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Small RNAs are incorporated into
Argonaute protein-containing com-

plexes to guide the silencing of target
RNAs in both animals and plants. The
abundance of endogenous small RNAs is
precisely controlled at multiple levels
including transcription, processing and
Argonaute loading. In addition to these
processes, 30 end modification of small
RNAs, the topic of a research area that
has rapidly evolved over the last several
years, adds another layer of regulation of
their abundance, diversity and function.
Here, we review our recent understand-
ing of small RNA 30 end methylation and
tailing.

Introduction

Small silencing RNAs (small RNAs) of
20–30 nucleotide (nt) in length are key
regulators of gene expression in both ani-
mals and plants. Together with their effec-
tor protein called Argonaute (AGO),
small RNAs repress gene expression at
either the transcriptional or the post-tran-
scriptional level and play important roles
in various biological processes, such as cell
differentiation and transgenerational
inheritance. Small RNAs can be classified
into microRNAs (miRNAs), small inter-
fering RNAs (siRNAs) and Piwi (a class of
AGO protein)-interacting RNAs (piR-
NAs) based on their origin, biogenesis
and/or the type of AGO they are associ-
ated with, although the boundaries of this
classification become blurred and some-
times even difficult to discern.1,2 Dicer-
like proteins, a class of RNAseIII-type

enzymes, release miRNAs and siRNAs
from their precursors as duplexes with
2 nt 30 overhangs at each end.3 By con-
trast, piRNAs are processed via a Dicer-
independent pathway.4 More details
regarding the biogenesis and function of
small RNAs have been reviewed else-
where.3,4 After biogenesis, plant small
RNAs as well as some animal small RNAs
are 20-O-methylated at their 30 end by
HUA ENHANCER1 (HEN1) in plants
or its homologues in animals. 20-O-meth-
ylation is critical for small RNA stability.
Besides methylation, small RNAs are also
subject to 30 untemplated nucleotide addi-
tion (tailing), which in turn affects their
function and stability. In this point of
view, we summarize our recent under-
standing on small RNA methylation and
tailing and discuss their biological
relevance.

Methylation of small RNAs
Plant miRNAs and siRNAs contain a

20-O-methyl group at their 30 end. This
modification is catalyzed by HEN1.5,6

HEN1 contains 2 double-stranded RNA
binding domains (dsRBD1 and dsRBD2),
a La-motif containing domain (LCD) and
a methyltransferase domain (MTase).7

HEN1 specifically recognizes 21–24 base-
pair (bp) dsRNAs with 2nt overhangs and
deposits a methyl group to the 20 OH posi-
tion of the 30 end in each strand in vitro.8

Structural analysis reveals that HEN1 rec-
ognizes dsRNAs via its dsRBD1 and
dsRBD2 domains. The substrate length of
HEN1 is determined by the distance
between the LCD domain and the MTase
domain.7 Loss of 20-O-methylation in the
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hen1mutants not only leads to the reduced
small RNA abundance but also results in 30

end untemplated uridine addition (uridy-
lation) and trimming of small RNAs.9-11

These results demonstrate that methyla-
tion stabilizes small RNAs by preventing
uridylation and degradation. A single uri-
dine addition at miR171 in the hen1
mutant results in the production of sec-
ondary siRNAs from target RNAs that
undergo miR171-mediated cleavage.11

This result indicates that methylation may
also block miRNA-dependent secondary
siRNA production, and, therefore, protects
plants from undesired regulation by small
RNAs.

HEN1 is an evolutionarily conserved
protein in eukaryotes and bacteria.12 In
bacteria and animals, HEN1 lacks
dsRNA-binding domains and methylates
single-stranded RNAs.13,14-21 In bacteria,
Hen1 is involved in an RNA repair pro-
cess.22,23 In animals, HEN1 methylates
some small RNAs in a germ cell-specific
manner.14-21 Intriguingly, among 297
animals homozygous for zebrafish hen1,
only one was identified as female, suggest-
ing a critical role of HEN1 in sex determi-
nation.18 In mice, HEN1 is specifically
expressed in testes and methylates piR-
NAs.15,17 In addition, the zebrafish
HEN1 is expressed both in ovary and tes-
tis, and is required for piRNA stability.18

Besides piRNAs, AGO2-associated
siRNAs in Drosophila and ERGO-1
(a PIWI clade AGO protein)-associated
26G RNAs in C. elegans are also subject to
20-O-methylation by DmHEN1/Pimet
(piRNA methyltransferase) and HENN-1
(HEN1 of Nematodes 1), respectively, in
a germline-specific manner. In all cases,
loss-of-function mutations in HEN1
cause uridylation and 30-to-50 exonucleo-
lytic trimming of small RNAs,16,18–21

reminiscent of the observations in Arabi-
dopsis.9-11 Animal HEN1 homologs
appear to act on AGO-bound small RNAs
in vivo and fly HEN1 interacts with
PIWI,14,16 suggesting that the physical
interaction between HEN1 and AGOs
may determine its substrate specificity in
animals.

Uridylation of small RNAs
In contrast to piRNAs, animal miR-

NAs are not methylated. Comprehensive

small RNA deep sequencing analyses
reveale that uridylation or adenylation
(usually mono- or di-nucleotide addi-
tions) at the 30 end of miRNAs is wide-
spread and conserved across a variety of
animal species.24–26 Uridylation of small
RNAs is catalyzed by the terminal uridyl-
transferases (TUTase) (Fig. 1). While
many TUTases show overlapping activi-
ties on some miRNAs, some of them act
on miRNAs in a sequence-specific man-
ner.24,26,27 Uridylation often serves as an
RNA decay signal whereas adenylation
appears to increase RNA stability.28

Besides stability, 30 modification can also
regulate small RNA activities. For exam-
ple, uridylation of miR-26a prevents the
miRNA from repressing its mRNA target,
without affecting its abundance.25

PAPD4/GLD-2 mediated 30 end adenyla-
tion has little effect on miRNA abundance
but reduces their AGO loading effi-
ciency.24 Interestingly, miRNAs derived
from the 30 arms of their pre-miRNAs are
more frequently uridylated, suggesting
that at least some of the uridylation occurs
to the 30 end of pre-miRNAs before they
are channeled into Dicer processing.24

Indeed, mono-uridylation of group II pre-
miRNAs (with a 1nt 30 overhang instead
of the canonical 2nt 30 overhang after
Drosha cleavage) is crucial for their fur-
ther maturation.29 In C. elegans, 22G sec-
ondary siRNAs are not methylated and
are extensively oligo-uridylated by CDE-1,
a germline-specific ncPAP.30 CDE-1-
mediated uridylation of CSR-1 bound
22G siRNAs prevents their over-accumula-
tion through active degradation, which is
important for both mitotic and meiotic
chromosome segregation.30

Lack of HEN1 function causes exten-
sive tailing and trimming of small RNAs
in higher plants.9,11 An early study dem-
onstrates that untemplated nucleotides
added to the 30 end of small RNAs in
hen1 are predominantly uridines,9 which
is subsequently shown to be the same in
all other tested plant species.9–11 We
recently showed that HESO1 acts in small
RNAs uridylation.31,32 HESO1 is a
TUTase (Fig. 1) and possesses robust
RNA poly(U) polymerase activities in
vitro.31,32 The activity of HESO1 is
completely blocked by 20-O-methyla-
tion.31,32 This maybe due to that HESO1

requires 20 OH for its substrate recogni-
tion or catalysis. Alternatively, 20-O-meth-
ylation may block substrate recognition or
catalysis although HESO1 does not need
20 OH for its activity. Loss-of-function
mutations in HESO1 lead to a general
reduction of U-tail length in hen1, accom-
panied by an increase of normal-sized, 30

trimmed, and/or short-tailed small
RNAs.31,32 In contrast, over-expression of
HESO1 in the hen1 background acceler-
ates miRNA turnover and causes more
severe developmental defects.31 These
results demonstrate that uridylation trig-
gers small RNA destabilization. As in Ara-
bidopsis, the Chlamydomonas TUTase
MUT68 has also been implicated in both
siRNA and miRNA uridylation.33 The
increased extent of 30 trimming in the
hen1 heso1 mutants suggests that uridyla-
tion may antagonize the action of 30-to-50

trimming, of which the biological mean-
ing is not yet clear.31,32 As 30 truncated
miRNA species are tailed by HESO1,32 it
is likely that one function of uridylation is
to remove 30 truncated miRNAs. In Dro-
sophila, the 30-to-50 exoribonuclease Nib-
bler trims a proportion of AGO1
associated miRNAs.34,35 There are 2 puta-
tive homologous proteins in Arabidopsis
and it will be interesting to determine
whether any of them is involved in 30-to-
50 trimming of unmethylated small RNAs.

Uridylation of 50 cleavage products (50

CPs) generated by small RNA-mediated
cleavage

The endonucleolytic cleavage of target
RNAs is a mechanism used by miRNAs
and siRNAs to silence gene expression.
Slicing of target RNAs often happens at a
position opposite to the middle of miR-
NAs and siRNAs and results in a 30 cleav-
age product (30 CP) and a 50 CP.36 In C.
elegans, 30 CPs and 50 CPs generated by
siRNA-mediated cleavage are further
removed by the 50-to-30 exonuclease
XRN1 and the exosome, which degrade
RNAs from 50-to-30 and 30-to-5, respec-
tively.37 In Arabidopsis, the XRN1-LIKE
exonuclease XRN4 is responsible for the
degradation of 30 CPs generated by
miRNA-mediated target cleavage.38

Intriguingly, the 30 ends of 50 CPs are
often subject to oligo-uridylation or
adenylation modifications in several
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evolutionarily distant plant
species.39 The Chlamydo-
monas MUT68 adds
adenosines to the 30 end of
50 CP of MAA7 (the
endogenous target of siR-
NAs generated by a trans-
genic inverted-repeat seq-
uence) and promotes its
degradation from 30-to-50,
likely involving the action
of the exosome.40 In a
recent study, we show that
HESO1 is responsible for
the uridylation of 50 CPs
in Arabidopsis.41 A reduc-
tion in uridylation in
heso1–2 increases the accu-
mulation of 50 CP, demon-
strating that uridylation
triggers degradation of 50

CP.41 The proportion of 3
‘truncated 50 CPs is
increased by heso1 relative
to wild-type plants (WT),
suggesting that uridylation
may cause 50 CP degrada-
tion through a mechanism
different from 30-to-50

trimming.41 This resembles
the effect of heso1 on miR-
NAs in hen1.31,32 In
humans, uridylation can
trigger decapping of his-
tone mRNAs followed by
50-to-30 degradation.42 This
maybe not the case for 50

CPs, as the status of 50-to-
30 truncation of 50 CPs is
not altered by heso1. 50

CPs can also be degraded
by 50-to-30 and 30-to-50 trimming since
both 50 and 30 truncated 50 CPs exist.41

In xrn4, the amount of 50 CPs is
increased compared with that in WT,
revealing that XRN4 is an enzyme
responsible for the degradation of 50 CPs
although it is not clear whether it acts
before or after uridylation.41 The
enzymes that trim 50 CPs from 30-to-50

remain to be identified.

How does uridylation trigger the
degradation of small RNAs and 50 CPs?

Both small RNAs and 50 CPs at least in
transient associate with the AGO proteins.

This suggests that a common mechanism
maybe used to degrade both uridylated
small RNAs and 50 CPs. Agreeing with
this notion, the exosome is responsible for
the degradation of both uridylated small
RNAs and adenylated 50 CPs in Chlamy-
domonas.33,40 Thus, it is possible that a
nuclease may simultaneously target both
uridylated 50 CPs and small RNAs in
higher plants. Recently, Dis3l2, which is a
30-to-50 RNAse II nuclease encoded by a
paralog of RRP44, a core component of
the exosome, was shown to degrade uridy-
lated pre-let-7 (precursor of let-7
miRNA).43,44 In yeast, the Dis3l2

homolog can trigger rapid degradation of
uridylated RNAs in a tail-length depen-
dent manner.45 Arabidopsis SOV (SUP-
PRESSOR OF VARICOSE) is the closest
homologous protein of Dis3l2.46 It is
worth testing if SOV is the enzyme
responsible for the degradation of uridy-
lated small RNAs and 50 CPs in the near
future. HESO1 can add long U-tails (Up
to hundreds of nt long) to its substrates in
vitro.31,32,41 However both miRNAs and
50 CPs only contain short U-tails (less
than 15 nt) in vivo.32,41 This provides an
alternative explanation for the degradation
of uridylated miRNAs and 50 CPs: long

Figure 1. A phylogenetic tree of selected non-canonical poly(A) polymerases. Full-length proteins were downloaded
from the Genbank database (http://www.ncbi.nlm.nih.gov/genbank). A neighbor joining phylogenetic tree was con-
structed using MEGA 5.1 52 and displayed using Geneious v7.1.5 (http://www.geneious.com/). Hs: Homo sapien; Ce:
Caenorhabditis elegans; Dm: Drosophila melanogaster; At: Arabidopsis thaliana; Sp: Schizosaccharomyces pombe;
Cr: Chlamydomonas reinhardtii; Sc: Saccharomyces cerevisiae.
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U-tail may disassociate miRNAs and 50

CPs from the AGO1 complex, resulting
in their rapid degradation such that no
long-tailed products can be detected.

HEN1 protects small RNAs from
AGO-associated tailing and trimming
activities that normally acts on 50 CPs

The dual activities of HESO1 and
MUT68 on both small RNAs and 50 CPs
and the fact that both small RNAs and 50

CPs associate with AGO proteins suggest
that the terminal uridyl transferase may
recognize their substrates in the AGO
complex (Fig. 2). Several evidences dem-
onstrate that HESO1 indeed uridylates
AGO1-associated miRNAs. First,
HESO1 associates with AGO1, as
revealed by colocalization and co-immu-
noprecipitation assays.41 Second, HESO1
is able to uridylate AGO1-bound
miR165/166 in vitro.41 Third, in hen1,
AGO1-bound miRNAs are tailed.11

Fourth, suppression of AGO1 function in
hen1 diminishes miRNA uridylation.11,41

We envision that HESO1 also recognizes
siRNAs in vivo through its physical

interaction with respective AGO proteins.
Further analyses show that the PAP
domain rather than the unconserved
C-terminal domain of HESO1 interacts
with the PAZ and PIWI domain of
AGO1.41 These interactions may facilitate
HESO1 to recognize its substrates, as
PAZ binds the 30 end of small RNAs,
which can be released by base pairing
between small RNAs and their targets,
and PIWI cleaves the targets. In addition,
the interaction of terminal uridyl transfer-
ases with AGO may be common among
different species since PAP (Fig. 1), PAZ
and PIWI are evolutionarily conserved.47

Both small RNAs and 50 CPs are also
subject to 30-to-50 trimming activities. By
analogy, it is possible that the enzymes
catalyzing 30-to-50 trimming may also
associate with AGO proteins. In fact, Nib-
bler has been shown to interact with AGO
in Drosophila.34 The tailing and trim-
ming activities are likely recruited to
AGO to eliminate the 50 CPs. The pres-
ence of these AGO1-associated activities
confers the necessity of small RNA meth-
ylation by HEN1 to ensure their stability

in the AGO complex in
plants (Fig. 2). In flies,
AGO2-assoicated siRNAs
are protected by methyla-
tion.16 In contrast, AGO1-
associated miRNAs are not
methylated16 and display
very limited tailing and trim-
ming. This may be due to
the fact that animal miRNAs
are less complementary to
their targets.48 Consistent
with this, introduction of
artificial target RNAs with
high complementarity to
some endogenous miRNAs
triggers their tailing and
trimming.49,50 Moreover,
siRNAs, which often have
highly complementary tar-
gets, become tailed and
trimmed when misloaded
into AGO1.49,50 A possible
explanation for these obser-
vations is that less comple-
mentarity between miRNAs
and targets inhibits target
cleavage, which may signal
tailing and trimming. Alter-

natively, the extensive complementarity
between small RNA and its target may
help to release its 30 end from PAZ
protection.51

Conclusions and Perspectives

In addition to transcription and proc-
essing, 30 end modification also contrib-
utes to the accumulation of small RNAs.
We are just beginning to understand the
underlying biochemical pathway of this
process. While it is clear that methylation
plays a crucial role in stabilizing small
RNAs through antagonizing uridylation
and trimming activities, future studies will
be required to determine whether the
degree of complementarity to targets or
target cleavage serves as a signal for the
recruitment of tailing and trimming
enzymes. There are more challenges in
this field. An immediate one is the identi-
fication of all the enzymes involved in the
small RNAs modification and catabolic
pathway, with those responsible for trim-
ming and degradation in particular. Other

Figure 2. A proposed model for target cleavage mediated small RNA destabilization. In this model, small RNA
mediated target cleavage (A and B) but not translational inhibition (C) may provide a signal in the recruitment
both tailing and trimming enzymes to AGO for the modification and further degradation of 50 cleavage products.
(A) HEN1 mediated 20-O-methylation protects small RNAs from both tailing and trimming activities. (B) In the
absence of HEN1, small RNAs become frequently tailed and trimmed. (C) In the case of partially complementary tar-
get RNA (e.g. animal miRNAs), small RNAs predominantly suppresses gene expression via translational inhibition. In
this scenario, tailing and trimming enzymes will be barely recruited to AGO and small RNAs are less tailed and
trimmed, regardless of methylated or not. Green oval, AGO protein; Blue oval, translational machinery.
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outstanding questions include how these
enzymes are recruited, and more impor-
tantly, whether small RNA stability con-
trol can be regulated in response to any
developmental or environmental signals.
We believe that addressing these questions
will greatly advance our understanding of
the regulation of small RNAs.
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