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Boston University, Boston, MA 02215

Abstract

It is well known that, all things being equal, the accuracy of
mammalian timing and memory decays gradually with the pas-
sage of time. The gradual decay of temporal accuracy is also
observed in single-unit neural recordings. Here we review re-
cent modeling work describing a specific mechanism for tim-
ing and memory and relevant neural data. The model describes
a neural mechanism that can give rise to a logarithmically com-
pressed representation of the recent past. We examine the spe-
cific predictions of the model, in particular that the elapse of
time is represented by sequentially activated cells which fire
for a circumscribed period of time. Such cells, called time
cells, have been observed in neural recordings from several
brain regions in multiple species. As predicted by the model,
the cells show accuracy that decreases with time.

Keywords: scale-invariance, memory, interval timing, time
cells.

Introduction
Behavioral experiments on humans and other animals have
demonstrated that the accuracy in estimating the duration of
a time interval decays gradually with the interval duration it-
self. More specifically, the variability of the response is pro-
portional to the interval duration (Rakitin et al., 1998; Ivry &
Hazeltine, 1995). For instance, in interval timing the response
distributions appear to be scale-invariant: distributions corre-
sponding to different interval durations overlap when linearly
scaled (Roberts, 1981; Smith, 1968). Furthermore, animal lit-
erature suggests that in conditioning paradigms, the number
of trials needed for an animal to learn the association between
conditioned and unconditioned stimuli scales with a ratio of
the reinforcement latency and intertrial interval (Gallistel &
Gibbon, 2000), indicating again the scale-invariance in the
animals’ behavior (Balsam & Gallistel, 2009; Shankar &
Howard, 2012; Gibbon, 1977).

In addition to timing, scale-invariance has been argued to
be one of the key properties of memory. Gradual decay of
memory without a characteristic scale has been observed in
a number of behavioral experiments (Anderson & Schooler,
1991; Chater & Brown, 2008; Wixted & Ebbesen, 1991) and
it was often refereed to as power-law of forgetting. For ex-
ample, Donkin and Nosofsky (2012) reported that in item
recognition task the strength of the memory was decaying
as a power law function of the lag between studied items
and a test probe. It has been argued that scale-invariance
should be thought of as universal law of cognition (Chater
& Brown, 1999). A number of cognitive models have been

constructed to account for these properties (Brown, Neath, &
Chater, 2007; Howard, Shankar, Aue, & Criss, 2015; Donkin
& Nosofsky, 2012).

Neural mechanisms that could support the scale-invariance
of time and memory are still unclear. It has been argued
that working memory is represented with persistent neural
activity observed in different areas of the prefrontal cortex
(PFC) during for instance a delayed match to sample task
(P. S. Goldman-Rakic, 1991; P. Goldman-Rakic, 1995). Even
though such persistent activity can account well for the de-
mands of a particular task, it is not clear how it could account
for a gradual decay of the memory representation. More re-
cent studies have found that in some behavioral tasks a subset
of neurons activates sequentially, tiling the task relevant inter-
val, typically lasting for several seconds (see e.g. Pastalkova,
Itskov, Amarasingham, and Buzsaki (2008); MacDonald,
Lepage, Eden, and Eichenbaum (2011) for the first reports
of such activity). These neurons that fire sequentially, each
during a circumscribed period of time, are called time cells
(Howard & Eichenbaum, 2015; Eichenbaum, 2013). It has
been argued that time cells play important role in timing and
memory (MacDonald, Fortin, Sakata, & Meck, 2014; Howard
et al., 2014; Eichenbaum, 2014).

Time cells provide a direct readout of when the delay in-
terval has started: there is no need for population decoding in
a classical sense (Murray et al., 2016; Stokes, 2015). This is
because time cells activate sequentially effectively providing
temporal basis functions and constituting an internal time-
line. As we will discuss later, this timeline is compressed,
such that the temporal resolution gradually decays with the
elapsed time, just as expected given the behavioral findings
on memory and timing we mentioned above. It is unclear,
however, what are the neural mechanisms that could give rise
to such a compressed timeline.

Here we utilize a computational model for compressed
scale-invariant dynamical memory representation introduced
in Shankar and Howard (2012). We compare specific pre-
dictions of the model with the neural recordings of sequen-
tially activated time cells. The model provides a unique solu-
tion to constructing a scale-invariant memory representation
(Shankar, 2015). The model has been used to account for
results of various timing and memory experiments including
judgment of recency and serial scanning in long and short
term memory (Howard, Shankar, Aue, & Criss, 2015). Here
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Figure 1: Examples of sequentially activated neurons from tetrode recordings in rat hippocampus (plot a.) and PFC (plot b.). On
both plots each row on the heatplot corresponds to a single cell and displays normalized firing rate averaged across trials during a delay interval
of a behavioral experiment. Red corresponds to high firing rate, while blue corresponds to low firing rate. The cells are sorted with respect
to their peak time. Despite the fact that both recordings are done during a rather different behavioral experiment, they both show similar
qualitative properties. In particular we point to two features related to the temporal accuracy: 1) time fields later in the delay are more broad
than time fields earlier in the delay (the central ridge is widening as the peak moves to the right); 2) peak times of the time cells are not evenly
distributed across the delay, with later time periods represented by fewer cells than early time periods (this is apparent from the curvature
of the central ridge; a uniform distribution of time fields would manifest as a straight line). a. Hippocampal CA1 neurons recorded during
object-delay-odor sequence task (reprint from MacDonald et al. (2011)). In order to obtain a reward the animals had to memorize the identity
of the stimulus during the delay interval and match it to the appropriate odor. b. PFC neurons recorded during a temporal discrimination task
(reprint from Tiganj et al. (2016), original data first reported in (Kim et al., 2013)). In order to obtain a reward the animals had to estimate
whether the presented delay interval was larger than some baseline duration and make a left or right turn accordingly following the delay.

we focus on the neural side, looking into specific predictions
about individual neural activity that can be derived from the
model.

Sequential activation as a neural correlate of
timing and memory

Starting with a report from Pastalkova et al. (2008), a number
of studies have reported sequential neural activation in dif-
ferent timing and memory tasks from different brain regions:
hippocampus (MacDonald et al., 2011; Salz et al., 2016; Gill,
Mizumori, & Smith, 2011; Kraus, Robinson, White, Eichen-
baum, & Hasselmo, 2013; MacDonald, Carrow, Place, &
Eichenbaum, 2013; Modi, Ashesh, & Bhalla, 2014; Naya
& Suzuki, 2011), PFC (Tiganj et al., 2016) and the striatum
(Mello, Soares, & Paton, 2015; Adler et al., 2012) in a vari-
ety of behavioral tasks. This activity has been hypothesized
to be a neural basis for representation of memory and elapsed
time in a gradually decaying fashion (Howard, Shankar, Aue,
& Criss, 2015; Howard & Eichenbaum, 2015; Eichenbaum,
2014, 2013). The studies were done on different animals,
including rats (MacDonald et al., 2011; Salz et al., 2016;
Gill et al., 2011; Kraus et al., 2013; MacDonald et al., 2013;
Pastalkova et al., 2008; Mello et al., 2015; Tiganj et al., 2016),
mice (Modi et al., 2014) and monkeys (Naya & Suzuki, 2011;
Adler et al., 2012). Even though the majority of studies used
tetrode recordings, Modi et al. (2014) used two-photon cal-
cium imaging minimizing the probability that the results were
observed due to some sort of recording artifact. Most of the
studies were done on animals that were allowed to move, but

some were done on head-fixed animals (MacDonald et al.,
2013; Modi et al., 2014; Naya & Suzuki, 2011; Adler et
al., 2012) confirming that the results were not coming from
position-related artifacts.

It is worth noting that sequentially activated time cells were
observed in these studies despite the different cognitive de-
mands on the animals, which included temporal discrimina-
tion (e.g. Tiganj et al. (2016)) or memory demands (e.g. Salz
et al. (2016); MacDonald et al. (2011)). The duration of the
intervals where such cells were measured was ranging from a
couple of seconds up to 60 s (Mello et al., 2015).

Several studies have observed decreasing temporal accu-
racy as a function of delay, due to spread in time field width
(Howard et al., 2014; MacDonald et al., 2011; Mello et al.,
2015; Adler et al., 2012; Kraus et al., 2013; Salz et al., 2016;
Tiganj et al., 2016) and/or due to a non-uniform distribution
of time fields (Kraus et al., 2013; Salz et al., 2016; Mello et
al., 2015; Tiganj et al., 2016). Two examples of neural repre-
sentation with decreasing temporal accuracy are provided in
Figure 1.

Computational model for compressed
scale-invariant dynamical memory

representation
The computational model reviewed here was initially intro-
duced in (Shankar & Howard, 2012). It consists of a two-
layer feedforward neural network with analytically derived
weights. Here we briefly describe the model and then focus
on its predictions regarding neural activity. Notice that below

1188



we define the model as a model of memory, as it was initially
introduced in (Shankar & Howard, 2012). Its application in
timing is restricted to the stimulus that initiates the delay in-
terval, as the only stimulus that needs to be remembered.

We first define an input vector f consisting of N elements
such that each of its elements corresponds to a unique stimu-
lus. Thus observing for example stimulus A makes an element
in f that corresponds to stimulus A, fA, equal to one for the
time A is presented and zero otherwise. Each element of the
input vector f has a two-layer dynamical compressed memory
representation. The first layer of the network implements an
approximation of an integral transform of the input (Laplace
transform, but as a function of a real rather than a complex
variable). This means that nodes in the first layer, F(t,

∗
t), act

as leaky integrators (first order low-pass filters) with a spec-
trum of time constant defined with k/

∗
t , where k is positive

integer (Figure 2):

F(t,
∗
t)

dt
=−k

∗
t

F(t,
∗
t)+ f(t). (1)

Leaky integrators project to the second layer, f̃, through
fixed weights that implement an approximation of the inverse
of the transform by applying a kth order derivative with re-
spect to k/

∗
t , denoted as F(k)(t,

∗
t) (the inverse is derived based

on Post’s inversion formula (Post, 1930), see Shankar and
Howard (2012, 2013) for further details on the derivation):

f̃(t,
∗
t) =Ck

(
k
∗
t

)k+1

F(k)(t,
∗
t), (2)

where Ck is a constant that depends only on k. The cells in
the second layer constitute a dynamical memory representa-
tion of the input signal. To understand the properties of the
memory representation we consider an impulse response of a
cell in f̃. For fA(τ) = δ(τ = 0) the corresponding activation
of the cells in the second layer is:

f̃A(t,
∗
t) =Ck

1
∗
t

(
t
∗
t

)k

e
−k t
∗
t , (3)

where Ck here is a different constant that depends only on k.
The activity of each node in f̃A(t,

∗
t) is the product of an in-

creasing power term
(

t
∗
t

)k
and a decreasing exponential term

e
−k t
∗
t . Consequently, each node in f̃A(t,

∗
t) has a peak that cor-

responds to the
∗
t value of that node: d f̃A(t,

∗
t)

dt = 0⇒ t =
∗
t .

Thus, following a transient input, cells in f̃A activate sequen-
tially in time constituting a dynamical memory representation
of the input A (Figure 3).

This memory representation has perfect accuracy in the
limit when k→ ∞. In a realistic biological or artificial neural
network, where k is finite and

∗
t is a discrete variable sup-

*

**

*
*

*

Figure 2: Constructing a scale-invariant compressed memory
representation through an integral transform and its inverse.
A transient input stimulus f(t) (top row) is presented twice

and feeds into a layer of leaky integrators F(t,
∗
t) with a spec-

trum of time constants
∗
t constituting a discrete approximation

of an integral transform (middle row). The transform is de-
noted as L since it is equivalent to the real part of the Laplace
transform. Only three nodes in F(t,

∗
t) are shown. Each leaky

integrator is characterized with its time constant,
∗
t . F projects

onto f̃(t,
∗
t) through a set of weights defined with the opera-

tor denoted as L−1
k which implements an approximation of

the inverse of the Laplace transform. Nodes in f̃(t,
∗
t) acti-

vate sequentially following the stimulus presentation creat-
ing a memory representation. The width of the activation of
each node scales with the peak time determined by the cor-
responding

∗
t , making the memory scale-invariant. Logarith-

mic spacing of the
∗
t assures that the memory representation

is compressed.

ported with a limited number of nodes, the memory repre-
sentation becomes an approximation of the past. The ap-
proximation is scale-invariant (Figure 4) since the width of
the activation of each node scales with the peak time (this is
scale-invariant since rescaling the temporal axis rescales the
width of the activation by the same amount). In other words,
the accuracy of the memory representation decreases with the
elapse of time since the stimulus presentation. With appropri-
ately distributed

∗
t the representation can be made logarithmi-

cally compressed.
To establish biological plausibility of the model we have

shown that leaky integrators with a spectrum of time con-
stants are biologically realistic (Tiganj, Hasselmo, & Howard,
2015; Tiganj, Shankar, & Howard, 2013). In addition, taking
derivatives with respect to k/

∗
t amounts to lateral inhibition,

making it biologically plausible as well (Howard et al., 2014).
To implement the derivative it is required that each neurons
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Figure 3: Activity of the cells in the compressed memory
representation generated by the model. Analogous to the
heatmaps in Figure 1, each row corresponds to a single cell
and displays its normalized activity across time. The cells are
sorted with respect to the peak time defined by their value of
∗
t . The two features observed in Figure 1 are fully captured
by the model: the time fields later in the delay were more
broad than the time fields earlier in the delay and the density
of time fields decreased as a function of time (

∗
t was logar-

tihmically spaced). This illustrates that the model can indeed
account for the firing dynamics of the sequentially activated
time cells that form a compressed representation of time. The
two plots, a and b, show the activity of the cell ensemble
for two different values of parameter k. Increasing k makes
the firing fields more narrow and the memory representation
more precise. Notice that, from the biological perspective,
larger k is more difficult to obtain, since it requires higher or-
der of derivative with respect to k/

∗
t . This requires broader

connectivity between the two layers.

of the first layer only projects to the k neighboring neurons of
the second layer. The connectivity pattern is the same across
the entire projection, since it always implements a derivative
with respect to k/

∗
t . In addition, qualitative alignment of the

model with the sequential neural activity as shown in Figure 3
further supports its biological plausibility.

Discussion
We reviewed the predictions from a computational model
for compressed scale-invariant memory representation and
compared them to the results from recently-published neural
recordings. The model maintains a dynamical representation
of the recent past through a set of sequentially activated neu-
rons. Such sequential activation appears qualitatively similar
to the data published in multiple studies over the past several
years including different regions of the brain including the
hippocampus, PFC and striatum.

Several of the studies align with the model exhibiting com-
pressed memory representation. In particular, the width of the
time fields increased with the peak time and more cells had
time fields earlier than later in the delay interval (notice the
common trend in the plots in Figure 1 and Figure 3). These
findings suggest that the model can indeed account for the
neural representation of the elapsed time.

The model makes specific prediction on the scale-

invariance of the memory representation which was inspired
by the behavioral experiments on timing and memory. Exist-
ing neural data were thus far not sufficient to explicitly test
that prediction. However, the qualitative observations made
here are consistent with the scale-invaraince prediction, but
they are not sufficient to quantitatively verify it.

In addition to the model described here, several other com-
putational models predict the qualitative properties found in
the data. The common aspect of most of such models is the
functional form that gives rise to time fields: as in the model
described here, the activity increase is governed by a power-
law and then later attenuated by a damping exponential. In
particular, Grossberg and Schmajuk (1989); De Vries and
Principe (1992); Machado (1997) propose different mecha-
nistic solutions for achieving such form. However, unlike
in the model described here, rescaling the time axis in these
models would change the functional form of the representa-
tion. Others (for instance Tank and Hopfield (1987); Ludvig,
Sutton, and Kehoe (2012)) directly used the functional form
that provides spreading temporal basis functions as seen here.

Experimental data allowed us thus far to verify some of the
predictions computational models make regarding the com-
pressed representation of time. However, the model described
here makes specific predictions regarding how memory is
maintained in general. Here we assumed that the stimulus that
marks the onset of the delay interval is the only one that has
the memory representation. The model is designed to capture
a variety of stimuli and maintain an independent compressed
memory representation for each of them. In fact, associations
between the independent representations allowed us to test
the model on a variety of memory tasks (Howard, Shankar,
Aue, & Criss, 2015). It is to be tested whether the neu-
ral representation indeed supports such independent, stimu-
lus specific compressed memory representations (see Tiganj,
Cromer, Roy, Miller, and Howard (2017) for recent evidence
of this).

Maintaining temporal information through sequential acti-
vation has a critical computational property in that it provides
a direct readout of the elapsed time. Notice that cells in the
first layer of the model (leaky integrators) contain the same
amount of temporal information as the cells in the second
layer (sequentially activated neurons). Thus one could ap-
ply population decoding techniques and extract the temporal
information from the first layer directly. In fact, this is ex-
actly what the inverse transform is doing. However, instead
of training a classifier, which would be a common decoding
procedure, it provides a simple form of linear readout using
a mechanism analogous to lateral inhibition, which is known
to exist in the nervous system. An additional advantage of
having such a mechanism is that it provides access to the real-
value Laplace domain, where computations that are otherwise
hard to achieve in a neural network become straightforward.
These in particular include addition and subtraction of prob-
ability distributions as well as temporal translation (Howard,
Shankar, & Tiganj, 2015; Shankar, Singh, & Howard, 2016).
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Figure 4: Illustration of scale-invariance in the compressed memory representation generated by the model. Scaling the number
of cells and the temporal duration by the same factor results in identical memory representation (plots a. to d. appear identical

despite the fact that both x and y axes are rescaled on each plot). This property follows from Equations (3) since
∗
t and t appear only as a ratio

(except for the scaling factor in front that does not influence the functional form). Scale-invariance is consistent with behavioral experiments,
but it remains unclear whether neural data exhibits this property as well, even though the results shown in Figure 1 are consistent with
scale-invariance.

Conclusion
We showed that a computational model for constructing com-
pressed dynamical representations of the recent past aligns
well with recent neural data showing sequential neural ac-
tivation. The sequential activation constitutes a compressed
supported timeline, providing a mechanism for representing
the elapse of time and potentially a mechanism for maintain-
ing a dynamical memory representation.
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