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Porous shallow-water models (porosity models) simulate urban flood flows orders of magnitude faster
than classical shallow-water models due to a relatively coarse grid and large time step, enabling flood
hazard mapping over far greater spatial extents than is possible with classical shallow-water models.
Here the errors of both isotropic and anisotropic porosity models are examined in the presence of
anisotropic porosity, i.e., unevenly spaced obstacles in the cross-flow and along-flow directions, which
is common in practical applications. We show that porosity models are affected by three types of errors:
(a) structural model error associated with limitations of the shallow-water equations, (b) scale errors
associated with use of a relatively coarse grid, and (c) porosity model errors associated with the
formulation of the porosity equations to account for sub-grid scale obstructions. Results from a unique
laboratory test case with strong anisotropy indicate that porosity model errors are smaller than structural
model errors, and that porosity model errors in both depth and velocity are substantially smaller for
anisotropic versus isotropic porosity models. Test case results also show that the anisotropic porosity
model is equally accurate as classical shallow-water models when compared directly to gage measure-
ments, while the isotropic model is less accurate. Further, results show the anisotropic porosity model
resolves flow variability at smaller spatial scales than the isotropic model because the latter is restricted
by the assumption of a Representative Elemental Volume (REV) which is considerably larger than the size
of obstructions. These results point to anisotropic porosity models as being well-suited to whole-city
urban flood prediction, but also reveal that point-scale flow attributes relevant to flood risk such as local-
ized wakes and wave reflections from flow obstructions may not be resolved.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Urban flood modeling is now possible at centimetric resolution
or better with modern laser scanning data and flood models (Bates,
2012; Sampson et al., 2012), but it is not advisable at this resolu-
tion over entire floodplains as the computational costs and mem-
ory demands are forbidding except on massively parallel
computing architectures. Commonly used models are constrained
by the Courant, Friedrichs, Lewy (CFL) condition for both stability
and accuracy which dictates nearly an order-of-magnitude
increase in computational effort every time the mesh resolution
is doubled. For a Cartesian grid with a cell size of Dx, the computa-
tional cost C of integrating a flood over a specified duration will
scale as the product of the required number of computational cells
nc and time steps nt ,

C � ncnt �
1

Dx3 ð1Þ

because nc � Dx�2 and the CFL requirement to scale Dt with
Dx. Thus, halving the cell size causes an eight fold increase in
computational effort (nearly an order of magnitude) and at least a
fourfold increase in memory demands.

Porous shallow-water equations (porosity models) resolve
urban flooding at a relatively coarse (and efficient) resolution com-
pared to available geospatial data using additional parameters that
account for sub-grid scale topographic features affecting the move-
ment and storage flood water (Defina, 2000; Yu and Lane, 2005;
McMillan and Brasington, 2007; Sanders et al., 2008; Soares-
Frazão et al., 2008; Cea and Vázquez-Cendón, 2010; Chen et al.,
2012; Guinot, 2012; Schubert and Sanders, 2012). In practice, the
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idea is to use a cell size on the order of meters or dekameters. This
gives rise to models that resolve flooding at the pore scale roughly
corresponding to the width of roadways and open spaces between
buildings, in contrast with classical shallow-water models that
resolve flooding at the point scale, as approximated by the grid
resolution. Importantly, porosity models enable massive
reductions in computational effort compared with classical
shallow-water models as a result of the scale difference.

Sanders et al. (2008) and Guinot (2012) introduce two alterna-
tive formulations of porosity models to capture porosity
anisotropy, which can be expected in practical applications. Aniso-
tropy occurs in urban landscapes when there are preferential flow
directions such as wide streets and narrow alleys aligned in per-
pendicular directions. Hypothetical examples of anisotropic flow
have been presented in previous studies (Sanders et al., 2008;
Guinot, 2012), including numerous cases with angled channel-like
flows through urban areas. Additionally, Schubert and Sanders
(2012) present a field-scale application of an anisotropic porosity
model that outperforms models based on the classical shallow-wa-
ter equations.

Porosity heterogeneity exists when the size of flow paths is spa-
tially variable, and different porosity models resolve heterogeneity
over different scales. Isotropic porosity models are restricted to
scales larger than the length scale of the Representative Elemental
Volume (REV). This is typically an order of magnitude larger than
the scale of flow obstructions in urban flood applications, nominal-
ly a kilometer or more (Guinot, 2012). On the other hand, the
anisotropic porosity model developed by Sanders et al. (2008) does
not require the existence of an REV and can resolve heterogeneity
at the grid scale.

Since porosity anisotropy is a critical consideration for practical
applications, this study presents modeling of a unique experimen-
tal test case involving dam-break flow through an anisotropic array
of obstructions, which builds on earlier experimental work and
modeling studies focused on isotropic arrays of obstructions
(Testa et al., 2007; Soares-Frazão and Zech, 2008). A classical shal-
low-water model and both isotropic and anisotropic porosity mod-
els are applied and calibrated. The objective is to measure and
report the magnitude of porosity model errors in an absolute sense
and also relative to other errors which collectively limit the overall
accuracy of the model. A better understanding of errors is needed
to effectively use porosity models in flood hazard mapping. Three
types of errors are reported: (a) structural model errors associated
with the shallow-water equations which constitute the foundation
of the porosity models, (b) scale errors arising from a grid size that
matches the pore scale instead of the point scale, and (c) porosity
model errors associated the parameterization of sub-grid scale
obstructions. Results point to significant differences in porosity
model errors between porosity model formulations.
2. Methods and materials

2.1. Porosity definition

Porosity can be defined in more than one way, namely as a vol-
ume average fraction of pore space in a porous media or as an areal
average fraction of pore space, as in a slice through the porous
medium (Bear, 1988). Both volumetric and areal porosity can be
expected to vary spatially in the case of a heterogeneous porous
medium, and areal porosity can also vary with the orientation of
the plane over which the areal average is taken, and thus exhibit
anisotropy. If an urban land surface filled with solid features is tak-
en as a porous medium, then the pore space represents the gaps
between the solid features, the volumetric porosity represents
the fraction of the land surface able to store water, and the areal
porosity represents the fraction of space available for flood con-
veyance which is directionally dependent.

2.2. Porous shallow-water equations

The anisotropic porosity model of Sanders et al. (2008) is writ-
ten as integral statements of mass and momentum conservation
for an arbitrary 2D domain X with boundary C and unit outward
normal vector n as follows,

@

@t

Z
X

iUdXþ
I
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I
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where u = x-component of velocity, v = y-component of velocity,

g = gravitational constant, V ¼ ðu2 þ v2Þ1=2
; c f

D is a ground friction
drag coefficient, cb

D is a drag coefficient for sub-grid scale flow
obstructions, and hjgo

is the depth corresponding to a piecewise
constant water surface elevation go and piecewise linear ground
elevation z within X. The H term is introduced to transform the clas-
sical ground slope source term to a boundary integral that preserves
stationary solutions. Based on the limits of this transformation, the
momentum equations appearing in Eq. (2) are restricted to numer-
ical schemes that are first- or second order accurate in space
(Sanders et al., 2008).

The variable iðx; yÞ appearing in Eq. (2) is defined for the spatial
domain D 2 R2 and represents a binary density function that takes
on a value of zero or unity depending on the presence or absence of
a solid flow barrier as follows (Sanders et al., 2008),

iðx; yÞ ¼
0 if ðx; yÞ 2 Db

1 otherwise

�
ð5Þ

where Db is a subdomain of D that corresponds to solid obstacles.
Two grid-based porosity parameters are dependent on the density
function (Eq. (5)) as follows,

/j ¼
1
Xj

Z
Xj

i dX wk ¼
1
Ck

Z
Ck

idC ð6Þ

where Xj corresponds to the two-dimensional (2D) spatial domain
of the jth computational cell and Ck corresponds to the kth compu-
tational edge of a mesh. Note that /j represents the fraction of a cell
area occupied by voids, and wk represents the fraction of a cell edge
occupied by voids. Consequently, these parameters affect the rela-
tive storage of cells and conveyance between cells, respectively.
Importantly, anisotropic blockage effects are explicitly resolved by
the distribution of wk values across the computational mesh. It is
noted that isotropic porous shallow-water equations can be recov-
ered from Eq. (2) under the assumption that /j ¼ wk 8k. Additional-
ly, Eq. (2) reverts to the classical shallow-water equations in the
limit that iðx; yÞ ¼ 1.

Presently it is not clear how well isotropic and anisotropic por-
osity models resolve flow at the pore scale where information is
needed to assess the risks facing individual land parcels in an
urban area, especially when the obstructions exhibit anisotropy.
Eq. (2) resolves flow properties on a grid-cell by grid-cell basis
which corresponds to the pore scale since the model requires a grid
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that aligns cells with pore spaces (Sanders et al., 2008). In contrast,
isotropic models require the existence of an REV where the poros-
ity is scale-independent and where areal and volumetric porosities
converge to a single scalar value (Bear, 1988). The length scale of
the REV is roughly an order of magnitude larger than the length
scale of obstructions in urban landscapes (Guinot, 2012), so assum-
ing that pore sizes and obstructions are similarly sized, the isotrop-
ic models theoretically resolve flow at roughly an order of
magnitude larger scale than the anisotropic model presented here.
On the other hand, Guinot (2012) suggests that isotropic porosity
becomes representative of the converged REV value at scales 2–3
times smaller than the REV scale.

The ground friction drag coefficient is parameterized by a Dar-

cy–Weisbach f as follows, c f
D ¼ f=8 which is in turn computed

using a modified form of the Haaland equation (Haaland, 1983)
presented by Arega and Sanders (2004) which considers the
Nikuradse sand-grain roughness height ks and the depth-based
Reynolds number Reh ¼ Vh=m, where m represents the kinematic
viscosity. The building drag coefficient is scaled by the projected
area of solid barriers as follows, cb

D ¼ 1
2 co

Daf h where af represents
frontal area (Nepf, 1999). The units of af are length�1, correspond-
ing to the frontal width of obstructions in X normalized by X. co

D is
classical drag coefficient that accounts for shape and Reynolds
number effects on drag (Sanders et al., 2008).
2.3. Numerical methods

The integral porosity model is solved using a Godunov-based
finite volume scheme that allows for triangular, quadrilateral, or
Fig. 1. Experiment set-up of Yoon (Yoon, 2007): (a) plan view, (b) side view, and (c) close-
depending on control volume placement, a vs. b, and edge-based porosities w exhibit he
mixed meshes (Kim et al., 2014). The scheme uses Roe’s approxi-
mate Riemann solver with a critical flow fix, an adaptive method
of variable reconstruction for uneven topography that minimizes
numerical dissipation (Begnudelli et al., 2008), a local time step-
ping scheme (Sanders, 2008), an improved Volume-Free Surface-
Reconstruction (VFR) technique for wetting and drying, and inclu-
sion of grid based porosity parameters (Sanders et al., 2008) which
is of particular interest here. The scheme is explicit and condition-
ally stable in accordance with a CFL condition (Kim et al., 2014).
2.4. Laboratory experiment

Laboratory-scale modeling of anisotropic blockage effects was
carried out in a physical model constructed at the Korea Institute
of Construction Technology (KICT). Fig. 1(a) and (b) shows the plan
view and side view of the physical model, respectively, and
Fig. 1(c) shows the location of gage stations and blocks. The
experimental tank is 30 � 30 m and includes a reservoir, a dam,
and a floodplain. The width and length of the reservoir are 5 m
and 30 m, respectively, and the width and length of the floodplain
are 28 m and 24 m, respectively (Yoon, 2007).

The reservoir and floodplain surfaces are horizontal and treated
with mortar to achieve a uniform roughness. The floodplain is ver-
tically offset 0.4 m above the reservoir, and the two areas are
separated by a concrete wall with a sliding gate that is opened
horizontally and symmetrically to simulate a breach. The gate
moves along a rail set equal in height to the floodplain. To initiate
a flood, the sliding gate opens at a velocity of 0.18 m/s until the
breach reaches a maximum width of 1.0 m. At the outer boundary
of the model floodplain, there is a vertical drop of 0.4 m into a
up of greyed section in Fig. 1(a); and (d) cell-based porosity / exhibits heterogeneity
terogeneity and anisotropy depending on the chosen transect.
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channel 1.0 m wide for drainage. The floodplain and perimeter
drainage channel were designed to ensure a free-outflow condition
along the entire perimeter. The solid blocks are 0.2 � 0.2 m square
pillars made of an acrylic shell and filled with concrete for stability
during flood conditions. The blocks were arranged as two 3 � 3
groups that are symmetrically aligned about the centerline of the
dam as shown in Fig. 1 (Yoon, 2007).

A total of 17 capacitance-type gages (Model CHT4-60, KENEK,
Tokyo, Japan) were installed to measure transient flow depths as
shown in Fig. 1(c). The probes measured depths in the range 0–
30 cm and sampled at a rate of 5 Hz (0.2 s sampling interval). It
is noted that several stations are positioned as symmetric pairs
about the dam centerline as shown in Fig. 1(c). Two different flow
scenarios are considered corresponding to an initial reservoir
water depth (h0) of 0.30 m and 0.45 m, measured relative to the
floodplain elevation (Yoon, 2007).

Within each 3 � 3 cluster, the gap between buildings is 0.1 m
facing the dam (section E–E0 in Fig. 1(d)) and 0.4 m perpendicular
to the dam (section G–G0 in Fig. 1(d)). This introduces a strong
degree of anisotropy in the porosity field, a 1–4 ratio in the
cross-sectional area available for flow between blocks. The KICT
problem also introduces pore-scale heterogeneity in the porosity
distribution. For example, considering again Fig. 1(d), the areal por-
osity w varies significantly between Sections D–D0 and E–E0 in the y
direction, with wE < wD, and between Sections G–G0 and F–F0 in the
x direction, with wG < wF . Similarly, the volumetric porosity / var-
ies significantly between domain a and b shown in Fig. 1(d), with
/b < /a.
2.5. Summary of models

A classical shallow-water model (CSW), the anisotropic porosity
model (PSW-A), and four isotropic porosity models (PSW-I) were
applied. Additionally, results of the classical shallow-water model
were averaged over each porosity-model grid cell to yield a pore-
le 1
llow-water model formulations and corresponding meshes shown in Fig. 2.

Case0 Description Mesh in Fig. 2

CSW Classical shallow-water (a)
CSW-P Pore-scale average of CSW (a)
PSW-A Anisotropic porosity model (b)
PSW-I-1A Isotropic porosity model (/ = w = 0.74) (c)
PSW-I-1B Isotropic porosity model (/ = w = 0.40) (c)
PSW-I-2A Isotropic porosity model (/ = w = 0.83) (b)
PSW-I-2B Isotropic porosity model (/ = w = 0.50) (b)

x (m)

y
(m
)

-3 -2 -1 0 1 2 30

1

2

3

4

5 (a)
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y
(m
)

-3 -2 -1 00
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5

Fig. 2. Computational mesh for (a) CSW and CSW-P, (b) PSW-A, PS
scale classical shallow-water model result (CSW-P). Table 1 pre-
sents a summary of the seven models, and Fig. 2 presents the com-
putational meshes used. Note that Fig. 2(b) corresponds to the gap-
conforming mesh required of the anisotropic model (Sanders et al.,
2008), where vertices are placed at the centroid of obstructions,
cells are aligned with pore spaces, and edges intersect constrictions
in the pore space. Additionally, Fig. 2(c) corresponds to a region
conforming mesh that precisely circumscribes the subdomain
filled with flow barriers (Soares-Frazão et al., 2008; Guinot,
2012). Four variants of the isotropic porosity model are used to
account for both mesh designs and two alternative porosity values
corresponding to the region-averaged volumetric porosity (Soares-
Frazão et al., 2008) and the areal porosity (Guinot, 2012), as shown
in Table 1. It is noted that an REV cannot be rigorously established
in this test case due to the anisotropy, heterogeneity and limited
spatial extent of the flow barriers, so the assumptions required to
apply the isotropic model are not satisfied. However, isotropic
models have yielded credible yet less accurate predictions (than
anisotropic models) in other applications where these require-
ments were not satisfied (Guinot, 2012), motivating further study
here.
2.6. Definition of errors

Three types of errors are reported: (a) structural model errors,
(b) scale errors and (c) porosity model errors. Structural model
errors are defined by the difference between the converged CSW
prediction and gage measurements of flood depths. Scale errors
are defined by the difference between the CSW (point scale) and
CSW-P (pore scale) predictions at gage locations, and are computed
for both depth and velocity. Porosity model errors are defined by
the difference between porosity model predictions and CSW-P at
gage locations (pore scale comparison), and are evaluated for both
depth and velocity. All errors are computed using an L1 norm
defined by L1 ¼

PN
j¼1jðw1Þj � ðw2Þjj=N where w1 and w2 represent
Num. of nodes Num. of cells Resolution (m)

Avg. Max. Min.

330,464 328,612 0.05 0.05 0.05
330,464 328,612 0.05 0.05 0.05
9216 8932 0.30 0.33 0.25
9412 9124 0.30 0.33 0.25
9412 9124 0.30 0.33 0.25
9216 8932 0.30 0.33 0.25
9216 8932 0.30 0.33 0.25

x (m)

y
(m
)

-3 -2 -1 0 1 2 30

1

2

3

4

5 (c)

1 2 3

(b)

W-I-2A and PSW-I-2B, and (c) PSW-I-1A and PSW-I-1B.
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the two different solutions and N represents the number of points
compared.
2.7. Model parameterization and calibration

For all models, mesh vertex heights were assigned based on
reservoir or floodplain bed elevations, and mesh cells were
assigned a Nikuradse sand-grain roughness height ks to model bot-
tom shear. Further, a no-normal-flux boundary condition was
enforced along the reservoir boundaries and concrete wall separat-
ing the reservoir and floodplain, and a free-outflow boundary con-
dition was enforced along the remaining three sides of the
floodplain. The gate opening was modeled as an instantaneous
breach since the time scale of opening (<3 s) is short compared
with the time-scale of the breach flow (>100 s).

To apply the anisotropic porosity model, the cell-based porosity
/j and edge-based porosity wk were computed based on the inter-
section of the mesh with the footprint of the solid blocks following
previously described methods (Sanders et al., 2008; Schubert and
Sanders, 2012). Additionally, the frontal area parameter af required
to parameterize drag was computed on a cell-by-cell basis in
accordance with the projected area facing the dam as described
previously (Sanders et al., 2008). The assumption of a uniform flow
direction for computing af is an approximation that has worked
reasonable well in practical applications (Schubert and Sanders,
2012).

To apply the isotropic porosity models, /j and wk were assigned
a uniform value inside the block zone. Referring to Table 1, PSW-I-
1A and PSW-I-2A are based on an average volumetric porosity cor-
responding to the spatial extent of cells that contact the obstruc-
tions, and the porosity values differ slightly based on the mesh.
PSW-I-1B and PSW-I-2B are based on areal porosity values corre-
sponding to transect E–E0 in Fig. 1(d). A uniform frontal area para-
meter was also specified inside the block zone equal to the total
frontal area facing the dam, normalized by the size of the block
zone. This corresponds to 0.83 and 1.29 m�1 (Table 1) for the
meshes shown Fig. 2(b) and (c), respectively.

Outside the block zone, a porosity value of unity was assigned
in all porosity models. Also, the frontal area was set to zero.

The roughness parameter, ks, was manually calibrated by apply-
ing CSW to the first KICT flow scenario (h0 = 0.30 m) with ks values
ranging from 0.03 to 0.3 cm, which is an established range for con-
crete (Munson et al., 2006). The ks value achieving the best agree-
ment between predicted depths and gage measurements
(minimum L1 norm) was subsequently used in all other models
and in the second KICT flow scenario (h0 = 0.45 m).
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Fig. 3. Contours of water depth 50 s after dam-break on CSW-S with (a) 0
To calibrate co
D, each of the porosity models was applied to the

first KICT flow scenario with co
D values ranging from 1.0 to 3.0. This

range corresponds to rectangular shaped blocks in an idealized
two-dimensional flow (Munson et al., 2006), and it is recognized
that co

D may also vary depending on sheltering effects from the
clustering of solid barriers and three-dimensional flow effects
(Sanders et al., 2008).

When calibrating co
D, a critical question is which reference solu-

tion to use for measuring the error (L1 norm). Calibration to gage
measurements is the first option and is motivated by the goal of
minimizing the overall error in the porosity model prediction,
whereas another option is calibration to CSW-P predictions which
is motivated by the goal of minimizing porosity model errors.
Further, calibration to CSW-P depth and/or velocity predictions is
possible. Here, all three options are pursued leading to three differ-
ent calibrations: calibration to depth measurements (Calib1),
calibration to CSW-P predictions of depth at gage locations
(Calib2), and calibration to CSW-P predictions of velocity at gage
locations (Calib3).
3. Results

3.1. Convergence of the CSW model

A resolution of 0.05 m was selected for CSW after a convergence
check with a 0.025 m mesh of approximately 1.3 million computa-
tional cells. This showed that the average convergence error (mea-
sured over the simulation period at each gage) of the CSW depth
prediction was less than 2 mm at all stations except Gage 2, where
the convergence error was found to be 6 mm. Over all stations, the
average convergence error was approximately 1 mm. Gage 2 is
located in front of the leading row of obstructions (see Fig. 1). Here,
super-critical flow through the breach strikes the first row of
blocks, and a bow shock (hydraulic jump) forms across the width
of the blocks as shown in Fig. 3. Based on the curvature of the shock
wave, Gage 2 is on the windward side of the shock and Gages 11
and 18 are on the leeward side. Further, the width of the shock
wave (measured in y direction on Fig. 3) is minimal at Gage 2: over
a distance of 30 cm in the y direction, the water depth rises up
from 5 cm to 16 cm, and then down again to 10 cm, approximately,
based on results shown in Fig. 3(b). As the mesh is coarsened from
0.025 to 0.05 m resolution, this narrow band of super-elevated
water is diffused slightly and its windward edge moves closer to
Gage 2, leading to higher water depth predictions. Hence, the
relatively large convergence error at Gage 2 is explained by its
position at the leading edge of a shock wave. It is noted that poros-
ity models use a 30 cm mesh resolution (Fig. 2(c) and (d), and
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.05 m and (b) 0.025 m resolution. Vectors indicate velocity direction.
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Table 1), which is too coarse to sharply resolve the narrow band of
super-elevated water at Gage 2. This shows that pore-scale and
point-scale values of flood predictions may differ substantially as
a result of localized wakes and wave reflections from flow
obstructions.
3.2. Calibration of ks

Fig. 4 shows CSW model predictions of depth using ks values
from 0.03 to 0.3 cm, compared with gage measurements. Addition-
ally, Table 2 shows L1 norms for CSW model. These results demon-
strate that the influence of roughness depends on the gage
location, but overall roughness does not exhibit a strong influence
on the average error. The implication is that momentum losses are
dominated by the geometric constriction and form drag associated
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Table 2
L1 norms of flood depth for calibration of roughness height (ks) on CSW (unit: cm).

Case ks (cm) Gages inside block zone

2 11&18 12&19 13&20 14&21 15

CSW 0.03 1.08 1.22 0.66 0.44 0.58 1.49
0.05 0.94 1.23 0.66 0.44 0.62 1.49
0.10 0.71 1.24 0.66 0.44 0.70 1.48
0.20 0.56 1.25 0.66 0.45 0.83 1.46
0.30 0.57 1.26 0.67 0.46 0.91 1.44

Bold values show the minimum L1 norm from the co
D values considered.

Table 3
L1 norms of flood depth for calibration of drag coefficient (co

D) on PSW-A and PSW-I.

Case L1 of flood depth (unit: cm) L1 of flood depth (uni
Calib1: Ref.-Measured h Calib2: Ref.-Predicted

co
D ¼ 1:0 1.5 2.0 2.5 3.0 co

D ¼ 1:0 1.5

PSW-A 0.705 0.681 0.669 0.663 0.660 0.165 0.186
PSW-I-1A 1.068 1.021 1.015 1.012 1.003 0.507 0.545
PSW-I-1B 0.751 0.732 0.726 0.728 0.732 0.337 0.387
PSW-I-2A 1.152 1.088 1.04 1.003 0.974 0.601 0.529
PSW-I-2B 0.815 0.78 0.761 0.752 0.749 0.278 0.284

Bold values show the minimum L1 norm from the co
D values considered.
with the solid blocks, not skin friction from the bottom boundary.
All subsequent modeling uses ks = 0.03 cm since this leads to the
most accurate prediction based on the values considered.
3.3. Calibration of co
D

Table 3 presents L1 norms in porosity model predictions as a
function of co

D and different reference solutions. This shows that
optimal co

D depends on the porosity model and also depends on
whether the goal is to minimize total errors or porosity model
errors. In four of the five models, minimizing porosity model errors
calls for a drag coefficient on the low end of the range (1.0) while
minimizing total errors calls for a drag coefficient at the high end of
the range (3.0). We conjecture that the goal of a porosity model
should be to reproduce as accurately as possible the pore-scale
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e (s) Time (s)

e (s) Time (s)

oughness height (ks) on CSW.

Gages outside block zone Entire avg.

16 17 Avg. 3&7 4&6 5 Avg.

0.23 0.29 0.75 0.33 0.39 0.81 0.51 0.63
0.23 0.29 0.74 0.35 0.44 0.82 0.54 0.64
0.23 0.29 0.72 0.40 0.53 0.89 0.61 0.66
0.23 0.30 0.72 0.49 0.66 1.03 0.72 0.72
0.23 0.30 0.73 0.56 0.74 1.12 0.81 0.77

t: cm) L1 of flood velocity (unit: cm/s)
h on CSW-P Calib3: Ref.-Predicted V on CSW-P

2.0 2.5 3.0 co
D ¼ 1:0 1.5 2.0 2.5 3.0

0.21 0.231 0.248 10.958 11.816 12.513 13.111 13.695
0.578 0.592 0.590 21.730 21.893 22.132 22.136 21.960
0.422 0.446 0.464 21.581 21.812 21.956 22.123 22.171
0.533 0.543 0.533 22.084 21.05 20.798 20.505 20.142
0.317 0.341 0.360 20.532 20.343 20.204 20.152 20.122
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averaged solution of the shallow-water equations, and not neces-
sary match measurements. However, the results here clearly indi-
cate that co

D can be tuned to improve the agreement with
measurements.
Table 4
Model parameters and run time.

Case ks (cm) Co
D / w af (m�1) Max. Cr. h0 = 0.30 m h0 = 0.45 m

Calib1 Calib2 Calib3 Dt(s) Runtime (s) Dt(s) Runtime (s)

CSW 0.03 – – – – – – 0.6 0.0079 5699 0.0062 7264
CSW-P 0.03 – – – – – – 0.6 0.0079 5699 0.0062 7264
PSW-A 0.03 3.0 1.0 1.0 0.76–0.89 0.33–0.67 1.09–2.38 0.6 0.0565 9.34 0.0460 11.34
PSW-I-1A 0.03 3.0 1.0 1.0 0.74 0.74 1.29 0.6 0.0563 9.45 0.0460 11.58
PSW-I-1B 0.03 2.0 1.0 1.0 0.40 0.40 1.29 0.6 0.0563 9.45 0.0460 11.53
PSW-I-2A 0.03 3.0 1.5 3.0 0.83 0.83 0.83 0.6 0.0564 9.38 0.0460 11.28
PSW-I-2B 0.03 3.0 1.0 3.0 0.50 0.50 0.83 0.6 0.0564 9.39 0.0460 11.25
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Fig. 5. Comparison of predicted flood
The calibrations also show that over a range of physically real-
istic drag coefficient values, the anisotropic model consistently
produces smaller total errors and porosity model errors in flood
depths.
depth and measurement for h0 = 0.30 m.
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3.4. Model predictions and errors

Table 4 provides a summary of all model configurations and run
times, including optional parameter values corresponding to dif-
ferent calibrations. Models were executed using a 3.07 GHz Intel

�

Core™ i7 CPU with 8 GB RAM. The differences in run time are strik-
ing as in previous studies. Compared with CSW, the porosity mod-
els execute almost three orders of magnitude faster.

Figs. 5 and 6 present predictions and gage measurements of
flood depth for the first (h0 = 0.30 m) and second (h0 = 0.45 m) test
cases based on Calib1, and Figs. 7 and 8 present model predictions
of velocity for the first and second test cases based on Calib1.
Results from Calib2 and 3 are not shown graphically, but Table 5
shows L1 norms according to the porosity model, the calibration,
and the reference solution. L1 norms based on flood depth mea-
surements are used to measure the structural model error in the
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Fig. 6. Comparison of predicted flood dep
CSW model and the total error in the porosity models, while L1

norms based on the CSW-P prediction are used to measure porosity
model errors. The scale error is measured by an L1 norm between
the CSW and CSW-P predictions.

3.4.1. Structural model errors
The CSW prediction is shown to yield a good approximation of

flood depths across the spatial domain (Fig. 5), with an average
error of only 0.63 cm (Table 5), which represents just 2% of the ini-
tial depth in the reservoir. The main limitations of CSW are noted
at Sta. 18 where a spurious wave is measured in the experiment
that is not explained by the model, and at Sta. 5 where the model
overpredicts flood depths roughly by a factor of two. In a second
test case involving h0 = 0.45 m (Fig. 6), the average error is
0.89 cm (Table 5) which is again just 2% of the initial depth in
the reservoir. Hence, after calibration of the model to the first test
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Fig. 7. Comparison of predicted flood velocity for h0 = 0.30 m.
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case, the model performs with the same relative error in a second
test case.

3.4.2. Scale errors
Differences between point-scale (CSW) predictions and pore-s-

cale (CSW-P) predictions of flood depth constitute the scale error
which is at least 65% smaller than the structural model error
according to L1 norms shown in Table 5. In particular, the scale
error in depth is 0.18 cm in the first test case where the structural
model error is 0.63 cm. In the second test case, the scale error is
0.30 cm while the structural model error is 0.89 cm. Table 5 also
shows that the scale error in velocity is 7.45 and 9.12 cm/s, which
corresponds to about 2% of the theoretical peak velocity of a dry-

bed dam break flood wave, 2ðgh0Þ
1=2.

Figs. 5 and 6 illuminate the origin of the scale error. In the
first test case (Fig. 5), CSW-P notably departs from CSW at Sta.
2 which is explained by the shock waves shown in Fig. 3. This
occurs because at the point scale, the prediction corresponds to
one side of the shock or the other, while at the pore scale, the
prediction corresponds to a spatial average around the shock.
Noticeable differences also occur at two other stations on the
perimeter of the obstructions (e.g., Sta. 17 and 18), while differ-
ences away from the obstructions (Sta. 5, 6, and 7) and at sta-
tions off center from the main flow path (Sta. 19 and 20) are
minimal.

Differences between the point-scale and pore-scale velocities in
Figs. 7 and 8 are noted at Sta. 2, 15 and 16 where relatively high
velocities occur due to the alignment of this channel with the
dam-break flood wave. Here, faster velocities occur along the cen-
terline and slower velocities occur near the blocks as a result of
wakes, and the monitoring stations sample the fastest moving
water. Relatively large scale effects are also noted at Sta. 18 and 21.
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Fig. 8. Comparison of predicted flood velocity for h0 = 0.45 m.
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3.4.3. Porosity model errors
Attention is now focused on porosity model errors in flood

depth and velocity, which are measured by a comparison of poros-
ity model predictions and CSW-P. Table 5 shows that the
anisotropic porosity model introduces a significantly smaller error
in depth and velocity than all of the isotropic porosity models. For
example, in the first and second test cases, isotropic model errors
in depth were 65–210% and 77–240% greater than the anisotropic
model, respectively, based on Calib2. Additionally, isotropic model
errors in velocity were 83–97% and 80–86% greater than the
anisotropic model for the first and second test cases, respectively,
based on Calib3. Data in Table 5 also shows that the magnitude
of the porosity model errors is mostly greater than or equal to
the scale error, but less than the structural model errors, for both
depth and velocity. The exception is the second test case where
the anisotropic porosity model errors in depth are actually smaller
than the scale error.
The total error of the porosity models at the point scale is also
shown in Table 5, with L1 norms based on gage depth measure-
ments. The total errors of the anisotropic porosity model are nearly
identical to CSW and CSW-P based on Calib1, while all of the
isotropic models yield larger total errors. Errors in the isotropic
models range from 16% to 59% higher than CSW errors in the first
test case, and 2–29% higher in the second test case, based on
Calib1.
3.5. Spatial variability

Previously shown results reveal at-a-station dynamics, but it is
also worthwhile to examine the spatial structure of flood predic-
tions. For the h0 = 0.30 m case, Fig. 9 shows contours of pore-scale
flood depth and vectors representing the pore-scale velocity mag-
nitude and direction 50 s after the dam-break as depicted by:



Table 5
L1 norms of flood depth and velocity based on calibration and reference solution.

h0 (m) Case L1 of flood depth (unit: cm) L1 of flood depth (unit: cm) L1 of flood velocity (unit: cm/s)
Ref.-Measured h Ref.-Predicted h on CSW-P Ref.-Predicted V on CSW-P

Calib1 Calib2 Calib3 Calib1 Calib2 Calib3 Calib1 Calib2 Calib3

0.30 CSW 0.63 0.63 0.63 0.18 0.18 0.18 7.45 7.45 7.45
CSW-P 0.66 0.66 0.66 – – – – – –
PSW-A 0.66 0.70 0.70 0.25 0.17 0.17 13.70 10.96 10.96
PSW-I-1A 1.00 1.07 1.07 0.59 0.51 0.51 21.96 21.73 21.73
PSW-I-1B 0.73 0.75 0.75 0.42 0.34 0.34 21.93 21.58 21.58
PSW-I-2A 0.97 1.09 0.97 0.53 0.53 0.53 20.14 21.05 20.14
PSW-I-2B 0.75 0.81 0.75 0.36 0.28 0.36 20.12 20.53 20.12

0.45 CSW 0.89 0.89 0.89 0.30 0.30 0.30 9.12 9.12 9.12
CSW-P 0.89 0.89 0.89 – – – – – –
PSW-A 0.87 0.91 0.91 0.36 0.22 0.22 17.90 14.35 14.35
PSW-I-1A 1.15 1.39 1.39 0.81 0.71 0.71 27.46 28.16 28.16
PSW-I-1B 0.95 1.05 1.05 0.62 0.50 0.50 27.29 27.27 27.27
PSW-I-2A 1.15 1.40 1.15 0.73 0.74 0.73 25.04 26.32 25.04
PSW-I-2B 0.91 1.12 0.91 0.52 0.39 0.52 25.35 25.78 25.35
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Fig. 9. Contours of water depth 50 s after dam-break on (a) CSW-P, (b) PSW-A, (c) PSW-I-1A, (d) PSW-I-1B, (e) PSW-I-2A and (f) PSW-I-2B. Vectors indicate velocity direction.
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(Fig. 9(a)) CSW-P, (Fig. 9(b)) PSW-A, and (Fig. 9(c)–(f)) the four
isotropic porosity models. CSW-P predicts a zone of elevated water
(region colored green, yellow and red) that approximates a trian-
gular shape, and this shape is retained fairly well by PSW-A, but
not as well by the isotropic models. The isotropic models predict
a more rounded shape which reflects a lack of directionality. Focus-
ing on the bow shock in front of the obstructions, the CSW-P and
PSW-A predict a laterally distorted shape, while the isotropic mod-
els predict a more rounded shape, again reflecting a lack of
directionality.

Fig. 10 shows the flood depth distribution for the h0 = 0.30 m
case at four successive times along the transects through the
block zone labeled B–B0 in Fig. 1(c), as depicted by point-scale
measurements, CSW, CSW-P, and the porosity models. CSW,
CSW-P and PSW-A show the formation of a bow shock 1 m from
the dam and immediately upstream of the first block, and an
adverse free surface slope upstream of the second and third block
from the dam. On the other hand, the isotropic porosity models
fail to capture this depth variability and instead predict a relative-
ly smooth variation of the flood depth through the block zone.
This is a result of using a uniform porosity value through the
region of obstacles, and consistent with the design of isotropic
models to predict flow properties at the REV scale which is con-
siderably larger than the pore scale. Figs. 9 and 10 also reveal
insight into the sensitivity of isotropic porosity models to the por-
osity value. Generally, with a decrease in the porosity value, the
height of the bow shock increases and it shifts forwards towards
the dam.
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Fig. 10. Profile of flood depth after dam-break for h0 = 0.30 m at B–B0 in Fig. 1(c).
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4. Discussion

The preceding results show that porosity model errors may be
significantly larger than scale errors which pose an opportunity
for improved porosity models. The margin for improvement of
the anisotropic model relative to flood depths is small, but the
potential for improvement of the velocity predictions is greater
and motivates improved models of flow resistance, possibly allow-
ing for more spatial variability in parameters, or even fundamen-
tally new approaches or more advanced calibration procedures.
However, research directed at improving porosity model formula-
tions should be mindful of structural model errors. Based on the
data presented here, the anisotropic model is equally accurate as
the point-scale classical shallow-water model relative to flood
depth prediction, so further reduction in porosity model errors
cannot be expected to reduce total errors. Broadly, porosity models
cannot be expected to predict flood depths any more accurately
than the pore-scale average of the foundational flow model, in this
case the classical shallow-water equations.

There is pressing need for urban flood inundation models that
can be efficiently and accurately applied over practical scales such
as a city or regional flood plain, and these results and previous
studies (Yu and Lane, 2005; McMillan and Brasington, 2007;
Soares-Frazão and Zech, 2008; Sanders et al., 2008; Guinot, 2012)
reveal great potential for porosity models to address this need.
But aside from accuracy, a critical question to address is whether
any of the porosity models can be more easily parameterized and
validated in practical applications. High quality site data is often
available for flood modeling studies but calibration data is rare,
so there is a need for flood models with parameters that can be
estimated deterministically and relied upon to make accurate pre-
dictions. This further supports use of the anisotropic model
because porosity parameters are a deterministic function of the
flow obstructions (Sanders et al., 2008; Schubert and Sanders,
2012), in contrast with the isotropic model. However, calibration
data may still be needed to estimate porosity model drag para-
meters for the anisotropic model (Schubert and Sanders, 2012,
e.g.,). In the less common scenario where high quality site data
are not available to guide the porosity specification, but calibration
data exists, the isotropic model may be preferred as the porosity
value itself can be used as a calibration parameter.
5. Conclusions

Urban flood models based on porous shallow-water equations
predict flood depths and velocities with three types of errors: (a)
structural model errors associated with the limitations of the 2D
shallow-water equations (e.g., hydrostatic pressure, vertical uni-
form velocity distributions), (b) scale errors associated with use
of a relatively coarse, pore-scale grid comparable to the spacing
between buildings, and (c) porosity model errors related to the
treatment of sub-grid scale obstructions. Results from a unique test
case with anisotropy in the porosity distribution, as in practical
applications, show that porosity model errors are mostly greater
than scale errors but less than structural model errors, although
in one test case the porosity model error of the anisotropic model
was slightly less than the scale error. Results also show that poros-
ity model errors in depth and velocity are significantly smaller
with an anisotropic porosity model compared to isotropic models,
and that the anisotropic porosity model is equally accurate as a
fine grid shallow-water model, based on the total error. Recogniz-
ing that all porosity models reduce run times by a factor of nearly a
thousand compared with the classical shallow-water models, the
anisotropic porosity model stands out as the most efficient
approach for pore-scale modeling based on both accuracy and
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computational demands. Additionally, the anisotropic porosity
model resolves flow variability at finer scales than isotropic models
because the latter are constrained to scales larger than the REV.

Results show that significant differences may exist between
pore-scale and point-scale flood conditions in close proximity to
flow obstructions, for example due to wave reflections and wakes,
so porosity model flood predictions should be used cautiously to
inform point-scale flood risk decision-making, such as whether
flood depths will rise above the threshold of a building door in a
city. However, results validate the utility of porosity models for
mapping pore-scale flood depths representative of average condi-
tions across a roadway.

Further research into porosity models should be directed at
reducing porosity model errors in velocity, for example with
improved drag parameterizations, while remaining mindful of
limitations posed by structural model errors. Finally, the cell aver-
aging of fine-scale classical shallow-water model predictions is
shown to enable a direct measure of porosity model error which
is effective at gaging the merits of alternative porosity model for-
mulations with respect to both flood depth and velocity prediction.
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