
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Fault Localization in Backbone Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Ramana Rao Kompella

Committee in charge:

Professor George Varghese, Co-Chair
Professor Alex C. Snoeren, Co-Chair
Professor Rene Cruz
Professor Bill Lin
Professor Stefan Savage

2007

Copyright

Ramana Rao Kompella, 2007

All rights reserved.

The dissertation of Ramana Rao Kompella is approved,

and it is acceptable in quality and form for publication

on microfilm:

Co-Chair

Co-Chair

University of California, San Diego

2007

iii

To Amma and Nannagaru

iv

“Take up one idea. Make that one idea your life—think of it, dream of it, live on

that idea. Let the brain, muscles, nerves, every part of your body, be full of that

idea, and just leave every other idea alone. This is the way to success; that is the

way great philosophers are produced.”

-Swami Vivekananda

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xiii

Acknowledgements . xiv

Vita, Publications and Fields of Study xvii

Abstract . xix

Chapter I Introduction . 1
A. Fault management in backbone networks 3
B. Challenges in fault localization . 7

1. Indirect inference . 7
2. Operational inefficiencies . 8

C. Thesis contributions . 9
D. Thesis organization . 10

Chapter II Background . 12
A. Internet architecture . 12

1. Physical layer . 14
2. Data-link layer . 15
3. Network layer . 16

B. Virtual private networks . 18
C. Network management . 20

1. Network provisioning . 20
2. Quality of service . 21
3. Traffic engineering . 22
4. Attack mitigation . 22

D. State-of-the-art fault management 23
1. Fault detection . 23
2. Fault localization . 25
3. Repair . 26

E. Summary . 26

vi

Chapter III Risk-modeling approach . 27
A. Terminology . 29
B. Theoretical problem formulation . 31

1. Case I: All failures equally likely 31
2. Case II: All failures not equally likely 34

C. Algorithmic framework for fault localization 35
1. Imperfections in failure signature 37
2. Imperfections in the risk model 38

D. Previous approaches . 38
E. Summary . 40

Chapter IV IP Link Fault Localization . 42
A. Troubleshooting IP link failures using shared-risks 44

1. Shared risks in IP networks . 46
2. Network SRLGs . 48
3. Shared risk in real networks . 50

B. Fault localization using risk modeling 51
C. System overview . 56

1. SRLG Database . 57
2. SCORE localization algorithm 57
3. Data Sources . 57
4. Data translation/normalization 60
5. Fault localization policies . 60
6. Web interface . 62
7. Implementation details . 63

D. Simulated faults . 63
1. Algorithm accuracy . 64
2. Imperfect fault notifications . 65
3. Performance results . 67

E. Experience in a tier-one backbone 67
1. Localization accuracy . 68
2. Localization efficiency . 73

F. Summary . 74
G. Acknowledgments . 75

Chapter V MPLS black hole localization . 76
A. Silent network failures . 78

1. Problem formulation . 80
2. Fault detection . 81
3. Risk model construction . 85
4. Fault localization . 85
5. Additional issues . 88
6. System architecture . 89
7. Challenges with real-time tools 90

vii

B. Simulation results . 91
1. Metrics for comparison . 91
2. Simulation methodology . 92
3. Accuracy of the localization algorithm 95
4. Precision of the localization algorithm 97
5. Candidate selection algorithm to improve precision . . . 99

C. Experience with real failure data . 101
1. Ground truth . 101
2. Candidate selection algorithm 103
3. Hypothesis selection algorithm 105
4. Analysis by failure type . 107
5. Real MPLS black holes . 110

D. Related work . 111
E. Summary . 112
F. Acknowledgments . 113

Chapter VI Cross-layer visibility as a Service . 114
A. Importance of cross-layer visibility 115
B. Why is it hard? . 117
C. Fattening layers is not a good idea 119
D. Cross-layer visibility as a service . 121

1. Architecture . 122
2. Independent evolution of each layer 124

E. Summary . 128
F. Acknowledgments . 128

Chapter VII Scalable Measurement Architecture . 129
A. Scaling active measurement . 131
B. m-Plane Architecture . 133

1. Measurement primitives . 137
2. A clean-slate deployment . 142
3. Incremental deployment . 144
4. Topology changes . 148
5. Packet formats . 149

C. Overhead reduction . 152
D. Related work . 155
E. Summary . 156
F. Acknowledgments . 157

Chapter VIII Conclusions . 158
A. Experience using risk modeling . 159
B. Future work and open research problems 162

Glossary . 164

viii

Bibliography . 166

ix

LIST OF FIGURES

Figure I.1 Three steps in fault-management: The first step involves
detection of a fault. The second step involves fault localization—
identifying where exactly a fault happened. Finally, once
the fault is localized, a technician can permanently fix the
problem. 6

Figure II.1 Communication functions in the Internet are organized as
a stack of layers, commonly referred to as the Internet
protocol stack represented in the form of an hourglass. . . . 13

Figure II.2 A packet between two hosts in the Internet can cross mul-
tiple autonomous systems (ASes). 17

Figure II.3 Two enterprises A and B establish VPNs over an MPLS
tunnel between Seattle and New York provider-edge routers.
The MPLS tunnel itself is routed using the IGP shortest
paths between these routers. 18

Figure III.1 An example risk model with associations between 5 root
causes and 6 symptoms. 32

Figure III.2 Risk-model representation using a bi-partite graph. 33

Figure IV.1 Example topology showing logical as well as physical topolo-
gies of an IP network. IP circuits in the logical topology
share various optical components in the physical topology 47

Figure IV.2 CDF of shared risks among real SRLGs. 50
Figure IV.3 Representing shared-risk groups as a bipartite graph. At

the bottom partition are the risk groups corresponding to
the root causes. The top partition consists of the individual
IP links. 52

Figure IV.4 Architecture of the IP fault localization system. 56
Figure IV.5 Live screen shot of SCORE web interface. 62
Figure IV.6 Fraction of correct hypotheses as a function of increasing

number of injected simultaneous faults. 65
Figure IV.7 Accuracy as a function of loss probability for different error

thresholds for three failures. 66
Figure IV.8 Accuracy as a function of loss probability and for varying

number of simultaneous failures, with a fixed error thresh-
old = 0.6. 67

Figure IV.9 CDF of localization efficiency out of about 3,000 real faults
we have been able to localize. Note that we have not veri-
fied manually the correctness of hypothesis for these faults. 73

x

Figure V.1 Example topology with failure impacting a set of paths
going through a given link (G-H). 79

Figure V.2 The aggregate failure signature, Φ(t), changes as a result
of overlapping failures. The shaded boxes indicate the por-
tion of the failure that we detect using active measurement. 83

Figure V.3 System architecture . 90
Figure V.4 Accuracy of MAX-COVERAGE for different number of si-

multaneous failures under no noise, random and structured
noise scenarios. The y-axis is the average accuracy mea-
sured over 500 random failure scenarios. 96

Figure V.5 Precision of MAX-COVERAGE for different number of si-
multaneous failures under no noise, random and structured
noise scenarios. The y-axis is the average precision mea-
sured over 500 random link failure scenarios. 98

Figure V.6 Accuracy and precision of the candidate selection algo-
rithm when we change the threshold. For these graphs,
we fixed the fraction of the failure signature to 0.16 and
varied the threshold. 100

Figure V.7 Accuracy and precision for the MAX COVERAGE algo-
rithm on real failures from a tier-one ISP, assuming the
correct topology snapshot is known. 104

Figure V.8 Precision as a function of threshold on the x-axis, both as-
suming the correct topology and using the UNION heuris-
tic. The upper two curves include all the failure intervals,
while the bottom two curves only include those failures
that had more than one topology snapshot in that interval. 106

Figure V.9 Accuracy (using both ATLEAST ONE and ALL metrics)
for different types of failures. 109

Figure VI.1 Two ways to provide cross-layer visibility 115

Figure VII.1 Path metrics can be composed from individual router-level
and link-level metrics. 134

Figure VII.2 m-Plane architecture. Each router is equipped with link-
level and router-level measurement modules. 135

Figure VII.3 Two probes share the same hops . 137
Figure VII.4 Consistent hashing example within router with two input

and output ports. Notice the internal (label K) and exter-
nal (label E)collisions that can occur within the router. . . 140

Figure VII.5 Toy topology with six measurement capable routers or m-
routers in a clean slate design. The numbers are the asso-
ciated link costs. 143

xi

Figure VII.6 Partial deployment of the m-Plane architecture. Measure-
ment servers attached to upgraded routers are removed.
Old measurement servers are upgraded to m-servers, that
also listen to the OSPF LSAs and maintain their own
shortest path tree. 144

Figure VII.7 In this figure, we show the various shortest-path trees con-
structed locally by the m-servers and the m-routers to de-
termine which set of segments to monitor. Xi refers to the
ith-shortest path to X, in the case when a router X can
be reached via multiple shortest paths. 146

Figure VII.8 Two shortest paths to destination D composed at the mon-
itoring station. The m-server attached to A’s external
component provides measurement metrics until m-router
B. B’s and E’s internal and external components are used
to reconstruct the properties of the rest of the paths to D. 147

Figure VII.9 Topology changes and recomputation of m-Set. The link
{C, F} in the topology breaks, triggering recomputation of
the m-set. The old m-set consists of {F, D, E}, while the
new m-set consists of {A, B, D, E, F1, F2}, where F1 and
F2 correspond to the two equal-cost paths to destination F . 148

Figure VII.10 Packet format of the measurement state packet (MSP). . . 151
Figure VII.11 Incremental benefit for various ISP topologies. Notice that

the y-axis is log scale. 153

xii

LIST OF TABLES

Table IV.1 Syslog messages output by Cisco and Avici Routers when
a link goes down at different layers of the stack. When
the link comes back up, the router writes similar messages
indicating that each of the layer is back up. 59

Table IV.2 Summary of failures we have observed in various traces. . . 69

Table V.1 Features of the MPLS fault monitoring system. 101

Table VII.1 Number of probes issued and the actual number of mea-
surements required for different ISP topologies. 131

xiii

ACKNOWLEDGMENTS

I am indebted to George for convincing me to do a PhD in the first place

when we first met at SwitchOn Networks. Without him, I would not have been

able to get the inspiration to start my doctoral studies. Second, I express my

deepest gratitude to Alex for taking me under his wing especially when George

left to the bay area to achieve fame and fortune. I am extremely fortunate to

have two advisors with entirely different perspectives about everything. Alex’s

penchant for perfection and attention to detail is exemplary. George’s enthusiasm

for thinking and research and his ability to come up with cool solutions to real

problems is truly remarkable. Even if I have learnt a small fraction of these bag

of qualities, I believe I would be successful. Apart from George and Alex, I have

had the fortune of interacting with the coolest young faculty in Stefan, Geoff and

Amin in any systems and networking groups in the world. Special thanks are due

to Julie Conner who is perhaps the best and most caring graduate coordinator you

can ever ask for.

I would like to thank Jen at AT&T Labs–Research and Albert at Mi-

crosoft Research for mentoring me throughout my thesis. Besides the formal inter-

action twice as a summer intern as well as continuous collaboration even while at

UCSD, I am fortunate to know two of the best people in this world. Jen’s inten-

sity and ability to handle five different projects at the same time is truly amazing!

Albert’s unique combination of vision and leadership while still somehow manag-

ing to remain so accessible is unparalleled. I would also like to thank Jennifer

Rexford for great interaction and for being my co-author during my internship at

AT&T Research. Many thanks are due to Aman, Carsten, Zihui, David Applegate

(for volleyball during summer) and many other co-interns such as Vyas, Harsha,

Sachin, Aditya, Kashi to name a few.

I can’t thank enough the large number of people I have closely interacted

during my entire four and half year stay at UCSD; I would still like to mention a

few that stand out. A constant source of inspiration from every direction has been

xiv

Sumeet, who had been my apartment mate as well as my lab mate for two years.

His long political rants as well as company during night-outs in the old AP&M

building will be missed thoroughly. I will also miss a great set of friends in Sriram

and Ishwar, who made my stay at Mesa a pleasant one, and with whom I used to

play tennis during weekends and hit the gym once in a while. My sincere thanks

to many of lab mates including Cristi, Florin, Michael and Justin (in old AP&M

building), and Yuchung, Jeannie, Chris, Marvin, Marti, Meg, Alper, Kiran (in the

new building). I also thank Kashi and Priya for frisbee and darts and general

corridor talk. Finally, I would like to thank Barath, Alvin, David, Chip, Diwaker

and all the others that make the sysnet group at UCSD truly a remarkable one.

Last but not the least, none of this would have been possible without the

constant support from my mom, dad, my brother Dr. Sastry Kompella. Finally,

my life has changed forever after I got married to my lovely wife, Swetha, who

endured extensive stretches of absence at home, especially during deadlines. I

can’t express in words the amount of gratitude I sincerely owe my family.

I would like to acknowledge the various set of papers primarily investi-

gated by the dissertation author, from which this thesis derives material from:

Chapter IV is based on the paper titled “IP Fault Localization via Risk

Modeling”, that appeared in the Proceedings of the 2nd Symposium on Networked

Systems Design and Implementation, held at Boston in May 2005, which is joint

work with Jennifer Yates (at AT&T Labs – Research), Albert Greenberg (at Mi-

crosoft Research), and Alex C. Snoeren.

Chapter V is based on the paper titled “Detection and Localization of

Network Black holes”, appeared in the Proceedings of the Infocom , held at An-

chorage in May 2007, which is joint work with Jennifer Yates, Albert Greenberg

and Alex C. Snoeren.

Chapter VI is based on the paper titled “Cross-layer visibility as a ser-

vice”, that appeared in the Proceedings of the Fourth ACM Workshop on Hot

Topics in Networks, held at College Park, MD, in Nov 2005, co-authored with

xv

Jennifer Rexford (at Princeton University), Jennifer Yates, Albert Greenberg and

Alex C. Snoeren.

Chapter VII is based on joint work with George Varghese and Alex C.

Snoeren. The material has not yet been published.

xvi

VITA

1995–1999 B.Tech., Indian Institute of Technology, Bombay.

1999–2001 M.S., Stanford University.

2000–2001 Software Engineer, PMC Sierra Inc.

2001–2004 Member of Technical Staff, Chelsio Communications.

2003–2007 Ph.D., University of California, San Diego.

PUBLICATIONS

1. Ramana Rao Kompella, Alex C. Snoeren, Jennifer Yates, Albert Greenberg, “De-
tection and Localization of Network Blackholes”, in Proceedings of IEEE Infocom,
Alaska, USA, April 2007 (Infocom 2007).

2. Ramana Rao Kompella, Sumeet Singh, George Varghese, “On scalable attack de-
tection in the Network”, in IEEE/ACM Transactions on Networking, 15(1), pp.
14–25, February 2007 (ToN 2007).

3. Ramana Rao Kompella, Albert Greenberg, Jennifer Rexford, Alex C. Snoeren,
Jennifer Yates, “Cross-layer visibility as a Service”, in Proceedings of the 4th
ACM Workshop on Hot Topics in Networks, College Park, MD, November 2005
(HotNets 2005).

4. Ramana Rao Kompella, Cristian Estan, “The Power of Slicing in Internet Flow
Measurement”, in Proceedings of the 3rd ACM/USENIX Internet Measurement
Conference, Berkeley, CA, October 2005 (IMC 2005).

5. Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, Alex C. Snoeren, “IP
Fault Localization via Risk Modeling”, in Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation, Boston, May 2005 (NSDI 2005).

6. Ramana Rao Kompella, George Varghese, “Detecting DoS attacks in the Net-
work”, in Proceedings of the 2nd ACM/USENIX Internet Measurement Confer-
ence, Taormina, Sicily, Italy, October 2004 (IMC 2004).

7. Ramana Rao Kompella, George Varghese, “Reduced state Fair Queuing for Core
and Edge routers”, in Proceedings of the 14th ACM International Workshop on
Network and Operating Systems Support for Digital Audio and Video, Kinsale,
County Cork, Ireland, June 2004 (NOSSDAV 2004).

8. Ishwar Ramani, Ramana Rao Kompella, Sriram Ramabhadran, Alex C. Snoeren,
“Efficient Cooperative Scheduling in 802.11 Wireless Networks”, UCSD Technical
Report CS2005-0830, La Jolla, CA, July 2005 (UCSD-TR 2005)

xvii

9. Ramana Rao Kompella, Sriram Ramabhadran, Ishwar Ramani, Alex C. Snoeren,
“Cooperative Scheduling via pipelining in 802.11 Wireless Networks”, in the Pro-
ceedings of ACM SIGCOMM Workshop on Experimental Approaches to Wireless
Network Design and Analysis, Philadelphia, PA, August, 2005 (SIGCOMM E-
WIND 2005).

10. Ramana Rao Kompella, Alex C. Snoeren, “Practical Lazy Scheduling in Wireless
Sensor Networks”, in Proceedings of the First Conference on Embedded Sensor
Systems, November 2003, Los Angeles, California, USA (SENSYS 2003).

11. Ramana Rao Kompella, Alex C. Snoeren, “SPARTA : Scheduled Rate and Power
Adaptation in Wireless Networks”, Extended Abstract in ACM SIGCOMM, August
2003, Karlsruhe, Germany (SIGCOMM 2003).

12. Sundar Iyer, Ramana Rao Kompella, Nick McKeown, “Designing Buffers for Router
Line Cards”, Stanford University HPNG Technical Report, TR02-HPNG-031001,
Stanford. Also under review in IEEE/ACM Transactions on Networking, Nov,
2002 (ToN 2002).

13. Sundar Iyer, Ramana Rao Kompella, Nick McKeown, “Analysis of Memory Ar-
chitecture for Fast Packet Buffers ” in the IEEE Workshop on High Performance
Switching and Routing, Dallas, May 2001 (HPSR 2001).

14. Sundar Iyer, Ramana Rao Kompella, Nick McKeown, “Techniques for Fast Packet
Buffers”, Gigabit Networking Workshop, Anchorage, Alaska, April, 2001 (GBN
2001).

15. Sundar Iyer, Ramana Rao Kompella, Ajit Shelat, “ClassiPI : An Architecture for
Fast and Flexible Packet Classification”, in IEEE Network Special Issue on Fast
IP Packet Forwarding and Classification for Next Generation Internet Services”,
March-April 2001 (IEEE NETWORK 2001).

xviii

ABSTRACT OF THE DISSERTATION

Fault Localization in Backbone Networks

by

Ramana Rao Kompella

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor George Varghese, Co-Chair

Professor Alex C. Snoeren, Co-Chair

Automated, rapid and effective fault management is a central goal of large

operational IP networks. Yet, today’s networks suffer from a wide and volatile set

of failure modes, where the underlying fault proves difficult to be detected and

localized. In this dissertation, we introduce a fault localization methodology based

on the use of risk models. At a high level, risk modeling involves constructing a

bi-partite dependency relationship between a set of observable failure symptoms

and associated root causes. It then uses novel fault-localization algorithms that

use the set of observed failure symptoms and the constructed risk models to output

a set of candidate root causes that best explain the symptoms.

Using observations from monitoring data commonly available today in

ISP networks, we apply risk-modeling methodology to two different fault-localization

problems—IP link and black hole localization—commonly observed in practice.

For these two fault-localization problems, we have designed, implemented, evalu-

ated and deployed systems in a real tier-one ISP network. Our experience indicates

that risk modeling is effective in narrowing down the set of root causes of failures

significantly, thus assisting network operators respond quickly to common failure

modes.

xix

While our systems indicate tremendous promise in the risk-modeling ap-

proach, still, risk modeling is an indirect inference mechanism born out of neces-

sity, especially in situations where direct isolation mechanisms do not exist. Thus,

we propose composition-based architecture called m-Plane that utilizes specialized

router primitives to directly isolate the location of failures that affect traffic. In

addition to monitoring connectivity problems, our architecture can also generalize

to localizing other end-to-end performance degradations such as delay and loss.

xx

Chapter I

Introduction

Over the past few decades, the Internet has become an integral part of

our lives. The Internet today is a common platform used by people all around

the globe for data communications, web browsing, online shopping, etc., as well

as by enterprises that depend on it for conducting their businesses (e.g., financial

transactions, e-commerce). However, the Internet still lacks the kind of reliability

and robustness we expect from critical infrastructure. Network events, such as

equipment failures, often cause disruptions in service, or even complete loss of

connectivity between end hosts, causing frustration to end users and financial

damage to enterprises. It is therefore not surprising that Internet service providers

(ISPs) desire to quickly eliminate such unwanted disruptions in their network, or

at least reduce the impact of such events whenever they happen.

However, IP networks are surprisingly hard to manage. First, barring a

few statistics counters, there is no intrinsic support in the architecture for efficient

network monitoring and fault isolation. Second, new services such as voice and

video require strict performance guarantees, while IP networks have been designed

to be best effort. Third, IP networks are constantly evolving in size (in terms of

number of nodes), technology (e.g., ultra long-haul in optics) and protocols (e.g.,

MPLS). This evolution in technology often outpaces the development and deploy-

ment of associated monitoring infrastructure. Finally, many pernicious faults are

1

2

caused by complex interactions across layers—which are traditionally studied in

isolation—and, hence, are hard to debug and diagnose.

In the face of these challenges, service providers often resort to main-

taining a large number of network engineers to respond to connectivity and per-

formance failures. For instance, British Telecom (BT) reports that it’s capital

expenditure for the fiscal year 2006 was 2 Billion Pounds [2], while operating ex-

penses were 17 Billion Pounds, of which BT estimates 5 Billion Pounds just in

staffing costs. Thus, operating expenditure of IP network providers is significantly

higher than capital expenditures. Of course, high operating expenditure does not

automatically translate to quick response to failures, since manual processes often

tend to be too slow for many practical failure scenarios.

One way to reduce the operating expenditure is to focus on improving

device reliability (resulting in higher capital expenditure); if devices do not fail

(or fail less often), networks can be managed with a smaller work force. Unfor-

tunately, studies estimate that 80% of failures are caused by people and process

errors [13, 20]. For such failures, improving device reliability is not helpful. Besides,

complexity added to devices for robustness often exposes them to new fragilities,

thus leading to the complexity-robustness spiral [25]. Therefore, improving device

reliability alone is not going to be sufficient, and, in many cases, even results in

new and more complicated failure scenarios.

Given that failures are inevitable, service providers need mechanisms for

effective fault management. The essential problem of fault management is to de-

tect, localize, diagnose and ultimately correct any condition that degrades network

performance. To assist fault management, many network elements detect and gen-

erate alarms on failures, which are then used to perform diagnosis and repair. For

example, an IP router is often programmed to generate an alarm whenever the

router-to-router keep-alive messages that monitor IP link-level connectivity are

lost. However, an IP link consists of a number of components: a line card at ori-

gin router, a physical fiber to an optical amplifier, a second segment of fiber from

3

the optical amplifier to the destination router’s line card. While in this example,

there are only a few components, IP links in practice can consist of greater than

a hundred optical components. Operators first need to determine which among

these components caused the link failure—a step commonly referred to as fault

localization—before they can diagnose the root cause of the failure. For example,

operators need to localize the failure to an optical amplifier before determining

that the root cause is a faulty laser within the optical amplifier.

Operational experience shows that the total turn-around time of a failure

(from detection to repair) is often dominated by the amount of time it takes to

localize the failure. Once the fault is localized, typically the failure can be re-

paired relatively quickly; in many cases, the actual root cause can be diagnosed

and repaired offline. Thus, the main focus of this dissertation is fast and automated

fault localization in backbone networks. We describe the architecture of our fault

localization systems based on risk modeling, that we have deployed in a tier-one

backbone network. Based on our experience with commonly observed fault local-

ization problems, we also focus on clean-slate architectural mechanisms that make

use of new router-level primitives to assist fault localization.

The remainder of this chapter is organized as follows. First, we review

fault management and, in particular, fault localization in the next section. We

then outline challenges associated with fault localization before summarizing the

contributions of the dissertation in the following section.

I.A Fault management in backbone networks

Operational backbone networks today lack intrinsic robustness; serious

faults and outages are not infrequent. To appreciate why this is so, it may help

to consider a network operator tasked with fault management. After much effort,

network hardware has been designed and implemented, the protocols controlling

the network have been designed (often in compliance with published standards),

4

and the associated software implemented. In accord with the network architecture,

the network elements have been deployed, connected, and configured. Yet, these

are all tremendously complex endeavors, carried out by multiple teams at rapid

pace, involving a large and distributed software component, producing an artifact

that will face an operational environment far richer in behavior than can ever be

approximated in a lab.

Errors will be introduced at each stage of network definition and go unde-

tected despite best practices in design, implementation, and test. External factors,

including bugs of all types (memory leaks, inadequate performance separation be-

tween processes, etc.) in router software and environmental factors such as denial-

of-service attacks and routing events originating in peer networks significantly raise

the level of difficulty. It is the task of fault management to cope with the result,

continually learning of and dealing with new failure modes in the field. Thus, a

large amount of time and effort is spent by service providers in fault management.

Fault management in operational backbone networks is challenging in

practice. These networks are large, geographically distributed, and constantly

evolving with complex hardware and software artifacts. To appreciate the com-

plexity better, consider a typical tier-one backbone network: It consists of about

1,000 routers from different vendors, with different features, and acting in different

roles in the network architecture, supported by access and core optical transport

networks involving more than two orders of magnitude more network elements.

The layered structure of backbone networks is intended to help contain complexity

within simple well-defined abstractions; in practice, however, layering often gives

rise to additional, complex failure modes involving cross-layer interactions which

are hard to debug.

For example, IP networks are overlaid on optical networks; an IP link

is implemented as a path through a set of optical components, some of which are

shared across multiple IP links (in a one-to-many, many-to-one fashion). Similarly,

in many tier-one ISP networks, there may be an intermediate multi-protocol label

5

switching (MPLS) layer, wherein IP packets are transported via label-switched

paths (LSPs), which in turn are established using IP routing protocols such as

open shortest path first (OSPF). Many of these LSPs share individual IP links.

It is possible to run IP and MPLS routing and forwarding concurrently on the

same label-switch router. Moreover, multiple virtual private networks (VPNs)

may be overlaid on top of the MPLS topologies, with paths between IP interfaces

on multiple VPNs traversing the same label-switched path.

Thus, complicated dependencies exist between various layers in the net-

work, often giving rise to unforseen failure modes difficult to diagnose. Often,

however, a certain amount of resiliency is already built into the network, in order

to automatically recover from many common failure modes such as link failures.

For example, routing protocols (e.g., OSPF) typically respond to IP link failures

by computing new paths that avoid the failed link, thus making sure that the net-

work “self heals” and traffic is not disrupted. Additionally, because it is part of

the network design, this temporary fix to the problem is essentially free of cost to

the service provider.

However, the service provider still needs to apply a permanent fix to the

problem. Otherwise, the chances of another failure occurring before the original

failure is repaired increases. Further, the more the time it takes to repair, the higher

the probability that the second one occurs before repair is complete. Therefore,

the network operator needs to quickly isolate and repair the problem. In some

cases, the network itself can fail to detect and self heal; thus, many customers can

be disconnected for extended periods of time, until the problem is repaired. In

this scenario, it is even more important for network operators to quickly detect,

localize and repair the problem.

Thus, the essential components of fault management include detection,

localization and repair as shown Figure I.1. Specific mechanisms (e.g., network

probes) are instrumented in (or outside) the network to detect faults and generate

associated alarms. A fault is typically characterized by monitoring traffic, either

6

Fault Detection Repair

Fault Localization

Minutes to Hours

Active probes,
Seconds to minutes

Technician,

Correlation,

Quick fix in minutes

ISP Network

Figure I.1: Three steps in fault-management: The first step involves detection of

a fault. The second step involves fault localization—identifying where exactly a

fault happened. Finally, once the fault is localized, a technician can permanently

fix the problem.

passively by observing existing traffic in the network, or actively by injecting syn-

thetic traffic and observing its performance characteristics. Lower layers even use

physical symptoms to detect faults, such as signal quality or loss of signal at the

optical interface.

While alarms report almost instantaneously (within a few seconds) that

a fault occurred, they frequently do not directly indicate the root cause of the

failure. Therefore, the second step in fault management involves localization to de-

termine where the fault happened. The time required to localize the fault can range

anywhere from a few hours to days. This localization step is the primary recon-

naissance to a final—and often (necessarily) manual—step of actually diagnosing

the root cause of the failure. Once the fault is diagnosed, the third step involves a

technician that repairs the failed component, typically by replacing it with a new

component within minutes. Therefore, fast and automated fault localization can

7

significantly reduce the outage or failure duration.

I.B Challenges in fault localization

There are primarily two challenges that form the basis of this disserta-

tion: First, typical monitoring systems only detect failures but do not indicate

root cause, thus requiring indirect inference mechanisms to infer the root causes.

Second, there are many operational inefficiencies in the monitoring systems that

complicate the task of inference. We explain these two challenges briefly in the

following subsections.

I.B.1 Indirect inference

Network elements are designed to generate alarms for many common

failure modes, such as IP link failures. However, these alarms do not automatically

report the exact location of the failure. For example, an optical amplifier failure

triggers multiple alarms at IP and optical layers. But none of these alarms directly

indicate that it was an optical amplifier failure; they only indicate that a link failed.

Of course, if they did indicate the root cause of the failure, there would be no need

for an intermediate fault-localization step in the first place.

In some catastrophic failure cases, the network elements even fail to de-

tect and generate alarms. In such situations, network operators monitor failures

by injecting synthetic probes into the data traffic and observing the reachability

and/or other performance characteristics of the probe traffic. Given that these

probes treat the network as a black box, they typically detect, but fail to iso-

late the location of the failures. Thus, fault localization again requires indirect

mechanisms to infer the root cause.

Network operators often use some form of correlation, particularly for

faults that affect multiple layers. At a bare minimum, correlation is used to group

together alarms that are typically generated due to the same root cause. In many

8

backbone networks, however, operations are naturally managed according to layers,

with the alarms and other monitoring data housed in separate work groups across

geographically diverse locations within the same domain, or even across domains

(e.g., different companies managing different layers). For instance physical-layer

faults may be handled by a dark-fiber provider, while IP-layer faults are managed

by the ISP itself. In such cases, we cannot correlate alarm data across layers easily.

Even when we can correlate alarms across layers, determining causality

remains difficult, because layers are interdependent, with faults in one affecting

the other and vice-versa. For example, IP-layer link failures can cause the optical

lasers to shutdown as well, thus causing a loss of signal (LoS) alarm at the optical

layer. Similarly, an optical amplifier failure can cause an alarm generated by the

router that the IP link is down. When one observes both the LoS alarm at optical

layer as well as IP link down alarm at IP layer, it is not clear what caused the

failure or even in which layer the failure lies.

I.B.2 Operational inefficiencies

The highest priority job of a router during failures is to flood the link-

failure information to the rest of the routers in the network and compute new

paths that avoid the failed link to various destinations. Routers, therefore, often

use unreliable messaging protocols such as UDP—instead of reliable protocols that

require more CPU and memory resources—to transmit alarms; hence, alarms may

or may not reach the operator.

Often, the databases that govern the associations across layers (e.g., IP

and optics) are maintained by humans and, as such, are prone to errors. For

example, a technician performing maintenance may reroute an optical circuit, but

forget to log the change in the database. In such cases, the databases can drift

significantly from reality making even inference hard.

9

I.C Thesis contributions

Confounded by the various challenges in fault localization, today’s service

providers often use a combination of ad hoc proprietary problem-specific mecha-

nisms guided by experience and wisdom for fault localization, that are either too

slow or labor-intensive. Thus, in this dissertation, our primary goal is to address

these challenges and provide a generic framework for automated fault localization

in backbone networks with existing monitoring mechanisms. While this frame-

work is effective in the short term, it is important to design and develop long-term

clean-slate architectural primitives to make fault localization, and performance

management, a first-class entity in network elements. Thus, a secondary goal of

this dissertation is to identify fundamental mechanisms that can assist performance

management in backbone networks.

This dissertation makes the following contributions in pursuit of our goals.

• Risk modeling. We develop a general fault-localization methodology based on

risk-modeling. Intuitively, risk modeling involves creating bipartite depen-

dency relationships between a set of observable symptoms associated with

various root causes of failures. We abstract the fault-localization problem as

finding the minimum set cover in a bipartite graph that represents the depen-

dencies between symptoms and root causes—an NP-hard problem in general.

We apply the risk-modeling approach to two fault-localization problems ob-

served in practice—IP fault localization (Chapter IV) and MPLS black hole

localization (Chapter V). For these problem domains, we design two new

algorithms SCORE and MAX-COVERAGE based upon a greedy approxi-

mation to finding the minimum set cover. Further, we build and evaluate two

systems that are based on the above algorithms to assist network operators

in localizing faults in these failure scenarios.

• Cross-layer visibility. In our experience with the above systems, we found

that IP and optical cross-layer association databases, which are used widely

10

in many network management tasks including fault localization, are typi-

cally filled with errors. While a natural way to obtain accurate cross-layer

associations is by fattening the interfaces between layers, we argue that such

an approach can be hard to achieve due to a variety of reasons including

complexity, interoperability and security. Therefore, we propose an archi-

tecture (in Chapter VI) that does not alter the current layer boundaries,

instead maintains accurate dependencies by joining different databases that

can evolve over time both in accuracy as well as timeliness.

• Composition-based measurement architecture. We suggest novel router prim-

itives to allow direct localization of faults, and, in general, any type of per-

formance degradation in the network. We also propose a new measurement

architecture, called m-Plane (in Chapter VII), that allows composition of

end-to-end path metrics directly from individual router- and link-level mea-

surements reported by the routers, thus improving the scalability of active

probes. While clean-slate design of m-Plane is relatively straightforward,

incremental deployment is not. Therefore, we design mechanisms for in-

crementally upgrading only few routers in the network. Using Rocketfuel

topologies [84], we show the benefit of incremental deployment in terms of

probe bandwidth.

I.D Thesis organization

The organization of the dissertation is as follows. First, Chapter II

presents the necessary Internet architecture background and an overview of the

various network management tasks. The next chapter (Chapter III) outlines a

general fault-localization methodology consisting of three basic steps. The first

step consists of detection of failure symptoms using a variety of monitoring mech-

anisms, some of which network elements today already employ. The second step

involves creation of a risk model that embeds the dependencies between various

11

symptoms observed and their associated root causes. Finally, the third step con-

sists of a localization algorithm that outputs a likely set of root causes that can

explain the given set of observed symptoms.

In Chapter IV and Chapter V, we discuss the application of the risk-

modeling methodology to two instances of failures commonly found in today’s

backbone networks—IP link fault-localization and MPLS tunnel fault-localization.

These two chapters present the algorithms and system architecture details for the

fault-localization systems we have designed, implemented and deployed in a real

tier-I network. These chapters also present detailed evaluation of these systems

with simulated and real failure data obtained from a real tier-I ISP.

From our experience with these two systems, there are two specific

challenges—accurate cross-layer dependencies and scalable measurement—that we

address in the next two chapters. In Chapter VI, we discuss, at a high-level, an ar-

chitecture that allows automatic dependencies between symptoms and underlying

root causes for the link-fault localization problem with high-levels of accuracy while

allowing evolution in the network architecture. On the other hand, Chapter VII

discusses router-level primitives for direct fault localization, in addition to reducing

the measurement overhead for failure detection significantly. Finally, we conclude

with a summary of the dissertation and some open challenges in Chapter VIII.

Chapter II

Background

In this chapter, we provide a brief background on the architecture of the

Internet today, in particular focusing on concepts required to understand the rest

of this dissertation. This chapter is organized as follows. First, we describe the

architecture of today’s service provider networks. We then outline some of the

main network management functions, followed by a more detailed description of

various mechanisms for effective performance management in these networks.

II.A Internet architecture

The Internet consists of a large set of autonomous systems (ASes) loosely

coupled together to provide connectivity between various end hosts. Today, there

are more than 20,000 ASes across the entire world [7]. Each AS is managed by a

single administrative authority (an Internet service provider or a large enterprise

customer) and owns the network within that domain. Each AS can be viewed as a

graph with a set of nodes (routers) connected via edges (physical interconnections

between routers). Packets can either originate (terminate) in the AS (e.g., from

a DSL/Cable customer directly part of this AS) or enter (exit) from (to) other

ASes, i.e., enterprises or other service providers. Packets transit between ASes

through peering links that connect a router in one AS to one in another AS.

Policies governing the cooperation between ASes through peering is often enforced

12

13

IP

Copper, Fiber, Radio

HTTP, SMTP, RTP

Ethernet, PPP

TCP, UDP

Physical layer

Data link layer

Network Layer

Transport Layer

Application layer

Figure II.1: Communication functions in the Internet are organized as a stack of

layers, commonly referred to as the Internet protocol stack represented in the form

of an hourglass.

via bi-lateral (or multi-lateral) contractual agreements.

In the Internet, all communication functions are organized in a hierar-

chical set of layers, with each layer performing a subset of functions required to

communicate with another system. Each layer depends on the layer below for

a specific function, while exposing a specific function to the layer above. Thus,

overall communication functionality is broken down into these layers with specific

interfaces between layers. Naturally, the architecture of an any particular AS is

also structured in layers.

Layering in IP networks is often represented by the hourglass model as

shown in Figure II.1, commonly referred to as the Internet protocol stack. At the

bottom of the IP stack is the physical medium that is responsible for carrying

bits of information from one system to another. The data-link layer allows for

error detection and reliable transmission in units of frames while the network layer

is responsible for addressing and forwarding packets between communication end

systems that are not directly connected to each other. On top of the network layer

is the transport layer that includes protocols such as transmission control protocol

14

(TCP) that provides the abstraction of a reliable, in-order byte stream and user

datagram protocol (UDP), that provides an unreliable message communication

abstraction. Several common applications such as email, web-use protocols such

as simple mail transfer protocol (SMTP), hyper-text transfer protocol (HTTP)

constituting the application layer.

The communication functions in layers above IP, i.e., the transport and

application layers, are implemented on the hosts at both ends of communication.

A typical ISP only deals with the layer below that provide mechanisms for trans-

porting packets between end points. Therefore, we describe the architecture of ISP

networks by focusing on the physical, data link and network layers in more detail,

while referring the reader to [88, 92] for further details on layers above IP.

II.A.1 Physical layer

The lowest layer in the IP protocol stack is the physical layer. The phys-

ical layer consists of mechanisms to transmit bits reliably on a physical medium

such as copper wire in local area networks (e.g., in Ethernet), or optical fiber in

wide-area networks (e.g., synchronous optical network or SONET). The main goal

of the physical layer is to provide the abstraction of a logical communication chan-

nel between two end points, often referred to as a link. In the context of wide-area

backbone networks, links are also referred to as optical circuits, since a link is

frequently a light path of certain wavelength between two end points transported

via optical fibers.

Typical wide-area optical circuits, which are of importance in this disser-

tation, extend over long distances (hundreds to thousands of miles). Over these

long distances, the optical signal both attenuates significantly as well as distorts

with noise, making it difficult to reconstruct the signal at the other end. In order to

address this issue, an optical amplifier is used every few hundred miles to amplify

the optical signal. However, since the optical amplifier amplifies both the actual

signal as well as noise, after every few such optical amplifiers, an optical regener-

15

ator, commonly referred to as a dense wavelength division multiplexing (DWDM)

system, is required to recover the signal into digital domain and freshly regenerate

the optical signal. Thus, an optical circuit consists of a series of one or more fibers,

optical amplifiers, DWDM systems and many other components such as add-drop

multiplexors, etc. A full treatise on all these components is outside the scope of

this dissertation and we refer the reader to [72] for more details.

II.A.2 Data-link layer

While the physical layer provides basic mechanisms to transfer bit streams

between two directly connected nodes, the data-link layer attempts to make the

physical link reliable. Typical examples of protocols at the data-link layer include

the point-to-point protocol (PPP), the high-level data link control (HDLC) for

point-to-point communication (in wide-area networks) and Ethernet for local area

networks. In order to provide a reliable link interface, most data-link protocols

provide basic error detection by computing a checksum, cyclic-redundancy check

(CRC) or at the least a parity bit of the message that is transmitted [92]. In

automatic repeat-request (ARQ) protocols such as stop-and-wait, go-back-n, se-

lective repeat [92], the sender and receiver use acknowledgements and timeouts to

determine whether to resend a given frame.

In wide-area networks such as the Internet, communication is often be-

tween two end systems that are either not directly connected to each other or

not part of the same local area network. In such cases, messages are transported

over a number of data links, each functioning independently; the higher layers are

not completely relieved of error detection and correction functionality [76]. The

network layer which we describe next, provides the basic addressing and routing

mechanisms required to forward packets in the Internet. Contrary to the data-link

layer, however, the network layer is best effort; it does not provide guarantees that

a packet injected into the network reaches the destination. Applications rely on

the transport protocols such as TCP on top of the network layer for reliable data

16

delivery.

II.A.3 Network layer

In the Internet, the primary network layer protocol used for communi-

cation is the Internet protocol (IP). Each host in the Internet is assigned an IP

address—a unique 32-bit integer (often represented as four bytes in dotted decimal

format, A.B.C.D) in IP version 4—that uniquely identifies a given interface. Each

packet consists of an IP header that contains a source IP address and a destina-

tion IP address. Packets are forwarded from a source to a given destination by

various routers along the path. In each of these routers, forwarding is typically

destination based. For every packet, the router determines the next hop based on

the destination IP address in the packet and a forwarding table that consists of a

mapping between IP prefixes (e.g., 132.*.*.* that represents the range of addresses

between 132.0.0.0 and 132.255.255.255) and the next hop. In the presence of mul-

tiple prefixes that match a given destination IP address, the router looks up the

longest (or most specific) prefix to determine the next hop for forwarding.

Routers populate the forwarding tables using a combination of inter- and

intra-domain routing protocols. These protocols typically exchange reachability

information (at the granularity of a prefix) necessary to compute a path towards a

given destination. For inter-domain routing, the border gateway protocol (BGP)

[73] is used, while open shortest path first (OSPF) [65] or intermediate system -

intermediate system (IS-IS) [14] is used for intra-domain routing protocols, com-

monly referred to as interior gateway protocols (IGPs).

An example is shown in Figure II.2. A customer network (say UCSD’s

network) connected to a given AS (say Internet2) is assigned an IP prefix (e.g.,

137.110.222.*), and Internet2 advertises the reachability of this IP prefix to other

peering ASes (say Verizon) using BGP, which in turn further advertise the route

to other peering ASes (say AT&T) through Verizon. Using a combination of BGP

and IGPs—BGP to determine the particular border router and IGPs to calculate

17

AT&T

Verizon

Internet2

Sprint
UCSD

Figure II.2: A packet between two hosts in the Internet can cross multiple au-

tonomous systems (ASes).

the shortest path to the border router—AT&T’s routers are able to forward pack-

ets with destination address in UCSD’s network directly to the border router in

Verizon’s network. Similarly, the routers in Verizon’s network forwards the packets

to Internet2, and Internet2’s routers forward the packets to UCSD’s network in

turn. Once the packet reaches UCSD, the packet is forwarded to the destination

server using a combination of IGP forwarding and data-link layer protocols such

as Ethernet.

Thus, a combination of BGP and IGPs enable routers in the Internet to

determine the next hop to forward a packet destined towards a given destination.

While typical data communication between various end hosts is facilitated by the

use of BGP and IGPs, today’s ISP networks also provide inter-connection services

to several geographically distributed offices belonging to a single enterprise. Such

networks, referred to as virtual private networks (VPNs), while configured dif-

ferently and in fact isolated from the public-domain traffic, they share the same

underlying physical infrastructure (i.e., routers and links) for forwarding. Since

VPNs are of importance in this dissertation, we describe them in greater detail

next.

18

A
New York

Enterprise Network

B

A

established using IGP
Common MPLS tunnel

Seattle

Bshortest−paths

Figure II.3: Two enterprises A and B establish VPNs over an MPLS tunnel between

Seattle and New York provider-edge routers. The MPLS tunnel itself is routed

using the IGP shortest paths between these routers.

II.B Virtual private networks

ISPs today provide virtual private networks (VPNs) to securely connect

geographically distributed offices that belong to a single large enterprise. While

there are many ways in which VPNs can be administered, one of the most common

is to use multi-protocol label switching (MPLS) [75].

MPLS provides a mechanism to create “tunnels” between two tunnel end

points. Although, in theory these tunnel end points can belong to different service

providers, today there is no unified inter-carrier mechanism to provide such a secure

tunnel across providers. Therefore, typically MPLS tunnel end points lie within

a given service provider. Multiple VPNs may be simultaneously carried within

any given MPLS tunnel thus making the solution scalable. Packets in VPNs are

forwarded using virtual routing and forwarding (VRF) tables that are distinct from

the forwarding tables populated through conventional routing protocols.

19

An example of two enterprises using MPLS tunnels for their VPNs is

shown in Figure II.3. In the figure, an ISP network with Seattle and New York

provider-edge (PE) routers are shown with enterprise networks A and B with offices

in Seattle and New York communicating over the ISP network. Since both these

VPNs start and end at the same edge routers, they both can be overlaid on top of

an MPLS tunnel between the Seattle and New York PE routers.

MPLS frames encapsulate IP packets with an additional header that con-

tains one or more 20-bit MPLS labels in the form of a label stack. A router that

is capable of label switching uses the outer-most label in the stack to determine

the forwarding decision (the outgoing interface to transmit this packet) and one

of push, pop or swap operations on the outermost label header. Push operation

into the label stack is typically performed when an unlabeled packet that needs to

be mapped on to an MPLS tunnel first enters the provider’s network. Similarly,

pop operation is performed when an MPLS packet exits the tunnel. Intermediate

routers in the tunnel swap the incoming label with a new outgoing label (based on

the state in the MPLS forwarding tables).

MPLS tunnels are set-up using either of two protocols, the label distribu-

tion protocol (LDP) [8] or reservation protocol (RSVP) [100]. In many providers,

the exact path followed by a tunnel is often dictated by the underlying IGPs.

For example, in the Figure II.3, the MPLS tunnel between Seattle and New York

routers rides along the shortest path identified by the IGPs. Therefore, underlying

IGP changes in topology triggers re-establishment of label switched paths between

the tunnel end-points using either LDP or RSVP. Many other details of MPLS

and administering VPNs using MPLS can be found in [21].

While we have so far described the basic Internet architecture as well as

VPNs, there are several other facets of modern ISP networks that we have not

addressed. For example, multi-homing [6] that allows enterprises to access the

Internet from multiple service providers is another feature commonly provided to

many customers. In general, providing these vast variety of services with different

20

requirements requires careful management of network resources, thus presenting a

signficant challenge to service providers. Not surprisingly, service providers spend

a lot of effort and capital on various aspects of network management such as con-

figuration, provisioning and performance management. We describe these various

aspects of network management in more detail next.

II.C Network management

The essential task of managing a given AS lies with the particular service

provider. In this section, we provide an overview of network management, in

particular describing some of the most common network management tasks in

more detail.

II.C.1 Network provisioning

A large ISP network today comprises of about a thousand routers, as-

sisted by few hundred thousand network elements at physical and data-link layers.

Network provisioning refers to the task of properly configuring these routers and

other optical network elements to fulfill various objectives of the service provider.

A real ISP network today offers many different types of services to various cus-

tomers; proper provisioning is required to ensure that the network resources are

configured to meet the service demands of customers, while ensuring conformation

to the policies. This includes properly configuring the right protocols to use for

various types of traffic (e.g., MPLS for VPNs), providing quality-of-service guar-

antees for particular types of traffic, and even choosing the right technology to use

for a particular service (e.g., IP layer protection vs optical protection).

In addition to the initial configuration to boot-strap the network, a net-

work operator needs to continuously perform planned maintenance and upgrade

of both software as well as hardware components in the network. As technology

evolves, the services offered by the particular ISP also mature in both variety as

21

well as granularity, thus making provisioning a continuous task for a network oper-

ator. However, this evolution in technology is often at large time-scales (typically

months to years), and, hence, is not the most pressing day-to-day task of a network

operator.

II.C.2 Quality of service

The Internet has been designed mainly for providing a best-effort com-

munication service with no performance guarantees. However, the transition from

the experimental to commercial Internet requires performance guarantees. This is

especially true due to the maturing of rich media such as voice and video on the

Internet. In addition, VPNs require SLA guarantees from the service provider,

that includes traffic isolation, bandwidth guarantees and so on. Providing quality

of service (QoS) is therefore an important aspect of network management that a

network operator has to deal with. While configuring the routers to provide service

guarantees is an essential aspect of provisioning, service providers rely on several

router-level mechanisms to provide the required QoS features in their network.

More than a decade of research has gone into designing efficient router-

level mechanisms for providing performance guarantees in the Internet (e.g.,

[11, 22, 53, 80, 89]). In addition, for scalability reasons, these routers provide

QoS at the granularity of classes instead of providing per-flow guarantees. From

a user perspective, it is important to guarantee end-to-end QoS, not just at any

given router or with in any given AS. Inter-domain QoS has proved to be difficult

in practice, with the result that service providers typically confine themselves to

providing QoS within the AS. In spite of all the research, we believe that QoS will

continue to be an active area of research, more importantly, as service providers

expand beyond the traditional best-effort service model. Similar to network pro-

visioning, QoS aspects of network management affect a service provider at large

time scales.

22

II.C.3 Traffic engineering

Traffic engineering is the art of mapping flows onto IP links, and is quite

related to provisioning. A service provider performs traffic engineering to manage

the installed capacity effectively and efficiently and to enhance end-user perceptions

of network service quality while minimizing costs. Traffic engineering depends on

having a set of performance objectives that guide the selection of paths, as well as

effective mechanisms for the routers to select paths that satisfy these objectives.

While many mechanisms exist in the literature for effective traffic engi-

neering (e.g., [27, 33, 44, 50, 103]), it continues to remain an active area of research,

as new services evolve and new applications (e.g., peer-to-peer networks, IP tele-

vision) are developed. While traffic engineering is typically performed on large

time-scales, network operators also constantly adjust traffic in response to short-

term unanticipated events such as flash crowds, denial-of-service (DoS) attacks or

failures.

II.C.4 Attack mitigation

While the very success of the Internet is due to its open model in which

any computer can send to any other computer, this openness also allows attackers

to send malicious messages that can cause damage to other hosts and networks,

sometimes at great cost. From a service provider perspective, even in the presence

of router-level QoS mechanisms discussed above, congestion can occur at various

locations in the network due to denial-of-service (DoS) attacks. DoS attacks and

worms can result in huge volumes of traffic chewing up bandwidth and other valu-

able resources in the network. Hence, network operators often employ mechanisms

in the network to detect and mitigate such attacks.

There is a large body of literature dealing with in-network mechanisms

to thwart the effect of such attacks (e.g., [28, 42, 52, 60, 98, 97]). While attack

detection and mitigation continues to remain an important challenge to network

operators, many of the afore-mentioned mechanisms help operators deal with at-

23

tacks effectively. In addition, such attacks only congest the network degrading the

service quality due to their high volumes, but the network still remains connected

in many cases. In contrast, failures are in many cases more fatal that bandwidth

based attacks, since depending on the particular failure scenario, faults can com-

pletely partition the network; many customers can be out of network connectivity

for a significant amount of time. Therefore, we believe that that fault management

is perhaps the most (or at least one of the most) important aspects of network

management. Given that fault management is the primary focus of this disser-

tation, we discuss the various aspects of fault management in detail in the next

section.

II.D State-of-the-art fault management

The essential task of fault management is the detection, localization and

correction of any performance degradation in the network. The first step in fault

management is fault detection. To assist fault detection, many network elements

(such as routers) are designed to continuously monitor certain behaviors (e.g., link

connectivity) and raise an alarm in the event of a failure. These alarms, however,

only indicate that a network element observed a deviation from normal behavior

(e.g., link failure or probe packet loss); the actual fault could lie anywhere in the

network (e.g., a downstream router reboot or optical amplifier failure). Thus, fault

localization needs to be performed to identify (or or at least narrow down) the root

cause of the failure. Once the root cause is obtained, an operator can take proper

repair actions necessary to permanently fix the failure. We discuss these three

steps, i.e., fault detection, localization and repair, in more detail in this section.

II.D.1 Fault detection

It is a fact of life that network elements fail. Not surprisingly, network

elements are often equipped with basic mechanisms to monitor and observe failures

24

and generate alarms whenever a failure condition is observed. The network ele-

ments are also designed to “self-heal” from failures by re-routing packets through

other paths. Therefore, routers continuously monitor connectivity to their neigh-

bors in order to check whether a link is functional. As soon as a router determines

that a link has failed, they re-route packets through other links that are functional.

A network operator still needs alarms from the routers that a link has failed. This

is because the network operator needs to fix the problem permanently and restore

connectivity quickly; otherwise, there could be a second or a third failure that

could disrupt traffic.

At the link level, routers continuously monitor connectivity to their neigh-

bors by using one of two mechanisms. First, routing protocols such as OSPF and

IS-IS periodically (typically once every ten seconds) inject connectivity probes,

called “HELLO” messages, to the other end of the link [65]. If any given router

does not receive a few (typically four) consecutive HELLO messages, the router

concludes that the link is down. Second, lower layers such as SONET can indicate

that the physical level connectivity between two routers is down. For example, an

optical interface on the router can detect that there is no physical signal and can

generate a loss of signal (LoS) alarm, which can then be used by the network layer

to determine that the link is down. In both these cases, the router generates an

alarm that can be used by the operator to fix the problem.

In some cases, particularly in the VPN-over-MPLS setting, link-level con-

nectivity alone is not sufficient to guarantee that end-to-end paths are in tact. In

such cases, the network elements themselves directly do not detect disruption in

connectivity, and hence do not automatically re-route. Therefore, network op-

erators detect such failures by injecting active probes periodically between mea-

surement servers that are connected to routers at the edge of the network. The

measurement servers, as soon as they detect end-to-end performance problems,

can raise an alarm so that the network operator can then fix the problem quickly.

While the above monitoring mechanisms detect that a particular failure

25

has happened, that too within a short duration of the failure (typically a few

seconds), they fail to indicate the root cause of the failure. For example, the loss of

IGP “HELLO” messages enables a router to detect a link failure and subsequently

generate an alarm to a network operator. However, the alarm by itself does not

indicate to the operator whether the failure is because of an optical amplifier failure

or a fiber cut. Therefore, an operator performs fault localization to determine the

location of the failure.

II.D.2 Fault localization

Unless the root cause for the failure is known, nececssary repair actions

cannot be taken. In many cases, the total duration of failure—from detection to

repair—can be dominated by the amount of time it takes to identify the root cause.

Fast fault localization, therefore, can significantly cut down the duration of failure.

It is not surprising, therefore, that a number of research prototypes [17,

23, 36, 58, 68, 70] and commercial products have been developed to diagnose

problems in IP and telephone networks. Commercial network fault management

systems such as NetFACT [38], OpenView [39], IMPACT [41], EXCpert [68], and

SMARTS [81], provide powerful, generic frameworks for handling fault indicators,

particularly diverse SNMP-based [16] measurements, and rule-based correlation

capabilities. These systems present a unified reporting interfaces to operators and

other production network management systems.

While such systems assist network operators with simple alarm corre-

lation capability to reduce the number of alarms, fault localization still is pre-

dominantly performed in a manual fashion. For example, on a link failure, many

optical elements along the link can generate an alarm indicating the optical cir-

cuit is down. Simple correlation systems club them together into one operational

ticket used by the operators to manually localize the root cause. Localization in

such cases, involves the operator verifying which among the several optical compo-

nents has failed along the optical circuit. Therefore, fault localization can be both

26

slow as well as labor-intensive. The main focus of this dissertation is to provide

automated mechanisms for fast and accurate fault localization.

II.D.3 Repair

Once the fault is localized, depending on the nature of the fault, the

condition can be repaired relatively easily. For example, once a network operator

diagnoses a fault and finds that an optical amplifier has failed, he/she can replace

the optical amplifier very fast. In more complicated failure conditions, such as

a software bugs, it might still be easier to put a temporary fix before the exact

nature of the problem is reproduced in the lab and a permanent fix is found for

the particular problem.

II.E Summary

In this chapter, we have provided an overview of the architecture of to-

day’s service provider networks. In particular, we have focused on both public-

domain Internet as well as enterprise virtual private networks, and pointed out

that ISPs today offer a wide variety of services that need to be efficiently managed

and administered. Therfore, the second part of the chapter focused on various

network management functions of a typical Internet service provider. We argued

that, while a typical network operator has to deal with several different network

management functions, such as provisioning, QoS services, traffic engineering and

attack mitigation, a significant amount of time and effort is spent towards effective

fault management. We outlined three major components in fault management—

fault detection, localization and finally repair—of which fault localization is both

slow as well as labor-intensive thus dominating the overall down-time (from de-

tection to failure) of a particular fault. In the next chapter, we develop a general

methodology for fault localization that we apply towards specific failure scenarios.

Chapter III

Risk-modeling approach

Operational backbone networks are intrinsically exposed to a wide variety

of faults and impairments. With the growing variety of services offered by ISPs

today and the ever-increasing complexity of protocols, software and hardware, ser-

vice providers are constantly engaged with a wide variety of complex failure modes

that often prove to be difficult to detect, diagnose and recover from. The complete

spectrum of faults in backbone networks is too large to explore and perhaps one

solution cannot possibly address them all. In this dissertation, therefore, we focus

on two different types of faults that commonly appear in practice—IP link failures

and MPLS black holes.

In IP link failures, while current state-of-the-art monitoring systems

within network elements (e.g., routers, optical amplifiers, DWDM systems) gen-

erate alarms on detecting a link failure, they do not automatically report the

exact location of the failure. For example, a failure at an optical amplifier trig-

gers alarms at IP, PPP and optical layers and across various components. These

alarms, however, do not directly indicate that an optical amplifier failed, thus re-

quiring a labor-intensive fault-localization step to identify the root cause of the

failure. Experience has shown that the mean time to repair is often dominated by

the localization step; in many cases traffic is immediately recovered once localized

and the failure is resolved offline.

27

28

Second, in the context of VPNs provided by ISPs, as we have discussed

before in Section II.B, customer VPNs are set up using MPLS tunnels between

provider edge routers. These MPLS tunnels in turn use IGP protocols such

as OSPF or IS-IS to determine the exact forwarding path within the AS. A

“black hole” scenario can occur when the underlying IP infrastructure may be

operational—each IP hop along the route is functioning properly—but the corre-

sponding MPLS tunnel fails to deliver packets. Such a black hole can be silent in

nature, with no alert/alarm indicating that the MPLS tunnel is actually broken.

In such catastrophic cases, potentially many customers are out of service for ex-

tended periods of time—until the failure can be detected, localized and action be

taken to recover (re-route) traffic.

At first glance, these two failure scenarios appear completely different,

one involving IP links and the other involving MPLS tunnels. However, the ba-

sic abstraction is quite similar—faults result in loss of connectivity or performance

degradation across multiple entities. Therefore, while fault-localization approaches

are typically problem-dependent, we show that a methodology based on risk mod-

eling is efficient in localizing the root cause in both of these failure scenarios. Of

course, we still need to take into account particular domain-specific constraints

and challenges before applying the risk-modeling approach for these two problem

domains. In this chapter, we describe the abstraction and algorithmic approaches

for fault localization leaving the problem-specific aspects to later chapters.

The rest of this chapter is organized as follows. First, we provide the basic

terminology used throughout the dissertation in Section III.A. Next, we formally

describe the risk-modeling abstraction in Section III.B. Finally, we outline the

algorithmic approach we use in this dissertation in Section III.C, followed by a

summary of previous approaches to the problem in Section III.D. Finally, we

summarize this chapter in Section III.E.

29

III.A Terminology

We begin by defining the notation we shall use throughout the remainder

of the dissertation. A symptom is defined to be an observable event that is indica-

tive of a failure in the network. Typically, monitoring systems in the network are

designed to detect various symptoms associated with a given failure. For example,

if a link fails in the network, an alarm is generated by routers at both ends of

the link with a timestamp indicating the exact detection time of the link failure.

These alarms represent the symptoms observed in the network.

We use the term root cause to denote the main reason for a particular

failure in the network. For example, a laser failure in an optical amplifier can be

the root cause for a failure. Similarly, a bug in a routing protocol module within a

router could also be a root cause. The granularity of a root cause, however, varies

significantly depending on the situation. For example, along an end-to-end path

spanning several ASes, it is meaningful to call one particular AS the root cause

for problems along the particular path. On the other hand, a router or an optical

amplifier could be the root cause for problems that occur on a given link.

A risk group is a set of symptoms dependent on a given root cause. If

a failure occurs with a given root cause, then the set of symptoms that would

be observed because of that failure constitutes a risk group. For example, let us

suppose that if some component A fails, then symptoms B, C and D would be

observed. Then, A is the root cause while the symptom set {B, C, D} constitutes

the risk group. A risk model is an association between several different root causes

and sets of symptoms corresponding to each root cause.

We define a failure signature as a group of correlated symptoms. In

practice, symptoms are monitored by different network elements, and, thus, are

observed individually. Therefore, a failure signature is typically obtained by group-

ing together symptoms which are correlated either temporally or otherwise. The

specific mechanism to correlate symptoms is problem dependent. One heuristic

30

that we use in this dissertation is temporal clustering, where we form the failure

signature by grouping together symptoms that are observed almost simultaneously.

Temporal correlation, however, is not a necessary condition. For example,

if there is a particular software bug in the routers, then the root cause is the

particular version of software running in the routers. However, this bug might not

cause all the routers to exhibit an associated symptom at the same time, although

they share the same root cause. It is also important to recognize the difference

between a failure signature and a risk group. A failure signature is formed by

correlating observed symptoms, and, thus, is reflective of coincidence. On the

other hand, a risk group refers to a direct dependency between a root cause and a

set of symptoms, and thus represents causality.

Finally, we define a hypothesis to represent a candidate set of root causes

that could explain the failure signature. By “explain,” we mean that each symptom

in a failure signature should have direct causality with at least one of the root

causes in the hypothesis. The term ground truth is often used to denote the real

root cause of a failure. In contrast to the ground truth, a hypothesis consists of

root causes inferred from symptoms, while the ground truth constitutes reality.

Ideally, each symptom corresponding to every root cause in the ground

truth will be observed in the failure signature. However, this observation is not

always guaranteed, as there could be symptoms missing from the failure signature

because of inaccuracies in the detection or reporting system. In some other cases,

spurious symptoms could be added to the the failure signature due to inherent

noise in the network. Thus, a hypothesis is merely a set of root causes that explain

the symptoms in the failure signature, regardless of whether there are extra and/or

lost symptoms in the failure signature.

The goal of a fault-localization algorithm is to output a hypothesis that

approximates the ground truth as closely as possible. Using this hypothesis, a

network operator navigates through the potential root causes and determines which

root cause is responsible for the problem in order to repair it permanently. In the

31

next section, we describe the fault-localization problem formally.

III.B Theoretical problem formulation

We can define the problem formally as follows. Given a set of root causes,

C = {c1, c2, . . . , cn}, and a set of symptoms S = {s1, s2, . . . , sm}. Each root cause,

ci ∈ C, is associated with a set of symptoms Si = {si1, si2, . . . , siu} ⊂ S that would

be observed if that particular root cause ci fails. Given an input failure signature

consisting of a set of symptoms, F = {sj1, sj2, . . . , sjv} ⊂ S, the problem is to

identify the best possible hypothesis, H = {ck1, ck2, . . . , ckw} ⊂ C such that H

explains F , i.e., every symptom in F is associated with at least one root cause in

H .

The hypothesis H is essentially a set of symptom sets, since each ci can

be re-written as the symptom set Si, i.e., H = {Si1, Si2, ..., Sik}. In the literature,

given a set F , any set of sets H , such that the union of all the sets in H equals F ,

i.e.,
⋃

Sil = F, ∀Sil ∈ H , is referred to as a set cover [46]. In general, for a given

set F , there can exist many set covers H . In other words, multiple hypotheses can

exist for the same signature. Therefore, the notion of what constitutes the best

hypothesis needs to be precisely stated. If we have access to an oracle, we can

enumerate all possible hypotheses and ask the oracle to pick the best hypothesis.

In practice, however, we do not have access to such an oracle. Therefore, we

use probabilities to rank different hypothesis, and pick the one with the highest

probability. We split this discussion into two different cases depending on whether

all root causes are equally likely.

III.B.1 Case I: All failures equally likely

If all root causes are equally likely, i.e., each ci has equal chance of failure,

say with probability p, and are independent, then the probability of a hypothesis

of cardinality k is pk. Thus, the smaller the size of the hypothesis, the higher the

32

Associated symptoms

C
1

C
2

C
3

C
4

C
5

S
6

S
2

S
5

S
1

S
1

S
3

S
4

S
5

S
6

S
1

S
6

S
4

S
3

S
2

S
1

S
5

S
6

Root−causes

Figure III.1: An example risk model with associations between 5 root causes and

6 symptoms.

likelihood of the hypothesis; in many situations including the scenarios we consider

in this dissertation, therefore, we prefer simpler hypotheses as they are more likely.

Our preference is also in accordance with the general principle of Occam’s razor [5],

which is often stated as, “all things being equal, the simplest solution tends to

be the best one.” In our representation using set covers, therefore, the problem

reduces to identifying the minimum set cover for a given failure signature set F .

We illustrate the problem with the help of an example. In Figure III.1,

we show a risk model consisting of five root causes (labeled c1 through c5) and

six symptoms (s1 through s6). In many networks, dependencies are ground-up;

given a root cause we can identify the set of symptoms dependent on that root

cause. Naturally, we begin with such symptom sets to represent the risk model—

the relationship between root causes and symptoms—as shown in the Figure III.1.

For example, the root cause c1 has the set of symptoms {s1, s2, s5, s6} dependent

on it. Similarly, c2’s failure will affect the set of symptoms {s1, s5}. Notice that

both c1 and c2 have the symptoms s1 and s2 in common; thus, different root causes

33

BIPARTITE GRAPH REPRESENTATION

S
6

C
3

C
4

C
5

S
2S

1

C
2

C
1

S
4

S
3

S
5

Partition of Root−causes

Partition of Symptoms

Figure III.2: Risk-model representation using a bi-partite graph.

can have common symptoms. In general, therefore, a one-to-many and a many-

to-one (or jointly a many-to-many) relationship exists between root causes and

symptoms.

While it is natural to represent dependencies using sets, it is easier to

visualize the risk model using a bipartite graph as shown in Figure III.2. In the

top partition, the set of symptoms s1 through s6 are shown, while the bottom

partition contains the set of root causes c1 through c5. An edge exists from a root

cause ci to a symptom sj, if the failure of ci causes the symptom sj to be observed.

The goal of the localization algorithm therefore is to find the best hypothesis that

explains all symptoms in the failure signature. Therefore, at least one root cause

in the hypothesis should have an edge to each and every symptom in the failure

signature.

Given a set of symptoms, say {s1, s2, s5, s6}, as the failure signature, the

fault localization algorithm needs to determine a hypothesis, i.e., the minimum set

of root causes that can completely explain all the symptoms observed in the failure

signature. For the particular symptom set {s1, s2, s5, s6}, we would like the fault

localization algorithm to output H1 = {c1} as the root cause, since according to

the risk model, a failure due to c1 results in all the above symptoms to be observed.

34

For the same example, note that there is another competing hypothesis,

H2 = {c2, c4} that can explain all the observed symptoms in the failure signature.

The localization algorithm specifically does not know if the observed symptoms

are due to one or multiple failures. Thus, the question is how to pick between H1

and H2 in this case. As mentioned before, the likelihood of H1 is p and H2 is p2

if all root causes are equally likely to fail with probability p and are independent.

Thus, we would want the algorithm to produce H1, the simpler hypothesis, as the

best hypothesis for the given failure signature. Next, we look at the case when

this all failures are not equally likely.

III.B.2 Case II: All failures not equally likely

If all failures are not equally likely, it is not guaranteed that minimum

cardinality hypothesis is the most likely hypothesis. Therefore, we need to identify

the highest probability set cover for the failure signature, which in turn requires

failure probabilities for individual root causes. In some scenarios, characterizing

the probabilities of failures is feasible using either theoretical or empirical failure

rates. For example, [95] outlines failure rate statistics based on empirical observa-

tions from ISPs. Such empirical failure rates often prove to be valuable for many

network management tasks, including provisioning, capacity planning and traffic

engineering.

It is unclear, however, whether these failure probabilities can be as valu-

able in the context of fault localization. We believe this is because real ISP net-

works are constantly in a state of flux with new technologies deployed and old

equipment upgraded. Determining the failure models can be quite challenging, es-

pecially for newer technologies with little prior history (e.g., ultra long-haul optics).

In such cases, one can perhaps approximate using existing models that correspond

to obsolete technologies. However, it may not be desirable to use older and inac-

curate fault models, because they can lead to inaccurate biases in the hypothesis

output by the fault localization algorithm.

35

Therefore, in this dissertation, we use a structural approach to depen-

dency relationships, by constructing the set of symptoms that directly depend on

a root cause. If a certain symptom is observed, all the associated root causes are

equally likely. The more symptoms we observe, the better we can disambiguate

between different root causes. However, we hasten to add that, one can adapt the

algorithms we proposed in this dissertation easily to scenarios where we not only

have access to failure probabilities but also trust them.

For the rest of the dissertation, therefore, we assume that all failures

are equally likely. Even with this simplifying assumption, we observed that our

localization algorithms were quite effective in localizing the root causes in several

empirically observed failure scenarios. In addition, we note that this assumption

in fact reduces the run-time complexity of the localization algorithm significantly,

which is an important requirement for any practical system. Thus our algorithms

exhibit better scaling properties, as we apply our algorithms to large backbone

networks with several thousand to millions of symptoms and root causes. In the

next section, we describe our core algorithmic approach in more detail.

III.C Algorithmic framework for fault localization

As noted before, assuming all failures can occur with equal probability,

the goal of the fault localization algorithm is to identify the minimum set cover

for a given set of symptoms in a failure signature. Finding minimum set cover is

a classic problem that has been shown to be NP-complete in [46], thus is com-

putationally expensive. Fortunately, however, an approximation algorithm using

a greedy approach exists for the minimum set cover problem [74]. Further, the

greedy approximation is guaranteed to find a set cover with cardinality no more

than O(log n) times the size of the minimum set cover. More important than this

bound on the cardinality, the greedy approach is effective in identifying those set

of root causes that are the most significant, i.e., those that explain the most set of

36

Algorithm 1 GREEDY(FailureSignature F)

1: E = {}; // Explained set

2: U = F;

3: H = {}; // Hypothesis set

4: R = {}; // RootCauseVector

5: while (U 6= {}) do

6: for (symptom s ∈ U) do

7: //All root causes associated with s

8: R = R
⋃

getAllRootCauses (s);

9: end for

10: //Calculate metrics for comparing root causes

11: calculateMetrics(R, F);

12: bestRootCausesSet = identifyCandidates(R);

13: //Move observations covered by root causes in bestRootCausesSet

14: //from U to E

15: moveSymptoms(bestRootCausesSet, E, U);

16: addToHypothesis(H, bestRootCausesSet);

17: end while

18: return H;

symptoms in a given failure signature. It is this feature of the greedy approach in

addition to low run-time complexity that makes it appropriate for the problem at

hand.

The greedy approximation algorithm for fault localization, GREEDY, is

shown in Algorithm 1. GREEDY initializes two sets E and U to the null set φ

and the failure signature F respectively. The sets E and U correspond to the

explained and unexplained set of symptoms in F . Then, GREEDY first obtains a

root-cause vector R, that contains the union of all root causes associated with at

least one symptom s ∈ F (i.e., have an edge between s and that particular root

37

cause). It then computes a greedy metric for each root cause in R as a function

of the failure signature F , in the calculateMetrics() routine. In the next step,

GREEDY returns the best candidate root causes ranked based on the metrics

associated with each root cause in R in the identifyCandidates() function. It

then prunes the set of observations explained by these candidate root causes (in

moveSymptoms()) from the unexplained set U to E and repeats the process until

no more symptoms remain in the unexplained set U .

The greedy approximation to the classic set-cover problem picks the sets

covering most number of elements in every iteration [74]. However, depending

on the particular problem, the algorithm can be adapted to use additional de-

grees of freedom in selecting the right candidate in every iteration. For example,

we can choose to consider only those root causes for which all the symptoms as-

sociated with the root cause are found in the failure signature, irrespective of

whether a large majority of symptoms in the failure signature are being explained

by that particular given root cause. To preserve such flexibility, we abstract the

identifyCandidates() and calculateMetrics() routines as black boxes. We de-

scribe these routines in detail when we apply the algorithm to specific localization

problems later in the dissertation.

Depending on the particular problem, there could be other imperfections

that need to be taken into account while designing the right fault localization

algorithm. These imperfections include spurious and lost symptoms in the failure

signature and inaccuracies in the risk models that we describe briefly next.

III.C.1 Imperfections in failure signature

In most real networks, there is inherent noise due to various types of

routing, congestion, maintenance and other related events. Due to this noise,

there could be spurious symptoms in the failure signature that are not directly

related to the particular real failures that we are localizing, thus complicating lo-

calization. Besides noise, inherent inefficiencies in the detection system or loss of

38

certain symptoms during reporting due to unreliable transport mechanisms could

lead to an incomplete failure signature. The extent of both these imperfections

varies based on the particular domain, and, therefore, has to be dealt with sepa-

rately for each domain.

III.C.2 Imperfections in the risk model

As is the case with the failure signature, there are likely to be imperfec-

tions in the risk model as well. These imperfections stem from inherent churn in

the network and once again depend on the particular failure domain under con-

sideration. Depending on whether the risk model is dynamic, the risk model may

need to be refreshed at an appropriate frequency. In addition, risk models can

potentially drift away from reality leading to errors in the database. These errors

can affect the localization results and hence must be factored into the localization

algorithm. Because these operational realities are problem-dependent, similar to

the imperfections in failure signature, we defer to the subsequent chapters when

we apply the algorithms to the particular scenarios to explain how we adapt to

these operational constraints.

In the next section, we review other algorithmic choices, besides the

greedy approximation to minimum set-cover, for fault localization that have been

previously proposed in the literature.

III.D Previous approaches

While our focus in this dissertation is in the context of backbone net-

works, many other similar problems have been observed in practice (for a more

thorough survey, please see [87]). In a majority of these problem scenarios, the risk

model is typically represented as a bipartite graph, that encodes the dependencies

between symptoms and the actual faults, similar to our risk-model representation

[17, 31, 48, 49]. However, the particular solution techniques are usually specific

39

to the particular fault localization problem they solve. This is primarily because

operational constraints often dictate the feasibility of a given technique.

Regardless of domain, fault detection systems have taken three basic ap-

proaches: rule or model-based reasoning [39, 12, 32], codebook approaches [81, 99],

or machine learning (such as Bayesian or Belief Networks [96, 85, 19]). Rule-based

and codebook systems (otherwise known as “expert systems”) are often even more

specific, only being able to diagnose events that are explicitly programmed. Model-

based approaches are more general, but require detailed information about the

system under test. Dependency-based systems like ours, on the other hand, allow

general inference without requiring undue specificity. Indeed, the specific use of

dependency graphs for problem diagnosis has been explored before [34, 86] but not

for the particular problems we consider in this dissertation. Finally, the difficulty

with probabilistic or machine learning approaches is that they are not prescriptive:

it is not clear what sets of scenarios they can handle besides the specific training

data. In addition, such approaches tend to be too slow when the number of nodes

in the network is large such as ours.

Perhaps, the closest to our greedy approach on bipartite risk model is a

Bayesian network [45, 86]. Using a prior distribution of probabilities (or assuming

all probabilities identical) to each root cause, Bayesian analysis approaches attempt

to identify the most probable hypothesis for a given set of observed symptoms.

Given an assignment of 0 or 1 to a random variable representing the state of

all the symptoms, (s1, s2, ..., sn), the Bayesian inference algorithm finds the most

likely joint assignment of values to random variables representing the root causes,

(c1, c2, ..., cm).

arg maxc1,...,cm
P (c1, c2, ..., cm|s1, s2, ..., sn)

where ci ∈ {0, 1} and si ∈ {0, 1}.

The basic Bayesian approach as explored in [86] does not automatically

deal with inaccuracies stemming from operational realities. It is also computation-

ally expensive and hence does not scale well. Shrink [45] addresses these limita-

40

tions by using two techniques. First, it augments additional edges in the bipartite

graph to represent errors in the model. Second, it hypothesizes that the number

of simultaneous failures is always less than a pre-determined k, typically k < 4.

By exhaustively trying out
(

n

k

)

failure assignments and computing the associated

probabilities, the algorithm performs in O(nk+1) time complexity which is typically

much faster than the general approach in [86].

While Shrink addresses some of the basic problems with general Bayesian

inference approaches, still, the algorithms are generally not easily applicable in our

problem domains due to two reasons: First, although Shrink brings down the com-

plexity to polynomial time, O(n4) is typically large for the problem domains under

consideration in this dissertation. Second, Bayesian approaches fundamentally re-

quire access to the complete risk model, which as we shall show in Chapter V is

not always true in practice. While one of the advantages claimed by the Bayesian

approaches is that they can easily incorporate prior distribution of failure prob-

abilities (for individual root causes), our basic greedy can easily be extended to

incorporate weights with each root cause as well.

III.E Summary

In this chapter, we described two fault-localization problems considered

in this dissertation. Both these problems share the same basic abstraction, in

which each fault affects multiple entities simultaneously that are monitored in the

network. Based on this abstraction, we developed a risk-modeling methodology

that creates a risk model (i.e., a dependency relationship) between a set of root

causes with a set of symptoms monitored in the network. Given a set of observed

symptoms and the associated risk model, the goal of the fault-localization algo-

rithm is to infer the root causes that can explain the set of observed symptoms. We

showed that this problem can be stated as finding a set cover for the set of observed

symptoms. If all failures are equally likely, then the most probable hypothesis is

41

in fact a minimum set cover. Because finding minimum set cover is NP-complete,

we approximate finding minimum set cover using a greedy approach which we out-

lined in Algorithm 1. Finally, we reviewed some operational imperfections that

a localization algorithm needs to taken into account. These imperfections, how-

ever, are problem-domain dependent; hence, we explain how the algorithms can

be adapted in the next two chapters, when we apply the risk-modeling approach

to the particular problems.

Chapter IV

IP Link Fault Localization

In this chapter, we apply the risk-modeling methodology developed in the

previous chapter to the specific problem of fault localization across IP and optical

network layers, a daunting problem faced by network operators today. Currently,

when network operators receives router-interface alarms indicating link failures,

they are often faced with time-intensive manual investigation determining which

layer the problem occurred, where, and why. This task is hampered by the ar-

chitecture of the underlying network: IP uses optics for transport and (in some

cases) for self-healing services (e.g., SONET ring restoration) in an overlay fashion.

The task of managing each of the two network layers is naturally separated into

independent software systems.

Joining dynamic fault data across IP and optical systems is challenging—

the network elements, supporting standards and information models are totally

different. Though network operators routinely use fields, such as circuit IDs, to

join databases across IP and optical databases, they indicate the lack of automated

mechanisms to ensure the accuracy of these joins. Unfortunately, the network el-

ements and protocols provide little help as well. Path-trace capabilities (counter-

parts of IP traceroute) are often not available at the optical layer, and, even when

available, do not work in a multi-vendor environment (e.g., where the DWDM sys-

tems are provided by multiple vendors). In optical systems such as SONET, there

42

43

is no counterpart to IP utilization statistics, which might be used to correlate traf-

fic at the IP layer with the optical layer. Both IP and optical network topologies

are rapidly changing as equipment is upgraded, network reach is extended, and

the topologies and capacities are re-engineered to manage changing demands.

One of the key contributions of this dissertation is the application of our

risk-modeling methodology to localize faults across the IP and optical layers in

operational networks. Roughly speaking, a physical object such as a fiber span or

an optical amplifier represents a shared risk for a group of logical entities (routers

or IP links) at the IP layer. That is, if the optical device fails or degrades, all of the

IP components that had relied upon that object fail or degrade. In the literature,

these associations are referred to as shared risk link groups or SRLGs [18]. Using

only event data gathered at IP layer, and topology data gathered at both IP and

optical layers, we bridge the gap between the operational information network

managers need and what is actually reported at IP layer. Our system assists

operators alleviate the burden of cross-correlating dynamic fault information from

two disparate network layers. Once the layer and the location of the fault has

been determined, other systems and tools at the appropriate layer can be targeted

towards identifying the precise characteristics (for example, rule-based or statistical

methods [39, 81]) of the particular failure sometimes required before repair can be

performed.

The rest of this chapter is organized as follows: First, we discuss trou-

bleshooting IP link failures using SRLGs in Section IV.A. Then we describe the

application of risk-modeling methodology in the context of IP fault localization

in Section IV.B, including dealing with imperfections stemming from operational

constraints. Next, we discuss the system architecture in Section IV.C followed

by evaluation using simulations as well as real failure data in Section IV.D and

Section IV.E respectively.

44

IV.A Troubleshooting IP link failures using shared-risks

Faults that affect IP layer performance come in many flavors—some disap-

pear of their own accord, and are thus never investigated or are investigated offline

to identify chronic conditions. Others, such as fiber cuts, can cause a number of

links in the network to fail simultaneously; impacted capacity remains unavailable

until the failure is repaired. In addition to faults which affect capacity, networks

are also subject to failure modes which impair performance—such as by intro-

ducing errors into packets transmitted through the network. For example, very

low level spurious errors are a fact of life with optical transmission systems, but

typically have minimal or no impact on customer service [72]. However, as com-

ponents degrade over time, these error rates can increase and can start impacting

IP layer services. Thus, it is critical for operators to be repair such performance

degradations pro-actively before they turn catastrophic.

Network operators in large-scale IP networks need to detect and rapidly

troubleshoot before they can repair a failed component or a performance degrada-

tion. Thus, the life-cycle of a typical fault involves the following steps.

• Network monitoring. Network elements and components are continually

monitored, with notifications generated in the form of SNMP [16] traps or

alarms when “problematic” conditions arise. A centralized management sys-

tem collects and correlates these alarms to eliminate duplicates and dampen

intermittent faults that do not require immediate further investigation (left

for offline analysis).

• Fault localization and diagnosis. Once a fault has been reported, network

operators must determine the root cause before it can be repaired. Typically,

the job of isolating and diagnosing a problem requires highly skilled staff to

collect relevant information regarding the failure, and gather additional data

to assist in the diagnosis.

• Verifying components. As part of diagnosis, supporting performance, topol-

45

ogy and other information can be critical to isolating and further verifying

the problem. In some cases, by purely trying out all combinations and wild

guesses, operations try and troubleshoot the problem.

• Repair. After the troubled component is isolated and the problem identified,

an appropriate course of action must be determined and repair actuated.

In simple fiber cuts, this will likely involve sending personnel out into the

field to splice fibers. However, other types of problems may require software

“bug” fixes or configuration changes.

Depending on the root cause of a fault, diagnosis and repair can be very time

consuming. Numerous problems arise in managing large networks where it is ex-

tremely challenging to sort through the relevant data to identify the root cause of a

problem—particularly when it involves inter-layer inter-working, software or con-

figuration related faults or interactions. In most situations, networks are designed

to have sufficient capacity to re-route traffic around failures; so, as long as repair

is completed before another large failure, customers see little or no performance

impact. However, despite careful engineering practices, the edge of the network is

inherently a single point of failure—certain failures can interrupt customer service

until they are repaired. Rapid fault isolation and repair are thus of significant

importance here.

Network elements today, however, typically generate alarms on an indi-

vidual basis, thus requiring a manual correlation to determine that they are all

because of a common network element. For example, a router failure will appear

as a failure of all of the links terminating at that router. Best current practice

requires correlation of these link failures to determine that it was a router failure.

In some failure scenarios, it can be substantially more challenging to group indi-

vidual alarms into groups, and often difficult to even identify in which layer the

fault occurred (e.g., in the transport network interconnecting routers, or in the

routers themselves). By identifying the set of possible components that could have

46

caused the observed symptoms, risk modeling using SRLGs can serve as the first

step of diagnosing the root cause of a network problem.

IV.A.1 Shared risks in IP networks

Our challenge is to construct a model of risks that represents the set of

IP links that would likely be impacted by the failure of each component within

the network. The complexity of hardware and software upon which an IP net-

work is built implies that constructing a model that accounts for every possible

failure mode (e.g., individual circuit boards within a DWDM system) is impracti-

cal. Instead, we identify the key components of the risk model that represent the

prevalent network failure modes and those that do not require deep knowledge of

each vendor’s equipment used within the network. We hasten to add that the finer

the granularity of the risk model, the more precise the fault diagnosis can be.

The basic network topology can be represented as a set of nodes inter-

connected via links. Intra- and inter-domain routing protocols such as OSPF and

BGP operate with a basic abstraction of a point-to-point link between a routers.

Figure IV.1(a) illustrates the logical view of a simple network consisting of five

nodes connected via seven links or optical circuits. So if a fault occurs on a partic-

ular link (say CKT 1 in the figure), there would be a corresponding OSPF/BGP

message that refers to this failure.

Each inter-office IP link is carried on an optical circuit (typically using

SONET). This optical circuit in turns consists of a series of one or more fibers,

optical amplifiers, SONET rings, intelligent optical mesh networks and/or DWDM

systems [72]. These systems consist of network elements that provide optical to

electrical to optical (O-E-O) conversion and, in the case of SONET rings or mesh

optical networks, protection/restoration to recover from optical layer failures. Mul-

tiple optical fibers are then carried in a single conduit, commonly known as a fiber

span.

Typically, each optical component may carry multiple IP links—the fail-

47

A B

C

D

E

CKT 1

CKT 2

CKT 3

CKT 4

CKT 5

CKT 6

CKT 7

(a) Logical topology

��
��
��

��
��
��

��
��
��
��

A B

C

D

E

FIBER SPAN 1

FIBER SPAN 2 FIBER SPAN 3

FIBER SPAN 4

FIBER SPAN 5

FIBER SPAN 6

DWDM 1

DWDM 2

(b) Physical topology

Figure IV.1: Example topology showing logical as well as physical topologies of an

IP network. IP circuits in the logical topology share various optical components

in the physical topology

ure of these components would result in the failure of all of these IP links. We

illustrate this concept in the Figure IV.1(b), where we show the optical layer topol-

ogy over which the IP links are routed. In the Figure IV.1(b), these shared risks

are denoted as FIBERSPAN 1 to 6, DWDM 1 and 2. CKT 3 and CKT 5 are both

routed over FIBER SPAN 4 and, thus, would both fail with the failure of FIBER

SPAN 4. Similarly, DWDM 1 is shared between CKT 1, 3, 4 and 5, while CKT 6

and CKT 7 share DWDM 2.

In essence, each network element represents a shared risk among all the

48

links that traverse through this element. Hence, this set of links represents an

SRLG [43, 90], as we have discussed before. The concept of SRLGs is widely used

in the context of traffic engineering, where primary and backup paths are chosen

such that they do not have any SRLG in common. However, to the best of our

knowledge, we are the first to apply the notion of SRLGs to fault localization.

Note that our approach is mainly effective in scenarios where the root cause of the

failure affects many different IP links. If only one link fails, then our approach is

not as effective since the failure of another link cannot be used to disambiguate

between many different root causes. We now discuss the different types of SRLGs

that can be used to create the risk model for fault localization.

IV.A.2 Network SRLGs

We divide the risk model into hardware-related risks and software risks.

Note that this model is not exhaustive, and can be expanded to incorporate, for

example, additional software protocols.

Hardware-related SRLGs

• Fiber: At the lowest level, a single optical fiber carries multiple wavelengths

using DWDM. One or more IP links are carried on a given wavelength. All

wavelengths that propagate through a fiber form an SRLG with the fiber

being the risk element. A single fiber cut can simultaneously induce faults

on all of the IP links that ride over that fiber.

• Fiber Span: In practice, a set of fibers are carried together through a cable.

A set of cables are laid out in a conduit. A cut (from, e.g., a backhoe) can

simultaneously cause all links carried through the conduit to fail. These set

of circuits that ride through the conduit, therefore, form a fiber span SRLG.

• SONET Network Elements: We collectively group the SONET network ele-

ments together to the SONET SRLG category: these consist of optical am-

49

plifiers, add-drop multiplexers (used to construct optical rings), and DWDM

O-E-O converters and other similar components.

• Router Modules: A router is usually composed of a set of modules, each

of which can terminate one or more IP links [1]. A module-related SRLG

denotes all of the IP links terminating on the given module, as these would

all fail should the module die.

• Router: A router typically terminates a significant number of IP links, all of

which would likely be impacted by a router failure (caused by either router

software or hardware). Hence, all of the IP links terminating on a given

router collectively belong to a router SRLG.

• Ports: An individual link on a router can also fail due to the failure of a

single port on the router (impacting only the one link), or through other

failure modes that impact only the single link. Thus, we also include Link

SRLGs in our model. Note that, even though each port is a singleton set

consisting of only one link, still, it is important to consider them in the risk

model because otherwise, we would miss ports from being root causes in the

risk model.

Software-related SRLGs

• Autonomous System: An autonomous system (AS) is a logical grouping of

routers within a single enterprise or provider network (typically managed by

a common team and systems). These routers typically all run a common

instance of intra-domain protocol software. Hence, although extremely rare,

a single IGP software implementation bug can cause an entire AS to fail.

• OSPF Areas: Although an OSPF area is a logical grouping of a set of links for

intra-domain routing purposes, there can be instances where a faulty routing

protocol implementation can cause disruptions across the entire area. Hence,

the IP links in a particular area form an OSPF Area SRLG.

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

C
D

F

SRLG Cardinality (no. of links per group)

Fiber Spans
Fiber

SONET Network Elements
Ports

Router Modules
Routers

Areas
Aggregated Database

Figure IV.2: CDF of shared risks among real SRLGs.

Not all SRLGs have corresponding failure diagnosis tools associated with

them. For example, a fiber span is a physical piece of conduit that generally

cannot indicate to the network operator that it has been cut. Similarly, there

is no monitoring at the OSPF area level that can indicate if the whole area was

affected. Diagnosis is therefore based on inference from correlated failures that

can be attributed to a particular SRLG. In the absence of monitoring information

directly from the equipment, this is the only known approach to localize the root

cause of the failure in the network.

IV.A.3 Shared risk in real networks

Fault localization using spatial correlation is inherently enabled by rich-

ness in the overlaps between between SRLGs. In particular, spatial correlation will

typically be most effective in networks where SRLGs consist of multiple IP links,

and each IP link consists of multiple SRLGs. Figure IV.2 depicts the cumulative

distribution function (CDF) of the SRLG cardinality (the number of IP links in

each SRLG) in a segment of a large tier-one IP backbone network (in particular,

51

customer-facing interfaces are not included here). The figure shows the cumulative

distribution function (CDF) of both individual SRLGs as well as for the aggregated

database. We can observe from this figure that, as expected, OSPF areas typically

consist of a large number of links (and, hence, are included in their SRLG), whereas

port SRLGs (by definition) comprise only a single circuit. In between, we can see

that fiber spans typically have a significant number of IP links sharing them, while

SONET network elements typically have fewer. The important observation here

is that there is a significant degree of sharing of network components that can

be utilized in spatial correlation. Studies of the number of SRLGs along each

IP link show similar results. Thus, we conclude that risk modeling using SRLGs

holds great promise for large-scale IP networks. We describe the application of

risk modeling to IP fault localization in the next section.

IV.B Fault localization using risk modeling

Given the risk model constructed using SRLGs and link failure notifica-

tions from routers, the essential problem of IP fault localization is to determine

the set of SRLGs that can explain a given set of link failure notifications. It is

easy to observe that this problem can be directly reduced to the general fault-

localization problem formulation in Section III.B, with link failure notifications li

corresponding to the symptoms si, and SRLGs gj to the root causes cj . Therefore,

given an input failure signature comprising of link failures, F = {li1, li2, . . . , lin},

therefore, the goal is to identify the hypothesis, H = {gh1, gh2, . . . , ghk} such that

H is a minimum set cover for F , assuming all root causes gj can occur with same

probability.

Similar to the representation in Section III.B, we can also model the

problem using a bipartite graph as shown in Figure IV.3. Each link, li, and group,

gj, is represented by a node in the graph. The bottom partition consists of nodes

corresponding to the risk groups; the top nodes correspond to links. An edge

52

LINKS

g1 g2 g3 g4 g5

l1 l3 l4l2

g6

FAILURE SIGNATURE

SRLGs

COLLAPSED
SRLG

BEST POSSIBLE
EXPLANATION

Figure IV.3: Representing shared-risk groups as a bipartite graph. At the bottom

partition are the risk groups corresponding to the root causes. The top partition

consists of the individual IP links.

exists between a link node and a group node if that link is a member of the risk

group. Given this bipartite graph and a subset of vertexes in the top partition

(corresponding to the failure signature), the problem is to identify the smallest

possible set of groups that cover the link failure events in the failure signature.

Before we proceed further, we observe that if multiple risk groups have

the same membership—that is, the same set of circuits may fail for two or more

different reasons—it is impossible to distinguish between the root causes. We

call any such risk groups aliases, and collapse all identical groups into one in our

set of risk groups. For example, in Figure IV.3, group g5 and g6 have the same

membership: l4. Hence, g5 and g6 are collapsed into a single group as a pre-

processing step.

Given that determining the minimum set cover is computationally pro-

hibitive, we compute an approximation instead using the greedy approach outlined

in Section III.C. Our algorithm called SCORE is predominantly based on Algo-

rithm 1, except that we specify the particular functions calculateMetrics() and

53

Algorithm 2 calculateMetrics(rootCauses R, failureSignature F)

1: for (rootCause r ∈ R) do

2: r.hitRatio = |R ∩ F|/|R|;

3: r.covRatio = |R ∩ F|/|F|;

4: end for

selectCandidates() left undefined in Algorithm 1. There is one more difference

between SCORE and GREEDY—an additional threshold T ∈ (0, 1] that is input

to SCORE along with the failure signature, for reasons that would become clearer

soon.

The function calculateMetrics() shown in Algorithm 2, computes two

metrics for each SRLG—hit- and coverage-ratio. The hit ratio of a group Gi is

defined as |Gi ∩ F |/|Gi|, with |Gi| denoting the cardinality of Gi. In other words,

the hit ratio of a group is the fraction of circuits in the group that are part of the

failure signature F . The coverage ratio of a group Gi is defined as |GI ∩ F |/|F |.

Basically, the coverage ratio is the proportion of failure signature explained by a

given risk group.

Intuitively, SCORE attempts to iteratively select the risk group that ex-

plains the greatest number of faults in the failure signature with the least error: in

other words, the highest coverage and hit ratios. Ideally, if an SRLG fails, all the

associated links would fail; we should, therefore, only consider those risk groups

whose members are all part of the failure signature F (i.e., Gi∩F = Gi). For such

risk groups, clearly, hit ratio equals one. Thus, SCORE should ideally consider

only risk groups with a perfect hit ratio. However, in order to take into account

certain operational realities such as losses in failure notifications, we relax this re-

quirement slightly using a threshold T input to SCORE. As shown in Algorithm 3,

SCORE only considers those risk groups which have a hit ratio greater than a

given threshold T . Among such risk groups, it picks the one which has the highest

coverage ratio.

Considering risk groups that have a hit ratio less than one can lead to a

54

Algorithm 3 selectCandidates (rootCauses R, threshold T)

1: max = 0;

2: candidateSet = {}

3: for all rootCause r ∈ R do

4: if (r.hitRatio ≥ T) then

5: if (r.covRatio > max) then

6: max = r.covRatio;

7: candidateSet = {r};

8: else if (r.covRatio == max) then

9: candidateSet = candidateSet
⋃

{r};

10: end if

11: end if

12: end for

13: return candidateSet

hypothesis that potentially explains more circuit failures than actually occurred.

In a straightforward failure model, such hypotheses are nonsensical. Operational

realities described below, however, require us to consider risk groups with hit ratios

less than one.

• Incomplete/erroneous monitoring data. The failure notices (e.g., SNMP

traps) are often transmitted using unreliable protocols such as UDP which

can result in partial failure observations. Hence, the accuracy of the diagnosis

can be impacted if the data is erroneous or incomplete. For example, if due

to the failure of a particular optical component failure, six links went down

out of which only five, say, messages made it to the monitoring system. The

hit ratio for the risk group representing the shared component is then 5/6.

Without expressly allowing for the selection of this risk group, the algorithm

would output a hypothesis, that, while plausible, is likely far from reality.

• Inaccurate modeling of the shared-risk groups. While theoretically it should

55

be possible to precisely model all risk groups, it is impossible in practice

to exactly capture all possible failure modes. This difficulty leads to two

interesting cases of inaccurate modeling. One is failure to model high-level

risk groups (e.g., all links terminating in a particular point of presence may

share a power grid) while the other is failure to model low-level risk groups

(for example, some internal risk group within a router). Our algorithm needs

to be robust against imprecise failure groups and, if possible, learn from real

observations.

• Errors in databases. Currently, the SRLG databases are constructed and

maintained by humans, given the lack of architectural mechanisms to derive

dependencies between IP links and optical components automatically. These

errors can cause the database to drift away from reality, thus risk models

constructed out of the SRLG databases are only an approximation of reality.

For example, a human accidentally swaps fibers that belong to two differ-

ent interfaces. Or, perhaps, a technician re-routes an optical circuit through

another set of components, but forgets to log an entry into the database.

In such case, the algorithm assumes that it would detect the complete risk-

group failure, while due to the errors, some elements in the risk-group might

be missing. Since IP to optical associations are important across other net-

work management tasks such as traffic engineering, we consider architectural

approaches to maintain these associations accurately in Chapter VI.

We allow for these operational realities by selecting the risk group with greatest

coverage out of those with hit ratios above a certain error threshold. So, even if a

particular circuit is omitted (either due to incorrect modeling or missing data), the

error threshold allows consideration of groups that have most links but not quite

all and cover a large number of failures.

It turns out to be extremely difficult to select a single error threshold

for all failure instances, as it depends greatly on the size of individual risk groups

56

Input <ckt1, ckt2...>
API

Output : <grp1, grp2 ... >

Data
Translator

Data
Translator

Data
Translator

DATABASE

Aggregator

SPATIAL CORRELATION

ENGINE

SCORE

SRLG

ROUTER
CONFIG

TRANSPORT
ROUTING

SNMP MIB
ROUTER
SYSLOGS

SONET
PM DATA

VARIOUS NETWORK
EVENTS

WEB
Interface

FAULT ISOLATION POLICIES

LOOP BACK (QUERY MULTIPLE TIMES)

Figure IV.4: Architecture of the IP fault localization system.

involved in the failure. In practice, we run SCORE multiple times and generate

hypothesis for decreasing error thresholds until a plausible hypothesis is generated.

More generally, we assign a cost function to evaluate the confidence of a particular

hypothesis and choose the one which has the lowest cost. Our cost function is

directly proportional to the size of the hypothesis and inversely proportional to

the error threshold. Thus, the cost function penalizes large hypothesis and large

relaxation. Next, we present an overview of the system based on the SCORE

algorithm.

IV.C System overview

We created the IP fault localization (IPFL) system with generality in

mind. Accordingly, key systems and algorithmic components are factored out

so that they may be reused in multiple problem domains or in variations for a

57

single problem domain. A standalone SCORE algorithmic module is driven by an

extensible set of problem-domain dependent diagnosis processes. Intelligence from

the problem domain is built into the SRLG database, and is reflected in the IPFL

queries. Figure IV.4 depicts the IPFL system architecture as it is implemented

today. The following subsections describe the various modules in more detail.

IV.C.1 SRLG Database

The SRLG database manages SRLG groups and corresponding links.

For example, in our application, the database atoms used to form SRLGs at

the SONET layer describe SONET-level equipment IDs that particular IP links

traverses, extracted from databases populated from operational optical-element

management systems. Other risk groups such as area, router, modules, etc. are

similarly formed from the native databases extracted from the various network el-

ements (e.g. router configurations). We note that the underlying databases track

the network and therefore exhibit churn. The IPFL software is currently snapshot

driven, and copes with churn by reloading multiple times during the course of a

day.

IV.C.2 SCORE localization algorithm

The SCORE algorithm described in Section IV.B forms the core of the

system. The IPFL system periodically invokes the SCORE algorithm with the

SRLG database, which then responds to queries for fault localization. That is,

SCORE obtains the minimum set hypothesis using the SRLG database and a

given set of inputs. An optional error threshold can be specified, as described in

Section IV.B.

IV.C.3 Data Sources

The set of observations upon which spatial correlation is applied are ob-

tained from network fault notifications and performance reports (including IP

58

performance-related alarms). These in turn come from a wide range of data

sources. We discuss below some of the more popular fault and performance-related

data sources that have been used within the IPFL system to date. Though we de-

scribe certain optical-layer event data sources (such as SONET performance man-

agement data) and have indeed experimented with such sources with SCORE, we

only focus on IP event sources in this dissertation due to lack of enough data from

other sources.

IP-layer SNMP traps: Link failures and other faults will be observed by

the routers and reported to centralized network operations systems via SNMP

traps sent from the router. These SNMP traps provide the key event notifications

that allow network operators to learn of faults as they occur.

Router syslogs: Router operating systems, much like Unix operating sys-

tems, log important events as they are observed. These are known as router syslogs

and provide a wealth of useful information regarding network events (at least once

they can be interpreted!). These can be used as additional information to comple-

ment the SNMP traps and the alarms that they generate. Table IV.1 shows sample

syslog messages for a failure observed on a Cisco router, and another failure ob-

served on an Avici router. The failures are reported at different layers—illustrated

here for the SONET layer, PPP layer and IP layer (OSPF). Note that there is no

standardized format for these messages as they are usually output for debugging

purposes.

SNMP performance measurements: SNMP performance data is gener-

ated by the routers on either a per-interface or per-router basis, as applicable. It

typically contains five-minute aggregate measurements of statistics such as traffic

volumes, router CPU average utilization, memory utilization of the router, number

of packet errors, packet discards and so on.

SONET performance monitoring (PM): Performance metrics are also

available on a per-circuit basis from SONET network elements along an optical

path (as are alarms, although these are not discussed here). Numerous param-

59

Table IV.1: Syslog messages output by Cisco and Avici Routers when a link goes

down at different layers of the stack. When the link comes back up, the router

writes similar messages indicating that each of the layer is back up.

Syslog Message on Cisco/Avici Routers Layer Router
Aug 16 04:01:29.302 EDT:
%LINEPROTO-5-UPDOWN: Line
protocol on Interface POS0/0, changed
state to down

SONET layer Cisco

Aug 16 04:01:29.305 EDT: %LINK-3-
UPDOWN: Interface POS0/0, changed
state to down

PPP layer Cisco

Aug 16 04:01:29.308 EDT: %OSPF-5-
ADJCHG: Process 11, Nbr 1.1.1.1 On
POS0/0 from FULL to DOWN, Neighbor
Down: Interface down or detached

OSPF/IP
layer

Cisco

module0036:SUN SEP 12 17:23:29 2004
[030042FF] MINOR:snmp-traps :Sonet
link POS 1/0/0 has new adminStatus up
and operStatus up.

SONET Layer Avici

server0001:SUN SEP 12 17:25:01 2004
[030042FF] MINOR:snmp-traps :PPP link
POS 1/0/0 has new adminStatus up and
operStatus up.

PPP layer Avici

server0002:THU AUG 12 07:21:58 2004
[030042FF] MINOR:snmp-traps:OSPF
with routerId 1.1.1.1 had non-virtual
neighbor state change with neighbor
1.1.1.2 (address less 0) (router id 1.1.1.4)
to state Down.

OSPF/IP
layer

Avici

60

eters will be reported in, for example, fifteen-minute aggregates. These include

parameters such as coding violations, errored sections and severely errored sec-

onds (indicative of bit error rates and outages), and protection switching counts

on SONET rings. More information on various types of events reported by SONET

PM data can be found in [3].

IV.C.4 Data translation/normalization

Each of these types of monitoring data are usually collected from dif-

ferent network elements (such as routers, SONET DWDM equipment, etc.) and

streamed to a centralized database. These different data types are usually stored

in different formats with different candidate keys for database access. For exam-

ple, the candidate key for SNMP database is an interface number as it collects

interface-level statistics. OSPF messages are based on link IP addresses. SONET

performance monitoring data is based on circuit ID. All these data sources are

mapped into link circuit IDs using a set of mapping databases.1

IV.C.5 Fault localization policies

Fault localization is performed on various monitoring data sources (such

as those mentioned in the previous section) using flexible data-dependent policies.

In Figure IV.4, fault isolation policies form the bridge between the various moni-

toring data sources (translators) and the main SCORE localization engine. These

policies dictate how to form the failure signature from the raw incoming event

stream and query the SCORE algorithmic engine to identify the best hypothesis.

Data sources that are based on discrete asynchronous events (e.g. OSPF

messages, syslog messages) need to be clustered to form the failure signature.

Temporal clustering captures all the events that took place in a fixed time interval

as potentially correlated. Note that a fault can trigger events that are slightly

off in time either due to time synchronization issues across various elements, or

1We map all the databases into link circuit IDs since the network database itself is organized based
on link circuit IDs. However, any unified format would work equally well.

61

propagation delays in an event to be recorded, or even delay in impact due to

convergence in the network. Hence, event clustering has to account for these in

recording observations.

There are many different ways to cluster events. A naive approach to

clustering is based on fixed time bins. For example, we can make observations

(set of links potentially correlated) by clustering together all events in a fixed five-

minute bin. The problem with this approach, however, is the fact that events

related to a particular failure can potentially straddle the time-bin boundary, thus

creating two different observations for correlated events, which in turn may affect

the accuracy of diagnosis.

In our system, we use a clustering algorithm based on gaps between failure

events. We use the longest chain of events that are spaced apart within a set

threshold (called a quiet period) as potentially correlated events. The intuition here

is that two events that are separated by less than the quiet period are potentially

correlated. The algorithm clusters events that are correlated in a transitive fashion.

For example, if A and B are correlated, B and C are correlated, A and C are

potentially correlated and belong in the same cluster. These clustered events are

then fed to the SCORE engine to obtain a hypothesis that represents the failed

components in the network.

Although currently we use temporal correlation as a good indication that

events potentially can have the same root cause, it is possible to apply other meth-

ods to cluster events. For example, consider a bug that affects only routers with a

particular version of software. In such a scenario, while all these routers share the

same root cause, i.e., the version of software, still, the symptoms associated with

this bug may not manifest at the same time. Therefore, an offline mechanism is

required to identify these failure signatures, that then can be used to localize the

root cause.

62

Figure IV.5: Live screen shot of SCORE web interface.

IV.C.6 Web interface

The IPFL system also exports a convenient web user interface to assist

operators. It consists of a table consisting of the following columns. Figure IV.5

shows a live screenshot of the SCORE web interface updating each and every time,

a new set of events are generated for real-time diagnosis. The interface also allows

viewing archived logs including raw events and their associated diagnosis results.

The first column lists the actual event start time and the end time using one of

the clustering algorithms. The second column represents the set of links that were

impacted during according to the reported alarms during the failure scenario. The

third and fourth columns give descriptions of the groups of components that form

the diagnosis report for that observation. The diagnosis report also consists of the

hit ratio, coverage ratio and finally error threshold used for the groups involved in

the diagnosis.

63

IV.C.7 Implementation details

The SCORE algorithmic engine loads (and periodically refreshes) an

SRLG database that defines the associations between SRLGs and links. It con-

structs two hashtables: one for the set of circuits and one for the set of groups.

Each group consists of the circuit identifiers that can be used to query the cir-

cuits hashtable. This particular implementation allows for fast associations and

traversals to speed up the implementation of the SCORE algorithm outlined in

Section IV.B. This SCORE engine also has a server that listens at a particular

port to which various diagnosis agents can connect via popular socket interface [88]

and input a failure signature. The SCORE engine then responds with the hypothe-

ses that best explains the failure signature.

The main function of the SRLG database module is to obtain risk groups

from different databases that contain fiber, fiber-span, router, and other SRLGs.

The other function the SRLG database provides is grouping aliases. The algorithm

for grouping aliases is not a performance bottleneck as it is refreshed fairly infre-

quently (usually twice a day). Thus, the SRLG database module is implemented

in Perl. The code for clustering events together into a failure signature is also

implemented in Perl. Thus, the total number of lines of Perl code for the entire

system including all the individual modules is greater than two thousand.

IV.D Simulated faults

We evaluated the performance of the SCORE algorithm using both arti-

ficially generated faults as well as real fault data. In this section, we investigate

the performance of the algorithm on the artificially generated faults; the following

section reports the performance evaluated using real network faults. The main

goal of the initial experiments is to evaluate the accuracy of SCORE within a

controlled environment by using emulated faults. We use an SRLG database con-

structed from the network topology and configuration data of a tier-one service

64

provider’s backbone. We then simulate different numbers of simultaneous faults

that are injected into SCORE. We also study the efficacy of the SCORE in the

presence of noisy data by simulating errors in the SRLG database and the failure

signature.

IV.D.1 Algorithm accuracy

To evaluate the accuracy of SCORE, we simulated scenarios consisting of

multiple simultaneous failures and evaluated the accuracy in terms of the number

of correct hypotheses (faults correctly localized by the algorithm). We randomly

generated a given number of simultaneous failures selected from the set of all

network risk groups: the set of all SONET components, fiber spans, OSPF areas,

routers, and router ports and modules in our SRLG database. Once the faults

were selected for a given scenario, we computed the union of all impacted links.

These link failures were then input to the SCORE algorithm and hypotheses were

generated. The resulting hypotheses were compared to the actual injected failures.

We use the term accuracy to denote the fraction of injected failures that are found

in the hypothesis output by SCORE.

Figure IV.6 depicts the accuracy of localization as a function of the num-

ber of injected faults, where each data point represents an average across 100

independent simulations. The figure illustrates that the accuracy of the algorithm

on these data sets is greater than 99% for ports, modules and routers, irrespec-

tive of the number of simultaneous failures generated. In general, the accuracy of

the algorithm decreases as the number of simultaneous failures increases, although

the accuracy remains greater than 95% for less than five simultaneous failures.

In reality, it is extremely unlikely that more than one failure will occur (and be

reported) at a single point in time. Thus, for failures such as fiber cuts, router

failures, and module outages (corresponding to a single simultaneous failure), our

results indicate that the accuracy of the system is near 100%.

However, it is entirely possible in a large network that multiple indepen-

65

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 C
or

re
ct

 H
yp

ot
he

se
s

Number of induced failures

FIBERSPAN
PORT

MODULE
ROUTER

AREA
SONET

Aggregated

Figure IV.6: Fraction of correct hypotheses as a function of increasing number of

injected simultaneous faults.

dent components will simultaneously be experiencing minor performance degrada-

tions, such as error rates, which are reported and investigated on a longer time

scale. Thus, the results representing higher number of simultaneous failures are

likely indicative of performance troubleshooting. However, we can still conclude

that for realistic network SRLGs, SCORE algorithm is highly accurate when we

have perfect knowledge of our SRLGs and failure observations.

IV.D.2 Imperfect fault notifications

The SRLG model provides a solid, but not perfect representation of the

possible failure modes within a complex operational network. Thus, we expect

to find scenarios where the set of observations cannot be perfectly described by

any SRLG. Similarly, data loss associated with event notifications and database

errors are inherent operational realities in managing large-scale IP backbones. In

this section, therefore, we evaluate the accuracy of the SCORE algorithm in the

presence of such losses and errors in both failure signature as well as risk model.

We consider three parameters: the error threshold used in the SCORE algorithm,

the number of simultaneous failures, and the loss probability (which represents the

66

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3

C
or

re
ct

 H
yp

ot
he

se
s

Loss Probability

Error Threshold=1.0
Error Threshold=0.9
Error Threshold=0.8
Error Threshold=0.7
Error Threshold=0.6

Figure IV.7: Accuracy as a function of loss probability for different error thresholds

for three failures.

percentage of IP link failure notifications lost for a given failure scenario).

Figures Figure IV.7 and Figure IV.8 demonstrate the accuracy of the

algorithm under a range of loss probabilities and algorithm error thresholds and

for different number of simultaneous failures. Specifically, the figures plot the

percentage of correct hypotheses as a function of the loss probability. In Figure

IV.7, the algorithm error threshold is varied from 0.6 to 1.0, whilst the number of

simultaneous failures is set to three. In Figure IV.8 the algorithm error threshold

is fixed at 0.6 and the number of simultaneous failures is varied from one to five.

As expected, increasing the loss probability reduces the accuracy of the algorithm.

Under three simultaneous failure events and an loss probability of 0.1, we can

observe from Figure IV.7 that an algorithm error threshold of between 0.7 and 0.8

restores the accuracy of the SCORE algorithm to around 90%. However, if we

mandate perfect matching of failure observations to SRLGs (i.e., error threshold

= 1.0), then our accuracy in isolating our fault drops to around 78%. This shows

the necessity and effectiveness of the of the error thresholds introduced into the

algorithm for fault localization in the face of noisy event observation data.

67

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3

C
or

re
ct

 H
yp

ot
he

se
s

Loss Probabilitly

One Failure
Two Failures

Three Failures
Four Failures
Five Failures

Figure IV.8: Accuracy as a function of loss probability and for varying number of

simultaneous failures, with a fixed error threshold = 0.6.

IV.D.3 Performance results

The algorithm’s execution time was also evaluated under a range of condi-

tions. In general, execution time increases as the number of IP links (observations)

impacted by the failures increases. This increase is because all of the SRLGs asso-

ciated with each of the failed links must be included as part of the candidate set

of SRLGs for localization, and thus must be evaluated. Thus, the execution time

increased within increasing numbers of failures, but on average was below 150 ms

for up to ten failures. Similarly, the execution time for scenarios involving router

failures was typically higher than for other failure scenarios, as the routers typically

involved larger numbers of links. Execution times of up to 400 ms were recorded

for events involving large routers. However, even in these worst-case scenarios, the

algorithm is more than fast enough for real-time operational environments.

IV.E Experience in a tier-one backbone

The IPFL system prototype implementation based on the SCORE algo-

rithm has been deployed in a tier-one backbone network and is being used in an

68

offline fashion to isolate IP link failures reported in the network. In this section,

we discuss our experience with IP link failure events reported in router syslogs.

Determining whether or not SCORE correctly localized a given fault requires iden-

tification of the root cause of the fault via other means. In many cases, identifying

root causes involves sifting through large amounts of data and reports—a tedious

process at best.

Therefore, we performed our evaluation in two parts: First, we evaluated

localization accuracy of SCORE, by identifying the root cause of a set of 18 faults

and comparing with the output reported by SCORE algorithm. Second, we stud-

ied localization efficiency of SCORE, in terms of the amount of reduction in the

number of root causes, using about 3,000 different faults from real failure data in

an automated fashion. For these failures, however, we did not manually verify the

accuracy of our SCORE output.

IV.E.1 Localization accuracy

Table IV.2 denotes the results of our analysis of each of our 18 faults. For

each failure scenario, we report:

• a name uniquely identifying the failed component,

• the number of SRLG groups localized when the algorithm was run with a

threshold (t) of 1.0,

• the threshold used to generate a final conclusion,

• the number of SRLGs localized when the algorithm was run with the final

threshold,

• the number of SRLGs correctly localized, and

• description of the reason why we had to reduce the threshold, or why we

were unable to identify a single SRLG as the root cause in certain situations.

69

Table IV.2: Summary of failures we have observed in various traces.

Component
name

size
(t=1)

Final
Thld

size
(t=final)

correct comment

Router A 27 0.8 1 1 No event reported by
some links

Router B 20 0.9 3 3 No event reported by
some links

Router C 12 0.7 1 1 No event reported by
some links

Router D 1 1 1 1 -
Router E 18 0.8 1 1 No event reported by

some links
Router F 1 1 1 1 -
Router G 4 1 4 4 -

Module A 1 1 1 1 -
Module B 1 1 1 1 -
Module C 1 1 1 1 -

Sonet A
(OA)

8 0.9 2 1 No event reported by
one link and database
problem

Sonet B
(Transceiver)

1 1 1 1 -

Sonet C
(Flap)

2 0.7 1 1 No observation reported
by one link

Sonet D
(OA)

2 0.6 1 1 No observation reported
by one link

Fiber A 3 0.5 1 1 Database problem
Fiber Span
A

1 1 1 1 -

OSPF
Area A

20 0.7 4 4 Incorrect SRLG model-
ing

OSPF
Area B

4 1 4 4 OSPF Area A MPLS
enabled interfaces

70

Overall, we were able to successfully localize all of the faults studied to

the SRLGs in which the failed network elements were classified—except where we

encountered errors in our SRLG database. However, when we used a threshold

of 1.0 (i.e., mandated that an SRLG can be identified if and only if faults were

observed on all IP links), then we were typically unsuccessful—particularly for

router failures, and for the failure involving OSPF Area A in Table IV.2. In the

majority of the router failures, even though these events corresponded to routers

being rebooted, the remote ends of the links terminating on these routers did not

always report associated link-level events. This phenomenon could be because of

a number of possible reasons:

• events may never have been logged in the syslogs,

• data may have been lost from the syslogs,

• the links may have been operationally shut down and hence did not fail at

this point in time, or

• the links were (inexplicably) not impacted by the reboot.

Independent of why the link notifications were not always observed, the router

failures were all successfully localized when the threshold was marginally reduced.

Thus, error threshold in SCORE algorithm is important to localize faults in oper-

ational networks.

Of course, router failures are typically easy to identify through visual cor-

relation, as all of the links impacted have a common end point (the failed router).

Optical-layer impairments, however, can impact seemingly logically independent

links at the IP layer if these links are all routed through a common optical compo-

nent. We study four different SONET network element failures, labeled SONET

A through D in Table IV.2.

The first—an optical amplifier failure—induced faults reported on thir-

teen IP links. With a threshold of 1.0, our algorithm identified eight different

71

SRLGs as being involved. However, as the threshold was reduced to 0.9, we were

able to isolate the fault to only two different SRLGs. Reducing the threshold

further, however, did not reduce the number of SRLGs to which the fault was

localized.

Upon further investigation, we uncovered an SRLG database problem

where our SONET network element database did not contain any information re-

garding one of the circuits impacted by the fault. Thus, the SCORE algorithm was

unable to localize the fault for this particular IP link to the SRLG containing the

failed optical amplifier, and instead incorrectly concluded that a router port was

also involved (the second SRLG). However, the SRLG containing the failed ampli-

fier was also correctly identified for the other twelve IP links; the lower threshold

was required because no fault notification was observed for one of the IP links

routed through the optical amplifier.

This optical amplifier example highlights a particularly important capa-

bility of the SCORE system—the ability to highlight potential SRLG database

errors. Links missing from databases, incorrect optical layer routing information

regarding circuits and other potential errors in databases play havoc with capacity

planning and network operations and so must be identified. In this scenario, the

database error was highlighted by the fact that we were unable to identify a sin-

gle SRLG for a single network failure, even after lowering threshold using in the

SCORE algorithm.

The other three SONET failures were all correctly isolated to the SRLG

containing the failed network element: in two cases we again had to lower the

threshold used within the algorithm to account for links for which we had no

failure notification (in one of these cases, the missing link was indeed a result of

the interface having been operationally shut down before the failure).

We tested SCORE on a second, previously identified failure scenario im-

pacted by a SRLG database error (Fiber span A in Table IV.2). Again, the SCORE

system was unable to identify a single SRLG as being the culprit even as the thresh-

72

old was lowered, because no SRLG in the database contained all of the circuits

reporting the fault. So, again, a database error was highlighted by the inability of

the system to correlate the failure to a single SRLG.

The final case that we evaluated involved a low-level protocol implemen-

tation problem (i.e., software bug) that impacted a number of links within a com-

mon OSPF area, labeled OSPF Area A in Table IV.2. This scenario occurred over

an extended period of time, during which three other independent failures were

simultaneously observed in other areas. When SCORE used a threshold of 1.0,

it attributed the failure to 20 independent SRLG failures—a large number even

for the extended period of time. As the threshold was reduced to a final value

of 0.7, the event was isolated to four individual SRLGs: three SRLGs in other

OSPF areas (corresponding to the other independent failures) and the OSPF area

in question. Thus, the SCORE algorithm was correctly able to identify that the

event corresponded to a common OSPF area.

More investigation into the matter uncovered that the reason why not

all links in the OSPF area were impacted was that only those interfaces that were

currently MPLS-enabled were affected. Thus, an additional SRLG was added to or

database that incorporated the interfaces with MPLS in a given area; application

of this enhanced SRLG database successfully localized all of the SRLGs impacted

by the four simultaneous failures with a threshold of 1.0.

In general, any level of SRLG modeling can be inadequate, as there could

be complicated failure scenarios not modeled a priori. Therefore, SCORE uses the

error threshold in order to be robust against such inaccuracies. We also illustrated

how we can continually learn new SRLGs through further analysis of new failure

scenarios, thereby enhancing SRLG modeling. Of course, for these more esoteric

failure scenarios, updating the SRLG models may not always be justified unless

there is some likelihood that the particular failure scenario may be repeated again

in the future.

73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Localization efficiency

Figure IV.9: CDF of localization efficiency out of about 3,000 real faults we have

been able to localize. Note that we have not verified manually the correctness of

hypothesis for these faults.

IV.E.2 Localization efficiency

While the 18 faults we have studied demonstrate the ability of SCORE

to correctly localize faults, they do not give an indication about the amount of

reduction in the number of suspects. In this section, therefore, we evaluate SCORE

using a metric we call localization efficiency, that is defined as the ratio of the

number of components after localization to that before localization. In other words,

it is the fraction of components that are likely to explain a particular fault (or

observation) using our localization algorithm out of all the components that can

cause a given fault.

Let Gi = {gi1, gi2, · · · , gik} denote the set of SRLGs to which a circuit ci

belongs. Therefore, for a failure signature F = {c1, c2, · · · , ci}, the set G = ∪i
k=0Gk,

represents the universe of all SRLGs associated with at least one circuit ck in F .

In other words, the set G represents the set of all possible root causes that can

potentially explain F . Let H denote the hypothesis output by SCORE. Then,

localization efficiency is given by |H|/|G|.

74

In Figure IV.9, the cumulative distribution function of the localization

efficiency is shown. From the Figure IV.9, we can clearly observe that SCORE

could localize faults to less than 5% for more than 40% of the failures and to less

than 10% for more than 80% of the failures. We conclude that SCORE identifies

likely root causes very precisely from a large set of possible causes for a given

failure. We note, however, that we do not know the root cause of all 3000 faults

shown here; we cannot speculate on SCOREs accuracy except for the 18 faults

discussed previously.

IV.F Summary

Using the risk modeling methodology, we have developed a system that

accurately localizes failures in an IP-over-optical tier-one backbone network. Given

a set of IP-layer events occurring within a small time window, our heuristics pin-

point the shared risk (optical device) that best explains these events. Given the

harsh operational reality of maintaining complex associations between objects in

the two networking layers in separate databases, we found that it is necessary to

go beyond identifying the single best explanation, and, instead, to generate a set

of likely explanations in order to be robust to transient database glitches.

We put forward a simple, threshold-based scheme that looks for best

explanations admitting inconsistencies in the data underlying the explanations up

to a given threshold. We found that not only does this increase the accuracy and

robustness of fault localization, it also provides a new capability for identifying

topology database problems for which we have no alternative automated means of

detecting. Getting shared-risk information correct is critical to IP network design—

a misidentification of a shared risk might produce a design believed to be resilient

to single SRLG failure, which in fact is not. Owing to the fundamental importance

of shared risk information across network operations and capacity planning, the

automated database auditing capability provided by the thresholding method is

75

itself a significant contribution.

From an architectural perspective, however, we believe it is important to

provide automated mechanisms to accurately query the cross-layer dependencies

directly from the network. In Chapter VI, we qualitatively discuss the importance

of cross-layer associations in major network management functions and argue that

such associations should be provided as a service to many such management func-

tions.

In the next chapter, we consider the problem of black hole localization,

which is vastly different from IP fault localization. In this problem domain, the

topology is huge and dynamic, thus forcing us to consider alternate algorithmic

techniques to SCORE. Yet, we show that the problem can be effectively solved by

applying the risk-modeling methodology.

IV.G Acknowledgments

This chapter is based on the paper titled “IP Fault Localization via Risk

Modeling”, that appeared in the Proceedings of the 2nd Symposium on Networked

Systems Design and Implementation, held at Boston in May 2005, which is joint

work with Jennifer Yates (at AT&T Labs – Research), Albert Greenberg (at Mi-

crosoft Research), and Alex C. Snoeren. The dissertation author was the primary

investigator and author of this paper [54].

Chapter V

MPLS black hole localization

In this chapter, we apply the risk modeling methodology developed in

Chapter III to localizing complex failure modes in current systems, known as silent

failures or black holes. In contrast to the IP link failures in the previous chapter,

the network fails to detect—and, therefore, is unable to recover from black holes,

while packets are silently dropped in the network. Specifically, the black holes we

refer to in this dissertation are in the context of VPN-over-MPLS-over-IP backbone

networks, an architecture deployed by a number of tier-one ISPs. In this setting,

packets belonging to customer VPNs are switched over MPLS tunnels, which them-

selves are established using standard IP routing protocols such as OSPF or IS-IS. A

black-hole scenario can occur when the underlying IP infrastructure is operational,

that is, each IP hop along the route is functioning properly, but the corresponding

MPLS tunnel fails to deliver packets. We are particularly interested in cases where

a black hole is silent in nature, with no router alarm indicating that the MPLS

tunnel is actually broken.

Black holes have a variety of causes, ranging from delayed routing protocol

convergence to mis-configurations to bugs in individual router implementations.

While backbone networks are generally able to address each cause after an incident

occurs (i.e., by asking the vendor to fix the bug), experience shows there is always

another bug. Due to the ever-increasing complexity of router-control software, it

76

77

is highly unlikely that they will ever disappear entirely. While such silent failures

are rare, they can have a large and egregious impact; in many cases, a complete

loss in VPN connectivity results in a significant financial damage to both the ISP

as well as the customer. These failures are extremely time-consuming to localize

(order of hours to days) because there are no alerts/alarms to guide operators to

the location of the failure. Hence, from an operational stand-point, it is imperative

to design a mechanism that can quickly detect such failures, and, moreover localize

the root cause of the failure.

Luckily, most tier-one ISPs already conduct a significant amount of active

probing within their networks to provide SLAs. In this chapter, therefore, we

describe a black hole detection system that uses these end-to-end probes to detect

the presence of black holes. Further, we show the efficacy of a system we designed

based on the risk-modeling methodology in Chapter III to localize black holes. In

particular, we analyze three known black holes in a tier-one backbone network. We

show that, had our localization system been in place at the time of the failures,

they would have taken considerably less time to detect and localize. In order to

validate our methodology further, we collect probe data resulting from a large

number of (less serious) network events (e.g., routing changes) that are usually

logged by routers in syslogs. By definition, such failures are not silent in nature,

but this approach gives us a reasonably large—albeit non-random—set of cases to

test our technique. Note that the majority of these events are very short-term,

which makes them hard to detect and localize using active probing mechanisms.

Even with this challenging data set, we find that our technique is highly successful

in localizing the problems; we achieve greater than 80% accuracy and 80% precision

across a wide range of failure scenarios.

The remainder of this chapter is organized as follows. We begin by dis-

cussing the silent failure problem, our approach to detect and localize them, and

finally the system architecture in the next section (Section V.A). We evaluate

the system using simulations in Section V.B and using real failure data from a

78

tier-one ISP network in Section V.C followed by related work in Section V.D and

a summary in Section V.E.

V.A Silent network failures

As mentioned before in Chapter II, many customer VPNs are overlaid

on top of MPLS tunnels between various provider-edge routers within an ISP net-

work. Moreover, MPLS tunnels are often configured to route along the underlying

shortest path between end points as dictated by the IGPs such as OSPF and IS-IS.

Given the cross-layer dependency between MPLS and IGPs, any topology change

at the IP layer, either due to IP link weight changes or link failures, automatically

triggers rerouting at MPLS layer along the new IGP shortest paths. This signaling

across layers allows the MPLS layer to automatically heal around the failure, thus

providing a first line of defense against link failures.

Unfortunately, there is no guarantee that this first line of defense always

succeeds. For example, one failure scenario that has been observed in practice is

when OSPF re-routes due to a problem on a link but MPLS does not re-route.

In such cases, MPLS forwarding table entries are not updated to reflect the link

failure; many MPLS tunnels continue to have the failed link as the next hop in the

forwarding table. Therefore, the forwarding element within the router continues

to switch MPLS packets to the old interface (that is currently down), which are

subsequently dropped by the interface hardware, thus resulting in a black hole.

In other failure instances, the MPLS control plane is working properly (hence,

no alarm), yet there is corruption in the forwarding elements due to bugs in the

implementation and/or configuration errors. Many other subtle failure scenarios

at the MPLS layer can be found in [30]. While router vendors continue to develop

work-arounds to deal with such failure scenarios, it is unlikely such problems are

going to disappear completely.

Given that routers do not automatically detect and alarm on black holes,

79

B

A

C

D

F

G H

E

Common
Link

Figure V.1: Example topology with failure impacting a set of paths going through

a given link (G-H).

network operators typically rely on a fault detection system that uses an end-

to-end approach [76] to detect black holes. Edge routers or special measurement

servers connecting to them issue probes periodically that test connectivity to other

edge routers and report failures when probe packets are not acknowledged by

their destination. While these end-to-end probes detect black holes, they do not

determine the exact location of the failure, which is required by the operator to fix

the problem and recover traffic. Thus, both fault detection and fault localization

are important steps that need to be performed before operators can recover the

network from silent failures.

The key idea we use for black-hole localization is risk modeling as dis-

cussed in Chapter III. A detection system based on active probes identifies the set

of origin-destination pairs (OD-pairs) impacted by a black hole in the network. It

then forms the failure signature by clustering together OD-pairs that are tempo-

rally correlated. The OD-pairs in the failure signature are then spatially correlated

by the localization algorithm to locate shared links along the paths. For example,

in Figure V.1, nodes A through F form the edge nodes that are connected via

intermediate nodes G and H. Nodes A to F are being monitored using the active

measurement mechanism described earlier. If the set of paths A-G-H-D, F-G-H-C,

80

B-G-H-E all fail in the same time interval (temporally correlated failures), spatial

correlation leads to the link that is common to all these paths—the link from G

to H.

In contrast to IP-layer faults, where traffic itself is often not impacted

because routers can re-route traffic around the link failure, black holes result in

many customer VPNs disconnected for extended periods of time, before operators

can detect, localize and recover traffic. Operational experience shows that the total

customer down-time is dominated primarily by the detection and localization step;

once the problem is localized, it can often be quickly recovered (e.g., by rebooting

the interface). In many cases, the actual repair can be completed off-line. The

rest of this section formally describes the problem and explains the detection and

localization steps in more detail.

V.A.1 Problem formulation

We consider a graph G = {V, E} with vertex set V and edge set E

that corresponds to the topology of the network. Denote A as the subset of the

vertices, A ⊆ V , whose connectivity to each other we are interested in monitoring.

In essence, these vertices represent the MPLS tunnel end points, between which

black holes can occur. On this graph, between every origin u and destination v,

(u, v ∈ A), there exists a set of paths P v
u ⊂ P , where P is the set of all paths

between every OD-pair, that correspond to the IGP shortest paths between u and

v. In real networks, P varies with time with topology changes.

In our failure model, we assume that a path p ∈ P fails if any of the

links li1, li2, ..., lik ∈ E on that path fail, because the connectivity of a given path is

directly dependent on only the links along that path. Conversely, if any edge fails,

all the paths pi ∈ P that contain the edge fail. Given an input failure signature F

consisting of a set of OD-pairs (u, v) ∈ F , the problem is to identify a hypothesis

H = {lj1, lj2, ..., ljm} ∈ E, consisting of all the candidate links that can explain the

given failure signature F , and also matches the ground truth as much as possible.

81

Similar to the IP fault localization problem, we reduce the black-hole

localization problem to the formulation in Chapter III. At first glance, this re-

duction seems straightforward; the symptoms comprise the OD-pairs that have

lost connectivity and individual links along the path(s) between a given OD-pair

correspond to the root causes. However, in contrast to the IP fault localization

problem, there are a few additional issues such as dealing with multiple paths be-

tween OD-pairs, incomplete failure signatures and so on, that need to be taken

into account for the reduction. We discuss these issues individually in the context

of fault detection, construction of the risk model and fault localization algorithm,

in the following subsections.

V.A.2 Fault detection

The goal of the fault detection system is to detect any black hole condi-

tion in the network that effects traffic between various OD-pairs. The monitoring

system, therefore, injects end-to-end MPLS bi-directional probes periodically be-

tween all OD-pairs of interest. If probes do not get back to the origin within

a certain timeout, the system determines that the probe has been lost between

this OD-pair. The system forms the failure signature consisting of the OD-pairs

between which probes are lost.

In practice, many equal-cost IGP paths can potentially exist between a

given OD-pair, typically referred to as equal cost multi-path (ECMP) [37]. In such

cases, the router splits traffic based on a hash of certain packet header fields such

as source and destination IP addresses. Even if one path experiences a black hole,

that would result in disconnecting some of the customer VPNs that traverse that

particular MPLS path. While operators are, therefore, interested in monitoring all

the paths, probes only monitor a single path between a given OD-pair. Depending

on whether the packet exercised the failed path, the probe may or may not detect

that a given OD-pair is black holed. Thus, the fault detection system inherently

detects only partial failure signatures during black holes.

82

Of course, one could send multiple probes with varying header fields (typ-

ically source or destination IP addresses), so that different packets potentially hash

to different routes. A sufficient number of such probes can exercise all paths that

exist. However, this approach increases the probe bandwidth in the network be-

sides requiring extra administrative effort in maintaining multiple IP addresses per

router.

Another reason for partial failure signatures stems from the low frequency

of probes. In order for a probe to observe a black hole, it needs to be transmitted

within the duration of the black hole; of course, if the black hole remains persistent,

eventually all probes will observe it. So, depending on the duration of the black

hole and the timing of the probes, the set of lost probes may or may not contain

all the OD-pairs really affected by the black hole.

Black holes cause every packet to be dropped at the failed interface,

including the probe packets. However, a lost probe does not necessarily mean the

presence of a black hole; probes can be dropped because of non-black-hole reasons

as well, such as routing loops or congestion in the network, which cause transient

packet losses in the network or in short, noise. Noise can, in many situations, be

thought of as a result of link(s) that drop packets with some probability for a very

short duration of time. Thus, the set of lost probes during a black hole can include

both due to the black hole as well as noise. Since the fault detection system cannot

differentiate between black holes and other transient failures, the failure signature

typically consists of a mix of both signatures.

We now present a formal description of the fault detection mechanism.

Define the true link failure signature Fl(t) as the complete set of OD-pairs that

would be impacted as a result of a failure of link l at time t. In other words, if

any path p ∈ P v
u contains a link l at time t, then the OD-pair (u, v) ∈ Fl(t). Note

that a link failure signature’s dependence on time is the result of flux in topology

either due to operational maintenance activities or previous link failures.

Next, we define an aggregate true failure signature Φ(t) at any time instant

83

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
��������
����
����

����
����
����

��
��
��
��
��
��
��

��
��
��
��
��
��
����
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
�����

��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

F
ai

lu
re

 S
ig

na
tu

re

Time t Captured Signature

Actual Signature

Actual failures

Figure V.2: The aggregate failure signature, Φ(t), changes as a result of overlapping

failures. The shaded boxes indicate the portion of the failure that we detect using

active measurement.

t as the union of all true link failure signatures of links that are in a failed condition

(i.e., the link drops all packets) at time t. In Figure V.2, we show pictorially how

the aggregate failure signature Φ(t) can increase as the number of overlapping

failures increases. In the Figure, we can observe that Φ(t) is in fact a piece-wise

constant function, with each piece indicating a given set of links that have failed

in that time interval. Therefore, as a new link is added to the actual failure set,

the number of tunnels that are dependent on the new link are added to Φ(t), thus

increasing it’s overall size. Similarly, as the failed link becomes functional again,

the set of associated tunnels are removed resulting in a decrease in the size of Φ(t).

When there are no more active failures, Φ(t) reduces to the null set.

Although, ideally, we would like to obtain the entire Φ(t) at every instant

of time, it is often not practical since item the number of probes we can transmit

through the network is constrained by CPU and bandwidth resources. Instead,

the detection system captures only a subset of Φ(t) using active probes, both

because the probes are at lower frequency as well as because of the multi-path

84

effects. Therefore, the measured failure signature φ(t) is the part of the aggregate

true failure signature at time t. In Figure V.2, the measured failure signature, as

shown in the shaded boxes, is a subset of the aggregate true failure signature.

Note that the detection system only outputs a stream of probe losses

during the failure. In order to form the measured failure signature, we need to

devise a mechanism to group together probes that are lost due to the same root

cause. However, given that multiple link failure signatures can overlap, it is not

straightforward to separate them apart directly. One possible option is to use a

similar clustering algorithm to that in IP fault localization (in Section IV.C.5), in

which a continuous chain of events separated in time by less than a threshold are

clustered together. While such a clustering algorithm worked well for IP faults, it

holds less promise in this domain because of noisy probe losses that happen on a

continuous basis in the network. Thus, if we apply the clustering algorithm above,

there will always be some probe loss due to noise that will occur within a time

less than the threshold, thus getting added to the cluster. In effect, every probe

loss could potentially get clustered together, even those that are totally unrelated,

thus defeating the purpose of clustering and complicating the localization step.

Therefore, we instead divide time into equal-size bins of, say, 15 minutes

and consider the set of probe losses within the bin to form the measured failure

signature that is subject to localization. Note that this approach still does not

guarantee that individual link failure signatures are extracted. Indeed, the onus

still remains on the localization algorithm to produce meaningful hypothesis with

overlapping failure signatures. Clearly, either a given signature is completely within

the time bin, or the signature straddles bin boundaries. In either case, at least half

of the signature ends up becoming part of either of the two bins. As we shall show

later in Section V.B, in many cases, a reasonable fraction (>10%) of the failure

signature is enough for the localization algorithm to disambiguate the root causes.

Thus, binning works fine for forming failure signatures. Next, we discuss how to

construct the necessary risk model.

85

V.A.3 Risk model construction

As mentioned before, it is plausible to construct the risk model in a similar

fashion to the IP fault localization problem. There are a few additional challenges,

however. The first challenge is to determine the dependencies between the OD-

pairs representing MPLS tunnels (symptoms) and the root causes of black holes

(i.e., links). Because MPLS tunnels follow IGP shortest paths under normal con-

ditions, we can use links along these shortest paths as root causes that can affect

the particular tunnel. In order to obtain the shortest paths, we rely on an OSPF

monitor [79] to passively record the link-state advertisements and compute shortest

paths between every pair of nodes in the network. However, due to the dynamic

nature of this topology, there could be many different topology snapshots during

the particular failure interval. Unfortunately, it is not known a priori which topol-

ogy contains the location of the fault. Therefore, the fault localization algorithm

needs to consider multiple risk models using different topology snapshots.

The second challenge involves cases when multiple shortest paths exist

between two end points. Unfortunately, since it is not possible to determine the

exact path, we take a conservative stance and include the union of all links that

belong to every possible shortest path between the OD-pair as possible root causes

associated with the symptom.

V.A.4 Fault localization

Using the bipartite risk model and the detected failure signature, the

fault-localization algorithm outputs an appropriate hypothesis that explains all the

observed symptoms. While our localization engine is similar in spirit to SCORE

(and more generally to the greedy approach explained in Chapter III), there are

several key differences in our problem domain that prevent using either SCORE’s

greedy approximation to the set cover problem or even the Bayesian approaches

in [45, 86]:

86

• Lack of complete information. In the problem domains considered pre-

viously, the failure signature consists of all impacted IP links. Due to our

active measurement methodology, we are unlikely to collect the full set of

impaired links, leading to a partial failure signature in many transient black-

hole scenarios. Hence, algorithms that rely on the assumption that the lack

of reported failure on a particular path implies that all the constituent links

are good are not appropriate for our scenarios.

• Noisy failure data. A second major difference is the presence of noise that

can bias localization towards large hypotheses with quite a few spurious can-

didates. We address this problem by subjecting the output of the localization

algorithm to additional filtering described in Section V.A.5.

• Scale. The topology is much larger (in terms of the number of end-to-

end paths) and dynamic in nature; calculating paths on-the-fly between all

OD-pairs for computing the appropriate risk model for localization of every

fault is impractically time consuming. This reality forces us to again deviate

from algorithms that require considering all OD-pairs during diagnosis. We

restrict ourselves only to the set of OD-pairs that indeed failed.

• Redundant paths. Finally, there can be multiple paths between an OD-

pair due to equal cost multi-path—a scenario that does not exist in the

earlier IP fault localization problem studied in Chapter IV. As we mentioned

before, we address this problem by considering the union of all the paths

between a given OD-pair at the instant of the failure. We will show that this

approximation, while conservative, works well in practice.

Our localization algorithm called MAX-COVERAGE is derived from the

same basic greedy approach defined in Algorithm 1 that we used for SCORE. The

only place where it differs from the SCORE algorithm is in the two black-box rou-

tines left undefined in the original GREEDY in Algorithm 1—calculateMetrics()

87

Algorithm 4 calculateMetrics(rootCauseVector R, failureSignature F)

1: for (rootcause r ∈ R) do

2: for (symptom s ∈ F) do

3: if (checkAssociation(r, s)) then

4: r.coverage + +;

5: end if

6: end for

7: end for

Algorithm 5 selectCandidates(rootCauseSet R)
1: max = 0;

2: candidateSet = {}

3: for (rootcause r ∈ R) do

4: if (r.coverage > max) then

5: max = r.coverage;

6: candidateSet = {r};

7: else if (r.coverage == max) then

8: candidateSet = candidateSet
⋃

{r};

9: end if

10: end for

11: return candidateSet;

and selectCandidates(), which are defined for MAX-COVERAGE in Algo-

rithms 4 and 5 respectively. MAX-COVERAGE iteratively picks the root cause

(link) that explains the most number of symptoms in the failure signature, prunes

this set of events from the failure signature and repeats the process until no more

events remain in the failure signature. Therefore, for each root cause, the routine

calculateMetrics() associates the number of symptoms in the failure signature

explained with that particular root cause as the metric for ranking. Note that the

checkAssociation() routine checks whether the a given symptom is associated

88

with a given root cause according to the risk model. MAX-COVERAGE is biased

in favor of link(s) that explain the most symptoms in the failure signature. The

routine selectCandidates(), therefore, picks those candidate links have the high-

est value of the metric computed earlier. The rest of the steps proceed similar to

the basic GREEDY in Algorithm 1.

V.A.5 Additional issues

From the network operator stand point, we need to address two addi-

tional issues. First, the core localization algorithm MAX-COVERAGE outputs

a hypothesis given a topology and a failure signature. However, routing changes

during the time interval of interest can result in multiple topologies that must be

accounted for. In order to localize failures in such scenarios, we need to use the

route before and after each routing change. If multiple route changes occur within

a failure interval, applying different topologies results in different hypotheses for

the same failure signature. Hence, we need a mechanism to combine all these

hypotheses into one that the network operator can use for localization. Second,

MAX-COVERAGE generates an explanation for every observation in the failure

signature, even those due to noise, thus resulting in an unnecessarily large hypoth-

esis making it cumbersome to the operator. We need a mechanism to reduce the

size of the hypothesis further so that the system is more effective and usable to

the network operator.

To address these issues, we first generate multiple hypotheses for a given

failure signature using all the available topology snapshots obtained from the OSPF

monitor in the failure interval, and apply the following two algorithms in sequence

to output the final hypothesis:

• A hypothesis selection algorithm for selecting a hypothesis across different

topology snapshots; and

• A candidate selection algorithm for selecting candidate links within the hy-

89

pothesis (based on the contribution of each failure in the hypothesis to the

observation set) to deal with noise.

A hypothesis selection algorithm that has access to the ground truth

(we call it ORACLE) can easily pick the best hypothesis that is closest to the

truth. In practice, however, we do not have access to the ground truth, and

hence ORACLE is not an algorithm we can implement in practice. Thus, we need

an online approximation to ORACLE that can select the best possible hypothesis

among seemingly plausible competing hypotheses. One such algorithm we found to

be a good approximation is UNION (shown later in Section V.C.3), that computes

the union of all the hypotheses with different topology snapshots.

For candidate selection, a natural choice is to use a threshold. We can

use one of two standard types of thresholds—absolute and relative—to filter out

candidates due to noise. We can use an absolute threshold to pick those candidate

links that explain greater than a threshold number of events in the failure signature.

On the other hand, using a relative threshold, we can pick candidates that explain

greater than a particular fraction of all the events within the failure signature.

In general, either of these thresholding mechanisms work fine. We, therefore,

arbitrarily chose to use an absolute threshold to filter out candidates that explain

observations less than the threshold. Putting all these components together, the

overall system architecture is explained next.

V.A.6 System architecture

In Figure V.3, we show the complete data flow in the fault localization

system. Each edge router issues probes to (n−1) (n is the total number of routers)

other destinations and report the probes that get lost to the monitoring server.

The monitoring server invokes the localization algorithm with the failure signature

obtained from the detection system and obtains hypothesis corresponding to each

topology snapshot for that failure interval. The topology snapshots themselves are

constructed from link-state advertisements obtained from the OSPF monitor. It

90

Topology obtained

failed
probes snapshots

COVERAGE
MAX−

COVERAGE
MAX−

COVERAGE
MAX−

OUTPUT HYPOTHESIS

ABSOLUTE

MONITORING SERVER

Selection algorithm

Hypothesis

Selection algorithm

Candidate

Same failure signature
but different snapshots

topology

through OSPFmonn probes to destinations

Each router transmits

UNION

 / RELATIVE

Figure V.3: System architecture

then uses the hypothesis selection algorithm followed by the candidate selection

algorithm to output the final hypothesis that the operator uses to perform further

diagnosis. In the next few sections, we evaluate this system using both simula-

tion and offline analysis of real failure data, similar to the evaluation in IP fault

localization.

V.A.7 Challenges with real-time tools

One more level of complexity is introduced when tools operate in real time

with streaming symptoms arriving in real time. For offline data, clearly demarcat-

ing failure boundaries is relatively easier as compared to streaming data, because

of the dilemma that the tool has to face—whether to wait for more symptoms or

to proceed with what it has. We solve this using the following techniques.

91

• Maintaining history: We maintain a small amount of history consisting of

symptoms that belong to the last cluster of events. As new events arrive, we

determine whether to add these events to the last cluster or to start a new

cluster.

• Incremental hypothesis: We generate incremental hypothesis with symptoms

collected thus far. As new symptoms arrive, we check whether the new

symptoms belong to the same cluster as the history. If they do, the hypothesis

is refined with new evidence by re-running the algorithm with the larger

cluster.

• Sampling: Sometimes, the number of symptoms could be too large to gen-

erate a quick diagnosis. For example, during black holes, we have observed

as many as five thousand symptoms, for which calculating paths on-the-fly

for all these failed probes is difficult. So, we reduce the size of the failure

signature by randomly picking symptoms to feed the localization algorithm.

While we have built this real-time version of the tool, for our evaluation with real

failure data, we operate the tool in an offline fashion.

V.B Simulation results

To evaluate the performance of the detection and localization system, the

output of the localization algorithm needs to be compared against the ground truth.

Often, however, such ground truth for many failure scenarios is hard to obtain.

Therefore, we built a simulator that can inject artificial failures that mimic real-

life failure scenarios, and compare the output of the algorithm with the injected

failures using the metrics—accuracy and precision.

V.B.1 Metrics for comparison

Accuracy is the fraction of elements in ground truth G also contained in

the hypothesis H , or |G∩H|/|G|. If G is a proper subset of H , then the accuracy

92

is 1. This metric alone can not capture the efficacy of the localization algorithm,

however. For example, if we design an algorithm that always outputs U where U

is the universal set of elements, then G ⊆ U by definition, thus always leading to

an accuracy of 1. Such an algorithm obviously is not very useful in practice.

Therefore, we define another metric called precision that quantifies the

size of the hypothesis in relation to the ground truth. It is defined as the fraction of

elements in the hypothesis that are also present in the ground truth or |G∩H|/|H|.

In effect, precision captures the amount of truth in the hypothesis. For example, a

precision of 0.9 would imply that the 90% of the elements in the hypothesis match

the ground truth.

High accuracy in a localization system means few false negatives, and

high precision implies few false positives. Typically, most algorithms tend to trade

one metric for the other depending on how conservative or aggressive the algorithm

is. A conservative algorithm tends to include all the possibilities in order to achieve

better accuracy while losing precision, while an aggressive algorithm includes only

the significant ones thus gaining precision while somewhat sacrificing accuracy.

Our goal is to ensure that both these metrics are within reasonable bounds.

V.B.2 Simulation methodology

In this subsection, we discuss the architecture of our simulator before

we proceed to the simulation results. The essential ingredients of our simulator

include:

1. Topology. In order to produce observations that are similar to that of the real-

life fault observations, the simulator needs a topology model. Since topology

is an important component in evaluating the efficacy of any heuristic or

algorithm, we decided to use real topology data. We used a section of a real

tier-one ISP backbone network that is MPLS switched.

93

2. Failure model. In our failure model, each link failure is characterized by three

parameters—the start time of the failure, duration and finally, the nature of

failure (soft or hard). Typically, black holes are hard failures, so, every

packet that traverses the black-holing interface is dropped. On the other

hand, soft failures are used to model any type of transient probe losses, and

thus, packets are dropped with some configured probability.

3. Detection model. For detection, our simulator can generate a failure signature

in one of two ways. First, the simulator can generate individual probes

between all the OD-pairs, and for each link along one particular path, fail

the probe if the link is in failed condition according to the failure model.

It can also directly generate a random fraction of the true failure signature,

and output it as the failure signature. While either of the two approaches

work just as well, in our experiments, we mainly used the random fraction

approach.

4. Noise model. Real networks are noisy. So, spurious packet losses in the

network can get mixed with the actual failure signatures. The simulator is

equipped with modeling noise events according to many different models.

For example, the simulator generates random noise by failing probes that

belong to a random set of OD-pairs. Noise can alternatively be modeled as a

set of link failures with extremely short duration, so only a few OD-pairs are

affected depending on when the probe traverses that particular link failure.

We call this type as structured noise.

The simulator provides a realistic environment in which to evaluate de-

tection models and diagnosis algorithms. We simulated mainly three different

scenarios: without any noise, with random noise, and with structured noise. The

scenarios without any noise, while unrealistic, determine an upper bound on the

accuracy of the algorithm. Random noise simulates failure scenarios where the

failure signature is mixed with spurious probe losses in the network. In our sim-

94

ulations, we added a random number of spurious observations with an average of

80 per failure. We arrived at the number 80 based on our experience with real

data. Structured noise, on the other hand, models scenarios where failures of short

duration overlap with the main failure(s) and appear as noise. As an arbitrary

starting point, we generated structured noise by failing five links at random for

five seconds; the simulated “real” faults last for 60 seconds.

For each of these experiments, the following steps were used to obtain a

failure scenario and then identify the corresponding φ(t).

• For k overlapping failures, pick k links at random from the link set to form

the true failure scenario. We vary k from one to five in our experiments.

This forms the ground-truth set.

• Assign a random start time to each of these failures, such that all these

failures are contained with in the 90 second bin. Of course, the duration of

the outage has been fixed at 60 seconds for the main failures of interest.

• Compute the failure signature for every change point depending on the start

and end times of the link failure. For example, if a link A fails in the interval

(s1, e1), and B in the interval (s2, e2) and that s1 < s2 < e1. Then, Φ(t) is

a piece-wise constant function (similar to Figure V.2), so, between s1 and

s2, Φ(t) consists of only the failure signature of A. On the other hand, Φ(t)

consists of the union of failure signatures of A and B between s2 and e1, since

both failures are active during this interval. In case we simulate structured

noise, we add these short outages into the failure signature Φ(t).

• We simulate ECMP by making the reverse mapping from a given link to its

failure set, probabilistic, depending on the number of paths between a given

origin and a destination that contain A. For example, if a link is present

on half of the multiple paths between a given OD-pair, then the OD-pair

belongs to the failure signature of A with probability 0.5.

95

• In each piece-wise constant interval, each OD-pair from Φ(t) is added to φ(t)

with a probability α/60 · d, where d is the duration of that interval and α is

the target fraction of the signature we would like to obtain.

• If we are simulating random noise events, we picked random OD-pairs and

added them to the φ(t) to obtain our measured failure signature.

• The localization algorithm is run on this measured signature φ(t) to obtain

a hypothesis.

• The hypothesis matched the ground truth if each of the links in the ground

truth is also present in the hypothesis. The accuracy of the localization algo-

rithm is the percentage of number of failure scenarios for which the ground

truth matched the hypothesis. For the purposes of evaluating accuracy, we

do not consider any noise events (both structured and random).

V.B.3 Accuracy of the localization algorithm

We measured the average accuracy as a function of the fraction of signa-

ture, α for varying number of simultaneous failures and for the three different types

of failure scenarios. In simulations with no noise (shown in Figure V.4(a)), we can

observe that the average accuracy is well above 90% even with five simultaneous

failures and only 1% of the failure signature. Intuitively, this fact is because the

groups of OD-pairs that form the failure signature for each link are large; hence,

even a small fraction can create a sample of observations that can uniquely identify

the injected failure.

When random noise is introduced into the failure signature (shown in

Figure V.4(b)), we can observe that the accuracy is reduced. In particular, lower

fractions of the failure signatures are much more susceptible to noise than the

higher ones. For example, at α = 0.01, the average accuracy is only 60%, while it

reaches 90% at α = 0.16. This phenomenon is because at smaller fractions of the

failure signature, there is a higher chance that the spurious observations can morph

96

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
ia

gn
os

is
 a

cc
ur

ac
y

Fraction of failure signature

1 failures
2 failures
3 failures
4 failures
5 failures

(a) No noise

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
ia

gn
os

is
 a

cc
ur

ac
y

Fraction of failure signature

1 failures
2 failures
3 failures
4 failures
5 failures

(b) Random noise events

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
ia

gn
os

is
 a

cc
ur

ac
y

Fraction of failure signature

1 failures
2 failures
3 failures
4 failures
5 failures

(c) Structured noise events

Figure V.4: Accuracy of MAX-COVERAGE for different number of simultaneous

failures under no noise, random and structured noise scenarios. The y-axis is the

average accuracy measured over 500 random failure scenarios.

97

the failure signature of one shared risk into another. Since our algorithm tries to

identify risk groups with highest coverage first, it is likely that the original failure

signature and the noise will add up to a stronger candidate risk group different

from the injected failure.

With structured noise (in Figure V.4(c)), we observe a similar, although

less pronounced, phenomenon. The accuracy dips a little compared to the case

when there is no noise but is higher than with random noise. The reason is as

follows. Since noise is more structured in this case, the resultant failure signature

is a composition of α fraction of the original failure signature and α×β fraction of

the five noise links, where β is the ratio of the failure durations of the noise and the

original failure (β = 5/60 in our simulations). Since even a small α is enough to

achieve high accuracy even for five simultaneous failures with no noise, we achieve

high accuracy for the structured noise case.

V.B.4 Precision of the localization algorithm

Along with the accuracy, we also evaluated the precision of the localiza-

tion algorithm—the fraction of truth in the hypothesis—with varying signature

fraction α. Without noise in Figure V.5(a), the algorithm enjoys extremely high

precision, especially when α > 0.16. Precision drops with lower values of α since

the failure signature is not strong enough to distinguish between multiple contend-

ing risk groups. We also observe that the precision, similar to accuracy, is higher

for scenarios with one failure than those with five. Lower accuracy implies that

part of the ground truth is not present in the hypothesis, which in turn means that

the hypothesis might contain additional candidates not part of the ground truth

(i.e., lower precision) to cover all observations, thus leading to lower precision.

In the presence of noise, we only considered the injected faults as part

of the ground truth and not the noise itself. Thus the localization precision is

expected to be much lower as the algorithm tries to cover all observations including

those caused by noise, which in turn leads to a larger hypothesis. We can observe

98

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
ia

gn
os

is
 p

re
ci

si
on

Fraction of failure signature

1 failures
2 failures
3 failures
4 failures
5 failures

(a) No noise

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
ia

gn
os

is
 p

re
ci

si
on

Fraction of failure signature

1 failures
2 failures
3 failures
4 failures
5 failures

(b) Random noise events

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
ia

gn
os

is
 p

re
ci

si
on

Fraction of failure signature

1 failures
2 failures
3 failures
4 failures
5 failures

(c) Structured noise events

Figure V.5: Precision of MAX-COVERAGE for different number of simultaneous

failures under no noise, random and structured noise scenarios. The y-axis is the

average precision measured over 500 random link failure scenarios.

99

this trend for both the random (in Figure V.5(b)) and structured noise (in Figure

V.5(c)) scenarios. For the structured noise, though, the precision is higher than

that of random noise; fewer risk groups are required to cover the small fraction of

structured noise introduced.

We also observe that the precision is higher for five failures than one in

both noisy scenarios, while the opposite is true without noise. The reason for this

phenomenon is straightforward: Since the amount of added noise remains constant

across the varying number of simultaneous failures, the number of spurious obser-

vations and, therefore, the additional risk groups required to cover them remains

similar in all cases. The amount of truth, however, increases linearly with the

number of simultaneous failures injected, thereby increasing the overall precision.

V.B.5 Candidate selection algorithm to improve precision

Fortunately, we can improve the precision without significantly decreasing

the accuracy by applying the candidate selection algorithm described in Section ??.

In Figures Figure V.6(a) and Figure V.6(b), we plot the accuracy and precision

obtained after applying the candidate selection algorithm for different absolute

thresholds. For this experiment, we fixed the fraction of the failure signature to

0.16, which is still very low.

Eliminating candidate links from the hypothesis that were less than the

threshold improves precision significantly until a threshold of about 25, after which

the decrease in accuracy out-weighs the additional benefit obtained by increasing

the threshold. The optimum threshold varies depending on the specifics of the

topology and fault detection system, and should be derived empirically for a given

deployment.

100

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 a
cc

ur
ac

y

Threshold

Failures = 1
Failures = 2
Failures = 3
Failures = 4
Failures = 5

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 p
re

ci
si

on

Threshold

Failures = 1
Failures = 2
Failures = 3
Failures = 4
Failures = 5

(b) Precision

Figure V.6: Accuracy and precision of the candidate selection algorithm when

we change the threshold. For these graphs, we fixed the fraction of the failure

signature to 0.16 and varied the threshold.

101

Table V.1: Features of the MPLS fault monitoring system.

Feature MPFM

Topology Core and outside backbone
Number of routers 100s
Probe distribution Periodic
Probe frequency 1 per minute

Layer of the probes MPLS

V.C Experience with real failure data

In addition to the simulations, we also collect failure data from an MPLS

fault monitoring (MPFM) system that monitors a section of a real MPLS-switched

tier-one ISP backbone network. The MPFM system monitors MPLS tunnels that

originate from a subset of edge routers in the backbone, traversing the backbone

and finally terminating at other edge routers. Since the MPLS tunnels are es-

tablished and maintained using the underlying IP topology (through OSPF), any

IP-layer failure can impact the MPLS tunnels above the IP layer. The topology

consists of a few hundred routers and the probes are transmitted at a periodic rate

of one every minute, as shown in Table V.1.

The goal of our evaluation is to stress test our system; we consider every

probe loss as part of the failure signature, including those due to noise. Note,

however, that this does not bias the accuracy of our tool since we do not include

the root causes of the noise (which we do not know anyway) in our ground truth.

This however affects precision since the tool attempts to explain all symptoms

including those due to noise. In the production version of the tool, we are mainly

interested in characterizing large failures, thus noise can be reduced by considering

only those OD-pairs with more than a threshold number of dropped probes.

V.C.1 Ground truth

In order to evaluate the efficacy of our fault localization system, we need

access to ground truth for the failures. We performed our analysis in two parts—

102

automated and manual. Automated analysis allows us to study the efficacy of our

system over a large number of failures. Unfortunately, for silent failures, there is

no automated way to compare our hypothesis with ground truth, since the fault

monitoring data does not contain any alarm to correlate with. For such failures,

we relied on operator tickets that indicate the root cause of the failure obtained

through manual diagnosis. Silent failures are relatively rare in practice, however.

So, in order to test our system thoroughly, we relied on various types of non-silent

failures for which we extracted ground truth from three data sources—OSPF link-

state advertisements (LSAs), syslogs and SNMP data.

The set of OSPF LSAs obtained through the OSPF monitor indicates

which IP link has been announced/withdrawn from the topology. Certain LSAs

also contain OSPF weight changes that can trigger shortest-path computation,

causing routing changes in the network. During many routing events in the net-

work, the topology is unstable for a short period and probes can get dropped.

For such routing incidents, we compare the hypothesis generated by our algorithm

with LSAs corresponding to the routing events.

In the core backbone network, many IP links are in fact bundling of

many member interfaces known as composite links [9]. The router typically load

balances the packets among these multiple interfaces. Individual member failures

within the composite links cause probes that are transmitted on that member to

be dropped until the router re-balances the traffic onto other members. Since the

composite link is active, such failures do not cause OSPF LSAs, but appear in

router syslogs. We, therefore, used syslogs to obtain information regarding these

failures. In conditions of high link utilization, such as during failures or during

maintenance, links can experience heavy packet loss, and therefore, can cause end-

to-end probes to get dropped along these links; such congestion events are found

in SNMP measurements.

Note that the ground truth obtained through these data sets is only

approximate, as there can be instances when a link failure is reported in the ground

103

truth but the event does not impact traffic forwarding. In these cases, the failure

signature will not contain any OD-pairs that are impacted by the spurious LSA

or syslog message. Thus, the natural comparison with our hypothesis (namely,

requiring that the ground truth be wholly contained in the hypothesis) is obviously

unfair. As a relaxation from this strict accuracy metric (which we refer to as

ALL), we define a more conservative accuracy metric called ATLEAST ONE in

which accuracy is defined to be 1 if at least one of the links in the ground truth is

contained in the hypothesis and 0 otherwise. The real accuracy of our system lies

between the ALL and ATLEAST ONE metrics.

Now, we present the evaluation results using the methodology outlined

in the previous section. Our results are in four phases: First, we evaluate the dif-

ferent candidate selection followed by the hypothesis selection algorithms. Third,

we divide the failures in several categories and compare the performance of our

localization algorithm for these different failure scenarios. Finally, we outline our

experience in localizing real MPLS black-hole scenarios in the network.

V.C.2 Candidate selection algorithm

In Figures Figure V.7(a) and Figure V.7(b), we plot accuracy using both

the ALL and ATLEAST ONE metrics and precision of localization. For this ex-

periment, we picked the hypothesis with best accuracy among those with different

topology snapshots, i.e., ORACLE. On the x-axis, we vary the cardinality of the

failure signature (number of observations) from 50 all the way up to 1000 observa-

tions in steps of 50. On the y-axis, the average accuracy/precision corresponding

to all failure intervals that have at least x observations is shown. In effect, these

figures show the trend in the accuracy/precision as the failures impact more and

more OD-pairs.

Several conclusions can be drawn. First, the number of failure intervals

reduces exponentially from about 600 bins with more than 50 observations to

about 20 bins with more than 1000 observations (not shown). This is expected,

104

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
cc

ur
ac

y

of observations

Threshold=10
Threshold=20
Threshold=30
Threshold=40
Threshold=50

(a) Accuracy with ATLEAST ONE, (above) and ALL (below) metrics, as-

suming the correct topology is known.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
re

ci
si

on

of observations

Threshold=10
Threshold=20
Threshold=30
Threshold=40
Threshold=50

(b) Precision, again assuming the correct topology is known.

Figure V.7: Accuracy and precision for the MAX COVERAGE algorithm on real

failures from a tier-one ISP, assuming the correct topology snapshot is known.

105

since the number of large failures is typically much smaller than the number of

small failures. Overall, we obtained accuracy and precision of about 80% when

considering failures with more than 150 observations. Second, the accuracy and

precision of localization increase as the failure size increases initially from 50 to

150 observations. However, it decreases slightly after that but is inconclusive as

the number of failure intervals is too small to have statistical significance. Larger

failure signatures can indicate one of three things, assuming noise in the network

remains the same across all failures. First, the fraction of the failure signature

captured could be higher, i.e., the failure lasted for a larger duration. Second,

the failure might have impacted many OD-pairs in the network, thus the failure

occurred on a popular link that lies on many paths. Finally, there could have

been many simultaneous failures, the likelihood of which is not insignificant due

to router maintenance events. For the first two cases, it is not surprising that

our fault localization algorithm performs well, as larger signature fraction means

larger accuracy verified using simulations. For the final case, since we use the

ATLEAST ONE metric, there is a strong chance that at least one of the root

causes is in our hypothesis. In fact, accuracy using ALL metric is about 40%

less than the ATLEAST ONE metric, both due to the approximate nature of our

ground truth as well as the presence of many simultaneous failures in ground truth.

Third, a threshold of 30 that selects candidate links in the hypothesis

that cover at least 30 observations seems to represent a good trade off between

accuracy and precision. Below this threshold, the precision is significantly lower

while accuracy is only slightly higher. Increasing the candidate selection threshold

beyond 30 leads to a marginal decrease in the average accuracy, while precision

does not improve any further.

V.C.3 Hypothesis selection algorithm

As mentioned earlier, for hypothesis selection algorithm, we use the

UNION algorithm which outputs the union of all hypotheses corresponding to

106

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300 350 400 450 500

P
re

ci
si

on

threshold

Union
Oracle

Figure V.8: Precision as a function of threshold on the x-axis, both assuming the

correct topology and using the UNION heuristic. The upper two curves include all

the failure intervals, while the bottom two curves only include those failures that

had more than one topology snapshot in that interval.

various topology snapshots during the failure interval. Because UNION includes

the links from all the hypotheses, it cannot cause a decrease in accuracy according

to our definition. Therefore, precision is the only metric of interest in evaluating

UNION, for which we compare against an oracle that can clairvoyantly pick the

best out of all the hypotheses generated using different topology snapshots.

In Figure V.8, we plot the precision for the UNION hypothesis selection

algorithm that combines multiple hypotheses obtained using different topology

snapshots. The x-axis is the candidate selection threshold that we vary from 10

all the way up to 500. For each of these candidate selection thresholds, we identify

all those failure intervals that had at least one candidate link remaining in the

hypothesis after we apply the candidate selection thresholds and compute the

average accuracy/precision for these failure intervals. The number of bins reduces

with increasing candidate selection threshold (not shown in the Figure) due to the

fact that we discard bins that do not have any candidates left in the hypothesis

after we apply the threshold.

107

We plot two sets of curves in Figure V.8 corresponding to two different

cases. The bottom two curves in the Figure corresponds to the case when we

consider only those failure intervals that involved a topology change, while the

top curves refer to the case when we consider all failure intervals. Note that if

there is no topology change during a failure interval, UNION performs the same

as the best possible hypothesis. Since a large majority of cases did not involve a

topology change, the reduction in average precision due to the UNION algorithm

is negligible. However, if we consider only those cases that involve a topology

change, we can observe a dip in the precision due to the UNION algorithm (by

about 15%). This means that, for particular scenarios involving multiple topology

changes, an operator needs to look at hypotheses that are 15% larger than the best

hypothesis clairvoyantly picked.

So far, in our analysis, we have considered all the failures to be of the

same type. However, in practice, failures differ from each other depending on the

nature of the root causes, especially for different non-black-hole failure scenarios

we have considered. Therefore, we partition all the failures into classes and study

them individually in the next subsection.

V.C.4 Analysis by failure type

We classify all the failures based on the root cause found in OSPF LSAs

into the following types:

• Router cost out: Traffic is removed from all links associated with an entire

router by changing the routing protocol weight up to an excessively high

value.

• Router cost in: Traffic is moved back on to a router.

• Link cost out: Traffic is removed from a particular link and not the entire

router.

• Link cost in: Traffic is moved back on to a given link.

108

• Bandwidth events: A part of the composite links in the network has failed.

This failure typically can affect certain probes in the network. These mes-

sages are usually reported as bandwidth increased/decreased for the compos-

ite links in the syslogs, and hence we call them bandwidth events.

• Others: Any other failure that does not fit the above categories is included

here.

Since manual classification is too tedious, we applied simple heuristics to

classify a failure event. For example, if all/most of the LSAs have one end point

in common, then it is a router-related incident. If the LSA indicates a change of

metric from higher (lower) cost to lower (higher) cost, then it is a cost-in (out)

event. If there are only a few links (less than five) experiencing this change of OSPF

weight, then we deem it an individual link cost in/out event. Partial composite

member link failures are identified through the corresponding notification in the

syslogs.

In Figure V.9, we plot the average accuracy on the y-axis while varying

the candidate selection threshold on the x-axis for both ATLEAST ONE and ALL

metrics. Recall that increasing the candidate selection threshold automatically

considers only failure intervals that have a large number of observations. From

Figure V.9(a), we observe that localization was the most accurate for bandwidth-

related events for the ATLEAST ONE metric. This is because the number of

simultaneous network events in the ground truth for bandwidth-related failures is

small (unlike router cost in where all the links of that router are part of ground

truth) and this leads to a more crisper and clearer signature to localize. Router

cost out and cost in events ranked next in terms of accuracy according to the

ATLEAST ONE metric.

However, when we compared the ALL metric for different failure types

(shown in Figure V.9(b)), the accuracy of link cost in and out events was better

than that of the router events. This is due to the fact that during router cost

109

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Candidate Selection Threshold

Cost In
Cost Out

Router Cost In
Router Cost Out

Bandwidth
Other

(a) ATLEAST ONE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Candidate Selection Threshold

Cost In
Cost Out

Router Cost In
Router Cost Out

Bandwidth
Other

(b) ALL

Figure V.9: Accuracy (using both ATLEAST ONE and ALL metrics) for different

types of failures.

110

in/out events, a larger number of OD-pairs are impacted, most of which are di-

rectly passing through the router. So, the chances of finding at least one match

between the ground truth and the hypothesis is far stronger (hence higher accu-

racy according to ATLEAST ONE metric), while the fraction of matches between

ground truth and the hypothesis is considerably lower for these events. Note that

the lack of clear trend as we increase the threshold beyond 80 is due to the small

number of failure intervals (around 20-25).

V.C.5 Real MPLS black holes

We describe three silent failures we analyzed using our system using data

obtained from the MPFM system. We consulted operator logs to obtain the ground

truth for these real black hole scenarios. While these black holes have already been

fixed in the network, we applied our system on archived failure data to evaluate

whether our system is indeed effective to localize real black hole scenarios.

In the first incident, misbehavior of a new device that was connected to

the periphery of the network caused many routes to go through the device which

were then subsequently black holed. This is a perfect example where we need

to consider all the topology changes within a failure interval. In this case, our

localization system output two candidate links as the hypothesis—the (properly

functioning) link before and the (black hole) link after the re-routing of traffic.

For this incident, the localization accuracy therefore is 100% while precision is

only 50%.

In another failure scenario, the forwarding component of a line card failed

to dequeue packets until the card was reset. Our localization system output a hy-

pothesis that had five candidate links, out of which, when we applied our threshold

of 30 eliminated the four false positives out of the hypothesis and contained only

the actual failed link. This hypothesis therefore has 100% accuracy and precision.

Another known black-hole scenario happened due to a misconfiguration

causing brief loss in connectivity to MPLS paths that traversed that link. Our

111

localization algorithm output a hypothesis that contained four candidate links,

two of which were eliminated after we applied our candidate selection algorithm.

Out of the remaining two, one was the actual black hole while the other was a

false positive. However, the false positive could not be easily distinguished from

the actual black hole since both these links appeared on all the paths corresponding

to the impacted OD-pairs.

V.D Related work

Though there is a tremendous amount of literature in the area of network

fault management and monitoring, there has been little discussion of silent failures

or black holes of the types considered here. Systems and general techniques for

network data correlation are widely used, and are under continuous refinement

as new statistical methodologies for fault and anomaly detection are developed

[70, 17, 58, 68, 23, 36].

Inference problems generally are of wide interest in the operational and

networking research communities. While we know of no other work that targets

the silent failure detection problem we consider here, there is considerable research

in use of partial or incomplete data to reconstruct unknown network internal and

external topology, traffic and performance. We take a simple, greedy approach

to inference, which we find works well. More complex approaches might also

be of interest. In particular, there is the rich area of network tomography, an

approach to (massively under-constrained) linear inference, which has been applied

to inferring topology and link performance from end-to-end measurements, as well

as to inferring OD-traffic demands from link traffic measurements [15, 35, 63, 67,

93, 94, 101, 102].

Our detection system uses standard mechanisms in route and topology

monitoring and packet probing to identify reliability metrics such as packet loss,

delay, etc., on a per-path basis. Such measurement is routinely performed by many

112

ISP backbone operators using a variety of different tools such as ZING [61] and

BADABING [83].

V.E Summary

In this chapter, we developed and evaluated a simple yet effective method-

ology for the localization of black holes or silent failures in the network. One of our

key contributions is the successful application of risk modeling to localize failures

even in the presence of noisy data. Using real failure data obtained from a tier-one

network’s MPLS fault monitoring system, we demonstrated that our system can

effectively aid network operators in troubleshooting failures.

The reason for applying risk-modeling methodology to localize black holes

is the lack of direct mechanisms to isolate the root cause. More specifically, active

probing approaches were necessary to detect black holes because routers currently

do not self-detect such problems automatically. Hence, ISPs are forced to use such

indirect approaches.

So far, we have focused on applying the risk-modeling methodology to

fault-localization problems commonly found in backbone networks. In the next

two chapters, we identify two key problems in these individual problem domains

and propose clean-slate architectural approaches to solve them.

First, in the IP fault localization domain, we observed that one of the

fundamental problems is maintaining accurate associations across IP and optical

domains. While SCORE algorithm deals with such errors using the error threshold,

still, a systematic architectural approach is necessary to ensure such associations

are accurately maintained without having to wait for a fault to occur to real-

ize associations were incorrect. Thus, in the next chapter, we discuss clean-slate

approaches for accurate cross-layer visibility.

Second, we propose a general measurement architecture called m-Plane in

Chapter VII that both scales well with network size as well as, perhaps more im-

113

portantly, facilitates direct measurement of fault localization. m-Plane architecture

is based on novel router primitives that allow individual router- and link-level mea-

surements composed together to form end-to-end path metrics. We also show how

m-Plane can be incrementally deployed in the network, and the associated benefits

as we increase the number of upgraded routers.

V.F Acknowledgments

This chapter is based on the paper titled “Detection and Localization

of Network Black holes”, appeared in the Proceedings of the Infocom , held at

Anchorage in May 2007, which is joint work with Jennifer Yates (at AT&T Labs –

Research), Albert Greenberg (at Microsoft Research), and Alex C. Snoeren. The

dissertation author was the primary investigator and author of this paper [55].

Chapter VI

Cross-layer visibility as a Service

Layering in IP networks fundamentally hides the complexity of lower (up-

per) layers (e.g., the underlying optical network topology) and exposes very simple

interfaces to upper (lower) layers (e.g., a logical link), thus allowing parallel and in-

dependent evolution of the layers while preserving the interface between them. For

example, an IP router does not need to know exactly all the optical components

that constitute its IP link to an adjacent router. Thus, routing protocols such as

OSPF or IS-IS can only focus on the link-level abstraction without any knowl-

edge of what optical components the link comprises of or where these components

are located within the network. While this logical separation helps contain the

complexity beneath simple interfaces, we argue that strict layering results in poor

cross-layer visibility, negatively impacting many management functions including

fault localization that rely on accurate cross-layer associations.

In this chapter, we discuss two approaches for obtaining accurate cross-

layer associations: In the first approach, we consider “fattening” the interfaces

so that every layer automatically determines as well as disseminates dependencies

throughout the network as shown in Figure VI.1(a). In the second, we do not

perturb the layer boundaries we have today, instead provide cross-layer visibility

to various network management functions by joining different databases as shown

in Figure VI.1(b). We discuss the pros and cons of these two approaches and

114

115

LAYER i+2

LAYER i

LAYER i+1

(a) Fat interfaces

C
R

O
S

S
−

LA
Y

E
R

 A
S

S
O

C
IA

T
IO

N
SLAYER i

LAYER i+1

LAYER i+2

(b) Thin interfaces

Figure VI.1: Two ways to provide cross-layer visibility

argue that an effective approach to cross-layer visibility should have room for

many independent mechanisms that allow discovering associations with increasing

levels of complexity as well as accuracy. Further, we argue that the architecture

should provide cross-layer visibility as a service to all the network management

functions that rely on accurate associations across layers.

The rest of this chapter is organized as follows. First, we outline some of

the important network management tasks that rely on accurate cross-layer associ-

ations in Section VI.A. In Section VI.B, we discuss why it is hard to provide accu-

rate cross-layer associations. We then argue that fattening the interfaces to provide

accurate cross-layer visibility is not desirable in Section VI.C. In Section VI.D, we

present an architecture that provides an evolutionary path that gradually increases

the level of accuracy in these associations while containing complexity within lay-

ers.

VI.A Importance of cross-layer visibility

In today’s IP backbone networks, each IP link consists of a connected

set of optical components organized in different topologies (e.g., ring, mesh, etc.).

116

A single link consists of many different optical components and many different

links can share a particular component, thus creating a many-to-one, one-to-many

mapping. Cross-layer visibility refers to the associations between higher-layer ab-

stractions and lower-layer components and vice versa. For example, in IP networks

it refers to the association between an IP point-to-point link to the set of optical

components that comprise the link. Accurate associations are critical to the func-

tioning of various operational tasks—some of which have been described below.

Backbone planning. Backbone planning involves engineering the network

to withstand a wide range of potential failure scenarios including possible attack

scenarios and planned traffic growth, as well as to support additional services and

features in the network. An accurate audit of the network that transcends all

layers, therefore, is a key ingredient in backbone planning. Similarly, IP paths are

typically selected to avoid any single points of failures or SRLGs [90]. Accurate IP-

to-optical associations in databases are required to choose physically diverse paths

to carry traffic to withstand failures in the lower layers. Erroneous IP-to-optical

associations in databases can result in engineering the network to incorrectly choose

non-diverse paths to carry traffic; a single failure in turn can partition the network.

Customer fault tolerance. Customers (e.g., e-commerce businesses) are

primarily interested in obtaining uninterrupted network connectivity either from

one single service provider or through different service providers via multi-homing.

One common question they often face is about the level of diversity in their con-

nectivity to the backbone. Even when they connect to different points-of-presence

(PoPs) within the same provider, or to two different carriers (e.g., Sprint and

AT&T) there could be shared risks lurking (e.g., fibers passing through the same

tunnel) that could be of concern to the customer. Whether to disclose such infor-

mation about physical connectivity completely or in part is often a policy decision;

nevertheless, accurate cross-layer mappings are important in order to answer these

questions.

117

Alarm suppression and diagnosis. As discussed in Chapter IV, alarms are

generated from various network elements (e.g., optical equipment, routers etc.),

sometimes at different layers to indicate IP link failures. For example, a fiber cut

can cause the router to raise alerts indicating that the interface is down at SONET,

PPP, IP, and MPLS layers in addition to the loss of signal (LoS) alarms raised by

certain optical components. If multiple links are affected due to shared risks, all

of the links, and potentially their associated optical components, raise alarms at

all impacted layers overwhelming the network operator. Accurate associations are

required to group these alarms together into a single event. Further, the accuracy

of diagnosis (either manually or using our fault-localization system described in

Chapter IV) is limited by the consistency of the IP-to-optical database. Accurate

associations are also critical in proactive root-cause analysis of other performance

related problems such as chronic intermittent flapping of interfaces, link degrada-

tion, etc., that potentially may have not (yet) triggered alarms.

Maintenance. Network operators often gracefully remove the traffic on

a link (by increasing the OSPF weight of a link or some such mechanism) before

performing maintenance (e.g., repairing a faulty component, provisioning a new

link, software upgrades, etc). Mis-associations across layers can cause operations

to induce unwanted faults into the network. For example, if the IP-to-optical

associations were wrong, operators intending to perform maintenance on a link

between Los Angeles and San Francisco might instead inadvertently impact traffic

flowing between San Diego and Los Angeles.

VI.B Why is it hard?

It might appear to the reader that accurately maintaining such associa-

tions should be a straightforward task. After all, the network operators provision

the network in a centralized manner; therefore, they can log these associations in

databases. However, as we have mentioned before in Chapter IV, a live operational

118

network incurs significant churn as links are provisioned, old equipment is replaced

with new equipment, faulty components are repaired, interfaces are re-homed and

so on. Database errors can result from this inherent churn—for example, if oper-

ations fails to update the relevant databases as an IP link is moved from a failed

line card (slot) to a different, operational card (slot).

Additionally, this task is complicated by the presence of restoration at

individual layers. For example, a failure within a SONET ring is recovered by

rapidly protection switching to re-route the traffic the other way around the ring.

In more “intelligent” optical networks, optical-layer restoration causes the path to

re-route from the primary to an alternate path. These dynamic path changes at

lower layers are typically achieved without impacting the upper layer connectivity;

IP links are, by design, oblivious to restoration at lower layers. Of course, one can

argue that restoration in lower layers reduces the need or in some cases obviates

the need for cross-layer visibility. While this is partially true, cross-layer visibility

is still important because:

• IP layer might experience subtle changes in other performance metrics such

as end-to-end delay;

• operations personnel need to ensure that restoration itself does not have any

problems;

• it is cheaper with the current technology to provide IP-level restoration than

optical; thus optical layer protection is often not used—particularly on high

speed links [57].

This flux in topology can make it harder to diagnose failures or other performance

issues without the presence of accurate cross-layer associations. One can, there-

fore, conceive that the network ought to be engineered to provide such information,

perhaps by widening the interface between layers (e.g., exposing changes in optical

topology to IP links), in the context of network management. While this concep-

119

tually clean design exposes such associations as a part of the network, we argue

that this is neither practical nor desirable in the next section.

VI.C Fattening layers is not a good idea

A fat interface between layers allows information to flow from one layer to

another layer as a part of the architecture itself. For example, if the network layer

(IP/MPLS) were made aware of the underlying components in optical topology,

this could allow the network layer to make better choices in recovering from failure

situations. Indeed, in the context of fast restoration from failures in the MPLS

domain, Interior Gateway Protocol (IGP) extensions in [47, 82] incorporate shared

risk link groups (SRLGs) in their link state advertisements (LSAs). These SRLGs

themselves could be auto-discovered through other means (such as through optical

topology information obtained through link-management protocols such as LMP

[56]). This availability of SRLGs allows the computation of backup paths that are

physically diverse from the primary paths. While such an approach has the clear

advantage that cross-layer associations can be directly and accurately obtained

from the network, we argue that this approach does not scale well. Some of the

reasons are listed below.

• Complexity. Exposing lower-layer topology to upper layers adds complexity

into the network (increased processing due to new types of messages) and

limits scalability (too many devices results in higher messaging overhead).

In doing so, the routers are unnecessarily burdened with flooding messages

from not only its own layer but also from layers below. This additional

burden, while potentially helpful for the purposes of better management of

the network, stunts the evolution of the network. Every optical device needs

to export an interface that provides visibility into its layer to the layers above.

Suddenly, lower-layer devices need to be aware of the upper layers making

them more complex than they need to be.

120

• Interoperability. Interoperability does not scale well with number of different

types of devices; the larger the number of devices that need to be interop-

erable, the more difficult it becomes to achieve consensus on one protocol.

Besides, it necessitates long design and testing cycles across large number of

devices and manufacturers.

• Security. In some cases, this additional visibility into lower layers is not desir-

able due to security reasons. For example, consider the case of physical-layer

virtual private networks (VPNs), where a customer directly obtains a circuit

from a provider. The service provider only manages the raw optical circuit

and has no visibility into the network layer at all. Forcing wider interfaces

would expose more information to the service provider that might not be

acceptable to the customer. In other cases, allowing individual network ele-

ments to be queried can also make the infrastructure more vulnerable than

it has to be.

• Incompleteness. Even if one were to imagine complexity, interoperability and

security were not of concern, fundamentally, it is difficult to achieve complete

cross-layer visibility. For example, it is difficult to automatically identify

whether two physical pieces of fiber are traversing the same conduit, or if two

conduits traverse the same tunnel, etc. Obtaining the exact location of each

of the fibers and other geographical information such as proximity to faults,

volcanic regions etc., is an extremely tedious task. Also, the definition of what

constitutes diversity (e.g., how geographically far apart should physically

diverse fibers be) is a matter of policy and can often be hard to define [90].

In practice, therefore, many ISPs today provide cross-layer visibility to

various network management functions by maintaining complex databases and an-

alyzing large amounts of topology, configuration, and measurement data collected

from network elements at each layer. Still, this ad hoc approach of collecting and

analyzing data in home-grown databases is not a sufficient solution, either. In-

121

stead, we argue that the management layer should provide cross-layer visibility as

a service, with well-defined interfaces for populating the external databases and

querying the information in the next section.

VI.D Cross-layer visibility as a service

Rather than dictating what the network elements store and export—the

approach taken by the Simple Network Management Protocol (SNMP) [16]—we

focus on what information is imported into the management database. This subtle

distinction is extremely important, as it allows many different solutions for provid-

ing the information. Although the network elements themselves could generate the

data (as in SNMP), the information could also come from separate measurement

devices or even human operators. This approach accommodates the inherent di-

versity across the layers and the natural evolution of techniques for collecting the

data. We also present a possible evolution path for three layers—determining the

IP forwarding path, mapping an IP link to optical components, and identifying

fibers running through the same geographic location. These examples could easily

be extended to include other protocol layers, such as paths through an overlay

network or a sequence of tunnels or MPLS label-switched paths.

Greater uniformity in the data representation would make it easier to

evolve a network, integrate two networks after an acquisition, and employ third-

party network-management tools. More broadly, we argue that the management

system should have interfaces for different stake holders—such as network design-

ers, network managers, and customers—to query the data, with explicit policies

governing the kinds of information each party can access. For example, a customer

could ask if two IP paths (or two access links) are physically diverse but might not

be told that the fibers run through the same tunnel. In contrast, a network man-

ager troubleshooting a reachability problem could perform a complete traceroute of

an IP path across all of the layers. A network designer could conduct a “what-if”

122

analysis of the effects of planned maintenance on the link loads. The system can

also keep a log of past queries, to learn more about the cause and impact of failures

by analyzing patterns in the queries. Maintaining explicit cross-layer visibility in-

formation presents a number of interesting research and operations issues which

we discuss in Section VI.E.

VI.D.1 Architecture

As some ISPs already perhaps employ today, we advocate that each AS

have a possibly distributed management database that stores the topology at each

layer and how a link at one layer maps into a set of components at the layer below.

For example, the database would store the IP topology (i.e., the routers and the

links between them) as well as the forwarding paths between each pair of routers.

The database would also store the optical topology and which sequence of optical

components, such as fibers and amplifiers that form the link between two adjacent

IP routers. Similarly, the database would keep track of which fibers run through

the same conduit, as well as the geographic path the conduit traverses from one

termination point to another. The database should have unique names for devices

at each layer, as well as indices necessary to map between layers.

In addition, cross-layer visibility should be provided as a service to a

variety of clients. Today, traceroute is the primary way a customer determines

the path its traffic takes through the network. Yet, traceroute is problematic for

several reasons: (i) ISPs often disable or rate-limit ICMP to avoid overloading

their routers, or to hide their topology information, (ii) the probes do not see the

network elements at lower layers (e.g., inside an MPLS label-switched path, or

the optical components between two routers), and (iii) analyzing changes in the

path requires frequent probes to capture both the old and new paths. Instead,

our management system could provide a “cross-layer traceroute” service, without

customers probing the network directly. Similarly, the management system could

support queries for network designers to identify shared risks and model the effects

123

of failures on the flow of traffic through the network.

Providing cross-layer visibility as an off-line service has several advan-

tages:

• Lower overhead on the routers: Queries are answered by the management

system, rather than the routers themselves. The system can also cache the

results of recent or common queries to reduce the overhead of satisfying future

queries.

• Answering historical questions: By maintaining a log of network changes

over time, the service can answer queries that require historical data. For

example, a customer could inquire about a performance problem that started

ten minutes ago, and the service could report whether a failure forced the

customer’s traffic onto a path with a longer round-trip time.

• Application of security policies: The management system can apply explicit

policies to control what kind of information is revealed, and to whom. For

example, a customer may be allowed to ask if two paths have a shared risk,

but not learn exactly what component is shared and where it is located.

In addition, by forcing all queries through the service, the AS can protect

its routers from probe traffic while still providing good network visibility to

customers.

• Flexible policies for defining shared risks: The notion of a shared risk is ex-

tremely subjective [90], and the service can accommodate different notions

by allowing queries at different granularities and incorporate extra informa-

tion. For example, a network designer may want to know if two fibers lie

near the San Andreas fault in San Francisco. Or, one customer might be

interested in link-disjoint paths and another in PoP-disjoint paths through

the network.

• Cooperation between ASes: ASes could cooperate to provide greater visibility

into shared resources. For example, an ISP that leases fiber from another

124

provider could automatically learn the geographic path it follows (abstracted

as deemed fit by the providers), or a multi-homed customer could determine

its vulnerability to failures affecting both of its providers. Or, a governmental

agency could conduct a realistic study of the effects of a serious catastrophe

(such as a terrorist attack) on the Internet infrastructure.

With standard representations of the topology and paths at each layer, and the

dependencies between layers, ASes can provide these kinds of valuable services.

VI.D.2 Independent evolution of each layer

By defining the data imported by the management system, rather than

exported by the network elements, our architecture supports many ways of learning

the intra-layer topology and paths, and the cross-layer mappings:

IP topology and forwarding paths: The IP-level topology for an

AS consists of routers and links, and a forwarding path consists of one or more

sequences of IP links. The topology and paths can be learned in various ways,

with different degrees of accuracy and timeliness:

• Static view: The topology can be recorded by the operators as equipment is

installed, or reverse-engineered from the router configuration state. The IP

forwarding paths can be computed by modeling which paths the routers, as

configured, would select. However, these static views do not capture which

routers and links are unavailable at a given time.

• Periodic snapshot: A monitoring system can poll the routers for their status

and forwarding tables, or run traceroute probes to map the topology. The

forwarding paths can be computed on the measured topology, identified from

the forwarding tables, or extracted directly from the traceroute results.

• Continuous view: A monitor could collect routing-protocol messages, field

alarms when equipment goes up/down, or analyze syslog output generated

125

by the routers to provide an up-to-date view of the topology and paths. If

the AS supports explicit routing (e.g., using MPLS label-switched paths),

the management plane would know the forwarding paths because it would

be responsible for configuring them.

With our architecture, an AS can easily evolve its network design and monitoring

infrastructure while maintaining the same representation of the topology and paths

in the external database and management applications.

Optical components and paths: The optical topology consists of a

diverse array of devices, including fibers, amplifiers, cross connects, and add-drop

multiplexers. The sequence of optical components underlying an IP link could be

learned in various ways, depending on the sophistication of the optical components:

• Completely manual: The operators can keep track of optical components and

their relationship to IP links as the equipment is installed. To reduce the

likelihood of inaccuracies in the database, the AS can apply basic consistency

checks, such as verifying that two ends of an IP link map to the same circuit

identifier. As a second line of defense against errors, the AS can monitor the

effects of optical failures on the IP layer to identify and apply correlation

algorithms to identify incorrect mapping information [45, 54].

• Partially automated: Manually constructing the list of optical devices un-

derlying a link is not sufficient if any of the underlying components adapt

automatically to failures. For example, an intelligent optical cross-connect

may reroute the traffic through an intermediate cross-connect when a com-

ponent along the direct path has failed. Similarly, a SONET ring may adapt

by redirecting traffic around the ring in the opposite direction. Capturing

these changes requires logging of alarms or periodic probing of the adaptive

components and correlation across layers. Although automatic restoration

protects the IP layer from optical failures, knowing the new mapping is im-

portant for troubleshooting performance problems (e.g., a sudden increase in

126

round-trip times) and identify new shared risks. As an added benefit, these

automatic routing changes at the optical level also provide opportunities to

identify mistakes in the human-entered databases, while reducing the effects

of the failure from the IP layer. Still, some parts of the database may re-

main human-generated, such as the identity of the ingress and egress cross

connects, or the list of optical amplifiers between any two cross-connects.

• Completely automated: Discovering the optical components becomes much

easier if the network elements have a common control plane, such as Gener-

alized MPLS (GMPLS) [62]. For example, GMPLS includes LMP [56] that

performs neighbor discovery between adjacent network elements so they can

dynamically establish a light path from one router to another. LMP provides

the names and attributes of the optical components, obviating the need for

human-generated databases to map between the IP and optical levels.

In our architecture, an AS can gradually deploy more intelligent optical devices

and new auto-discovery protocols, while maintaining the same representation of

the path through the optical layer between two routers.

Fiber and fiber spans: A fiber map captures the topology of the un-

derlying transport network. A fiber consists of multiple spans , a segment of fiber

traversing a single conduit; a fiber span, in turn, consists of multiple fibers travers-

ing the same conduit. This information could be learned in various ways:

• Completely manual: As with other optical components, the operators can

keep track of the location of fiber and the mapping to/from spans as the

fibers are installed, or leased from other providers. The failure of fiber spans

(e.g., due to a physical cuts), as they occur, provide an opportunity to identify

incorrect mappings. Measurements of propagation delay across a link (and

comparison with the supposed fiber path) is another way to detect serious

inconsistencies.

127

• Intelligent conduits: Since fibers are passive devices, they do not automati-

cally advertise their operational status (e.g., loss of signal), presence in a par-

ticular conduit, or the physical paths they traverse. Creating new techniques

for auditing the management database, or even automatically generating the

data, is an exciting direction for future research. We envision several possible

approaches, including:

– Active devices at conduit end-points: Optical amplifiers along the op-

tical path could report their identity and geographic location [78]. In

addition, the individual fibers could have RFID tags where they enter

and leave and conduit.

– Active devices along the conduit: For even higher accuracy, the conduits

could have active devices, such as audio or wireless transmitters, placed

at fixed intervals. These devices could be coupled with GPS receivers (to

allow the devices to broadcast their geographic locations), or a separate

measurement system could analyze the signal strength to aid in locating

the devices. Closer spacing of these devices would provide more fine-

grain data, at the expense of higher cost.

– Multi-layer packet monitoring: To verify the mapping of fibers to IP

links, we could envision a new generation of packet monitors that com-

bine IP packet capture, reading of audio or RFID tags, and reporting

of geographic positioning information. For example, a packet monitor

could be used to tap a fiber and analyze the IP packet stream, perhaps

on a per-wavelength basis. By capturing the routing protocol messages

(e.g., OSPF HELLO messages or link-state advertisements), the moni-

tor can determine the IP addresses of the routers on either end of the

associated IP link. Over a period of time, the packet monitor could be

installed at various points in the network to collect accurate mappings

of IP links to/from fibers (and fiber spans) to check and update the

128

information in the database.

In our architecture, the management database would store the mappings of fibers

to spans, as well as the geographic path of the spans (at some known level of

accuracy), however they are determined.

VI.E Summary

Over the years, networks have naturally evolved into layers, facilitating

parallel and independent evolution within the confines of these layers. Network

management, on the other hand, requires accurate vertical cross-layer view of the

network for various operational tasks such as backbone planning, fault diagnosis

and maintenance. This chapter addresses the challenges of providing cross-layer

visibility to network-management applications, and advocates against expanding

the interfaces between layers for auto-discovery of the cross-layer associations. In-

stead, we propose an architecture where such associations can be learned or main-

tained automatically, not by widening the layers, but by defining the data that

should be imported into a management database. The architecture provides cross-

layer visibility as a service to other applications and users that depend on this

information. In the next chapter, we propose new router primitives for a clean-

slate measurement architecture that allows scalable composition of path metrics

and direct fault localization.

VI.F Acknowledgments

This chapter is based on the paper titled “Cross-layer visibility as a ser-

vice,” that appeared in the Proceedings of the Fourth ACM Workshop on Hot

Topics in Networks, held at College Park, MD, in November 2005, co-authored

with Jennifer Rexford (at Princeton University), Jennifer Yates (at AT&T Labs –

Research), Albert Greenberg (at Microsoft Research), and Alex C. Snoeren. The

dissertation author was the primary investigator and author of this paper [51].

Chapter VII

Scalable Measurement

Architecture

Our application of risk-modeling methodology to black hole localization is

motivated by the fact that the network elements do not detect such failure scenarios

and react to them automatically. While vendors constantly develop work-arounds

for specific protocols, experience suggests that there are always new protocols or

new enhancements to old protocols that can potentially cause forwarding problems

such as black holes. Of course, similar to our black-hole localization system, we can

instrument active probes at the desired protocol layer and combine the detection

mechanism with risk-models to localize the root cause of problems.

Such an approach, however, is not scalable due to the following reasons.

First, active probes between every pair of end points scales as O(n2), leading to a

significant overhead for large values of n (e.g., per-VPN monitoring). Second, many

ISPs report that configuring and managing measurement servers at end points itself

is challenging. Third, indirect approaches such as ours can lead to inaccuracies

due to the inherent inefficiencies in monitoring using active probes and/or risk-

model creation, as we have observed in the black-hole detection problem. Of

course, we can devise domain-specific heuristics that can improve the accuracy for

the common-case failure scenarios, but it can be difficult to always devise such

129

130

heuristics for the worst-case scenarios.

Motivated by these observations, in this chapter, we develop protocol-

agnostic router primitives that allow direct isolation of the location of the failure

with significantly lesser probe overhead in comparison to active probing. These

primitives are based on specialized hardware assistance in the router to moni-

tor various forwarding paths within the router as well as links to other external

routers. Every router in the network reports these individual router- and link-level

measurements to a centralized monitoring station. Depending on the granularity

of these measurements, the monitoring station can then compose end-to-end path

properties beginning with basic metrics such as connectivity, loss, delay to more

complicated metrics such as available bandwidth, jitter, etc.

Our composition-based measurement architecture, m-Plane, enables ser-

vice providers to monitor their network both efficiently as well as accurately. Ef-

ficiency of m-Plane stems from O(m) scaling of measurement cost, where m is the

number of links in the network, assuming that the cost of monitoring any given for-

warding path within a router is negligible. Accuracy in localizing the root cause,

on the other hand, is achieved by the direct monitoring of individual segments.

In addition, m-Plane also eliminates the need for additional measurement servers

in the network, since the routers themselves handle measurement and monitoring

functionality.

In theory, if every router in the Internet were equipped with these prim-

itives, one can compose true end-to-end path properties from individual measure-

ments. However, inter-AS cooperation is often challenging to accomplish as ASes

might not be willing to share the exact location of, say, a congested link along an

end-to-end path. Therefore, more realistically, we believe that m-Plane is better

suited to monitoring paths from one border router to another within a given do-

main, which service providers already perform today using active probes. While

we are fully aware of the need to monitor many metrics of interest (e.g., delay,

loss), we focus mainly on scalable connectivity monitoring in this chapter, which

131

Table VII.1: Number of probes issued and the actual number of measurements

required for different ISP topologies.

AS Name # of backbone
routers

of probes be-
tween customer
routers

of minimum
measurements

ASN-TELSTRA 139 3,199,185 22,632
Sprint 573 22,872,466 264,362
E-Bone 117 15,753 2,769
NTTC-GIN-AS 787 7,536,903 120,019
TISCALI-
BACKBONE

170 28,920 4,119

Level3 454 679,195 234,371
AT&T 530 39,600,550 129,719

itself is non-trivial as we shall observe.

Note that our router primitives are not meant to completely replace the

need for end-to-end probing which will probably always be done at some limited

frequency for customers to assure themselves of end-to-end performance especially

across multiple networks. However, the router primitives we propose can greatly

facilitate very quick (say milliseconds) and direct isolation of network health prob-

lems within a single administrative domain. The rest of the chapter is organized

as follows: First, we characterize the amount of probing performed today using

active measurements in Section VII.A. Second, we present the m-Plane architec-

ture discussing both clean-slate as well as incremental deployment scenarios, and

other implementation issues in Section VII.B. We quantify the benefit obtained

by deploying m-Planein Section VII.C.

VII.A Scaling active measurement

Customer VPNs typically originate as well as terminate at customer-edge

(CE) routers. Typically, a tier-one ISP has thousands to hundreds of thousands

of customers. Given the large number of CEs and O(n2) scaling properties of

active probing, it is no surprise that ISPs today restrict probe end points to the

132

provider edges (PEs), thus keeping n to smaller values. However, there is a growing

need for VPN-specific performance guarantees [69] using service-level agreements

(SLAs), in addition to monitoring liveness to detect black holes and other for-

warding problems. This fact is especially true for customers who migrate from

proprietary Frame Relay networks (with a Committed Information Rate (CIR))

to VPN service. To better understand the challenges involved in such measure-

ments, we attempt to precisely quantify the magnitude of the scaling problem using

Rocketfuel [84] topologies for a set of real ISPs.

Unfortunately, the Rocketfuel topologies for major ISPs consist mainly of

backbone routers, with a small number of customer routers that the authors could

map in [84]. Further, the maps are old and incomplete; the set of customer edges

that are represented in the topologies are only a small fraction of today’s reality.

In particular, the largest Rocketfuel topologies have less than 10,000 customer

interfaces. However, most tier-one backbone providers support on the order of

100,000 customer interfaces—an order of magnitude larger than reported in the

paper. Hence, our analysis is likely to under-predict the true cost of full customer-

to-customer measurement in today’s ISPs.

Table VII.1 compares the total number of end-to-end probes required

between all customer routers with the minimum number of actual measurements

required, in terms of the number of links and total number of per-router ingress-

egress pairs in the topology graph. Intuitively, if we can compute end-to-end

metrics by composing link and router metrics, then the overhead scales with the

number of links and interface pairs. We can see that there is an order-of-magnitude

difference between these two values, suggesting that there is considerable scope for

improvement, plausibly using new mechanisms. In the particular cases of Sprint

and AT&T, there is almost a two order-of-magnitude difference between the total

number of paths to be measured and the inherent number of measurements required

in terms of number of links and total number of router interconnections. Note that

we have counted each active path probe only once, when in reality a probe traverses

133

several routers’ links; accounting for path lengths would increase the differential

even more. Note also that if we conduct measurements at the routers, we may

be able to completely dispense with the external measurement endpoints. For

example, Table VII.1 suggests that a complete approach to customer VPN SLAs

for Sprint would require around 5,000 measurement end points.

One key limitation with our analysis is that we assume a complete mesh

between every pair of CEs. Customer sites are often grouped into VPNs, however,

and are far more interested in performance metrics within their VPN than outside

of it. Additionally, within a customer VPN, the topology may not be a full mesh

but instead may be a hub and spoke model [71]. For a hub and spoke model, the

number of probes is O(m×n) (as opposed to O(n2)), when m spokes communicate

with n hubs. Despite these issues, we believe Table VII.1 provides a first cut

analysis of the opportunity for improving on end-to-end probes. In particular, if

we conservatively consider active probes between every pair of backbone routers—

as opposed to the customer interfaces—we still find a 35-fold improvement (not

shown in the table) for most topologies. Hence, using the number of backbone

routers provides a lower bound, the results in Table VII.1 provide an upper bound,

and the operational reality lies in between.

VII.B m-Plane Architecture

The previous section shows a large difference between the overhead of

active probing (as it is currently done) and the inherent complexity (in terms of

the forwarding paths in routers and number of links). Clearly, if we wish to go

closer to the lower bound, we need a compositional approach, where routers measure

metrics on links and nodes, and a centralized monitoring station obtains these link

and node metrics from routers and composes them to obtain end-to-end properties.

Note that while we limit the scope of this chapter to connectivity, whenever possible

we use the terms “metrics” to emphasize the potential to generalize to other metrics

134

rd1
rd3

rd2

ld1
ld

2

rp1

lp1
rp2 lp

2

rp3

Router
Delay

Delay
Link

End−to−End delay = rd1 + ld1 + rd2 + ld2 + rd3

Router

Loss

Link

Loss

End−to−End loss p = 1−(1−rp1)(1−lp1)(1−rp2)(1−lp2)(1−rp3)

BA

C D

E F

Figure VII.1: Path metrics can be composed from individual router-level and link-

level metrics.

such as delay and loss.

Our proposed architecture of m-Plane for different measurement metrics

is based on two critical observations. First, end-to-end connectivity can be com-

posed from individual router- and link-level connectivity information. More gener-

ally, many other metrics can also be composed of individual router- and link-level

metrics. For example, in Figure VII.1, we can observe that overall path connectiv-

ity from A to F is ensured if individual segments that comprises of the path, i.e.,

AB, BC, CD, DE and EF are all connected. Similarly, the average delay of path

AF can be composed by adding the delays of the individual segments AB through

EF . The average loss of path AF can be computed as 1 − Π(1 − pi) where pi is

the loss probability of a segment along the path.

Second, the typical set of measurements of interest include both end-

to-end path properties as well as individual hop properties along the path. For

example, tomographic approaches including the black hole detection and local-

ization mechanisms used in the previous chapter, measure properties of multiple

end-to-end paths to infer individual hop properties. Such an approach is born

out of necessity since there is no inherent support from individual routers and

135

Station
Centralized Monitoring

Router

Router

Router

Router

Component 2:
link measurements

obtained using
IEEE 1588 protocol

Internal

Internal

External

External

External

Internal

External

Internal

Component 1:
Router measurements

obtained via consistent
hashing

Component 3:
Monitoring station

combines individual
link and router

measurements to form
end−to−end measurements.

Figure VII.2: m-Plane architecture. Each router is equipped with link-level and

router-level measurement modules.

links to accurately characterize measurement properties. On the other hand, since

the tomography problem is intrinsically under-constrained, the errors are model-

dependent. Our approach follows the inverse approach: we directly measure in-

dividual router and link properties to compute both hop-by-hop and end-to-end

path properties. Compared to tomographic approaches, composition appears more

deterministic and thus less sensitive to traffic models.

In m-Plane, the responsibility of monitoring a given path is shared be-

tween all the individual routers that comprise the path. Each router monitors

the forwarding path within the router and the link to the next router along the

path. These individual measurements are then forwarded to a centralized moni-

136

toring station where the properties of all the required paths are composed from

these individual measurements. Of course, the monitoring station needs access to

the path between two routers. Such information can be obtained from a passive

IGP monitor (such as OSPF monitor [79]). Using this information, the monitoring

station identifies the exact path between a given pair of routers, and composes the

path properties from individual segment properties.

Thus, the m-Plane architecture shown in Figure VII.2 consists of three

components:

1. Node Measurement: First, each router is equipped with an internal mea-

surement module. The internal measurement module is responsible for mea-

surement within the router. It measures metrics of interest (such as con-

nectivity, delay, loss, etc.) for all the internal forwarding paths within a

router. For example, a basic set of such forwarding paths consists of every

ingress-egress pair in the router. Further, these measurements are obtained

by observing data traffic without injecting any special probes into the for-

warding path as we shall explain later in Section VII.B.1.

2. Link Measurement: Second, each router is equipped with an external mea-

surement module that is responsible for measuring link-level properties. The

external measurement module measures link-level metrics from the egress of

a router to the ingress of the adjacent router. Minimally, measurements must

be done for the set of routers adjacent to a given router in a clean-slate de-

ployment (in Section VII.B.2). However, to support incremental deployment,

measurements may also be needed over virtual links to other measurement-

friendly routers, which we will explain in Section VII.B.3.

3. Measurement Composition: Third, a centralized monitor identifies for-

warding paths in the network with the help of a topology monitor (e.g.,

an OSPF monitor [79]) and composes end-to-end path properties from the

internal and external measurements forwarded by each router.

137

A B C

D

E

(a) End-to-end active probes

A B C

D

E

(b) Local link-level active probes

Figure VII.3: Two probes share the same hops

In effect, the internal and external measurement modules within the router provide

segment-level measurement properties, which are then combined by the monitoring

station to provide end-to-end measurements. We describe these primitives in more

detail next.

VII.B.1 Measurement primitives

Measurement recording and reporting are inherently de-coupled in the m-

Plane architecture—unlike current active measurement approaches that use probes

as both the recording and reporting mechanisms. Today’s end-to-end active probes

are fundamentally wasteful because multiple probes often probe the same segments.

For example, in Figure VII.3(a), we show two different probes, A to D and A to

E, that traverse the same path until C, after which they take different paths. The

segment from A to C is common to both these probes. A lot of bandwidth, there-

fore, is unnecessarily wasted due to the tremendous amount of overlap between

138

end-to-end active probes in the network. The m-Plane architecture eliminates

this fundamental redundancy by breaking down end-to-end paths into individual

router- and link-level segments, that are monitored by routers separately as shown

in Figure VII.3(b).

As a result, the total number of probes in the network scales as the square

of the number of forwarding paths within a router, i.e., O(d2), d being the degree,

and number of links O(m). The resulting complexity is O(nd2+m), is much smaller

than the O(n2) complexity ensuing from end-to-end active probing. Additionally,

within a router, we can record measurements passively without injecting additional

traffic by sampling packets at the ingress and egress of a forwarding path within

a router. Thus, with a little additional hardware complexity within the routers,

the factor O(nd2) disappears leaving only O(m) active probes in the network. Of

course, the data plane is still used to periodically transmit information to the

monitoring station, but the bandwidth required is small and can be scheduled to

avoid impacting normal data traffic.

Node measurements: Most of the performance problems in the net-

work occur at routers, where both software (e.g., routing) and hardware (queuing,

forwarding and switching) functions can cause non-deterministic delays, losses and

connectivity problems. If the metrics are always flow-dependent (e.g., TCP 5-

tuple), then our measurement solution would need to measure various metrics on

a per-flow basis. Fortunately, we note that in many real routers, forwarding met-

rics depend on the forwarding class more than a particular flow. For example, all

flows traveling between the same input and output ports of a router in a given

quality-of-service class are often treated identically in terms of queuing and switch

scheduling. Thus, we group such flows into what we call a measurement equivalence

class (MEC).

Note that we classify only those flows that are treated similarly by a

given router as an MEC; we do not assume that two flows that belong to the

same MEC in a given router necessarily belong to the same MEC at the next

139

router. However, moving from per-flow measurements to per-MEC measurements

is a great improvement in scalability. For example, a router with 16 ports and

five QoS classes has 16 × 15 × 5 = 1200 MECs, while most backbone routers may

routinely deal with millions of concurrent TCP flows. Even if the flow definition

were limited to prefix-to-prefix, or VPN-to-VPN, our results indicate that the

number of such flows is much larger than the number of MECs. Once we divide

traffic into classes, we can measure most properties of a class by observing a few

samples of traffic that belongs to a given class.

Determining where to take measurements inside of a router depends on

both the desired granularity and the types of measurements needed. For example,

if only aggregate router-level metric is required, then measurement points need to

be located only at the router ingress and egress. At the other end of the spec-

trum, a router vendor interested in internal debugging may instantiate different

measurement hooks at almost all major locations within the router. An intermedi-

ate stance that allows determining queuing delay (say, for debugging SLA issues)

would be to place measurement points at the input of all queues.

To actually conduct measurements, we use consistent hashing (similar

to that of trajectory sampling by Duffield et al. [26], though only local within a

router) to sample the same set of packets in a distributed way based on the hash

of the contents. At the ingress of a router, a label for each packet is generated

by hashing invariant content within the packet such as source and destination

IP address, ports, identification field and data payloads in hardware (see [26] for

reference implementation complexity.) Packets are consistently sampled based on

the value of the label and information associated with these labels (e.g., timestamp

for measuring delay) is stored at the monitoring point.

All the measurement points within the router use the same hash func-

tion; all monitors therefore, record information that belongs to a small subset of

packets independently. The original trajectory sampling only collects packet la-

bels at distributed points in the network. In our case, we need to store additional

140

1I 2I

O1 O2

Packet labels
collected at
the interface

A

G J

C F

K

E

H E

CPU
Router

A B C

D F

B

E I

G H I

L

KE

D

K
monitors

Upstream

Downstream
monitors

External
collision

Internal
Collision

Drops

Router
Memory

Figure VII.4: Consistent hashing example within router with two input and output

ports. Notice the internal (label K) and external (label E)collisions that can occur

within the router.

information such as timestamps along with each sampled packet label; we refer to

the inclusion of additional state such as a timestamp along with packet labels as

generalized trajectory sampling.

In Figure VII.4, we show a router with two input ports (I1 and I2) and

two output ports (O1 and O2), thus leading to four MECs. At each of the four in-

terfaces, we perform consistent hashing so that a stream of labels are timestamped

at each of the interfaces. For example, at I1, packet labels A−F are sampled, out

of which {A, C, F} are forwarded to O1 and {B, D, E} to O2. Since both I1 and

O1 use the same hash function, therefore the same labels {A, C, F} are also col-

lected at O1. In addition to these, some packets from I2 are also forwarded to O1,

resulting in additional labels {G, J, K}. For measuring delay, each interface needs

to associate a hardware timestamp generated by synchronized clocks additionally

141

with each of these packet labels.

The measurement monitors collect labels in a measurement cycle, the

duration of which is configured based on system constraints such as memory and

bandwidth. A large measurement cycle leads to large local memory requirements

at each interface while a smaller measurement cycle may lead to higher bandwidth

usage. At the end of each such cycle, a new set of samples are collected while

the old ones are flushed to the router memory, accessible to the router CPU as

shown in Figure VII.4. The router CPU deduces the required metrics based on the

information recorded by the sampled packets within the router. For example, to

monitor only connectivity, just the presence of label at both monitoring locations

is enough. For example, the liveness of the forwarding path traversed by the packet

label C can be deduced from the presence of the label at the upstream monitor, I1

and the downstream monitor, O1. Similarly, delay can be obtained by subtracting

the timestamps recorded at the two monitors, and loss by computing the fraction

of labels that have reached the upstream monitor.

One problem associated with consistent hashing is the potential for hash

collisions. Collisions can be internal (within the same interface) or external (across

two interfaces). External collisions, in particular, cause ambiguity in associating

labels across downstream and upstream monitors (e.g., E in Figure VII.4). We

mitigate the impact of collisions in two ways. First, as suggested in [26], we add

a few payload bytes during hashing to reduce the chance of an internal collision

to less than 10−3. Additionally, we throw away duplicate labels discovered while

correlating the label sets from multiple monitors. Assuming good hash functions,

throwing away duplicate labels will not lead to measurement bias.

Link measurements: Most link-level properties remain invariant re-

gardless of the traffic distribution. For example, link connectivity information,

propagation delay remain independent of whether a packet is a delay-sensitive

VoIP packet or a best-effort TCP packet. Packet size affects the transmission

time, but it can be scaled linearly. Yet, despite the inherent stability of link mea-

142

surements, links must be constantly monitored for two reasons. First, lower-layer

optical devices can intelligently re-route traffic (e.g., a SONET ring can mask fail-

ures), affecting propagation delay and perhaps loss properties without affecting

connectivity at the IP layer. Second, loss rates need to be monitored periodically

for bit errors resulting from optical fiber and/or component degradations. How-

ever, such information need not be classified on a per-flow basis. We use active

probes issued at the egress interface of one router to the ingress interface at the

other end to measure link-level metrics.

Monitoring station: Each router in the network transmits the router-

and link-level measurements to a monitoring station in a measurement-state packet

(MSP) to enable composition of path properties. The monitoring station can

easily compute liveness of any given end-to-end path by observing whether all the

individual segments that comprise that path are alive. Even if one segment is not

functional, the end-to-end path is not functional. Because the measurements are

individual segment-based, the monitoring station directly knows the location of

the fault unlike the indirect mechanisms in Chapter V.

In order to generalize for loss and delay, each router can characterize the

distribution of loss and delay experienced by packets within a given MEC using

the labels collected at the ingress and egress of the router. Unlike path liveness

which is a binary metric, delay and loss are statistical properties for which both

mean as well as variance are of interest. Therefore, each router CPU calculates the

average delay and loss for each MEC and reports them in the MSP, from which

the monitoring station can estimate the mean and variance for the entire path.

VII.B.2 A clean-slate deployment

In this section, we show how to scalably obtain measurements between

these various edge routers within an AS in a clean-slate architecture, assuming

that all the routers (including the edge routers) in the network can be upgraded

to include support for measurements. The paths to be monitored begin at the

143

2

1
1

3

2

2

3
2

D

2

F

C

E

B

A

Figure VII.5: Toy topology with six measurement capable routers or m-routers in

a clean slate design. The numbers are the associated link costs.

ingress interface to the edge-router to the egress interface of another edge-router.

For example, in Figure VII.5, we show a sample topology with six measurement-

capable routers, known as m-routers. Following the shortest-path routing, the path

between A and C goes through F , i.e., A.F.C. This path A.F.C can be broken

down into the following segments: 1) A’s ingress to A’s egress (router-level), 2)

A’s egress to F ’s ingress (link-level), 3) F ’s ingress to egress (router-level), 4) F ’s

egress to C’s ingress (link-level), 5) C’s ingress to C’s egress (router-level). Each

router needs to individually provide support for monitoring the path segments that

either are internal to the router, or originate/terminate at the router.

If all the routers in the network provide such link- and router-level mea-

surements, then it is straightforward to estimate accurate end-to-end properties

by combining these measurements for all the routers along the path, as has been

shown before. We envision the presence of a centralized monitoring station (or

a farm of stations) where each router transmits measurements collected by the

router (both at the router and link level) as shown in Figure VII.2. The monitor-

ing station combines these individual measurements reported by each router into

the end-to-end properties for all the paths.

Since the monitoring station uses the control plane to construct paths,

calculated metrics can differ from actual metrics during periods when the control

144

B

server
measurement 2

1
1

3

2

2

3
2

F

A

C

D

E
2

(a) Current topology

m−router

2

1
1

3

2

2

3
2

A D

E
2

B

F

C

m−server

(b) Partially upgraded topology

Figure VII.6: Partial deployment of the m-Plane architecture. Measurement servers

attached to upgraded routers are removed. Old measurement servers are upgraded

to m-servers, that also listen to the OSPF LSAs and maintain their own shortest

path tree.

and data planes differ (e.g., during reconvergence events). We assume that for

applications of interest and most metrics (e.g., delay, loss) the period for which

this discrepancy occurs is small enough to be ignored. However, measuring recon-

vergence events will require additional mechanisms.

VII.B.3 Incremental deployment

Incremental deployment of the m-Plane architecture is challenging since

end-to-end metrics seemingly cannot be composed unless there is cooperation from

145

all the routers along the path. Currently, without support from routers, measure-

ments are performed through measurement servers, which we call m-servers. In a

partial deployment of m-Plane architecture, we assume that a subset of routers is

upgraded to m-routers. In Figure VII.6, we show a toy topology with six routers

connected via undirected edges and associated edge costs. Attached to each of the

routers is an m-server (shown in Figure VII.6(a)) that issues data-plane probes to

other such m-servers to measure path properties of interest. Let us suppose that

we chose two out of the six routers to be upgraded to m-routers. This incremental

deployment of m-Plane proceeds in three steps discussed below.

Step 1: In the first step shown in Figure VII.6(b), the set of m-servers

connected directly to the m-routers are removed since their functionality is sub-

sumed by the m-routers. Further, the set of measurement servers directly con-

nected to non-upgraded routers are transformed into m-servers that also listen to

the topology updates (OSPF LSAs) in the network. Thus, the m-servers are capa-

ble of reconstructing the forwarding paths in the network similar to the m-routers.

Step 2: In the second step, each m-server or m-router identifies a set of

nodes for which it monitors path-properties to. We call this set the m-set. It does

so by first computing a self-sourced shortest-path spanning tree using Dijkstra’s

algorithm. The shortest path trees computed at each of the six nodes is shown in

Figure VII.7. The m-router does not need to explicitly perform this computation

and can leverage the existing shortest-path tree already computed by the OSPF

process on the router. It then determines the m-set by making a cut in the tree

whenever an m-router or an m-server is encountered. If an m-router is encountered,

the rest of the paths to various destinations in the subtree of this m-router are

monitored by that m-router (and hence not required by this router). An m-server

is encountered if no such m-router exists along the path (and hence it has to

monitor this path itself). In Figure VII.7, we show such m-sets for all the routers

for the toy topology in Figure VII.6. Note that in Figure VII.7(f), the m-set

consists of D2 that corresponds to the second shortest path to D through E. The

146

D

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

C

F

A

B

D

E

(a) MA: {B, F}

D

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

A

B

F

E

D

C

(b) MB : {A, F}

E

C

F

A B

D

(c) MC : {F, D, E}

B

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

A

F

C

B

D

E

F

A

(d) MD: {C, E, F}

D

A

F

B

E

C

(e) ME: {C, D, F}

D

E

F

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

C
A B

D

(f) MF : {A, B,E, D2}

Figure VII.7: In this figure, we show the various shortest-path trees constructed

locally by the m-servers and the m-routers to determine which set of segments to

monitor. Xi refers to the ith-shortest path to X, in the case when a router X can

be reached via multiple shortest paths.

147

D

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

F

A

D

E

A’s External
component

F’s Internal
component

C’s Internal
component

F’s External
component

C’s External
component

����
����
����
����
����

����
����
����
����
����

C

F

A

Figure VII.8: Two shortest paths to destination D composed at the monitoring

station. The m-server attached to A’s external component provides measurement

metrics until m-router B. B’s and E’s internal and external components are used

to reconstruct the properties of the rest of the paths to D.

router F does not need to monitor the first shortest path to D through C.

Step 3: Finally, a link between two m-routers (or virtual link consisting

of paths through non-upgraded routers) or between an m-router to m-server or

between two m-servers are monitored using regular active probing. The m-routers

report the internal measurements and the measurements to the nodes in the m-set

periodically to a monitoring station using measurement state packets (MSPs). The

m-servers only report the measurements to the nodes in the m-set within the MSP.

Next, the monitoring station uses the topology information to build n

shortest-path trees with each node as source, and uses the MSPs to completely

characterize all the O(n2) paths in the network. For example, in Figure VII.8, we

show how the monitoring station obtains path properties from A’s m-server to D’s

m-server. Recall from Figure VII.7, that A’s m-set consists of B and F . Therefore,

A’s MSP consists of the path properties till router B. B is an m-router; hence B’s

MSP consists of both the internal and external components. D is reached via two

paths, one through E and one through C. The properties of the path through E

require further factoring in E’s MSP (internal and external components). On the

148

Failure

A
F

B

F

C

F

A B

D E

C

D E

Link

Figure VII.9: Topology changes and recomputation of m-Set. The link {C, F} in

the topology breaks, triggering recomputation of the m-set. The old m-set consists

of {F, D, E}, while the new m-set consists of {A, B, D, E, F1, F2}, where F1 and

F2 correspond to the two equal-cost paths to destination F .

other hand, the path through C is directly monitored by the m-router B. These

steps can be repeated when other routers are upgraded to m-routers. Eventually,

when all the routers are transformed into m-routers, the architecture is exactly the

clean-slate architecture we discussed in Section VII.B.2.

So far we have described how to incrementally deploy m-routers but have

assumed that all m-servers are upgraded at once. To allow incremental deployment

of m-servers, m-routers must continue to work with existing measurement servers

which continue to send probes. In such cases, the first m-router can intercept

the probe and reflect it back, as if were the final destination. The monitoring

station, takes this fact into account by composing the metrics of the extra segment

(from the m-router to the destination) with the measurements reported by the

measurement server.

VII.B.4 Topology changes

Real networks exhibit a lot of churn; hence, the architecture should ac-

commodate such topology changes. Similar to what happens today, the m-routers

(and the m-servers) recompute the new shortest paths when they receive OSPF

LSAs, and update their m-set by identifying the cut in the shortest-path tree again.

149

During such periods, every m-router must continue to measure properties of the

links or virtual links to the routers in both old and new m-sets for a configurable

amount of time (usually dictated by the routing reconvergence period) to ensure

paths are composable at the monitoring station. Afterwards, the m-routers phase

out the routers in the old m-set and restrict measurements to only those in the new

m-set. Since the MSPs contain the exact m-set along with their measurements,

the monitoring station can compute properties for both the old paths as well as

the new paths.

For example, in Figure VII.9, we can observe that when the link {C, F}

is down, a recomputation of the shortest-path tree at the m-router C is trig-

gered. The old m-set consists of just {F, D, E}, whereas the new m-set consists

of {A,B,F1,D,E,F2}, where F1 and F2 correspond to the two equal-cost paths to

the destination F . Once the link {C, F} is up, m-router C reverts back to the

old m-set and uses it to report the MSPs. Note that this is unlike the clean-slate

architecture, where such m-sets are not explicitly required. Each m-router just

maintains all the adjacencies and does not pay heed to the shortest paths. Next,

we describe the packet formats required for implementing m-Plane.

VII.B.5 Packet formats

The m-Plane architecture requires two other types of messages: one to

advertise the location of m-routers, and one to transmit measurement data to the

central monitoring station (known as a measurement state packet, or MSP).

Advertising the presence of m-routers. Each m-router needs to

identify the presence of other m-routers in the network in order to construct its m-

set. One way to do this is to configure each of the m-routers with information about

the other m-routers in the network. Every time a new upgraded router is added

into the network, however, all the existing m-routers would need to be reconfigured.

Instead, we leverage the existing OSPF protocol to allow m-routers to advertise

their presence to other m-routers in the network. (Similar modifications could be

150

made to IS-IS or any other link-state intra-domain routing protocol.) We propose

to use one of the reserved bits in the Options field [65] of the OSPF control-plane

messages for this task; the field exists precisely to advertise special capabilities of

routers in the network.

Currently, two out of eight bits reserved for the options field are used:

the T-bit (to indicate type-of-service capability) and the E-bit (to indicate external

routing capability). We use one of the six unused bits (which we call the M-Bit) to

advertise the presence of an m-router. A router that transmits OSPF control-plane

messages with this bit set is capable of performing and reporting router- and link-

level measurements. Legacy routers in the network do not pay attention to this bit.

All OSPF control plane messages contain the options field; while OSPF HELLO

messages are not transported beyond the next-hop, the link-state advertisements

are flooded throughout the network. Thus, every m-router in the network learns

of the presence of other m-routers in the network, while other routers operate as

usual.

MSP packet format. MSPs contain two components—internal and

external—that correspond to the link- and router-level measurements. The ex-

ternal components of the MSP consist of the various links that are monitored by

the router. There are many ways in which a link can be represented. A common

practice in many ISP networks is to represent the two ends of a link with IP ad-

dresses. Typically, the IP address for the two ends of a link are part of a /30 prefix.

Another way a link can be represented is by using the SNMP interface numbers

on the routers. Regardless of the specific scheme used to represent the interfaces,

the MSPs contain information about the links represented by two 32-bit identifiers

(for the source and destination) and their associated measurement properties.

While the MSP format need not be standardized since none of the m-

routers or m-servers directly communicate with each other, in the interest of con-

creteness we describe a sample layout of the fields. The exact packet format is

subject to change, but the fields identified in the Figure VII.10 are required. Each

151

Measurement ID Number of measurements

Link source identifier

Link destination identifier

Measurement
Type

Subtype Number of samples

Version # Packet Type Packet Length

Checksum Authentication Type

Authentication

0 8 3216

Authentication

Router ID

Timestamp

Measurement Value

Measurement
Type

Subtype Number of samples

Measurement Value

Measurement ID Number of measurements

Figure VII.10: Packet format of the measurement state packet (MSP).

MSP consists of multiple records, with each record consisting of a record header

consisting of the measurement identifier and number of <attribute,value> pairs

in the record. The next two 32-bit fields are reserved for source and destination

identifiers of the measurement, followed by the <attribute, value> pairs. The at-

tribute field is specified as a measurement type (delay, loss, etc.), measurement

subtype (mean, max, average, std. deviation, etc.), followed by the number of

samples used to arrive at these statistics. The next 32-bit field is for the value

of the measurement. Several of these <attribute, value> pairs are defined in one

152

measurement record.

VII.C Overhead reduction

We now attempt to quantify the benefits achieved by incrementally de-

ploying our architecture in real networks. Lacking access to actual tier-one ISP

topologies, we conducted our evaluation using the Rocketfuel topologies annotated

with inferred link weights [84]. Despite the known deficiencies of this data, they

suffice to demonstrate general trends. We compare the benefits of upgrading in a

naive (random) fashion to an intelligent upgrade strategy.

We use a simple metric called probe hop count to quantitatively describe

the benefit achieved by upgrading existing routers to m-routers. Probe hop count

is defined as the sum of all the hops taken by every active probe that traverses

the network. When active probes are issued from every measurement server to

another, this translates to the sum of hop-lengths of all the O(n2) shortest-paths

(including the multiple paths between a given pair of routers) in the network. On

the other hand, in the m-Plane architecture, the probe hop count reduces to the

total number of links in the network, since each m-router transmits messages only

to its adjacent routers.

In order to identify candidate routers to upgrade, we guide the search

in the direction of reducing the probe hop count metric as much as possible as

shown in Algorithm 6. In particular, we select the routers that reduce the probe

hop count the most. Our algorithm first calculates the shortest paths between all

pairs of end points, including the duplicates (which may be used by equal-cost

multi-path routing algorithms). It then computes the number of shortest paths

that traverse each router by incrementing the counts for all intermediate routers

on each path (excluding the source and destination of a path). Then, it selects

the router with the maximum count as the router to upgrade. To select additional

routers, the algorithm breaks all paths traversing the selected router into two

153

(a) Sprint (314 routers)

(b) Tiscali (160 routers)

(c) AboveNet (140 routers)

Figure VII.11: Incremental benefit for various ISP topologies. Notice that the

y-axis is log scale.

154

Algorithm 6 IdentifyRoutersToUpgrade(V, E, numUpdate)

1: S = ComputeShortestPaths(V, E);

2: U = {};

3: numiter = 0;

4: while (numiter < numUpdate) do

5: for path p ∈ S do

6: for router r ∈ p− {src, dst} do

7: count[r] + +;

8: end for

9: end for

10: maxRouter = findMax(count)

11: U = U + {maxRouter}

12: for path p ∈ S do

13: if maxRouter ∈ p then

14: S = S− {p}

15: p1 = split p from src till maxRouter

16: p2 = split p from maxRouter till dst

17: S = S + {p1, p2}

18: end if

19: end for

20: numiter + +;

21: end while

155

segments—source to the router and router to destination—and adds them to the

set of shortest paths. If any of these segments already exist then they are not

added to avoid double counting. Note that only the paths that pass through a

router contribute to the count of that router; paths that originate or terminate at

a given router do not contribute to its count. This step is important to ensure

that the search process always identifies intermediate routers, as opposed to access

routers, which do little to break up source-destination paths.

Figure VII.11 shows the results of both upgrade strategies on three rep-

resentative Rocketfuel AS topologies (results were similar on all of the topologies

we considered). The curve for all the topologies is convex in shape; upgrading the

first few routers results in maximum benefit, while the marginal benefit reduces

drastically after a while. On average, upgrading about 15% of the routers in an

intelligent fashion results in a two order-of-magnitude reduction in the probe hop

count. For example, the Sprint topology in Figure VII.11(a) requires approxi-

mately one million end-to-end active probes to measure each path without any

upgraded routers. Upgrading 45 routers out of 315 results in a probe hop count of

only 10,000—a two order-of-magnitude reduction in measurement overhead.

VII.D Related work

Many techniques have been suggested in the literature for measurement

in backbone networks. These techniques can be broadly classified into three cate-

gories.

Active measurement. Active measurement involves injecting synthetic

data-traffic into the network to measure path metrics of interest. There exist many

different tools publicly available for measuring specific properties, such as end-to-

end delay and loss [61, 77, 83], available bandwidth [40, 91], per-hop capacity

and so on (see [4] for references to many other available tools). While these tools

are based on sound statistical foundations, the active measurement approaches

156

appear inherently intrusive. Their presence is necessitated by the lack of inherent

measurement support from the routers.

Inference techniques. Another class of mechanisms combines router-

level coarse link measurements to infer path properties. A classic example is

traffic-matrix estimation [94, 101], where traffic demands between every pair of

edge routers are estimated using individual link-level SNMP loads [64]. Other to-

mographic approaches (e.g., [104]) measure end-to-end path properties via active

probes and use topology to infer individual hop-properties. The main limitation of

these approaches appears to be the assumptions that go into the inference model.

New router primitives. Finally, the third class of measurements is

based on router primitives. For example, Machiraju et al., in [59] argues for a

measurement friendly network architecture where individual routers provide sep-

arate priority levels for active probes. Duffield et al. suggest the use of router

support for sampling packet trajectories [26]. Many high-speed router primitives

have also been suggested in the literature for measurement [24, 29]. Finally, Cisco

and other router vendors (e.g., Juniper) provide basic measurement primitive called

NetFlow [66] that is used extensively by network operators for billing, accounting,

traffic matrix estimation, anomaly detection and other such applications.

Many of these solutions however are problem-specific and, to the best of

our knowledge, it appears that there have not been many attempts to design a

scalable router primitives to estimate end-to-end path properties in the literature.

VII.E Summary

In this chapter, we have initiated research into designing router primi-

tives to make measurement a first-class entity. We have proposed initial models

quantifying the inherent inefficiency in current measurement approaches using ac-

tive probes. We have shown the efficiency gains in a clean slate architecture can

range from a factor of 35 to a factor of 100. Motivated by this observation, we

157

proposed a clean slate router architecture with new mechanisms for scalable moni-

toring of nodes and links. While the basic primitives are simple (as they must be to

be implemented in hardware) we found that the incremental deployment protocol

(which can fortunately be implemented in software) was much more challenging

to design. As a first-order metric, in this chapter, we focused on efficient scalable

mechanisms for connectivity monitoring. Future work requires a more complete

treatment of many other metrics of interest, such as delay, loss and jitter using the

same basic ideas.

VII.F Acknowledgments

This work is joint with George Varghese and Alex C. Snoeren and is not

yet published.

Chapter VIII

Conclusions

Our work has been motivated by a simple observation: Current failure

monitoring mechanisms in the network detect that a failure happened, but do not

indicate either the root cause or the location of the failure, thus requiring additional

mechanisms for fault localization. To reduce the overall repair or outage duration,

fault localization needs to be fast. Since manual processes are often slow, we argue

that fault localization should be automated, and we presented mechanisms based

on risk modeling to automate fault localization in common failure modes.

However, not all failure instances require a lot of effort to localize the

root cause, even among silent failures. Sometimes, just a simple visual inspection

of the observed symptoms is enough to localize the failure. For example, when

all the failed MPLS tunnels share one end point due to a failure near the edge, it

does not take much effort (a few seconds) to pin-point the location. On the other

hand, if the actual fault lies in the core of the network, visual inspection alone is

not sufficient to localize unless we join the failure signature with the risk model.

In such cases, it can take minutes to even hours to localize the failure with today’s

manual approaches; an automated localization system such as ours can reduce the

duration significantly.

Today’s backbone networks are rife with such instances, where visual

inspection alone is not enough to isolate the failed component. In this dissertation,

158

159

we focused on two such instances—IP link fault and black hole localization—for

which we have designed, implemented and deployed systems in a tier-one backbone

network. Both our systems apply risk modeling to encode dependencies between a

given set of root causes and the set of symptoms dependent on them. This simple

dependency model is surprisingly powerful in representing a wide variety of fault-

localization problems, such as the two problems considered in this dissertation. We

begin this chapter with a summary of our experience followed by open challenges

and future work.

VIII.A Experience using risk modeling

Given that the risk model is at the heart of our localization methodology,

it is important to devise the right risk model for localization. Primarily, the risk

model originates from operational domain knowledge through a careful analysis and

understanding of the type of failures that one experiences. For example, for MPLS

fault localization, we observed from operational experience that the primary root

cause for most failures is a topology change. Therefore, our risk model consisted

only of IP links. Had we observed that optical failures were causing black holes, we

would have modeled optical layer equipment such as amplifiers, fibers etc., in the

risk model. Moreover, the risk model has to match the failure-detection system.

For example, in the black-hole localization problem, there is no need to model

customer facing links in the topology due to the fact that the measurement system

using active probes never traverses any of those links.

Constructing the right risk model is not easy, even if the category of risks

to be modeled is known. For example, in an OSPF network, as we have seen

before, multiple paths can exist between a given source and a destination if the

paths share the same cost (ECMP [37]). The router at the first fork in the paths

splits traffic equally among the paths based on a deterministic but unknown hash-

function applied on the source-destination IP address of the packet. The correct

160

risk model should incorporate the dependencies along the exact path taken by a

probe, which unfortunately is frequently not known precisely.

Similarly, in composite links [9], many optical circuits are bundled to-

gether into one logical IP link and the router splits traffic according to a hash-

function. Failures involving only a member circuit can result in only some probes

that traverse the member circuit (out of all the member circuits) to fail, while oth-

ers succeed. In both of these cases, the risk model needs to be constructed based

on the instantaneous path traversed by the probe, which is difficult. Therefore, we

were forced to consider a risk model that represented the union of all the paths,

which is not entirely accurate.

Also, it is often not enough to just model the risks once; determining the

right risks to model is a continuous process in many cases. For example, in the

IP fault localization scenario, we observed that modeling an OSPF area as a soft-

ware risk shared by many IP links was not enough. One particular failure scenario

involved only 70% of the OSPF area, which we determined using SCORE’s error

threshold. Upon further investigation, we found that we had to introduce a new

risk model, an OSPF area with MPLS enabled, in order to correctly capture the

particular failure scenario. Of course, the error threshold was helpful in determin-

ing that none of the risk groups represented an exact fit with the failure signature.

In general, therefore, the risk model should be continuously updated based on the

various failures we observe.

Risk models are almost always dynamic; the rate at which a given risk

model exhibits churn varies depending on the problem. Because of this churn,

there could be differences between the risk model and reality that affect localiza-

tion. For example, if humans are managing the topology information from which

the risk model is constructed, there is a strong likelihood that the risk model is

out-of-sync with reality due to human errors. Our IP fault localization system

uses error thresholds to deal with these. Of course, exactly identifying the errors

automatically is a challenge. In contrast, automatic generation of the risk model

161

by querying the network, in order to keep the risk model consistent with reality,

can be burdensome to the network elements.

Ultimately, the most important aspect of risk modeling is the access to

dependency data. In both of our examples, we were fortunate to have access to

the associations between root causes and symptoms. For example, in the IP fault

localization scenario, our risk models were based on SRLGs already maintained

by ISPs for planning diversity in the network. Similarly, we have access to the

associations—although not directly—between MPLS tunnels and IP links using

a OSPF monitor. Without access to these dependencies, the risk-modeling ap-

proach is not possible. While we discussed automatically determining accurate

dependencies in the context of IP links and optical components, there are several

other instances in literature where such uncovering such associations proves to be

challenging [10].

After identifying the right risk model for a given problem, the next issue

is determining the right fault-localization algorithm to use. We believe it is a per-

plexing fact that simple greedy-based approximation algorithms output hypothesis

close enough to ground truth. Indeed, we demonstrated that both SCORE as well

as MAX-COVERAGE algorithms work well in practice for the particular problems

they attempt to solve. We conjecture that this phenomenon could be because most

real-life failure scenarios, especially in the problem domains we considered, tend

to be simple in nature, and, hence, lend themselves to efficient localization even

with the simplest of heuristics.

The additional advantage of any other more complicated inference tech-

nique, such as Bayesian analysis or more powerful statistical techniques, appears

to be marginal as there is little room for improvement that is not worth the addi-

tional complexity, at least in the problem domains considered in this dissertation.

On the other hand, if the scenarios are sufficiently complex or are not modeled

properly in the risk model to begin with, we believe that it is not easy for any

localization algorithm, including complicated inference techniques, to be accurate.

162

Thus, in our experience, especially in situations where risk models can be large,

simplicity can translate to computational feasibility and effectiveness to the users

of the tool.

VIII.B Future work and open research problems

One of the key operational realities that we pointed out in Chapter IV

is the lack of accurate SRLG databases. One of the useful by-products of our

system is the ability to identify database errors, which can help network operators

clean up their databases. For example, in the context of IP fault localization, the

hypothesis corresponding to a particular failure signature may contain two SRLGs,

and by reducing the threshold a little might result in one SRLG. Are there really

two failures in the network or is the database incorrect ? The tool currently has no

automated way of differentiating the two and leaves it to the operator to manually

determine this. It is an open problem to devise mechanisms to distinguish between

the two, perhaps by correlating with some additional information.

One of the most promising research directions, we believe, is in the direct

localization of failures. As we have shown in Chapter VII, direct localization of

performance problems to the granularity of a link or router is possible with sim-

ple router-level primitives. More generally, if every component, either software or

hardware, closely monitors the inputs and outputs and correlates them for each

type of traffic, then we can reduce the root-cause set significantly. While we have

shown that our primitives work in the case of connectivity monitoring, and to some

extent delay and loss, extending this to other metrics such as available bandwidth

and jitter is an open problem. The primitives we have designed primarily monitor

data traffic characteristics. Extending these primitives to monitor protocol prop-

erties such as reconvergence time is an exciting and challenging problem. With

new applications such as video and voice, it is also an interesting problem to devise

mechanisms in the network to monitor and localize application-level performance.

163

Fault management is an important piece of the overall manageability

puzzle of any large backbone network. We have begun by observing that fault

localization is the most time-consuming aspects of fault management today. Con-

sequently, this dissertation focused on providing fast and accurate fault localization

mechanisms for many common failure modes observed in practice. While this dis-

sertation is only a modest step towards building large-scale robust autonomous

systems that are capable of both self-diagnosis as well as self-repair, we believe it

can be viewed as a significant step in fault localization.

Glossary

AS Autonomous system

BGP Border gateway protocol

CE Customer edge

DoS Denial of service

DWDM Dense wavelength division multiplexing

ECMP Equal cost multi-path

GMPLS Generalized multi-protocol label switching

IGP Interior gateway protocol

IPFL IP fault localization

IS-IS Intermediate system - intermediate system

ISP Internet service provider

LDP Label distribution protocol

LMP Link management protocol

LoS Loss of signal

LSA Link-state advertisement

LSP Label-switched path

164

MEC Measurement equivalence class

MPFM MPLS fault monitoring

MPLS Multi-protocol label switching

MSP Measurement state packet

OD Origin-destination

OSPF Open shortest path first

PE Provider edge

PoP Point of presence

PPP Point-to-point protocol

QoS Quality of service

RSVP Reservation protocol

SLA Service level agreement

SNMP Simple network management protocol

SONET Synchronous optical network

SRLG Shared risk link group

VPN Virtual private network

165

Bibliography

[1] Avici TSR router. http://www.avici.com/documentation/datasheets/Avici

TSR.pdf.

[2] British Telecom. http://www.bt.com.

[3] Cisco ONS 15600 reference manual. http://www.cisco.com/en/US/products/hw/
optical/ps4533/products technical reference book09186a008069b5a3.html.

[4] NLANR Network Performance and Measurement Tools. http://dast.nlanr

.net/NPMT/.

[5] Occam’s razor. http://en.wikipedia.org/wiki/Occam’s Razor.

[6] Sample Configuration for BGP with Two Different Service Providers (Mul-
tihoming). http://www.cisco.com/warp/public/459/27.html.

[7] University of Oregon Route Views Project. http://www.routeviews.org.

[8] L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas. LDP
Specification. RFC 3036, IETF, Jan. 2001.

[9] AVICI Systems Inc. http://www.avici.com.

[10] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang.
Towards highly reliable enterprise network services via inference of multi-level
dependencies. In ACM SIGCOMM, Aug. 2007.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services. RFC 2475, IETF, Dec. 1998.

[12] S. Brugbosi, G. Bruno, et al. An expert system for real-time fault diagnosis
of the Italian telecommunications network. In 3rd Symposium on Integrated
Network Management, pages 617–628, 1993.

[13] R. Bush and D. Meyer. Some Internet architectural guidelines and philoso-
phy. RFC 3439, IETF, Dec. 2002.

[14] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environments.
RFC 1195, IETF, Dec. 1990.

166

167

[15] J. Cao, D. Davis, S. V. Wiel, and B. Yu. Time-varying network tomography.
Journal of American Statistcal Association, 95(452):1063–1075, 2000.

[16] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple network manage-
ment protocol (SNMP). RFC 1157, IETF, May 1990.

[17] C. S. Chao, D. L. Yang, and A. C. Liu. An automated fault diagnosis system
using hierarchical reasoning and alarm correlation. In Journal of Network
and Systems Management, volume 9, pages 183–202, 2001.

[18] S. Chaudhuri, G. Hjalmtysson, and J. Yates. Control of light-
paths in an optical network. Jan. 2000. http://www.research.att.com/

areas/opticalnetworking/IPoverWDMpublications.html.

[19] M. Chen, A. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. A statistical
learning approach to failure diagnosis. In International Conference on Au-
tonomic Computing, New York, NY, May 2004.

[20] D. Scott. Making smart investments to reduce unplanned downtime. Tactical
Guidelines, TG-07-4033, Gartner Group Research Note, Mar. 1999.

[21] B. Davie and Y. Rekhter. MPLS: technology and applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[22] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In Symposium proceedings on Communications archi-
tectures & protocols, pages 1–12. ACM Press, 1989.

[23] R. H. Deng, A. A. Lazar, and W.Wang. A probabilistic approach to fault
diagnosis in linear lightwave networks. In Integrated Network Management
III, pages 697–708, Apr. 1993.

[24] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi. Processing complex
aggregate queries over data streams. In ACM SIGMOD, 2002.

[25] J. C. Doyle, J. Carlson, S. H. Low, F. Paganini, G. Vinnicombe, W. Willinger,
J. Hickey, P. Parrilo, and L. Vandenberghe. Robustness and the Internet:
Theoretical foundations. In Robust design: a repertoire from biology, ecology,
and engineering. Oxford University Press, 2003.

[26] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic
observation. In Proceedings of the ACM SIGCOMM, pages 271–282, Aug.
2000.

[27] A. Elwalid, C. Jin, S. H. Low, and I. Widjaja. MATE: MPLS adaptive traffic
engineering. In IEEE Infocom, 2001.

[28] C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting. In SIGCOMM Internet Measurement Workshop, Nov. 2001.

168

[29] C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice. In ACM Trans.
Comput. Syst., Aug. 2003.

[30] L. Fang, A. Atlas, F. Chiussi, K. Kompella, and G. Swallow. LDP failure
detection and recovery. IEEE Communications, 42(10):117–123, Oct. 2004.

[31] M. Fecko and M. Steinder. Combinatorial designs in multiple faults localiza-
tion for battlefield networks. In IEEE Military Commun. Conf (MILCOM),
2001.

[32] G. Forman, M. Jain, M. Mansouri-Samani, J. Martinka, and A. C. Snoeren.
Automated whole-system diagnosis of distributed services using model-based
reasoning. In 9th IFIP/IEEE Workshop on Distributed Systems: Operations
and Management, Oct. 1998.

[33] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP
routing protocols. IEEE Communications Magazine, pages 118–124, October
2002.

[34] B. Gruschke. Integrated event management: Event correlation using depen-
dency graphs. In 9th IFIP/IEEE Workshop on Distributed Systems: Opera-
tions and Management, Oct. 1998.

[35] A. Gunnar, M. Johansson, and T. Telkamp. Traffic matrix estimation on a
large ip backbone: A comparison on real data. In ACM Internet Measure-
ment Conference, October 2004.

[36] P. Hong and P. Sen. Incorporating non-deterministic reasoning in managing
heterogeneous network. In Integrated Network Management II, pages 481–
492, Apr. 1991.

[37] C. Hopps. Analysis of an equal-cost multi-path algorithm. RFC 2992, IETF,
Nov. 2000.

[38] K. Houck, S. Calo, and A. Finkel. Towards a practical alarm correlation
system. In 4th IEEE/IFIP Symposium on Int. Net. Mgmnt., 1995.

[39] HP Technologies, Open View. http://www.openview.hp.com.

[40] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement
methodology, dynamics, and relation with TCP throughput. IEEE/ACM
Transactions in Networking, 11(4):537–549.

[41] G. Jakobson and M. D. Weissman. Alarm correlation. IEEE Network,
7(6):52–59, Nov. 1993.

169

[42] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: An effective de-
fense against spoofed DDoS traffic. In ACM Conference on Computer and
Communications Security (CCS), Oct. 2003.

[43] I. P. Kaminow and T. L. Koch. Optical Fiber Telecommunications IIIA,
editors, 1997.

[44] S. Kandula, D. Katabi, B. Davie, and A. Charny. TeXCP: Responsive Yet
Stable Traffic Engineering. Aug. 2005.

[45] S. Kandula, D. Katabi, and J. P. Vasseur. Shrink: A tool for failure diagnosis
in IP networks. In Proc. ACM SIGCOMM MineNet Workshop, Aug. 2005.

[46] R. M. Karp. Reducibility among combinatorial problems. R. E. Miller and
J. W. Thatcher (editors): Complexity of Computer Computations, pages 85–
103.

[47] D. Katz, K. Kompella, and D. Yeung. Traffic engineering extensions to OSPF
version 2. RFC 3630, Sept. 2003.

[48] Katzela and Schwartz. Schemes for fault identification in communication
networks. IEEE/ACM Transactions on Networking, 3, 1995.

[49] S. Kliger, S. Yemini, Y. Yemini, D. Ohlse, and S. Stolfo. A coding approach to
event correlation. In Fourth International Symposium on Integrated Network
Management, 1995.

[50] M. Kodialam, T. Lakshman, and S. Sengupta. Efficient and robust routing
of highly variable traffic. In ACM HotNets, Nov. 2004.

[51] R. Kompella, A. Greenberg, J. Rexford, A. C. Snoeren, and J. Yates. Cross-
layer visibility as a service. In ACM HotNets, Nov. 2005.

[52] R. Kompella, S. Singh, and G. Varghese. On scalable attack detection in the
network. IEEE/ACM Transacations on Networking, 15(1), Feb. 2007.

[53] R. Kompella and G. Varghese. Reduced state fair queuing in core and edge
routers. In NOSSDAV, June 2004.

[54] R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP fault localization
via risk modeling. In Proc. Networked Systems Design and Implementation,
May 2005.

[55] R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detection and
localization of network black holes. In IEEE Infocom, May 2007.

[56] J. Lang. Link management protocol (LMP). In Internet Draft, draft-ietf-
ccamp-lmp-10.txt, Oct. 2003.

170

[57] G. Li, D. Wang, R. Doverspike, C. Kalmanek, and J. Yates. Economic
analysis of IP/Optical network architectures. In Proc. Optical Fiber Com-
munication Conference, Mar. 2004.

[58] G. Liu, A. K. Mok, and E. J. Yang. Composite events for network event
correlation. In Integrated Network Management VI, Boston, MA, May 1999.

[59] S. Machiraju and D. Veitch. A measurement-friendly network (mfn) archi-
tecture. In Proceedings of ACM SIGCOMM Workshop on Internet Network
Management (INM), Pisa, Italy, September 2006.

[60] R. Mahajan, S. Bellovin, S. Floyd, V. Paxson, and S. Shenker. Controlling
high bandwidth aggregates in the network. ACM SIGCOMM CCR, 32(3),
July 2002.

[61] J. Mahdavi, V. Paxson, A. Adams, and M. Mathis. Creating a scalable
architecture for Internet measurement. In INET’98, July 1998.

[62] E. Mannie. Generalized multi-protocol label switching (GMPLS) architec-
ture. RFC 3945, Oct. 2004.

[63] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic
matrix estimation: Existing techniques and new directions. In ACM SIG-
COMM, Pittsburg, USA, August 2002.

[64] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic
matrix estimation: Existing techniques and new directions. In Proceedings
of the ACM SIGCOMM, 2002.

[65] J. Moy. RFC 2328: OSPF Version 2, Apr. 1998.

[66] Cisco NetFlow. http://www.cisco.com /warp /public /732 /Tech /netflow.

[67] A. Nucci, R. Cruz, N. Taft, and C. Diot. Design of IGP link weights for
estimation of traffic matrices. In IEEE Infocom, Hong Kong, March 2004.

[68] Y. A. Nygate. Event correlation using rule and object based techniques. In
Integrated Network Management, pages 278–289.

[69] L. Phifer. SLAs meet VPNs. http://www.isp-planet.com/business/slas for

vpns1.html.

[70] P.Wu, R. Bhatnagar, L. Epshtein, M. Bhandaru, and Z. Shi. Alarm corre-
lation engine (ACE). In Network Operation and Management Symposium,
pages 733–742, 1998.

[71] S. Raghunath, K. Ramakrishnan, S. Kalyanaraman, and C. Chase. Mea-
surement based characterization and provisioning of IP VPNs. In Internet
Measurement Conference, 2004.

171

[72] R. Ramaswami and K. Sivarajan. Optical Networks : A Practical Perspective.
Academic Press/Morgan Kaufmann, Feb. 1998.

[73] Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4 (BGP-4),
Mar. 1995.

[74] R. L. Rivest and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill,
Inc., New York, NY, USA, 1990.

[75] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching
architecture. RFC 3031, IETF, Jan. 2001.

[76] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4):277–288, Nov. 1984.

[77] S. Savage. Sting: a TCP-based network measurement tool. In USITS’99,
pages 71–79, 1999.

[78] P. Sebos, J. Yates, D. Rubenstein, and A. Greenberg. Effectiveness of shared
risk link group auto-discovery in optical networks. In Optical Fiber Comm.
Conf., Mar. 2002.

[79] A. Shaikh and A. Greenberg. OSPF monitoring: Architecture, design and
deployment experience. In NSDI, 2004.

[80] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round
robin. In ACM SIGCOMM, pages 231–242, 1995.

[81] SMARTS Inc. http://www.smarts.com.

[82] H. Smit and T. Li. Intermediate system to intermediate system (IS-IS)
extensions for traffic engineering (TE). RFC 3784, IETF, June 2004.

[83] J. Sommers, P. Barford, N. Duffield, and A. Ron. Improving accuracy in
end-to-end packet loss measurement. In ACM SIGCOMM, 2005.

[84] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. In ACM SIGCOMM, 2002.

[85] M. Steinder and A. Sethi. End-to-end service failure diagnosis using belief
networks. In Network Operation and Management Symposium, Florence,
Italy, Apr. 2002.

[86] M. Steinder and A. Sethi. Increasing Robustness of Fault localization through
Analysis of Lost, Spurious and Positive Symptoms. In IEEE Infocom, 2002.

[87] M. Steinder and A. S. Sethi. A survey of fault localization techniques in
computer networks. Science of Computer Programming, 53:165–194, 2004.

172

[88] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison
Wesley, Reading, Massachusetts, 1994.

[89] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: A scal-
able architecture to approximate fair bandwidth allocations in high speed
networks. In ACM SIGCOMM, Sept. 1998.

[90] J. Strand, A. Chiu, and R. Tkach. Issues for routing in the optical layer. In
IEEE Communications Magazine, Feb. 2001.

[91] J. Strauss, D. Katabi, and F. Kaashoek. A Measurement Study of Avail-
able Bandwidth Estimation Tools. In Proceedings of the ACM SIGCOMM
Internet Measurement Conference ’03, Miami, Florida, October 2003.

[92] A. S. Tanenbaum. Computer networks. Prentice-Hall, Englewood Cliffs, New
Jersey, 1981.

[93] C. Tebaldi and M. West. Bayesian inference on network traffic using link
count data. J. American Statistical Assoc., 93(442):557–576, 1998.

[94] Y. Vardi. Network tomography: estimating source-destination traffic inten-
sities from link data. J. American Statistical Assoc., 91:365–377, 1996.

[95] J.-P. Vasseur, M. Pickavet, and P. Demesteer. Network Recovery: Protection
and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan Kauf-
mann, 2004.

[96] H. Wietgrefe, K. Tochs, et al. Using neural networks for alarm correlation in
cellular phone networks. In Proc. International Workshop on Applications
of Neural Networks in Telecommunciations, 1997.

[97] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow filter to
mitigate ddos flooding attacks. In IEEE Symposium on Security and Privacy,
2004.

[98] A. Yaar, A. Perrig, and D. X. Song. Pi: A path identification mechanism to
defend against DDoS attack. In IEEE Symposium on Security and Privacy,
2003.

[99] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and
robust event correlation. In IEEE Communications, volume 34, pages 82–90,
1996.

[100] L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation protocol
(rsvp) – version 1 functional specification. RFC 2205, IETF, Sept. 1997.

[101] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate com-
putation of large-scale ip traffic matrices from link loads. In ACM SIGMET-
RICS 2003, June 2003.

173

[102] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic
approach to traffic matrix estimation. In ACM SIGCOMM, August 2003.

[103] R. Zhang-Shen and N. McKeown. Designing a predictable Internet backbone
network. In ACM HotNets, Nov. 2004.

[104] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end network
diagnosis. In ACM SIGCOMM, 2006.

