
Lawrence Berkeley National Laboratory
Recent Work

Title
A NETWORK DEFINITION AND SOLUTION OF SIMULATION PROBLEMS

Permalink
https://escholarship.org/uc/item/2kg6w0v2

Author
Anderson, J.L.

Publication Date
1987-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kg6w0v2
https://escholarship.org
http://www.cdlib.org/

; ..

LBL-21522
UC-32 c:..~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

APPLI ED SCI ENCE
DIVISION

A Network Definition and Solution of Simulation Problems

J.L. Anderson

September 1987

APPLIED SCIENCE
DIVISION

OCT 1 9 1:~87

U8P'· P.y liN") h ,. i : •. \ 'L

DOCUMI=/\lTS C'f-CT ... -. .:Jc ION

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL - 21522

A NETWORK DEFINITION AND SOLUTION

OF SIMULATION PROBLEMS

ABSTRACT

Jeffrey L. Anderson

Simulation Research Group
Applied Science Division

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

September 1986

Most software tools currently used to solve simulation problems are monol­
ithic FORTRAN programs. Such programs retard advances in modeling by being
inflexible, hard to modify, and hard to use. Simulation programs can be defined
in terms of a network of physical objects and links. The network concept allows
modeling algorithms to be defined as abstract data types called objects. Objects
separate the details of a model from the interface needed to use it in a simulation.
This allows a network simulation program to be more flexible and more easily
modified than traditional simulation programs. A network simulation program
kernel that provides basic tools for simulations is described. The kernel provides
a language designed to define simulation networks and a solution technique for
simulation problems that works well with network definitions. This method is
analyzed and shown to be faster than traditional solution methods by a
significant factor. A network simulation problem kernel providing data abstrac­
tion should accelerate advances in modeling by providing facilities to create flexi­
ble, easily modified simulation programs.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy,
Office of Building and Community Systems, Building Systems Division of the U. S. Department of
Energy under Contract No. DE-AC03-76SFOOO98.

- 1 -

INTRODUCTION

vVhile simulation was one of the first computer applications to be explored, it
has been among the last to advance with improvements in software technology.
Most current large simulation systems are written in FORTRAN; these simulation
programs often involve more than 100,000 lines of FORTRAN tied together in a
rigid structure of subroutines and common blocks. The systems are inflexible;
often even simple changes can require expert programmers and several months of
work.

The immense difficulty associated with modifying large FORTRAN programs
has a number of adverse effects on the simulation field. Algorithms modeling a
phenomenon can not be easily varied or updated as models improve. It is exceed­
ingly difficult to add models of new phenomena that were not considered when the
original program was written. Communications between modelers at different
sites can be severely restricted. A subroutine written to model a phenomenon for
one FORTRAN model is rarely easily inserted into a different FORTRAN model.
Even worse, local updates to a model can make versions of the same original
FORTRAN program incompatible.

Many of these problems can be solved by introducing an object-oriented ker­
nel system for simulations. A simulation kernel provides basic tools for defining
and solving simulations without placing many restrictions on the algorithms used
in the simulation [PLA85]. This paper discusses the Simulation Problem Analysis
Kernel, SP ANK. SPANK was designed as a prototype to guide the development
of more complete and robust kernel systems.

The SPANK system provides tools to define and solve a simulation problem
that is defined in terms of a network. A network is a group of objects that model
individual phenomena linked together to model some larger problem. SPANK
builds upon earlier simulation network software developed by Levy and Low
[LEV83] and later by Sowell, Taghavi, Levy and Low [SOW84]. Other groups have
also built simulation programs that use approaches similar to networks to define
problems [KLE76]. SPANK gains many of its advantages over earlier simulation
programs by being an object-oriented system that provides data abstraction
[STR84] for objects in the network.

Data abstraction is the concept of separating the implementation details of a
subprogram from its interface. In a network simulation, objects in a network can
be linked together to form a problem without knowing any details of the method
used by the objects to model a particular phenomenon. Conversely, the internal
details of the object can be changed without affecting the way in which the object
is linked into a network to define a problem.

By providing data abstraction, SPANK accrues many advantages over tradi­
tional programs. The details of the implementation of an object are independent
of the .problem specification (but, unfortunately, not independent of the solution

- 2 -

methods in the current implementation). Therefore, objects can be modified and
new objects introduced without concern for any other part of the system.
Different sites caQ more easily share developments; all that need be done is to
share definitions for new types of objects. These abilities will allow simulation
techniques to evolve more quickly than they have in the past.

SPANK also examines a relatively new solution technique for simulation
problems that are defined in terms of networks. The solution technique is found
to be considerably faster than more traditional methods that could be applied to
simulation problems.

This report begins by providing a general overview of the idea of defining a
simulation problem in terms of a network structure in section 2. Section 3 takes a
closer look at the implementation of a simple language that can define simulation
networks. Sections 4 and 5 are concerned with the numerical solution techniques
implemented in SPANK. Instead of using more traditional solution techniques for
numerical problems, SPANK implements a new technique that is naturally
applied to simulations defined as networks. The relative merits of this new tech­
nique, compared to more traditional solution methods, are examined in section 6.
Section 7 provides a complete example of a simulation problem implemented with
SPANK. Finally, section 8 examines some shortcomings of SPANK and further
developments that could enhance the SPANK system.

The SPANK kernel has been successfully implemented and used to define
several complex simulations in the building energy analysis field. It appears to be
much easier to use than traditional simulation programs while providing greater
flexibility for development of new simulation techniques. Hopefully, this project
can serve as the basis for more advanced simulation kernels that will find
widespread use in all simulation communities.

2. OVERVIEW OF NETWORK APPROACH TO SIMULATION
All problems in SPANK are viewed as networks of physical objects linked

together by physical connections. This makes it simple to define many physical
problems in SPANK. This section examines the idea of a network definition of a
simulation problem. Certain solution techniques for simulation problems are most
naturally implemented on simulation problems defined as networks. Such a solu­
tion technique is used in SPANK; an introduction to this solution technique is
also provided here.

2.1. Network Terminology and Depiction

For the purpose of this paper, a network is a hypergraph consisting of a set
N of nodes {nl' n2' ... , nn}, a set E of hyperedges {el, e2' ... , en}, and a function
<P from the set E to the set of all non-null'subsets of N. The nodes represent
physical objects in a simulation problem and are also referred to as objects. A
hyperedge, also called a link, is a structure that connects one or more nodes
together [BER73]. The hyperedges may be either directed or undirected; a directed

- 3 -

hyperedge e distinguishes a single element of the set ¢(e) as the source node. All
other nodes in ¢(e) are destination nodes of the directed hyperedge. Throughout
the paper, depictiens of hypergraphs will have directed hyperedges marked with
an arrow pointing to the destination nodes; a hyperedge without an arrow is
assumed to be undirected.

2.2. Objects

A physical object is modeled by one or more objects in the simulation net­
work. An object is composed of two related parts, an equation and a set of inter­
face variables. The interface variables represent the set of unknowns in the
object's equation. The equation defines a functional equality that must be satisfied
by the interface variables.

A simple example of an object from the building energy simulation field is a
mass collector, a device in a ventilation system that has two input ducts which
merge into a single output duct. The mass of the combined output air flow from
a mass collector must equal the sum of the masses of the input flows. An object
modeling a collector has three interface variables: mass_out, mass_in 1, and
mass_in 2. The equation defined between these interfaces is:

An object can express only a single, albeit arbitrarily complex, equation between
its interfaces. A physical object normally requires several equations to be satisfied
by some physical parameters. Several network objects, or a macro object, must
be used to model physical objects of this type. Macro objects, introduced in sec­
tion 2.5, can be used to group related network objects into a single entity.

2.3. Links

Links allow independent objects to be connected to form a simulation prob­
lem. As a simple example, consider an air duct system in which four ducts are
combined into one, first by combining two pairs of ducts and then by combining
the two resulting ducts, fig. 2.1a. The network for this problem is represented in
fig. 2.1 b. It is interesting to notice that the simulation network can be drawn to
bear some resemblance to the physical situation being modeled. Defining network
objects that correspond to physical objects causes this to be the case in many net­
work simulations. Note that there is no concept of direction defined for the links
in the network.

- 4 -

XBL-8612-12873

Fig. 2.1a: The Physical System of Ducts Being Modeled

An alternative perspective of networks comes from viewing each object as
defining an equation, and each link as defining a variable shared by the equations.
A network can then be viewed as a set of simultaneous equations. An example is
the set of equations xy = a and x - y = o.

mass_inl
masa_out

m&U-in2

mUII_inl
mUll_out

mUII_in2

m _inl
m out

mILSIl-in2

Fig. 2.1b: Network representation of three mass collectors which
combine four air flows into one. Boxes repr,esent objects, lines

ar.e links and interfaces are labeled.

- 5 -

PRODUCT a input a -
in.l· io.2

y X

I

an.l an.2

DIFFERENCE 0 input 0

Fig. 2.2: A network definition of the simultaneous
equations: xy ~ a and x - y = o. The boxes on the right

define the parameters a and 0 for the problem.

These equations are solved when x = y = ± Va. A network definition of
this problem is shown in fig. 2.2. An important point follows from this alternate
view of networks. Any simulation problem that can be defined by a set of simul­
taneous equations can be immediately translated into network form. Using a net­
work to define a simulation problem in no way limits the problems that may be
defined.

2.4. Network Based Solution Technique

There are a variety of numerical methods that can be used to solve simula­
tion problems. Since SPANK problems are defined in terms of a network, it
seems reasonable to employ a method that is naturally defined in terms of a net­
work. The solution method chosen is a relatively new one originally developed by
Levy and Low [SOW84].

The Levy-Low method attempts to pick a dependent variable for each
object's equation. For instance, in the mass collector object defined earlier in this
section, each of the three interface variables can be defined in terms of the other
two:

mass_out = mass_in 1 + mass_in 2
mass_in 1 = mass_out - mass_in 2
mass_in 2 = mass_out - mass_in 1

Selecting one of these equations for the object selects a dependent variable.
The dependent variable is the output variable for the object. The other interface
variables are input variables, and the object's function becomes the computation
of the output variable from the input variables. In some cases, it is possible that

- 6 -

only some subset S of the interface variables can actually be computed from the
remaining interface variables. Only members of S are eligible to be chosen as the
dependent variable~

The Levy-Low technique is only viable when output variables are assigned so
that each link is connected to only one output variable. The link can then be
thought of as a directed hyperedge, carrying data produced from one object's out­
put to the input interfaces of some other objects. This directed network is a data
flow graph; details on this structure can be found in section 4. Nodes in the
hypergraph produce results from inputs carried on incoming hyperedges and send
the results to other nodes along outgoing hyperedges. The network simulation
problem is solved by introducing input data and then letting the results of this
data flow through the graph. Complications, such as the need for iterative solu­
tions, nearly always arise in a simulation problem, but the general solution tech­
nique remains the same. Details of the solution technique are discussed in section
5.

2.5. Macro Objects

In order for the solution method to function, each object must define a single
equation. In general, physical. objects are more complicated than this; they require
a number of equations among various physical quantities. It makes sense to
group all the equations associated with a physical object into a single entity called
a macro object. A macro object has a set of interface variables and may be linked
into simulation networks like an ordinary object. Unlike an ordinary object, the
macro object may contain an arbitrarily complex set of other objects and links
that define many equations among its interface variables. Macro objects may con­
tain other macro objects nested to any depth. The solution technique expands
instances of macro object types into their constituent set of simple objects and
links.

2.6. Advantages of Networks

Data abstraction can be defined as "to separate the incidental details of the
implementation of a subprogram from the properties essential to the correct use of
it. Such a separation can be expressed by channeling all use of the subprogram
through a specific interface." [STR84] The network technique accrues many of the
advantages associated with object-oriented languages that provide data abstrac­
tion. Objects and macro objects in a network are instances of abstract data
types. The equation(s) enforced between the interface variables need not be
known to specify a simulation. All that is needed is to link the interface variables
together to model a physical situation. It is no longer a problem to introduce a
model of a physical situation that was not anticipated when the network software
was written. Exchange of ideas between members of a modeling community is
facilitated; to share new modeling techniques, different groups need only provide
definitions of new object types. The benefits accrued from data abstraction are
the greatest advantage of the network technique over previous simulation
methods.

- 7 -

3. NETWORK SPECIFICATION LANGUAGE

Many present day simulation programs are hampered by poor user interfaces.
Interfaces are often either so rigid as to be entirely inflexible [DOE8lj, or so com­
plex as to be incomprehensible [ACS75, CONnj. This section describes a network
specification language, NSL, that provides a simple set of commands to allow
unsophisticated users to link together simulation problems from a set of
predefined object types. More sophisticated users can define their own object and
macro object types. This section begins by describing NSL which is used for
description of simulation networks in SPANK. The section then discusses higher
level interfaces NSL's relationship to more traditional object-oriented languages.

3.1. Details of the Network Specification Language

The network specification language must provide constructs that allow users
to create objects and to link interfaces of these objects together. Methods for
defining new object and macro object types, and for specifying the input of data
are also needed. This leads to five commands in the basic language implementa­
tion: define, declare, link, input and macro. Each command is described below.

1. DEFINE The define statement 'allows an object type with a particular
equation and interface variables to be defined. An example
definition is shown in fig. 3.1. After the key word define is a
type name mass_coli. The definition of the interface variables
for a mass_coli is enclosed in braces. The name of each interface
is found on the left hand s~de of an equal sign. The function on
the right side defines the formula relating the interface being
defined and the other interfaces. For instance, the interface
mass_out is defined as :E(mass_inl, mass_in2). The functions
for the mass_in 1 and mass_in 2 interfaces should be different
forms of the same equation. The functions used to define the
interfaces are standard C functions that receive their arguments
as an array of double precision values. The C code for function
sum can be seen in fig. 3.2. If no function is defined for an inter­
face, this interface will not be selected as the dependent interface
by the solution technique.

define mass_coli {

}

mass~nl = difference(mass_out, mass_in2);
mass~n2 = difference(mass_out, mass_inl);
mass_out = sum(mass~nl, mass_in2);

Fig. 3.1: Definition of object type mass_coIl.

- 8 -

dou ble sum(args)
double args[];
{

return(args[O] + args[l]);
} /* End of sum */

Fig. 3.2: Function sum.f.c.

2. DECLARE Declarations create particular instances of an object type. The
syntax is declare followed by a type name from a previous
definition. The type name is followed by a list of names of
object instances of this type. For example, fig. 3.3 shows the
program to specify the four-way mass collector that was used in
a previous example. Three mass collectors, me 1, me2, and me 3
are declared.

declare mass_coIl mcl, mc2, mc3;

link intern_massl(mc1.mass_out, mc3.mass~nl)
link intern_mass2(mc2.mass_out, mc3.mass~n2)
link outpuLmass(mc3.mass_out)

input mass~nl(mc1.mass~nl)
input mass~n2(mc1.mass~n2)
input mass~n3(mc2.mass~nl)
input mass~n4(mc2.mass~n2)

Fig. 3.3: Specification of the Four-Way Mass Collector Problem

3. LINK

4. INPUT

The link command creates a link between one or more interface
variables. The syntax can be seen in fig. 3.3. The keyword link
is followed by a link name and an interface list enclosed in
parentheses. The interface list specifies each interface connected
by the link in the form objeeLname .interfaecname. In the
figure, link intern_mass 1 connects the mass_out interface of
object me 1 to the mass_in 1 interface of object me 3.

The input command allows the user to indicate that an input
data value will be available to one or more interfaces of the net­
work. An input value is a parameter of the simulation that the
user wishes to vary at the time the solution program is executed.
The syntax is similar to that for links; the keyword input is

- 9 -

5. MACRO

followed by an input name. This precedes an interface list in the
same form as those used for links. In fig. 3.3, there are four
iRputs declared, one to each of the mass input interfaces of
objects me 1 and me 2.

The macro command defines a macro object type. The network
specification language expects the definition of a macro type to
contain a set of linked objects. The interfaces of a macro object
type are a subset of the links defined in its definition. Section 7
provides an example of the use of the macro command.

3.2. Higher Level Interfaces

While the language presented in the previous pages is probably reasonable for
use by SPANK system designers, it may be too complex for the casual simulation
user. In general, such users will not want to be troubled with defining object
types or C functions to implement interfaces. Instead, they will want access to a
library of predefined objects and macro objects which can be linked to define a
simulation problem. SPANK allows libraries of object types to be defined and
accessed by default if no object definitions are provided in a simulation
specification program. While even higher level interfaces, graphical interfaces for
example, are obviously of interest, they were beyond the scope of this work.

3.3. Relation to Traditional Object Oriented Languages

The network specification language is closely related to more traditional
object-oriented languages such as SIMULA, SMALL TALK, or C++ [STR84].
Fig. 3.4 shows equivalences between concepts in C++ and the network
specification language.

C++ Network Specification Language

class object type
class instance object
internal data (private) equation
mem ber or friend functions links
inheritance, derived classes macro objects

Fig. 3.4: A comparison of features in the
Network Specification Language and C++.

An object is an instance of an object type which can be mapped to the C++
concept of a class. The object hides its internal details, i.e. its equation, just as a
class instance hides its private parts. Links cause a certain order of execution to
be imposed on the object's internals, just as a set of calls to member or friend
functions act in a C++ program. There is also a notion of inheritance; a macro
object contains the internal data of its various component objects. Since macro

- 10-

objects can contain many types of objects, this is more closely related to the mul­
tiple inheritance available in SMALL TALK. Because of this close relation between
C++ and the ne~work specification language, many of the benefits accrued by
object-oriented languages also exist in the network specification language. In par­
ticular, it is easy to change the internals of an object as long as the interface
remains the same. Errors tend to be localized to the object in which they exist.
Inheritance makes it easy to define more complex objects that are still comprehen­
sible and easy to maintain. The network specification language is essentially an
object-oriented language specifically designed for defining network problems.
Unlike true object-oriented languages, however, NSL is processed by a solver that
produces a traditional C program.

4. NUMERICAL SOLUTION METHODS
A simulation problem defined as a network can be mapped directly to a set

of simultaneous equations. A traditional method for solving such systems is
Newton-Raphson iteration. SPANK applies graph theory technique to reduce the
size of the system of equations before applying Newton-Raphson iteration. This
section describes the solution technique and the constraints that it places on net­
work defined simulation problems.

4.1. Traditional Solution Techniques
Any network specification language problem in which every interface variable

has been linked can be mapped directly to a set of simultaneous equations. Each
link is mapped to an unknown and each object is mapped to the equation it
defines. Throughout this section it is assumed that every interface has been
linked and that macro objects have already been expanded into their constituent
objects and links.

A network with n objects is mapped to a set of n simultaneous equations; an
object with k interfaces defines an equation of the form:

interfacel = F (interface2 , interfaces, ... , interfacek)

where F is an arbitrarily complex function. While certain simulations may
involve only linear equations, most will be non-linear. A general purpose tech­
nique for network simulation problems must, therefore, be equipped to handle the
solution of systems of non-linear equations.

The traditional technique for solving a system of non-linear equations is
Newton's method [ATK78]. Details on Newton's method can be found in section
5.3.

4.2. Overview of SPANK Solution Method

The SPANK solution method attempts to use techniques based on graph
theory to reduce the number of simultaneous equations that must be solved by
Newton's method. As mentioned in section 2.4, a matching of links to objects can
produce a data flow graph from a network. If the data flow graph is cyclic, it can

- 11 -

not be solved directly; iteration is required. The traditional Newton implementa­
tion treats each variable in the problem as an iteration variable. However, a ver­
tex cycle cut set of .the data flow graph can be used to define a smaller set of equa­
tions that characterize the network. A vertex cycle cut set of size e leads to a set
of e simultaneous equations to be solved by traditional methods. Since "e" is,
smaller than the original number of equations, this new system can be solved
more rapidly.

4.3. Defining a Data Flow Graph

The first step in the SPANK solution method is to create a data flow graph
from the network specification. A data flow graph is a graph that represents a
computation. Such graphs have been used to define computations for so-called
data flow machines [DAV82]. The data flow graph is represented as a set of nodes
and a set of directed hyperedges, one emanating from each node. Each node
represents a computation that is performed on its incoming hyperedges to produce
a result on its outgoing hyperedge. A node can execute its function, called firing,
when all of its inputs are present. When a node fires, it consumes its input data
and sends its output value to all nodes that are destinations of its outgoing
hyperedge. The term data flow is natural; data flows along hyperedges from one
node to another, causing certain nodes to fire and thus producing more data.

y

x

z

Fig. 4.1a: Network Problem Specification

A data flow graph can by obtained from a network by finding a one-to-one
matching of objects to links. Such a matching can be viewed as selecting a depen­
dent variable for each object. This means that the object will define a value for
the link variable to which it is matched in terms of all the other links that are
incident upon the object. Once such a matching is made, a data flow graph fol­
lows quite naturally from the original network definition. Each link becomes a
data flow path between objects. A link points from the object to which it was
matched to all other objects to which it is linked. An example will clarify this
procedure. Fig. 4.1a-e shows a sample network problem, the matching between
objects and links, and the resulting data flow graph.

- 12 -

XBL-8612-12872

Fig. 4.1b: Corresponding Matching Problem

define typel {

}

inl = fl(in2, in3);
in2 = f2(inl, in3);
in3 = f3(inl, in2);

define type2 {

}

inl = rl(in2);
in2 = r2(inl);

declare typel objl;
declare type2 obj2, obj3;

link x(obj1.in2, obj2.in2, obj3.inl)
link y(obj1.inl, obj2.inl)
link z(obj1.in3, obj3.in2)

Fig. 4.1c: Network Specification Language for the Network

- 13 -

y

x

z

Fig. 4.1d: Data Flow Graph

obj1 defines y = f2(x, z)

obj2 defines x = r2(y)

obj3 defines z = r1(x)

Fig. 4.1e: Resulting relations.

4.4. Simulation Problem Networks Have Perfect Matchings

To define a data flow graph from a network, a one-t<rone matching between
the variables and equations must exist in the network. It can be shown that
simulations of physical problems lead to networks that have one-t<rone match­
ings, provided three conditions are met.

1. A simulation of a physical situation should always have a unique solution,
i.e. a set of values for the links such that the equations of all objects are
satisfied. Any problem that has no such solution is not considered a valid
simulation; impossible physical situations do not exist. Problems that have
many solutions are not specified strongly enough. Additional constraints can
be added to create a problem with a unique solution.

2. There should be only a single link for each physical quantity. Providing
more than one link allows the same physical quantity to be simultaneously
assigned different values in a simulation. This does not correspond to any
real physical situation.

3. There must be no redundant modeling of a physical constraint. There should
not be two sets of equations that enforce the same physical constraints on the
same physical quantities. Any redundant constraints must be removed from

- 14 -

a simulation.

A series of Le_mmas proves that a perfect matching ·between objects and links
must exist in a simulation satisfying these conditions.

Lemma 1:

A network that satisfies the three conditions above has the same number of
equations and variables (objects and links).

Proof:

By condition 3, the equations in the network are independent and by condi­
tion 2, the variables are unique. Assume there are n equations. If there are
k<n variables, some of the equations must be redundant which contradicts
condition 3. If there are k>n variables, there can be no unique solution
which contradicts condition 1.

Lemma 2:

Any set S of n equations from a network that satisfies conditions 1 to 3 must
involve at least n variables.

Proof:

If a set of n equations has fewer than n variables, this set of equations is
overdetermined and some set of equations is redundant in violation of condi­
tion 3.

Theorem 1: (Hall's Theorem)

Let X and Y be two bipartite sets that are connected by a set of edges E.
Then there exists a matching in which all elements of X are matched if and
only if for all subsets S of X, W(S)I > lS' I where N(S) is the set of all ele­
ments of Y that have edges to elements of S [ROB84j.

Lemma 3:

In a problem satisfying conditions 1 to 3, there exists a matching in which all
equations are matched.

Proof:

Lemma 2 showed that every subset of j equations has edges to at least j
variables. By Hall's Theorem, there exists a matching in which all equations
are matched.

Lemma 4:

In a problem satisfying conditions 1 to 3, there exists a perfect matching of
equations to links.

- 15 -

Proof:

By Lemma 1, there are equal numbers of equations and links. By Lemma 3,
there exists a matching in which all equations are matched. In this match­
ing, all objects must also be matched.

As long as the three conditions are met, a perfect matching exists and the
solution techniques can be applied. The conditions do not appear to unreasonably
limit simulation problems; a number of Building Energy Simulation problems
have been defined in SPANK and all have had perfect matchings of objects to
links.

4.5. Producing Results from Data Flow Graphs

Once a matching has been used to find a data flow graph, the graph can be
used to compute solutions to the simulation problem. Fig. 4.2 shows an acyclic
data flow graph; it is clear what to do to produce numerical results from the data
flow graph. The input value is introduced to the system. Upon receiving the
value, obj 1 can fire producing variable x. Variable x allows obj2 to fire producing
y. y in turn allows both obj3 and obj4 to fire producing output results.

Any acyclic data flow graph can sequentially fire all its nodes whenever all of
its external inputs are available. A cyclic graph, on the other hand, represents a
problem that involves iteration and cannot be solved immediately [DAV82].

Fig. 4.2: An acyclic data flow graph

4.6. Iterative Solution for Cyclic Flow Graphs

Guessing the values of some of the hyperedges in a cyclic data flow graph can
allow the rest of the graph to execute. Fig. 4.3 depicts making a guess for the
value of ob)·1 's output in the data flow graph from fig. 4.1. Guessing a value for
y, Y guess' allows the rest of the graph to execute. For a randomly selected value
of Y guess' however, the solutions resulting from the flow graph execution are not
related to the answers of the original network in any predictable fashion.

In the original network of fig. 4.1d, Y was constrained to be equal to a func­
tion f 2(X ,z). This constraint has been removed when Y guess is introduced in

- 16 -

,"

fig. 4.3. The values of x and z that result only satisfy the original network prob­
lem if the output y of obj 1 is equivalent to the output y guess of obj 1', an
extremely unlikely-occurrence for a randomly chosen Y guess'

Yguess

x

z

Fig. 4.3: Guessing value of y

It is interesting to notice, however, that y, the output of obj 1, is a function
of y guess' Y = G (y guess)' In order to satisfy the original network definition, the
condition y = Y guess must be fulfilled. This implies that:
Y -Y guess =G (y guess)-Y guess = F (y gues8) = O. But, F (y guess) = 0 is simply a system
of simultaneous equations, in this case a single equation in a single variable. The
classical techniques for solving non-linear systems of equations, outlined in section
4.1, can now be employed to solve for Y gueS8' Each time a function evaluation of
F (a) is called for in the iterative solution method, a is introduced to the data
flow graph in 4.3b as Y guess = a, and G (a) is the resulting value of yproduced by
the graph. A guess a for which F (a) is equal to zero is a solution of the network
simulation problem.

Notice that in the example above, the original network problem was three
equations in three variables. By using the SPANK solution method as a prepro­
cessing step, the number of unknowns that must be solved by a ~raditional itera­
tive method has been reduced from three to one.

This method can easily be extended to apply to arbitrarily complex data flow
graphs. The procedure is to first find a set of objects (objl' obj2' .,. , objn) that
forms a vertex cycle cut set in the flow graph. A vertex cycle cut set is a set of
nodes that, if removed from a graph along with all edges incident to them, results
in an acyclic graph. A new node, obji' , is introduced to the graph for each
member of the cut set. A directed edge is introduced from obJ/ to all nodes to
which obJ'j has a directed edge. The directed edges from objj are then deleted

- 17 -

from the graph.

The n ou~put values (Xl' X2' ... , xn) of the cycle cut set objects
(obJI' ObJ·2' ... , obJn) can be viewed as functions of the n guessed variables
(Xl', xz', ... , xn') produced by the introduced objects (obJ I', obJ·2', ... , obJn').

Xl = GI(x l ' , x2' , ... , xn ')

X2 = G2(x l', X2', ... , xn')

The solution of the original network occurs when the guessed value x/is
equivalent to the resulting value Xi for i = 1, 2, ... , n. This can be expressed as

Xl-Xl' = Gl(Xl' 'X2', ... , Xn')-X/ = Fl(Xl', X2', ... , xn') = 0
X2-X2' = G2(x l', X2', ... , Xn')-X2' = F 2(x l', X2', ... , xn') = 0

, -G (" ')' F (" ') 0 Xn -Xn - n X 1 , X 2 , ... , Xn -Xn = n X 1 , X 2 , ... , Xn =

This is a set of n equations in n unknowns that can be solved iteratively using
Newton or a similar method. The functions:

can be evaluated for particular guesses 0'1' 0'2, ... , an by introducing these values
as the outputs of the guess objects obJ t' , obJ2' , ... , obJ·n' in the flow graph.
The values of

are the outputs of the objects obJ 1, obJ 2 , ... , obJn after the flow graph has exe­
cuted with these inputs.

Since the number of dimensions of the iterative solution problem is the same
as the size of the cycle cut set, it is advantageous to have as small a cut set as
possible. The algorithms employed for determining the cut set are discussed in
section 5. An analysis of the complexity of the solution technique can be found in
section 6.

4.7. Summary of the Solution Technique

A simulation problem defined in network form can be viewed as a system of
• simultaneous equations. One option for solving this system would be to immedi­

ately apply traditional Newton or quasi-Newton methods to the system. Since the

- 18 -

problem is defined in network form, a solution technique that depends on network
representation of the simulation was examined instead. The data flow graph
representation allpws a smaller set of simultaneous equations to be iteratively
solved. There will be one equation for each member of a cycle cut set of the data
flow graph. The entire solution method should be viewed as an attempt to reduce
the number of equations before applying traditional iterative techniques. The
value of this technique will be discussed in section 6.

5. IMPLEMENTATION OF NUMERICAL METHOD
5.1. Matching

An efficient algorithm for matching on a bipartite graph, Dinic's algorithm,
was implemented. The matching will fail and inform the user that an invalid
simulation has been defined if there exists no perfect matching between the objects
and their adjacent links.

Dinie's algorithm is actually designed to determine a maximum flow on a net­
work. The bipartite matching can be converted to a unit network flow problem
by introducing source and sink nodes sand t to the matching graph. Each node
in one of the bipartite sets is attached to the sink; all nodes in the other bipartite
set are attached to the source. The set of edges between the bipartite set in a
maximum network flow from s to t are also edges in a matching. For details on
this algorithm, see the work by Tarjan [TAR83].

5.2. Vertex Cycle Cut Set

A vertex cycle cut set of a hypergraph must be found for every simulation
problem that results in a cyclic data flow graph. The cycle cut set represents the
nodes whose values must be guessed and solved for iteratively. It is always desir­
able to have as few simultaneous equations to solve as possible, therefore, a
minimum cycle cut set of the data flow graph is sought.

Unfortunately, the problem of finding a minimum cycle cut set for an arbi­
trary directed graph has been proven to be an NP-complete problem by Karp
[KAR8l]. An algorithm that produces a small cycle cut set, but not necessarily
the smallest such set, is the best alternative. Fortunately, algorithms producing
small cut sets are known; a modified version of an algorithm due to Levy and Low
[LEV83] is implemented in the SPANK system.

The Levy-Low algorithm is designed to be applied to directed graphs. The
data flow graphs under consideration are directed hypergraphs. Before the algo­
rithm can be applied, the hypergraph is converted to a simple graph. Each
directed hyperedge that goes from a node n to a set of destination nodes
{d 1 , d 2' ... , dd is rep laced by k edges, from n to dj , i = 1 , 2, ... , k.

5.3. Newton's Method

A version of Newton's iteration method for solving systems of non-linear
equations is implemented in SPANK. Newton's method solves systems of non-

- 19 -

linear equations:

f 1 (Xl' x 2' . __ :-, Xn) = 0

f 2(Xl' x 2' ... , Xn) = 0

f n (Xl' x 2 , ... , Xn) = 0

The general iteration involves repeatedly computing a new guess for the vector x
using the old value of both x and the vector function J. In particular,

xi +l = xi _ F-I(xi)J(xi)

where ~ is the current value of the vector X, ~.+1 is the new guess for X, and
J(~.) is the current value of the vector.function J. F(~·) is the Jacobian matrix
of the vector function f evaluate.d at ~. In the implementation, the computation
of the inverse of the matrix F (~) is avoided because of its cost. Instead, the vec­
tor equation

is solved for the correction term 8· + 1 using a Gaussian elimination routine. The
new guess for x is computed as

The Jacobian matrix is computed using numerical forward difference deriva­
tive approximations. Each Jacobian matrix requires n executions of the data flow
graph. Introducing (x 1 + 8, X2' ... , xn) as the inputs of the cut set nodes allows
the computation of the n partial derivatives with respect to Xl from the outputs.
Adding 8 to the other inputs allows computation of all the other partial deriva­
tives in turn.

The iteration is continued until all the vector functions, f i (x I , X 2' ... , xn)
differ from zero by less than a given error tolerance e. The number of iterations
is limited; problems that fail to converge after a fixed number of iterations will
terminate with an error message.

5.4. Comparison of SPANK and Explicit Equation and Derivative
Evaluators

There are software systems that develop explicit solution formulas for equa­
tions and their derivatives. MACSYMA, MIT's symbolic algebraic manipulation
system, is one well-known example; given a set of equations, it can explicitly solve
for a particular variable in terms of all others. For some class of objects,
MACSYMA could be applied to a SPANK data flow graph to solve explicitly for
each of the cut set variables in terms of the guessed values.

- 20-

Derivatives can also be explicitly solved by programs like MACSY1v1A. Each
node in the network could be required to provide' partial derivatives of its equa­
tion with respect ~o each of its interface variables. Making use of the chain rule
and explicit differentiation formulas, the partial derivatives of the output variable
with respect to each cut set variable could be computed each time a data flow
node fired. Data flow hyperedges would carry both the value of the hyperedge
and the partial derivatives of that hyperedge with respect to each guessed cut set
variable. The partial derivatives needed for the Jacobian would be available at
the output arcs of the original cut set nodes.

Explicit methods like these were not implemented in SPANK for a number of
reasons. First, programs to explicitly solve for equations are extremely complex;
adding the ability to explicitly differentiate formulas would further increase this
complexity. Second, the abilities of programs to explicitly solve equations and
derivatives is limited to a standard set of equation types. The SPANK program
allows much more generality by allowing equations to be anything that can be
expressed as a C function. As an example, a C function that iteratively solves a
heat equation could define the equation for a SPANK object. Explicit solving pro­
grams are simply not prepared to handle such general equation types. Finally,
programmers would have to provide partial derivative functions for each interface
variable of each object type. This would greatly increase the difficulty involved
with using SPANK. In order to decrease program complexity, increase capabili­
ties, and decrease programming effort, SPANK does not implement explicit solu­
tion techniques.

MACSYMA-like techniques could be used to enhance SPANK and SPANK
techniques could be used to enhance MACSYMA. For example, SPANK objects
require explicit formulas for each interface variable. Each formula is derived from
the underlying mathematical model of the object. MACSY1v1A-like techniques
could be used to automate these derivations which are presently done manually.
Conversely, the SPANK techniques for matching and cut set determination could
be used to allow MACSYMA to develop iterative solutions for systems without
closed form solutions. These avenues are yet to be explored.

6. ANALYSIS OF SOLUTION METHOD

This section performs a non-rigorous analysis of the run time behavior of the
solution algorithm implemented in SPANK. The run time efficiency of the match­
ing, cycle cut set, and solution algorithms are examined. Also, the relation of the
implemented solution technique to an immediate application of a traditional
Newton's method is examined in terms of speed and stability. The fact that the
matching and cut set solutions can be non-unique is also discussed.

6.1. Matching

A simulation problem with n objects results in a matching of two bipartite
sets with n members each. Tarjan [TAR83] provides an analysis of the time
taken by Dinie's matching algorithm. On a unit network such as the one

- 21 -

produced in a matching problem, Dinic's algorithm finds a maximum flow in time
O(Vn m) where n is the number of nodes and m is the number of edges.

In the matching problem, there is an edge from a node representing an object
to the nodes for each link that touches the object. The number of links per object
is bounded above by the number of interfaces per object. One expects the number
of interfaces per object in a problem to remain essentially constant independent of
the total number of objects in a simulation. Another way of phrasing this is, in a
simulation problem, one expects an object to be directly related only to a few
other objects that are physically close to it. One does not expect an object to be
directly related to all other physically remote objects in the simulation. If this is
the case, the number of edges m is then O(n), where n is the number of objects
in the simulation, and the total run time for Dinic's algorithm to find a matching
is O(n 1.5).

6.2. Cycle Cut Set

Levy-Low provide an analysis of their cycle cut set algorithm [LEV83]. For a
graph with m edges. and n nodes, the algorithm produces a cycle cut set in time
O(m log n). Using the same assumptions as were used in the matching analysis,
the number of edges can be assumed to be O(n). This gives a run time complex­
ity of O(n log n)for the cycle cut set with n the number of objects in the simula­
tion problem.

6.3. Solution of Data Flow Graph

In a simulation problem that results in an acyclic data flow graph, the solu­
tion algorithm will have to solve n equations, one for each object, and ship n
results. If the assumption of the last two subsections that the number of inter­
faces per object is 0(1) is valid, each equation evaluation represents an amount of
work that is 0(1) in terms of the number of objects n. Hence, the solution of an
acyclic graph simulation requires time O(n).

The analysis rapidly becomes more complex if a cyclic data flow graph results
from the simulation definition. An analysis of Newton's method and quasi­
Newton methods is needed first.

When using divided difference methods to compute derivatives, each iteration
of Newton's method requires n 2 +n function evaluations, n to compute the origi­
nal value of the function and n 2 to compute n partial derivatives for each of the
n equations [ATK78]. The overriding cost comes from solving the linear equation

F (xn)5" +1 = -T(xn)

where F is the Jacobian, "0 is the correction vector, and TCxn) is the current func­
tion vector. In general, solving an n x n system like this requires O(n 3) opera­
tions, so the cost for each iteration of a standard Newton's method is O(n 3).
Quasi-Newton methods are faster but only by a constant factor if they are general
enough to solve an arbitrarily complex system of equations [ATK78] .

. - 22 -

Suppose the same system of equations is solved using the SPANK solution
technique. A cyclic graph will result in the selection of some number c of cut set
objects whose vahtes will be guessed. As noted in section 5, this results in a new
set of e equations in e unknowns to be solved by a standard Newton method.

Computing the Jacobian for these c equations is performed in the same
fashion as for a general Newton's method solution. The current value of the c
functions is computed by pushing the current guesses through the data flow graph
in time O(n). The c partial derivatives for a given variable are obtained by
adding a delta to that variable and pushing the guesses through the graph at cost
O(n) for each cut set node. Thus the Jacobian can be computed in time
O(cn+n).

In this cycle cut set case, the Jacobian is a e x e matrix C (~); solving
C(cn)(S<n+l) = -/ (cn) for ~+l requires time O(c 3). The total time needed for
each iteration of the solution is O(c 3+cn +n). Since the size, c, of a cycle cut set
satisfies 1 <c < n, where n is the number of objects, the cost per iteration of
the SPANK solution technique is O(c3 + en). The implemented· solution
method's speed relative to Newton's method is dependent on the size of the cycle
cut set, c.

The expected size of the cycle cut set can be determined by the analysis of
pseudo-random networks. Such problems are notoriously difficult to attack.
When legitimate probabilistic analysis proved to be too difficult, empirical studies
were used to determine the expected size of the cycle cut set. The results of these
studies for several types of pseudo-random graphs are shown in tables 6.1 through
6.3.

The first table shows the size of the cycle cut set obtained from the Levy-Low
algorithm for random graphs with no locality. Each node in these graphs was
given a set of N directed edges to neighbors selected with equal probability from
amongst the entire node set.

The results in tables 6.2 and 6.3 are probably closer to the behavior of actual
simulation problem networks. In this case, a locality condition is placed on the
pseudo-random edges. The nodes are ordered, and each node is only assigned
edges to a set of nodes within L behind or ahead of itself in the ordering. One
can argue that simulation problems should display such locality characteristics. A
physical object is generally affected by some set of physically adjacent objects, but

- 23 -

Average Number of Nodes in Network
Number of
Interfaces 2 4 8 16 32 64 128 256 512 1024

2 1 1 4 2 3 3 3 2 2 4
4 1 3 4 2 6 12 18 36 67 141
8 1 3 3 7 15 27 58 105 225 441

16 1 3 5 11 22 41 91 174 354 702

Table 6.1: Size of Levy-Low algorithm
cycle cut set for·entirely random edge selection.

An examination of some common object types defined for building energy
simulation models indicates that the average number of inputs for an object
ranges somewhere between four and eight. Assuming the worst case, an average
of eight interfaces per object, the cut size c is still seen to be less than n /2. This
would result in a speedup by a factor of 8. In the four interfaces per object case,
c <n /4 and the speedup is 64.

Average Number of Nodes in Network
Number of
Interfaces 2 4 8 16 32 64 128 256 512 1024

2 1 1 1 2 2 5 9 19 29 53
4 1 1 3 3 5 11 26 48 90 187
8 1 2 4 6 13 29 59 115 230 4"'') 0_

16 1 3 6 11 22 49 108 223 442 875

Table 6.2: Size of Levy-Low cycle cut set for random selection
from a set of 10 nodes ahead of and behind the current node.

- 24 -

Average Number of Nodes in Network
Number of
Interfaces 2 4 8 16 32 64 128 256 512 1024

2 1 1 2 1 3 5 11 22 47 99
4 1 1 1 2 7 14 28 58 114 235
8 1 2 3 6 15 28 57 113 224 435

16 1 3 6 12 24 51 100 204 398 802

Table 6.3: Size of Levy-Low cycle cut set for random selection
from a set of 5 nodes ahead of and behind the current node.

The speedup will be the same for quasi-Newton methods of solution. These
methods solve a set of n equations in time rT where T is the time needed for
solving n equations with Newton's method and r < 1 is a constant. The time
for solving the cycle cut set equations will now be rTc' where Tc is the time to
solve the cycle cut set with Newton's method. The speedup, rT / rTc = T / Tc is
the same as with Newton's method.

The conclusion is that the cost per iteration of the solution method imple­
mented in SPANK is significantly less than that of traditional methods. As long
as the number of iterations required for Newton's method to converge does not
increase in the cut set method, this new method is preferable.

6.4. Convergence of Solution Methods

The analysis of convergence for iterative methods is another complex prob­
lem. A brief argument that the convergence behavior of the new method should
be no worse that that of a traditional Newton's method follows.

In the general n variables, n equations case, Newton's method begins with a
guess of the solution of the equations. At this point, the values of the equations
and their derivatives are computed. These derivatives are then used to find a
point where all functions would become zero, if the slope of all functions were con­
stant (this is the process of solving the Jacobian for <5).

In the cut set case, only c < n variables and equations remain. For the
remaining variables, an initial guess is made as above. The partial derivatives of
the c equations can be derived by applications of the chain rule from the partials
used in the general case. Essentially, n - c of the original equations are already
solved. Since the remaining equations and their derivatives are derived from the
original set, no new problems of bad 'behavior around the zero are introduced. On
the average one would expect the c equations problem to converge at least as
rapidly as the n equation problem.

- 25 -

Given that the number of iterations, k, for the cycle cut set equations is not
greater than that for the full Newton's method, a final comparison of the run
times can be made. The cost for k iterations of the full Newton's method is
O(kn 3). For localized pseudo-random graphs expected in simulation problems, the
cost of the SPANK method is 0 (kc 3 + n 15 + n log n) including the matching
and cycle cut set times. The performance of the SPANK solution method is
clearly superior since c is only a fractional part of n. If c < n /2, the new
method is at least eight times faster than the traditional Newton's method. In
the case c < n /4, the speed of the new method is at least 64 times faster than
that of the traditional methods.

6.5. Non-Uniqueness of Solution Method

In general, neither the matching problem solution for a given simulation, nor
the cycle cut set for a given matching, are unique. Different choices of matching

. may result in different sizes for the cut set and different convergence behavior for
the solutions. The current implementation of SPANK does nothing to attempt to
pick a matching that has the smallest minimum cycle cut set.

Lemma 5:

Different matchings can result in different sizes for minimum cycle cut sets.

Proof by example:

Fig. 6.4a shows a data flow graph with 3 cycles. Node A is matched to
hyperedge x and node B to hyperedge y. The minimum cut set for this graph
is {A, B}. In fig. 6.4b, the data flow graph that results when A is matched to
y and B to x is shown. In this case, a cut set is {A}.

- 26 -

. ,

Fig. 6.4a: A data flow graph with cycle cut set {A,B}

The theory of hypergraphs is complex and limited [BER73]. It does not seem
likely that one could select a matching that results in a data flow graph with
the smallest cycle cut set. Local optimizations to decrease the size of the cut
set may be possible. It will probably take considerable theoretical work to
say anything stronger about the relation between a particular matching and
the size of the resulting cycle cut set .

Fig. 6.4b: A data flow graph for the same problem with a
cycle cut set consisting of {A} .

- 27 -

7. A SAMPLE PROBLEM

A short sample problem is described from specification through solution in
this section. The problem involves determining the control on an outside inlet air
damper in order to keep recirculating air in a room at a constant predefined flow
rate and enthalpy. A depiction of the physical problem is found in fig. 7.1. The
problem models the mass and enthalpy of air in a ventilation system; these two
quantities are assumed to define the complete state of air for this problem.

XBL-8612-12874

Recirculated Air

Mass
Distributor

'III Exhaust Air

Outside Air Input
(Constant Enthalpy)

Room (Zone)

Desired enthalpy
is a parameter

, ',?:: , ':, :. " : ,,;.

'. ,,','
, , ,

!

Heat
Added

Fig. 7.1: Physical layout of recirculation problem

7.1. Specification

Two types of macro objects, a zone and a distributor, composed of three
types of objects are needed for this simulation. The zone, a room with a window
to admit sunlight, is a macro object composed of two objects: a mass collector
which defines the mass balance and an enthalpy zone object which defines the

- 28-

energy balance for the zone. The distributor is also composed of two objects, one
for mass and one for energy balance. The mass balance object is a mass collector
type, here used for··its inverse function, while the energy distributor is an enthalpy
distribution object. The definitions of the three object types and the two macro
object types are listed in fig. 7.2. Fig. 7.3 shows the definitions of the functions
used by the three object types. In fig. 7.2, notice that interface q has a null inter­
face definition. This demonstrates the null interface feature; if, for some reason,
the modeler knows that q should never be the determined variable for a zone, it is
not even placed in the matching computation. The code specifying the simulation
problem is shown in fig. 7.4.

define mass_coll {

}

mass_in1 = difference(mass_out, mass~n2);
mass_in2 = difference(mass_out, mass~n1);
mass_out = sum(mass~n2, mass~n1);

Fig. 7.2a: Definition of mass collector object.

define enthJ;one {

}

enth~n1 = zone_dif(mass_out, enth_out, heat~n, mass~n2,
enth~n2, mass~n1);
enth~n2 = zone_dif(mass_out, enth_out, heat~n, mass~n1,
enth~n1, mass~n2);
heat~n; /*real definition is = heatJIux(m3, h3, m1, h1, m2, h2);* /
entlLout = zone-sum(mass~n1, enth~n1, mass~n2, enth~n2,
heat~n, mass_out);
mass_in1 = zone_dif(mass_out, enth_out, heat_in, mass~n2,
entUn2, enth~n1);
mass_in2 = zone_dif(mass_out, enth_out, heat_in, mass~n1,
enth~n1, enth_in2);
mass_out = zone-sum(mass_in1, enth~n1, mass~n2, entlLin2,
heat~n, entlLout);

Fig. 7.2b: Definition of enthalpy zone object.

- 29 -

7.2. Solution

Actual solution computations for the problem produced the output in fig. 7.5.
Notice how rapidly Newton's method converges for well behaved problems like
this. This small example hopefully gives the reader an idea of the way in which
much larger, more complex simulations could be specified and solved.

define enth_dist {

}

enth-1n = equiv(enth_out);
enth_out = equiv(enth_in);

Fig. 7.2c: Definition of enthalpy distributor object.

macro zone

{
declare enth_zone e;
declare mass_coll m;

link mass_out(m.mass_out, e.mass_out)
link mass-1nl(m.mass_inl, e.mass_inl)
link mass-1n2(m.mass_in2, e.mass_in2)

link heat_in(e.heat-1n)
link enth_out(e.enth_out)
link enth-1nl(e.enth-1nl)
link enth-1n2(e.enth_in2)
}

Fig. 7.2d: Definition of zone macro object.

- 30-

macro dist

{
declare mass_coli m;
declare enth_dist e;

link mass_in(m.mass_out)
link mass_outl(m.mass~nl)
link mass_out2(m.mass~n2)

link enth~n(e.enth~n)
link enth_out(e.entlLout)
}

Fig. 7.2e: Definition of distributor macro object.

double sum(args)
double args[];
{
return(args[O] + args[l]);
}

Fig. 7.3a: Function sum.

double difference(args)
double args[];
{
return(args[O] - args[I]);

/* End of sum */

} /* End of difference * /

Fig. 7.3b: Function difference.

double equiv(args)
double *args;
{
ret urn(* args);
}

Fig. 7.3c: Function equiv.

- 31 -

double zone_dif(args)
double args[];
{
return((args[O] * args[l]- args[2] - args[3] * args[4])/ args[5]);
}

Fig. 7.3d: Function zone_dif.

double zone,3um(args)
double args[];
{
return((args[O] * args[l] + args[2] * args[3] + args[4])/ args[5]);
}

Fig. 7.3e: Function zoneJum.

double heat.Jlux(args)
double args[];
{
return(args[O] * args[l] - args[2] * args[3] - args[4] * args[5]);
}

Fig. 7.3f: Function heat_flux.

/* Problem is composed of a zone and a distributor * /
declare dist d;
declare zone z;

input heat_flux (z.heat_in)
input outside_enth (z.entlLin2)
input desired_enth(z.enth_out, d.entlLin)
input recirc_mass(z.mass_inl, d.mass_out 1)

link recirc_enth(d.enth_out, z.enth_inl}
link zone_exit..JIlass(z.mass_out, d.mass_in)

Fig. 7.4: Problem specification for recirculation problem.

- 32 -

Inputs

Run 1 Run 2

recircJIlass 500 1000
desired_enth 20 13
outside_enth 14 12
heat.Jlux 1000 2500

Successive Values of Cut Set Variable outsideJIlass

1.00 1.00
166.66 2499.74
166.67 2500.000050

2500.00

Outputs

outsideJIlass 166.67 2500.00
exiting_mass 166.67 2500.00
zone_exi tJIlass 666.67 3500.00
recirc_enth 20.00 13.00

Fig.7.S: Results of two runs of recirculation problem.

8. FURTHER DEVELOPMENTS

A few suggestions for further development of SPANK are presented in this
section. The current version has been written with many of these enhancements
in mind, so adding them should be relatively simple.

8.1. Dynamic Problems

Perhaps the most interesting problem for further development is the intro­
duction of dynamic problems. The current system solves only static problems
unless great efforts are taken to introduce time dependent equations. Adding the
ability for problems to involve derivatives with respect to time would greatly
increase the usefulness of SPANK. To do this, a variety of changes would have to
be made. First, object interfaces would have to be modified to allow time deriva­
tives to be specified. Second, the ability to solve time derivatives would have to
be added. One approach would be to encase the solution program in an iterative
solver which would reevaluate the static solution repeatedly, altering the time by
some time step D.t. Time derivatives can be treated as normal variables and
solved for at each time step. Past values of variables with time derivatives and
the values of the derivatives can be input to numerical integration routines to find
new values for the variables. This will require introducing a database to store
past values of all links, as well as some intelligence to control the value of the

- 33 -

time step. The time step value will be critical for controlling the stability of the
results.

8.2. Complex Links

A nat ural extension of links is to allow one macro link to carry a related
group of single links. For instance, it might often be natural to link the mass and
enthalpy interfaces of one object as a pair to the mass and enthalpy interfaces of
another object. The idea of allowing types other than double precision floating
points on links has also been considered. The interface of an object would have to
be modified to specify the type of the interface. The need to do computations
with and solve for varied link types makes this a comple~ change to implement.

8.3. Testing and Analysis of Networks

A more extensive analysis of the types of networks that would result from
simulation problems is needed. There is no currently available set of network
defined simulations to analyze so this will probably have to wait until some users
have developed problems for SPANK. The nature of networks produced can lead
to a better idea of the usefulness of the solution technique.

8.4. Problems with SPANK

SPANK has numerous shortcomings in the current implementation; a few of
the more critical are discussed here.

First, each interface of an object requires a functional relation to all other
interfaces in the form of a C function. For simple functions, it would be reason­
able to have the user input an object's equation only once. A program like
.MACSYMA could be used to derive the proper form of the equation once a depen­
dent interface has been selected.

Second, there has been a great deal of concern about the data abstraction
provided by the objects. As soon as a network specification language program is
interpreted, all objects and links are combined into a large network structure.
More generality in future solution techniques might be possible if the objects were
maintained as abstract data types throughout the specification and solution pro­
grams.

8.5. Higher Level Interfaces

The network specification language is not the most elegant interface to
specify network simulation problems. It is not difficult to imagine a number of
enhancements that would increase the power and decrease the complexity of the
language.

Graphical interfaces hold great potential for specifying networks. Since net­
works are a graphical structure, it is natural to define them using graph drawing
packages, many of which are already available. Furthermore, in many problems
the network can be drawn to closely resemble the physical situation being

- 34 -

modeled. In the future, this holds the hope for a direct translation from
engineer's drawings to a network simulation language program.

9. CONCLUSION

The SPANK system implements a number of new techniques for simulation
problems. The idea of defining and solving simulation problems in the form of
networks appears to have significant advantages over traditional monolithic pro­
grams.

Specifying simulation problems in terms of a network allows data abstraction
to be introduced. SPANK objects are instances of abstract data types that hide
the implementation of an algorithm. SPANK links allow objects to be joined to
form a simulation problem without knowing details of the objects' implementa­
tions. The equation abstracted by an object can be modified without changing
the way the object is linked into programs. This allows models to be more easily
developed and updated than in traditional simulation programs. Sharing of
models between different model development sites is also easier; only the definition
of a new object type needs to be shared. SPANK allows algorithms to be
developed, updated and shared without any changes to any other part of the
simulation program unlike traditional programs that often require massive
modifications to achieve changes.

The solution method implemented in SPANK, naturally defined in terms of a
network, is also an important improvement. Analysis of the solution technique
indicates that simulation problems can be solved from eight to sixty-four times
faster than with traditional techniques. This increase in speed should make a
number of larger simulation problems practical to run.

A number of problems remain in SPANK. While data abstraction holds
many advantages, it is not clear that SPANK's choice of physical objects as the
unit of abstraction is the most appropriate. Also, the boundaries of this abstrac­
tion are violated by the solution program. This may impede future development
of more advanced solution techniques. The SPANK network simulation language
is primitive; more sophisticated interfaces are needed. Finally, a number of
theoretical results are needed to fully analyze the solution method. In particular,
the relation between a particular matching and the size of the resulting cycle cut
set needs to be examined. A better understanding of this relation could lead to a
further reduction in the size of cycle cut sets. Solving these problems in SPANK
should lead to even more powerful simulation programs.

It is hoped that SPANK can serve as the foundation of a new generation of
simulation systems. These new systems should both simplify and accelerate the
solution of simulation problems. Improved simulation systems should in turn lead
to improvements in engineering and other fields that are heavily dependent on
sim ulations.

- 35 -

ACKNOWLEDGEMENTS

Thanks are due to Edward F. Sowell, California State University, Fullerton
and David P. Anaerson, University of California, Berkeley, for their help and gui­
dance. Some of the ideas developed here are based on research done in the Simu­
lation Research Group at Lawrence Berkeley Laboratory, and earlier at the IBM
Los Angeles Scientific Center. This material is based upon work supported under
a National Science Foundation Graduate Fellowship.

REFERENCES

[ACS75] ACSL, Advanced Continuous Language, User Guide and
Reference Manual, Mitchell and Gauthier Associates, Inc., Concord,
Massachusetts, 1975

[AH077] Aho, A. V., and J. D. Ullman, Principles of Compiler Design,
Addison Wesley Publishing Co., Reading, Massachusetts, 1977

[AH083] Aho, A. V., J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms, Addison Wesley Publishing Co., Reading, Mas­
sachusetts, 1983

[ATK78] Atkinson, K. E., An Introduction to Numerical Analysis, John
Wiley and Sons, New York, 1978.

[BER73] Berge, C., Graphs and Hypergraphs, North Holland Mathematical
Library, New York, 1973.

[CLA85.1] Clark, D. R., HVACSIM+ Building Systems and Equipment
Simulation Program Reference Manual, U.S. Department of
Commerce, National Bureau of Standards, Gaithersburg, Maryland,
January, 1985.

[CLA85.2j Clark, D. R. and W. B. May, Jr., HV ACSIM:+ Building Systems
and Equipment Simulation Program Users Guide, U.S. Depart­
ment of Commerce, National Bureau of Standards, Gaithersburg,
Maryland, October, 1985.

[CLA85.3] Clarke, J. A., Energy Simulation in Building Design, Adam
Hilger, Ltd., Bristol, U. K., 1985.

- 36 -

",

[CON77] Continuous System Simulation Language Version IV User's
Guide and Reference Manual, Nilsen Associates, 1977.

[DAV82] Davis, A. L., and R. M. Keller, Data Flow Program Graphs, IEEE
Computer, February, 1982.

[DOE81] DOE-2 REFERENCE MANUAL, LBL-8706 Rev. 2, Simulation
Research Group and Group 'WX-4, Los Alamos National Laboratory,
May 1981.

[GON84] Gondran, M., and M. Minoux, Graphs And Algorithms, John
Wiley and Sons, New York, 1984.

[KAR81] Karp, R. M., Reduc£b£l£ty Among Combinatorial Problems, in R.E.
Miller and J.W. Thatcher, Complexity of Computer Computa­
tions, Plenum Press, New York, 1981.

[KLE76] Klein, S. A., W. A. Beckman and J. A. Duffie, TRNSYS - A Transient
Simulation Program, ASHRAE Trans. vol. 82, 1976.

[LEV83] Levy, H., and D. W. Low, A, New Algorithm for Finding Small
Cycle Cut Sets, IBM Scientific Center, Los Angeles) June, 1983.

[McG82] McGraw, J. R., The VAL Language: Description and Analysis, ACM
Transactions on Programming Languages and Systems, Vol.
4, No.1, January, 1982.

[PLA85] Plan for the Development of the Next Generation Building
Energy Analysis Computer Program (Working Document),
Simulation Research Group, Lawrence Berkeley Laboratory, Berkeley,
California, 1985.

[PRE73] Preparata, F. P., and R. T. Yeh, Introduction to Discrete Struc­
tures, Addison Wesley Publishing Co., Inc., Reading, Massachusetts,
1973.

[ROB84] Roberts, F. S., Applied Combinatorics, Prentice Hall Inc., Engle­
wood Cliffs, New Jersey, 1984.

[SIL81] Silverman, G. J., et al., Modeling and Optimization of HV AC
Systems Using Network Concepts, ASHRAE Annual Meeting,
Cincinnati, Ohio, June, 1981.

- 37 -

[SO\N84] Sowell. E. F., et al., Generation of Building Energy System A10dels,
ASHRAE Transactions, AT-84-11, November, 1984.

[STA79] Stakgold, I., Green's Functions and Boundary Value Problems,
John Wiley and Sons, New York, 1979.

[STR84] Stroustrup, B., Data Abstraction in C, A.T.&T. Bell Laboratories
Technical Journal, Vol. 63, #8, October, 1984.

[TAR83] Tarjan, R. E., Data Structures and Network Algorithms, Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania,
1983.

- 38 -

.........

LA WRENCE BERKELEY LA BORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

