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ABSTRACT
Structural discovery among a set of variables is of interest in both static and dynamic settings. In the
presence of lead-lag dependencies in the data, the dynamics of the system can be represented through
a structural equation model (SEM) that simultaneously captures the contemporaneous and temporal
relationships amongst the variables, with the former encoded through a directed acyclic graph (DAG)
for model identification. In many real applications, a partial ordering amongst the nodes of the DAG is
available, which makes it either beneficial or imperative to incorporate it as a constraint in the problem
formulation. This article develops an algorithm that can seamlessly incorporate a priori partial ordering infor-
mation for solving a linear SEM (also known as Structural Vector Autoregression) under a high-dimensional
setting. The proposed algorithm is provably convergent to a stationary point, and exhibits competitive
performance on both synthetic and real datasets. Supplementary materials for this article are available
online.
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1. Introduction

Learning the interactions among a set of time series is a
topic of interest and pertinent to applications in economics,
functional genomics, neuroscience, environmental sciences and
social media analysis (see, e.g., recent review papers by Runge
et al. 2019; Vowels, Camgoz, and Bowden 2022 and references
therein). Dynamic Bayesian Networks (DBN) capture condi-
tional dependence relationships among a set of variables evolv-
ing over time and hence constitute a natural modeling frame-
work for this task (Ghahramani 1997). They extend the notion
of static graphical models over a set of variables as a function of
time, wherein the structural relationships are encoded through
a directed acyclic graph (DAG), and the temporal relationships
are captured through lag dynamics. The problem of learning the
parameters of DBNs from data has received significant atten-
tion in the literature; for example, see Scanagatta, Salmerón,
and Stella (2019) and references therein. Further, when the
relationships and dynamics are assumed to be linear, DBN
can be expressed as a structural Vector Autoregressive (SVAR)
model (see also (1)), that has been studied in the economet-
rics literature (Lütkepohl 2005; Kilian and Lütkepohl 2017).
However, the focus in the latter line of work has been on a
small set of variables, whereas new application areas typically
involve a large number of time series (i.e., of high dimension).
Note that although the linearity assumption may occasionally
be somewhat restrictive, linear models remain relevant and
appealing in many real-world settings, due to its interpretabil-
ity and parsimonious representation when used as a working
model.

CONTACT George Michailidis gmichail@umich.edu Department of Statistics & Data Science, University of California, Los Angeles, CA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

In many applications, selected prior information is available
for the structural relationships among variables. For example, in
functional genomics there are known transcription factors that
act only as regulators of other genes; analogous information is
available for certain macroeconomic indicators, corresponding
to the fact that as a group they cannot be descendent nodes
to some other ones in a DAG. Therefore, it is important to
incorporate such prior information in learning algorithms for
the purpose of structural discovery.

In this work, we develop an algorithm for estimating the
parameters of large-scale SVAR models, which can incorporate
the partial ordering information in a seamless way.

1.1. Related Work

We provide a brief review on existing approaches in the literature
for learning the parameters of SVAR models. The key issue on
the identifiability of its model parameters and the challenges it
poses is presented in Section 2.

Estimation of SVAR. Classical work largely lies in the econo-
metrics domain where methods have been developed primar-
ily for fixed dimension SVAR models; for example, Fry and
Pagan (2011), Stock and Watson (2016), and Kilian and Lütke-
pohl (2017) and references therein. These methods ubiquitously
start from the reduced VAR representation (see also (2)), then
recover the structural parameter by imposing restrictions on
the error covariance structure to achieve model identification.
Recent developments on the topic amount to considering the

© 2024 American Statistical Association and Institute of Mathematical Statistics
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structural component that captures variables’ contemporaneous
inter-dependencies as a DAG and perform “causal” search or
estimation. To that end, recent SVAR estimation methods are
largely an extension of their respective DAG estimation coun-
terparts, by considering a formulation that additionally incor-
porates the lag terms. Estimation is done by either jointly con-
sidering the structural and the lag components or through a two-
stage procedure that relies on residuals from the projection onto
the lag space; for example, Hyvärinen et al. (2010), Moneta et al.
(2011), Malinsky and Spirtes (2018), and Pamfil et al. (2020).
Some of these approaches can be extended to high dimensions.

Estimation of DAGs. In light of the close connection between
the SVAR and DAG problems, we briefly review approaches in
estimating the latter next. There are three lines of work around
this task: the first and most general one—in the absence of any
additional prior information—include approaches that leverage
greedy search algorithms over the space of the DAGs (Chicker-
ing 2002; Tsamardinos, Brown, and Aliferis 2006), those that rely
on conditional independence tests (Spirtes et al. 2000; Kalisch
and Bühlman 2007) or likelihood-based ones (Van de Geer
and Bühlmann 2013; Aragam and Zhou 2015). Note that the
computational complexity of estimating a DAG from observa-
tional data is superexponential in the number of nodes/variables
(Robinson 1977) and thus many of them are greedy in nature
and do not scale well even for moderate size problems involving
20–50 variables. More recently, optimization-based approaches
(Zheng et al. 2018) and nonlinear ones relying on neural net-
works have also been considered (Yu et al. 2019; Lachapelle
et al. 2019). The second and rather restrictive approach, is that
a total topological ordering for the nodes in the DAG G is known
either from the literature or extensive experimental work on
related settings (see, e.g., discussion in Markowetz (2010) for
applications in functional genomics, and Rahman et al. (2023)
for an application in agriculture). The problem effectively boils
down to estimating whether an edge is present as all potential
parent nodes are known (Shojaie and Michailidis 2010). The
third and least explored category is to have limited information
on the structural relationships among the variables in the form of
a partial ordering of the underlying nodes inG; such information
is available in a variety of applications and two examples are
given in Section 5. The notion of partial ordering will be formally
defined in Section 2.

In Reisach, Seiler, and Weichwald (2021), the authors report
that the performance of DAG estimation using continuous
structural learning methods (or equivalently, optimization-
based approaches; for example, NOTEARS (Zheng et al. 2018))
can be sensitive to the data scale as measured by the concept
of “varsortability” introduced in that paper; specifically, these
methods may face issues in the absence of high varsortability
(i.e., when the marginal variance of the data is informative of
the topological ordering). Given that selected recent methods
for time-series data are built upon their DAG estimation coun-
terparts (e.g., Dynotears (Pamfil et al. 2020) as an extension to
NOTEARS), such susceptibility permeates. On the other hand,
data in real-world applications may not possess strong var-
sortability, which may render estimates based on such methods
unreliable.

Contribution. The main challenges in estimating high-
dimensional SVAR models include identification of the model
parameters and developing efficient algorithms for large-
scale models. To this end, the key contribution of this article
is the development of a scalable and provably convergent
algorithm to estimate the parameters of a SVAR model in a
high dimensional regime. Additionally, the devised algorithm
can seamlessly incorporate prior partial ordering information
in the optimization problem formulation. Finally, note that
despite being an optimization-based approach, the algorithm
in this work does not face the same issue and is robust to data
normalization. See in-depth discussion in Appendix D.2.

The remainder of the article is organized as follows: Section 2
gives the problem statement and discusses several key issues
pertaining to the model in question, namely stability and model
parameter identifiability. We present the proposed algorithm
and briefly discuss its convergence property in Section 3, and
assess its performance on synthetic and real datasets in Sec-
tions 4 and 5, respectively.

2. Problem Statement

Consider a system of p variables Xt := (Xt,1, . . . , Xt,p)� for
which observations over time are collected. The dynamics of
Xt ∈ R

p are assumed to be in accordance with the following
SVAR with lag dynamics:

Xt = μ + AXt + B1Xt−1 + · · · + BdXt−d + εt , (1)

wherein A ∈ R
p×p captures the structural relationships among

the p variables, and Bj (j = 1, . . . , d) the “lead-lag” ones. It
is further assumed that the error process εt is independent
and identically distributed across time points with mean zero
and diagonal covariance matrix �ε . In practical applications, Xt
usually has a nonzero mean and hence the SVAR model in (1)
would include an intercept term that can be estimated from the
data (see also Lütkepohl 2005). Without loss of generality, we
assume Xt is mean-zero and omit the intercept term μ ∈ R

p

in (1) in the remainder of this article.
Next, we briefly elaborate on the issue of stability of the Xt

process and the identifiability of the model parameters, and also
discuss how prior information on the structural relationships
between the X variables can be accommodated.

Stability of the process. The SVAR model can be equivalently
represented through a reduced VAR(1) process as follows

Xt = �Xt−1 + vt , (2)

where Xt := [X�
t , X�

t−1, . . . , X�
t−d+1]� ∈ R

dp, vt :=
[u�

t , 0�, . . . , 0�]� with ut := (Ip − A)−1εt ; � is the transition
matrix in the companion form, given by

� :=

⎡
⎢⎢⎣

(Ip−A)−1B1 ··· (Ip−A)−1Bd−1 (Ip−A)−1Bd
Ip ··· O O
...

. . .
...

...
O ··· Ip O

⎤
⎥⎥⎦ ∈ R

dp×dp. (3)

A reduced VAR process is stable if det(Idp − �z) �= 0, for
z ≤ 1 (Lütkepohl 2005). Based on standard results for reduced
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VAR processes (Basu and Michailidis 2015), for {Xt} to be stable
(stationary), a sufficient condition is given by �(�) < 1, with
�(·) denoting the spectral radius of a square matrix. Note that to
obtain valid estimates of model parameters in (2) one requires Xt
to be stable (Hamilton 2020); hence, the ensuing discussion on
identifiability of model parameters is confined to such processes.

Identifiability of model parameters. The identification of
model parameters (A, B1, . . . , Bd) of the SVAR model is a key
issue that has been extensively discussed in the literature. In par-
ticular, the difficulty stems from the contemporaneous depen-
dency among the variables, as encoded by A, which requires at
least p(p + 1)/2 restrictions for it to be recovered if one starts
from a reduced VAR representation. In this work, we assume
that A corresponds to the adjacency matrix of a directed acyclic
graph (DAG), which is equivalent to the existence of some
permutation(s) π of the rows of A, such that π(A) is a lower
triangular matrix. Note that a restricted version of this assump-
tion, namely imposing an a priori lower triangular structure to
A based on domain knowledge considerations, has been used in
the econometrics literature for identification of fixed dimension
SVAR models (Stock and Watson 2016; Kilian and Lütkepohl
2017).

On the other hand, in the absence of temporal dependence, a
linear SEM of the form X = AX + ε, X ∈ R

p where A encodes
the underlying DAG GA, is not necessarily identifiable. The joint
distribution P(X) of the observed variables is fully determined
through the product distribution of the error variable P(ε) and
GA; conversely, however, the DAGs that give rise to the same
P(X) are not unique (Spirtes et al. 2000). In other words, mul-
tiple GA’s can be compatible with P(X) and thus the parameter
A is not uniquely identifiable from observational data without
additional assumptions. For the purpose of identifiability, the
following assumptions on the error distribution P(ε) have been
considered in the literature: (a) the distribution is non-Gaussian
(Shimizu et al. 2006); (b) the distribution is Gaussian with equal
variance across its coordinates (Peters and Bühlmann 2014); and
(c) the distribution is Gaussian with unequal variances that are
weakly monotonically increasing in the true ordering π implied
by the DAG GA (Park 2020).

In summary, in this work, the identification scheme adopted
for the parameters of the SVAR model in (1) encompasses the
following assumptions: (a) A is the adjacency matrix of a DAG,
and (b) any of the above-mentioned three conditions on the
distribution of the error P(εt) hold.

Prior information and partial ordering. As mentioned in Sec-
tion 1, in this work, the incorporation of prior information into
the estimation procedure is enabled, with the former in the
form of partial ordering. Formally, consider a (time-invariant)
partition of the nodes Xt,1, . . . , Xt,p into disjoint sets V1, . . . ,VQ,
with V1 ≺ V2 ≺ · · · ≺ VQ, with ≺ denoting a precedence
relationship, that is, there cannot be an edge Xt,i → Xt,j for
i ∈ Vq, j ∈ Vq′ , q′ < q. However, the intra-dependency or
ordering of the variables within a set Vq, ∀ q is not known and
needs to be inferred from the data. In the extreme case where no
prior information is available, the partition becomes trivial and
all nodes effectively fall into one set.

3. A Provably Convergent Estimation Procedure

For ease of exposition, in this section, we consider the special
case where d = 1 and let B ≡ B1; the case where d > 1 can
be readily derived by stacking the lags and transition matrices
which then gives the lag-1 representation (see representation in
(2) and (3)).

To obtain estimates for model parameters A and B, let Xn ∈
R

n×p denote the sample matrix with observations {x1, . . . , xn}
stack in the rows of Xn; Xn−1 is analogously defined. The loss
function is �(A, B; Xn, Xn−1) := 1

2n‖Xn − XnA� − Xn−1B�‖2
F,

and the optimization problem based on the �2 loss is formulated
as

(Â, B̂) := argmin
A,B

{
�(A, B; Xn, Xn−1) + μA‖A‖1 + μB‖B‖1

}
,

subject to A being acyclic,
(4)

with the additional �1-norm regularization terms inducing spar-
sity. In the presence of a partial ordering on A (prior informa-
tion), the search space of A can be represented as

PA := {
A ∈ R

p×p : Aij = 0 for (i, j) ∈ I × J
}

, where

I × J ⊆ {1, . . . , p} × {1, . . . , p};

Aij = 0 ⇔ j /∈ pa(i), that is, node j cannot be a parent of node
i in the DAG representation. In the extreme case, I × J can be
a null set, corresponding to the case where no prior information
is available. As it can be seen later, our proposed algorithm can
readily consume such partial ordering information and perform
estimation in the restricted subspace PA ⊆ R

p×p.

3.1. The Proposed Algorithm

To solve (4), we leverage the results in Yuan et al. (2019), where
acyclicity can be enforced through polyhedral constraints and
the formulation can be solved via difference-convex (DC) pro-
gramming and the augmented Lagrangian method of multipliers
(ADMM). Concretely, Theorem 1 in Yuan et al. (2019) states that
A is acyclic, if and only if the following p3 − p2 constraints are
satisfied for some λ = [λij] ∈ R

p×p:

λik + I(j �= k) − λjk ≥ I(Aij �= 0);
i, j, k = 1, . . . , p, i �= j. (5)

Together with the partial ordering information, by considering
the truncated �1-function Jτ (z) := min(

|z|
τ

, 1), τ → 0 as
a surrogate for the indicator function, and introducing ξ =
[ξijk] ∈ R

p×p×p, ξijk ≥ 0 that translate inequality constraints
to equality ones, the optimization problem can be written as

min
A,B,λ

{
�(A, B; Xn, Xn−1) + μA‖A‖1 + μB‖B‖1

}
,

subject to λik + I(j �= k) − λjk = Jτ (Aij) + ξijk,
A ∈ PA, ξijk ≥ 0; i, j, k = 1, . . . , p, i �= j.

(6)

Note that in the case where Aij = 0 is a priori enforced, the
corresponding constraint in (5) can be simplified to λik + I(j �=
k)−λjk = ξijk, which effectively is a relaxation to the right hand
side for (i, j). This is conceptually compatible with the nature
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Algorithm 1: Solving for (6) via alternate update between (A, B, λ) and w.
Input: Data matrices Xn, Xn−1; search space PA; and hyperparameters μA, μB and τ

1 while not converging do
2 • w-update: update w according to wij ← I(|Aij| < τ);
3 • (A, B, λ)-update: update (A, B, λ) by solving for (7) with a fixed w via ADMM outlined in Algorithm 2.

minA,B,λ {�(A, B; Xn, Xn−1) + μA‖A‖1 + μB‖B‖1},
subject to τλik + τ I(j �= k) − τλjk = |Aij|wij + τ(1 − wij) + ξijk,

A ∈ PA, ξijk ≥ 0; i, j, k = 1, . . . , p, i �= j.
(7)

4 end
Output: Estimated Â and B̂.

of the acyclic constraint, that with Aij = 0, the graph could
potentially accommodate other edges to be nonzero while still
remains acyclic. Similar to Yuan et al. (2019), the formulation
in (6) can be solved iteratively leveraging the decomposition
Jτ (z) = |z|/τ − max{|z|/τ − 1, 0} and the aid of an indicator
matrix w ∈ R

p×p, whose coordinates are given by wij :=
I(|Aij| < τ), as outlined in Algorithm 1.

Next, we briefly outline the steps for the (A, B, λ)-update.
To handle the non-differentiable parts of the objective function
in (7), we introduce Ã and B̃, and the augmented Lagrangian
function can be written as follows for some scaled variable
ρ > 0:

Lρ(A, Ã, B,̃B, λ, ξ ; UA, UB, y) (8)
:= �(A, B; Xn, Xn−1) + μA‖Ã‖1 + μB‖̃B‖1

+ ρ

2
‖A − Ã‖2

F + ρ〈A − Ã, UA〉 + ρ

2
‖B − B̃‖2

F

+ ρ〈B − B̃, UB〉 + T1 + T2,

with

T1 := ρ

2
∑

k

∑
i �=j

(
|Ãij|wij + τ(1 − wij) + ξijk − τλik

− τ I(j �= k) + τλjk
)2

,

T2 := ρ
∑

k

∑
i �=j

yijk
(
|Ãij|wij + τ(1 − wij) + ξijk − τλik

− τ I(j �= k) + τλjk
)

;

UA, UB, y are dual variable matrices/tensors. One proceeds
with primal descent on (A, Ã, B, B̃, λ, ξ) and dual ascent on
(UA, UB, y) as outlined in Algorithm 2; see Appendix A.1 for
the exact update of each step. It is worth noting that given the
specific form of the augmented Lagrangian, all primal updates
possess closed-form minimizers, which empirically aids in fast
and stable convergence of the cyclic block-updates.

To conclude this section, we briefly comment on how the
partial ordering information is incorporated through block
updates. First, note that by introducing Ã that separates the
non-differentiable part of A, after some algebra, the update of
A (while holding Ã, UA, B fixed) can be written as

A ← arg min
A∈PA

trace
{1

2
A
[
(

1
n

X�
n Xn) + ρIp

]
A�

− [
(

1
n

V�
n Xn) + ρ(Ã − UA)

]
A�}

,

where Vn := Xn − Xn−1B�. The update is separable for each
row of A; additionally, the prior partial ordering information—
in the form of restricting the skeleton indices of each row of A to
a subset of {1, . . . , p}—becomes equivalent to considering only
the corresponding column sub-space of the design matrix.

3.2. Convergence Analysis

We provide a brief discussion on the convergence property of the
proposed algorithm, while deferring all lemmas and their proofs
to Appendix B.

Note that the w-update step is straightforward, which effec-
tively boils down to obtaining the complement of the support
of the estimated A at each iteration. The ensuing analysis estab-
lishes convergence properties of Algorithm 2.

Denote by � := (A, Ã, B, B̃, λ, ξ) and  := (UA, UB, y) the
collection of primal and dual variables, respectively.

Proposition 1. Consider a sequence of iterates (�(s), (s)) gener-
ated by Algorithm 2, indexed by s. Then, the sequence converges
to a stationary point of the augmented Lagrangian function (8)
for any initial point (�(0), (0)).

We provide some insights on the critical steps required to
achieve convergence. The first is a “sufficient descent prop-
erty”; namely, one needs to find a positive constant η so that
two successive iterates of the primal and dual variables sat-
isfy η‖(�(s+1), (s+1)) − (�(s), (s))‖2

F ≤ Lρ(�(s), (s)) −
Lρ(�(s+1), (s+1)), s = 0, 1, . . .. This is established in Lemma
3. The second is a subgradient lower bound for the gap between
successive iterates; namely, there exists another positive con-
stant γ such that any element C(s) in the subdifferential of
Lρ(�(s), (s)) satisfies ‖C(s+1)‖2

F ≤ γ ‖(�s+1), (s+1)) −
(�(s), (s))‖2

F. This is established in Lemma 5 with the aid of
Lemma 4. Note that these two requirements are satisfied by
most “good” descent algorithms. Further, when the above two
properties hold, then the accumulation points of any algorithm
is a non-empty, compact and connected set (see Remark 5 in
Bolte, Sabach, and Teboulle 2014). However, the existence of η, γ
depends on the structure of the specific algorithm used; the results
in Lemmas 2 and 5 show how to obtain them given the structure
and updates of the developed multi-block ADMM in Algo-
rithm 2. The last requirement to establish global-convergence-
to-a-critical-point of Lρ(·) does not depend on the structure of
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Algorithm 2: Update (A, B, λ) via multi-block ADMM: a schematic outline
Input: Data matrices Xn, Xn−1; search space PA; fixed w; hyperparameters μA, μB, τ and ρ

1 while not converging do
2 (Primal descent)
3 • cyclic update on blocks A, Ã, B, B̃, λ, ξ by minimizing (8) w.r.t. the block of interest;
4 (Dual ascent)
5 • UA-update: U(s)

A ← U(s−1)
A + (A(s) − Ã(s))

6 • UB-update: U(s)
B ← U(s−1)

B + (B(s) − B̃(s))

7 • y-update: y(s)
ijk ← y(s−1)

ijk + (|Ã(s)
ij |wij + τ(1 − wij) + ξ

(s)
ijk − τλ

(s)
ik − τ I(j �= k) + τλ

(s)
jk )

8 end
Output: Solution Â and B̂ to (8)

the algorithm used, but on the type of function Lρ(·). To that
end, Lemma 1 shows that the augmented Lagrangian satisfies the
Kurdyka-Łojasiewicz property (Kurdyka 1998), which aids in
establishing that the sequence of iterates (�(s), (s)) generated
by Algorithm 2 is a Cauchy sequence.

Proof of Proposition 1. Based on the results of Lemmas 4 and 5,
we have that (�(s), (s)) is a bounded sequence and the set
of limit points of (�(s), (s)) when initialized at (�(0), (0))

is non-empty, respectively. Further, existing results in the
literature—in particular, Lemma 5 and Remark 5 in Bolte,
Sabach, and Teboulle (2014)—ensure the compactness of the set
of limit points of the sequence (�(s), (s)), when the latter is ini-
tialized at (�(0), (0)). The remainder of the proof follows along
the lines of Theorem 1 in Bolte, Sabach, and Teboulle (2014)
by using the Kurdyka-Łojasiewicz property of the augmented
Lagrangian function, as established in Lemma 1.

Remark 1. The class of functions that satisfy the Kurduka-
Łojasiewicz property is remarkably large and includes many loss
functions, regularization terms, as well as polyhedral constraints
used in machine learning tasks. Further, the proof strategy
is applicable to many algorithms. In this article, we provide
the details for a multi-block ADMM algorithm for the non-
convex, non-smooth problem arising from the SVAR problem
formulation under consideration. Note that such algorithms are
used in many other machine learning problems sharing similar
features and hence the proof is of general interest. Finally, note
that the proposed algorithm exhibits global convergence to a
critical point, that is, such convergence is independent of the
algorithm’s initialization, which is an attractive feature in prac-
tical applications.

Empirically, the proposed algorithm exhibits stable conver-
gence; the alternating update between w and (A, B, λ) usu-
ally converges within 10 iterations; the (A, B, λ)-update step
that relies on ADMM typically converges within 100 iterations,
although during the very first round of the outer update, it often
requires more.

Remark 2. Yuan et al. (2019) provide a brief proof for the
ADMM-based algorithm developed for reconstructing DAG
from iid data. Specifically, the proof assumes that the augmented

Lagrangian function is strongly convex and appeals to a result
in Boyd et al. (2011) to establish convergence of the algorithm.
However, note that the augmented Lagrangian function is not
strongly convex; additionally, the result in Boyd et al. (2011) only
holds for a two-block ADMM algorithm, rather than the multi-
block updates used in Yuan et al. (2019) and the current work.
Indeed, establishing convergence for multi-block ADMM even
for convex functions was challenging and remained open for
awhile, as attested in Chen et al. (2016). In this work, the proof
of Proposition 1 takes a different route and leverages a road map
outlined in Bolte, Sabach, and Teboulle (2014) that establishes
the convergence of “descent-type algorithms” and only requires
the Kurdyka-Łojasiewicz property of the augmented Lagrangian
function, which is significantly weaker.

4. Synthetic Data Experiments

We evaluate the performance of the proposed algorithm and the
effectiveness of incorporating the partial ordering information
as priors in the estimation through a series of synthetic data
experiments.

Settings. The data are generated according to an SVAR model
with d = 2 lags, that is,

Xt = AXt + B1Xt−1 + B2Xt−2 + εt , (9)
where E(εt) = 0, �ε := cov(εt) = diag

(
σ 1

1 , . . . , σ 2
p
)
;

coordinates of the noise component are independent and poten-
tially heteroscedastic, depending on the distribution from which
it is drawn. We consider cases where the system consists of 100
variables, with the structural parameter A exhibiting varying
degree of sparsity and the noise component εt drawn from
different distributions; see Table 1. 1

Note that to ensure the stability of the process, the spectral
radius � of the companion matrix for the corresponding reduced

1Recall that as discussed in Section 2, different sets of assumptions have been
provided in the literature to guarantee the identifiability of the underlying
DAG in the SVAR model. In our experiment setup, we consider settings
where the error distribution is either Gaussian with unequal variances that
are weakly monotonically increasing (Park 2020), or non-Gaussian Shimizu
et al. (2006); as such, they respectively satisfy assumptions (3) and (1) in the
aforementioned discussion.
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Table 1. Parameter setup for synthetic data experiments.

setting id p sA (lA , uA) sB1 sB2 (lB , uB) σi noise dist

S1 100 0.05 (0.25, 0.9) 0.05 0.02 (1, 3) Unif[0.8, 2] Gaussian
S2 100 0.10 (0.25, 0.7) 0.05 0.02 (1, 3) Unif[0.8, 2] Gaussian
S3 100 0.05 (0.25, 0.9) 0.05 0.02 (1, 3) 1 Laplace
S4 100 0.10 (0.25, 0.7) 0.05 0.02 (1, 3) 1 Laplace
S5 100 0.05 (0.25, 0.9) 0.05 0.02 (1, 3) 1 Student’s-t (df=4)
S6 100 0.10 (0.25, 0.7) 0.05 0.02 (1, 3) 1 Student’s-t (df=4)

NOTE: s· denotes the sparsity level of the corresponding parameter; (l· , u·) corresponds to the lower and upper bounds of the (initial) draws of the signals; σi corresponds
to the standard deviation of the coordinates of the noise component.

VAR, that is,

�(A, B1, B2) :=
[
(Ip − A)−1B1 (Ip − A)−1B2

Ip O

]

needs to be strictly less than 1 (see also Section 2); to achieve
this, we proceed as in the following steps:

1. For transition matrices B1 and B2, their skeletons are
determined by independent draws from Bernoulli(sB1) and
Bernoulli(sB2), respectively; nonzero entries are first drawn
from ±Unif(lB, uB), then scaled such that �

(
�(O, B1, B2)

) =
0.52, where �(O, B1, B2) corresponds to the companion
matrix of the reduced VAR if one ignores the structural
component.

2. For the structural parameter A, to obtain its skeleton subject
to the acyclic constraint, each entry in the lower diagonal is
drawn independently from Bernoulli(sA); nonzero entries are
then drawn from ±Unif(lA, uA).

3. Repeat Steps 1 and 2 if �
(
�(A, B1, B2)

)
< 1 is not satisfied.

In practice, the above procedure gives a set of parameters that
yield �(�(A, B1, B2)) ≈ 0.95 within a few trials. A smaller
spectral radius can be attained, if one further reduces the signal
strength. Once model parameters are generated, we generate
{Xt} according to (9); the εt ’s are either Gaussian (S1, S2) or
Laplace distributed (S3, S4): in the former case, the σi’s for each
coordinate i = 1, . . . , p are drawn from Unif(0.8, 2) then sorted
according to the topological ordering of the nodes as dictated
by A; in the latter case, σi ≡ 1 . In settings S5 and S6, we addi-
tionally consider the case where the noise are generated from
t-distribution, to test the robustness of the proposed method in
the presence of heavy tails.

For all settings, we run the proposed algorithm on data
with sample sizes n = 50, 100, 200 and a varying level of
available prior information provided through a partial ordering
constraint, that is, 10%, 20%, 50% of the complement of the
support set, that is, {(i, j) : Aij = 0; (i, j) ∈ {1, . . . , p} ×
{1, . . . , p}}. Note that the case with n = 50 is a rather challenging
setting: considering the number of parameters to be estimated,
the estimation is “under-powered”.

Remark 3. We briefly comment on the sparsity level adopted in
the experiment settings. Consider a limiting case where a total
topological ordering of the nodes is known a priori; the DAG
learning problem reduces to selecting the parent node set by

2Here we set 0.5 as the target spectral radius; however, it typically cannot be
attained exactly except for VAR(1).

using sparse regression techniques (Reisach, Seiler, and Weich-
wald 2021). For iid data, under high dimensional scaling, the
sparsity level allowed for consistent estimation of the skeleton
is s ∼ o

( n
log(p2)

)
. Further, in the SVAR setting where the data

exhibit temporal dependence, the sparsity level is impacted by an
additional κ factor that quantifies the temporal dependence, that
is: s ∼ o

( n
κ2 log(p2)

)
, where κ = M

m > 1 with M and m denoting
the maximum and minimum eigenvalues of the spectral density
of the time series data under consideration, respectively (see,
e.g., Basu and Michailidis 2015, for sub-Gaussian errors). Based
on the above, the sparsity considered in the above settings
is fairly high, even if a total topological ordering were given.
In our experiments, at most some partial topological ordering
information is available; consequently, the permissible level of
sparsity further reduces when compared to the limiting case.

Performance evaluation. We focus assessment on the struc-
tural component A, and specifically on skeleton recovery across
different model settings, sample sizes and percentage of prior
information provided, as shown in Table 2. Results on the lag-
components B and the overall goodness of fit of the algorithm
are provided in Appendix D.3. In particular, to understand the
impact of incorporating prior information, we report the True
Positive Rate (TP, or recall, equivalently) and True Negative Rate
(TN, or 1−false positive rate, equivalently) for support recovery
over different sample sizes and prior setups. {00, 10, 20, 50} cor-
respond to varying level of partial ordering information—from
no prior (00) to 50% (50) of the non-support—given as a prior
constraint. Based on the results in Table 2, the main findings are
3-fold: (a) despite similar setups for all other model parameters,
model performance is superior in the case where the noise
distribution is Laplace/Student’s-t compared to Gaussian with
monotonically increasing variances, provided that the estima-
tion is moderately powered (e.g., n = 100, 200), as manifested
by a higher detection of the true skeleton (i.e., true positive
rate) without compromising the true negatives; (b) Although
the prior partial ordering information is in the form of zero-
constraints, it imposes restrictions on the search space of the
skeleton and is integrated throughout the estimation process;
therefore, the benefit of incorporating prior information is not
limited to ruling out false positives, but it can also promote dis-
covery. (c) As one would expect, the estimation becomes more
challenging as the graph becomes more dense, as manifested by
significantly lower true positive rate, especially for low sample
size settings (n = 50, 100). Finally, note that the methodology
is robust to the presence of heavy tails, as manifested by the
overall comparable performance across settings with different
noise distributions, provided all else held identical.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

Table 2. Evaluation for Â obtained using our proposed method: Results are based on the median of 10 replicates, with the standard deviation of the corresponding metric
reported in parentheses.

00 10 20 50

n TP TN TP TN TP TN TP TN

S1 50 0.69(0.040) 0.79(0.006) 0.69(0.051) 0.81(0.006) 0.65(0.042) 0.82(0.005) 0.80(0.030) 0.85(0.006)
100 0.78(0.020) 0.85(0.004) 0.78(0.020) 0.87(0.004) 0.77(0.030) 0.88(0.005) 0.86(0.025) 0.91(0.006)
200 0.88(0.018) 0.88(0.005) 0.87(0.017) 0.89(0.006) 0.87(0.017) 0.90(0.006) 0.95(0.014) 0.93(0.006)

S2 50 0.56(0.056) 0.72(0.004) 0.53(0.059) 0.74(0.003) 0.56(0.035) 0.76(0.003) 0.73(0.031) 0.77(0.009)
100 0.73(0.046) 0.74(0.011) 0.71(0.031) 0.76(0.007) 0.73(0.030) 0.78(0.013) 0.84(0.026) 0.81(0.009)
200 0.84(0.014) 0.83(0.004) 0.83(0.015) 0.84(0.005) 0.84(0.015) 0.86(0.003) 0.93(0.011) 0.89(0.006)

S3 50 0.69(0.035) 0.84(0.007) 0.69(0.041) 0.86(0.006) 0.70(0.026) 0.87(0.005) 0.83(0.031) 0.89(0.005)
100 0.84(0.015) 0.86(0.005) 0.84(0.017) 0.88(0.005) 0.83(0.020) 0.89(0.004) 0.93(0.020) 0.91(0.005)
200 0.91(0.011) 0.91(0.002) 0.91(0.012) 0.92(0.002) 0.92(0.012) 0.92(0.003) 0.98(0.008) 0.95(0.004)

S4 50 0.61(0.067) 0.79(0.012) 0.53(0.043) 0.80(0.008) 0.52(0.031) 0.81(0.005) 0.73(0.041) 0.84(0.005)
100 0.77(0.044) 0.78(0.014) 0.77(0.036) 0.79(0.009) 0.77(0.031) 0.81(0.007) 0.88(0.032) 0.83(0.009)
200 0.85(0.014) 0.84(0.006) 0.86(0.009) 0.85(0.004) 0.87(0.010) 0.86(0.005) 0.95(0.010) 0.90(0.007)

S5 50 0.68(0.034) 0.86(0.004) 0.69(0.029) 0.87(0.005) 0.69(0.033) 0.88(0.005) 0.76(0.033) 0.90(0.006)
100 0.85(0.044) 0.84(0.008) 0.86(0.044) 0.85(0.006) 0.86(0.035) 0.86(0.004) 0.91(0.021) 0.89(0.006)
200 0.89(0.012) 0.86(0.007) 0.89(0.012) 0.87(0.005) 0.89(0.017) 0.88(0.005) 0.97(0.010) 0.91(0.003)

S6 50 0.61(0.042) 0.76(0.005) 0.60(0.045) 0.78(0.004) 0.63(0.033) 0.80(0.005) 0.74(0.055) 0.81(0.005)
100 0.79(0.067) 0.77(0.010) 0.79(0.037) 0.78(0.005) 0.80(0.058) 0.80(0.009) 0.81(0.042) 0.81(0.008)
200 0.85(0.013) 0.84(0.005) 0.85(0.015) 0.85(0.004) 0.86(0.014) 0.86(0.004) 0.95(0.006) 0.90(0.004)

Table 3. Evaluation for Â obtained using SVAR-GFCI.

00 10 20 50

n TP TN TP TN TP TN TP TN
S1 50 0.21(0.03) 0.99(0.001) 0.22(0.03) 0.99(0.001) 0.22(0.03) 1.00(0.001) 0.30(0.03) 1.00(0.001)

100 0.28(0.03) 0.99(0.001) 0.31(0.03) 0.99(0.001) 0.33(0.03) 1.00(0.001) 0.45(0.03) 1.00(0.001)
200 0.32(0.05) 0.99(0.001) 0.35(0.04) 0.99(0.001) 0.37(0.04) 1.00(0.001) 0.57(0.03) 1.00(0.001)

S2 50 0.06(0.01) 0.99(0.001) 0.07(0.01) 0.99(0.001) 0.08(0.01) 0.99(0.001) 0.11(0.03) 0.99(0.001)
100 0.09(0.01) 0.99(0.001) 0.10(0.01) 0.99(0.001) 0.11(0.01) 0.99(0.001) 0.16(0.03) 0.99(0.001)
200 0.09(0.01) 0.99(0.001) 0.10(0.01) 0.99(0.001) 0.11(0.01) 0.99(0.001) 0.16(0.02) 0.99(0.001)

S3 50 0.20(0.03) 0.99(0.001) 0.21(0.03) 0.99(0.001) 0.22(0.03) 1.00(0.001) 0.30(0.03) 1.00(0.001)
100 0.28(0.03) 0.99(0.001) 0.30(0.03) 0.99(0.001) 0.31(0.03) 0.99(0.001) 0.47(0.03) 1.00(0.001)
200 0.35(0.05) 0.99(0.001) 0.37(0.04) 0.99(0.001) 0.41(0.04) 1.00(0.001) 0.58(0.03) 1.00(0.001)

S4 50 0.06(0.01) 0.99(0.001) 0.07(0.01) 0.99(0.001) 0.08(0.03) 0.99(0.001) 0.12(0.03) 0.99(0.001)
100 0.08(0.01) 0.99(0.001) 0.10(0.01) 0.99(0.001) 0.12(0.01) 0.99(0.001) 0.15(0.03) 0.99(0.001)
200 0.07(0.01) 0.99(0.001) 0.08(0.01) 0.99(0.001) 0.10(0.01) 0.99(0.001) 0.16(0.02) 0.99(0.001)

NOTE: Results are based on the median of 10 replicates, with the standard deviation of the corresponding metric reported in parentheses.

The performance of our proposed algorithm is also bench-
marked against SVAR-GFCI (Malinsky and Spirtes 2018) for
settings S1–S4, with the latter being a score-based method that
uses greedy optimization on the model score to learn the graph,
followed by carrying out statistical tests for conditional indepen-
dence to orient the edges; see Table 3. In particular, we leverage
the python implementation of TETRAD,3wherein the available
prior information can be passed in as an argument.

A major issue with SVAR-GFCI observed under the settings
in consideration is its low discovery rate; this may be due to high
dimensionality and low sample size, and it is more pronounced
for denser graphs. The partial ordering information aids in
improved discovery of the graph skeletons, as what one would
expect. Further, contrary to the estimates obtained using our
proposed method, here we do not observe discrepancy in terms
of recovery performance between the two cases, where the noise
distribution is Gaussian versus being Laplace.

Comparison with several other methods (e.g., Pamfil et al.
2020; Hyvärinen et al. 2010) whose existing implementation
does not readily consume prior information is deferred to
Appendix D, where the comparison is only conducted for the
case without partial ordering. Additionally, we also include a

3https://github.com/cmu-phil/py-tetrad

discussion related to varsortability (Reisach, Seiler, and Weich-
wald 2021) and additional results to display the impact from data
normalization in Appendix D.2.

5. Real Data Analysis

To evaluate how our proposed algorithm would perform in
real world settings, we consider two applications and examine
the structural and temporal components estimated from the
proposed method.

5.1. U.S. Macroeconomic Dta

SVAR models are widely used to address various problems in
macroeconomic analysis, including the effect of monetary inter-
ventions by central banks to the economy (Christiano, Eichen-
baum, and Evans 2005). However, small VAR models regularly
used in such analyses lead to empirical results that may be
contradictory to economic theory tenets (Sims 1980). It has been
suggested that large scale SVAR models could overcome such
difficulties, however, their identification is typically challenging.
The proposed approach offers a principled strategy to use large
SVARs.

https://github.com/cmu-phil/py-tetrad
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Figure 1. Partial views of the estimated structural parameter A and lag parameter B1. Parent variables are depicted in the columns and their descendants are in the rows.

The dataset comprises of a number of US macroeconomic
indicators measured at quarterly frequency, sourced from the
FRED-QD database (McCracken and Ng 2020). We consider 78
variables spanning the period from 1Q1973 to 2Q2022, totaling
200 observations. These variables encompass several different
categories and capture different facets of the economy, with the
major ones being industrial production, producer and consumer
price indices and their components (tier 1, low tier), Federal
Funds Rate (FFR) as an approximation of monetary policy
(tier 2, intermediate tier), and several market variables includ-
ing treasury yields, S&P500 and NASDAQ composite indices
(tier 3, high tier); see Bernanke, Boivin, and Eliasz (2005) and
discussion therein for inclusion of variables in the model. A
prior partial ordering is constructed based on variables’ tiers;
in particular, we do not allow variables from a higher tier to be
the parent nodes of those in a lower tier, that is, the following
directional relationship is prohibited: {(tier 2, tier 3) → tier 1;
tier 3 → tier 1}. This is predicated on the premise that tier 1
variables are “slow moving” and hence not impacted within the
same time period by the FFR (tier 2) or “fast moving” variables
in tier 3, the latter being sensitive to contemporaneous economic
information and shocks (Bernanke, Boivin, and Eliasz 2005).
Finally, to ensure stationarity of the time series, we apply the
benchmark transformation suggested in McCracken and Ng
(2020), which follows from Stock and Watson (2012a, 2012b);
further, these time series are de-meaned before they are fed into
the model.

We run the proposed algorithm on this dataset, with the
hyperparameters μA, μB selected so that the one-step-ahead
predictive RMSE is minimized; recall, that the SVAR model
can be expressed in a reduced form as in (2) which gives the
recursive relationship for prediction. We set the number of
lags d = 2, trying to strike a balance between parsimony by
not over-expanding the model parameter space and capturing
delayed effects through adequate inclusion of lags. The obtained
results show that with d = 2, the magnitude of the estimated

parameters in B2 is getting significantly smaller than those
in B1.

The heatmap in Figure 1(A) shows the impact of industrial
production and consumer prices indices (tier) to the FFR (tier 2)
and market variables (tier 3). It can be seen that the FFR is
impacted by selected production indices that act as rough prox-
ies of broader economic activity. Further, there are interactions
within blocks of related variables, for example, the aggregate
industrial production and consumer price indices and their
respective constituents. Of particular interest, is the influence
exerted by FFR and those variables that influence it with a lag,
as seen from Figure 1(B). In particular, FFR impacts consumer
price indices positively, which is in accordance with economic
theory, which demonstrates its ability in overcoming difficulties
in interpretation noted in the literature when small SVAR mod-
els were used (see discussion in Sims 1980; Bernanke, Boivin,
and Eliasz 2005). Further, it is closely related to the real money
stock and treasury yields for both the short and the long tenors, a
result in accordance with past analysis (Bańbura, Giannone, and
Reichlin 2010).

5.2. DREAM4 Gene Expression Data

Next, we briefly discuss how the proposed algorithm can aid in
the task of identifying functional relationships (network infer-
ence) between genes from limited size gene expression data.
This is a fundamental problem in functional genomics and a
comprehensive solution to it requires a large set of expensive
“perturbation” (knock-out or knock down) experiments (see
discussion in Markowetz (2010)). The DREAM 4 competition
provided datasets to test algorithms for such network infer-
ence tasks (Marbach et al. 2009; Greenfield et al. 2010), We
run the proposed algorithm on a collection of five datasets
corresponding to different network topologies from selected
organisms, each containing time series (21 time points) for 100
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genes with 10 perturbations each. Further, to quantify how gains
in performance could be achieved in the presence of partial
ordering information (which can be obtained from the literature
and experimental work in functional genomics applications), we
run the proposed algorithm with and without partial ordering.
The partial ordering information is constructed by considering
the following three disjoint sets: “regulator”, “target”, or “free”
that the genes are partitioned into. Specifically, based on a “gold
standard” network of gene functional relationships, that is taken
as the underlying truth and denoted by A with Aij �= 0 corre-
sponding to an edge j → i, let

regulator := {
i : ∀j, Aij = 0 and ∃j, Aji �= 0

}
,

target := {
i : ∃j, Aij �= 0 and ∀j, Aji = 0

}
;

that is, the regulator set consists of genes that emit, but have no
incoming edges, and the target set contains those that receive,
but have no outgoing edges; all other genes including those
simultaneously emitting and receiving or neither emitting nor
receiving constitute the “free” set. The partial ordering informa-
tion is constructed such that we prohibit genes in the regulator
set to receive, and those in the target set to emit, while imposing
no restrictions on those in the free set. In other words, the partial
ordering enforces the regulator and the target sets to form a
bipartite graph.

We run the model on each of the five network topologies
datasets. Specifically, for each run, we set d = 1 and select the
hyper-parameters (μA, μB) based on the following procedure:
we first run the algorithm over a grid and select the pair (μ∗

A, μ∗
B)

that gives the smallest predicted RMSE; then we set μB ≡ μ∗
B

and run the algorithm over a sequence of μA’s to obtain the
ROC/precision-recall curve. Similar to Lu et al. (2021), AUROC
and AUPRC are used as performance measures and obtained for
each run, with and without the partial ordering information.

Performance of the proposed algorithm without partial
ordering information is in the same ballpark range to other lin-
ear methods tested in Lu et al. (2021), with AUPRC between 0.10
and 0.20 and AUROC between 0.60 and 0.65; for an extensive
analysis see tables in Lu et al. (2021) and follow-up discussion.
Note that many methods exhibiting better performance are non-
linear and can accommodate more complex temporal dynamics
of gene expression data. In the presence of partial ordering,
we notice a 0.10 increase in AUPRC; the gain in AUROC is of
similar magnitude, thus, showing the benefits of the proposed
method to consume seamlessly such prior information.

Finally, we note that given the availability of a “gold standard”
for the DREAM4 datasets under consideration, the calculated
varsortability averages around 0.40. This suggests that for real
world applications, the data scale can be rather uninforma-
tive about the underlying topological ordering of the variables,
thus, posing challenges for selected continuous structural learn-
ing based methods.4 This reiterates the need for developing

4Note that we have effectively ignored temporal dependency while calcu-
lating varsortability, and hence the model could potentially be mildly mis-
specified. On the other hand, calculation based on simulated data indicates
that even though such mis-specification may introduce a minor down-
ward bias to the truth (i.e., the calculated varsortability based on the mis-
specified model may underestimate the truth), it will not drastically change
the varsortability to a large extent and therefore the conclusion still stands.

methods for structural discovery in time-series data that are
robust to the data scale.

6. Conclusion

The article presents an efficient algorithm to estimate the param-
eters of a Structural VAR model, in the presence of a pri-
ori information that provides partial ordering information for
the variables under consideration. The formulated optimiza-
tion problem is built upon an existing method that estimates a
DAG and augments the objective function with the necessary
lag terms that encode the temporal dependency. The acyclicity
constraints is enforced through a polynomial number of con-
straints, which can also seamlessly incorporate the partial order-
ing information. The proposed algorithm is provably convergent
to a stationary point. Numerical experiments on synthetic data
illustrate the overall competitive performance of the proposed
algorithm to a competing method and also the role of the prior
information on the accuracy of the results. Finally, applications
to macroeconomic and genomic data demonstrate the useful-
ness of the algorithm in practical settings.

Supplementary Materials

The supplement contains (i) implementation details of the algorithm, (ii) all
technical proofs on the convergence of the algorithm, (iii) additional details
on the numerical experiments and (iv) a description of the variables used
in Section 5.1.
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