1 1 2 7 14 28 58 114 235 
8 1 2 3 6 15 28 57 113 224 435 

16 1 3 6 12 24 51 100 204 398 802 

Table 6.3: Size of Levy-Low cycle cut set for random selection 
from a set of 5 nodes ahead of and behind the current node. 

The speedup will be the same for quasi-Newton methods of solution. These 
methods solve a set of n equations in time rT where T is the time needed for 
solving n equations with Newton's method and r < 1 is a constant. The time 
for solving the cycle cut set equations will now be rTc' where Tc is the time to 
solve the cycle cut set with Newton's method. The speedup, rT / rTc = T / Tc is 
the same as with Newton's method. 

The conclusion is that the cost per iteration of the solution method imple­
mented in SPANK is significantly less than that of traditional methods. As long 
as the number of iterations required for Newton's method to converge does not 
increase in the cut set method, this new method is preferable. 

6.4. Convergence of Solution Methods 

The analysis of convergence for iterative methods is another complex prob­
lem. A brief argument that the convergence behavior of the new method should 
be no worse that that of a traditional Newton's method follows. 

In the general n variables, n equations case, Newton's method begins with a 
guess of the solution of the equations. At this point, the values of the equations 
and their derivatives are computed. These derivatives are then used to find a 
point where all functions would become zero, if the slope of all functions were con­
stant (this is the process of solving the Jacobian for <5). 

In the cut set case, only c < n variables and equations remain. For the 
remaining variables, an initial guess is made as above. The partial derivatives of 
the c equations can be derived by applications of the chain rule from the partials 
used in the general case. Essentially, n - c of the original equations are already 
solved. Since the remaining equations and their derivatives are derived from the 
original set, no new problems of bad 'behavior around the zero are introduced. On 
the average one would expect the c equations problem to converge at least as 
rapidly as the n equation problem. 
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Given that the number of iterations, k, for the cycle cut set equations is not 
greater than that for the full Newton's method, a final comparison of the run 
times can be made. The cost for k iterations of the full Newton's method is 
O(kn 3 ). For localized pseudo-random graphs expected in simulation problems, the 
cost of the SPANK method is 0 (kc 3 + n 15 + n log n) including the matching 
and cycle cut set times. The performance of the SPANK solution method is 
clearly superior since c is only a fractional part of n. If c < n /2, the new 
method is at least eight times faster than the traditional Newton's method. In 
the case c < n /4, the speed of the new method is at least 64 times faster than 
that of the traditional methods. 

6.5. Non-Uniqueness of Solution Method 

In general, neither the matching problem solution for a given simulation, nor 
the cycle cut set for a given matching, are unique. Different choices of matching 

. may result in different sizes for the cut set and different convergence behavior for 
the solutions. The current implementation of SPANK does nothing to attempt to 
pick a matching that has the smallest minimum cycle cut set. 

Lemma 5: 

Different matchings can result in different sizes for minimum cycle cut sets. 

Proof by example: 

Fig. 6.4a shows a data flow graph with 3 cycles. Node A is matched to 
hyperedge x and node B to hyperedge y. The minimum cut set for this graph 
is {A, B}. In fig. 6.4b, the data flow graph that results when A is matched to 
y and B to x is shown. In this case, a cut set is {A}. 
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Fig. 6.4a: A data flow graph with cycle cut set {A,B} 

The theory of hypergraphs is complex and limited [BER73]. It does not seem 
likely that one could select a matching that results in a data flow graph with 
the smallest cycle cut set. Local optimizations to decrease the size of the cut 
set may be possible. It will probably take considerable theoretical work to 
say anything stronger about the relation between a particular matching and 
the size of the resulting cycle cut set . 

Fig. 6.4b: A data flow graph for the same problem with a 
cycle cut set consisting of {A} . 
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7. A SAMPLE PROBLEM 

A short sample problem is described from specification through solution in 
this section. The problem involves determining the control on an outside inlet air 
damper in order to keep recirculating air in a room at a constant predefined flow 
rate and enthalpy. A depiction of the physical problem is found in fig. 7.1. The 
problem models the mass and enthalpy of air in a ventilation system; these two 
quantities are assumed to define the complete state of air for this problem. 

XBL-8612-12874 

Recirculated Air 

Mass 
Distributor 

'III Exhaust Air 

Outside Air Input 
(Constant Enthalpy) 

Room (Zone) 

Desired enthalpy 
is a parameter 

, ',?:: , ':, :. " : ,,;. 

'. ,,',' 
, , , 

! 

Heat 
Added 

Fig. 7.1: Physical layout of recirculation problem 

7.1. Specification 

Two types of macro objects, a zone and a distributor, composed of three 
types of objects are needed for this simulation. The zone, a room with a window 
to admit sunlight, is a macro object composed of two objects: a mass collector 
which defines the mass balance and an enthalpy zone object which defines the 
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energy balance for the zone. The distributor is also composed of two objects, one 
for mass and one for energy balance. The mass balance object is a mass collector 
type, here used for··its inverse function, while the energy distributor is an enthalpy 
distribution object. The definitions of the three object types and the two macro 
object types are listed in fig. 7.2. Fig. 7.3 shows the definitions of the functions 
used by the three object types. In fig. 7.2, notice that interface q has a null inter­
face definition. This demonstrates the null interface feature; if, for some reason, 
the modeler knows that q should never be the determined variable for a zone, it is 
not even placed in the matching computation. The code specifying the simulation 
problem is shown in fig. 7.4. 

define mass_coll { 

} 

mass_in1 = difference(mass_out, mass~n2); 
mass_in2 = difference(mass_out, mass~n1); 
mass_out = sum(mass~n2, mass~n1); 

Fig. 7.2a: Definition of mass collector object. 

define enthJ;one { 

} 

enth~n1 = zone_dif(mass_out, enth_out, heat~n, mass~n2, 
enth~n2, mass~n1); 
enth~n2 = zone_dif(mass_out, enth_out, heat~n, mass~n1, 
enth~n1, mass~n2); 
heat~n; /*real definition is = heatJIux(m3, h3, m1, h1, m2, h2);* / 
entlLout = zone-sum(mass~n1, enth~n1, mass~n2, enth~n2, 
heat~n, mass_out); 
mass_in1 = zone_dif(mass_out, enth_out, heat_in, mass~n2, 
entUn2, enth~n1); 
mass_in2 = zone_dif(mass_out, enth_out, heat_in, mass~n1, 
enth~n1, enth_in2); 
mass_out = zone-sum(mass_in1, enth~n1, mass~n2, entlLin2, 
heat~n, entlLout); 

Fig. 7.2b: Definition of enthalpy zone object. 
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7.2. Solution 

Actual solution computations for the problem produced the output in fig. 7.5. 
Notice how rapidly Newton's method converges for well behaved problems like 
this. This small example hopefully gives the reader an idea of the way in which 
much larger, more complex simulations could be specified and solved. 

define enth_dist { 

} 

enth-1n = equiv( enth_out); 
enth_out = equiv(enth_in); 

Fig. 7.2c: Definition of enthalpy distributor object. 

macro zone 

{ 
declare enth_zone e; 
declare mass_coll m; 

link mass_out(m.mass_out, e.mass_out) 
link mass-1nl(m.mass_inl, e.mass_inl) 
link mass-1n2(m.mass_in2, e.mass_in2) 

link heat_in( e.heat-1n) 
link enth_out( e.enth_out) 
link enth-1nl( e.enth-1nl) 
link enth-1n2( e.enth_in2) 
} 

Fig. 7.2d: Definition of zone macro object. 
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macro dist 

{ 
declare mass_coli m; 
declare enth_dist e; 

link mass_in(m.mass_out) 
link mass_outl(m.mass~nl) 
link mass_out2( m.mass~n2) 

link enth~n(e.enth~n) 
link enth_out( e.entlLout) 
} 

Fig. 7.2e: Definition of distributor macro object. 

double sum(args) 
double args[]; 
{ 
return(args[O] + args[l]); 
} 

Fig. 7.3a: Function sum. 

double difference(args) 
double args[]; 
{ 
return(args[O] - args[I]); 

/* End of sum */ 

} /* End of difference * / 

Fig. 7.3b: Function difference. 

double equiv(args) 
double *args; 
{ 
ret urn( * args ); 
} 

Fig. 7.3c: Function equiv. 
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double zone_dif(args) 
double args[]; 
{ 
return((args[O] * args[l]- args[2] - args[3] * args[4])/ args[5]); 
} 

Fig. 7.3d: Function zone_dif. 

double zone,3um(args) 
double args[]; 
{ 
return((args[O] * args[l] + args[2] * args[3] + args[4])/ args[5]); 
} 

Fig. 7.3e: Function zoneJum. 

double heat.Jlux(args) 
double args[]; 
{ 
return(args[O] * args[l] - args[2] * args[3] - args[4] * args[5]); 
} 

Fig. 7.3f: Function heat_flux. 

/* Problem is composed of a zone and a distributor * / 
declare dist d; 
declare zone z; 

input heat_flux (z.heat_in) 
input outside_enth (z.entlLin2) 
input desired_enth(z.enth_out, d.entlLin) 
input recirc_mass( z.mass_inl, d.mass_out 1) 

link recirc_enth( d.enth_out, z.enth_inl} 
link zone_exit..JIlass(z.mass_out, d.mass_in) 

Fig. 7.4: Problem specification for recirculation problem. 
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Inputs 

Run 1 Run 2 

recircJIlass 500 1000 
desired_enth 20 13 
outside_enth 14 12 
heat.Jlux 1000 2500 

Successive Values of Cut Set Variable outsideJIlass 

1.00 1.00 
166.66 2499.74 
166.67 2500.000050 

2500.00 

Outputs 

outsideJIlass 166.67 2500.00 
exiting_mass 166.67 2500.00 
zone_exi tJIlass 666.67 3500.00 
recirc_enth 20.00 13.00 

Fig.7.S: Results of two runs of recirculation problem. 

8. FURTHER DEVELOPMENTS 

A few suggestions for further development of SPANK are presented in this 
section. The current version has been written with many of these enhancements 
in mind, so adding them should be relatively simple. 

8.1. Dynamic Problems 

Perhaps the most interesting problem for further development is the intro­
duction of dynamic problems. The current system solves only static problems 
unless great efforts are taken to introduce time dependent equations. Adding the 
ability for problems to involve derivatives with respect to time would greatly 
increase the usefulness of SPANK. To do this, a variety of changes would have to 
be made. First, object interfaces would have to be modified to allow time deriva­
tives to be specified. Second, the ability to solve time derivatives would have to 
be added. One approach would be to encase the solution program in an iterative 
solver which would reevaluate the static solution repeatedly, altering the time by 
some time step D.t. Time derivatives can be treated as normal variables and 
solved for at each time step. Past values of variables with time derivatives and 
the values of the derivatives can be input to numerical integration routines to find 
new values for the variables. This will require introducing a database to store 
past values of all links, as well as some intelligence to control the value of the 
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time step. The time step value will be critical for controlling the stability of the 
results. 

8.2. Complex Links 

A nat ural extension of links is to allow one macro link to carry a related 
group of single links. For instance, it might often be natural to link the mass and 
enthalpy interfaces of one object as a pair to the mass and enthalpy interfaces of 
another object. The idea of allowing types other than double precision floating 
points on links has also been considered. The interface of an object would have to 
be modified to specify the type of the interface. The need to do computations 
with and solve for varied link types makes this a comple~ change to implement. 

8.3. Testing and Analysis of Networks 

A more extensive analysis of the types of networks that would result from 
simulation problems is needed. There is no currently available set of network 
defined simulations to analyze so this will probably have to wait until some users 
have developed problems for SPANK. The nature of networks produced can lead 
to a better idea of the usefulness of the solution technique. 

8.4. Problems with SPANK 

SPANK has numerous shortcomings in the current implementation; a few of 
the more critical are discussed here. 

First, each interface of an object requires a functional relation to all other 
interfaces in the form of a C function. For simple functions, it would be reason­
able to have the user input an object's equation only once. A program like 
.MACSYMA could be used to derive the proper form of the equation once a depen­
dent interface has been selected. 

Second, there has been a great deal of concern about the data abstraction 
provided by the objects. As soon as a network specification language program is 
interpreted, all objects and links are combined into a large network structure. 
More generality in future solution techniques might be possible if the objects were 
maintained as abstract data types throughout the specification and solution pro­
grams. 

8.5. Higher Level Interfaces 

The network specification language is not the most elegant interface to 
specify network simulation problems. It is not difficult to imagine a number of 
enhancements that would increase the power and decrease the complexity of the 
language. 

Graphical interfaces hold great potential for specifying networks. Since net­
works are a graphical structure, it is natural to define them using graph drawing 
packages, many of which are already available. Furthermore, in many problems 
the network can be drawn to closely resemble the physical situation being 
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modeled. In the future, this holds the hope for a direct translation from 
engineer's drawings to a network simulation language program. 

9. CONCLUSION 

The SPANK system implements a number of new techniques for simulation 
problems. The idea of defining and solving simulation problems in the form of 
networks appears to have significant advantages over traditional monolithic pro­
grams. 

Specifying simulation problems in terms of a network allows data abstraction 
to be introduced. SPANK objects are instances of abstract data types that hide 
the implementation of an algorithm. SPANK links allow objects to be joined to 
form a simulation problem without knowing details of the objects' implementa­
tions. The equation abstracted by an object can be modified without changing 
the way the object is linked into programs. This allows models to be more easily 
developed and updated than in traditional simulation programs. Sharing of 
models between different model development sites is also easier; only the definition 
of a new object type needs to be shared. SPANK allows algorithms to be 
developed, updated and shared without any changes to any other part of the 
simulation program unlike traditional programs that often require massive 
modifications to achieve changes. 

The solution method implemented in SPANK, naturally defined in terms of a 
network, is also an important improvement. Analysis of the solution technique 
indicates that simulation problems can be solved from eight to sixty-four times 
faster than with traditional techniques. This increase in speed should make a 
number of larger simulation problems practical to run. 

A number of problems remain in SPANK. While data abstraction holds 
many advantages, it is not clear that SPANK's choice of physical objects as the 
unit of abstraction is the most appropriate. Also, the boundaries of this abstrac­
tion are violated by the solution program. This may impede future development 
of more advanced solution techniques. The SPANK network simulation language 
is primitive; more sophisticated interfaces are needed. Finally, a number of 
theoretical results are needed to fully analyze the solution method. In particular, 
the relation between a particular matching and the size of the resulting cycle cut 
set needs to be examined. A better understanding of this relation could lead to a 
further reduction in the size of cycle cut sets. Solving these problems in SPANK 
should lead to even more powerful simulation programs. 

It is hoped that SPANK can serve as the foundation of a new generation of 
simulation systems. These new systems should both simplify and accelerate the 
solution of simulation problems. Improved simulation systems should in turn lead 
to improvements in engineering and other fields that are heavily dependent on 
sim ulations. 
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