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Abstract

Stochastic Control of Energy Systems: A Statistical Learning Framework

by

Aditya Maheshwari

The overarching theme of this dissertation is to develop algorithms to effi-

ciently solve finite horizon stochastic optimal control (SOC) problems. These

problems naturally arise in the context of microgrid management where a con-

troller is trying to optimally dispatch diesel generator or battery storage to main-

tain reliable supply of power. A popular approach is to formulate the microgrid

management as a deterministic optimal control (DOC) and solve it using mixed in-

teger linear program. However, this formulation fails to incorporate the stochastic-

ity in the models and crucially relies on linearization of the objective/constraints.

As a result, we formulate it as a SOC and consider two variants of it, first with

explicit constraints on no-blackouts and second with implicit constraints on the

probability of blackouts.

We investigate Regression Monte Carlo (RMC), a simulation based approach

to recursively solve the Bellman’s dynamic programming equation (DPE) for SOC.

The proposed algorithms convert the SOC into a recursive sequence of statistical

learning tasks. In addition to estimating the conditional expectation encapsulated

in the Bellman’s DPE, they also find the set of admissible controls for probability

constrained SOC. One of our main contributions is the bridge between statisti-

cal learning and numerical methods for SOC. The algorithms presented in this

dissertation also generalize existing approaches within the RMC paradigm, pro-
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vide additional features for efficient implementation and extends RMC to include

probabilistic constraints. Besides microgrid management, we also benchmark the

performance of the algorithms for the valuation of natural gas storage.

In the final part of this dissertation we study the link between electricity tar-

iffs and reliability of the distribution network. We assume the consumers at each

node in the distribution network invest in behind-the-meter resources such as

photovoltaic (PV) system and electrical storage. An industry model, Distributed

Energy Resources–Customer Adoption Model (DER–CAM), based on DOC is used

to compute the optimal size of investments and dispatch of PV and storage. We

use PG&E 69-bus distribution network to assess several different aspects of elec-

tricity tariffs that can impact the reliability; such as homothetic change in the

electricity purchase rate, change in the magnitude of the peak purchase rate, and

the time-of-day of peak purchase rate. The work provides a new tool to the

regulators for improving reliability of the distribution network.
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Chapter 1

Introduction

Twentieth century was transformative due to substantial increase in our capa-

bility for generation, transmission and distribution of electric power at large dis-

tances. In the twenty first century, the technology for generation and distribution

of electric power is poised to change. The momentum is now shifting to “decen-

tralization” and “decarbonization” of electricity grids through higher integration

of renewable generation units (e.g., solar photovoltaic (PV) arrays and wind tur-

bines) combined with battery energy storage system. Microgrids will play an

important role in this new transition due to their ease of adoption, ability to re-

duce the carbon footprint of the community, and additional economic incentives

through reduced electricity purchase from utility. They can also help improve

reliability by reducing the dependency on the main grid and acting as a back-up

power during natural disasters, such as hurricanes 1.

US Department of Energy defines microgrid as “a group of interconnected

loads and distributed energy resources within clearly defined electrical boundaries

that acts as a single controllable entity with respect to the grid. A microgrid

1https://www.princeton.edu/news/2014/10/23/two-years-after-hurricane-sandy-
recognition-princetons-microgrid-still-surges
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Introduction Chapter 1

can connect and disconnect from the grid to enable it to operate in both grid-

connected or island-mode” [1]. The elementary purpose of a microgrid is to provide

a continuous electricity supply from the power produced by renewable generators

while minimizing the installation and running costs. In this kind of systems, the

variability of both the load and the renewable production is high and its negative

effect on the system stability can be mitigated by including a battery energy

storage system in the microgrid. Energy storage devices ensure power quality,

including frequency and voltage regulation (see [2]) and provide backup power in

case of any contingency. A dispatchable unit in the form of diesel generator is also

used as a backup solution and to provide baseload power. In figure 1.1a we present

an example of a microgrid topology that we will consider in this dissertation. It

contains renewable generation through solar PV, a dispatchable battery energy

storage system and a back-up diesel generator, together they will be used to meet

demand of electric power from the consumers. Being an isolated microgrid it has

no connection to the main grid.

Next, we take a macro view and present a typical structure of a distribution

network in Figure 1.1b. Each node in Figure 1.1b represents a consumer (or

connection node) who may or may not own a microgrid. In contrast with Fig-

ure 1.1a, here the consumer can buy (sell) power from (to) the main grid (node

1, represented via black square) and the corresponding microgrid can either work

independently or in coordination with other microgrids in the network. Presence

of microgrid at the location of the consumer also illustrates the current trend from

centralized to decentralized generation where a consumer can use a mix of power

purchased from the utility and generated locally to meet the demand of electricity.

An inspiration for our work is a microgrid in Chile, where “the University of

2



Introduction Chapter 1

(a) Microgrid (b) Distribution Grid

Figure 1.1: Left panel: Topology of a microgrid comprising of diesel generator,
battery storage, PV and households. Right panel: Line diagram of modified
PG&E 69-bus system with three customer types. Commercial customers in-
clude seven different building categories including restaurants, super markets,
hotels and malls. Services customers include schools, hospitals and government
offices. Residential customers include mid-rise apartments.

Chile has developed Chile’s first microgrid project in a remote Andes Mountains

community of 150 residents (mostly miners and their families) called Huatacondo.

Prior to the microgrid installation, the community had its own electric network

(operating independently from the macro-grid) operating 10 hours per day with

power provided from a single diesel generator. The vision of the microgrid was

to continue using that diesel generator but supplement it with distributed energy

resources, namely solar PV, wind, and a battery system. The microgrid includes a

150 kW diesel generator, 22 kW tracking solar PV system, a 3 kW wind turbine, a

170 kWh battery, and an energy management system.”2 In Figure 1.2, we present

the load demand and power supply from solar PV using the data for this microgrid.

Notice two features in the data, first the stochasticity observed in the load demand

and in solar PV output. Second, during the afternoon the generation from PV

exceeds the load demand, resulting in either curtailment of energy or storing it in

battery for later use, motivating “smart” utilization of storage devices.

2https://building-microgrid.lbl.gov/huatacondo
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Figure 1.2: Historical load profile and PV output from a microgrid Huatacondo,
Chile.

As microgrids become more ubiquitous, several engineering and mathematical

questions arise. We consider three problems that naturally arise in the context of

microgrid management:

• Optimal usage: Supply of power from the renewables and demand of elec-

tricity from consumers is stochastic (evident from figure 1.2), as it is difficult

to claim with certainty when the sun will shine or wind will blow. This un-

certainty raises practical questions on reliability of the power supply and

optimal operational policy for the microgrid. Optimal operational policy

is derived as a solution of a constrained optimization problem which mini-

mizes the expected cost of running the diesel generator subject to physical

constraints on the system components. Herein lie our most important con-

tributions; in Chapters 3, 4 and 5 we propose algorithms to find optimal

operational policy of microgrid considering the stochasticity in net demand

(demand net of solar output) and constraints on reliability.

4



Introduction Chapter 1

• Investment size: Investment costs in the renewables and storage increase

linearly with the size of installation capacity, however, the benefits are often

non-linear and present diminishing return. High investment costs in these

technologies makes it important to compute the “optimal” battery capacity,

PV size and diesel generator. In Chapters 3 and 6 we discuss optimal size

of the storage for the microgrid.

• Reliability: As the penetration of PV increases, two engineering problems

arise: (i) overgeneration during the day leading to voltage increase on the

transmission lines and (ii) large ramp-up required during the evening to

match demand [3]. One of the strategies to mitigate these challenges is to

provide economic incentive to the consumers to alter their demand pattern.

As a result, regulators often change tariff structure, such as peak time-of-

use rate or demand charges, in an attempt to shift the peak demand and

improve the reliability. In Chapter 6 we develop a framework to assess

the impact of electricity tariffs on the reliability of a distribution network.

Operational policy of a microgrid can be modified to improve reliability even

in absence of external economic incentive. One such technique would be to

add probabilistic constraints on the imbalance between demand and supply

in the optimization problem; this method is explored in Chapter 5.

The contributions of this dissertation can be divided into two main themes: (i)

application of theory of stochastic optimal control to energy systems with special

attention to control of microgrid, and (ii) developing new tools to efficiently solve

high dimensional stochastic optimal control problems. We divide the discussion

into 6 chapters, content of which are briefly summarized below.

5
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In Chapter 2 we provide a brief introduction to stochastic optimal control and

discuss its connection to microgrid control. We present the dynamic programming

principle and summarize the regression Monte Carlo (RMC) paradigm to solve it.

We provide sketch of our main algorithm (dubbed probability constrained dynamic

emulation algorithm (PC-DEA)) and how different chapters in this dissertation

fit together to explain the key ideas of PC-DEA.

In Chapter 3 we model the optimal control of an islanded microgrid as a

stochastic optimal control problem and solve it using RMC. This formulation of

microgrid control was inspired by [4], however, unlike them we use Monte Carlo

simulations to solve the dynamic programming equation. Applications of RMC

for microgrid control is borrowed from mathematical finance where it is used for

variety of problems, such as valuation of natural gas storage [5, 6, 7] and American

option pricing [8, 9]. RMC algorithms are easily scalable to higher dimensions and

can be adapted to large range of stochastic processes (e.g., Lévy processes, latent

factors, piecewise linear processes, etc.). Scalability and adaptability are both

absent when using methods in [4]. We also provide a technique to infer optimal

size of the battery storage system.

Chapters 4 and 5 form the backbone of this dissertation. In Chapter 4, we

discuss the challenges in the traditional implementation of RMC presented in

Chapter 3 and borrow several techniques from statistical learning to improve its

efficiency. Particularly, we propose a marriage of statistical learning with ex-

perimental design in the context of stochastic control via our Dynamic emulation

algorithm (DEA). It synthesizes variety of existing approaches in a single modular

template. Two important attributes of the DEA, input design and regression, are

discussed in detail. We use natural gas storage valuation and microgrid control

6
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as examples to illustrate DEA.

In Chapter 5 we extend the DEA to solve stochastic optimal control with

probabilistic constraints. Thus, the algorithm in this chapter is referred to as PC-

DEA. The motivation again is microgrid management, where the controller tries

to find optimal usage of the diesel generator while maintaining low probability

of blackouts. Compared to DEA, here the admissible set of controls (i.e. set

of controls for which the probability constraint is respected) is implicit and not

known a priori. We develop statistical models, taking as input the state vector

and output as the set of admissible controls, to provide functional representation

of the admissible sets for the continuous state space. This chapter provides a

new application of statistical learning and uncertainty quantification techniques

which we employ to approximate and then provide statistical guarantees regarding

admissibility of state-action pairs.

In Chapter 6 we shift focus from developing tools for stochastic optimal control

of a microgrid to understand the effect of electricity tariffs on the reliability of a

distribution network. We rely on an industry model Distributed Energy Resources

– Customer Adoption Model (DER–CAM) [10] which incorporates several prac-

tical aspects of a microgrid (e.g. efficiency of battery storage, purchase and sale

of power to the main grid, etc.) that were ignored in Chapters 3–5. DER–CAM

takes as input the load profile, tariff rate, solar irradiance, etc. and computes the

optimal size of microgrid components and their dispatch policy via deterministic

optimal control. We assume that the consumers at each node of the distribution

network invest in microgrid to minimize the long-run economic cost of purchase

of electricity. As a consequence, the distribution network comprises of a collection

of microgrids operating locally to match demand with supply of power. This is

7
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in contrast to the isolated microgrid of Chapters 3–5. The stochasticity in this

chapter is due to potential random failure in the lines connecting the consumer

to the main grid. Through a combination of deterministic optimal control via

DER-CAM with the Monte Carlo simulation of line failures, we compute reliabil-

ity metrics for the distribution network and determine their sensitivity to changes

in electricity tariffs.

8
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1.1 Permissions and Attributions

1. The content of Chapter 3 is the result of a collaboration with

Clemence Alasseur, Alessandro Balata, Sahar Ben-Aziza, Peter Tankov and

Xavier Warin, and has previously appeared in ESAIM: Proceedings and

Surverys [11]. Authors started to work on this project during the 22nd

edition of CEMRACS which took place at CIRM, Marseille, France from

July-August, 2017. The primary work for this paper was equally divided

between Alessandro Balata and Aditya Maheshwari.

2. The content of Chapter 4 is the result of a collaboration with Michael Lud-

kovski, and has previously appeared in the Energy Systems [12].

3. The content of Chapter 5 is the result of a collaboration with Alessandro

Balata, Michael Ludkovski and Jan Palczewski. The paper [13] is under re-

view in the SIAM/ASA Journal on Uncertainty Quantification. The primary

work was equally divided between Alessandro Balata and Aditya Mahesh-

wari.

4. The content of Chapter 6 is the result of a collaboration with Miguel Heleno

and Michael Ludkovski. The initial work on this project started with in-

ternship of Aditya Maheshwari at Lawrence Berkeley National Laboratory

between September, 2018 and December, 2018. The paper [14] is under

review in the IEEE Transactions on Power Systems.
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Chapter 2

Stochastic Optimal Control and
Regression Monte Carlo

Operating a dynamical system in the presence of stochastic noise to minimize a

performance criterion is the subject of the theory of stochastic optimal control

(SOC). The objective function of these problems typically involves minimizing

the expected cost of operating the dynamical system in a finite or infinite time

horizon. Under Markovian assumption for the system dynamics, the variable of

optimization is a function in space and time representing the optimal control.

In this chapter we first describe a general formulation of a SOC problem and

its key ingredients. This is followed by a specific example on microgrid control.

We conclude with a sketch of the algorithm to solve these control problems and

alternates available in the literature.

2.1 Stochastic Optimal Control

Throughout this thesis, we will only consider SOC problems described over a

finite horizon [0, T ]. A SOC problem is described via the following quantities:

• State Variable X(t) ∈ X ⊂ Rd: represents the state of the system at time

10
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t and we formalize its evolution through time via a controlled stochastic

Markov process. Typically, we assume the dynamics of the state process via

stochastic differential equation (SDE) of the form:

dX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t), (2.1)

where B(t) is a m−dimensional Brownian motion, b : R+ × X ×W → Rd,

σ : R+×X ×W → Rd×m and u(t) is the control. The algorithms developed

in this dissertation are agnostic to the specification of X(t) as long as we

can simulate its trajectories. Thus, the dynamics of X(t) could include

latent factors, Lévy processes, piecewise-linear processes, etc. Chapters 3

and 4 consider discrete time version of the SDE in Equation (2.1), i.e., the

dynamics of X(t) is written via corresponding difference equations defined

at discrete epochs {t0, t1, . . . , tN = T}.

• Control u(t): represents the decision variable that drives the distribution of

the state process X(t). We consider Markovian controls adapted to the fil-

tration of (X(t)), i.e., u(t) ≡ u(t,X(t)). Besides being adaptive, the control

may have to satisfy some problem specific constraints which restricts the

choice of possible controls. The set of admissible controls is thus described

through U . Throughout this dissertation, we will assume that the control

decisions are made at pre-determined discrete epochs {t0, t1, . . . , tN = T}.

Thus, the control process is piecewise constant in time and described via

vector of functions {u(tn,X(tn))}Nn=0. For the sake of brevity, we will some-

times write X(tn) ≡ Xn and u(tn,X(tn)) ≡ un at discrete epochs tn. At

every other time-point s ∈ (tn, tn+1) we continue to use the standard nota-

11
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tion i.e., X(s), u(s).

• Value function V (t,X(t)): The SOC problem is formulated as:

V (tn,X(tn)) = inf
(us)Ns=n∈Un:N (Xn)

{
E
[N−1∑
k=n

∫ tk+1

tk

πs(X(s), uk)ds+K(Xn, un)

+W (X(tN ))
∣∣∣Xn

]}
(2.2)

where W (·) represents the terminal penalty, πt(·, ·) the running cost, K(·, ·) the

switching cost that incurs only at discrete time epochs when the controls are

chosen and Un:N (Xn) represents the set of admissible controls in the interval

[tn, tN ], given the state of the system Xn at time tn. Remember that the state

process X(t) is controlled and is affected by the dynamics of u(t). Thus, formally

we should write X(t) ≡ Xu(t), however, we drop the superscript u for brevity. A

sequence of controls {u∗k}Nk=n ∈ Un:N (Xn) is optimal if

V (tn,X(tn)) = E
[N−1∑
k=n

∫ tk+1

tk

πs(X(s), u∗k)ds+K(Xn, u
∗
k) +W (X(tN ))

∣∣∣Xn

]
.

(2.3)

As an example, in the context of microgrid the state variable X(t) is three-

dimensional comprising of the net demand L(t) (demand net of solar output),

state of charge of the battery storage system It and the regime/state of the diesel

generator m(t) ∈ {off, on} ≡ {0, 1}. Thus, X(t) = (L(t), I(t),m(t)). The dynam-

ics of the net demand L(t) is exogenous i.e. not dependent upon the control, on the

other hand, both I(t) and m(t) are endogenous and fully or partially controlled.

The control u(t) ∈ {0} ∪ [u, u] represents the power output from diesel generator

with u (> 0) and u (> u) representing the minimum and maximum power output.

12
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The controller incurs a positive switching cost K > 0 when the diesel generator

is switched on u(t) > 0 from m(t) = 0, and zero switching cost K = 0 otherwise.

The value function comprises of cost of using the diesel generator, the switching

cost and the cost due to mismatch of demand and supply.

Challenges: The main challenge of SOC problems arises because the trajec-

tory of the control {un}Nn=0 affects the distribution of the state process (X(t))t≥0

as evident via equation (2.1). This in turn affects the expected running cost,

which needs to be minimized. A naive approach from stochastic optimization lit-

erature will be to estimate expected running cost via nested simulations for a fixed

trajectory of control and then optimize over the possible set of such trajectories.

However, since the optimization in equation (2.2) is over the space of functions

(piece-wise constant in time), the set of possible trajectories is “large” and thus

makes this naive approach computationally intractable. To make matters worse,

in some problems the admissible set Un:N(Xn) is implicitly defined and not known

a priori. Thus, whether the control is admissible i.e. {un}N−1
n=0 ∈ U0:N(X0) is not

obvious. Furthermore, the admissible set Un:N(Xn) depends upon the state Xn,

which in turn depends upon the control decisions until time tn i.e. {uk}n−1
k=0 . In

sum, together these challenges make it non-trivial to estimate the sequence of

optimal controls in equation (2.2).

2.2 Dynamic Programming Equation

The SOC problem described in equation (2.2) can be solved recursively using

the Bellman’s dynamic programming principle. Since the control u(t) is piecewise

constant, the dynamic programming equation corresponding to equation (2.2) at

13
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step n is given as:

Vn(Xn) = inf
un∈Un(Xn)

{
Cn(Xn, un)

}
,

where Cn(Xn, un) = E
[
π∆(Xn:n+1, un) + Vn+1(X(tn+1))

∣∣∣Xn, u
]
,

and π∆(Xn:n+1, un) =

∫ tn+1

tn

πs(X(s), un)ds+K(Xn, un).

(2.4)

Above Cn(Xn, un) is the continuation value, i.e. reward-to-go plus expectation of

future rewards, from using the control un over [tn, tn+1) and Un(Xn) = Un:n(Xn)

represents the set of admissible controls satisfying the constraints at a single

decision epoch tn conditional on Xn. Moreover, given the state Xn, we say

that u∗n ∈ Un(Xn) is an optimal control if Vn(Xn) = Cn(Xn, u
∗
n) and since the

state dynamics is Markovian, the optimal control is also of feedback type, i.e.,

u∗n ≡ u∗(tn,Xn). Thus, the DPE (2.4) reduces the problem of searching the

sequence of optimal controls {u∗k}Nk=n into two-step procedure. First step com-

putes the value function Vn+1(x) for any arbitrary x, and second optimal control

u∗n : (tn,Xn) → W . The procedure is repeated iteratively backward in time

starting from n = N − 1 until n = 0 .

2.2.1 Regression Monte Carlo

In this dissertation we focus on simulation-based techniques to solve (2.2). The

overall framework is based on solving equation (2.4) through backward induction

on n = N − 1, N − 2, . . ., replacing the true Vn(x) with an estimate V̂n(x). Since

neither the conditional expectation, nor the admissibility constraint are gener-

ally available explicitly those terms must also be replaced with their estimated

counterparts. As a result, we work with the approximate Dynamic Programming

14
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recursion

V̂n(Xn) = inf
un∈Ûn(Xn)

{
Ĉn(Xn, un)

}
,

where Ĉn(Xn, un) := Ê
[
π∆(Xn:n+1, un)ds+ V̂n+1(X(tn+1))

∣∣∣Xn, un

]
.

(2.5)

Above, Ê is the approximate projection operator and needs to be estimated along

with the set of admissible controls Ûn. The estimated optimal control ûn ∈ Ûn(Xn)

satisfies V̂n(Xn) = Ĉn(Xn, ûn). In problems where Un is explicitly defined (e.g.

Chapters 3 and 4 in this dissertation), the Regression Monte Carlo (RMC) pro-

cedure only requires estimating the continuation value function C(·, ·).

The key idea underlying our algorithms and defining the RMC paradigm is

that Ê and Û are implemented through empirical regressions based on Monte

Carlo simulations. In other words, we construct random, probabilistically defined

approximations based on realized paths of X. This philosophy allows to simul-

taneously handle the numerical integration (against the stochastic shocks in X)

and the numerical interpolation (defining V̂n(x) for arbitrary x) necessary to solve

(2.5).

Sketch of the algorithm: Without delving into the algorithmic details, let

us briefly enumerate the sequence of steps required to solve the dynamic program-

ming equation (2.5) at time step tn i.e., find (Ĉn(·, ·), Ûn(·)), assuming we know

the pairs {Ĉj(·, ·), Ûj(·)}N−1
j=n+1 through backward iteration:

1. The procedure starts by choosing an input dataset Dn := {(xjn, ujn)}Mc
j=1,

where (xjn, u
j
n) ∈ X ×W .

2. Simulate the path (xj(s))tn≤s≤tn+1 starting from xjn and using the control ujn

for each j = 1, . . . ,Mc.
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3. Evaluate one-step ahead realization of the value function:

V̂n+1(xjn+1) = inf
u∈Ûn+1(xjn+1)

{
Ĉn+1(xjn+1, u)

}
for j = 1, . . . ,Mc.

4. Compute the path-wise rewards yjn =
∫ tn+1

tn
πs(x

j(s), ujn)ds + K(xjn, u
j
n) +

V̂n+1(xjn+1).

5. Regress for estimating the continuation value function Ĉn(·, ·) by projection

of {yjn} on the approximation space Hc
n

Ĉn(·, ·) := arg min
fcn∈Hcn

Mc∑
n=1

|f cn(xjn, u
j
n)− yjn|2.

6. Estimate Ûn(·), if not available explicitly. For brevity, we will postpone the

discussion on estimation of admissible set Ûn(·) until chapter 5.

The sequence of steps (1-6) described above is not the traditional implemen-

tation [5, 6] of RMC to solve the dynamic programming equation (2.5). This

algorithm (dubbed, probability constrained Dynamic Emulation Algorithm (PC-

DEA)) is one of the fundamental contributions of this dissertation.

RMC algorithms were popularized by [15, 16, 17] for optimal stopping prob-

lems arising in pricing of American options. Optimal stopping is a special case of

stochastic control problem (2.2) as far as computational methods are concerned,

with X(t) comprising of only exogenous variables (stock prices) and binary regime

m(t) ∈ {continue, stop}. The control ut determines whether the next regime is to

continue or exercise the option (thus stop). In this context, the design points Dn

are chosen only in the space of exogenous variables. The value function V̂n+1(x) at
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any location x is computed by comparing the continuation value function Ĉn+1(x)

with the payoff by exercising the option immediately.

RMC was then extended to solve optimal switching problems in the context

of scheduling of gas-fired power plant [18]. In comparison to the American option

pricing, the number of regimes for optimal switching problems are typically greater

than two and the controller continues to switch between different regimes until

the time horizon T . RMC was further refined to solve optimal control problems

arising in the valuation of gas storage [6, 5, 7, 19, 20]. An important difference

between scheduling of gas-fired power plant as discussed in [18] and the valuation

of gas storage is the presence of an additional endogenous variable (on a continuous

domain) whose dynamics is controlled. A typical approach for valuation of gas

storage is to first partition the state variables into exogenous and endogenous

components. This is followed by simulation of the trajectories of the exogenous

variable from time [0, T ]. Since the dynamics of the endogenous variables is not

known a priori, its domain is discretized into finite levels. The control problem is

solved for each level of the endogenous variable. Simulation of both endogenous

and exogenous state variables was considered in [21] for portfolio optimization

problems.

Development of DEA is motivated from the recent work in optimal stopping

[8], where the author reformulated optimal stopping as a sequence of statistical

learning tasks and proposed several techniques for its efficient implementation.

DEA and PC-DEA together extend the framework in [8] from optimal stopping to

stochastic optimal control and probability constrained stochastic optimal control.

DEA and PC-DEA also provide several advantages over existing methods: (1)

They neatly wrap existing approaches in the realm of RMC into a single modular
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template with several plug-and-play components. (2) In contrast to the current

literature, DEA and PC-DEA can avoid simulating the full trajectory of the state

variables and provide significant memory savings especially in high dimensional

problems. (3) They can provides additional user flexibility to efficiently choose the

type of design and the regression to run. (4) Finally, they can also solve stochastic

control problems with noisy constraints which were previously not considered in

the RMC literature.

Approximation errors: The main numerical challenge for the implemen-

tation of the RMC algorithms is that the errors recursively propagate backward

in time. At every time step, each approximation in the sequence (1-6) above adds

to the error and can affect the final quality of solution {Cj,Uj}N−1
j=0 . At step 1,

the choice of input dataset Dn can quite literally make or break the algorithm. In

Chapter 4 we discuss several choices for Dn and how they affect the solution. At

step 2, simulation of the paths xj(s) can add to the bias due to time-discretization.

At step 3, the optimization will be non-trivial if both or either the continuation

value function Ĉn(·, ·) and the admissible set Ûn(·) are non-convex. At step 4, the

bias in yjn may arise due to poor approximation of Ĉn+1(·, ·). Other approximations

of the path-wise rewards to reduce bias has been studied in [12, 5, 22]. At step

5, distance between the true Cn(·) and the closest element in Hc
n determines the

accuracy of Ĉn(·). Thus choice of Hc
n strongly affects the quality of the solution.

In Chapter 4 we propose Gaussian process regression for non-parametric approx-

imation of the continuation value and compare its performance with alternates

in the literature. Finally at step 6, incorrect approximation of the admissible set

can lead to making inadmissible decisions and thus violating the constraints of

the problem. In Chapter 5, we provide detailed discussion on admissible sets de-
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fined through local probabilistic constraints on the system state for the microgrid

control.

2.3 Other Methods

There are several other approaches that have been discussed in the literature

to solve stochastic optimal control problems.

Markov Decision Process: This is a classic method to solve SOC problems

assuming finite state space and actions; textbooks on the subject include [23,

24, 25]. The dynamics of the state process is thus defined through a Markov

chain. Since the state space in SOC problems is often continuous, discretization

(to achieve finite states) is a key part of the problem. However as the dimension of

state variables increase, discretization makes this approach extremely prohibitive.

A recent work utilizing MDPs in the context of gas storage valuation is [26].

Hamilton Jacobi Bellman Equation (HJB): Value function V of a

stochastic optimal control problem for Markov processes in continuous time is

a solution of a partial differential equation (PDE), called HJB equation [27, 28].

HJB represents the local behavior of V and can be considered as an infinitesimal

version (as |tk+1− tk| → 0) of the dynamic programming equation (2.4). However,

as with any PDE approach they lack scalability, thus become prohibitive when

the state space increases beyond three or four dimensions. Application of HJB

equation to solve SOC problems arising in gas storage valuation and microgrid

management are [29, 30].

Stochastic Dual Dynamic Programming (SDDP): High dimensional

stochastic control problems with linear constraints and linear system dynamics

19



Stochastic Optimal Control and Regression Monte Carlo Chapter 2

can be solved very efficiently using SDDP. The efficient implementation is due to

assumptions of linearity, resulting in value function which is also a supremum over

affine hyperplanes. It was devised to find operational policies for large number

of interconnected hydroelectric systems [31, 32], but has also found its way into

optimal control of microgrids [33]. A recent work using piecewise linear regressions

for estimating the conditional expectations in SDDP was proposed in [34] and

available in the library [35].

Reinforcement learning: Stochastic optimal control with no assump-

tions on the dynamics of the controlled state process Xu(t) and random rewards

πs(X
u(s), u(s)) is considered within reinforcement learning literature. A text-

book level discussion is given in [36] and its application in the context of energy

management is presented in [37].

2.4 Additional Applications

The DEA and PC-DEA are applicable in numerous other contexts; in this

section we mention some additional examples.

Generalized Microgrid. The microgrid example described above is highly

simplified. More realistic models would consider separate stochastic factors for

the different components (e.g. renewable output (Rt) and demand load (Dt)).

Moreover, the controller can typically control both the diesel generator, as well

as the battery, adding further states. In a long-term planning context, battery

degradation due to repeated charge/discharge becomes important and needs to be

captured by an additional “age” variable. Thus, an industrial-grade implemen-

tation of microgrid management would call for a high-dimensional formulation
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d � 4, where DEA aspects, such as choice of design D, become critical for per-

formance.

Hydropower optimization. Control of a hydropower dam [38, 39, 40, 34] is

a classic problem in energy systems and is often formulated as stochastic optimal

control. Within this setup, the controller observes random inflows from precip-

itation, as well as fluctuating electricity prices. Her objective is to control the

downstream outflow from the dam to maximize profit from power sales. RMC

has been used for this problem in [20]. Additional probabilistic constraints, such

as minimum (daily) dam capacity [38], will require estimating the admissible set

of controls akin to statistical estimation of U in PC-DEA.

Robot/Drone Motion Control. Dynamic path optimization is a classical

engineering problem that is frequently formulated as a stochastic control. The

robot motion is subject to random shocks (e.g. wind disturbance for an unmanned

aerial vehicle) and the control is velocity and/or acceleration. Objectives might

include target-tracking, obstacle avoidance, fuel use optimization, etc. The robot

location/speed are the endogenous state components, while the external shocks

(wind speed, obstacle motion) are the stochastic factors. See e.g. [22, 41] for

approaches where a modification of DEA could be beneficial. Constraints on the

path of the robot, such as avoiding collision with objects that obstruct its path

[42], will require computing admissible sets; thus PC-DEA will be useful.

Portfolio Optimization. Another application of DEA could be for portfolio

optimization, with inventory corresponding to the current wealth that is driven

by the investment strategy ut. The objective is to maximize expected utility

of terminal wealth, subject to various market and investment constraints. The

typical state is then the asset price Pt and the current wealth It. Zhang et al. [43]
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recently used RMC method for this problem. PC-DEA will be useful to handle

additional constraints, such as bounded value-at-risk.
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Chapter 3

Regression Monte Carlo for
Microgrid Management

This chapter is the result of a collaboration with Clemence Alasseur, Alessandro

Balata, Sahar Ben Aziza, Peter Tankov and Xavier Warin. It is based on the

work [11].

In this chapter we study an islanded microgrid system designed to supply a

small village with the power produced by photovoltaic panels, wind turbines and

a diesel generator. A battery storage system device is used to shift power from

times of high renewable production to times of high demand. We build on the

mathematical model introduced in [30] and optimize the diesel consumption under

a no-blackout constraint. We introduce a methodology to solve microgrid man-

agement problem using different variants of RMC algorithms and use numerical

simulations to infer results about the optimal design of the grid.
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3.1 Introduction

In this chapter, we consider a traditional microgrid (cf. Figure 1.1a) serving a

small group of customers in islanded mode, meaning that the network is not con-

nected to the main national grid. The system consists of an intermittent renewable

generator unit, a conventional dispatchable generator, and a battery storage sys-

tem. Both the load and the intermittent renewable production are stochastic, and

we use a stochastic differential equation (SDE) to model directly the net demand,

that is, the difference between the load and the renewable production. We then

set up a stochastic optimal control problem, whose goal is to minimize the cost

of using the diesel generator plus the cost of curtailing renewable energy in case

of excess production, subject to the constraint of ensuring reliable energy supply.

We use RMC to solve this stochastic control problem numerically. Two variants

of the regression algorithm, called Regress Now and Regress Later are proposed

and compared in this chapter. The numerical examples illustrate the performance

of the optimal policies, provide insights on the optimal sizing of the battery, and

compare the policies obtained by stochastic optimization to the industry standard,

which uses deterministic policies.

The optimization problem arising from the search for a cost-effective control

strategy has been extensively studied. Three recent survey papers [44, 45, 46]

summarize different methods used for optimal usage, expansion and voltage con-

trol for the microgrids. Authors in [4, 30] transform the optimization problem

associated with the microgrid management into an optimal control framework

and solve it using the corresponding Hamilton Jacobi Bellman equation. Besides

proposing an optimal strategy, the authors also compare the solution of the deter-
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ministic and stochastic representation of the problem. However, similarly to most

PDE methods, this approach suffers from the curse of dimensionality and as a

result, it is difficult to scale. The main contribution of this chapter is to solve the

microgrid control problem using Regression Monte Carlo algorithms. In contrast

to existing approaches, the method used in this chapter is more easily scalable

and works well in moderately large dimensions [9]. It is fair to mention here that

the problem we study in the following is however low dimensional as it displays

one source of randomness and one degenerate controlled process.

Identifying the optimal mix, the size and the placement of different components

in the microgrid is an important challenge to its large scale use. The papers [47, 10]

use mixed-integer linear programming to address the design problem and test their

model on a real data set from a microgrid in Alaska. In a similar work, [48] studied

the economically optimal mix of PV, wind, batteries and diesel for rural areas in

Nigeria. In [49], optimal battery storage sizing is deduced from the autocorrelation

structure of renewable production forecast errors. In this chapter, we propose an

alternative approach for the optimal sizing of the battery energy storage system,

assuming stochastic load dynamics and fixed lifetime of the battery. Our in-depth

analysis of the system behavior leads to practical guidelines for the design and

control of islanded microgrids.

Finally, several authors [50, 51, 52] used stochastic control techniques to de-

termine optimal operation strategies for wind production – storage systems with

access to energy markets. In contract to these papers, in this chapter, energy

prices appear only as constant penalty factors in the cost functional, and the

main focus is on the stable operation of the microgrid without blackouts.

The rest of the chapter is organized as follows: In Section 3.2 we describe the
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microgrid model and introduce the different components of the system, in Section

3.3 we translate the problem of managing the microgrid in a stochastic control

problem and present the dynamic programming equation that we intend to solve

numerically. Section 3.4 introduces the numerical algorithms used to solve the

control problem, we give a general framework for solving the dynamic program-

ming equation and we then provide three algorithms for the approximation of

conditional expectations. In Section 3.5 we illustrate the results of the numerical

experiments, identify the best algorithm among those we studied and then employ

it to analyze the system behavior.

3.2 Microgrid

In this section, we will formalize the dynamics of different components of the

microgrid (Figure 1.1a) from Chapter 1. The microgrid serves a small, isolated

village; most of the power to the village is supplied by generating units whose

output has zero marginal cost, is intermittent and uncontrolled. Additional power

is supplied by a controlled generator whose operations come alongside a cost for

the microgrid owner (either the community itself or a power utility). Often the

intermittent units include PV panels and wind turbines, while the controlled unit

is often a diesel generator. The battery energy storage system in Figure 1.1a

allows for inter-temporal transfer of energy from times when demand is low, to

times when it is higher, but also introduces an element of strategic behavior that

can be employed by the system controller, to minimize the operational costs.

Without an energy storage, diesel had to be run at all times demand exceeded

production. When a battery is installed, intensity and timing of output from the
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diesel generator can be adjusted to move the level of charge of the battery towards

the most cost effective levels.

Remark 1 Note that for convenience, in the following, we will work in dis-

crete time only and divide the time interval [0, T ] into discrete time points

{t0, t1, . . . , tN}. For simplicity of notation, we continue to denote any stochastic

process X(tn) at time tn via Xn, thus X(tn) ≡ Xn. We also consider a finite

optimization horizon represented by the number of periods over which we want to

optimize the system operations indicated by T ≡ tN .

3.2.1 Net Demand

Consider two stochastic processes Dn and Rn, the former represents the de-

mand/load and the latter the production through the renewable generators. No-

tice that both processes are uncontrolled and they represent, respectively, the

unconditional withdrawal and injection of power in the system (constant during

time step). For the purpose of managing the microgrid, the controller is interested

only in the net effect of the two processes denoted by the process Ln:

Ln = Dn −Rn ; n ∈ {0, 1, . . . , N}. (3.1)

Remark 2 The state variable Ln represents the net demand of power at each time

tn, such that for Ln > 0, we should provide power through the battery or diesel

generator and for Ln < 0 we can store the extra power in the battery.

For simplicity, we model the net demand as an AR(1) process, the discrete

equivalent of an OrnsteinUhlenbeck process. In practical applications we expect
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Ln to be an R-valued mean reverting process with many different sources of noise

and time dependent random parameters; our choice of using an AR(1) avoids the

cumbersome notation coming from multiple noise sources still providing scope

for generalization. The process Ln is driven by the following difference equation,

starting from an initial point L0:

Ln+1 = Ln + b(Λn − Ln)∆t+ σ
√

∆tn ξn ; n ∈ {0, 1, . . . , N} (3.2)

where ξn ∼ N (0, 1), ∆t is the amount of time before new information is

acquired, b is the mean reversion speed, σ the volatility of the process and Λn is

the mean reversion level (typically deterministic function of time).

Remark 3 In real applications the deterministic function Λn should represent the

best forecast available for future net demand at the time of the estimation of the

policy.

3.2.2 Diesel generator

The Diesel generator represents the controlled dispatchable unit. The state of

the generator is represented by mn = {0, 1}. If mn = 0 then the diesel generator

is OFF, while it is ON when mn = 1. When the engine is ON, it produces a power

output denoted by un ∈ [u, u] at time tn, for u > 0.

Notice that, in addition, when the engine is turned ON, an extra amount of

fuel is burned in order for the generator to warm up and reach working regime.

We model the cost of switching the diesel generator from state i to j via K(i, j).

Thus, the controller pays K(0, 1) every time the generator is switched on mn+1 = 1

from mn = 0. We assume the cost to switch off the generator (when it is running)
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is zero i.e. K(1, 0) = 0 and continuing in the same regime incurs no cost i.e.

K(1, 1) = K(0, 0) = 0. The fuel consumption of the diesel generator is modeled

by an increasing function ρ(un) which maps the power un produced during one

time step into the quantity of diesel necessary for such output. Denoting by Pn

the price of fuel at time tn, the cost of producing un kW of power at one time step

is Pnρ(un); for simplicity we take a constant price of the fuel Pn = p.

3.2.3 Dynamics of the Battery

The storage device is directly connected to the microgrid and therefore its

output is equal to the imbalance between net demand Ln and diesel generator

output un, when this is allowed by the physical constraint. The battery therefore

is discharged in case of insufficiency of the diesel output and charged when the

diesel generator and renewables provide a surplus of power.

Let us denote the state of charge of the battery at time tn as In and its

maximum capacity as Imax. If the power rating of the battery is given by Bmax

and Bmin, where Bmax and Bmin represent respectively the maximum output and

input with Bmin < 0 < Bmax, its power output Bn at time tn is defined as:

Bn =
In − Imax

∆tn
∨
(
Bmin ∨ (Ln − un) ∧Bmax

)
∧ In

∆tn
. (3.3)

Intuitively, Bn < 0 refers to the charging of the battery and Bn > 0 refers to the

supply of power from the battery. The inner terms in equation (3.3) capture the

constraints due to maximum power output/input to the battery and the outer

terms capture the effect of the capacity constraints on the power output of the

battery. Notice then that an energy storage has a limited amount of capacity after
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which it can not be charged further, as well as an “empty” level below which no

more power can be provided from the battery. The dynamics of the controlled

process In is described by the following equation:

In+1 = In −Bn∆tn, n ∈ {0, 1, . . . , N − 1}, (3.4)

here In ∈ [0, Imax] and Bn ∈ [Bmin, Bmax]. For simplicity we assume that the

battery is 100% efficient. Notice that the battery output B and state of charge in

the battery I depend on the controlled diesel output un.

Intuition tells us that the bigger the battery, the less diesel will be needed to

run the operations of the microgrid. This is true because a bigger battery would

allow to store for later use a bigger proportion of the excess power produced by

the renewables. Batteries however are very expensive, and the cost per kWh of

capacity scales almost linearly for the kind of devices we consider in this chapter

(parallel connection of smaller batteries), hence it is important to find the optimal

size of battery for the needs of each specific microgrid.

3.2.4 Management of the Microgrid

The purpose of the microgrid is to provide a cheap and reliable source of power

supply to at least match the demand. Therefore, we search for a control policy

for the diesel generator which minimizes the operating cost and produces enough

electricity to match the net demand. In order to assess how well we are doing in

supplying electricity, we introduce the controlled imbalance process Sn defined as

follows:

Sn = Ln −Bn − un n ∈ {0, 1, . . . , N}. (3.5)
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Ideally, the owner of the Microgrid would like to have Sn = 0 ∀ n. This situation

represents the perfect balance of demand and generation. When Sn > 0 we observe

a blackout, net demand is greater than the production meaning that some loads

are automatically disconnected from the system. The situation Sn < 0 is defined

as a curtailment of renewable resources and takes place when we have a surplus

of electricity.

We treat the two scenarios, blackout and curtailment asymmetrically. To

ensure no-blackout Sn ≤ 0 and regular supply of power, we impose a constraint

on the set of admissible controls:

Sn ≤ 0

i.e. un ≥ Ln −Bn.

(3.6)

However, for Sn < 0 i.e. surplus of electricity, we penalize the microgrid using

a proportional cost denoted by C1. Large penalty would lead to low level of

curtailment and can be thought of as a parameter in the subsequent optimization

problem.

A rigorous mathematical description of the microgrid management problem

follows in section 3.3.

3.3 Stochastic control formulation

We state now the stochastic control problem for the diesel generator operating

in a microgrid system as described in section 3.2. In practice we seek a control

that minimizes the cost of diesel usage pρ(u), the switching cost K(0, 1) and the

curtailment cost C1|Sn|1{Sn<0}, under the no black-out constraint Sn ≤ 0.
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Note that, given the type of control we have on the diesel generator, we can

frame the optimization problem as a special case of stochastic control problems

known as optimal switching problems.

Let us denote by (Fn)n≥0 the filtration generated by the random variables

{ξn}n≥0, which represent the only randomness in the system, that is, we define

Fn = σ(ξi, i < n) for n ≥ 1, and F0 to be the trivial σ-field. We require the

control process (un)n≥0 to be adapted to this filtration or, in other words, no future

information should be used to determine its value. Under this assumption, the net

demand process (Ls)
n
s=0, the state of charge process (Is)

n
s=0 and the current regime

mn, become adapted to (Fn)n≥0. The objective of the controller is to minimize

the following cost functional

E

[
N−1∑
s=0

1{ms+1−ms=1}K(0, 1) + pρ(us) + C1|Ss|1{Ss<0} +W (IN)

]
,

where W is a terminal condition which might be linked with situations where

the battery has been rented and has to be returned with the same level of charge

otherwise a penalty might be applied. The minimization is carried out over the set

of admissible strategies U , containing all (Fn)n≥0-adapted controls (un)n≥0 such

that

un ≥ Ln −Bn ∀n (3.7)

un ∈ [u, u] ∪ {0}. (3.8)

Bn =
In − Imax

∆tn
∨
(
Bmin ∨ (Ln − un) ∧Bmax

)
∧ In

∆tn
(3.9)

where (3.7) represents the no-blackout constraints translated for the power pro-
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duced by the diesel generator, (3.8) represents the minimum and maximum power

output of the generator and (3.9) models the physical constraints of the battery:

maximum input/output power and maximum capacity.

Since the state dynamics is Markovian, the optimal control is of feedback type

and can be computed using the dynamic programming approach (see [53, Chapter

8]). To formulate this approach, we define the pathwise value Jn starting from

time tn, given by

Jn =
N−1∑
s=n

1{ms+1−ms=1}K(0, 1) + pρ(us) + C1|Ss|1{Ss<0} +W (IN). (3.10)

The value function is then defined as follows.

Vn(L, I,m) = min
u∈Un

{
E
[
Jn
∣∣∣Ln = L, In = I,mn = m

]}
, (3.11)

where the class Un contains admissible controls “starting from time tn”: processes

(us)
N−1
s=n adapted to the filtration Fns := σ(ξu, n ≤ u < s and satisfying the

constraints (3.7), (3.8) and (3.9) between n and N − 1.

The dynamic programming principle associated to (3.11), decomposes the

problem on a single interval into two optimal control problems: an optimal switch-

ing problem between being in the regime ON or OFF, and another absolutely

continuous control problem assuming the regime is ON. The equation reads as
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follows:

Vn(L, I,m) = min
u

(
π∆(L, I,m, u) + Cn(L, I,m;u)

)
, (3.12)

subject to u ≥ L−B, u ∈ {0} ∪ [u, u], (3.13)

where π∆(L, I,m, u) = 1{1u 6=0−m=1}K(0, 1) + pρ(u) + C1|S|1{S<0}, (3.14)

B =
I − Imax

∆tn
∨
(
Bmin ∨ (L− u) ∧Bmax

)
∧ I

∆tn
, S = L−B − u, (3.15)

and Cn(L, I,m;u) = E[Vn+1(Ln+1, In+1,1u6=0)|Ln = L, In = I,mn = m]. (3.16)

In order to ensure that the set of admissible controls is nonempty we introduce

the following assumption:

Assumption 1 The diesel generator is powerful enough to supply demand at all

times, i.e there is always a control u that satisfies the blackout constraint.

Remark 4 We enforce assumption 1 by redefining the net demand process with

a truncated version of (3.1), such that L̃n = min(Ln, Lmax) is the net demand. In

practice this is reasonable because the maximum power that could be required from

the microgrid is known a priori and the diesel generator is generally sized to the

maximum capacity installed on the system. For the sake of notational simplicity,

we will drop the ∼ on the variable L̃n from the following sections.

Note that (3.12) provides a direct technique to solve problem (3.11), iterating

backward in time from a known terminal condition and solving a static, one period,

optimization problem at each time step. The only difficulty in this procedure lies

in the estimation of conditional expectations of future value function, which can

not be computed exactly. In the next section 3.4 we will focus on the numerical

solution of (3.11).
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3.4 Numerical Resolution

In this section we describe the algorithm which we want to employ in the

solution of the energy management problem for the Microgrid system described

in Section 3.3. The main mathematical difficulty comes from the approximation of

conditional expectations in (3.12), which we will tackle using a family of methods

called Regression Monte Carlo. For our purposes we assume that the one step

optimization problem can be solved either by extensive search, or by any more

efficient method preferred by the reader. Here we discretize the set of possible

controls into a finite collection, as a result the optimization is straightforward.

In the dynamic programming equation (3.12), the conditional expectation is

not available analytically and needs to be estimated. As a result, equation (3.12) is

replaced by the corresponding approximate dynamic programming equation (3.17)

and our algorithm fully exploits this formulation. Similar to Section 2.2.1, Ê

represents the approximate projection operator. We start by generating a set of

simulations (scenarios) of the process L, which we will refer to as training points,

then we optimize our policy so that it performs well, on average (weighted on the

probability of each scenario), on the different scenarios.

V̂n(L, I,m) = min
u

(
π∆(L, I,m, u) + Ĉn(L, I,m;u)

)
, (3.17)

where Ĉn(L, I,m;u) = Ê[V̂n+1(Ln+1, In+1,1u6=0)|Ln = L, In = I,mn = m]. (3.18)

In practice, we initialize the value function at last time step in the backward procedure

to be equal to the terminal condition W . We then iterate backward in time and at

each time step over each training point we choose the control that minimizes the sum

of one step cost function and the estimated conditional expectation of the future costs

Ĉn(L, I,m;u). Note that, as expected, the conditional expectation is a function of time,
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the state of the system (L, I) and the state of the diesel generator, represented by the

ON/OFF switch m and the control u.

As the iteration reaches the initial time point we collect a set of optimal actions for

each time step and many different scenarios; in addition, since the problem is Markovian,

we can summarize such strategies in the form of control maps: best action at each time

tn given a pair of state variables (Ln, In) and state of the diesel generator mn. We

propose three different techniques to compute Ĉ in Section 3.4.1.

A fair assessment of the quality of the control policies approximated by the algorithm

just introduced is obtained by running a number of forward Monte Carlo simulations of

the net demand, controlling the system using such policies and then taking the average

performance.

We give a general description of the pseudo code in algorithms 1 and 4.

Remark 5 Notice that it is typical of Regression Monte Carlo algorithms to provide

the optimal policy only implicitly, in the form of minimizer of an explicit parameter-

ized function. The outputs of the algorithm are therefore the parameters (regression

coefficients) of such function.

3.4.1 Regression for continuation value

In this section we present the numerical techniques we use to estimate conditional

expectations Cn(L, I,m;u) in algorithm 1. These techniques belong to the realm of Re-

gression Monte Carlo methods, and in particular these specifications allow to deal with

degenerate controlled processes (the inventory). We focus on two main variants: Regress

Now (RN) and Regress Later (RL). Regress Now require projection of the value function

at n+ 1 on Fn measurable basis functions, Regress Later requires an Fn+1 projection.

Within Regress Now there are two techniques, piecewise continuous approximation and

global polynomial approximation, differing in how the regression is performed to esti-
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mate the conditional expectation. Piecewise continuous approximation is characterized

by a one dimensional projection in the net demand dimension repeated at different

inventory points. The approximation is extended to the full domain using linear inter-

polation in the inventory dimension. Global polynomial approximation, on the other

hand, use a two dimensional regression in net demand and inventory. Since we will use

polynomial basis for regressions, we will refer piecewise continuous approximation and

global polynomial approximation as PR-1D and PR-2D respectively. In total, we will

compare the performance of three methods i.e. PR-1D, PR-2D and RL. For details on

these techniques, see [20] for Regress Later, [6, 7] for PR-1D and [5] for PR-2D. Note

that in the three methods we repeat the regression approximation for both values of m.

An open source platform has also been developed to numerically solve wide variety of

stochastic optimization problems in [35].

Let us denote by {Ljn}Mj=1 the collection of training points at time tn, similar notation

is used for the inventory {Ijn}Mj=1.

3.4.1.1 Regress Now

Piecewise Continuous Approximation (PR-1D): This is characterized by a one

dimensional approximation of the conditional expectation repeated at different levels of

inventory. Let ΥI = {I0 = 0, . . . , IMI = Imax} be a discretisation of the state space of

the inventory and {Ljn}M,N
j=1,n=1 be generated from a forward simulation of the dynamics

of L. We define the approximation of the continuation value on the grid ΥI by regressing

the set of value functions {Vn+1(Ljn+1, I
i)}Mj=1 over the basis functions {φk(L)}Kk=1 for

each {Ii}MI
i=0, obtaining:

C̃n(L, Ii,m) =

K∑
k=1

αk,i,mn φk(L) , i = 0, 1, . . . , MI ,
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where we compute a collection of regression coefficients through least square minimiza-

tion

αi,m
n = arg mina∈RK

{ 1

M

M∑
j=1

(
Vn+1(Ljn+1, I

i,m)−
K∑
k=1

akφ(Ljn)
)2}

,

where we define RK 3 αi,m
n = (α1,i,m

n , . . . , αK,i,mn ).

Note that the least square projection is a sample estimation of the L2 projection

induced by the conditional expectation, for this reason we can approximate the function

Cn(·) using a least square projection of the value function at time tn+1. However,

as we have not included the inventory in the basis functions, we need to interpolate

between values of C̃n(L, Ii;m) in order to obtain an estimation of the value function for

In+1 ∈ (Ii, Ii+1). Let us define Ĉn(L, I,m;u) by the linear interpolation

Ĉn(L, I,m;u) = ωn(I, u)C̃n(L, Ii,m)+
(
1−ωn(I, u)

)
C̃n(L, Ii+1,m), I−Bn∆tn ∈ [Ii, Ii+1),

where ωn(I, u) = Ii+1−I+Bn∆tn
Ii+1−Ii and i = 0, . . . , MI .

Details of the algorithms are given in the pseudocode 2.

Global polynomial approximations (PR-2D) Contrary to PR-1D, here we

approximate the conditional expectation jointly as a function of both net demand L and

inventory I, without the need for interpolation. We generate training points {Ljn}M,N
j=1,n=1

from a forward simulation of the dynamics of L and {Ijn}M,N
j=1,n=1 from a distribution µN

on [0, Imax] independently. We choose µN to be the Lebesgue measure on [0, Imax].

The regression coefficients for the global polynomial approximation are computed

by least-square projection as:

αm
n = arg mina∈RK

{
E
[(
V̂n+1(Ljn+1, I

j
n+1,m)−

K∑
k=1

akφ(Ljn, I
j
n+1)

)2]}
,

where we define RK 3 αm
n = (α1,m

n , . . . , αK,mn ). The conditional expectation is then
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estimated as:

Ĉn(L, I,m;u) = E
[ K∑
k=1

αk,mn φk(Ln, In+1)
∣∣∣Ln = L, In = I, un = u

]
=

K∑
k=1

αk,mn φk(L, I −Bn∆tn).

Remark 6 Although in this chapter we chose µN to be independent of the dynamics of

(Ln)n≥0, in Chapter 4 we discuss in detail the effect of the correlation between {Ljn}Mc
j=1

and {Ijn+1}
Mc
j=1 on the performance of Regress Now algorithm.

3.4.1.2 Regress Later

In this framework, the value function V̂n+1(·, ·,m) at time tn+1 is parameterized via

regression and then the conditional expectation Cn(·, ·, ·) is evaluated analytically. We

start by generating the samples {Ljn+1, I
j
n+1}Mj=1 from an appropriate distribution µL,

we chose µL to be Lesbegue measure on [0, Imax]× [−Lmax, Lmax]. The value function is

then approximated via least square projection as:

αm
n = arg mina∈RK

{
E
[(
V̂n+1(Ljn+1, I

j
n+1,m)−

K∑
k=1

akφ(Ljn+1, I
j
n+1)

)2]}
,

where we define RK 3 αm
n = (α1,m

n , . . . , αK,mn ). Let us recall, denoting by φ the vector(
φ1(·), . . . , φK(·)

)
, that the coefficients αm

n can be computed explicitly by

αm
n =

(
Eµ
[
φφT

])−1
Eµ
[
V̂n+1(Ln+1, In+1,m)φ

]T
≈
( M∑
j=1

φφT
)−1

M∑
j=1

V̂n+1(Ljn+1, I
j
n+1,m)φT

and therefore, even though the regression coefficients are random (sample average ap-

proximation of expectations with respect to the measure µ) they are independent of Fn.
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Given the previous remark we can estimate the conditional expectation of future value

through:

Ĉn(L, I;m,u) = E
[ K∑
k=1

αk,mn φk(Ln+1, In+1)
∣∣∣Ln = L, In = I, un = u

]
=

K∑
k=1

αk,mn E
[
φk(Ln+1, In+1)

∣∣∣Ln = L, In = I, un = u
]
.

Now, we need to compute the expectation with respect to the randomness contained in

the transition function from Ln to Ln+1 and we simply write

E
[
φk(Ln+1, In+1)

∣∣∣Fn] = Eξ
[
φk(L+b(Λn−L)∆tn+σ

√
∆tnξ, I−Bn∆tn)

]
=: φ̂k(L, I, u).

For polynomial basis functions, i.e. φk(Ln+1, In+1) := Lpn+1I
q
n+1, the conditional expec-

tation φ̂k(L, I, u) can be written in closed form as:

φ̂k(L, I, u) = E
[
Lpn+1I

q
n+1

∣∣Ln = L, In = I, un = u
]

= Iqn+1σ
pdt

p
2

p∑
k=0

I{(p−k) is odd}

(
p

k

)(
L

1− λdt
σ
√
dt

)k p−k
2∏
j=1

(2j − 1)

Remark 7 Notice that RL does not require us to simulate the path of the net demand

(Ln)n≥0 process, rather it uses the transition probability Ln+1|Ln to estimate the condi-

tional expectation.

Out-of-sample evaluation To compare different algorithms, we compute the out-

of-sample estimate of the value function at t0 = 0 and state (L, I,m). We start by

simulating fixed M ′ paths of the {Ljn}M
′,N

j,n=1 starting from Lj0 = L. We then iteratively

update the trajectory of the controlled process Ijn and state of the diesel generator mj
n

starting from I0 = I and m0 = m. Assuming we know the state of the system at time

tn as (Ljn, I
j
n,m

j
n), for each path j = 1, . . . ,M ′ and at any time step tn, we compute the
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Algorithm 1: Regression Monte Carlo algorithm for Microgrid management

1 input: number of basis K, number of training points M , discretisation of
the inventory D, time-steps N .

2 if Regress Later then

3 Generate {Xj
n, I

j
n}

M,N
j,n=1 accordingly to a distribution µ;

4 else if Regress Now then
5 if PR− 2D then

6 Simulate {Xj
n}

M,N
j,n=1 according to its dynamics.

7 Generate {Ijn+1}
M,N−1
j,n=0 according to a distribution µ;

8 else if PR− 1D then
9 Generate a customary grid {I0, . . . , IMI} over the domain [0, Imax].

10 Simulate {Ljn}
ML,N
j,n=1 according to its dynamics where

ML = M/(MI + 1);
11 Define {Ljn, I

j
n+1}Mj=1 as cross product of {Ljn}

ML
j=1 and {Ij}MI

j=0 for ∀n.

12 Initialize the value function

VN(Xj
N , I

j
N , 1) = VN(Xj

N , I
j
N , 0) = W (IjN), ∀j = 1, . . . , M ;

13 for n = N − 1 to 1 do

14 Compute Ĉn using Algorithms 2 or 3.
15 for m = 0 to 1 do

16 V̂n(Ljn, I
j
n,m) = min

u∈Un

(
π∆(L, I,m, u) + Ĉn(L, I,m;u)

)
, j = 1, . . . , M

17 end

18 end

19 output: continuation value function {Ĉn(·, ·, ·, ·)}N−1
n=1 .

Algorithm 2: Regression technique for continuation value: PR− 1D

1 input: {V̂n+1(Ljn+1, I
j
n+1,m)}Mj=1, {φk}Kk=1. for i = 0 to MI do

2 αm
n = arg mina

{ M∑
j=1

(
V̂n+1(Ljn+1, I

i,m)−
K∑
k=1

akφk(L
j
n)
)2}

;

3 Define C̃n(L, I i,m) =
∑K

k=1 α
k,i,m
t φk(x), m = 0, 1;

4 end
5 Define

Ĉn(L, I,m;u) = Ii+1−I+Bn∆tn
Ii+1−Ii C̃n(L, I i,m;u) + I−Bn∆tn−Ii

Ii+1−Ii C̃n(L, I i+1,m;u),

I ∈ [I i, I i+1), m = 0, 1.
6 output: Ĉn(·, ·, ·, ·).
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Algorithm 3: Regression technique for continuation value: RL and PR− 2D

1 input: {V̂n+1(Ljn+1, I
j
n+1,m)}Mj=1, {φk}Kk=1.

2 if Regress Later then
3 r = n+ 1 ;
4 else if Regress Now then
5 r = n ;

6 αm
n = arg mina

{ M∑
j=1

(
V̂n+1(Ljr, I

j
n+1,m)−

K∑
k=1

akφk(L
j
r, I

j
n+1)

)2}
, m = 0, 1

7 Define Ĉn(L, I,m, u) =
∑K

k=1 α
k,m
n E[φk(Lr, In+1)|L, I,m, u].

8 output: Ĉn(·, ·, ·, ·).

Algorithm 4: Out of sample simulation

1 input: simulation budget M ′, continuation value function {Cn(·, ·, ·, ·)}N−1
n=1 .

2 for n = 1 to N − 1 do
3 for j = 1 to M ′ do

4 ujn = arg min
u∈Un

(
π∆(Ljn, I

j
n,m

j
n, u) + Ĉn(Ljn, I

j
n,m

j
n;u)

)
.

5 Set Ijn+1 = Ijn −Bj
n∆tn and mj

n+1 = 1ujn>0.

6 Simulate Ljn+1 using its dynamics.

7 J jn+1 = J jn + π∆(Ljn, I
j
n,m

j
n, u

j
n).

8 end

9 end

10 V0(L, I,m) = 1
M ′

∑M ′

j=1(J jN +W (IjN)).

11 output: Value function V .

optimal control ujn using the estimated conditional expectation Ĉn+1(·, ·, ·) and update

the value of the controlled processes (Ijn+1,m
j
n+1). Repeating this until the final time

tN , we compute the out-of-sample valuation as:

V̂0(L, I,m) =

∑M ′

j=1

[∑N
n=1 π

∆(Ljn, I
j
n,m

j
n, u

j
n) +W (IjN )

]
M ′ ·N

Algorithm 4 summarizes the sequence of steps for out-of-sample evaluation.

42



Regression Monte Carlo for Microgrid Management Chapter 3

3.5 Numerical Experiments

In this section we use the algorithms introduced in section 3.4 to solve a simple

instance of the microgrid management problem. We fix some base parameters and test

the three algorithms; the one performing best is then used to study the sensitivity of

the control policy and of the operational costs on changes in system parameters, hoping

to gain some insight on the optimal design of the microgrid.

We now list the base parameters chosen for the numerical experiments. For the

meaning of the parameters refer to section 3.2.

b = 0.5, Λn = 0, σ = 2, T = 100 (hours), ∆t = 0.25 (hours)
Imax = 10 (kWh), Bmin = −6, Bmax = 6 (kW)

ρ(u) = [(u− u∗)3 + (u∗)3 + u]/10 (litre/kW), u∗ = 6 (kW), p = 1 e , [u, u] = [1, 10] (kW)
C1 = 0 e , K(0, 1) = 5 e , W (·) = 0

Table 3.1: Parameters for the Microgrid.

According to the parameters table above, and recalling remark 4 the net demand

has the following dynamics:

Ln+1 =
(
Ln(1− 0.5∆tn) + σ

√
∆tnξn

)
∧ 10, n ∈ {0, 1, . . . , N − 1}, (3.19)

where ξn ∼ N (0, 1).

We decided to use such simple dynamics for illustrative purposes in order to make

the sensitivity of the optimal control policy to the remaining parameters more straight

forward to understand.

Consider now that for the parameters listed above, the problem is time homoge-

neous. We have also observed empirically that the estimated continuation values tend

to forget the terminal condition rather quickly. We show in Figure 3.1 that the regres-

sion coefficients for all algorithms converge to a stationary value time steps, suggesting

that optimization ran for longer time horizons would not bring any noticeable effect
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Figure 3.1: Regression Coefficients for the three methods. Left panel: regres-
sion coefficients for {L} at three different inventory levels for PR-1D formn = 1.
Center and Right Panel: Estimated regression coefficients corresponding to the
basis {L, I, L I} for RL (center panel) and PR-2D (right panel). Although we
used basis function up to polynomial degree 2, we present few coefficients for
clarity of presentation. Notice that the time axis is inverted to show the num-
ber of time steps computed backward. Remarkable smooth coefficients are
computed by the Regress Later algorithm.

to control policy. Since all three methods use polynomial basis of degree two for the

projection, it also allows for easy comparison of the dynamics of the coefficients across

methods. For example, at inventory level I = 0 the dynamics of the coefficient for L

achieves same stationary level for both PR-1D and PR-2D. Although an exact compar-

ison is not possible between PR-2D and RL, we continue to observe similar sign and

dynamics for each of the coefficients. However, getting away with almost no noise in

the dynamics of the estimated coefficients of Regress Later compared to Regress Now

is essentially magical.

As a result, we define a stationary policy u(L, I,m) to be used in a longer time

horizon than the one employed for its estimation which performance are comparable to

the time dependent policy un(L, I,m).

We finally tested the value of both stationary and time dependent policy and found

that the performance of the stationary policy is comparable to that of the time depen-

dent policy.
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Figure 3.2: Left/Center Panel: Control policy û(0, L, I,m) for Regress Later
algorithm at time n = 0. Right Panel: Estimated probability density of state
of charge of the battery associated with the use of the three algorithms. Notice
that RL and PR-2D induce very similar distributions.

3.5.1 Analysis of the controllers

In this section we compare the control policies estimated by the three algorithms

and we try to assess whether one of the approaches is preferable.

3.5.1.1 Control maps

We compare now the stationary control policies produced by the different algorithms;

recall that these policies are feedback to the state, i.e. can be written as function

um(L, I). Figure 3.2 displays an example of the feedback control policy in the form of

control map, a graphical representation of the value of the optimal control for each pair

(L, I).

We observed that the three policies agree with the intuition that the diesel generator

should produce more power when net demand is high and inventory is low. We can also

notice that the switching cost influences the policy, forcing the diesel to keep running

for longer in order to charge the battery sufficiently and avoid turning ON and OFF

the generator too often. Just by observation of the control maps little difference can be

found among the algorithms, we display in Figure 3.2 the effect of the control policy on a

the state of charge of the battery. It can be observed from the estimated unconditional

probability density of the process I that the policies induced by PR-2D and RL are
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very similar. Both seem to induce a peculiar mass of probability around In = 2.5,

differentiating the behavior of the inventory compared to PR-1D. The distribution of

the state of charge, obtained by plotting the histogram of all simulations over all time

steps, shows that PR-2D and RL does not fully exploit the whole inventory but rather

they are more conservative, saving energy to avoid to turn ON the diesel generator in

the future. In the next section we will investigate the value associated to this control

maps.

3.5.1.2 Performance of the policies

In order to assess the performance of each policy in an unbiased manner, we select

a collection of simulated paths of the net demand process L, and record the costs

associated with managing the microgrid as indicated by each control map.

We first study how the quality of each policy improves when we increase the com-

putational budget M (and the complexity of the projection K) for each algorithm to

compute the stationary policy. In Figure 3.3, we show the estimated value of the policy

when the initial state of the system is (L, I,m) = (0, 5, 0) for polynomial basis functions

of increasing degree, for PR-2D. In case of PR-1D we increase the number of discreti-

sation points for the inventory. In particular we make the computational time increase

by providing the problem with more training points and more parameters to use in

the definition of C as increasing the number of basis functions. In the case of PR-2D

and RL, surprisingly, we notice that the performance of the estimated control improves

only when polynomials of even degree are added, and the effect is more prominent for

Regress Later.

We notice from the comparison that PR-1D converges quickly, resulting in the best

algorithm in terms of trade off between running time and precision. Among the PR-2D

and RL (not displayed in order to maintain clear presentation, but available on request),
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Figure 3.3: Value function V̂0 for PR-2D (lower x-axis represents the polyno-
mial degree) and PR-1D (upper x-axis axis represents the number of inventory
levels). Notice the peculiar behaviour of even/odd degree of basis functions in
the PR-2D regressions. Similar analysis was performed for Regress Later.

we observe similar bias, however latter has lower standard error. This is not surprising

because Regress Later has only one element of approximation error due to finite basis

functions while PR-2D has error attributed to two sources, first, due to finite basis

function and second, pathwise estimation of the conditional expectation.

3.5.2 System behavior

In the previous section we found PR-1D to be the best performing algorithm by our

criteria. In the following we shall always employ PR-1D to conduct our study of the

sensitivity of the control policy and the associated cost of managing the grid to some of

the parameters of the model.

The aim of the section is to build a solid understanding of the behavior of the

microgrid in order to get an insight into the optimal design of the system. We decided to

study the following aspects of the grid: battery capacity, represented by Imax; different

proportion of renewable production, via the volatility σ and the mean reversion b;
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Figure 3.4: Empirical distribution of curtailed energy (top panel) and diesel
cost (bottom panel) for different levels of battery capacity. Notice that the
decrease in cost and curtailed energy per kWh of additional capacity is smaller
for high capacity batteries.

tenable behavior of the policy, via the switching cost K and curtailment cost C1.

In order to be able to carry out our analysis, without introducing cumbersome eco-

nomic and engineering details regarding the microgrid components, we have to make

very simplistic assumptions. Our aim is however to guide the reader through a method-

ology that can be replicated to study real world microgrid systems.

3.5.2.1 Battery capacity

We study first the behaviour of the system relatively to changes in the capacity of

the battery. We would expect to observe negative correlation between the quantity of

diesel consumed and the battery size. We display in Figure 3.4 both the quantity of

energy curtailed and the cost of running the diesel generator for different values of the

battery capacity. We can observe that, as expected, increasing the size of the battery

leads to lower diesel usage thanks to the higher proportion of renewable energy that is

retained within the system. As the capacity of the battery reaches 30/40 kWh, we start

observing a decrease in the cost-reduction per kWh of additional capacity suggesting

that further analysis should be run in order to understand up to which size it is worth

to pay to add storage capacity to the system.
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We show now how to infer information about the optimal sizing of the battery,

minimizing the trade off between the installation cost of a bigger battery and the reduced

use of the diesel generator. Consider however that including battery ageing in the

stochastic control problem is outside the scope of this chapter but rather in this section

we present only a post-optimization analysis. Assuming that the microgrid runs under

similar conditions for the next 10 years, we can quickly estimate the total throughput

of energy for the different battery capacities. Consider now that a battery does not

have an infinite lifetime, but rather it should be scrapped after equivalent 4000 cycles

(amount of energy for one full charge and discharge). Under the previous assumptions,

we can compute how many batteries would be necessary to cover the next 10 years

of operations. Similarly, using the data relative to the usage of diesel generator for

different levels of capacity, we can compute the operating cost of the diesel generator

over the same time period. Further exploiting the assumption about the lifetime of a

battery, we obtain the cost of running the grid for 10 years as a function of the number

of batteries. To conclude, assuming a linear cost of 400 e /kWh of capacity, we work

out the installation cost of the different-size storage devices.

Once this information is collected we search for the minimum of the sum of installa-

tion and running cost and, in turn, we compute the optimal capacity. Figure 3.5, on the

left, displays a graphical summary of the procedure just described and shows that in our

problem the optimal size of the battery is 14 kWh under the current set of assumptions.

Further, we study how much our result is affected by the cost per KWh of capacity,

repeating the procedure above. We find that, as expected, as cost increases the size of

the optimal battery decreases. Figure 3.5, on the right, displays such behaviour.
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Figure 3.5: Left panel: Total cost of installing and running the grid for ten
years, assuming we replace the battery every 4000 cycles, against the battery
capacity. Right panel: Sensitivity of optimal battery capacity with respect to
the price of battery energy storage system.

3.5.2.2 Renewable penetration

In this section we want to investigate how robust the microgrid is to higher pene-

tration of renewable generation, or, in other words, to what extent the algorithm can

cope with increasing randomness and decreasing predictability of the system. To model

this phenomena we assume that greater penetration of renewables can be modeled by

increasing both the parameters for volatility σ and the mean reversion rate λ. Increas-

ing these two parameters makes the problem more difficult to solve, given that the

control policy can rely less and less on the statistical properties of the process L which

approaches white noise as high variance and high mean reversion make the current

position of the process not very informative to predict its next one.

In order to establish the real added value provided by our stochastic optimization

algorithm, we compare the estimated policy with an heuristic myopic control which can

be reproduced in our model solving the dynamic programming equation (3.12) taking

constant conditional expectation with respect to the control (greedy policy with respect

to the current cost), particularly Ĉ = 0. We plot the value of the two control policies

as function of the increasing learning difficulty in Figure 3.6 where we observe that
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Figure 3.6: The blue lines (solid and dashed, mostly decreasing with y-axis
on the left) represents the cost of the diesel usage for myopic and stochastic
policy as a function of σ. The orange curve (mostly increasing with y-axis on
the right) represents the percentage improvement in cost when using stochastic
policy as a proportion of cost of myopic policy.

Figure 3.7: A sample path for the dynamics of load demand Lt, diesel usage mt

and inventory It for low (left panel) and high (right panel) volatility σ. Mean
reversion rate was chosen as λ := σ2/8, in order to ensure a constant volatility
of the process regardless of σ. Notice the low usage of the diesel generator in
the figure on the right compared to the one on the left.
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the importance of accounting for the future conditional expectations Ĉ increases as the

predictability of L decreases.

In Figure 3.6 we present cost of diesel (solid and dashed blue, mostly decreasing

with y-axis on the left) as a function of σ for myopic and stochastic policy. The orange

line (mostly increasing and y-axis on the right) represents the percentage improvement.

Since increasing σ alters the volatility of the distribution of the process L, we define the

mean reversion rate λ := σ2/(2c) in order to ensure that the volatility of the process is

constant while we increase σ. The stochastic policy leads to at least 12% reduction in

the cost of the diesel usage, compared to the myopic policy, and the difference magnifies

with increasing “fluctuations” in the process. The decreasing relationship of the cost

with σ signifies the importance of the battery storage system in the microgrid which

absorbs the sharp change in the demand. In Figure 3.7 we compare the demand for two

different levels of the σ, the dynamics of the diesel generator and the inventory. Notice

significantly less usage of the diesel for high fluctuations, σ = 5, compared to σ = 1.175.

The results of this experiment are affected by the over-pessimistic assumption of

modeling greater penetration of renewables with an increasingly unpredictable, and

eventually completely random, net demand process. This sort of analysis can however

provide insight into how much (weather and load) forecasting capability will be necessary

for a given level of renewable penetration.

3.5.2.3 Switching and curtailment

We conclude this section by analyzing the dependence of the system behavior on two

key parameters in the model: switching cost K(0, 1) and curtailment cost C1. Switching

cost is a system’s property and the microgrid controller has little freedom over, however

the controller can significantly reduce the amount of curtailed energy by choosing the

appropriate curtailment cost. In Figure 3.8, we observe that increasing the curtailment
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Figure 3.8: Sensitivity to C1. Left panel: Total curtailed energy as a pro-
portion of curtailed energy at C1 = 2. Right panel: Empirical distribution of
difference in the cost of the diesel used (blue color) and curtailed energy (or-
ange) when C1 = 20 against C1 = 2. The histograms represent the differences
between the two cases, C1 = 20 and C1 = 2. Notice that higher curtailment
cost leads to reduced curtailed energy but at the expense of inefficient diesel
usage.

cost reduces the total curtailed energy by approximately 4%. However, it comes at the

cost of inefficient usage of the diesel generator, which is represented on the right in

the Figure 3.8. The blue historgam represents the difference between the cost of diesel

usage for C1 = 20 and C1 = 2. Similarly the orange histogram represents the difference

between the energy curtailed for the two cases. Positive diesel cost depicts inefficient

usage of the diesel at C1 = 20 compared to C1 = 2. Depending upon the specific cost

functional for the diesel, the controller can use an artificial C1 as a parameter in the

algorithm to achieve better quality of the optimization.

The optimal policy when the generator is ON mt = 1 is significantly altered de-

pending upon the switching cost. For example, in Figure 3.9, we present the control

maps associated with K(0, 1) = 2 and K(0, 1) = 5. As expected, larger switching cost

disincentivise the controller to switch OFF the diesel generator once it’s ON. However,

we don’t observe ”significant” change in the control policy due to increase in switching

cost when the generator is OFF.
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Figure 3.9: Control map û(·, ·, 1) for different switching costs when the diesel
generator is ON. Left panel: Switching costK(0, 1) = 2. Right panel: Switching
cost K(0, 1) = 5. Notice the increase in area for light blue (corresponding to
u = 1) in the figure on the right because of increased switching cost.

3.6 Summary

In this chapter we solved the problem of optimal management of a microgrid by

employing two algorithms from the Regression Monte Carlo literature, namely: Regress

Now and Regress Later. We also evaluated the performance of two different approxima-

tion methods (piecewise continuous and global polynomial) for Regress Now algorithm.

We find that piecewise continuous approximation for Regress Now significantly out-

performs the other methods. Besides algorithm design, we propose a methodology to

optimize the design of the grid and determine the optimal sizing of the battery. In

addition, we perform a thorough sensitivity analysis to some of the key parameters,

showing the robustness of our solution.

54



Chapter 4

Simulation Methods for
Stochastic Storage Problems: A
Statistical Learning Perspective

This chapter is the result of a collaboration with Michael Ludkovski and is based on

the work [12].

In this chapter we take a statistical learning perspective to develop the dynamic em-

ulation algorithm (DEA) that unifies the different existing approaches of RMC methods

in a single modular template. We then investigate the two central aspects of regression

architecture and experimental design that constitute DEA. For the regression piece, we

discuss various non-parametric approaches, in particular introducing the use of Gaus-

sian process regression in the context of stochastic storage. For simulation design, we

compare the performance of traditional design (grid discretization), against space-filling,

and several adaptive alternatives. The overall DEA template is illustrated with multiple

examples drawing from natural gas storage valuation and optimal control of back-up

generator in a microgrid.
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4.1 Introduction

Stochastic storage problems concern the optimal use of a limited inventory capacity

under uncertainty, motivated by models from commodity management, energy supply,

operations research and supply chains. The common thread in all these settings is

deciding how to optimally add and reduce inventory as the system state stochastically

fluctuates over time. For example, in the gas storage version [26, 6, 54, 5, 29, 55, 19, 56,

34, 7], the objective is to manage an underground cavern through buying and selling

natural gas, with the principal stochastic factor being the commodity price. In the

context of microgrid (Chapter 3), the objective is to deliver electricity at the lowest cost

by maximizing inter-temporal storage linked to a renewable intermittent power source

(say from solar or wind), so as to minimize the use of non-renewable backup generator.

In the hydropower pumped storage setup, the objective is to match upstream inflows

and downstream energy demands at the lowest cost [38, 57, 58].

Contributions

In this chapter we present a unified treatment of stochastic storage problems from

the statistical learning perspective. We recast simulation-based dynamic programming

approaches as an iterative sequence of machine learning tasks, corresponding to approx-

imating the value functions, indexed by the time-step parameter t. Equivalently, the

tasks can be thought of as learning the underlying C-values, or the optimal feedback

control ut.

With the machine learning perspective, the storage model is viewed as a stochastic

simulator that produces noisy pathwise observations, and the aim is to recover the

latent average behavior, i.e. the conditional expectation, by judiciously selecting which

simulations to run. This framework naturally emphasizes computational complexity

and offers an abstract modular template that accommodates a variety of approximation
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techniques. Indeed, our template involves three major pieces: (i) experimental design

to determine which simulations to run; (ii) approximation technique for the conditional

expectation; (iii) optimization step to recover optimal feedback control. While these

sub-problems have been treated variously elsewhere, to our knowledge we are the first

ones to fully modularize and distill them in this context. In particular, emphasizing the

design aspect of RMC methods was only recently taken up in [8, 59]. We borrow the

design framework introduced in [8] for American options, and to our knowledge, this is

the first work to explore experimental designs in context of storage problems.

We show that existing proposals for Regression Monte Carlo for storage problems

all fit neatly into this template, and moreover our setup furnishes a variety of further

improvements. Specifically, we address the following three enhancements:

(A) New simulation designs. To better explore the input space we consider space-

filling designs based on quasi Monte Carlo sequences or Latin hypercube sampling.

To focus the emulators on the regions of interest, we consider probabilistic design.

We also explore various adaptive versions, such as mixtures of space-filling and

probabilistic designs, and designs that vary across t;

(B) Non-parametric regression architectures for learning the value function. In par-

ticular, we document the advantages of using Gaussian Process regression;

(C) Implementations that vary RMC ingredients across time-steps, either determin-

istically or adaptively, during the backward recursion. This includes alternat-

ing between joint-(P, I) and discretized-inventory regression schemes, as well as

changing the design size as t changes. We showcase one such approach, addressing

a non-smooth terminal condition.

We emphasize the mixing-and-matching aspect, which is especially attractive for

implementation in a broad-scope software library where the different methods are ex-

57



Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective
Chapter 4

pressed as subroutines accessible via a uniform interface.

The developed Dynamic Emulation Algorithm is applicable in a wide range of

stochastic storage settings, being scalable in the dimension of the state variable and

potential state dynamics. We illustrate DEA with 4 different extended case-studies.

The first three case-studies consider valuation of natural gas storage facilities, starting

from a standard benchmark first introduced in Forsyth and Chen [29]. This benchmark

is then extended to add switching costs (that make control regime part of the state),

and to consider simultaneously optimizing two storage facilities (leading to a 3D state

space). Last but not least, we consider an example from microgrid management, solv-

ing for the optimal dispatch of backup generator to balance an intermittent renewable

power source coupled to a limited battery.

Our developments parallel the recent literature on optimal stopping, especially in the

context of Bermudan option pricing, where a wealth of strategies have been proposed

and investigated [8]. It has been a well known folklore result that storage problems, espe-

cially with discrete controls, are “essentially” optimal stopping as far as computational

methods are concerned. Nevertheless, the respective knowledge transfer is non-trivial

and there remain substantive gaps, which we address herein, between the respective nu-

merical algorithms. Thus, the present chapter “lifts” optimal stopping techniques to the

setting of stochastic storage (i.e. optimal switching), and can be seen as a step towards

similar treatment of further stochastic control problems, such as optimal impulse, or

continuous control.

The rest of this chapter is organized as follows. Section 4.2 describes the classical

storage problem and the key ingredients to its solution. Section 4.3 describes the al-

gorithm developed to modularize the solution steps for regression Monte Carlo into a

sequence of statistical learning tasks. Section 4.4 discus the mathematics for Gaussian

process regression and other popular regression methods used in the literature in the

58



Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective
Chapter 4

context of storage problems. In Section 4.5, we introduce different design alternates

such as space-filling, adaptive and dynamic to exploit the spatial information and ef-

ficiently implement non-parametric regression methods (particularly, Gaussian process

regression) utilizing batched design. Sections 4.6 and 4.7 are devoted to numerical il-

lustrations, taking up the gas storage and microgrid management, respectively. Finally,

Section 4.8 concludes.

4.2 Problem description

A storage problem is exemplified by the presence of stochastic risk factors together

with an inventory state variable. The risk factors have autonomous dynamics, while

the inventory is (fully) controlled by the operator via the storage policy; thus the latter

dynamics are endogenized. A second feature of storage problems we consider is their

switching property: the controller actions consist of directly toggling the storage regime.

In turn the storage regime drives the dynamics of the inventory. Depending on the setup,

the regime is either a control variable, or a part of the system state.

To make our presentation concrete, we focus on the classical storage problem with

a stochastic price. Namely, there are two main state variables: Pt and It. Pt ∈ R+

represents the price of the stored commodity; It ∈ [0, Imax] is the inventory level. We

present the storage dynamics in discrete-time on a time interval [0, T ] discretized into

a finite grid 0 = t0 < . . . tn . . . < tN = T , such that tn = n∆t = n TN .

For the price, we assume exogenous Markovian dynamics of the form

Pn+1 = Pn + b(n, Pn)∆tn + σ(n, Pn) ∆Wn, (4.1)

where (∆Wn) are exogenous i.i.d. stochastic shocks. For the rest of the article we

take ∆Wn ∼ N (0,
√

∆t) representing Brownian motion dynamics; any other (time-
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dependent) shocks could be straightforwardly utilized too. We denote by Fn the σ-

algebra generated by price process up until time tn and by F = (Ftn) the corresponding

filtration. The inventory level It follows

In+1 = In + a(un) ∆t, (4.2)

where un is the inventory control, representing the rate of storage injection u > 0,

withdrawal u < 0 or holding u = 0. The control is linked to the storage regime mn.

We assume that there are three regimes mn ∈ J := {+1,−1, 0} representing injection,

withdrawal and do-nothing respectively. The regime and control are determined by the

joint state:

mn+1 =Mn(Pn, In,mn), (4.3)

un(mn+1) = An(Pn, In,mn;mn+1). (4.4)

Note that the above form implies that at each time-step tn and state (Pn, In,mn) the

controller picks her next regime mn+1 which in turn determines her control un(mn+1).

It also directly restricts controls to be of Markovian feedback form, making the policies

(un,mn+1) (Fn)-adapted. As a result, (Pn, In,mn) is a Markov process, adapted to the

price filtration (Fn).

Let π(P, u) be the instantaneous profit rate earned by using control u when price is

P , and K(i, j) ≥ 0 be the switching cost for switching from regime i to j. Then

π∆(Pn,mn,mn+1) := π(Pn, un(mn+1))∆tn −K(mn,mn+1),

is the net profit earned during one time-step [tn, tn+1). To denote the cumulative profit

of the controller on [tn, T ] along the path specified by Pn = Ptn:tN and a selected
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sequence of regimes mn := (mtn:tN ) (and consequently the control un := (utn:tN )) we

use

vn(Pn, In,mn) :=

N−1∑
s=n

e−r(ts−tn)π∆(Ps,ms,ms+1) + e−r(T−tn)W (PN , IN ), (4.5)

where r ≥ 0 is the discount rate and W (P, I) is the terminal condition (typically con-

cerning the final inventory I) at the contract expiration. Note that IT is determined

recursively based on mn using (4.2). Similarly, because v(·) depends on the initial

regime mn through the switching costs K(mn,mn+1), mn is part of the current state,

impacting the next decision to be made, cf. Figure 4.7 in Section 4.6.4. The goal of the

controller is to maximize discounted expected profits on the horizon [tn, T ],

Vn(P, I,m) = sup
mn

E
[
vn(Pn, In,mn)

∣∣∣ Pn = P, In = I,mn = m
]
, (4.6)

subject to In ∈ [Imin, Imax] ∀s. (4.7)

Problem (4.6) belongs to the class of stochastic optimal control, and satisfies the

dynamic programming principle (DPP, also known as the Bellman equation) [27]. The

DPP implies that Vn(·) satisfies the one-step recursion

Vn(Pn, In,mn) = max
m∈J

E
[
π∆(Pn,mn,m) + e−r∆tnVn+1(Pn+1, In+1,m)

∣∣∣Pn] , (4.8)

where the expectation is over the random variable Pn+1 since the inventory In+1 is fully

determined by In and the chosen regime m on [tn, tn+1). See [11, 20, 5] for further dis-

cussion and proof of DPP in related storage problems. Note that due to the inventory

constraints, some of the controls might not be admissible for different initial conditions,

so that formally the maximum in (4.8) is over J = Jn(Pn, In,mn) ⊆ {+1,−1, 0}.

For instance, if the inventory is zero, In = 0 further withdrawal is ruled out and
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Jn(Pn, 0,mn) = {0, 1}. Such constraints could even be time- or price-dependent, for

instance in hydropower management.

Remark 8 In our main setup the choice of the control is pre-determined given the

stochastic state and the regime. More generally, conditional on the regime there might

be a set of admissible controls Un(mn+1), adding an additional optimization sub-step.

For example, we might have Un(+1) = (0, umax(In)] and Un(−1) = [umin(In), 0), where

umax > 0 is the maximum injection rate and umin < 0 is the largest withdrawal rate (i.e.

minimal, negative injection rate). When |U| > 1, the optimization problem (4.8) requires

first to find the optimal regime mn+1, and secondly to find the optimal control un(mn+1)

admissible to this regime. The original formulation corresponds to U being a singleton

and can be interpreted as a trivial optimization over U , e.g. due to a bang-bang structure.

Abstractly, we may always write un(mn+1) = Un(Pn, In,mn;mn+1) subsuming the inner

optimizer.

4.2.1 Solution Structure

Due to the Markovian structure, at each time-step tn and state (Pn, In,mn) the

controller picks her next regime mn+1 (consequently control un(mn+1)) according to

mn+1 = m∗(tn, P, I,m) = arg maxj∈J
{
π∆(P,m, j) + e−r∆tnCn(P, I + a(un(j))∆tn, j)

}
(4.9)

where the continuation value of switching to regime m is

Cn(P, I,m) := E
[
Vn+1(Pn+1, I,m)

∣∣Pn = P
]
. (4.10)

Conceptually, we have a map from the value function V to m∗ and u∗, encoded as

m∗n : (P, I,m) 7→ J . The dependence of the continuation value C, value function V and
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the control map m∗ on the current regime m is a consequence of the switching costs

K(mn,mn+1), see Remark 11.

Conversely, equation (4.6) provides the representation of the value function as a

conditional expectation of future profits based on an optimal policy m∗. Therefore, any

estimate m̂ : (tn, P, I,m) 7→ J of the control map naturally induces a corresponding

estimate V̂ of the value function. Specifically, m̂ yields the dynamics

În+1 = În + a
(
un(m̂n+1(tn, P, I, m̂n))

)
∆tn,

and induces

V̂0(P0, I0,m0) = E

[
N−1∑
n=0

e−rtnπ∆(Pn, m̂n, m̂n+1) + e−rTW (PN , ÎN )

]
. (4.11)

While În does not appear explicitly above, it is crucially driving m̂n+1(tn, Pn, În, m̂n).

Figure 4.1 illustrates this dual link by showing a trajectory of (Pt) and several

corresponding trajectories of (Ît) indexed by their initial inventories I0 (viewed as an

external parameter) for a gas storage facility (see section 4.6.1 for more details). One

interesting observation is that the dependence of time-t inventory Ît on I0 = i is rather

weak, i.e. the inventory levels coalesce: Îit = Îi
′
t after an initial “transient” time period.

Note that because the controls are specified in feedback form, once Îit = Îi
′
t we have

m̂i
s = m̂i′

s for all s ≥ t and the inventory paths will stay together forever. The Figure

also illustrates the underlying maxim of “buy low, sell high”: when Pt is low, controlled

inventory Ît is high (and increasing), and when Pt is high, Ît is low (and shrinking).

As a result, we see a clustering of Ît around the minimum and maximum storage levels

Imin, Imax, indicating the strong constraint imposed by the bounded storage capacity.

To visualize the estimated optimal policy m̂, Figure 4.2a plots the control map

(P, I) 7→ m̂(t, P, I) at a fixed time step t, namely with T − t = 0.3 years for the gas
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Figure 4.1: Top panel: a given trajectory of commodity price (Pt) following
logarithmic mean reverting process in (4.27). Lower panel: Corresponding
trajectories of controlled inventory Ît starting at Î0 ∈ {0, 500, 1000, 2000}. This
figure is associated with the gas storage example of Section 4.6.1 using the
PR-1D solution scheme.

storage example of section 4.6.1. (In that example, there is no dependence on current

regime m.) The state space is divided into three regions: when P is high it is optimal

to withdraw: m̂ = −1; if P is low, it is optimal to inject m̂ = +1; in the middle, or if

inventory is very large, it is optimal to do nothing m̂ = 0. Typically, the control map

is interpreted by fixing current inventory I and looking at m̂ as a function of P . We

can then summarize the resulting policy in terms of the injection/withdrawal boundaries

Binj(I, t) and Bwdr(I, t):


Binj(I, t) := sup{P : m̂(t, P, I) = +1},

Bwdr(I, t) := inf{P : m̂(t, P, I) = −1}.
(4.12)

Since injection becomes profitable with low prices, Binj(I, t) represents the maximum

price for which injection (m̂(t, Pt, I) = +1) is the optimal policy. Similarly, Bwdr(I, t)
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represents the minimum price for which withdrawal (m̂(t, Pt, I) = −1) is the optimal

policy. The interval [Binj(I, t), Bwdr(I, t)] is the no-action region. These boundaries are

plotted as a function of T − t in Figure 4.2b at three different inventory levels. One

prominent feature is the boundary layer as T − t → 0 whereby the policy is primarily

driven by the terminal penalty W (P, I) than immediate profit considerations. In this

example the “hockey-stick” W (PT , IT ) forces the controller to target the inventory level

I = 1000, as T − t → 0, so that injection becomes the optimal policy for I < 1000

independent of the price, and withdrawal becomes optimal for I > 1000 (the no-action

region effectively disappears). Conversely, for large T − t, the boundaries t 7→ Binj(I, t)

and t 7→ Bwdr(I, t) are essentially time-stationary.

Finally, Figure 4.2c shows the value function V̂0(P, I) as a 2-D surface in the price

and inventory coordinates. As noted by previous studies, for a fixed price P , we observe

a linear relationship between value and inventory. However, as a function of P , V0(·, I)

is non-linearly decreasing at low inventory levels, and increasing for large inventory.

(a) Control map
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Figure 4.2: Left panel: snapshot of the control map m̂(t, P, I) at t = 2.7 years.
Middle: injection Binj(I, ·) and withdrawal Bwdr(I, ·) boundaries as a function
of time for I ∈ {500, 1000, 1500}. Right: value function V̂0(P, I) at t = 0.
Results were obtained with conventional design and PR-1D regression.
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4.3 Dynamic Emulation Algorithm

The numerical algorithms we consider provide approximations, denoted as Ĉ, to the

continuation value in (4.10). This is done via backward induction to estimate Ĉn(·) as

the conditional expectation of V̂n+1(·) for n = N − 1 to n = 0. For this induction, the

simulation-based framework relies on a Monte Carlo approximation which consists of

generating pathwise profits vn+1(Pn+1, In+1,mn+1) and then inferring the input-output

relationship between (Pn, In,mn) and vn+1(·) via a statistical regression. Indeed, a

conditional expectation, which is an L2-projection, is naturally approximated as learning

the mean response with a squared-loss criterion. Specifically, regression is implemented

as empirical projection onto an approximation space Hn.

Because these pathwise simulations of Pn → Pn+1 are themselves part of the algo-

rithm, we must also choose the respective experimental design Dn, i.e. the inputs “x”

of the regression (with vn+1’s being the corresponding “y”). The core loop, which we

dub Dynamic Emulation, thus consists of the following sequence of learning tasks that

must be done at each time-step t:

Generate design → Generate pathwise profits → Estimate the continuation function Ĉ.

The nomenclature of the DEA emphasizes the associated recursive learning that can be

dynamically adjusted. One non-standard feature is that while at each step DEA targets

the emulation of the continuation value C(t, ·), the overall performance measure is given

by the quality of the final answer V̂ (0, ·, ·, ·) on an out-of-sample simulations utilizing

the estimates of the continuation value C(t, ·).

The above perspective distills the following key properties of the RMC framework:

• Picking the simulation designs Dn underlying the emulation;

• Generating the pathwise profits vn+1 underlying the regression;

• Picking the projection spaces Hn for the regression;
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• Modularity in terms of t, which allows dynamic selections for the above sub-steps

as the backward recursion unfolds.

The resulting template for solving the storage problem brings multiple advantages.

First, DEA offers a wide latitude in selecting the approximation space Hn. Existing

schemes largely concentrated on parametric regression with a fixed set of basis func-

tions. In contrast, DEA allows for any number of regression frameworks, including

non-parametric approaches that are more expressive. It also includes the possibility

to (adaptively) pick different Hn across timesteps tn. Second, DEA eliminates the re-

quirement to store global price paths in memory, rather all simulations are performed

“online”. Third, DEA introduces arbitrary experimental designs; since the latter is

primal to maximizing the learning efficiency, there are significant gains to be exploited

from judiciously selecting the shape of Dn. Heretofore the literature concentrated on

what we call “probabilistic” designs where the values of Pn came from pre-computed

price paths. Fourth, DEA allows to vary the number of simulations Mn at time step tn.

The DEA is based on the concept of stochastic simulation. Assuming that we have

estimated the continuation function Ĉn+1(·), . . . , ĈN−1(·), the objective is to estimate

Ĉn(·) using a simulation design Dn := (P jn, I
j
n+1,m

j
n+1, j = 1, . . . ,Mn). Note that for

conceptual clarity we re-label the current state via the next-step In+1 which is deter-

ministic based on In,mn+1. The simulator first generates one-step paths P jn 7→ P jn+1,

j = 1, . . . ,Mn. It then computes the one-step-ahead pathwise profits (cf. [15])

vjn+1 := max
j′∈J

{
π∆(P jn+1,m

j
n+1, j

′) + e−r∆tn Ĉn+1(P jn+1, I
j
n+1 + a(u(j′))∆tn, j

′)
}

(4.13)

= π∆(P jn+1,m
j
n+1,m

j
n+2) + e−r∆tn Ĉn+1(P jn+1, I

j
n+2,m

j
n+2), (4.14)
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along each path j = 1, . . . ,Mn where

mj
n+2 = arg maxj′∈J

{
π∆(P jn+1,m

j
n+1, j

′) + e−r∆tn Ĉn+1(P jn+1, I
j
n+1 + a(u(j′))∆tn, j

′)
}

Ijn+2 = Ijn+1 + a(u(mj
n+2))∆tn+1.

Observe that while (4.13) is based on the definition of (4.10) in terms of the value

function, V̂ actually never makes an appearance, and vn+1 is defined solely from Ĉn+1(·).

The approximation task is then to learn (by fitting a statistical model) the input-

output relationship between (P jn, I
j
n+1,m

j
n+1)Mn

j=1 and (vjn+1)Mn
j=1 to extract the expected

response (i.e. the mathematical expectation of vn+1). Note that to evaluate the term on

the RHS of (4.13) we need to predict continuation values at arbitrary next-step states

Ĉn+1(Pn+1, In+1,mn+1).The underlying operations of fit and predict are thus the two

main workhorses of the statistical approximation procedure. In the fit step, we seek

to L2-project vn+1 onto an approximation space Hn:

Čn(·) := arg minhn∈Hn ‖hn − vn+1‖2. (4.15)

As a canonical setup, Hn = span(φ1, . . . , φR) is the linear space generated by basis func-

tions φi and the approximation Čn(·) =
∑R

i=1 βiφi(·) is described through its coefficient

vector ~β. To estimate ~β we solve a discrete optimization problem based on experimental

design Dn of size Mn and the corresponding realized pathwise values vjn+1, j = 1, . . . ,Mn

from trajectories started at (P jn, I
j
n+1,m

j
n+1):

Ĉn(·, ·, ·) = arg minhn∈Hn

Mn∑
j=1

∣∣∣hn(P jn, I
j
n+1,m

j
n+1)− vjn+1

∣∣∣2 . (4.16)

Thus, Ĉ is an empirical approximation of the projection Č, with the corresponding

finite-sample error. In particular, subject to mild conditions on Dn, we have Ĉ → Č as
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Mn →∞.

Since the regime mn+1 is a discrete covariate, we repeat the above emulation sub-

problem separately for each m ∈ J . In particular, we select a separate simulation

design for different regimes, labeled as Dn,m. To emphasize the resulting link between

the design and the pathwise simulation we then write P
j,Dn,m
n 7→ P

j,Dn,m
n+1 . Also note that

both the design and the simulators can be carried out on-the-fly during the backward

recursion; there is no need to do any pre-simulations.

To complete the description of the algorithm, it remains to address the initialization

and post-processing steps. Recall that DEA runs backward over n. It is initialized with

the known terminal condition

ĈN (PN , IN ,m) = W (PN , IN ) ∀m.

The recursive construction then ensures that at step tn we know the continuation func-

tions Ĉn(·, ·, ·) and hence can find m̂(tn+1, P, I,m) for any (P, I,m) in the state space

as in (4.9), as well as

V̂n(P, I,m) = π∆(P,m, m̂n+1) + e−r∆tn Ĉn(P, I + a(u(m̂n))∆tn, m̂(tn+1, P, I,m)).

(4.17)

In the last step of DEA, we compute an out-of-sample estimate of the value function (see

Algorithm 4) at t0 = 0, P0, I0,m0 by generating M ′ new paths (Pm′
0:T , Î

m′

0:T , m̂
m′
0:T ),m′ =

1, . . . ,M ′, where the pathwise inventory Î is based on the just-estimated control map

m̂n+1(·, ·, ·) matching (4.9), and consequently the control c(m̂), cf. Figure 4.1. Thus,

V̂0(P0, I0,m0) = 1
M ′
∑M ′

m′=1 v0:N (Pm′
0:T , Î

m′

0:T , m̂
m′
0:T ), where v0:N (Pm′

0:T , Î
m′

0:T , m̂
m′
0:T ) is the

total cumulative discounted profit over the N time-steps using m̂ for each sample path,

cf. (4.11). Since the policy m̂ is necessarily sub-optimal, V̂0(·) is a lower bound for

the true V , modulo the Monte Carlo error from the M ′ trajectories used in the last
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averaging.

Algorithm 5 presents the overall template for solving the storage problem. Assuming

N time-steps and a fixed design size of |Dn| = M∀n, its overall complexity is O(NM). It

is purposely short and abstract, stressing the modular setup and the associated looping.

Lines 1-3 initialize with the terminal condition; Line 6 is the emulation step, returning

a fitted regression model for Ĉn(·). Line 7 is the experimental design sub-step. Line 8 is

the stochastic simulator which is combined with Lines 10-13 to create the one-step-ahead

profits vn+1. We conclude this section with several remarks. In the next two sections

we then provide menus for the two principal steps in DEA: selecting the approximation

space Hn and the design Dn,m.

Remark 9 (Defining the Pathwise Profits) Above we view the continuation value

as the conditional expectation of one-step-ahead value function, matching the original

Tsitsiklis-van Roy [15] scheme. More generally, we can unroll the Dynamic Program-

ming equation (4.8) using the optimal regime choices m∗n+1 and corresponding controls

u∗n for any w ≥ 1 as

Vn(Pn, In,mn) = E[π∆(Pn,mn,m
∗
n+1) + e−r∆tnCn(Pn, In+1,m

∗
n+1)

∣∣∣Pn]

= E
[
π∆(Pn,mn,m

∗
n+1) + e−r∆tnπ∆(Pn+1,m

∗
n+1,m

∗
n+2) + e−2r∆tnCn+1(Pn+1, I

∗
n+2,m

∗
n+2)

∣∣∣Pn

]
. . .

= E
[
vn:n+w(π, C)(Pn, In,mn)

∣∣∣Pn, In,m
∗
n

]
(4.18)

in terms of the pathwise gains

vn:n+w(π, C)(Pn, In,mn) :=

n+w−1∑
s=n

e−r(s−n)∆tπ∆(Ps,ms,m
∗
s+1)

+ e−rw∆tCn+w(Pn+w, In+w+1,mn+w+1). (4.19)
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Algorithm 5: Dynamic Emulation Algorithm (DEA)

Data: N (time steps), (Mn) (simulation budgets per step);

1 Generate design DN−1,m := (P
DN−1,m

N−1 , I
DN−1,m

N ) of size MN−1 for each
m ∈ J .

2 Generate one-step paths P
j,DN−1,m

N−1 7→ P
j,DN−1,m

N for j = 1, . . . ,MN−1, m ∈ J
3 Terminal condition: vjN,m ← W (P

j,DN−1,m

N , I
j,DN−1,m

N ) for j = 1, . . . ,MN−1,
m ∈ J

4 for n = N − 1, . . . , 1 do
5 for m ∈ J do

6 Fit: Ĉn(·, ·,m)← arg minhn∈Hn
∑Mn

j=1 |hn(P
j,Dn,m
n , I

j,Dn,m
n+1 )− vjn+1,m|2

7 Generate design Dn−1,m := (P
Dn−1,m

n−1 , I
Dn−1,m
n ) of size Mn−1 for each

m ∈ J
8 Generate one-step paths P

j,Dn−1,m

n−1 7→ P
j,Dn−1,m
n for j = 1, . . . ,Mn−1

9 end
10 for j = 1, . . . ,Mn−1 and m ∈ J do

11 Predict: m̃← arg maxj′∈J {π∆(P
j,Dn−1,m
n ,m, j′)

12 +

e−r∆tn Ĉn(P
j,Dn−1,m
n , I

j,Dn−1,m
n + a(un(j′))∆tn, j

′)}
13 vjn,m ← π∆(P

j,Dn−1,m
n ,m, m̃) + e−r∆tn Ĉn(P

j,Dn−1,m
n , I

j,Dn−1,m
n +

a(un(m̃))∆tn, m̃)
14 end

15 end

16 return {Ĉn(·, ·,m)}N−1
n=1,m∈J

Similarly, the continuation value Cn(Pn, In+1,mn+1) can be written as

Cn(Pn, In+1,mn+1) = E
[
vn+1:n+w(π, C)(Pn+1, In+1,mn+1)|Pn, In+1,mn+1

]
. (4.20)

Then one can use the vn:n+w to construct alternative stochastic simulators that would lead to

further ways for estimating Ĉn(·). The partial-path construction in (4.20) can be traced back to

[60, 61]. It encompasses the TvR choice w = 1 that we employ in this article, and the Longstaff-

Schwartz (CLS) algorithm [16] where w = N − n − 1. Note that (4.19) also nests the final

pathwise profits v0:N used for estimating V̂0(·).

Remark 10 (No More Global Paths) Traditionally RMC is implemented by gen-
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erating M global paths (P jn) for the exogenous (price) process starting at t = t0 until

maturity tN , which are then stored permanently in memory for the entire backward in-

duction, introducing significant overhead (see Chapter 3). Algorithm 5 replaces this with

a design Dn and the associated one-step trajectories (P jn:n+1, I
j
n+1).

Remark 11 (Dimension of the Regression Problem) In the case where there are

no switching costs K(i, j) ≡ 0 ∀i, j, the dimensionality of the regression problem can

be reduced from 3 to 2. Indeed, since the inventory process It is completely controlled,

the continuation value only depends on the inventory and regime (In,mn) through the

next-step inventory In+1 = In + a(u(mn+1))∆t. Analogously, the value function is then

independent of the current regime, Vn(Pn, In). With a slight abuse of notation we then

write Cn(Pn, In+1), working with the projection subspace generated by (Pn, In+1).

When switching costs are present, the same reduction is possible during the regres-

sion, but the present regime mn remains a part of the state since it affects the continu-

ation value C, so no overall dimension savings are achieved. Practically, this is handled

by solving a distinct regression for each m ∈ J as in (4.16).

Remark 12 (Regress Now vs Regress Later) An alternative to (4.16) is to use as

state variables (Pn+1, In+1) during the projection, and then take the conditional expec-

tation analytically:

Čn(P, I,m) = E

arg minhn+1∈Hn+1

M∑
j=1

|hn+1(P j
n+1, I

j
n+1)− vjn+1|2

∣∣∣ Pn = P, In = I,mn = m

 .
(4.21)

This is known as Regress Later Monte Carlo (RLMC) and lowers the variance in the estimated

Ĉ (see Chapter 3). However, the requirement of closed form expressions for the conditional

expectation generally rules out use of RLMC with non-parametric approximation spaces.

Remark 13 (Role of the Testing Set) Note that the final estimate V̂0(P0, I0,m0)

depends on the out-of-sample simulations P1:M ′
0:N , as well as the in-sample simula-

tions (Pn:n+1). To facilitate comparison of different methods, where possible we fix
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the test scenario database (Pm′
0:N ), whereby we can directly evaluate the different con-

trols/cumulative revenues obtained along a given sample path of the price process.

Remark 14 (DEA vs. Conventional RMC for Storage Problems) The DEA

template nests essentially all existing RMC approaches (discussed in Chapter 3) to

(4.6). For example, inventory back-propagation can be interpreted as a specific recipe

how to build Dn given Dn+1 and the control map at step tn+1. Inventory discretization

(PR-1D in Chapter 3) is a specific combination of Dn and Hn that applies piecewise

regression plus interpolation, see Section 4.4.1. In particular, the DEA emphasizes the

unified treatment of P and I dimensions, with their stochastic/endogenous dynamics

only implicitly appearing as a structural property of the pathwise vn+1 simulator.

Hence, we decouple the backward induction inherent to DPP from the emulation task

that is based on the forward stochastic simulator. In turn, the template offers many

new strategies (see below) that can (i) improve statistical efficiency, i.e. better use of

the computational resources, such as speed, memory, and simulation budget; (ii) lead

to more automated solvers that require less fine-tuning (e.g. no need to directly specify

basis functions) and adapt to the problem structure; (iii) facilitate application of RMC

on new problem instances through schemes that are less sensitive to dimensionality,

model dynamics, and payoff format; (iv) create new links between RMC and existing

emulation strategies in machine learning (including the ability to re-use existing code).

4.4 Approximation Spaces

In this section we fix a given time step tn and consider the problem of approximating

the continuation value Cn(P, I,m) viewed as a function hn(P, I), with m treated as a

discrete parameter (“factor” level). Below we generically use x = (P jn, I
j
n+1)Mj=1 and

y = (vjn+1)Mj=1 to represent the dataset used during the regression.
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The statistical assumption is that the input-output relationship is described by

yj = h(xj) + σ2ξ, where ξ ∼ N (0, 1), (4.22)

where h ∈ Hn is the unknown function to be learned, and σ2ξ is the noise. In our case,

the noise is due to the stochastic shocks in (Pn+1) which induce variation in the realized

pathwise profit relative to the continuation value.

Selection of Hn is key because the intrinsic approximation error, i.e. the distance

between the true Cn(·) and the closest element in Hn, strongly affects the quality of the

solution. Among schemes that have been explored in the literature are global polynomial

regression [20, 6, 5], radial basis functions [19], support vector regressions [55], kernel

regressions [62], neural networks [63], and piecewise linear regression [7].

All of the above can be straightforwardly implemented within the DEA template, so

that Algorithm 5 nests all these proposals. Below, we provide more details on three rep-

resentative schemes which in our experience have been most promising. After reviewing

the piecewise regression and the inventory-discretization approaches, we discuss non-

parametric regressions where Hn is characterized through the design sites in Dn. In

particular, inspired by the recent work [8] on Bermudan options, we introduce Gaussian

process (GP) regression for solving storage problems. To our knowledge, ours is the

first paper to use GPs in such context.

4.4.1 Bivariate piecewise approximation

The classical regression framework is a linear parametric model where Hn is the

vector space spanned by some basis functions (φi). Then the prediction at a generic

x∗ is controlled by the regression coefficients ~β: h(x∗) = ~βT ~φ(x∗). A simple choice

dating back to Longstaff-Schwartz’s seminal work [16] is to use polynomial bases. Such

polynomial regression (PR) has also been employed for storage problems in [20, 6, 5].
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A degree-r global polynomial approximation hn =
∑

i βiφi, has (r + 1)(r/2 + 1) basis

functions and takes φi(P, I) = Pα1(i)Iα2(i), where the total degree of the basis function is

α1+α2 ≤ r. For example, a global quadratic approximation (r = 2) has 6 basis functions

{1, P, P 2, I, I2, P · I}, and a cubic PR has 10 basis functions. Our experiments indicate

that typically PR leads to poor performance due to the resulting stringent constraints

on the shape of the continuation value and consequent back-propagation of error.

A popular alternative is to use piecewise approximations based on partition-

ing the space of (P, I), restricted to [min1≤j≤M P ji ,max1≤j≤M P ji ] × [Imin, Imax], into

M̃ = MP × MI rectangular sub-domains Di1,i2 , i1 = 1, 2, . . . ,MP ; i2 = 1, 2, . . . ,MI .

Piecewise regression allows to localize the projection errors (while global regression is

apt to oscillate) and tends to be more stable empirically. Relative to PR, piecewise

regressions are also more “robust” to fitting arbitrary shapes of the continuation value.

We then consider basis functions of the form {φi1,i2g }, with support restricted to Di1,i2 .

For example, in piecewise linear approximation we have g = 1, 2, 3 with

φi1,i21 (P, I) = 1(P,I)∈Di1,i2

φi1,i22 (P, I) = P · 1(P,I)∈Di1,i2

φi1,i23 (P, I) = I · 1(P,I)∈Di1,i2 .

Overall we then have 3MPMI coefficients to be estimated. Higher-degree terms could

also be added, e.g. a cross-term P ·I or quadratic terms P 2, I2. Piecewise regression offers

a divide-and-conquer advantage with the overall fitting done via a loop across Di1,i2 ’s;

in each instance only a small subset of the data is selected to learn a few coefficients.

This decreases the overall workload of the regression substep, and allows for parallel

processing. The main disadvantage of this approach is the inherent discontinuity in

Ĉ at the sub-domain boundaries, and the need to specify MP ,MI and then construct

the rectangular sub-domains Di1,i2 . We refer to [7] for several adaptive constructions,
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including equal-weighted and equi-gridded.

Piecewise continuous approximation

As discussed in Chapter 3, Section 3.4.1, another approach is to construct a piecewise

approximation that is continuous through a linear interpolation. For example, after

discretizing the endogenous inventory variable into MI + 1 levels I0, I1, . . . , IMI
, we fit

an independent degree-MP monomial in P for each level, i.e. optimize for ĥj(P ) :=∑
i βijφi(P ) for j = 0, . . . ,MI , giving a total of (MI + 1)MP regression coefficients.

(Conversely, one could also fit a piecewise linear model with MP sub-domains in the

P -dimension.) The final interpolated prediction for arbitrary I ∈ (Ij , Ij+1) is then

piece-wisely defined as

ĥn(P, I) := δ(I) ĥj(P ) + (1− δ(I)) ĥj+1(P ), (4.23)

where δ(I) =
I−Ij

Ij+1−Ij . This scheme leverages the fact that the stochastic shocks are only

in P , and effectively replaces the problem of learning Ĉ over (P, I) with a collection of

one-dimensional (hence simpler) regressions in P only. In principle this allows to re-use

P -simulations across different I-levels. It is intrinsically smooth in P and piecewise

linear in I.

4.4.2 Local polynomial regression (LOESS)

Local regressions minimize the worry regarding the choice of basis functions by

constructing a non-parametric fit that solves an optimization problem at each predictive

site. Given a dataset {x,y} (as a reminder, x ≡ (P, I) is 2-dimensional throughout this

section), the prediction using LOESS at x∗ is h(x∗) =
∑r

i=1 βi(x∗)φi(x∗) where the local
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coefficients βi(x∗) are determined from the weighted least-squares regression

~β(x∗) = arg min~β∈Rr
1

M

M∑
j=1

κ(x∗, x
j)
[
yj − ~βT ~φ(xj)

]2
. (4.24)

The weight function κ(x∗, x) ∈ [0, 1] gives more weight to yj ’s from inputs close to x∗,

akin to kernel regression. Since a separate optimization is needed for each x∗, to make

M ′ predictions (4.24) has complexity of O(MM ′). Implemented in the context of real

options for mining by [62], LOESS was enhanced through a “sliding trick” that reduces

complexity to O((M +M ′) logM).

4.4.3 Gaussian process regression (GPR)

Gaussian process regression is a non-parameteric technique widely used in spatial

statistics and more recently for emulation tasks in machine learning. Besides its abil-

ity to efficiently reconstruct non-linear input-output relationships, its popularity is at-

tributed to very few tunable hyperparameters, intrinsic smoothness of the obtained

approximation, and symbiotic links to adaptive experimental designs. In our context,

GPR offers a flexible alternative to parametric regression, obviating the need to directly

specify regression bases or manually construct the mesh within the piecewise approach.

GPR is superficially similar to LOESS, in that the prediction h(x∗) is a weighted average

of sampled outputs y. The underlying relationship h : x 7→ y is taken to be a realization

of a Gaussian random field, i.e. {h(xi)}Mi=1 is a sample from the multivariate Gaussian

distribution with mean {m(xi)}Mi=1 and covariance function {κ(xi, xj)}Mi,j=1. Among

many options in the literature, arguably the most popular is the squared exponential

kernel,

κ(xi, xj) = σ2
f exp

(
− 1

2
(xi − xj)TΣ−1(xi − xj)

)
,
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where Σ is a diagonal matrix. Traditionally, diagonal elements of the matrix Σ are

known as the lengthscale parameters, and σ2
f as the signal variance. Together they are

often referred to as hyper-parameters. While the lengthscale parameters determine the

smoothness of the surface in the respective dimension, σ2
f determines the amplitude of

the fluctuations. In figure 4.2c we observed that for a fixed price, the continuation value

function is linear in the inventory dimension, and has non-linear behavior in the price

dimension. GPR captures this difference through its scale parameters, which will be

“large” for inventory (slow decay of correlation, so little curvature) and “small” for price

dimension (fast correlation decay allow for wiggles in terms of P ). The hyperparameters

are estimated through likelihood maximization. For the prior mean we take m(x) = β0

where β0 is learned together with the other hyperparameters.

For any site x∗, h(x∗) is a random variable whose conditional distribution given

{x,y} is:

h(x∗)|y ∼ N
(
m(x∗) +H∗H

−1(y −m(x)), κ(x∗, x∗)−H∗(x∗)H
−1H∗(x∗)

T
)

(4.25)

where the N ×N matrix covariance matrix H and the N × 1 vector H∗(x∗) are

H :=



κ′(x1, x1) κ(x1, x2) . . . κ(x1, xN )

κ(x2, x1) κ′(x2, x2) . . . κ(x2, xN )

...
...

. . .
...

κ(xN , x1) κ(xN , x2) . . . κ′(xN , xN )


, H∗(x∗)

T :=



κ(x∗, x
1)

κ(x∗, x
2)

...

κ(x∗, x
N )


, (4.26)

where κ′(xi, xj) = κ(xi, xj)+σ2. Consequently, the prediction at x∗ is ĥ(x∗) = m(x∗)+

H∗(x∗)H
−1(y −m(x)) and the posterior GP variance

s2(x∗) := κ(x∗, x∗)−H∗(x∗)H
−1H∗(x∗)

T
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provides a measure of uncertainty (akin to standard error) of this prediction. GPR

generally has O(M3 + MM ′2) complexity, similar to kernel regression. GPR usually

performs extremely well but becomes prohibitively expensive for M � 1000.

Remark 15 The above is the most basic version of GP emulation. There is an ex-

tensive GP ecosystem containing numerous extensions for optimizing GPR in a specific

context. Some of the relevant aspects include more advanced prior mean specification

for m(·); other (including adaptive) kernel families κ(·, ·); heteroskedastic models that

can handle state-dependent simulation noise σ2(·); further techniques for selecting GP

hyperparameters; and piecewise models for allow for spatially non-stationary covariance.

See [64, 8] and references therein.

4.5 Simulation Design

The second central piece of Algorithm 5 concerns the designs Dn. The choice of

Dn directly affects the quality of Ĉn(·): the approximation will generally be better in

regions where Dn has many input sites, and worse where Dn is sparse. Trying to make

predictions of Ĉn(·) beyond Dn, i.e. extrapolating, is especially prone to large errors.

Thus, the shape of Dn is akin to introducing weights within the projection (4.15),

emphasizing some sub-domains of the input space and de-emphasizing others. This

effect is particularly strong for non-parametric or piecewise regression schemes where

there is a close link between Dn and Hn. Spatially, a good simulation design should (i)

cover all regions containing potential (Pn, In) pairs; (ii) target the region of interest that

is most relevant for selecting the optimal action m̂(tn, Pn, In). Statistically, Dn ought

to maximize the learning rate of Ĉn(·) and lead to stable regressions, i.e. low empirical

sensitivity of Ĉn(·) across algorithm runs.

Like the regression sub-problem, the template gives the user a wide latitude in se-
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lecting Dn given a simulation budget M . We identify four relevant aspects of potential

designs: joint vs. product; adaptive vs. space-filling; deterministic vs. stochastic; and

unique vs. replicated. Last but not least, we discuss the design size M . To summarize

the range of simulation designs we use a short-hand nomenclature. Product designs

are identified as DP × DI , while joint designs are denoted with a single symbol. Sub-

scripts are used where necessary to identify the dimensionality of the respective design.

Different design types are identified by different letters.

To set the stage, let us summarize the “conventional” design [20, 6, 19]. Tradition-

ally, the design to solve the storage problem relied on a mix of global paths together

with inventory discretization. In the price dimension, it consists of choosing MP initial

conditions for the price process P0 at time t0 and sampling j = 1, . . . ,MP paths P jn+1

following the conditional density p(tn+1, .|tn, Pn), until terminal date T . The resulting

collection (P jn) is used for the design “mesh” at each tn. For the endogenous inventory

dimension, I is discretized into MI levels: I l = l∆I, ∆I = Imax−Imin
MI−1 , l = 0, 1, . . . ,MI−1.

The overall design Dn has M = MPMI sites and is constructed as the Cartesian prod-

uct {P 1
n , P

2
n , ..., P

MP
n } × {I0, I1, ..., INI−1}. In our terminology, this is a product design

that is adaptive and stochastic in P , space-filling and deterministic in I, and has no

replication. We label it as P ×G, representing a density-based “probabilistic” design P

in the first coordinate of x, and a gridded design G in the second coordinate.

The shape of a P × G design is convenient for the piecewise continuous regression

scheme of Section 4.4.1 that treats the P and I coordinates separately, yielding stable

empirical Ĉn(·). While this recipe can lead to competitive results, it is clearly more

prescriptive than adaptive to the particular problem instance. The fact that it relies

on a grid in the I-coordinate makes it poorly suited for scaling into higher dimension,

while using a random sample drawn from the density of Pn+1 is prone to requiring ex-

trapolation in subsequent predict calls. Through DEA we are able to search numerous
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other feasible approaches to maximize performance.

4.5.1 Space Filling Designs

To achieve the goal of learning (P, I) 7→ Cn(P, I,m) we need to explore continuation

values throughout the input domain. A simple mechanism to achieve this is to spread

out the design sites to fill the space. A gridded design, with design sites uniformly

selected using a mesh size ∆ like in the conventional approach above, is an example of

such space-filling sequences. Exploration through “spreading out” D can be supported

by more rigorous criteria, such as A- or D-optimality that quantify the optimal way to

reduce the global L2(Leb) approximation error.

Space-filling can be done either deterministically or randomly. For the deterministic

case, besides the grid G one may employ various Quasi Monte Carlo (QMC) sequences,

for example the Sobol sequences S. Sobol sequences are useful in dimension d > 1 where

they can produce a d-variate space filling design of any size M , whereas a grid is limited

to rectangular constructions of size MP ×MI . QMC sequences are also theoretically

guaranteed to provide a good “uniform” coverage of the specified rectangular domain.

We experimented with the following two setups:

• A 1-D Sobol sequence S1 of size MP for the price dimension, restricted to

[Pmin, Pmax] at each time-step tn, n = 0, . . . , N . We then discretize the inven-

tory dimension as {I1, I2, ..., IMI}, similar to conventional design, and the final

D is the product S1 × G.

• Alternatively, we generate M design sites from the 2-D Sobol sequence S2 =

{P j , Ij}Mj=1 on the restricted domain [Pmin, Pmax]× [Imin, Imax].

An example of a randomized space filling design is taking P jn ∼ Unif(Pmin, Pmax)

i.i.d. Because i.i.d. uniforms tend to cluster, there are variance-reduced versions, such

as Latin hypercube sampling (LHS). In two dimensions, the LHS design L2 stratifies the
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input space into a rectangular array and ensures that each row and column has exactly

one design site.

Note that if the same deterministic space-filling method is employed across time-

steps, the design Dn ≡ D becomes identical in tn. This may generate “aliasing” effects

from the regression scheme, i.e. approximation artifacts around (P j , Ij) due to the

repeated regressions and respective error back-propagation. Changing or randomizing

Dn across tn’s is one remedy and often preferred as an implementation default. Another

challenge with space-filling designs is the need to specify the bounding box [Pmin, Pmax]×

[Imin, Imax], which is easy in I but not obvious in the unbounded P -coordinate.

4.5.2 Adaptive Designs

In contrast to space-filling designs that aim to explore the input space, adaptive

designs exploit the observation that the quality of V̂0 depends on the correct prediction

of storage actions along controlled paths (Pm
′

n , Îm
′

n ). Therefore, the region of interest at

tn where we should target the best estimation of Ĉn(·) is the region where the (Pm
′

0:T , Î
m′
0:T )

trajectory is most likely to be. This suggests to use the distribution of (Pn, În) when

constructing Dn, cf. Figure 4.3(c). Information about the distribution of the system

state was already leveraged in the conventional approach which used randomized, prob-

abilistic design for DP . Similarly, [19] used a non-uniform discretization in I to refine

the mesh closer to Imin and Imax, since inventory tends to be either 0% or 100% full,

see Figure 4.1.

An ideal adaptive design would reflect the bivariate distribution of (P, Î). Of course,

this is not directly feasible since În is endogenous to the controls on [0, tn]. One strat-

egy is to use a small part of the simulation budget to first create a policy using a

traditional/space-filling design. In the second step, one runs a forward simulation of

this policy to construct a proxy for the joint distribution of (Pn, În), and hence link Dn
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to the joint probabilistic design P2.

There are numerous variations on generating adaptive designs that reflect some

target density p(·) (either bivariate or univariate for P and I). Instead of a joint design,

one could build a product design P ×P that matches the respective marginal densities

P jn ∼ pP (tn, ·) and Ijn ∼ pI(tn, ·). Yet another approach is to deterministically quantize

the target density p, similar to numerical quadrature methods, to return a discrete

representation with MP sites.

4.5.3 Batched Designs

Non-parametric techniques like GPR and LOESS improve accuracy at the cost of

increased regression overhead. Indeed, for both methods the complexity is at least

quadratic in the number of sites M which can become prohibitive for M � 1000. One

solution to overcome this hurdle is to use replicates, i.e. re-use the same design site

for multiple simulations. Thus, rather than having thousands of distinct design sites

equivalent to the simulation budget M , we select only a few hundred distinct sites Ms

and generate Mb := M/Ms paths from each design site. Formally this means that

we distinguish between the M initial conditions (P jn, I
j
n)Mj=1 for simulating pathwise

continuation values and the unique design sites Ms � M which comprise the design

D̄. The latter can then be of any type, space-filling, adaptive, etc. The use of such

replicated designs is common in the design of experiments literature, but has been little

explored in the RMC context.

Given a design site (P jn, I
j
n+1)Ms

j=1, we make Mb draws P
j,(m)
n+1 and evaluate the cor-

responding pathwise continuation value v
(m)
n+1(P

j,(m)
n+1 , Ijn+1), m = 1, . . . ,Mb. For kernel-

based techniques like GP and LOESS one may then work with pre-averaged values,
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i.e. first evaluate the empirical average:

v̄jn+1(P jn, I
j
n+1) =

1

Mb

Mb∑
m=1

v
(m)
n+1,

across the Mb replicates. One then feeds the resulting dataset (P jn, I
j
n+1, v̄

j
n+1)Ms

j=1 into

the regression equations to estimate the continuation function.

Besides reducing the overall time spent in regressions (which can easily be several

orders of magnitude), a batched design has the advantage of reduced simulation vari-

ance of v̄ at each design site, thus improving the signal-to-noise ratio. While a replicated

design is sub-optimal (in terms of maximizing the quality of the statistical approxima-

tion), in practice for large M (which are frequently in the hundreds of thousands) the

loss of fidelity is minor and is more than warranted given the substantial computational

gains.

Beyond uniform batching that uses a fixed Mb number of replicates at each site,

one could also employ adaptive batching with site-specific Mb with more replications

around the switching boundaries to gain better precision [64].

4.5.4 Dynamic Designs

DEA lets us easily combine different designs at various time steps. For example,

one may vary the step-wise simulation budget, employing larger M near maturity to

effectively capture the effect of the terminal conditions in the continuation function, and

lesser budget thereafter.

We conclude this section with two illustrations. In Figure 4.3 we display four repre-

sentative designs: Sobol space-filling sequence in 2D S2, LHS in 2D L2, joint probabilis-

tic P2, and conventional design P×G. These will also be used in the numerical examples

below. While the Sobol sequence fills the input space with a symmetric pattern, LHS is
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(a) 2D Sobol QMC sequence S2

2 4 6 8 10 12

Price

0

200

400

600

800

1000

1200

1400

1600

1800

2000

In
ve

nt
or

y

(b) 2D LHS design L2
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(c) Joint Probabilistic design P2
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(d) Conventional product design
P × G

Figure 4.3: Illustration of different simulation designs D. In all cases we take
M = 500 design sites. Top row, left panel: 2D Sobol QMC sequence S2, Top
row, right panel: 2D LHS design L2, Bottom row, left panel: Joint Probabilistic
design P2, Bottom row, right panel: Conventional product design P × G

randomized. The joint probabilistic design mimics the distribution of the state variables

(P (t), Î(t)), putting most sites at the boundaries of the inventory Imin, Imax and around

the mean of the price. Note that this design is very aggressive and only explores a small

subset of the input space; therefore, in the following numerical examples we blend (via

a statistical mixture) probabilistic designs with other types. Such blending is a natural

way to resolve the underlying exploration-exploitation trade-off. Finally, conventional

design discretizes the inventory while maintaining the adaptive distribution in the price

dimension.

Next, in Figure 4.4 we display the effect of regression and design on the continuation
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value function and the corresponding control maps. The left panel compares the contin-

uation value function of GP-2D and PR-2D at the last step before maturity t = T −∆t.

We observe that PR-2D has a poor fit compared to GP-2D, which almost perfectly

matches the “hockey-stick” penalty. Furthermore, -1D regressions have “non-smooth”

switching boundaries due to the piecewise regressions in I. This is evident in the cen-

ter panel of the figure, where the control map shows jumps at I ∈ {500, 1000, 1500},

the intermediate discretization levels of inventory (we used MI = 5 with ∆I = 500).

This behaviour becomes less prominent when MI is increased. The right panel of the

figure visualizes two control maps for PR-1D with LHS and conventional design. The

effect of an oversized input domain (we used [Pmin, Pmax] = [2, 20] which explores too

much) for LHS is evident, as we notice that the Store region is much too wide in the

latter variant. Thus, the controller does not benefit from withdrawing when prices are

P ∈ [7, 7.5], ultimately resulting in lower valuation. Overall, Figure 4.4 highlights the

need to properly pick both H and D to obtain good performance.

The effect of design shape can be conveniently visualized with Gaussian process

emulators which provide a proxy for local estimation standard error through the pos-

terior GP standard deviation s(x). Figure 4.5 compares s(x) that results from Mixture

(we used a 60/40 mix of S2 and P2) and Space-filling (Sobol QMC S2) 2D designs of

same size M = 500. For a space-filling design we observe a constant posterior vari-

ance, i.e. GPR learns Ĉn(·) equally well across the interior of the regression domain.

At the same time, the posterior standard deviation is very high around the edges of

[Pmin, Pmax] × [Imin, Imax], which is problematic for correctly identifying the strategy

when inventory is almost full or almost empty. For the Mixture design, the posterior

variance reflects the concentration of the input sites along the diagonal, compare to the

joint probabilistic design P2 in Figure 4.3c. In turn, this is beneficial for learning the

control map, as the GPR prediction is most accurate along the switching boundaries,
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Figure 4.4: Left panel: Comparison of the continuation function C(t, P, ·) for
different regressions at one step to maturity t = T − ∆t and P = 6. Center
panel: the control maps m̂(t, P, I) at t = 2.7 years corresponding to GP-1D
and GP-2D regressions. For GP-1D we used Ms = 100, Mb = 20 and MI = 5.
For GP-2D we used Ms = 500 and Mb = 20. The horizontal lines represent the
inventory discretization levels for the GP-1D design. Right panel: the control
maps corresponding to conventional and LHS design with PR-1D regressions.
We used MP = 2000, MI = 21 and price domain for LHS [Pmin, Pmax] = [2, 20].

cf. Figure 4.2a. Higher precision around the switching boundaries allows the Mixture

design to allocate the simulation budget to the regions where accuracy is needed most.

We emphasize that such local inference quality is only available with non-parametric

tools; global schemes like PR cannot directly benefit from focused designs.

4.6 Natural Gas Storage Facility

To illustrate DEA and its various ingredients, we present several numerical studies.

In this section, we consider the gas storage problem which has been already explored

in existing literature and hence affords a good testbed for comparison. Our main aims

are to: (i) illustrate multiple implementations of DEA in terms of picking the regression

spaces H and designs D; (ii) explain the effect of the DEA modules on the ultimate

problem solution, e.g. on the control maps; (iii) document the relative performance of
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Figure 4.5: Impact of design on the posterior standard error s(x) of GPR at
t = 1.5 years. We show the contours of x 7→ s(x) with dots indicating the un-
derlying respective designs with M = 500 sites. Left panel: Space-filling design
(Sobol QMC S2) of Figure 4.3a leads to rectangular level sets of s(·). Right
panel: under a Mixture design, s(·) resembles the shape of P2 in Figure 4.3c.

the different schemes to draw some conclusions on their merit in this context. While

we present quite a lot of numeric experiments, we stress that we do not seek to provide

a rigorous benchmarking, but rather view these as case studies. To this end, we do

not concentrate on one single setup, instead exploring several formulations, including

with and without switching costs, and with varying dimensionality. Our main message

is that there is a lot of gains to be unlocked from fine-tuning DEA through carefully

selecting its ingredients, in particular by mixing-and-matching existing proposals. Thus,

the advertised flexibility of the template indeed leads to superior performance through

optimizing the regression and design aspects, and exploiting the synergies between the

two.

4.6.1 Market and Storage Description

In this section we revisit the gas storage problem in the setting of Chen and

Forsyth [29]. The exogenous state process P follows logarithmic mean-reverting dy-

namics

Pn+1 − Pn = α(P − Pn)∆tn + σPn ξn+1, (4.27)
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where Pt is the spot price per unit of natural gas and is quoted in “dollars per million

of British thermal unit ($/MMBtu)”. The inventory It is quoted in million cubic feet

(MMCf). Since roughly 1000MMBtu = 1MMcf, we multiply Pt by 103 when calculating

revenue or profit.

The penalty function W (PN , IN ) at maturity is W (PN , IN ) = −2PN max(1000 −

IN , 0). Thus, the target inventory is IN = 1000 or 50% capacity. There is no compensa-

tion for excess inventory and a strong penalty (at 200% of the market price) for being

short. As a result, the value function at maturity has a non-smooth hockey-stick shape

in I, with zero slope for IN > 1000 and a slope of −2PN otherwise.

The withdrawal and injection rates are inventory-dependent and given by

cwdr(I) = −k1

√
I and cinj(I) = k2

√
1

I + k3
− 1

k4
.

These functional specifications are derived from the physical hydrodynamics of the gas

storage facility, see [56]. The resulting dynamics of the inventory is:

In+1 = In +



uwdr(In)∆t, if mn = −1 (withdrawal);

0 if mn = 0;

(uinj(In)− k5)∆t, if mn = +1 (injection).

(4.28)

The constant k5 measures the cost of injection which is represented as “gas lost”. It

leads to a profit gap between production and injection whereby no-action (m∗ = 0) will

be the optimal action if the price is “close” to the mean level, Pt ≈ P .

In the numerical experiments below we discretize T into N = 1000 steps, so that

∆t = 0.001T , the rest of the parameters are listed in Table 4.1. The switching costs are

taken to be zero K(i, j) ≡ 0∀i, j. Absence of switching cost reduces the state variables

in the continuation function Cn(·) in (4.16) to (Pn, In+1). As a result, in this example
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every time step requires one projection of the 2D value function.

α = 2.38, σ = 0.59, P = 6
k1 = 2040.41, k2 = 7.3 · 105, k3 = 500, k4 = 2500, k5 = 620.5

Imax = 2000 MMcf, T = 3, ∆t = 0.003, r = 10%

Table 4.1: Parameters for the gas storage facility in Section 4.6.

4.6.2 Benchmarking Setup

To benchmark the performance, we compare to two schemes utilizing conventional

product design P × G (with inventory uniformly discretized): degree-3 global polyno-

mial approximation over (P, I) (PR-2D) and piecewise continuous approximation (with

degree-3 polynomial regressions in P at each inventory level Ik, PR-1D). These can be

viewed as a “classical” TvR scheme with a joint regression [5, 65], and the discretized-I

version as used by [22, 20, 6, 19]. Additionally, we implement five regression approaches

(PR-1D, GP-1D, PR-2D, LOESS-2D and GP-2D) on several different designs, with

simulation budgets: M ' 10K, 40K, 100K:

• Randomized space filling design implemented via LHS (L1 × G for piecewise-

continuous regression and L2 otherwise). We use a large conservative input do-

main P ∈ [2, 10].

• Mixture-2D design with 40% of sites from space-filling and the remaining 60%

from the joint empirical distribution P2, DM := P2(0.6M)∪L2(0.4M). To imple-

ment P2, we need to estimate pP (tn, ·) and pI(tn, ·). This is done offline by first

running the algorithm with a small budget and conventional product design. We

then generate forward paths (Pm
′

n , Îm
′

n ) to estimate the joint (pP (tn, ·), p̂I(tn, ·)) at

tn. Since the marginal distribution p̂I(tn, ·) starts to concentrate around I = 1000

as we get close to the maturity of the contract, the resolution at other parts of

the domain is reduced and L2 is to used to compensate for this effect.

90



Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective
Chapter 4

• Adaptive-1D: For 1D regressions, we estimate pP (tn, ·) as above, and then non-

uniformly discretize the inventory to incorporate the fact that the optimally con-

trolled inventory process În concentrates around Imin, Imax and I = 1000. Dis-

cretization levels for each simulation budget are detailed in Table 4.2.

• Dynamic time-dependent design that varies the simulation budget Mn across tn.

We used the specification Mn(M(1),M(2)) := M(1)1{n<900} + M(2)1{n≥900} such

that (approximately) 0.9M(1) + 0.1M(2) ∈ {10K, 40K, 100K}. Exact specification

is given in Table 4.3. We use two variants of it:

– fixed projection space H (namely GP-1D) and conventional product design

D = P × G.

– time-dependent projection and designs, namely GP-2D and Mixture design

for n < 900 and PR-1D and Conventional design for n ≥ 900.

The motivation for the above Dynamic scheme is to better handle the non-smooth

terminal condition by devoting to it larger simulation budget, as well as using the

-1D regression.

For GP we use Matlab’s in-built implementation fitrgp. For LOESS, we use the

curvefitting toolbox again from Matlab that constructs local quadratic approxima-

tions based on the tri-cube weight function κ(x∗, x
j) =

(
1−( |x∗−x

j |
λ(d,x∗)

)3
)3

. Above λ(d, x∗)

is the Euclidean distance from x∗ to the most distant xj within the span d. We use

the default span of d = 25%, keeping P on its original scale and re-scaling I to be in

the range [0, 2]. To reduce the regression overhead of both GPR and LOESS we utilize

batched designs with Mb replicates (see Table 4.3) on top of the underlying design type.

In order to compare the performance of different designs/regressions, we use the

estimate of the value function V̂0(P0, I0) at P0 = 6, I0 = 1000 using a fixed set of

M ′ = 10, 000 out-of-sample paths (i.e. fixed Pm
′

0:N ) as a performance measure.
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NI Specification
11 [0:100:200, 500:250:1500, 1800:100:2000]
21 [0:50:200, 400:200:800, 900:50:1100, 1200:200:1600, 1800:50:2000]
31 [0:25:100, 150, 200:100:900, 950:50:1050, 1100:100:1800, 1850, 1900:25:2000]
else uniformly spaced

Table 4.2: Discretized inventory levels used for Adaptive design for -1D methods.

Design Regression Low Medium High

Conventional
PR-1D/-2D (MP ×MI) 1050× 10 2100× 20 3400× 30
GP-1D/-2D, LOESS (Ms ×Mb ×MI) 105× 10× 10 210× 10× 20 340× 10× 30

Space-filling

PR-1D (MP ×MI) 1050× 10 2100× 20 3400× 30
GP-1D (Ms ×Mb ×MI) 105× 10× 10 210× 10× 20 340× 10× 30
PR-2D (M) 10500 42000 102000
LOESS/GP-2D (Ms ×Mb) 500× 21 1000× 42 2000× 51

Adaptive-1D
PR-1D (MP ×MI) 950× 11 2000× 21 3300× 31
GP-1D (Ms ×Mb ×MI) 95× 10× 11 200× 10× 21 330× 10× 31

Mixture-2D
PR-2D (M) 10500 42000 102000
LOESS/GP-2D (Ms ×Mb) 500× 21 1000× 42 2000× 51

Dynamic

GP-1D (M(2)) 150× 10× 21 340× 10× 31 440× 10× 41
(M(1) ) 74× 10× 11 168× 10× 21 300× 10× 31

PR-1D + GP-2D (M(2) ) 2000× 21 3400× 31 4400× 41
(M(1) ) 500× 21 1000× 42 2000× 51

Table 4.3: Design construction for different methods in Table 4.4 of Section 4.6.1.

4.6.3 Results

Table 4.4 presents the performance of different designs and regression methods.

We proceed to discuss the results focusing on three different aspects: (i) impact of

different regression schemes, in particular parametric PR vs. non-parametric GP and

LOESS approaches; (ii) impact of simulation design; (iii) joint -2D vs. interpolated -1D

methods.

First, our results confirm that the interpolated -1D method performs extremely

well in this classical example, perfectly exploiting the 2-dimensional setup with a 1-

dimensional inventory variable. In that sense the existing state-of-the-art is already

excellent. There are two important reasons for this. First PR-1D is highly flexible with

lots degrees of freedom, allowing a good fit (with overfitting danger minimized due to a

1D setting). Second, PR-1D perfectly exploits the fact that the value function is almost
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(piecewise) linear in inventory. We obtain a slight improvement by replacing PR-1D

with GP-1D; another slight gain is picked up by replacing the equi-spaced inventory

discretization with an adaptive approach that puts more levels close to the inventory

boundaries. As a further enhancement, the Dynamic design utilizes a step-dependent

simulation budget (to capture the boundary layer effect due to the non-smooth “hockey-

stick” terminal condition that requires more effort to learn statistically), leading to

significant improvement, highlighting the potential benefit of mixing-and-matching ap-

proximation strategies across time-steps. By taking M time-dependent one may effec-

tively save simulation budget (e.g. the valuation for Dynamic GP-1D with M = 104

is comparable to M = 2 · 104 for Adaptive GP-1D). Nevertheless, as we repeatedly

emphasize, the -1D methods do not scale well if more factors/inventory variables are

added.

The much more generic bivariate -2D regressions give a statistically equitable treat-

ment to all state variables and hence permit arbitrary simulation designs. The resulting

huge scope for potential implementations is both a blessing and a curse. Thus, we doc-

ument both some good and some bad choices in terms of picking a regression scheme,

and picking a simulation design. We find that PR-2D tends to significantly underper-

form which is not surprising given that it enforces a strict parametric shape for the

continuation value with insufficient room for flexibility. Similarly, we observe middling

performance by LOESS; on the other hand GPR generally works very well.

Turning our attention to different 2D simulation designs, we compare the conven-

tional P ×G choice against 3 alternatives: conservative space-filling L2 on a large input

domain; joint probabilistic design P2; a mixture design that blends the former two. We

find that both plain space-filling and joint probabilistic do not work well; the first one is

not targeted enough, spending too much budget on regions that make little contribution

to V̂ ; the second is too aggressive and often requires extrapolation produces inaccurate
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predictions when computing m̂. In contrast, the mixture design is a winner, signifi-

cantly improving upon the conventional one. In particular, GP-2D with Mixture design

is the only bivariate regression scheme which performs neck-to-neck with GP-1D. This

is significant because unlike GP-1D, GP-2D can be extended to higher dimensions in

a straightforward manner and does not require a product design (or any interpolation

which is generally slow). These findings highlight the importance of proposal density

in design choice. To highlight the flexibility of our algorithm, we also present another

dynamic design combining Adaptive PR-1D with Mixture GP-2D. This combination

maintains the same accuracy but runs about 10-15% faster thanks to lower regression

overhead of PR-1D.

Regression Simulation Budget
Design Scheme Low Medium Large

Conventional

PR-1D 4,965 5,097 5,231
GP-1D 4,968 5,107 5,247
PR-2D 4,869 4,888 4,891
LOESS-2D 4,910 4,969 5,011
GP-2D 4,652 5,161 5,243

Space-filling

PR-1D 4,768 4,889 5,028
GP-1D 4,854 5,064 5,224
PR-2D 4,762 4,789 4,792
LOESS-2D 4,747 4,912 4,934
GP-2D 4,976 5,080 5,133

Adaptive 1D
PR-1D 5,061 5,187 5,246
GP-1D 5,079 5,195 5,245

Dynamic
GP-1D 5,132 5,225 5,266
Mixed 5,137 5,205 5,228

Mixture 2D
PR-2D 4,820 4,835 4,834
LOESS-2D 4,960 4,987 5,003
GP-2D 5,137 5,210 5,233

Table 4.4: Valuation V̂0(6, 1000) (in thousands) using different design-regression
pairs and three simulation budgets: Low M ' 10K, Medium M ' 40K, Large
M ' 100K, (cf. Table 4.3). The valuations are averages across 10 runs of each
scheme except for LOESS-2D with large budget: due to the excessive overhead
of LOESS only a single run was carried out.
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Simulation Designs for -1D Methods. In the context of -1D regression methods

that regress on P only and discretize + interpolate in I, the design needs to be of product

type. We find that a probabilistic P ×G consistently outperforms a space-filling design,

such as L × G. We can also compare the performance of Conventional PR-1D and

Adaptive PR-1D (Table 4.4) designs that share the same P-design in P based on the

marginal distribution of Pt, but utilize different approaches for inventory discretization.

The non-uniform discretization in the Adaptive version improves precision close to Imin,

Imax and I = 1000 and leads to a higher valuation relative to Conventional, Our take-

away is that for the inventory discretization approach, one should concentrate on fine-

tuning the I-mesh.

Replicated Designs with GPR. Implementation of GPR also requires to manage

the tradeoff between the number of design sites Ms and the replication amount Mb.

The use of replication is necessitated since having more than Ms > 2000 distinct sites

is significantly time consuming, at least for the off-shelf-implementation of GPR we

used. In the left pane of Figure 4.6a we consider fixing Ms and varying Mb (hence M).

While larger simulation budgets obviously improve results, we note that eventually

increasing Mb with Ms fixed does not improve the regression quality (although it still

reduces standard error). In the right panel of Figure 4.6b we present the impact of

Ms for fixed total budget M = Mb · Ms. We find that replication in general sub-

optimal and better results are possible when Ms is larger (i.e. Mb is smaller). To

manage the resulting speed/precision trade-off, we recommend taking Mb ∈ [20, 50];

for instance when M = 105 we use Ms = 2000,Mb = 50 and when M = 104 we use

Ms = 500,Mb = 20.

Take-Aways: Our experiments suggest the following key observations: (i) Among

the inventory-discretized -1D methods, Gaussian process regression outperforms the

standard polynomial regression in all cases, and is more robust to “poor” design or
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Figure 4.6: Left panel: performance of Mixture GP-2D as a function of M . We
fix the number of unique design sites Ms = 1000 and progressively increase the
number of replicates Mb, reporting the resulting V̂0(P, I) at P = 6, I = 1000.
Right: effect of increasing Ms for fixed M = 105. Results are for 20 runs of
each algorithm. In each boxplot, the central mark represents the median, the
box indicates the 25th and 75th percentiles, and the whiskers represent the
most extreme runs.

low simulation budget. (ii) Within joint -2D schemes, we continue to observe superior

performance of GPR compared to the alternate bivariate regression schemes (LOESS

and PR). Moreover, GP-2D is neck-in-neck with the best-performing GP-1D. We em-

phasize that efficient implementation of GPR and LOESS relies on batched designs

which is another innovation in our DEA implementations. (iii) We also find strong

dependence between choice of design and performance. We confirm that best results

come from designs, such as the Mixture and Dynamic versions we implemented, that

balance filling the input space and targeting the domain where most of (Pt, Ît) tra-

jectories lie. Otherwise, plain space-filling or conversely aggressive boundary-following

degrade performance. (iv) Between the two parametric methods PR-1D and PR-2D, we

find PR-1D to significantly outperform PR-2D irrespective of the design and simulation

budget, indicating the advantage of piecewise continuous regression.
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4.6.4 Gas Storage Modelization with Switching Costs

We generalize the previous example by incorporating switching costs. Switching

costs make the control map depend on the current regime mn and induce inertia,

i.e. preference to continue with the same regime so as to reduce overall costs. To handle

the discrete m-dimension, we treat it as |J | distinct continuation functions, estimated

through distinct regressions. Otherwise, the algorithm proceeds exactly the same way as

before. This illustrates the flexibility of DEA to handle a range of problem formulations.

Besides the injection loss through k5, we also add switching cost K(i, j) with the

following specification:

K(−1, 1) = K(0, 1) = 15000; K(1,−1) = K(0,−1) = 5000; K(1, 0) = K(−1, 0) = 0,

(4.29)

i.e. switching cost depends only on the regime the controller decides to switch to, with

switching to injection the costliest and switching to no-action free. In Figure 4.7 we

present the policy of the controller for different regimes. The inertia of being in regime

mn = 0 is evident as the corresponding control map has the widest Store region. Effect

of K(i, j) is also evident when comparing the Store region of left and center panels. If

the controller moves from Inject to Store regime, she finds more resistance while trying

to move back to injection due to the switching cost.

In Table 4.5 we present the performance of different design-regression pairs with a

M = 40K simulation budget. We dropped LOESS from this and the following case

study to simplify the exposition and also because Matlab’s implementation of LOESS

does not support d > 2. As expected, introduction of the switching costs leads to lower

valuation relative to Table 4.4. Moreover, the relative behaviour remains similar to

the previous section i.e. space-filling design has the worst performance, Mixture design

observes significant improvement, but Dynamic design finally wins the race.
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(a) m = +1 (Inject) (b) m = 0 (Store) (c) m = −1 (Withdraw)

Figure 4.7: The control maps m̂(t, P, I,m) at t = 2.7 years for the model with
switching costs in (4.29), for m ∈ {+1, 0,−1}. The colors are m̂t+∆t = +1
(inject, light yellow), m̂t+∆t = 0 (store, medium cyan), m̂t+∆t = −1 (withdraw,
dark blue). The solution used GP-2D regression with Mixture design.

By comparing the valuation in Table 4.5 with Table 4.4 we may infer the impact

and number of the switching costs. For example, previously Dynamic GP-1D produced

valuation of V̂0(6, 1000) = $5, 266 (in thousands), however, with switching cost it is now

$5, 102K. The respective loss of $166K can be interpreted as approximately 16 regime

switches on a typical trajectory (assuming $10K as an average switching cost).

Design Regression V̂0(P0, I0) (’000s)

Conventional
PR-1D 4,901 (12)
PR-2D 4,654 (11)

Space-filling

PR-1D 4,663 (16)
GP-1D 4,757 (10)
PR-2D 4,594 (13)
GP-2D 4,879 (22)

Adaptive-1D
PR-1D 4,978 (14)
GP-1D 5,058 (12)

Dynamic
PR-1D 4,997 (17)
GP-1D 5,102 (20)

Mixture 2D
PR-2D 4,602 (30)
GP-2D 4,978 ( 8)

Table 4.5: Valuation of a gas storage facility with switching costs V̂0(6, 1000)
of different design-regression pairs with simulation budget of M = 40, 000.
Results are averages (standard deviations in brackets) across 10 runs of each
algorithm.
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Table 4.5 confirms the superior performance of GPR relative to PR, and the gains

from using a Mixture (or even better a Dynamic) simulation design compared to the

Conventional one. We remind the reader that implementing DEA in this setup is iden-

tical to the case where K(i, j) ≡ 0, except that a separate approximation ĥ(·,m) is

constructed for each of the three levels of m ∈ J . Thus, DEA immediately incorpo-

rates this extension and it is not surprising that the findings in Tables 4.4 and 4.5 are

consistent with each other.

4.6.5 3D Test Case with Two Facilities

An important motivation for our work has been algorithm scalability in terms of

the input dimension. In the classical storage problem the dimensionality is two: price

P and inventory I. However, in many contexts there might be multiple stochastic

factors (e.g. the power demand and supply processes in the microgrid example below)

or multiple inventories. The respective problem would then be conceptually identical to

those considered, except that X has d ≥ 3 dimensions.

Taking up such problems requires the numerical approach to be agnostic to the

dimensionality. In terms of existing methods, the piecewise continuous strategy (such

as PR-1D) has been the most successful, but it relies critically on interpolating in the

single inventory variable. In contrast, joint polynomial regression is trivially scalable in

d but typically performs poorly. Thus, there is a strong need for other joint-d methods

that can improve upon PR.

In this section we illustrate the performance of DEA with a three-dimensional state

variable. To do so, we consider a joint model of two gas storage facilities, which leads

to three state space variables: price Pt, inventory of first storage I1
t and inventory of

second storage I2
t . Each storage facility is independently controlled and operated (so

that there are 9 possible regimes mt ∈ {−1, 0, 1} × {−1, 0, 1}. Furthermore, the two
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facilities have identical operating characteristics, each matching those of Section 4.6.1;

it follows that the total value of two such caverns is simply twice the value of a single

cavern.

To implement DEA in this setup we employ a direct analogue of the previous 2D

problem. Namely, we use PR and GP regressions, together with Mixture and space-

filling designs, highlighting the scalability of these choices. Two secondary changes are

made: (i) For the space-filling design we switch to a 3D Sobol sequence; while we do

not observe any significant difference in performance between LHS and Sobol sequences

for 2D problems, in 3D LHS is less stable (higher variability of V̂0(6, 1000, 1000) across

runs) and yields estimates that are about $80K-100K worse than from Sobol designs;

(ii) for the mixing weights we take this time 50%/50% of sites from space-filling and

from empirical distribution i.e. D = P3(0.5M) ∪ S3(0.5M). The reason for both mod-

ifications is due to lower density of design sites per unit volume compared to previous

examples , i.e. effectively lower budget. Adequate space-filling, best achieved via a QMC

design, is needed to explore the relevant input space and fully learn the shape of the 3D

continuation function.

In Figure 4.8, we present the performance of PR-3D and GP-3D for Mixture and

space-filling designs. In addition, we also implement PR-1D with conventional design,

meaning that we generate a probabilistic design in P and do a two-dimensional grid-

ded discretization (plus linear interpolation) in I1, I2. This approach reduces to doing

M2
I one-dimensional polynomial regressions in P and forces to take quite low MI ,MP

values to fulfill an overall simulation budget of M = MP ×MI ×MI , see Table 4.6. In

contrast, -3D methods can borrow information from all M paths, drastically improving

statistical efficiency. To ease the comparison, we report half of total value of the two

facilities, which should ideally match the original values in Table 4.4. Not surprisingly,

the 3D problem is harder, so for the same simulation budget the reported valuations
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are lower. For example, at 104 budget, Adaptive GP-3D obtains a valuation $251K

below that of Mixture GP-2D; this gap declines to $109K as we increase the simulation

budget to M = 105. Moreover, difference between the performance of Mixture and

space-filling design is evident even with polynomial regression (Sobol PR vs. Mixture

PR). Mixture design with GP-3D further improves the valuation; we observe difference

of over $300K comparing Mixture PR and Mixture GP at M = 105 budget. Consistent

with previous examples, we again find that the valuation from conventional PR-1D is

between the valuation obtained via PR-3D and Mixture GP-3D. However, the signifi-

cantly larger standard errors of PR-1D is a sign of deteriorating stability of inventory

discretization in the increased dimension, and highlight the limited scope of that tech-

nique. The take-away is that the gains from fine-tuning the DEA components grow

as problem complexity increases. The emulation paradigm further suggests that non-

parametric/adaptive approaches will be best able to maximize performance in “hard”

contexts.

Sobol PR-3D Mixture PR-3D Conventional PR-1D Mixture GP-3D
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Figure 4.8: Half of estimated value V̂0(6, 1000, 1000)/2 for the 3D example
with two storage caverns from Section 4.6.5. Results are for 10 runs of each
algorithm across 4 different simulation budgets M ∈ {10K, 40K, 67K, 100K}.
Description of the boxplots is same as in Figure 4.6.
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Design Regression 10k 40k 67k 100k

Sobol/Adaptive
PR-3D (N) 10500 42000 67500 102000
GP-3D (Ns ×Nb) 500× 21 1000× 42 1500× 45 2000× 51

Conventional PR-1D (NP ×N2
I ) 215× 72 347× 112 400× 132 450× 152

Table 4.6: Design specifications for different DEA implementations of Section
4.6.5 in Figure 4.8.

4.7 Microgrid Balancing under Stochastic Net

Demand

In this example, we use the framework of Section 4.2 in the context of a Microgrid,

which is a scaled-down version of a power grid comprising of renewable energy sources,

a diesel generator, and a battery for energy storage. The microgrid could be isolated

or connected to a national grid and the objective is to supply electricity at the lowest

cost by efficiently utilizing the diesel generator and the battery to match demand given

the intermittent power production from the renewable sources. The topology of the

microgrid considered here is similar to that in [11] and presented in Figure 1.1a.

The exogenous factor corresponds to net demand Ln = Dn − Rn, where Dn, Rn

are the demand and output from the renewable source, respectively. We assume that

the microgrid controller bases his policy only on L, modeled as a discrete Ornstein-

Uhlenbeck process:

Ln+1 − Ln = α(L− Ln)∆tn + σξn, ∆ξn ∼ N (0,∆tn). (4.30)

On the supply side, the controller has two resources: a battery (energy storage) and

a diesel generator. The state of the battery is denoted by It ∈ [0, Imax] with dynamics

given by

In+1 = In + a(un)∆tn = In +Bn∆tn, (4.31)
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where a(un) is interpreted as battery output, driven by un the diesel output. The latter

has two regimes mn ∈ {0, 1}. In the OFF regime mn+1 = 0, un(0) = 0. When the diesel

is ON, mn+1 = 1, its power output is state dependent and given by:

un(1) = Ln1{Ln>0} +Bmax ∧
Imax − In

∆tn
, (4.32)

where Bmax > 0 is the maximum power input to the battery. The power output from

the battery is the difference between the net demand and the diesel output, provided it

remains within the physical capacity constraints [0, Imax] of the battery:

Bn := a(un) = − In
∆tn

∨
(
Bmin ∨ (un − Ln) ∧Bmax

)
∧ Imax − In

∆tn
. (4.33)

To describe the cost structure, define an imbalance process St = S(ct, Xt):

Sn = un − Ln −Bn. (4.34)

Normally the imbalance is zero, i.e. the battery absorbs the difference between produc-

tion and demand. Sn < 0 implies insufficient supply of power resulting in a blackout ;

Sn > 0 leads to curtailment or waste of energy. We penalize both scenarios asymmetri-

cally using costs C1,2 for curtailment and blackout, taking C2 � C1 in order to target

zero blackouts:

π(u, L) := −uγ − |S|
[
C21{S<0} + C11{S>0}

]
. (4.35)

More discussion on the choice of this functional form can be found in [30, 11]. Further-

more, starting the diesel generator when it is OFF incurs a switching cost K(0, 1) = 10,

but no cost is incurred to switch off the diesel generator, K(1, 0) = 0. The final op-

timization problem is starting from state (Ln, In,mn) and observing the net demand

process Ln, to maximize the pathwise value following the policy mn, exactly like in
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(4.6).

4.7.1 Optimal Microgrid Control

The parameters we use are given in Table 4.7. For the terminal condition we again

force the controller to return the microgrid with at least the initial battery charge:

W (XN , IN ) = −200 max(I0 − IN , 0). The effect of this penalty is different compared to

the gas storage problem in Section 4.6. Because the controller can only partially control

the inventory, we end up with ÎN ∈ [I0, Imax]. We use simulation budget of M =

10, 000 and out-of-sample budget of M ′ = 200, 000. For simplicity of implementation,

we use same simulation designs across both m-regimes (i.e. Dn is independent of m,

cf. Algorithm 5).

α = 0.5, L = 0, σ = 2
Imax = 10 (kWh), Bmin = −6, Bmax = 6 (kW), K(0, 1) = 10, K(1, 0) = 0

C1 = 5, C2 = 106, γ = 0.9, T = 48 (hours), ∆t = 0.25 (hours)

Table 4.7: Parameters for the Microgrid in Section 4.7.

Figure 4.9a illustrates the computed policy (m̂t) of the microgrid controller for a

given path of net demand (Lt). The left panel plots the joint trajectory of demand L0:T

(left y-axis), inventory Î0:T and diesel output u0:T (both right y-axis). The diesel is

generally off; the controller starts the diesel generator whenever the net demand Ln is

large, or the inventory In is close to empty. When the generator is on, the battery gets

quickly re-charged according to (4.32); otherwise Î tends to be decreasing, unless Ln < 0.

The center and right panels of the Figure visualize the resulting policy u(t, L, I,m) =

u(m̂(t, L, I,m)). Due to the effect of the switching cost, when the generator is ON

(Figure 4.9c), it continues to remain ON within a much larger region of the state space

compared to when it is OFF.
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Figure 4.9: Left panel: trajectory of the net demand (Lt), corresponding to
policy (ut) and the resultant inventory trajectory (Ît). Middle and right panels:
the control policy û(t, L, I,m) at t = 24 hours. Recall that u(0) = 0 whenever
the diesel is OFF. All panels are based on GP-2D regression and Mixture design
D = P2(0.5N) ∪ L2(0.5N).

4.7.2 Numerical Results

Figure 4.10 shows the estimated value V̂0(0, 5, 1) of the microgrid across different

designs and regression methods at M = 10, 000. Recall that in this setup, the controller

only incurs costs so that V̂ < 0 and smaller (costs) is better. The relative performance

of the schemes remains similar to Section 4.6. We continue to observe lower performance

of space filling designs across regression methods. However, GP is more robust to this

design change compared to traditional regression methods. Moreover, GPR dramati-

cally improves upon PR-2D (whose performance is so bad it was left off Figure 4.10).

Adaptive design with GP-2D once again produces the highest valuation (lowest cost),

and substantially improves upon PR-1D.

4.8 Summary

The developed DEA template generalizes the existing methodologies used in the

sphere of RMC methods for stochastic storage problems. The modularity of DEA al-
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Figure 4.10: Estimated value V̂0(0, 5, 1) for the microgrid example and different
design-regression pairs. Results are for 10 runs of each algorithm. For com-
parison, PR-2D estimated mean valuation was significantly lower at −153.6,
−156.4, −152.3 for Conventional, Space-filling and Mixture designs, respec-
tively. Description of the boxplots is the same as in Figure 4.6.

lows a wide range of modifications that can enhance current state-of-the-art and improve

scalability. In particular, we show several combinations of approximation spaces and

simulation designs that are as good or better than any benchmarks (using both -1D

and -2D approaches) reported in the literature. Emphasizing the experimental design

aspect we show that there is wide latitude in removing memory requirements of tradi-

tional RMC by eliminating the need to simulate global paths. Similarly, non-parametric

regression approaches like GPR, minimize the concern of picking “correct” basis func-

tions. Furthermore, we stress the possibility to mix and match different methods. As

an example, we illustrated DEA-based valuation of a gas storage facility using different

designs, regressions, and budgets across the time-steps.

A natural extension is to consider the setting where the injection/withdrawal rates

are continuous. In that case, one must optimize over ut, replacing the arg max operator

with a bonified arg sup over the admissible control set u ∈ U . Depending on how

switching costs are assessed, one might eliminate the regime mt entirely, or have a
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double optimization

V (t, Pt, It,mt) = max
m∈J

{
sup

u∈U(Pt,It,m)
π(Pt, u)∆t+ C(t, Pt, It+∆t(u),m)−K(mt,m)

}
.

This could be interpreted as solving a no-bang-bang switching model, which would arise

when there is some nonlinear link between profit π and u, or a nonlinear effect of u on

It+∆t. Numerically carrying out the inner optimization over u calls for joint regression

schemes in order that Ĉ(t, ·) is smooth in It+∆t.

A further direction afforded by our template is to move to look-ahead strategies

using Remark 9 for generation of pathwise continuation values. By taking w > 1 one

may interpolate between the Tsitsiklis-van Roy approach and the Longstaff-Schwartz

one, ideally via a data-driven scheme that adaptively selects the look-ahead at each

time step. To this end, GP regressions results can be used to quantify the single-step

projection errors in Ĉn(·).

In a different vein, one may consider modifications where the au-

tonomous/endogenous dichotomy between (Pt) and (It) is blurred. For example,

a variant of the storage problem arises in the context of hydropower operations,

i.e. controlling a double dammed reservoir that receives inflows from upstream and

can release water downstream [38, 5]. Moreover, the reservoir experiences evaporation

and/or natural drawdown, irrespective of the operations. In this setup, the inventory

It experiences stochastic shocks, either due to random inflows (due to precipitation)

or random outflows (due to temperature-based evaporation, etc). Therefore, It+1 is a

function of both It, ut, and some outside noise (or factor) Ot. Moreover, if the dam is

large, hydropower management has endogenous stochastic risk, i.e. the control un also

affects the distribution of the price process Pn+1 by modifying the regional supply of

energy and hence affecting the supply-demand equilibrium that drives changes in (Pt).
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Chapter 5

Statistical Learning for
Probability-Constrained
Stochastic Optimal Control

This chapter is the result of a collaboration with Alessandro Balata, Michael Ludkovski

and Jan Palczewski. It is based on the work [13].

We investigate Monte Carlo based algorithms for solving stochastic control prob-

lems with probabilistic constraints. Our motivation comes from microgrid management,

where the controller tries to optimally dispatch a diesel generator while maintaining low

probability of blackouts. The key question we investigate are empirical simulation pro-

cedures for learning the admissible control set that is specified implicitly through a

probability constraint on the system state. We propose a variety of relevant statistical

tools including logistic regression, Gaussian process regression, quantile regression and

support vector machines, which we then incorporate into an overall Regression Monte

Carlo (RMC) framework for approximate dynamic programming. Our results indicate

that using logistic or Gaussian process regression to estimate the admissibility prob-

ability outperforms the other options. Our algorithms offer an efficient and reliable

extension of RMC to probability-constrained control. We illustrate our findings with
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two case studies for the microgrid problem.

5.1 Introduction

Stochastic control with probabilistic constraints is a natural relaxation of determin-

istic restrictions which tend to generate high costs forcing the avoidance of extreme

events no matter their likelihood of occurrence. In contrast, with probabilistic con-

straints, constraint violation is tolerated up to a certain level offering a better trade-off

between admissibility and cost. We refer to [66] for an overview of probability con-

strained problems and list below some of our motivating settings and references:

1. Microgrid management: In the context of microgrid control, since perfect bal-

ancing between fluctuating demand and supply is very expensive, it is common

to allow for a small frequency of black-outs, i.e. occurrences where demand out-

strips supply. A standard approach is to use mixed-integer linear programming by

approximating the non-linear and non-convex probability constraints with more

conservative convex constraints as in [67].

2. Hydro-power optimization: control of a hydro-power dam with probabilistic con-

straints was discussed in [38]. Within this setup, the controller observes random

inflows from precipitation, as well as fluctuating electricity prices. Her objec-

tive is to control the downstream outflow from the dam to maximize profit from

power sales, while ensuring a minimum dam capacity with high probability. Other

related works are [39, 40].

3. Motion planning: finding the minimum-cost path for a robot from one location to

another while avoiding colliding with objects that obstruct its path. Stochasticity

in the environment implies that the robot motion is only partially controlled. Ro-

bust optimization that guarantees obstacle avoidance might be infeasible, making
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probabilistic constraints a viable alternative. Dynamic programming methods for

unmanned aerial vehicles were introduced in [41] and the probabilistic-constrained

motion of a robot was solved in [42].

Contribution. In sum, in the stochastic context it is common and natural to im-

pose probabilistic constraints. In contrast to deterministic constraints that are often

simple to verify, probabilistic constraints are much harder to handle since admissibil-

ity of the control can generally only be estimated. Therefore, a numerical procedure

to learn which actions are admissible is necessary in addition to the core optimization

routine. In this chapter, we consider continuous-state, continuous-time models on infi-

nite probability spaces. Therefore, probability constraints become a local expectation

constraint at each system state. The canonical setup involves finite-horizon control of a

stochastic process described through a stochastic differential equation of Itô type. The

overarching solution paradigm involves the Bellman or Dynamic Programming equa-

tion, which works with discretized time-steps but with a smooth spatial variable. In

this context, we develop algorithms to solve stochastic optimal control problems with

probabilistic constraints using RMC. To make this highly nontrivial extension to RMC,

we investigate tools from statistics and machine learning (including support vector ma-

chines (SVM), Gaussian process (GP) regression, parametric density estimation, logistic

regression and quantile regression) to estimate the admissible set corresponding to the

probability constraint and test them for a practical problem of energy management. Our

algorithm allows us to estimate the two parts of the problem —the constraint and the

approximation of the conditional expectation—in parallel and with significantly lower

simulation budget compared to a naive implementation.

After proposing several approaches and benchmarking them on two case-studies,

our main finding is to recommend logistic regression and GP-smoothed probability es-

timation as the best procedures. These methods are stable, relatively fast and allow for
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a variety of further adjustments and speed-ups. In contrast, in our experience despite

theoretical appeal, quantile regression and SVM are not well-suited for this task. On a

higher level, our main take-away is that stochastic control with probabilistic constraints

(SCPC) is well within reach of cutting-edge RMC methods. Thus, it is now computa-

tionally feasible to tackle such problems, opening the door for new SCPC models and

applications.

Solutions in literature. Mixed-integer linear programming (MILP) is the stan-

dard tool used to solve SCPC (see [68] for an overview), however, there are several

reasons why RMC or approximate dynamic programming methods may be a better

choice. First, unlike MILP, RMC does not require any discretization of the state space,

neither does it require linearizing the constraints. Approximating non-linear constraints

by linearizing them can significantly affect the quality of the solution. Second, an impor-

tant advantage of RMC is its ability to find optimal control dynamically for each time

step and every state. This differs from MILP methods where the entire problem needs

to be solved again for a new state. Third, MILP suffers from severe time-complexity

constraints as the time horizon increases, RMC, on the other hand, has linear time

complexity with respect to the horizon. In a recent work [69], the authors also find that

the approximate dynamic programming methods like RMC have better solution quality

and better runtime as the horizon of the problem increases.

A dual dynamic programming based approach for SCPC has been discussed in

[70, 38]. The central idea is to incorporate the constraint in the objective function via

Lagrange multiplier and iteratively solve for the optimal control and Lagrange multi-

plier. Although it is a popular approach, the final solution is sub-optimal due to the

duality gap.

Another approach to SCPC is the stochastic viability framework for multi-period

constraints developed in [38, 71]. In these works, the goal is to maximize the probability
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of being admissible, which is defined both in terms of profit targets and satisfying

constraints at every time step. Local probabilistic constraints of the type discussed

in this chapter have been recently also studied in [72] to compute hedging price of

a portfolio whose risk is defined in terms of its future value with respect to a set of

stochastic benchmarks. Besides a local probabilistic constraint, authors also provide

dynamic programming equations for multi-period constraints. However, their solution

is driven by very specific loss functions and state processes. In contrast, we develop

general purpose numerical schemes using statistical learning methods.

5.2 Problem formulation

We study numerical resolution of stochastic control problems on finite horizon [0, T ]

with local implicit constraints, specifically we work with constraints defined through

probabilistic conditions on the controlled state. The general formulation of the stochas-

tic control problem we are interested in this chapter is of the form:

Vn(Xn) = inf
(us)Ns=n∈Un:N (Xn)

{
E
[N−1∑
k=n

∫ tk+1

tk

πs(X(s), uk)ds+K(Xn, un)+W (X(tN ))
∣∣∣Xn

]}
,

(5.1)

whereW (·) represents the terminal penalty, πt(·, ·) the running cost, K(·, ·) the switching

cost that incurs only at discrete time epochs when the controls are chosen and

Un:N (Xn) =
{

(uk)
N
k=n : Pk(Xk, uk) ∈ Ak ∀k ∈ {n, . . . , N − 1}

}
, (5.2)

with Pk : X ×W → R and Ak ⊂ R. The admissible set U restricts potential choices of

controls given the current state Xn. A key assumption is that admissibility is defined

implicitly, i.e. a priori it is not clear which control choices satisfy constraints and which

do not. Thus, the controller must carry out the optimization while simultaneously
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learning the feasibility of proposed actions. In other words, the mapping Pk(·, ·) is only

given implicitly and inverting it to obtain Un:N (Xn) is numerically nontrivial. We will

assume in the following that an admissible control always exists at any state, so that

we may define Un(Xn) = Un:n(Xn) to be the set of admissible controls satisfying the

constraints at a single decision epoch tn conditional on Xn. The dynamic programming

equation at step n corresponding to equation (5.1) is:

Vn(Xn) = inf
u∈Un(Xn)

{
Cn(Xn, u)

}
,

where Cn(Xn, u) = E
[
π∆(Xk:k+1, uk) + Vn+1(X(tn+1))

∣∣∣Xn, u
]
,

and π∆(Xk:k+1, uk) =

∫ tk+1

tk

πs(X(s), uk)ds+K(Xk, uk).

(5.3)

As before, Cn(Xn, u) is the continuation value from using the control u over [tn, tn+1).

The admissible set Un(Xn) is both time and state dependent. Thus, we need to estimate

the continuation value Cn(·, ·) and the admissible control set Un(·) at every time step.

Through the rest of the Chapter we will assume Pn(Xn, un) and An in (5.2) to be

Pn(Xn, un) ≡ pn(Xn, un) := P
(
G((X(s))s∈[tn,tn+1))) > 0|Xn, un

)
and An := [0, p).

(5.4)

In other words, we target the set of controls such that the conditional probability of the

functional G(·) of X being greater than zero is bounded by a threshold p, i.e.

Un(Xn) :=
{
u ∈ W : pn(Xn, un) < p

}
. (5.5)

For simplicity of notation, we define Gn(Xn, un) as the regular conditional distribution

of the functional G(·) given (Xn, un):

Gn(Xn, un) := L
(
G((X(s))s∈[tn,tn+1))

∣∣∣Xn, un

)
. (5.6)
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When writing P
(
Gn(Xn, un) > z

)
or E

[
g
(
Gn(Xn, un)

)]
we mean the probability or the

expectation with respect to this conditional distribution. The parameter p in equa-

tion (5.5) is interpreted as relaxing the strong constraint G ≤ 0 which may not be

appropriate in a stochastic environment. The random variable Gn(Xn, un) quantifies

the riskiness of the controlled trajectory, and the controller is required to keep the for-

mer below some pre-specified level, taken without loss of generality to be zero. Typical

values of p would generally be small.

Remark 16 We may rewrite (5.4) through the corresponding (1 − p)th quantile

q(Xn, un) of Gn(Xn, un):

qn(Xn, un) : (Xn, un) 7→ arg inf
z

{
P
(
Gn(Xn, un) > z

)
≤ p
}
. (5.7)

Then using

Un(Xn) :=
{
u : pn(Xn, u) < p

}
=
{
u : qn(Xn, u) < 0

}
, (5.8)

we can set P ′n := qn and Ã = (−∞, 0) in (5.2). We will exploit this equivalence to

propose quantile-based methods (Section 5.4) for the admissible set.

Remark 17 Assuming a one dimensional control un ∈ W ⊂ R, and the probability

pn(Xn, un) monotonically decreasing in un, estimating the admissible set Un(Xn) is

equivalent to estimating the minimum admissible control

umin
n (Xn) := inf

u∈W

{
u : pn(Xn, u) < p

}
.

The corresponding admissible set will be Un(Xn) = {u ∈ W : u ≥ umin
n (Xn)}.

114



Statistical Learning for Probability-Constrained Stochastic Optimal Control Chapter 5

Remark 18 A more general version are implicit constraints of the form

{
u ∈ W : E

[
g
(
Gn(Xn, u)

)]
< p
}
,

for a function g : R → R, where of course the probability constraint (5.5) above arises

when g is an indicator function. Also notice that in principle Ĉ is not monotone in u, and

hence the admissibility set U might affect the optimal control even when u∗n(x) > umin
n (x).

Remark 19 Equation (5.8) describes admissible controls u for a given state x. The

“dual” perspective is to consider the set of states X an (u) ⊂ X for which a given control

u is admissible:

X an (u) :=
{

x ∈ X : pn(x, u) < p
}
. (5.9)

Often the cardinality of X is infinite, while the control space W is finite, so that enu-

merating (5.9) over u ∈ W is considerably easier than enumerating the uncountable

family of sets x 7→ Un(x) in equation (5.5). Furthermore, if u 7→ pn(x, u) is decreasing

for all x ∈ X , then we obtain an ordering X an (u1) ⊆ X an (u2) for u1 ≤ u2. The latter

nesting feature greatly helps to estimate the various X an ’s. In other words, frequently

one may rank the controls in terms of their “riskiness” with respect to Gn, so that the

safest control will have a very large X an (u) (possibly all of X ), while the riskiest control

will have a very small admissibility domain.

Remark 20 Notice that the reward between time [tn, tn+1),
∫ tn+1

tn
πs(X(s), u)ds is ran-

dom at time tn. As a result, we incorporate it in the definition of our continuation value

Cn(Xn, u).
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5.2.1 Regression Monte Carlo

We continue to focus on simulation-based techniques to solve (5.1). As a result, we

work with the approximate Dynamic Programming recursion

V̂n(Xn) = inf
un∈Ûn(Xn)

{
Ĉn(Xn, un)

}
,

where Ĉn(Xn, un) := Ê
[
π∆(Xn:n+1, un) + V̂n+1(X(tn+1))

∣∣∣Xn, un

]
.

(5.10)

The set of admissible controls Ûn is approximated via either p̂n(·, ·), i.e., Ûn(Xn) :=
{
u :

p̂n(Xn, u) < p
}

, or q̂n(·, ·), i.e., Ûn(Xn) =
{
u : q̂n(Xn, u) < 0

}
, see (5.8).

Recall from Section 3.4 in Chapter 3 and Section 4.3 in Chapter 4 that specifying

Ê is equivalent to approximating the conditional expectation map

(x, u) 7→ E[ψ
(
(X(s))s∈[tn,tn+1]

)
|Xn = x, un = u] =: f(x, u)

where we will specifically substitute

ψ
(
(X(s))s∈[tn,tn+1]

)
=

∫ tn+1

tn

πs(X(s), un)ds+K(Xn, un) + V̂n+1(X(tn+1)).

To do so, we consider a dataset consisting of inputs (x1
n, u

1
n), . . . , (xMc

n , uMc
n ) and

the corresponding pathwise realizations y1, . . . , yMc with yj = ψ
(
(x(s))js∈[tn,tn+1]

)
,

where (x(s))js∈[tn,tn+1] is an independent draw from the distribution of process

(X(s))s∈[tn,tn+1]|(x
j
n, u

j
n). Then we use the training set {xjn, ujn, yj}Mc

j=1 to learn f̂ , an

estimator of f , via regression. In contrast to Chapters 3 and 4, here we include the

cumulative cost from [tn, tn+1) when approximating the conditional expectation map.

Also, we project the realizations in the joint state-action space.

Similarly, estimating Un is equivalent to learning the conditional probability map

pn(x, u) (or the conditional quantile map qn(x, u) in (5.5)) and then comparing to the

116



Statistical Learning for Probability-Constrained Stochastic Optimal Control Chapter 5

threshold value p (zero, respectively). This statistical task, whose marriage with RMC

is our central contribution, is discussed in Section 5.4.

The technique of using regressions for the approximation of the continuation value is

very well developed (see Chapters 3 and 4). In contrast to estimating continuation value

function, we are not aware of any existing works to estimate the set of admissible controls

Ûn(Xn) which requires approximating p(x, u) (or q(x, u)) in equation (5.5). A naive

approach is to estimate Ûn(Xn) for every state realized during the backward induction

through nested Monte Carlo. Namely for each pair (x, u) encountered, we may estimate

the probability of violating the constraint by simulating Mb samples from the conditional

distribution Gn(x, u) as {gbn(x, u)}Mb
b=1. We then set u ∈ Ûn(x) if p̄n(x, u) < p, where

p̄n(x, u) :=

Mb∑
b=1

1gbn(x,u)>0

Mb
(5.11)

is the empirical probability. Although extremely easy to implement, this Nested Monte

Carlo (NMC) method is computationally intractable for even the easiest problems. As

an example, a typical RMC scheme employs Mc ≈ 100, 000 and assuming Mb = 1000

for inner simulations, which is necessary for good estimates of small probabilities p ≤

0.1, would require 108 simulation budget at every time-step to implement NMC. Note

furthermore that NMC returns only the local estimates p̄(x, u); no functional estimate of

Un(x) or X an (u) is provided for an arbitrary x. As a result, any out-of-sample evaluation

(i.e. on a future sample path of X·) requires further inner simulations, making this

implementation even more computationally prohibitive.

An important challenge in using Û is verifying admissibility. Since we are employing

random Monte Carlo samples to decide whether u is admissible at x, this is a proba-

bilistic statement and admissibility can never be guaranteed. We may use statistical

tools to quantify the accuracy of U , for example, by applying classical Central Limit

Theorem tools for the estimator p̄(x, u) of the true p(x, u). In particular, to provide
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Figure 5.1: Contour plot for minimum admissible diesel output
(L, I,m) 7→ umin

n (L, I,m) (see Remark 17). Generally for L < 0,
the constraint is not binding and umin

n (L, I,m) = 0. As demand in-
creases, the constraint becomes more stringent, i.e. umin

n (L, I,m) increases
in L. Red curve represents a path of the controlled demand-inventory pair
(Lu

∗
n , I

u∗
n ,mu∗

n ) following a myopic strategy choosing the minimum admissible
control un(Ln, In,mn) = umin

n (Ln, In,mn).

better statistical guarantees regarding Û we develop statistical tools in order to make

statements (with asymptotic guarantee) such as u ∈ U with 95% confidence (equivalent

to p(x, u) < p with 95% probability). As we show, without such “conservative” esti-

mates based on confidence levels, estimates of U might be highly unreliable, frequently

causing decisions that are inadmissible with respect the imposed probability constraint.

Thus, the related construction of Û (ρ) with specified confidence level ρ is a running

theme in Section 5.4, where we propose several statistical methods.

5.2.2 Motivation: controlling blackout probability in a mi-

crogrid

To make our presentation concrete, in this section we go back to the microgrid

management problem to illustrate the application of the framework (5.3). Recall our

microgrid topology from figure 1.1a where the microgrid controller is in charge of the
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diesel generator through the control u(t). Simultaneously, she faces the constraint of

avoiding blackouts, whereby demand is not met. We reiterate that the control decisions

are made at discrete epochs {t0, t1, . . . , tN−1}, however these decisions affect the state of

the system continuously. As a result, choosing the control u(tn) ≡ un at time tn involves

minimizing the cost of running the microgrid, as well as controlling the probability

of blackout (i.e. controller fails to match the net demand) at intermediate intervals

[tn, tn+1). The blackout is described through the imbalance process S(s) := L(s)−un−

B(s), ∀s ∈ [tn, tn+1), representing the difference between the demand and supply, while

the diesel output is held constant (“zero-order-hold”) over the time step. The power

output from the battery is a deterministic function of net-demand, inventory and the

control B(s) = ϕ(L(s), I(s), un) constrained by the physical limitations of the battery.

Furthermore, B(s) > 0 implies supply of power from the battery and B(s) < 0 implies

charging of the battery. The set of admissible controls is thus defined as:

Un(Ln, In,mn) :=

{
u : P

(
sup

s∈[tn,tn+1)
S(s) > 0

∣∣∣(Ln, In,mn, u)
)
< p

}
. (5.12)

Thus in the context of microgrid, the conditional distribution Gn of equation (5.6) and

the corresponding pn(Ln, In, Cn) are:

Gn(Ln, In,mn, un) = L
(

sup
s∈[tn,tn+1)

S(s)
∣∣∣(Ln, In,mn, un)

)
,

pn(Ln, In,mn, un) = P(Gn(Ln, In,mn, un) > 0).

(5.13)

Because pn is not (in general) available analytically, the admissibility condition

pn(Ln, In,mn) < p is implicit. Recall that we denote by W = 0 ∪ [u, ū] the uncon-

strained control set. We assume that u(t) = 0 means that the diesel is OFF, while

u(t) > 0 means that it is ON, and at output level u(t). Thus, we define m(s) = 1{un>0}

∀s ∈ (tn, tn+1] with the time interval left-open in order to allow for identification of
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switching on and off of the diesel generator at times tn. Notice also that the process

m(t) does not satisfy the controlled diffusive dynamics, but this slight extension of the

framework does not impact on the methods and results presented. We then look at the

following formulation of the general problem:

Vn(Ln, In,mn) = min
{uk}N−1

k=n

{
E
[∑N−1

k=n

[
ρ(uk)∆tk + 1{mk=0,uk>0}K(0, 1)

]
+W (LN , IN ,mN )

∣∣∣(Ln, In,mn)
]}
,

subject to P
(

sup
s∈[tn,tn+1)

S(s) > 0
∣∣∣(Ln, In,mn)

)
< p ∀n

(5.14)

where ∆tk = tk+1 − tk, ρ(uk) is the instantaneous cost of running the diesel generator

to produce power output uk and K(0, 1) is the cost of switching on the diesel gen-

erator. We continue to assume zero cost to turn off the generator i.e. K(1, 0) = 0.

The DPE corresponding to (5.14) is the same as in (5.3) with the integral running

cost
∫ tn+1

tn
πs(X(s), un)ds replaced by ρ(un)∆tn and the switching cost K(Xn, un) by

1{mn=0,un>0}K(0, 1).

Remark 21 The admissible set U ⊆ W for this problem has the special structure of

being an interval: if u ∈ U(x), then ∀ ũ > u, ũ ∈ U(x). Hence, we may represent U(x) =

[umin
n (x), ū] in terms of the minimal admissible diesel output umin

n (x). Conversely, the

admissibility domains for a fixed u ∈ W are nested: if u1 ≤ u2 then X an (u1) ⊆ X an (u2).

This suggests to compute X an (u) sequentially as u is increased and then invert to get

U(x).

To visualize the minimum admissible control umin
n (x), the right panel of Figure 5.1

presents the map x→ umin
n (x) under a constraint of p = 0.01 probability of blackout. We

also present a path for (L(t), I(t),m(t))t≥0 using a myopic strategy where the controller

employs the minimum admissible control at each point, un := umin
n (Ln, In,mn) ∀n.

Notice how for the most part, umin
n = 0 is trivially admissible so that U(x) = [0, ū]
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and the blackout constraint is not binding. This is not surprising, as blackouts are

only possible when L(t) � 0 is strongly positive and the battery is close to empty,

I(t) ' 0. Thus, except for the lower-right corner, any control is admissible. As a result,

only a small subset of the domain X actually requires additional effort to estimate

the admissible set U(x). In our experience this structure, where the constraint is not

necessarily binding and where we mostly perform unconstrained optimization, is quite

common in applications.

5.3 Probability Constrained-DEA

In this section we present our Probability constrained dynamic emulation algorithm

(PC-DEA) which provides approximation for the admissible set Ûn(·) and the continu-

ation value function Ĉn(·, ·). The main steps of the algorithm can be summarized using

the following two steps, implemented in parallel at every time-step:

Generate design→ Generate 1-step paths & statistic for admissibility→ Estimate U

Generate design→ Generate 1-step paths & pathwise profits→ Estimate C

(5.15)

To estimate Ĉn(·, ·)’s and Ûn(·)’s, we proceed iteratively backward in time starting with

known terminal condition W (X) and sequentially estimate Ûn and Ĉn for n = N −

1, . . . , 0. Assuming we have estimated Ûn+1, . . . , ÛN−1 and Ĉn+1, . . . , ĈN−1, we first

explain the estimation procedure for Ûn and Ĉn. This corresponds to a fit task. In the

subsequent backward recursion at step n− 1 we also need the predict task to actually

evaluate V̂n(Xn) which requires evaluating Ĉn(·) at new (“out-of-sample”) inputs Xn, un

which of course do not coincide with the training inputs (x1
n, u

1
n), . . . , (xMc

n , uMc
n ).
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5.3.1 Estimating the set of admissible controls

To estimate the set of admissible controls Ûn(·) at time-step n, we choose de-

sign Dan := (xin, u
i
n, i = 1, . . . ,Ma) and simulate trajectories of the state process

(X(s))is∈[tn,tn+1) starting from Xi(tn) = xin and driven by control uin. To evaluate

the functional G
(
(X(s))is∈[tn,tn+1)

)
, we discretize the time interval [tn, tn+1) into K

finer sub-steps with ∆nk := tn(k+1)
− tnk and define the discrete trajectory xin =

xin0
,xin1

, . . . ,xin(K−1)
,xinK . We then record

win := 1
(
G((xink)k∈{0,...,K−1}) > 0

)
, i = 1, . . . ,Ma, (5.16)

where, formally, we extend (xink)k∈{0,...,K−1} to a piecewise constant trajectory on

[tn, tn+1).

Analogous to standard RMC, we now select an approximation space Han to estimate

the probability p̂n or the quantile q̂n, using the loss function Lan and apply empirical

projection:

p̂n := arg min
fan∈Han

Ma∑
i=1

Lan(fan , w
i
n; xin, u

i
n). (5.17)

See Section 5.4 for concrete examples of Ha and La. Note that the approximations p̂n

and q̂n must be trained on joint state-control datasets {xin, uin, win}
Ma
i=1 with win dependent

on the method of choice and moreover yield random estimators (p̂n is a random variable).

Using the distribution of p̂n(x, u) we may obtain a more conservative estimator that

provides better guarantees on the ultimate admissibility of (x, u). As a motivation,

recall the NMC estimator p̄n(x, u) from (5.11); for reasonably large Mb � 20, the

distribution of p̄n(x, u) is approximately Gaussian with mean pn(x, u) and variance
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√
pn(x,u)(1−pn(x,u))

Mb
. Defining

p̂(ρ)
n (x, u) := p̄n(x, u) + ξ(ρ)

n (x, u) (5.18)

:= p̄n(x, u) + zρ

√
p̄n(x, u)(1− p̄n(x, u))

Mb
, (5.19)

where zρ is the standard normal quantile at level ρ and ξ
(ρ)
n (x, u) represents a “safe”

margin of error for p̄n at confidence level ρ. The corresponding admissible set with

confidence ρ is

Û (ρ)
n (x) := Ûξ(ρ)n (x) =

{
u : p̂n(x, u) + ξ(ρ)

n (x, u) < p
}
. (5.20)

More generally, we set the admissible set for a site x ∈ X to

Ûξn(x) = {u : p̂n(x, u) + ξn(x, u) < p} , (5.21)

where ξn(x, u) ensures “stronger” guarantee for the admissibility of u at x. The margin

of estimation error can also be fixed, ξn(x, u) = c ∀(x, u) ∈ X ×W, which can be applied

when the sampling distribution of p̂n(x, u) is unknown or cannot be approximated using

a Gaussian distribution. The corresponding admissible set

Ûξ=cn (x) = {u : p̂n(x, u) + c < p} . (5.22)

is equivalent to estimating Ûξ=0
n (x) with a shifted lower probability threshold p− c. For

simplicity of notation, throughout this article we use Ûn(x) to denote the unadjusted

admissible set,

Ûn(x) := Ûξ=0
n (x)

in the context of NMC. As mentioned in Remark 16, equations (5.16)-(5.17) based on
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learning the quantile qn(x, u) could also be adjusted analogously to (5.21) to add a

margin of error, Ûξn(x) = {u : q̂n(x, u) + ξn(x, u) < 0}.

5.3.2 Estimating the continuation value

To estimate the continuation value Cn(·, ·), we choose a simulation design Dcn :=

(xjn, u
j
n, j = 1 . . . ,Mc) (which could be independent or equivalent to Dan) and generate

one-step paths for the state process (X(s))js∈[tn,tn+1) starting from Xj(tn) = xjn and

driven by control ujn, comprising again of finer sub-steps xjn = xjn0 ,x
j
n1 , . . . ,x

j
n(K−1)

,xjnK

(in principle the sub-steps could differ from the time discretization for Ûn). Next, we

compute the pathwise cost yjn, j = 1 . . .Mc:

yjn =
K−1∑
k=0

πnk(xjnk , u
j
n)∆nk +K(xjn, u

j
n) + vjn+1,

where vjn+1 = inf
u∈Ûn+1(xjnK )

Ĉn+1(xjnK , u),

(5.23)

and we replace the time integral in (5.3) with a discrete sum over tnk ’s. At the key step,

we project {yjn}Mc
j=1 onto an approximation space Hcn to evaluate the continuation value

Cn(·, ·):

Ĉn(·, ·) := arg min
fcn∈Hcn

Mc∑
n=1

|f cn(xjn, u
j
n)− yjn|2. (5.24)

The design sites {xjn, ujn}Mc
j=1 could be same or different from those used for learning

the admissible sets in the previous subsection. Two standard approximation spaces Hcn

used in this context are: global polynomial approximation and piecewise continuous

approximation.

Remark 22 In the microgrid example of Section 5.2.2 the running cost over [n, n+ 1)

is known once the control un is chosen. Thus it can be taken outside the conditional

expectation and the data to be regressed is simply yj = vjn+1.
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Global polynomial approximation: As described in Chapters 3 and 4, this is

a classical regression framework where Ĉαn (x, u) :=
∑

k αkφk(x, u), where φk(·, ·) is a

polynomial basis and the coefficients α are fitted via

α̂ := arg min
α

Mc∑
j=1

∣∣∣∣∣∑
k

αkφk(x
j , uj)− yj

∣∣∣∣∣
2

. (5.25)

Notice that in contrast to Chapters 3 and 4, here we have explicitly incorporated

the control u in the basis functions. As an illustration, for the microgrid example of

Section 5.2.2 we construct a quadratic polynomial approximation when diesel generator

is ON, u > 0, using 10 bases {1, L, I, u, L2, I2, u2, LI, Iu, LI} and a separate quadratic

approximation with the 6 basis functions {1, L, I, L2, I2, LI, LI} when diesel generator

is OFF, u = 0. Polynomial approximation is easy to implement but typically requires

many degrees of freedom (lots of φ’s) to properly capture the shape of C and can be

empirically unstable, especially if there are sharp changes in the underlying function

(see left panel of figure 4.4 in Chapter 4 and [62]).

Piecewise continuous approximation: This is a state-of-art tool in low dimen-

sions, d ≤ 3 (see Chapter 3). The main idea is to employ polynomial regression in

a single dimension and extend to the other dimensions via linear interpolation. As an

example, for the microgrid with diesel generator ON, we have three dimensions (L, I, u).

We discretize inventory I as {I0, I1, . . . , IMI} and control u as {u1, u2, . . . , uMu} and fit

independent cubic polynomials in L for each pair (I l, ue) with l ∈ {0, 1, . . . ,MI} and

e ∈ {0, 1, . . . ,Mu}, i.e., f l,en (L) =
∑

k α
l,e
k φk(L). For any (I, u) ∈ [I l, I l+1] × [ue, ue+1]

we then provide the interpolated approximation Ĉn(L, I, u) as

125



Statistical Learning for Probability-Constrained Stochastic Optimal Control Chapter 5

Ĉn(L, I, u) =

[
I l+1 − I I − I l

] f l,en (L) f l,e+1
n (L)

f l+1,e
n (L) f l+1,e+1

n (L)


ue+1 − u

u− ue


(ue+1 − ue)(I l+1 − I l)

. (5.26)

Nonparametric approximation: These avoid the problem of choosing a basis

function and thus creating a bias in the approximation of the continuation value func-

tion. In Chapter 4, Section 4.4 we presented several non-parametric regression methods

including Gaussian process regression, local polynomial regression and piecewise multi-

variate linear regression.

5.3.3 Evaluation

We analyze the quality of the solution by computing three quantities on the out-of-

sample dataset:

• estimate of the value function V0(x0) at t = 0 and state x0;

• empirical frequency of inadmissible decisions on the controlled trajectories xû· ;

• statistical test for the realized number of constraint violations (blackouts for the

microgrid).

Good solutions should minimize costs and not apply inadmissible controls. However,

since we employ empirical estimators, U is never known with certainty and we must han-

dle the possibility that constraints are violated with probability more than p. In turn

this leads to the trade-off between complying with (5.2) and optimizing costs. Similar

treatment of constraints in the context of sample average approximation of probabilis-

tic constrained optimization problems have been discussed in [73, 74]. Moreover, our
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framework implies that the whole algorithm is stochastic: multiple runs will lead to

different results since both p̂n and Ĉn are impacted by the random samples yjn and win.

Estimate of the value function: We evaluate the value function V̂0(x0) at time

t0 = 0 and state x0 using M ′ out-of-sample paths (xû,m
′

0:N ),m′ = 1, . . . ,M ′. Each tra-

jectory (xû,m
′

0:N ) is generated by applying the estimated optimal control û0:N−1 based on

the estimated counterparts of both, the continuation value function and admissible sets

(Ĉn, Ûn)N−1
n=0 leading to the realized pathwise cost:

v0(xû,m
′

0:N ) :=
N−1∑
n=0

K−1∑
k=0

πnk(xû,jnk , û
j
n)∆nk +K(xû,jn , ûjn) +W (xû,jN ).

The resulting empirical Monte Carlo estimate is

V̂0(x0) ' 1

M ′

M ′∑
m′=1

v0(xû,m
′

0:N ) (5.27)

and represents an unbiased estimation of the value of the control policy and an upper

bound estimation of the value function, provided all controls used are admissible.

The sequence of steps for evaluating Equation (5.27) is also described in Algorithm 4.

Therein we consider explicit admissible sets. Since this chapter focuses on admissible

sets which are implicit in nature, Un in Line 4 of Algorithm 4 should be replaced by the

corresponding estimate Ûn.

Empirical frequency of inadmissible decisions on the controlled trajec-

tories: For the M ′ out-of-sample paths, we compare the estimated optimal control

{ûn(xû,m
′

n )}N−1,M ′

n=m=1 against the minimum admissible control {umin
n (xû,m

′
n )}N−1,M ′

n=m=1 as-

sumed for a second to be known. Namely, for each path we compute the number of

inadmissible decisions w0(xû,m
′

0:N ) and the empirical frequency of inadmissible decisions
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wfreq as:

w0(xû,m
′

0:N ) :=
∑
n

1
ûn(xû,m

′
n )<umin

n (xû,m
′

n )
and wfreq :=

1

N ·M ′
M ′∑
m′=1

w0(xû,m
′

0:N ), (5.28)

respectively. We employ these metrics in Section 5.5, where we obtain the “gold stan-

dard” {umin
n (xû,m

′
n )}N−1,M ′

n=m′=1 by brute force, utilizing a simulation budget 105 larger than

for the actual methods we are comparing. Empirical gold standard is a common tech-

nique when analytical benchmark is unavailable, see e.g. [75]. A good estimation method

should yield wfreq ' 0.

Statistical test: Next we propose statistical tests using the controlled trajectories

to validate different methods for admissible set estimation. Such a test is essential to

affirm the use of a numerical scheme for Un in the absence of a benchmark. As an

example, in the context of microgrid we want to test the null hypothesis H0 that the

realized probability of blackouts is bounded to the required level against the alternative

H1 that their probability is too high. Let

Bm′
n = 1

(
G(xû,m

′

s∈[tn,tn+1)) > 0
)
, n = 0, . . . , N − 1 and m′ = 1, . . . ,M ′. (5.29)

Ignoring the correlation due to the temporal dependence in xn, we assume that

Bm′
n ∼ Bernoulli(p̃), i.i.d. We want to test:

H0 : p̃ ≤ p vs. H0 : p̃ > p. (5.30)

A common approach to such composite null hypothesis is to replace H0 with a more

conservative hypothesis p̃ = p leading to the test statistic

T :=

∑
m′,n(Bm′

n − p)√
M ′ ·N · p · (1− p)

∼ N (0, 1). (5.31)
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Hence, H0 is rejected at a confidence level α if T > zα with zα = Φ−1(α), e.g. zα = 1.65

for α = 95%.

Remark 23 The above test assumes independence and identical distribution of Bm′
n ’s.

In the context of the microgrid example, neither of the two assumptions are valid; Bm′
n

have different distribution because the state of the system affects the probability of a

blackout, thus p̃ varies with n,m′. Furthermore, Bm′
n are not independent as they are

derived from a single, sequentially controlled trajectory.

Remark 24 In the microgrid setup, the blackout constraint is frequently not binding

(the net demand is negative half of the time). Therefore, T as defined in equation (5.31)

is most likely negative leading to accept the H0 even when the method fails to choose

the admissible control when the constraint is binding. We fix this by evaluating the sum

only when the constraint is binding, i.e.

T̃ :=

∑
m′,n(Bm′

n − p)1umin
n (xû,m

′
n )>0√

p · (1− p) ·M ′ ·N · wbind
where wbind =

∑
m′,n 1umin

n (xû,m
′

n )>0

M ′ ·N
. (5.32)

To wrap up this section, Algorithm 6 (dubbed Dynamic Emulation due to similarities

with Algorithm 5 for stochastic control with explicit constraints) summarizes the overall

sequence of steps. Lines 1-6 can be thought of as part of a stochastic simulator which

generates designs and one-step paths for each design site. Line 8 (and again Line 18)

computes pathwise one-step costs. Line 10 is the admissible set estimation. Line 11 is

the estimation of the continuation value. Lines 12-17 call the stochastic simulator for

generating new design and one-step paths.

Algorithm 6 carries several advantages. First and foremost it is very general, as the

method does not assume any restriction on the distribution Gn(Xn, u) defining Un or the

form of the payoffs π(x, u). Hence it can be generically applied across a wide spectrum

of SCPC problems. Second, the same template (in particular based on having two
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essentially independent sub-modules) accommodates a slew of potential techniques for

learning C and U bringing plug-and-play functionality, such as straightforward switching

from probability estimation to quantile estimation. Third, it allows for computational

savings either through parallelizing the estimation of U and C, or by re-using the same

design and simulations Dan ≡ Dcn for the computation of the two sub-modules.

Remark 25 The challenge of RMC methods is that the errors recursively propagate

backward. As a result, poor estimation at one step can affect the overall quality of the

solution. In our algorithm, the errors at every step occur due to:

• Approximation architecture Han for Ûn ⇒ Projection error in admissible control

set estimation;

• Approximation architecture Hcn for Ĉn ⇒ Projection error in estimating continu-

ation value;

• Designs Dan and Dcn ⇒ Finite-sample Monte Carlo errors (difference between em-

pirical estimates and theoretical projection-based ones)

• Discretization of the time interval [tn, tn+1) using ∆nk ⇒ Integration error in

approximating the integral
∫ tn+1

tn
πs(X(s), u)ds and the admissible set Un.

• Numerical approximation of the solution of the controlled dynamics of X(t).

• Optimization errors in maximizing for û over Û , especially when the control set

W is continuous.

5.4 Admissible set estimation

In this section we propose two different approaches to estimate the admissible set

of controls Un in equation (5.5):
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Algorithm 6: PC-DEA

Data: N (time steps), Mc (simulation budget for conditional expectation),
Ma (simulation budget for admissible set estimation)

1 Generate designs:

2 DaN−1 := (x
DaN−1

N−1 , u
DaN−1

N−1 ) of size Ma for estimating Û .

3 DcN−1 := (x
DcN−1

N−1 , u
DcN−1

N−1 ) of size Mc for estimating Ĉ.
4 Generate one-step paths:

5 x
i,DaN−1

N−1 7→ x
i,DaN−1

N using u
DaN−1

N−1 for i = 1, . . . ,Ma

6 x
j,DcN−1

N−1 7→ x
j,DcN−1

N using u
DcN−1

N−1 for j = 1, . . . ,Mc

7 Terminal condition:

8 yjN−1 ←
∑K−1

k=0 π(N−1)k(x
j,DcN−1

(N−1)k
, u

j,DcN−1

(N−1)k
) +W (x

j,DcN−1

N ) for
j = 1, . . . ,Mc

9 for n = N − 1, . . . , 1 do

10 Estimate Ûn(·) using methods in Section 5.4 and paths x
i,Dan
n 7→ x

i,Dan
n+1

11 Ĉn(·, ·)← arg min
fn∈Hcn

∑Mc

j=1 |fn(x
j,Dcn
n , u

j,Dcn
n )− yjn|2

12 Generate designs:

13 Dan−1 := (x
Dan−1

n−1 , u
Dan−1

n−1 ) of size Ma for estimating Û .

14 Dcn−1 := (x
Dcn−1

n−1 , u
Dcn−1

n−1 ) of size Mc for estimating Ĉ.
15 Generate one-step paths:

16 x
i,Dan−1

n−1 7→ x
i,Dan−1
n using u

Dan−1

n−1 for i = 1, . . . ,Ma

17 x
j,Dcn−1

n−1 7→ x
j,Dcn−1
n using u

Dcn−1

n−1 for j = 1, . . . ,Mc

18 yjn−1 ←
∑K−1

k=0 π(n−1)k(x
j,Dcn−1

(n−1)k
, u

j,Dcn−1

(n−1)k
) + max

u∈Ûn(x
j,Dcn−1
n )

{
Ĉ(n,xj,D

c
n−1

n , u)
}

∀j
19 end

20 return {Ĉn(·, ·), Ûn(·)}N−1
n=1

• Probability estimation: Given a state Xn = x and u ∈ W, we estimate, via

simulation, the probability of violating the constraint

p̂n(x, u) ' P
(
Gn(x, u) > 0

)
.

It follows that u ∈ Ûn(x) ⇔ p̂n(x, u) < p. Particularly, to compute p̂n(x, u) we
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consider Gaussian process smoothing of empirical probabilities, logistic regression

and parametric density fitting.

• Quantile estimation: We approximate the quantile qn(x, u) of Gn(x, u) via

empirical ranking, support vector machines and quantile regression methods. The

admissible sets Un(x) and X an (u) are then defined as:

Ûn(x) :=
{
u : q̂n(x, u) < 0

}
and X̂ an (u) :=

{
x : q̂n(x, u) < 0

}
.

To implement all of the above techniques we use Monte Carlo simulation, specifying

first the simulation design and then sampling (independently across draws) the G’s or

Y ’s to be used as training data. We work in a flexible framework where samples of

Gn(x, u) are generated in batches of Mb simulations from each design site {xi, ui}Ma
i=1.

The case of Mb = 1 corresponds to a classical regression approach, while large Mb � 1

can be interpreted as nested Monte Carlo averaging along Mb inner samples.

Remark 26 In section 5.3.2, we parameterized the elements of the approximation space

Hcn for estimation of the continuation value function Ĉ(·, ·) via vectors α i.e. f cn(x, u) ≡

f cn(x, u;α) (see equations (5.24) and (5.25)). To maintain distinct notations, in the

following sections we will use β to generically parameterize the elements of the approx-

imation space Han for estimation of the admissible set, so that fan(x, u) ≡ fan(x, u;β) in

equation (5.17). The meaning and dimension of β will vary from method to method.

5.4.1 Probability estimation

Interpolated nested Monte Carlo (INMC)

Recall the NMC method from Section 5.2.1 where we select Ma design sites of state-

action pairs and simulate multiple paths from each site to locally assess the probability
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of Gn(x, u) > 0 (in what follows, we suppress in the notation the dependence on n).

Specifically, for each design site (xi, ui), i = 1, . . . ,Ma, we simulate Mb batched samples

from the distribution G(xi, ui) as {gb(xi, ui)}Mb
b=1. The unbiased point estimator of

p(xi, ui) is:

p̄(xi, ui) :=

Mb∑
b=1

1gb(xi,ui)>0

Mb
. (5.33)

Since (5.33) only yields Mb local estimates p̄(xi, ui), for Algorithm 6 we have to extend

them to an arbitrary state-action (x, u) 7→ p̂INMC(x, u). This is achieved by interpolating

p̄(xi, ui)’s, e.g. linearly. The admissible set with confidence level ρ becomes:

Û (ρ)
INMC(x) :=

u : p̂INMC(x, u) ≤ p− zρ

√
p̂INMC(x, u)(1− p̂INMC(x, u))

Mb

 .

However, especially for Mb small, interpolation performs poorly because the underlying

point estimates p̄(xi, ui) are noisy. Therefore, smoothing should be applied leading to

consideration of statistical regression models. Regression allows to borrow information

cross-sectionally to remove the above estimation noise and hence lower both the bias

and variance of p̄.

Gaussian process regression (GPR)

One flexible non-parametric regression method we propose is Gaussian process re-

gression (GPR). Recall, in Chapter 4 we introduced GPR in the context of estimating C,

while here the objective is to estimate U . GPR assumes that the map (x, u)→ p(x, u)

is a realization of a Gaussian random field so that {p(x, u)|(x, u) ∈ X ×W} is a collec-

tion of random variables with any finite subset being multivariate Gaussian. For any n

design sites {(xi, ui)}ni=1, GPR posits that

p(x1, u1), . . . , p(xn, un) ∼ N ( #»mn,Kn)
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with mean vector #»mn := [m(x1, u1;β), . . . ,m(xn, un;β)] and n × n covariance matrix

Kn comprised of κ(xi, ui,xi
′
, ui
′
;β), for 1 ≤ i, i′ ≤ n. The vector β represents all the

hyperparameters for this model.

Given the training dataset {(xi, ui), p̄i}Ma
i=1 (where p̄i is a shorthand for p̄(xi, ui)),

GPR infers the posterior of p(·, ·) by assuming an observation model of the form

p̄(x, u) = p(x, u) + ε with a Gaussian noise term ε ∼ N (0, σ2
ε ). Conditioning equa-

tions for multivariate normal vectors imply that the posterior predictive distribution

p(x, u)|{(xi, ui), p̄i}Ma
i=1 at any arbitrary site (x, u) is also Gaussian with the posterior

mean p̂GPR(x, u) that is the proposed estimator of p(x, u):

p̂GPR(x, u) := m(x, u) +KT (K + σ2I)−1( #»p − #»m) = E
[
p(x, u)

∣∣ #»x , #»u , #»p
]

(5.34)

where #»x = [x1, . . . ,xMa ]T , #»u = [u1, . . . , uMa ]T , #»p = [p̄1, . . . , p̄Ma ]T ,

KT = [κ(x, u,x1, u1;β), . . . , κ(x, u,xMa , uMa ;β)],

#»m = [m(x1, u1;β), . . . ,m(xMa , uMa ;β)], (5.35)

and K is Ma ×Ma covariance matrix described through the kernel function κ(·, ·;β).

The mean function is often assumed to be constant m(x, u;β) = β0 or described

using a linear model m(x, u;β) =
∑K

k=1 βkφ(xi, ui) with φ(·, ·) representing a poly-

nomial basis. A popular choice for the kernel κ(·, ·, ·, ·) is squared exponential (see

equation (5.36)) with {{βlen,k}dk=1, βlen,u} termed the lengthscales and σ2
p the process

variance of p(·, ·):

κ(xi, ui,xi
′
, ui
′
) = σ2

p exp
(
−

d∑
k=1

(xi,k − xi′,k)2

βlen,k
− (ui − ui′)2

βlen,u

)
. (5.36)

The set of the hyperparameters β := ({βk}Kk=1, {βlen,k}dk=1, βlen,u, σ
2
p, σ

2
ε ) is estimated

by maximizing the log-likelihood function using the dataset {(xi, ui), p̄i}Ma
i=1. Besides

squared exponential kernel described above, other popular kernels include Matern-3/2
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and Matern-5/2 [76].

A conservative estimate p̂
(ρ)
GPR(x, u) at confidence level ρ is obtained by explicitly

incorporating the (estimated) standard error of p̄(xi, ui) into the GPR smoothing.

Namely, we adjust the training dataset to {(xi, ui), p̄iρ}
Ma
i=1, where p̄iρ := p̄(xi, ui) +

zρ

√
p̄(xi,ui)(1−p̄(xi,ui))

Mb
. The resulting p̂

(ρ)
GPR(x, u) is the counterpart of (5.34) using

{(xi, ui), p̄iρ}
Ma
i=1.

In Figure 5.2b we present the dataset {Li, Ii, 0, p̄i}Ma
i=1 (background colormap) for the

microgrid case study. The thick red line indicates the contour {p̂GPR = 5%}, dividing

the state space X for u = 0 into admissible X a(0) (left of red line) and inadmissible

region (X a(0))c (right of red line).

Logistic regression (LR)

In the previous section, we first created local batches to estimate p(xi, ui) pointwise

and then regressed these estimates to build a global approximator. A classical alterna-

tive is to directly learn the probability of G(x, u) > 0 using a logistic regression model.

This setup uses a single sample g(xi, ui) from G(xi, ui) from each design site (xi, ui)

and transforms it to a binary variable yi = 1g(xi,ui)>0. The probability p̂(x, u) can then

be directly modeled as a generalized linear model with a logit link function

P
(
Y = 1|x, u

)
=

1

1 + e−βTφ(x,u)
=: p̂LR(x, u;β). (5.37)

The basis functions φ(x, u) could be polynomials, e.g. quadratic or cubic in coordinates

of (x, u). The regression coefficients β are fitted using the dataset {xi, ui,yi}Ms
i=1, as the

solution to

arg maxβ

Ms∑
i=1

{
yi log pLR(xi, ui;β) + (1− yi) log(1− pLR(xi, ui;β))

}
. (5.38)
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We may again create a more conservative estimate Û (ρ)
LR(x) of ÛLR(x) at confidence

level ρ by utilizing the standard error for p̂LR using the Delta method [77]:

Û (ρ)
LR(x) :=

{
u : p̂LR(x, u,β) ≤ p− zρ

√
p̂LR(x, u)(1− p̂LR(x, u))φTVar(β)φ

}
.

In Figure 5.2a, we present the original realizations yi ∈ {0, 1} (in blue) for a design

in the input subspace (L, I, u = 0) of the microgrid case study. The figure indicates the

resulting logistic regression fit p̂LR(L, I, 0) at levels 1%, 5% and 10% (i.e. contour lines

of p̂LR(β̂) ∈ {0.01, 0.05, 0.1}). The admissibility set for u = 0, X an (0) is the region to

the left of the thick red contour.

Remark 27 Similar to INMC, we can simulate batched samples from each design site

for the logistic regression, leading to “binomial” observation likelihood rather than the

likelihood function in equation (5.38).

Remark 28 A non-parametric variant of equation (5.37) is kernel logistic regression,

where the basis functions are φj(x, u) = κ(x, u,xj , uj) for a kernel function κ centered

at (xj , uj). One common choice are radial basis functions (RBF) where κ(x, u,xj , uj) =

exp (−γ1‖x− xj‖22 − γ2‖u− uj‖22). RBF can be interpreted as the squared-exponential

kernel for a logistic Gaussian Process model, with a fixed bandwidth parameter γi. In

contrast, in GPR the bandwidths are estimated through MLE.

Parametric density fitting (PF)

This approach aims to fit the distribution G(x, u), and then analytically infer the

probability P
(
G(x, u) > 0

)
from the corresponding cumulative distribution function.

This is done by proposing a parametric family {f(·; Θ)} of densities, fitting the un-

derlying parameters Θ based on an empirical sample from G and then evaluating the
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resulting analytical probability p̄PF (x, u) :=
∫∞

0 fG(x,u)(z|Θ̂(x, u))dz. This approach

yields a “universal” solution across a range of constraint levels p.

At a design site (x, u), the probability p(x, u) is estimated in a two-step procedure:

first estimated locally over a design Da = {xi, ui} and then regressed/interpolated over

the full input domain X × W. For the first step, we apply nested Monte Carlo to

generate a collection of realized {gb(xi, ui)}Mb
b=1 that is used to construct a parametric

density via the maximum likelihood estimate:

Θ̂i := arg max
Θ

Mb∑
b=1

log fG(gb(xi, ui)|Θ). (5.39)

In the second step, we evaluate p̃PF (xi, ui) :=
∫∞

0 fG(z|Θ̂(xi, ui)) and extend it to the

full domain X ×W based on the computed {xi, ui, p̃PF (xi, ui)}Ma
i=1 using L2 projection:

p̂PF = arg min
p̂∈MT

‖p̂(xi, ui)− p̃PF (xi, ui)‖2, (5.40)

where MT is an approximation space chosen for regression. The admissible set U(x) is

estimated as:

ÛPF (x) := {u : p̂PF (x, u) ≤ p} .

A transformation of the distribution G(x, u) might be important for above dis-

tribution fitting. For example, in the context of microgrid, in Section 5.2.2, G =

L
(

sups∈[tn,tn+1) S(s)
)

has a point mass at 0 and thus, any continuous distribution will

lead to poor statistical estimation. Using a transformation that preserves the probability

of the target event,

P
(

sup
s∈[tn,tn+1)

S(s) > 0|Fn
)

= P

(
sup

s∈[tn,tn+1)
[L(s)− un −

I(s)

δs
∧Bmax] > 0

∣∣Fn) , (5.41)

we work with G′(Ln, In, un) := L
(

sups∈[tn,tn+1)[L(s)−un− I(s)
δs ∧Bmax]

)
. In Figure 5.2c
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we present the empirical and estimated probability z 7→ P(G′(Ln, In, un) > z) when

Ln = 5.5, In = 1.48 and un ∈ {0, 1} for the microgrid example. We model the dis-

tribution G′ using a truncated normal distribution, P(G′ ≤ g) = Φ(g−θ2θ3
)1g≥θ1 , with

parameters Θ = (θ1, θ2, θ3) representing the location of censoring, the mean and the

standard deviation respectively. At Ln = 5.5, In = 1.48, un = 1.0 and inner simulation

budget Mb = 100, the estimated parameters (θ̂1, θ̂2, θ̂3) = (−1.5,−1.12, 0.53) result in

probability p̃PF (5.5, 1.48, 1.0) = 0.016. The corresponding probability after L2 pro-

jection (equation (5.40)) is p̂PF (5.5, 1.48, 1.0) = 0.017. Thus at p = 0.05, the control

u = 1.0 ∈ Ûn is admissible. However, at un = 0, (θ̂1, θ̂2, θ̂3) = (−0.5,−0.12, 0.55),

p̃PF (5.5, 1.48, 0.0) = 0.414 and p̂PF (5.5, 1.48, 0.0) = 0.429, thus the control u = 0 /∈ Ûn

is inadmissible.

5.4.2 Quantile estimation

In this section we consider methods for modeling and estimating q(xi, ui), the (1−p)-

th quantile of the distribution G(xi, ui). Admissibility corresponds to the quantile being

negative.

Empirical percentiles (EP)

As before, we start by choosing Ma design sites of state-action pairs and generate

batched samples {gb(xi, ui)}Mb
b=1 from each design site (xi, ui). The empirical estimate

of q(xi, ui) is simply the (1 − p)th percentile of the realized {gb}Mb
b=1 (which requires

Mb > p−1):

q̄(xi, ui) = percentile
(
{gb}Mb

b=1, 100(1− p)%
)
.

Similar to previous methods, we extend to arbitrary (x, u) 7→ q̂(x, u) using regression on

the dataset {xi, ui, q̄(xi, ui)}Ma
i=1 and an approximation spaceMq. The set of admissible
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Figure 5.2: Training data and fitted models for the probability estimation methods

of Section 5.4.1 at u = 0. Top/left panel: Training set {Li, Ii, yi}Ma
i=1 for the LR

model, color-coded according to the value of yi ∈ {0, 1}, along with the estimated

contours for p̂LR(L, I) at levels {1%, 5%, 10%}. Top/right: Training set {Li, Ii, p̄i}Ma
i=1

color-coded according to p̄i for GPR along with the contour {p̂GPR(L, I) = 5%}.
Bottom: parametric density fitting at L0 = 5.5, I0 = 1.48 and u ∈ {0, 1}. We show the

empirical and fitted inverse cdf P(G′ > g) based on a truncated Gaussian distribution.

controls for x is:

ÛEP (x) :=
{
u : q̂(x, u) < 0

}
.

Remark 29 This approach is similar to the INMC approach discussed in Section 5.4.1,

however, here we model the quantile rather than the probability of exceeding zero. Fur-
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Figure 5.3: Training data and fitted models for the quantile estimation methods

of Section 5.4.2 at u = 0. Top/left panel: Training set {Li, Ii, yi}Ma
i=1 for SVM (col-

or-coded according to yi ∈ {−1, 1}) and the decision boundary in red. Top/right:

Training set {Li, Ii, q̄i}Ma
i=1 color-coded according to q̄i for EP and the contour {q̂ = 0}.

Bottom: Training set {Li, Ii, gi}Ma
i=1 color-coded according to gi for QR along with the

contour {q̂QR(L, I) = 0}. All models share the same ground truth, so the red contours

are identical up to model-specific estimation errors.

thermore, we can use the regression standard error of q̂(·, ·) to construct a more conser-

vative estimate of the admissible set UEP (x).

In Figure 5.3b we show the estimated q̂(·, ·, 0) indicated via the background col-

ormap. The thick red line indicates the zero-contour q̂ = 0, so that the admissibility set

for u = 0, X an (0), is the region to the left of the contour.
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A popular alternative to adjusting q̄’s via regression standard errors is to replace

the empirical percentile with the empirical conditional tail expectation (CTE):

CTE(xi, ui) :=

∑Mb
b=1 g

b1gb≥q̄(xi,ui)∑Mb
b=1 1gb≥q̄(xi,ui)

,

ÛCTE(x) :=
{
u : ĈTE(x, u) < 0

}
,

where ĈTE(x, u) is the CTE surface fitted via a regression on the training set

(xi, ui,CTE(xi, ui)). This idea is similar to regularizing the Value-at-Risk estimation

with the Conditional VaR.

Support Vector Machines (SVM)

For a fixed control u, finding the admissible set X an (u) in (5.9) can be interpreted

as classifying each input x as being in X an (u) or not. Therefore, we consider the use

of classification techniques, specifically support vector machines (SVM). This approach

does not estimate the (1 − p)-quantile q(x, u), but rather its 0-level set with respect

to (x, u). The starting point is to use the nested Monte Carlo simulations to compute

p̄(xi, ui) with much smaller batch size Mb compared to INMC. Next, we construct a

binary classification objective with a training dataset {xi, ui, yi}Ma
i=1 where the ±1-labels

are

yi :=


1, if p̄(xi, ui) < p;

−1, otherwise.

(5.42)

The boundary separating the two classes is evaluated by solving the optimization

problem:

min
β∈RK

{ Ma∑
i=1

(
1− yi[βTφ(xi, ui) + β0]

)
+

+
C

2 ·Ma
||β||2

}
, (5.43)
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where φ(x, u) =
[
φ1(x, u), φ2(x, u), . . . , φK(x, u)

]T
are the K basis functions and C is

the penalty parameter. We estimate the set of admissible controls corresponding to x

as:

ÛSVM (x) :=
{
u : β̂Tφ(x, u) + β̂0 > 0

}
.

Figure 5.3a displays the estimated X̂ an (u) and the corresponding dataset (Li, Ii, 0, yi)

(u = 0 is fixed). The region where u = 0 is admissible is to the left of the decision

boundary (represented through the thick red line).

Remark 30 A conservative estimate Û (ρ)
SVM of ÛSVM is obtained by re-labeling the

training points in (5.42) via:

yi =


1, if p̄(xi, ui) + zρ

√
p̄(xi,ui)(1−p̄(xi,ui))

Mb
< p

−1, otherwise,

(5.44)

i.e. biasing the decision boundary to the left.

Quantile Regression (QR)

Quantile regression directly constructs a parametric model for q(x, u):

q̂(x, u;β) :=
∑
k

βkφk(x, u).

To estimate the coefficients β ∈ RK , we use the dataset {xi, ui, gi}Ma
i=1 (where gi is a

sample from the distribution G(xi, ui)) to maximize the negative log likelihood:

β̂ = arg min
β∈RK

{ Ma∑
i=1

L(p)
(

gi −
K∑
k=1

βkφk(x
i, ui)

)}
,

with L(p)(y) = y(p− 1{y<0}) = py+ + (1− p)y−.
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As for the parametric density fitting, a transformation of G(x, u) might be beneficial

when applying quantile regression. Figure 5.3c presents the dataset {Li, Ii, 0, gi}Ma
i=1 in

the background colormap and the estimated contour line {q̂QR(L, I) = 0} with thick red

line. The region to the left of the red line is the estimate of the admissible set X̂ a(0).

Relying on the Delta method again to compute the variance of the estimated quantile

q̂(x, u; β̂) as φ(x, u)′V ar(β̂)φ(x, u), the admissible set at x at confidence level ρ is:

Û (ρ)
QR(x) :=

{
u : q̂(x, u; β̂) + zρ

√
φ(x, u)TV ar(β̂)φ(x, u) < 0

}
.

5.5 Case Studies

Recall the problem introduced in Section 5.2.2 where we aim to control the op-

erations of a diesel generator in order to supply power to match demand at minimal

cost maintaining the probability of blackout between each decision epoch below a given

threshold p. In this section, we will discuss two variants of such microgrid control. In the

first example, we assume a time-homogeneous net-demand process which reduces the

problem of estimating admissible set to a pre-processing step. In the second example,

we use time-dependent net demand process calibrated to data obtained from a micro-

grid in Huatacondo, Chile. Time-inhomogeneity requires to estimate the admissible set

at every step. The microgrid features a perfectly efficient battery directly connected to

it, so that the respective power output at tnk (recall tnk is a generic time instance on

the finely discretized time grid) is given by:

Bnk =
Ink − Imax

∆nk
∨
(
Bmin ∨ (Lnk − un) ∧Bmax

)
∧ Ink

∆nk
. (5.45)

Table 5.1 lists other microgrid parameters, i.e. capacity of the battery Imax, maximum

charging rate Bmin, maximum discharging rate Bmax and diesel switching cost K.
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Imax = 10 (kWh), Bmin = −6, Bmax = 6 (kW), K = 5
T = 48 (hours), ∆t = 0.25 (hours)

Table 5.1: Parameters for the Microgrid example.

5.5.1 Implementation details

Numerical Gold Standard: In the absence of analytic benchmark, we use em-

pirical gold standard to compare the output from the models discussed in Section 5.4.

For each fixed time-step tn we discretize the domain X = (L, I) into 10, 000 design

sites over a grid of 100 × 100. For each design site (Li, Ij), i, j ∈ {1, . . . , 100} and

uk ∈ 0 ∪ {1 = u1, . . . , u101 = 10}, we evaluate p̂(Li, Ij , uk) using (5.33) with batch size

Mb = 10, 000. Thus, the total simulation budget is 100× 100× 102× 10000 ≈ 1010. We

then evaluate the local minimal admissible control

umin
n (Li, Ij) = min

{
u : p̂(Li, Ij , u) < p

}
.

To evaluate umin
n (L, I) at new sites we employ linear interpolation on the dataset

{Li, Ij , umin
n (Li, Ij)}100

i,j=1. Finally, to estimate the continuation function, we use

piecewise continuous approximation of Section 5.3.2 with MI = 15,Mu = 15 and 1500

sites in L.

Low budget policies: We approximate the continuation value function C using a

piecewise continuous approximation with three degrees in (L) combined with interpo-

lation in other dimensions (with discretizations MI = 10,Mu = 10). For the estimation

of the admissible set U , we approximate it using the methods described in Section 5.4.

We discretize the control space [1, 10] into 51 values. We compare the performance of

each method by using a fixed set of M ′ = 20, 000 out-of-sample simulations.

To address the discontinuity inW = 0∪ [u, u], we implement two separate statistical
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Method Budget (Ma ×Mb) Further parameters

Gaussian Process (GPR) 2000× 50 Matern-3/2 kernel
Logistic Regression (LR) 105 × 1 Degree-2 polynomials
Parametric Density Fitting (PF) 2000× 50 Truncated Gaussian, Matern-3/2 kernel
Empirical Percentile (EP) 1000× 100 Squared exponential kernel
Conditional Tail Expectation (CTE) 1000× 100 Squared exponential kernel
Quantile Regression (QR) 105 × 1 Degree-4 polynomials
Support Vector Machine (SVM) 2000× 50 C =1, RBF kernel
Gold Standard (GS) 106 × 104 budget = 1010

Table 5.2: Parameters for the estimation of the admissible sets for each method.
We use total simulation budget of 105 for all models except the Gold Standard.

models to learn Un(·). As an example, with logistic regression of Section 5.4.1 we

estimate two sets of parameters in equation (5.37): the first one uses one-step paths

generated from u = 0 and a two-dimensional regression of yi,(1) in terms of (Li, Ii). The

second one uses design sites in the three-dimensional space (L, I, u) where u ∈ [1, 10]

and a 3-D regression of yi,(2) against (Li, Ii, ui).

Additional parameters used for each method are specified in Table 5.2. We found

that Matern-3/2 kernels work better than (5.36) for smoothing p̄(L, I, u) (GPR) and

p̃(L, I, u) (PF) because the respective input-output maps feature steep transitions as a

function of (L, i, u).

It is known that “rougher” kernels are better suited for such learning tasks compared

to the C∞-smooth squared exponential kernel (5.36) by allowing the fitted p̂ to have

more “wiggle room”. On the other hand, in the context of EP and CTE the input

observations of q̂(L, I, u) and CTE(L, I, u) are quite smooth in (L, i, u) and both GP

kernel families perform equally well.

The algorithms are implemented in python 2.7. We used

“GaussianProcessRegressor” and “SVM.SVC” functions from sklearn library for GPR

and SVM respectively. For LR and QR we used “Logit” and “quantile regression”

functions from statsmodels library.
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5.5.2 Example 1: Microgrid with Stationary Net Demand

In this subsection, we assume time-homogeneous Ornstein-Uhlenbeck dynamics of

the net demand process

dL(t) = −λL(t)dt+ σdB(t) =⇒ L(t) = L(0)e−λt + σ

∫ t

0
e−λ(t−s)dB(s), (5.46)

where (B(t)) is a standard Brownian motion. This scenario reduces the complexity

of learning the probability constraints since we need to estimate the admissible set

U0(·) only once as a pre-processing step before starting the ADP estimation scheme for

the continuation values. The simplified setting offers a good testbed to evaluate the

performance of different admissible set estimation methods of Section 5.4; we show that

the relative performance remains similar as we extend to more realistic dynamics in

Section 5.5.3. For this example, we assume the mean reversion parameter λ = 0.5 and

volatility σ = 2.

Figure 5.4a plots the resulting costs V̂0(0, 5) versus the frequency of inadmissible

decisions wfreq for different methods of Section 5.4. We show the result both for the

original setting of p = 0.05 (dark blue) as well as for p = 0.01 (light grey). In both

cases we benchmark each scheme against the numerical gold standard (indicated by

diamonds). Since the probabilistic constraints form the crux of the problem, we require

schemes to maintain û ∈ Un as much as possible, i.e., wfreq ≈ 0. At p = 5%, we

observe 0.09% , 0.54% and 1.36% estimated frequency of inadmissible decisions with

logistic regression (LR), Gaussian process regression (GPR) and parametric density fit-

ting (PF), respectively. The corresponding frequency jumps up to 5.9% for quantile

regression (QR), 7.8% for conditional tail expectation (CTE), 8.4% for empirical per-

centiles (EP) and 5.3% for support vector machines (SVM). While all the methods are a

priori consistent, admissible set estimation via probability-based methods clearly seems

to outperform quantile-based ones. Our experiments suggest that at low simulation
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budget, estimators of p(x, u) have significantly lower bias compared to estimators of

q(x, u), thus partially explaining the difference. For a more conservative probability

threshold p = 1%, we find the cost of all the methods to increase, without significant

difference in the frequency of inadmissible decisions wfreq. Indeed, Figure 5.4 illustrates

the trade-off between lower costs and lower wfreq (i.e. more conservative estimate of the

constraints).

Table 5.3 expands Figure 5.4 by also reporting the corresponding T̃ statistic, the

average inadmissibility margin wavm and realized frequency of violations (i.e. blackouts)

wrlzd defined as:

wavm :=
1

N ·M ′
∑
n,m

|ûn(xû,m
′

n )− umin
n (xû,m

′
n )|1

ûn(xû,m
′

n )−umin
n (xû,m

′
n )<0

; (5.47)

wrlzd :=
1

N ·M ′
∑
n,m′

1sups∈[tn,tn+1)
Sm′ (s)>0. (5.48)

We find the realized frequency of violations wrlzd to be lowest for LR, GPR and PF.

The average inadmissibility margin wavm is also lowest for GPR and PF (the large

value of wavm for LR is attained in very small region as evident from wfreq ≈ 0). The

T̃ statistic is negative for LR, GPR and PF and positive for the rest, meaning that all

other methods fail to statistically respect the probability constraints when binding. Due

to small frequency of inadmissible decisions wfreq, cost V̂0(0, 5) similar to the numerical

gold standard and negative test statistic T̃ , we recommend LR, GP and PF methods

for the problem at hand.

Next, we test the sensitivity of the cost in terms of the probability threshold p

(employing logistic regression ÛLR) in Figure 5.4b. Increasing the probability threshold

p decreases V as the set of admissible controls U monotonically increases in p. For

example, any admissible control at p = 1% threshold is also feasible for p > 1%, thus

the cost at 1% threshold should be greater than or equal to cost at, say, 10% threshold.
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As previously discussed, the constraint is binding for only approximately 10% of

time-steps. In fact, that probability varies across the methods which happens be-

cause the estimate of Û affects the choice of ûn and ultimately the distribution of

X̂n. Intuitively, the realized system states are driven by the estimates of the proba-

bilistic constraints. Typically, more conservative estimates of U will push X̂0:N away

from the “risky” regions. This is also confirmed in Figure 5.4 where as p → 1,

wrlzd → 20% = wbind while in Table 5.3 wbind ' 10%.

The variables wfreq (equation (5.28)), wbind (equation (5.32)), wrlzd (equa-

tion (5.48)) are closely related to each other. As the inadmissible decisions can

occur only when the constraint is binding, umin > 0, we expect wfreq ≤ wbind

and wfreq ≈ wbind for a method with a bias in overestimating the admissible set

(e.g. X a,EP (u) ⊃ X a,GS(u) ∀u ∈ W ). The realized violations (blackouts) wrlzd can

be represented as a sum of three:

wrlzd = p1wfreq + p2(wbind − wfreq) + p3(1− wbind), p1 + p2 + p3 = 1,

where the weights p1, p2, p3 depend on the distribution of the controlled trajectories.

The first term represents the instances when the constraint is binding but the controller

chooses an inadmissible control (i.e. mis-estimates Û). The second term represents in-

stances when the constraint is binding and correctly estimated, but due to random

shocks violations take place (with a conditional frequency below the specified p = 0.05).

The last term represents instances when the constraint is not binding but some vio-

lations still occur with the intrinsic conditional frequency strictly less than p. Note

that due to wbind � 1, most of the violations are of the latter type, i.e. take place

when u∗ = 0 and the conditional violation probability is below p. We illustrate these

scenarios in Figure 5.4c using the LR model. The red triangles represent the (L, I)-

location of realized violations, circles represent the locations of inadmissible decisions

148



Statistical Learning for Probability-Constrained Stochastic Optimal Control Chapter 5

Method V̂0(0, 5) ($) wfreq (%) wavm (kW) wrlzd (%) T̃ wbind (%)

GS 26.79 0.00 0.00 0.37 - -
LR 26.83 0.09 0.82 0.03 -125 8.69
GPR 26.89 0.53 0.16 0.11 -98 8.10
PF 26.79 1.36 0.27 0.21 -69 8.51
SVM 26.68 5.26 0.55 1.83 388 9.67
QR 27.04 5.95 0.33 0.98 145 9.49
CTE 26.99 7.79 0.43 1.63 320 9.93
EP 26.36 8.39 0.49 1.98 403 10.45

Table 5.3: Cost of running the microgrid V̂0(0, 5), frequency of inadmissible de-
cisions wfreq, average inadmissibility margin wavm, realized frequency of viola-
tions (i.e. blackouts) wrlzd, test statistic T̃ and frequency of binding constraint
wbind for the example in Section 5.5.2.

(with color representing the inadmissibility margin) and the grey region represents when

the constraint is not binding. Thus, the first term counts the instances when violations

occur at the same time as controller makes an inadmissible decision (circle encircling

the triangle), the second term counts the triangles when I ≈ 0, and the third term the

triangles in the grey region (violations when umin = 0).

Although we observed poor performance of quantile based methods, asymptotically

(with respect to the simulation budget) we expect them to perform similar to the prob-

ability based methods. As an example, in Table 5.4, we present the performance of

SVM for thresholds p = 5% and p = 1% with increasing budget. For p = 5% and by

increasing the simulation budget from 105 to 108, we find the frequency of inadmissible

decisions wfreq to drop from 5.93% to 1.5%, average inadmissibility amount wavm from

0.78 kW to 0.27 kW, frequency of realized blackouts wrlzd from 2.80% to 0.30% and the

test statistic which rejected the method at 105 simulation budget (T � 0) suggests to

accept it (T � 0) at 108 simulation budget. We observe similar behavior at p = 1%.

Conservative estimators for U . Algorithms for SCPC are expected to respect the

probabilistic constraints, so that it is critical to minimize the occurrence of inadmissible
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Figure 5.4: Top/left panel: Trade-off between cost V̂0(0, 5) and frequency
of inadmissible decisions wfreq for the stationary model. Dark (blue colored)
dots correspond to p = 5% probability constraint threshold and light (grey col-
ored) dots to p = 1%. Top/right panel: Total cost V̂0(0, 5) (left axis, line with
stars) and realized frequency of violations wrlzd (right axis, line with circles) as
functions of p employing the LR model. Bottom panel: Locations (L, I) of re-
alized violations sups∈[tn,tn+1) S

m′(s) > 0 (red triangles), inadmissible decisions

û(n,xû,m
′

n )− umin
n (xû,m

′
n ) < 0 (circles with color representing the inadmissibil-

ity margin) on 5000 out-of-sample simulations using LR model. The constraint
is binding in the white region and is not binding in the grey region.

decisions. As discussed in Section 5.4, one way to raise the statistical guarantee for

admissibility of all controls in Û is by adding a margin of error ξ(x, u). The margin of

error yields a more conservative (i.e. smaller) Û and hence lowers wfreq. In Table 5.5 we

examine three scenarios for ξ(x, u) sorted from least to most conservative (in all cases
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p Budget V̂0(0, 5) ($) wfreq (%) wavm (kW) wrlzd (%) T̃ wbind (%)

5%

105 26.38 5.93 0.78 2.80 665 9.73
106 26.55 5.28 0.55 1.84 386 9.77
107 26.68 4.96 0.53 1.64 330 9.75
108 26.79 1.50 0.27 0.30 -51 9.22

1%

105 28.32 6.63 0.93 2.43 1,460 9.87
106 28.26 5.17 0.66 1.09 631 9.56
107 28.52 0.55 0.24 0.03 -39 8.78
108 28.41 0.15 0.22 0.01 -51 8.82

Table 5.4: Impact of simulation budget (Mb×Ma) on performance of SVM for
the case study in Section 5.5.2 and probability thresholds p = 5% and p = 1%.
The reported values are averages over 10 runs of each scheme. The total simu-
lation budget is divided into batch size Mb and number of design sites Ma. For
total budget 105: (Mb,Ma) = (100, 1000); for 106: (Mb,Ma) = (500, 2000); for
107: (Mb,Ma) = (2000, 5000); for 108: (Mb,Ma) = (10000, 10000).

we keep the probability constraint at p = 5%):

• Scenario 1: unadjusted ξ = 0% (same as Table 5.3);

• Scenario 2: ξ(ρ)(x, u) at 95% confidence level, zρ = 1.96;

• Scenario 3: fixed ξ = 4%, which is equivalent to lowering the violation threshold

to p− ξ = 1%.

Table 5.5 confirms the intuition that the frequency of inadmissible decisions wfreq

should be decreasing from scenario 1 to 3. This is further illustrated in Figure 5.5 that

shows how the minimum admissible control is affected by ξ(x, u). Although adding a

margin of error does lower wfreq we note that this mechanism does not really alter the

relative performance of the different methods. Thus, for all three scenarios, we find

SVM, CTE and EP to be performing poorly (unreliable estimation of U since T̃ � 0).

An exception is QR which yields high wfreq for ξ = 0 but does become acceptable

(T̃ < 0) in scenario 3. In contrast, LR, GPR and PF perform well throughout. Table 5.6

lists further comparison as we set the confidence level to ρ = 90%, 99% and 99.95%, with
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ξ = 0% ξ(0.95)(x, u) ξ = 4%

Method V̂0(0, 5) wfreq T̃ V̂0(0, 5) wfreq T̃ V̂0(0, 5) wfreq T̃

GS 26.79 0.00 - - - - - - -
LR 26.83 0.09 -125 26.95 0.08 -124 27.86 0.04 -112
GPR 26.89 0.53 -98 28.00 0.01 -110 28.12 0.00 -107
PF 26.79 1.36 -69 - - - 27.91 0.44 -96
SVM 26.68 5.26 388 29.65 3.41 225 29.60 3.41 225
QR 27.04 5.95 145 26.89 5.17 72 28.61 0.00 -117
CTE 26.99 7.79 320 27.36 7.52 274 28.44 6.83 248
ER 26.36 8.39 403 26.97 7.78 225 28.13 7.08 283

Table 5.5: Impact of margin of error ξ on the estimated cost of running the
microgrid V̂0(0, 5), frequency of inadmissible decisions wfreq, and test statistic
T̃ from (5.31). The probabilistic constraint is p = 5%.

the same general conclusions. (Observe that driving wfreq all the way to zero might be

non-ideal since it likely implies that Û ⊂ U is strictly smaller so the controller is overly

conservative and rules out some admissible actions.)

We generally expect the ultimate cost V̂0(0, 5) to increase as Û becomes more con-

servative, see the estimated V̂ ’s across each row of Table 5.5. The increase in costs

arises due to two factors: when the diesel generator is started sooner (due to u = 0 be-

coming inadmissible as ξ is raised) and the higher level of û once the diesel is ON. This

can be seen in Figure 5.5 where in Scenarios 2 and 3 the controller switches the diesel

generator at a lower net demand and once the diesel is running picks a higher power

output (ûmin(·, I; p = 5%, ξ) − ûmin(·, I; p = 5%, ξ = 0) > 0). It is important to note

however that the link between Û and V̂ is complicated by the fact that as Û changes,

so does the distribution of the controlled paths. So for example in Table 5.5 the cost

for QR falls in Scenario 2, although it remains within two Monte Carlo standard errors.

Take-aways. Our experiments demonstrate the following: (i) Admissible sets of

the form (5.5) are more accurately estimated via LR, GPR and PF which all model

the underlying probability of violations p(x, u). Although asymptotically equivalent,
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ρ = 90% ρ = 99% ρ = 99.95%

Method V̂0(0, 5) wfreq wrlzd V̂0(0, 5) wfreq wrlzd V̂0(0, 5) wfreq wrlzd

LR 26.74 0.090 0.034 26.87 0.085 0.032 27.04 0.085 0.026
GPR 27.34 0.012 0.055 28.06 0.007 0.037 28.06 0.005 0.029
SVM 27.35 4.975 1.732 29.20 3.481 1.117 29.72 3.395 1.088
QR 27.20 5.373 0.793 27.18 4.880 0.676 27.04 4.409 0.591
CTE 27.93 7.158 1.153 28.31 6.766 0.888 28.61 6.163 0.714
EP 26.78 7.990 1.497 27.17 7.629 1.183 27.96 7.102 0.956

Table 5.6: Impact of conservative U (ρ) estimators for the case study in Sec-
tion 5.5.2. The probabilistic constraint is set at p = 5%.

the approach of quantile estimation leads to poor estimation of the admissible sets for

practical budgets. Thus LR, GPR and PF are our recommended choices. (ii) Frequency

of inadmissible decisions can be controlled by using a more conservative estimate of

the admissible sets. Such conservatism will tend to raise costs. We find that even a

conservative Ûξ fails to make quantile-based methods acceptable, except for QR. (iii)

For a new application, our suggested approach is to first evaluate the test statistic T̃ at

ξ = 0% using one of the recommended methods. Depending on how close is T̃ to zero,

one can then adjust Û ’s by adding in ξ (or ξ(ρ)) to improve the statistical guarantees

on the frequency of inadmissible decisions wfreq.

5.5.3 Example 2: Microgrid with seasonal demand

Unlike the previous example, where we assumed time-homogeneous net demand,

in practice there is seasonality: during the day renewable generation is high and net

demand is often negative; during morning/evening demand exceeds supply making

L(t) > 0. To incorporate this seasonality we use time-dependent Ornstein Uhlenbeck
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Figure 5.5: Impact of the margin of error ξ(·, ·) on minimum admissible control
ûmin. We plot the difference between minimum admissible control for scenario
2 (ûmin(·, I; ξ(0.95)(L, I))) and scenario 3 (ûmin(·, I; ξ = 4%)) with respect to
scenario 1 (ûmin(·, I; ξ = 0%)) using LR (left panel) and QR (right panel)
models.

process (see [4] for a similar microgrid control problem):

dL(t) =

[
∂µ

∂t
(t) + λ

(
µ(t)− L(t)

)]
dt+ σ(t)dB(t). (5.49)

Here, λ represents the speed of mean reversion towards the seasonal mean µ(t), while

σ(t) represents the time-varying volatility. Using the transformation L(t)eλt followed

by Ito’s lemma and integration by parts one can prove that

L(t) = µ(t) + e−λt
(
L(0)− µ(0)

)
+

∫ t

0
e−λ(t−s)σ(s)dB(s).

Thus,

E[L(t)] = µ(t) + e−λt(L(0)− µ(0)).

We calibrate µ(t) and σ(t) in (5.49) using iterative methodology described in [4] and the

data from a solar-powered microgrid in Huatacondo, Chile. Specifically, we compute the

mean and variance of the net demand over 24 hours at 15-minute intervals using data
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from Spring 2014, i.e. compute {µ1, µ2, . . . , µ96} and {σ1, σ2, . . . , σ96}. The estimated

µ(t) can be seen in the left panel of Figure 5.6 that plots the empirical average of

L(t). As expected, during the day, i.e., t ∈ [12, 20] (noon-8:00 pm), the expected net-

demand is negative (µ(t) < 0) while it is positive (µ(t) > 0) in the morning and during

the night. The volatility σ(t) is higher during the day due to the intermittent and

unpredictable nature of solar irradiance. The mean reversion parameter was estimated

to be λ = 0.3416.

To visualize the interplay of the net demand, inventory and optimal control, the left

panel of Figure 5.6 presents the average trajectories of the three processes over 48 hours.

During the morning hours when the demand L(t) is high and the battery is empty, the

controller uses the diesel generator. Similarly, during the day when the renewable output

is high and L(t) is negative, the controller switches off the diesel generator and the

battery charges itself. However, the non-trivial region is when the average net-demand

changes sign, either from positive to negative around noon or negative to positive in the

evening. During the former time-interval, the optimal control process is in {0, 1} (recall

that minimum diesel output is 1). Similarly, during the evening when the net demand

becomes positive (as the renewable output declines), the controller quickly ramps up

the diesel output to match L(t)� 0. The right panel of Figure 5.6 repeats the average

control and inventory curves, but also shows their 2-standard deviation bands (in terms

of the out-of-sample trajectories of L̂û0:T ). As expected, the time periods around ramp-

up or ramp-down of the diesel generator is when ûn experiences the greatest path-

dependency and dispersion and differs most from the demand curve.

Comparing Table 5.7, which lists the estimated cost V̂0(µ(0), 5) along with related

statistics, with Figure 5.4 indicates that incorporating seasonal net-demand process does

not change the relative order of performance between the methods. The cost goes up as

the diesel generator has to be used throughout the mornings and the evenings to match
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Figure 5.6: Model parameters, average trajectory of the state variables, control

and their variance. Left panel: Average values of net demand 1
M ′
∑M ′

m′=1 L
û,m′
n ,

inventory 1
M ′
∑M ′

m′=1 I
û,m′
n and optimal control (diesel) 1

M ′
∑M ′

m′=1 û
m′
n processes

using the gold standard strategy. Right panel: 95% confidence bands for net
demand Lûn and realized optimal diesel control ûn.

demand.

As in the previous example, the performance of LR, GPR and PF almost matches

the gold standard despite significantly lower simulation budget. In this setting the

constraint is binding approximately 45% of the time (except for GPR and PF where it

is 30% and 25% of the time). Frequency of inadmissible decisions wfreq is 0.03% for

LR, 1.17% for GPR, and 0.02% for PF. In contrast wfreq is 43% for QR, 22% for EP,

43% for SVM and 22% for CTE, implying that all these schemes are highly unreliable

for learning Û . The average inadmissibility margin wavm is also significantly lower for

GPR (0.14 kW) and PF (0.26 kW) compared to the rest of the methods. Here again we

observe larger inadmissibility margin and very low frequency of inadmissible decisions

for logistic regression. Similar behavior is also evident for the test statistic T̃ and

realized frequency of violations wrlzd.

To illustrate the typical behavior over a trajectory, Figure 5.7 plots the average con-

trol Ave(ûn) := 1
M ′
∑M ′

m=1 ûn(xû,m
′

n ) corresponding to different methods and the average
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Method V̂0(µ(0), 5) wfreq (%) wavm (kW) wrlzd (%) T̃ wbind (%)

GS 53.38 0 0 0.30 - -
LR 53.78 0.03 0.79 0.01 -301 45.2
GPR 54.04 1.17 0.14 0.19 -220 31.0
PF 54.55 0.02 0.26 0.01 -226 25.7
SVM 40.52 43.37 0.91 43.37 5,306 46.4
QR 52.56 42.87 0.28 38.41 4,772 46.3
CTE 53.02 21.62 0.21 10.43 1,079 46.0
EP 52.82 21.91 0.23 11.57 1,227 46.1

Table 5.7: Cost of running the microgrid V̂0(µ(0), 5), frequency of inadmissible
decisions wfreq, average inadmissibility margin wavm, realized frequency of vi-
olations wrlzd and frequency of the constraint being binding wbind for the case
study in Section 5.5.3.

minimum admissible control Ave(umin
n ) := 1

M ′
∑M ′

m′=1 u
min
n (xû,m

′
n ) computed using the

gold standard. Notice that the latter is dependent upon the controlled trajectories xûn

derived for each method, resulting in a different trajectory of Ave(umin
n ) across methods.

We expect Ave(ûn) above Ave(umin
n ) if a given method does not violate the constraint

most of the time. This is true for LR and GPR, but SVM quite obviously fails, as the

dashed line (Figure 5.7c) is significantly higher than the solid line at numerous time

steps. Furthermore, the conservative nature of GPR is also evident via the large differ-

ence between the average minimum admissible control and the average optimal control.

This is also evident through wbind ≈ 30% for GPR compared to approximately 45% for

the rest of the methods.

5.6 Summary

We developed a statistical learning framework to solve stochastic optimal control

with local probabilistic constraints. The key objective of our algorithm is to efficiently

estimate the set of admissible controls U(·) and the continuation value function C(·, ·)
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Figure 5.7: Average control Ave(ûn) for LR, GPR and SVM and the average
minimum admissible control Ave(umin

n ) using Gold Standard across forward
controlled trajectories.

covering a general formulation regarding the state process dynamics and rewards. Since

stochastic control problems require estimating the admissible set repeatedly during the

backward induction, we use regression based functional representation of x 7→ U(x).

This perspective also provides a natural way of uncertainty quantification for admis-

sibility, in particular offering conservative estimates that bring statistical guarantees

regarding Û . At the same time, our dynamic emulation algorithm allows parallel com-

putation of U and C for additional computational efficiency.

Thanks to the plug-and-play functionality of the PC-DEA, it was straightforward

to test a large variety of schemes for learning U . Our numerical results suggest that

estimating probabilistic constraints via logistic regression, Gaussian process smoothing

and parametric density fitting is more accurate than estimating the corresponding quan-

tile (empirical ranking, SVM or quantile regression). A future line of research would

be to additionally parametrize (e.g. using another GP model) the optimal control map

x 7→ ûn(x) [75] which would speed-up the algorithm in the context of continuous action

spaces.
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Chapter 6

Impact of Electricity Tariffs on
Distribution Network Reliability
with Behind-the-meter
Investments

This chapter is the result of a collaboration with Miguel Heleno and Michael Ludkovski.

It is based on the paper [14].

Electricity rates are a main driver for adoption of DERs by private consumers and,

consequently, they will impact the reliability of energy access in the long run. Defining

reliability indices in a paradigm where energy is generated both behind and in front of

the meter is part of an ongoing discussion about the future role of utilities and system

operators with many regulatory implications. This paper contributes to that discussion

by analyzing the effect of rate design on the long term reliability of power distribution.

A methodology to quantify this effect is proposed and a case study involving PV and

storage adoption in California is presented.
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6.1 Introduction

To achieve emission targets, countries need to increase generation share from re-

newable energy sources, not only as part of the bulk generation system but also at the

level of the distribution network [78], where private owned Photovoltaic (PV) systems

installed behind the meter and coupled with electric storage and control technologies

have been seen as an efficient way to increase renewables penetration in a decentral-

ized form. Ambitious policy targets have been announced to promote the adoption of

Distributed Energy Resources (DERs) by private consumers. For example, the state of

California added a new amendment to the Building Energy Efficiency standard, requir-

ing new residential buildings to have a rooftop PV unit installed, starting in 2020 [79].

Undoubtedly, this type policy orientations promoting PV in new buildings will continue

bringing solar technology costs down, creating conditions for the mass adoption of PV

and storage systems.

Besides the cost of technologies, another main driver for the behind the meter adop-

tion of DERs comes from the electricity tariffs. In fact, the magnitude and structure of

the electricity rates - including demand charges, energy costs and PV feed-in remunera-

tion - strongly affect the internal rate of return of PV and storage investments, changing

adoption decisions of private consumers. Hence, recent works have been analyzing the

impact of electricity rate design on the adoption of DERs. For example, the authors

of [80] discuss tariff cost allocation approaches for networks with large penetration of

distributed generation, while [81] and [82] propose new rate design mechanisms to facili-

tate the integration of DERs. The dynamics between PV adoption and retail electricity

rates are modeled in [83]. The authors of [84] develop a socio-economic model for PV

adoption at the residential level that takes feed-in tariffs as an input.

The increasing penetration of DERs, both behind and in front of the meter, can af-

fect the reliability of the distribution system and new methodologies have been developed
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to evaluate its positive and negative impacts [85] [86]. Recent studies have been looking

at DERs operation as a resource to improve reliability of the systems. This is the case

of storage (both grid-connected and in EVs) and demand response (DR). For example,

the potential of battery stations and EV parking lots to enhance reliability indices of the

distribution network is evaluated in [87] and [88], respectively. Similarly, in residential

feeders, the role of vehicle-to-home and vehicle-to-grid capabilities to improve reliability

is presented in [89]. The authors of [90] discuss centralized and decentralized approaches

for outage management in distribution grids when DERs are organized in microgrids.

A real-case scenario illustrating the benefits of DR to the reliability of the distribution

network is presented in [91]. To take advantage of these benefits, the authors of [92]

propose a methodology allowing utilities to use DR programs to improve reliability met-

rics and increase the expected return in performance-based regulatory frameworks. In

[93], time-differentiated prices are offered to end-users to incentivize DR behaviour that

improves system reliability. In that model, DR participation is defined by an optimal

residential energy management strategy considering customer satisfaction.

In this chapter, we develop a framework to assess the reliability of a distribution

network with behind-the-meter investments in DERs and test its sensitivity to the

magnitude and structure of electricity tariffs. Specifically, we assume that the consumers

make private investment in DERs to minimize the long run economic cost of purchase

of electricity. The electricity rates are an input to the optimization problem of the

consumers, driving the size of investments and the operational policy of the DERs,

and consequently the reliability. The focus of this study is thus to understand the

link between the electricity tariff structure and reliability, quantified via three indices:

average energy not supplied (AENS), average energy not consumed (AENC) and system

average interruption duration index (SAIDI). We evaluate several different aspects of

electricity tariffs that can affect the reliability; impact of homothetic change in the

161



Impact of Electricity Tariffs on Distribution Network Reliability with Behind-the-meter
Investments Chapter 6

purchase rate, change in the magnitude of the peak purchase rate, and the time-of-day

of peak purchase rate.

Our results clearly indicate that the choice of electricity tariffs has a significant effect

on the reliability. We find non-obvious tariff options, arising due to the combination of

storage policy, PV generation and load profile, where the AENC is lowest. For example,

having a peak tariff time of 8:00 am-1:00 pm for the residential consumers leads to

AENC to be lower than the standard peak times of noon-5:00 pm or 4:00 pm-9:00 pm.

The results also indicate that for improving reliability, increasing just the peak purchase

rate is a more cost efficient alternative than homothetic change in the purchase rate.

We also find that different times of the peak rate for different consumers lead to better

reliability compared to the same time of peak rates for all consumers, confirming the

current market practice.

We have organized the rest of this chapter in five sections. Section 6.2 describes

the optimization framework for the optimal investments and control policy for PV and

storage. Section 6.3 describes the distribution system, its representation, Monte Carlo

simulation for simulation of system states and the storage model during failure. Sec-

tion 6.4 describes the computation of the reliability indices. Section 6.5 contains the

numerical example using PG&E 69 bus network. Section 6.6 concludes.

6.2 Behind-the-meter Investments and Optimal

Control

In this section we describe the framework to compute optimal behind-the-meter

investment in DERs by a consumer. We start by assuming that the consumer can invest

in PV, storage, or purchase power from the utility to meet her demand for electric power.

We further assume that any excess power generated from PV can also be exported
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back to the utility with feed-in remuneration (or export rate) set by the latter. Given

these assumptions, along with the electricity tariffs set by the utility and the economic

parameters for the DERs, the objective for the consumer is to find optimal investments

in PV and/or storage and their operational policy. The consumer formulates this as an

optimization problem which minimizes the sum of fixed/variable costs for investments in

PV and storage, operational and maintenance costs for PV, and power purchases/sales

from the utility. The cost function is given as:

C =
∑

k∈{s,pv}

[
(CFixk · purk + CVark · Capk)Annk + Capk ·DERMFxk

]
+
∑
t∈Tyr

PGent(DERGnCstpv + DERMVrpv)

+
∑
t∈Tyr

(UtilPurt · PurRtt −UtilExpt · ExpRtt), (6.1)

where Tyr := {0, 1, . . . , 8760} represents the hourly time-steps for the year. The

optimization variables are (i) binary decision variable for purchase of battery and PV,

purk, k ∈ {s, pv}; (ii) capacity installed Capk, k ∈ {s, pv} for each technology; (iii)

binary electricity purchase/sell decision psbt; (iv) amount of utility power purchased

or exported at each time step UtilPurt,UtilExpt; (v) PV generation at every time step

Genpv,t; (vi) energy input and output to the battery SInt,SOutt. The optimization of

C is subject to the following constraints.
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Storage Constraints:

SOCt = SOCt−1 + SInt · SCEff − SOutt

SDEff
; (6.2)

SOC ≤ SOCt ≤ SOC; (6.3)

SInt ≤ Caps · SCRt; (6.4)

SOutt ≤ Caps · SDRt; (6.5)

SCap ≤ purs ·M. (6.6)

PV Constraints:

PGent = Cappv
SolEfft

ScPkff
Solart (6.7)

Cappv ≤ purpv ·M (6.8)

PGent ≤ Cappv. (6.9)

Import and Export Constraints:

UtilPurt ≤ psbt ·M (6.10)

UtilExpt ≤ (1− psbt) ·UtExp. (6.11)

Imbalance Constraint:

Ldt = UtilPurt −UtilExpt + SOutt − SInt + PGent. (6.12)

The last Equation (6.12) ensures that the demand matches the supply. Dimensionality

of Equation (6.1) can be reduced by reformulating it using a typical year, where for

each month we assume up to three hourly load profiles: week day, weekend and peak

day. This yields 12x3x24 = 864 unique time-steps rather than T := |Tyr| = 8760.
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In Figure 6.1 we present input data (load profile and tariff) and model output of

this section (PV generation, purchase of power from the utility, and SOC of the storage)

for a residential consumer, to showcase the sensitivity of the optimization routine for

different input tariffs. The two panels have different input for the peak purchase rates;

in the top panel, the peak purchase time is from 3:00pm - 8:00pm, while in the lower

panel, it is from 5:00am - 10:00am. Notice that the profiles for the SOC in the two

panels are starkly different. For the top panel, the demand exceeds the power supply

during the evening when electricity purchase rate is high. Thus, the storage unit supplies

energy until it is empty and remains so until the afternoon on the following day. In

contrast, when the peak electricity purchase rate is between 5:00am-10:00am (lower

panel), the storage policy changes so as to supply power during the morning. The SOC

increases in the afternoon due to excess generation from the PV. The storage remains

fully charged for the rest of the day as there is no incentive to supply power during the

evening. The difference in the profiles of the SOC has a significant impact on reliability

(see Section 6.5). For example, if there is a failure in the line connecting the consumer

to the utility during the night, storage in the lower panel can act as a back-up as it

has available energy; however, storage in the top panel will be empty and will fail to

back-up.
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Figure 6.1: Optimization output by changing tariff rates for a residential consumer.
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6.3 Distribution System

6.3.1 Representation and Simulation

We consider a radial distribution network with B buses (denoted {b1, b2, b3 . . . , bB}).

Each bus (except b1 which denotes the utility) contains a consumer with private invest-

ments in DERs. Each consumer runs the optimization module (Section 6.2) to find

investments in DERs and their dispatch policies to locally match demand and supply.

For each bus b ∈ {b2, b3 . . . , bB}, the optimization problem is solved locally, independent

of the other consumers in the distribution network, considering the data (such as load

profile (Ldbt)t∈Tyr and tariff cbt := (PurRtbt ,ExpRtbt ,DmdRtbm,p)t∈Tyr) only for the con-

sumer at the the bus b. As before, the output of the optimization includes the optimal

investments (Capbpv,Capbs), optimal dispatch policy for the storage (SOutbt ,SInbt)t∈Tyr ,

renewable output (PGenbt)t∈Tyr by the PV, purchase (export) of power from (to) the

utility (UtilPurbt ,UtilExpbt)t∈Tyr , for the consumer at bus b.

Distribution network as a graph. A distribution network can be represented

as a graph with vertices {v1, . . . , vB} representing the buses {b1, . . . , bB} and the edges

{e1, e2, . . . , eL} representing the distribution lines {l1, l2, . . . , lL}. This transformation is

useful when considering large networks with thousands of buses and distribution lines.

Since we only consider radial networks in this chapter, the corresponding graph is an

acyclic tree. A failure at any distribution line is equivalent to “breaking” the edge in the

corresponding tree, partitioning it into 2 compartments. At any time t, we represent

the total number of compartments as At ≥ 1 and Ii,t, i = 1 . . . At representing the

set of vertices in compartment i. Finally, the set of compartments at t is denoted by

At = {I1,t, . . . , IAt,t}. We denote the set of all vertices which have a path to v1 as I1,t;

it corresponds to buses with uninterrupted supply of power from the utility. The buses

corresponding to vertices v /∈ I1,t have no connection to the utility (islanded) at time t,
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as a result the DERs installed at these buses have to work in isolation to supply power.

Monte Carlo simulations. In this chapter, we only consider power interruptions

due to failure in the distribution lines and assume the rest of the system components,

e.g. storage and PV, to work without any failures. Extending our approach to incor-

porate respective failures would be mathematically straightforward, although computa-

tionally more expensive. At any time t, we assume that each of the distribution lines

l ∈ {1, 2, . . . , L} could be in one of the two states, described through the variable δlt,

connected (δlt = 1) and disconnected (or failed, δlt = 0). We further assume that each

distribution line transitions from one state to the other independently, following an

Exponential distribution for the transition times τ lt :

fτ lt
(s) = λ̃lte

−λ̃lts,

where λ̃lt = λlfδ
l
t + λlr(1 − δlt). λlf represents the line failure rate i.e. rate of transition

from state δlt = 1 to δl
t+τ lt

= 0, and λlr represents the repair rate, i.e. rate of transitions

from δlt = 0 to δl
t+τ lt

= 1.

The state of the distribution network is defined via Lt = [δ1
t , δ

2
t , . . . , δ

L
t ], which is a

vector of states for each distribution line. The time for the transition of the distribution

network from state Lt is defined via τt := minl τ
l
t with density

fτt(s) = λ̃te
−λ̃ts, (6.13)

where λ̃t =
∑L

l=1 λ̃
l
t is additive thanks to properties of Exponential random variables.

At the transition epoch t + τt, the distribution network may transition to L possible

states. The probability that the distribution network changes states due to a change in
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the kth distribution line is:

P(τkt = τt|Lt) =
λ̃kt∑L
l=1 λ̃

l
t

. (6.14)

To assess reliability of the distribution network, we simulate Monte Carlo samples of the

transition times and transition states of the distribution network using Equations (6.13)

and (6.14). For a total of Ns Monte Carlo samples, we denote by Ln0:T , n = 1, . . . , Ns

the nth sample of the sequence of transition states in the time interval [0, T ] and with

T nfr, n = 1, . . . , Ns the corresponding sequence of transition times for the distribution

network.

Notice that the output of the optimization in Section 6.2 was defined on the set

Tyr containing only hourly time steps, however, the transition times T nfr ∈ [0, T ] in any

Monte Carlo sample are continuous. As a result, computation of the reliability indices

requires analyzing the system ∀t ∈ T n := Tyr
⋃
T nfr. Thus, we extend the output of the

optimization problem from t ∈ Tyr to t ∈ [0, T ] using piecewise constant functions for

all the variables, except SOCt which is linearly interpolated:

SOCt = SOCtj + (SIntj · SCEff − SOutt
SDEff

) · (tj − t),

∀t ∈ [tj , tj+1) and tj ∈ Tyr.

6.3.2 Storage model

Failure of any of the distribution lines connecting bus b to the utility interrupts its

power supply. This forces the DERs installed at the bus to work in islanded mode to

meet the needs of the consumer. Remember that the optimal policies (SInbt ,SOutbt)t≥0

(superscript b to emphasize that it is specific to the storage at bus b) for the storage are

derived from the optimization problem which is oblivious to any failures. Thus, in this
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section we propose heuristics for the operation of the storage during such islanded oper-

ation. Ideally, for every bus, we should either redo the optimization at every islanding

instance and again at the time of reconnection; or, explicitly incorporate probability of

such failures in the optimization problem itself. The former is computationally expen-

sive, and the latter requires tools that are beyond the scope of this chapter. As a result,

we rely on heuristics which work to keep the operational policy for the storage as close

as possible to the optimal dispatch from Section 6.2.

Let us assume that the time points in the set T n are arranged in sorted order. Since

the rest of the subsection is devoted to computing the operational storage policy for any

arbitrary n, for brevity we drop the index n and denote it simply as T .

We denote the operational policy for the charge and discharge of the storage at bus b

via (ŜIn
b

tj )tj∈T and (ŜOut
b

tj )tj∈T respectively (̂ to remind that it is different from the op-

timal); and the corresponding state of charge as (ŜOC
b

tj )tj∈T . Let us define an additional

state variable (mb
tj )tj∈T , which determines the operational policy (ŜIn

b

tj , ŜOut
b

tj )tj∈T of

the storage:

mb
tj =



1 if b ∈ I1,tj and ŜOC
b

tj = SOCb
tj

2 if b /∈ I1,tj

3 if b ∈ I1,tj and ŜOC
b

tj 6= SOCb
tj .

(6.15)

Equation (6.15) determines the three modes: normal, active and recovery mode for

the storage:

• Normal mode (mb
tj = 1): During this mode, the bus is connected to the utility

b ∈ I1,tj and state of charge is same as the optimal ŜOCtj = SOCtj . As a result,

the storage follows the optimal control policy as derived from the optimization in

Section 6.2 i.e.

ŜIn
b

tj = SInbtj , ŜOut
b

tj = SOutbtj . (6.16)
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• Back-up mode (mtj = 2): storage transitions to the back-up mode when the bus

b has no connection to the utility b /∈ I1,tj . During back-up the storage unit

acts to balance the net demand (load - PV generation), supplying power when

net demand > 0 and charging when net demand < 0 while being constrained by

the physical limits of the storage. We assume that the storage control at time

tj is determined by the information available only prior to tj , i.e. at the time of

failure, the policy does not depend on the time-to-repair and assumes the failure

will continue at least until the nearest hourly time-step. Thus, the storage policy

is:

ŜOut
b

tj =
(

(Ldbtj − PGenbtj ) ∧ ŜOut
b,max

tj

)+
,

ŜIn
b

tj =
(

(PGenbtj − Ldbtj ) ∧ ŜIn
b,max

tj

)+
,

where,

ŜOut
b,max

tj = min


SCapb · SDRt;

(SOCb
tj − 0.2 · SCapb) SDEff

dtje−tj ;

ŜIn
b,max

tj = min


SCapb · SCRt

SCapb−SOCbtj
SCEff·(dtje−tj)

.

• Recovery mode (mb
tj = 3): When the bus b is connected to the utility b ∈ I1,t, but

the operational SOC of the storage is different from the optimal SOC, ŜOC
b

tj 6=

SOCb
tj , we define it as recovery mode. Within this mode the storage unit chooses

the policy for charge and discharge such that the operational SOC soon achieves

the optimal. Namely, if the SOC of the storage is more than the optimal SOC,

the customer sells the energy to the grid to attain optimal SOC and vice-versa.
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Thus,

ŜIn
b

tj =


(SOCbdtje

−ŜOC
b

tj

SCEff·(dtje−tj) ∧ ŜIn
b,max

tj

)+
if SOCb

dtje − ŜOC
b

tj > 0

0 otherwise.

(6.17)

ŜOut
b

tj =


0 if SOCb

dtje − ŜOC
b

tj > 0( (ŜOC
b

tj
−SOCbdtje

)·SDEff

(dtje−tj) ∧ ŜOut
b,max

tj

)+
otherwise.

(6.18)

Finally, given the operational policy of the storage, the state of charge updates via:

ŜOCtj+1 = ŜOCtj +
(
ŜIntj · SCEff −

ŜOuttj
SDEff

)
· (tj+1 − tj).

To illustrate the three modes and the operational policy for the storage, we present

5 different fault scenarios for a hypothetical example. We assume the net demand

(Ldt − PGent) and the optimal SOC is given as an input. For ease of illustration,

in Figure 6.2 we assume that the net demand achieves only two values (+253kW and

-253kW).

1. At the first fault, operational SOC is at the minimum. As a result storage fails

to supply power.

2. At the second line fault, storage shifts to back-up mode to supply power. Once

the line gets repaired, storage moves to recovery mode and pushes the operational

SOC to return back to the optimal.

3. The optimal policy before the third fault was to charge the storage. However, line

failure shifts the storage to the back-up mode and makes it supply power until it

is empty. After the repair, the storage control matches the optimal policy because

the operational and optimal SOC are the same.
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4. The net demand is negative at the fourth line failure, thus the storage maintains

the balance of power by charging. After the repair, storage is discharged to bring

the operational SOC to the optimal.

5. After the fourth failure, the operational SOC exactly follows the optimal SOC.

Next, we define the reliability indices for the distribution network, given the opera-

tional policy of the storage and the Monte Carlo sample sequences of the failure-repair

times of the distribution lines.
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Figure 6.2: Operational policy for the storage for a hypothetical example with
two bus network.

6.4 Reliability Evaluation

In this section we discuss the computation of the reliability indices. We only consider

active power, with no losses, and assume that the voltage at each bus would be within the

pre-defined limits. These assumptions are common in reliability studies of distribution

networks, see for example [90, 93].

We define two sets of reliability indices, one from the perspective of the utility

(named average energy not supplied, AENS) and another from the perspective of the
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consumers (named average energy not consumed (AENC) and system average interrup-

tion duration index (SAIDI)). AENS is a standard metric used in reliability studies,

however, as we will see in Section 6.5, it fails to fully encapsulate the impact on reli-

ability when consumers make behind-the-meter investments in storage. We find that

AENC and SAIDI are better metrics to assess reliability when consumers make private

DER investments.

Given a Monte Carlo sample of the transition times T n and states Ln0:T , the first

step is to evaluate the loss of load Cb,ntj for the bus b at time t ∈ [0, T ]. We define:

Cb,nt :=



0 if b ∈ In1,t

Ldbt if b /∈ In1,t,Capbs = 0

(Ldbt − PGenbt − ŜOut
b,n

t + ŜIn
b,n

t )+ if b /∈ In1,t,Capbs > 0.

(6.19)

According to Equation (6.19), the consumer at bus b has zero loss of load Cb,nt = 0 if

the bus is connected to the utility b ∈ In1,t. However, if the bus is not connected b /∈ In1,t

and there is no local storage available Capbs = 0, then the loss of load is same as load

demand Ldbt . Here we make an assumption that PV requires either connection to the

utility or additional microelectronics (e.g. storage) to work. If neither is available, the

circuit breaker connecting the PV to the consumer trips and the loss of load is the load

demand. Finally, if the node is not connected but has storage installed locally Caps > 0,

the loss of load will be the net demand after storage re-dispatch.

We define energy not supplied ENSb,n(cb), energy not consumed ENCb,n(cb) and
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failure duration FDb,n(cb) at the bus b for the nth Monte Carlo sample as:

ENSb,n(cb) :=

∫ T

0
UtilPurbt1b/∈In1,tdt, (6.20)

ENCb,n(cb) :=

∫ T

0
Cb,nt dt, (6.21)

FDb,n(cb) :=

∫ T

0
1{Cb,nt >0}dt. (6.22)

ENSb,n accounts for the total energy that the utility could not supply to bus b during the

period [0, T ]. ENCb,n and FDb,n calculate the loss of load and the failure duration for

the consumer after incorporating the re-dispatch from the storage. Equations (6.20)-

(6.22) emphasize the dependence of these metrics on the tariffs cb (see Section 5.5).

In Table 6.1 we summarize the relationship between ENSb,n(cb) and ENCb,n(cb) for

different investment scenarios at node b.

Table 6.1: Reliability and investments.

Investment Relationship

None ENSb,n(cb) = ENCb,n(cb)
Only PV ENSb,n(cb) ≤ ENCb,n(cb)
PV and storage ENSb,n(cb) ≥ ENCb,n(cb)

Finally, we define our reliability indices. A generic reliability index with B buses in

the distribution network is defined as:

Index =
1

Ns

Ns∑
n=1

[∑B
i=2 F

bi,n

B

]
, (6.23)

σ(Index) =

√∑Ns
n=1

[∑B
i=2 F

bi,n

B − Index
]2

Ns
, (6.24)

where F bi,n is a test function. Thus, Index computes the average of the test function

over the buses and the Ns Monte Carlo samples and σ(Index) is the standard error in
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estimating the index. If the test function is ENSbi,n(cbi), then the corresponding index

is AENS; if it is ENCbi,n(cbi), then the index is AENC; and if it is FDbi,n(cbi), then the

index is SAIDI.

We reiterate that AENS accounts for the energy that the utility was supposed to

supply but could not due to failures in the distribution lines. Any re-dispatch from

the storage to meet demand at times of islanding of the bus will not be considered in

the definition of AENS, however, it will be part of the AENC and SAIDI. Thus, AENS

captures the reliability from the perspective of the utility; in contrast, SAIDI and AENC

are defined from the perspective of the consumers.

6.5 Numerical Example

In this section we discuss the effect of different tariff structures on the adoption of

the PV and storage, along with its impact on the reliability indices. We consider the

modified PG&E 69-bus [94] network (Figure 1.1b) for the case studies.

The distribution network in Figure 1.1b contains a mix of residential (red triangles),

commercial (blue diamonds) and public services (green circles) consumers. Commercial

consumers comprise of restaurants, supermarkets, hotels, malls and retail stores. Public

services include schools, hospitals and government offices. The load profiles are scaled

using active power data for the network in [95]. The total load demand for the network

at 8:00am on a typical week in January is 3,802 kW and the total annual energy con-

sumption is ≈ 23GWh. Unless otherwise specified, we use the following parameters for

the storage and PV.

Storage Parameters: We assume storage charging/discharging efficiency of 0.9,

maximum charge/discharge rate of 0.3, and minimum state of charge of 0.2. We take the

fixed cost CFixs and variable cost CVars as 250$ and 250$/kWh respectively. Lifetime

of the storage is assumed to be 10 years.
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PV Parameters: We assume the fixed cost CFixpv and variable CVarpv cost

as 2500$ and 2500$/kWh respectively, PV lifetime of 20 years and mo operation and

maintenance costs, DERMVrpv = 0.

Tariff Data: We consider the base purchase rate PurRtt as given in Tables 6.2, 6.3

and 6.4 for residential, services and commercial consumers respectively. We assume the

base electricity export rate ExpRtt = 0.3 · PurRtt, i.e. 30% of the base purchase rates

PurRtt. Unless otherwise mentioned, we use the electricity purchase rate PurRtt =

PurRtt and electricity export rate ExpRtt = ExpRtt as an input to the optimization

module of Section 6.2. Notice the difference in the structure of purchase rates between

residential consumers and service or commercial consumers. Residential consumers have

only two types of time blocks during the day: on-peak and off-peak. On the other

hand, service and commercial consumers have a more segmented tariff structure, divided

into on-peak, mid-peak and off-peak hours. The peak purchase rate for the residential

consumers is during the evening from 4:00pm - 9:00pm, while service or commercial

consumers have peak purchase rate during the day from noon-6:00pm.

Software: The optimization problem described through Equations (6.1)-(6.12)

is solved using the software Distributed Energy Resources - Customer Adoption Model

(DER-CAM) developed at Lawrence Berkeley National Laboratory [96, 10]. For com-

puting the compartments At of the graph (Section 6.3), we use the Python library

networkx. The model is implemented in Python 3.

In Figure 6.3, we present the aggregate load, load net of PV output, and net of

PV and storage output for the distribution network. If consumers are allowed to do

investments only in PV, the net load profile corresponds to the “duck curve”, with low

net load during the day followed by a large ramp-up during the evening. In this example,

ramp-up required by the utility to match the demand is 2000kW (200%) within four

hours. Allowing for the investments in storage helps dampen the effect by reducing the
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required ramp-up to 1600kW (160%) over 5 hours. It is important to mention that the

load profile for individual consumers could be very different from the aggregate profile

and it changes significantly with time of day and month of the year.

Table 6.2: Base tariff rates and periods for residential consumers. Summer:
June-September, Winter: October-May.

Type Weekdays Weekends
Summer
($/kWh)

Winter
($/kWh)

On-peak 4:00pm - 9:00pm — 0.36335 0.22588
Off-peak Other times All times 0.26029 0.20708

Table 6.3: Base tariff rates and periods for service consumers. Summer:
May-October and Winter: November-April.

Type Weekdays Weekends
Summer
($/kWh)

Winter
($/kWh)

On-peak noon - 6:00pm — 0.14726 0.10165

Mid-peak
8:00am - noon

— 0.10714 0.10165
6:00pm - 9:00pm

Off-peak 9:00 pm - 8:00 am All times 0.08057 0.08717

Table 6.4: Base tariff rates and periods for commercial consumers. Summer:
May-October and Winter: November-April

Type Weekdays Weekends
Summer
($/kWh)

Winter
($/kWh)

On-peak noon - 6:00 pm — 0.21471 0.1309

Mid-peak
8:00am - noon

— 0.15958 0.1309
6:00pm - 9:00pm

Off-peak 9:00pm - 8:00am All times 0.13151 0.11384

Before presenting the results for the base parameters, let us summarize the sequence

of steps to compute the reliability indices. First, we run the optimization module locally

(Section 6.2) for consumers at each bus in Figure 1.1b. Next, we simulate Ns Monte
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Figure 6.3: Aggregate load profile for the modified PG&E 69-bus network on a typical

day in April along with net load profile with investments in only PV and PV/Storage.

No export of power was allowed.
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Figure 6.4: Load point indices for the base case. Center and Right panel: Distribution

of AENS and AENC for the base case in the three investment scenarios.

Carlo samples for the failures and repair times of the distribution lines and the state of

the distribution network as described in Section 6.3. Given the investments in DERs

and the operational policy for the storage, we compute the network reliability indices

as described in Section 6.4.

Base case

In Table 6.5 we present the network reliability indices for three investment scenarios:

(A) No investments are allowed, (B) Investments only in PV, (C) Investments in PV and

storage are allowed. We observe a reduction in SAIDI by 2.6 hours when moving from
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scenario (A) to (C). AENS and AENC are reduced from 526.3 kWh to 355.8 kWh and

417 kWh, respectively. Notice that as we move from scenario (A) to (B), AENS declines

but AENC remains the same. The reduction in AENS is due to the installation of PV at

the load points, which decreases the dependence of the consumer on the utility. Because

of the absence of storage, the loss of load is equivalent to the load demand during the

failure times; thus, the AENC remains the same. We emphasize that for scenario (C),

while the investments in PV are distributed across all consumer types, the investments

in storage are fully concentrated to residential consumers.

To understand the variability of the reliability across load points, we show in the

left panel of Figure 6.4 the load point indices for scenarios (A) and (C). Due to the

heterogeneity of the consumers in the network, we observe AENC at load points to vary

from 10kWh to 10,000 kWh. Investments in PV and storage improve the load point

indices across the network. The independent failure timings for each line is evident

via green triangles representing SAIDI for scenario (A). Consumers further away from

the utility have higher SAIDI as the local islanding rate is additive due to independent

exponential line failures. However, allowing for investments in PV and storage implies

SAIDIpv+s ≤ SAIDI and AENSpv+s ≤ AENS.

Next, we present the distribution of AENS and AENC for the three investment

scenarios in the center and right panel of Figure 6.4. Besides reducing the AENS or

AENC, we also notice the reduction in variance of the indices for scenario (C) compared

to scenario (A).

scenario
AENS
(kWh)

AENC
(kWh)

SAIDI
(hours)

PV
(kW)

Storage
(kWh)

No PV or storage 526.3 526.3 12.1 0 0
Only PV allowed 378.8 526.3 12.1 3,812 0
Both PV and storage 355.8 417.4 9.5 3,812 3,852

Table 6.5: Reliability and total investments in PV and storage for the base case.
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Sensitivity

We discuss three case studies: (A) Effect of homothetic change in electricity purchase

rate, (B) Effect of increasing the peak purchase rate (PPR), and (C) Effect of changing

time of PPR.

Homothetic change in purchase rate. Here we increase/decrease the purchase

rate by the same factor for all times i.e. PurRtt = γpur · PurRtt ∀t ∈ [0, T ], where the

purchase factor 0.7 ≤ γpur ≤ 1.3. In the left panel of Figure 6.5 we present the adoption

in PV and storage, and in the right panel its impact on reliability. Higher tariffs provide

more incentive for the consumers to invest in PV and storage, thus, higher γpur results

in higher investments and lower values for the reliability indices. Investments in PV

increase from 2,700 kW to 4,200 kW and storage from 0 kWh to 5000 kWh as γpur

changes from 0.7 to 1.3.
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Figure 6.5: Effect of homothetic change in purchase rate. Left Panel: Investments in

PV and storage due to change in purchase factor γpur. Right Panel: AENS and AENC

as a function of γpur.

Peak purchase rate. Next, we present the effect of changing just the on-peak
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rate. The purchase rate is thus,

PurRtt =


γpk · PurRtt if t ∈ Tpk;

PurRtt if t /∈ Tpk,

(6.25)

where Tpk is the set of times corresponding to on-peak period of the base purchase rate

and γpk refers to the peak factor. We consider 1.0 ≤ γpk ≤ 2.5.

In Figure 6.6 we present the effect of increasing γpk on investments in PV and storage

(left panel) and the reliability indices (right panel). Similar to γpur, higher γpk leads to

increased investments in both PV and storage. Unlike γpur, this time the investments

in storage increase by 400% (3,852 kWh to 16,162 kWh) and dwarf the increase in PV

investments (3,812 kW to 4,255 kW). There are also noticeable jumps in the capacity

of the storage investments as we increase γpk. The massive increase in storage capacity

leads to decline in AENC from 420 kWh to 270 kWh. The AENS, on the other hand,

remains relatively flat because the storage re-dispatch during line failures is captured in

AENC but not in AENS.
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Figure 6.6: Effect of peak factor γpk. Left Panel: Investments in PV and storage due

to increase in peak factor. Right Panel: AENS and AENC as a function of γpk.

On comparing the cost of investments against changes in reliability for different

values of γpur and γpk, we find that γpk is a more efficient tool for improving network
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reliability. Increasing the peak rate provides more incentive for the storage to keep rel-

atively higher SOC before the peak time, thus providing more cushion from the storage

in case of islanding of the bus. In Figure 6.7, we present the total annualized costs

(Equation (6.1)) against the reliability indices by changing γpk (blue circles) and γpur

(orange stars). In the left panel, we present the AENC—representing the perspective of

the consumers, and in the right panel AENS—representing the perspective of the util-

ity. First, higher costs due to increased investments in PV and storage leads to lower

reliability indices. Second, increasing γpk reduces AENC with relatively lower increase

in cost to the consumers. Thus, for the same level of reliability, the peak factor is a

better tool than the purchase factor. From the perspective of the utility (left panel with

AENS on x-axis), the peak factor and the purchase factor are interchangeable.
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Figure 6.7: Effectiveness of peak factor γpk and purchase factor γpur.

Peak purchase time. As renewables penetration increases, regulators may move

the time of PPR in attempt to change the behavior of the consumers, aligning it with

the needs of the grid. As a result, we discuss the effect of changing the time of PPR

on the investments and the reliability indices. In Figure 6.8, we present the effect

of changing the start hour for the peak rate (SHPR) of the residential, services, and

commercial consumers. We continue to keep the duration for the PPR as 5 hours a day

for residential, and 6 hours a day for services and commercial consumers. Shifting the
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SHPR for the residential consumers from 8:00am to 4:00pm results in approximately

60% (from 2400 kWh to 3800 kWh) increase in the investments in storage but has no

impact on the investments in PV. Intuitively, PPR during the evening provides more

incentive for the consumers to store PV output, resulting in higher storage investments.

In comparison, moving the SHPR for the services and commercial consumers from

8:00am to 4:00pm marginally reduces the investments in PV, from 3840kW to 3755

kW, but results in no change for the storage capacity. The reduction in PV investments

can be explained through the overlap between the periods of peak solar irradiance and

PPR. The advantage of PV installation is maximized when the two periods overlap.

Because the period of peak solar irradiance is from 8:00am to 6:00pm, the investment

in PV is economically more beneficial if the time window of 8:00am - 2:00pm is chosen

for PPR compared to 2:00pm - 8:00pm.

The impact of these investments on the reliability indices is presented in the lower

panel of Figure 6.8. The lowest AENS is attained when the SHPR for commercial and

services consumers is at 8:00am and for residential consumers is at 4:00pm. The level

of AENS is similar to the base tariff (blue diamonds). This suggests that differentiated

peak time in the tariffs for different types of consumers is a better alternative than the

same peak time for everyone.

Turning the attention to AENC, by changing the SHPR of the residential consumers

to 8:00am, we can improve the AENC by another 3.5% due to change in storage SOC

(cf. Figure 6.1). This reduction in AENC is attained with lowest investment in storage

capacity.

6.6 Summary

In this chapter we propose a model for evaluating the effect of tariffs on the re-

liability of distribution networks considering optimal behind-the-meter investments in
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Figure 6.8: Effect of time-of-day of peak purchase rate, SHPR. Top panel: Invest-

ments in PV (blue circles) and Storage (orange crosses). Bottom panel: reliability

indices, AENS (blue circles) and AENC (orange crosses). Scatter plot with diamonds

represents the base tariffs.

PV and storage. We demonstrate the model on a PG&E-69 bus network with building

energy-load data for San Francisco with PG&E’s electricity tariff rate. Our contribu-

tions are threefold: (1) We overlay deterministic optimal control with simulation-based
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methods to assess reliability of a distribution network. To the best of our knowledge,

we are not aware of other works considering reliability with “optimal” behind-the-meter

investments in PV and storage. (2) We provide two sets of reliability indices, including

AENS which is an industry standard metric based on the perspective of the utility, as

well as AENC and SAIDI, overlooking the perspective of the consumers. Our results

indicate that the sensitivity of these indices to changes in electricity tariffs is very dif-

ferent. With behind-the-meter resources becoming more ubiquitous, we find AENC to

better capture the loss of load at the consumer end. (3) We assess the impact of changes

in tariffs, both in time and magnitude, on the reliability of the distribution network. We

find that if the regulator’s perspective is reliability, changing only the peak rate is more

cost efficient than changing the tariff homothetically. Furthermore, we find significant

change in storage dispatch policy and investments in PV/storage as the peak time for

the purchase rate is changed, resulting in different reliability.
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