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Abstract 

Previous studies of causal learning heavily focused on binary 
outcomes; little is known about causal learning with 
continuous outcomes. The present paper proposes a 
qualitative extension of the causal power theory to the 
situation where a binary cause influences a continuous effect, 
and induces causal power under various ceiling situations 
with the continuous outcomes. To test the predictions, we 
systematically manipulated the type of outcome (continuous 
vs. percentage vs. binary) and the contingency information. 
The experiment shows that people estimate causal strength 
based on the linear-sum rule for continuous outcomes and the 
noisy-OR rule for binary outcomes. In the partial ceiling 
situation where causal power is partially inferred but not 
precisely estimated, the distribution of participants’ 
judgments was bimodal with one mode at the minimum value 
and the other at the maximum value, suggesting some 
participants made conservative estimates while others made 
optimistic estimates. These results are generally consistent 
with the predictions of the causal power theory. Theoretical 
implications and future directions are discussed. 

Keywords: causal reasoning; causal inference; causal power; 
continuous variable; integration rules. 

Introduction 

The ability to learn causal relations is essential for 

explaining past events, controlling the present environment, 

and predicting future outcomes. Decision making based on 

causal knowledge enables us to achieve desired outcomes 

and to avoid undesired consequences. When there are two 

causes of a desired outcome, we should consider which 

cause has a high causal strength for producing the outcome. 

To estimate causal strength, we need to consider not only 

the states of the effect in the presence of the cause but also 

that in the absence of the cause (Rescorla, 1968). When a 

teacher thinks about the effect of active encouragement on 
students’ homework performance, for example, he or she 

has to check whether the student finishes the homework 

both in the presence and absence of encouragement. It has 

been recognized that both children and adults readily form 

representations of causal networks (see Holyoak & Cheng, 

2011 for a review). 

As causal relations are unobservable, they must be 

induced from observable events, and covariation among 

observable events serves as a fundamental cue to learn 

causal relations (Hume, 1739/2000). For binary variables, 

covariation is represented as patterns of presence and 

absence. A measure of contingency is described by ΔP 

(Jenkins & Ward, 1965): 

 

ΔP = P(E = 1|C = 1) − P(E = 1|C = 0)             (1) 

 

where P(E = 1|C = 1) is the probability of effect E given the 

presence of candidate cause C, and P(E = 1|C = 0) is the 

probability of E given the absence of C. Values of ΔP range 
from −1 to +1. Positive ΔP values indicate a generative 

causal relation; negative ΔP values indicate a preventive 

causal relation. 

Because ΔP is a measure of associative strength, it does 

not address issues in causation such as confounding and 

ceiling effects. For example, although it is impossible to 

judge the causal effect when the outcome always occurs 

regardless of the presence or absence of the cause (i.e., P(E 

= 1|C = 1) = P(E = 1|C = 0) = 1), the ΔP model indicates 

that there is no causal relation (i.e., ΔP = 0). To model 

causal strength, Cheng (1997) proposed the power PC 

theory and derived generative causal power as an estimate: 
 

wc = ΔP / [1  − P(E = 1|C = 0)]                   (2) 

 

Causal power wc is a function not only of contingency but 

also of the base rates of the effect. When the effect is always 

present, generative causal power is undefined, therefore 

explaining the (generative) ceiling effect. Buehner, Cheng, 

and Clifford (2003) systematically manipulated covariation 

information and demonstrated that judgments were well 

described by the causal power. Causal power is interpreted 

in the framework of causal Bayes nets by Glymour (2001) 

and of causal Bayesian models by Tenenbaum & Griffiths 
(2001; Griffiths & Tenenbaum, 2005). 

Lu, Rojas, Beckers, and Yuille (2016) proposed a 

Bayesian theory of sequential causal learning. Their theory 

assumes that people select a different integration rule 

according to the type of outcome variable. On one hand, the 

noisy-OR rule is appropriate for a binary outcome and is 

consistent with Equation (2) in the causal power theory 

(Cheng, 1997). The rule assumes that two causes influence 

an outcome independently.  It states that the effectiveness of 

two causes, both present, is the sum of the causal power of 
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each minus their product (i.e., P(E = 1|A = 1, B = 1) = wA + 

wB − wA × wB). On the other hand, the linear-sum rule is 

appropriate for a continuous outcome and is widely used in 

associative learning models such as the R-W model 

(Rescorla & Wagner, 1972). This rule simply calculates the 

sum of the influence of each cause (i.e., P(E = 1|A = 1, B = 
1) = wA + wB). Lu et al. (2016) presented a sequential 

Bayesian model that explains previous findings on outcome-

additivity in variations of the blocking paradigm. 

Several empirical studies have provided supporting 

evidence for the use of the linear-sum rule for a continuous 

outcome. Rashid and Buehner (2013) systematically 

manipulated the quantity of continuous outcomes and tested 

which integration rules people use. The results appear 

inconsistent in that participants use the linear-sum rule for a 

generative cause and noisy-OR rule for a preventive cause. 

They suggested that the use of the linear-sum rule might be 

due to the absence of an upper limit for the quantity of the 
continuous outcome in their cover story. Prevention has a 

natural lower limit, the outcome quantity equal to 0, sharing 

that property with binary outcomes. Saito (2015) 

manipulated means and standard deviations in causal 

learning with continuous outcomes and found that 

judgments are largely explained by difference in the means, 

but not by difference in the standard deviations. White 

(2015) examined causal judgments of interventions in 

temporal sequences of a continuous outcome variable in 

single individuals and reported that most of the results were 

explained by the difference between the mean outcome 

value for the pre-intervention time periods and that for the 
post-intervention time periods. These results suggest that 

people use the linear-sum rule for continuous outcomes. 

However, these studies do not reveal whether people use a 

different integration rule depending on the type of outcome 

variable since they did not compare judgments for 

continuous outcomes with those for the binary outcomes. In 

addition, it remains unknown how people estimate causal 

strength under various ceiling situation with the continuous 

outcomes. Since integration rules are core parts of the 

models of causal learning, it is important to investigate how 

people choose an integration rule. 

In this paper, we extend the causal power theory 
qualitatively to address continuous outcomes and derive 

predictions under various ceiling effects. For our purposes, 

we treat cardinal outcomes as a special case of continuous 

outcomes. We also report a study investigating whether 

people choose the appropriate integration rules according to 

the type of outcome variables and whether their judgments 

correspond to causal-power predictions. 

Estimating causal power with continuous outcomes 

The reasoner’s goal is to induce the unobservable causal 

power of a candidate cause from observable events (Cheng, 

1997). Consider a situation where a continuous effect E may 

be produced by a binary background cause B and/or a binary 

candidate cause C. Assume that: 

 

(1) B and C influence E independently, 

(2) B could increase E but not reduce it, 

(3) The causal powers of B and C are independent of 

the frequency of occurrences of B and C, and 

(4) E does not change unless it is influenced. 

 
These assumptions are similar to those with binary cause 

and effect (cf. Cheng, 1997; Pearl, 1998). 

The joint influence of background cause B and candidate 

cause C on the continuous outcome E is given by the linear-

sum rule (cf. Lu et al., 2016). According to this integration 

rule, the influences of multiple causes are integrated by 

simple addition. Since the outcome can take on different 

values, expected value and conditional expected value are 

used to describe its state. The expected value of the 

continuous outcome is calculated as follows: 

 

E[e] = P(b) ∙ wb + P(c) ∙ wc                      (3) 
 

In this equation, P(b) and P(c) denote the probabilities of 

occurrences of the background cause and candidate cause. 

Variables wb and wc are causal powers of the background 

cause and candidate cause. Although two different 

integration rules are used for a binary outcome (i.e., noisy-

OR rule for generative cause; noisy-AND-NOT rule for 

preventive cause), there is no distinction between generative 

and preventive causes in case of a continuous outcome. 

When the cause is present (i.e., P(c) = 1), the conditional 

expected value given the presence of the cause is 

 
E[e|c] = P(b|c) ∙ wb + wc                         (4) 

 

Similarly, the conditional expected value given the absence 

of the cause (i.e., P(c) = 0) is 

 

E[e|¬c] = P(b|¬c) ∙ wb                          (5) 

 

Subtracting Equation 5 from Equation 4 yields the 

difference in conditional expected values (i.e., ΔE = E[e|c] 

− E[e|¬c]). The difference in conditional expected values is: 

 

ΔE = P(b|c) ∙ wb + wc − P(b|¬c) ∙ wb               (6) 
 

If we assume that the background cause and the candidate 

cause occur independently, two conditional probabilities 

equal to one another (i.e., P(b|c) = P(b|¬c) = P(b)). 

Therefore, the causal power of the candidate cause wc is 

represented as follows: 

 

wc = ∆E − {P(b|c) − P(b|¬c)} wb = ∆E             (7) 

 

Within the range of outcome values greater than the 

minimum and less than the maximum, predicted values of 

the causal power are simply the differences in conditional 
expected values. 

Predictions of the value of wc vary depending on the value 

of the continuous outcome. To illustrate these predictions, 
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consider a situation where a teacher investigates the effect 

of active encouragement on students’ homework 

performance and gives 100 homework problems to each 

student. For example, a student had finished 25 out of 100 

previous homework problems assigned; after the 

encouragement, the student finished 75 out of 100 new 
homework problems assigned. The causal power wc is the 

difference in performance before and after the 

encouragement (i.e., ΔE = E[e|c] − E[e|¬c] = 75 – 25 = 50). 

However, this is not the case where one of the outcome 

values reaches the upper limit. We hypothesize that 

depending on the reasoner’s assumption about the 

counterfactual value of the outcome if there were no upper 

limit, wc has a range of possible values.  We replace E[e|c] 

in Equation (4) with the assumed counterfactual value 

E’[e|c]. Suppose a student had finished 50 out of 100 

previous homework problems assigned and then finished 

100 out of 100 new homework problems assigned. It is 
inferred that the causal power is equal to or larger than 50, 

but not precisely determined. Thus, the prediction of the 

causal power theory is an interval. Whereas some cautious 

reasoners might estimate the minimum value in the interval 

(50 in this case, resulting from E’[e|c] = 100), other 

reasoners might estimate a higher value in the interval (e.g., 

100, resulting from E’[e|c] = 150). When both outcomes are 

at the maximum value (e.g., a student finished 100 out of 

100 homework problems regardless of the encouragement), 

the interval spans the entire range from 0 on and causal 

power becomes undefined. We call the former the partial 

ceiling situation and the latter the full ceiling situation. The 
difference between the partial and full ceiling situations is a 

unique feature in causal learning with continuous outcomes 

that have maximum values. The predictions of the causal 

power theory are shown in Table 1. 

The purpose of the present study is to investigate whether 

people use proper integration rules according to the type of 

outcome variable and whether people differentiate between 

the partial and full ceiling situations. In addition to the 

conditions with continuous outcomes and binary outcomes, 

we added a condition with percentage outcomes. This is 

 

Table 1: Design and predictions of the experiment. 

100(0) 0(0) 100 ≥100
* 1.00(0) 0.00(0) 1.00 1.00

100(0) 25(4.3) 75 ≥75 1.00(0) 0.25(0.4) 0.75 1.00

75(4.3) 0(0) 75 75 0.75(0.4) 0.00(0) 0.75 0.75

100(0) 50(5) 50 ≥50 1.00(0) 0.50(0.5) 0.50 1.00

75(4.3) 25(4.3) 50 50 0.75(0.4) 0.25(0.4) 0.50 0.67

50(5) 0(0) 50 50 0.50(0.5) 0.00(0) 0.50 0.50

100(0) 75(4.3) 25 ≥25 1.00(0) 0.75(0.4) 0.25 1.00

75(4.3) 50(5) 25 25 0.75(0.4) 0.50(0.5) 0.25 0.50

50(5) 25(4.3) 25 25 0.50(0.5) 0.25(0.4) 0.25 0.33

25(4.3) 0(0) 25 25 0.25(0.4) 0.00(0) 0.25 0.25

100(0) 100(0) 0 NA 1.00(0) 1.00(0) 0.00 NA

75(4.3) 75(4.3) 0 0 0.75(0.4) 0.75(0.4) 0.00 0.00

50(5) 50(5) 0 0 0.50(0.5) 0.50(0.5) 0.00 0.00

25(4.3) 25(4.3) 0 0 0.25(0.4) 0.25(0.4) 0.00 0.00

0(0) 0(0) 0 0 0.00(0) 0.00(0) 0.00 0.00

Continuous & Percentage

E [e |c ] E [e |¬c ] ∆E
causal

power

Binary

P (e |c ) P (e |¬c ) ∆P
causal

power

 
Note.  Numbers in parentheses are standard deviations. The 

causal power theory predicts “≥100” for the continuous 

group and “100” for the percentage group. 

because the upper limit for percentage outcomes has a clear 

maximum of 100, unlike that for continuous outcomes. 

Method 

Participants 

A total of 136 participants were recruited from Amazon 

Mechanical Turk (http://www.mturk.com/). An additional 

35 participants were tested but excluded for failing to pass 

the comprehension question (see below for details). All 

were native English speakers and residing in the US. 

Experimental design 

Participants were randomly assigned to one of three groups 

differing on the type of outcome (continuous, percentage, or 

binary). For all groups, the candidate cause was a binary 

variable (i.e., presence or absence of encouragement).  

Exclusion by the comprehension question resulted in 

unequal group sizes (56 participants in the continuous group, 

43 in the percentage group, and 37 in the binary group). In 

addition to manipulating type of outcome, contingency 

information was manipulated within-subject (see Table 1). 

In the continuous and percentage groups, there were 15 
contingency conditions resulting from the combination of 

five levels (100, 75, 50, 25, 0) of conditional expected 

values in the presence and absence of the cause. The 

difference between E[E|C = 1] and E[E|C = 0] for each 

condition yielded five levels of nonnegative values in the 

outcome magnitude (ΔE = E[E|C = 1] − E[E|C = 0] = 100, 

75, 50, 25, 0). Similarly, the binary group had five levels of 

nonnegative values in the difference (i.e., ΔP = P(E = 1|C = 

1) − P(E = 1|C = 0) = 1.00, .75, .50, .25, .00). Participants in 

each group completed the causal learning task for all 

contingency conditions. The order of the contingency 

conditions was randomized across participants. 

Procedure 

Instructions Participants were asked to read the instructions 

carefully and answer each question thoughtfully. The exact 

instructions in the continuous group were as follows 
(italicized sentences differed across groups): 

 

A math teacher wants to investigate the effect of 

active encouragement on students’ homework 

performance. Students are given 100 math homework 

problems of similar difficulty. The teacher randomly 

assigns some students to receive encouragement and 

assigns other students to receive no encouragement. 

Imagine that you are a teaching assistant for the 

class. You are responsible for checking whether or 

not a student receives encouragement and how many 

out of the 100 homework problems the student 

finishes (0-100). 
You will see several sets of student records. Each 

set contains the records of students from a school 

ordered in a random sequence. Each record describes 

3035



 4 

a student’s homework performance before and after 

the experiment. After observing the records of sixteen 

students from a school, you will be asked to judge 

how much the encouragement increases performance 

at that school. 

 
For the continuous group, the effect was a continuous 

variable (i.e., number of finished homework problems). The 

same instructions were used in the percentage group with 

one exception: the outcome observation was described as 

“what percentage of the homework problems the student 

finishes (0-100%).” In the binary group, both cause and 

effect were binary variables. Specifically, the instructions 

stated the outcome observation as “whether or not the 

student finishes the homework problems.” 

After reading the instructions, participants were asked to 

answer the comprehension question that checks the 

understanding of random assignment. The exact question 
was (italicized sentences differed across groups): 

 

Before you begin viewing the records of the students’ 

homework performance, consider the following 

situation. Suppose we conduct a study, and find that: 

the average number of the homework problems 

students in the experimental group (those who 

received encouragement) finish is 65. Likewise, the 

average number of the homework problems students 

in the control group (those who did not receive 

encouragement) finish is 65 as well. Recall that the 

students are were randomly assigned to one or the 
other group. Can the homework performance in the 

experimental group be attributed to encouragement? 

 

Participants were required to provide a “yes” or “no” answer 

and to justify their answer briefly. This question was 

intended to exclude participants who did not read the 

instructions properly and to encourage the assumption that 

the influence of background causes (i.e., causes other than 

encouragement) on homework performance was constant 

across the two groups (cf. Buehner et al., 2003). Similar 

questions were used in the percentage and binary groups 

with the corresponding modifications of the descriptions in 
terms of percentages. Participants received no feedback on 

their answers to this question. 

Learning phase The learning phase consisted of 16 trials 

that presented information about the cause and effect in a 

pre-post design. For the continuous group, participants were 

requested to observe whether a student receives 

encouragement (present or absent) and how many out of the 

100 homework problems the student finishes (0-100) before 

and after encouragement. On each trial, homework 

performance before the encouragement for a student was 

described with the illustration and text (e.g., “A student (ID: 

12345) at this school finished 25 out of 100 previous 

homework problems assigned”). Student ID was a five-digit 

random number and designed to show that each trial 

described a different student. The states of the 

encouragement were provided with the sentence (e.g., “The 

student received encouragement” or “The student did not 

receive encouragement”). The other two groups followed an 

identical procedure, except that the outcomes were 

expressed in percentage terms for the percentage group (e.g., 

“The student finished 75% of new homework problems”) 

and as present or absent in the binary group (e.g., “The 

student finished the new homework problems”). The inter-

stimulus interval was 1000-ms, and the button to proceed to 
next trial was presented 500-ms after the presentation of all 

the information. Each trial was separated by a 500-ms blank 

screen. Participants were required to learn causal strength of 

the encouragement on homework performance through trials.  

There were 16 trials for each contingency condition in 

Table 1. Encouragement was present on 8 trials and was 

absent on 8 trials. For the continuous group, the outcomes 

were normally distributed with the variance set to be ten 

times that in the binary group (see standard deviations in 

parentheses in Table 1). The order of trials was randomized 

within-subject. To familiarize participants with the 

procedure, practice trials were presented prior to the 

learning phase. 
Test phase After the 16 learning trials, participants were 

asked to estimate the causal strength of the candidate cause 

in a counterfactual question. In the continuous group, the 

question was “Suppose the next student (ID: 23456) at this 

school finished 0 out of 100 previous homework problems 

assigned. If the student now receives encouragement, how 

many out of 100 new homework problems will the student 

finish?” The responses were made on a rating scale ranging 

from 0 to 100. Our scale limits the maximum strength to 

100 so that responses can be compared across groups. 

Similar questions were used in the percentage and binary 

groups with modifications of the descriptions corresponding 

to the outcome type (e.g., for the binary group, “If these 100 

students now receive encouragement, how many of them 

will finish their new homework problems?”). In addition, 

participants were also asked to report confidence in their 

judgment on a scale ranging from 0 (not confident at all) to 

100 (extremely confident). After their judgments, 
participants completed the next contingency condition. To 

encourage the independence of judgments in each condition, 

participants received the following instructions: “Recall that 

the schools have students from very different socioeconomic 

backgrounds, and encouragement may have different effects 

on the students from school to school. Please evaluate each 

school separately.”  

Results 

Participants who failed to pass the comprehension question 

were excluded from our analysis below. This procedure 

reduced noise, but did not alter the general pattern of the 

results. Since the causal power theory makes different 

predictions for the non-ceiling and ceiling situations, 

separate analyses were conducted. Figure 1 shows the mean 

ratings of causal strength in non-ceiling situations. Overall, 

participants clearly differentiated between continuous and 
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Figure 1: Mean ratings of causal strength in each contingency condition. Judgments with the same level of ΔE or ΔP in the 

non-ceiling situations are connected by lines. Judgments in the partial and full ceiling situations are represented by black 
symbols. 

 

percentage outcomes on one hand and binary outcomes on 

the other. In the continuous group, judgments generally 

corresponded to the difference between the conditional 

expected values (i.e., ΔE = E[E|C = 1] − E[E|C = 0]). 

Similar results were obtained in the percentage group, but 

the trend was much more evident. In contrast, judgments in 

the binary group were affected by both the difference 

between conditional probabilities ΔP and the base rates of 

the effect P(E = 1|C = 0). These descriptive analyses were 

confirmed by statistical analyses. 
A two-way mixed ANOVA with the type of outcome 

(continuous vs. percentage vs. binary) as between-subjects 

factor and the contingency condition (11 contingency 

conditions except for the ceiling situations) as within-

subject factor resulted in a significant two-way interaction, 

F(20, 1330) = 6.45, MSE = 210.3, p < .001, η
 2

 G = .069. To 

explore the results in greater detail, we analyzed the effect 

of the type of outcome for each ΔE and ΔP condition. In the 

ΔE = 50 and ΔP = .50 conditions, a two-way mixed 

ANOVA revealed a significant interaction between the type 

of outcome and contingency condition, F(2, 133) = 5.54, 

MSE = 116.1, p = .005, η
 2

 G = .036. As expected, judgments 

varied as a function of the base rate of the effect in the 

binary group, F(1, 36) = 10.95, MSE = 206.5, p = .002, η
 2

 G 

= .118, but not in the continuous and percentage groups, Fs 

< 1. The interaction was also significant in the ΔE = 25 and 

ΔP = .25 conditions, F(4, 266) = 7.76, MSE = 153.6, p 

< .001, η
 2

 G  = .057, and in the ΔE = 0 and ΔP = .00 

conditions, F(6, 399) = 2.33, MSE = 242.7, p = .032, η
 2

 G 

= .015. Although the incremental pattern of the results in the 

binary group in the ΔP = .00 condition was inconsistent 

with the predictions of the causal power theory, it may be 

explained by misperception of contingency for sequential 

trials due to working memory limitations. This outcome-

density effect is consistent with causal-power predictions 

given the misperceptions (Cheng, 1997).  It is worth noting 

that a similar but smaller trend was found in the continuous 

group, but not in the percentage group. This might be 

because the continuous group needs an assumption of equal 

upper limits to compare outcomes whereas the percentage 

group does not. 

Figure 2 depicts distributions of individual judgments in 

the partial and full ceiling situations. In the partial ceiling 

situation (i.e., 100-25, 100-50, 100-75 conditions), a range 

of causal power is inferred (e.g., equal to or larger than 75 in 

the 100-25 condition). The distribution of participants’ 

judgments appears bimodal with one mode at the minimum 

value of the interval and the other at the maximum value of 

the interval given our scale. These results indicate that some 
participants made conservative estimates while others made 

optimistic estimates. Dip tests confirmed the bimodality 

both in the continuous group (D = 0.08, p = .013 in the 100-

25 condition, D = 0.13, p < .001 in the 100-50 condition, D 

= 0.14, p < .001 in the 100-75 condition) and percentage 

group (D = 0.13, p < .001 in the 100-25 condition, D = 0.16, 

p < .001 in the 100-50 condition, D = 0.16, p < .001 in the 

100-75 condition). In contrast, the bimodality was not 

observed in the binary group, and the mode of the 

distribution corresponded to the point estimate of causal 

power (i.e., wc = 1). 

In the full ceiling situation where the causal power cannot 
be estimated (i.e., 100-100 condition), the distributions of 

the continuous and percentage groups appear bimodal while 

that of the binary group appear trimodal. This might be 

because participants had no option to answer “I don’t know” 

in our materials. 

Discussion 

The present study qualitatively extended the causal power 

theory to deal with the continuous outcomes and tested 

whether people differentiate between continuous and binary 

outcomes. The results showed that people estimate causal 

strength based on the linear-sum rule for continuous 

outcomes and the noisy-OR rule for binary outcomes. In the 

partial ceiling situation where the estimation of causal 

power has a range, the distribution of participants’ ratings 

was bimodal with one mode at the minimum value and the 

other at the maximum value, suggesting some participants 

made conservative estimates while others made optimistic 
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Figure 2: Distributions of individual judgments in the partial 

and full ceiling situations. 

 

estimates. These results are generally consistent with the 
predictions of the causal power theory. 

The present study has theoretical implications for 

understanding how people estimate causal power. Whereas 

covariation models (e.g., ΔP model, Jenkins & Ward, 1965) 

and associative models (e.g., R-W model, Rescorla & 

Wagner, 1972) adopt one integration rule, Bayesian models 

generally assume multiple integration rules (Griffiths & 

Tenenbaum, 2005, 2009; Lu et al., 2008, 2016). Our results 

demonstrate that people choose the proper integration rule 

according to the type of outcome, supporting the Bayesian 

models. Notably, this finding implies that people assume the 

invariance of causal power as a default, consistent with the 
proposal that causal invariance plays a key role in the 

construction of generalizable causal knowledge (Cheng & 

Lu, in press). The two integration rules respectively 

represent the invariance of causal power for the two 

outcome variable types.  Another theoretically important 

aspect is the bimodal distributions in the judgments in the 

partial ceiling situations. Computational models generally 

predict averaged results.  The observed bimodality suggests 

that models incorporating different conservatism values 

and/or priors may explain individual differences in the 

partial ceiling situations. Further investigations will shed 

more light on the question of how people estimate causal 
power. 
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